WO2022009815A1 - オクタヒドロチエノキノリン化合物のコハク酸塩及びその結晶 - Google Patents

オクタヒドロチエノキノリン化合物のコハク酸塩及びその結晶 Download PDF

Info

Publication number
WO2022009815A1
WO2022009815A1 PCT/JP2021/025233 JP2021025233W WO2022009815A1 WO 2022009815 A1 WO2022009815 A1 WO 2022009815A1 JP 2021025233 W JP2021025233 W JP 2021025233W WO 2022009815 A1 WO2022009815 A1 WO 2022009815A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
salt according
peaks
pharmaceutical composition
powder
Prior art date
Application number
PCT/JP2021/025233
Other languages
English (en)
French (fr)
Inventor
秀樹 竹内
一道 城
Original Assignee
キッセイ薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キッセイ薬品工業株式会社 filed Critical キッセイ薬品工業株式会社
Priority to US18/004,353 priority Critical patent/US20230286998A1/en
Priority to JP2022525569A priority patent/JP7187733B2/ja
Priority to CA3183361A priority patent/CA3183361A1/en
Priority to KR1020237002115A priority patent/KR20230035050A/ko
Priority to CN202180046334.0A priority patent/CN115803329A/zh
Priority to EP21837478.3A priority patent/EP4177257A1/en
Publication of WO2022009815A1 publication Critical patent/WO2022009815A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/10Drugs for disorders of the endocrine system of the posterior pituitary hormones, e.g. oxytocin, ADH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system having sulfur as a ring hetero atom, e.g. ticlopidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4743Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having sulfur as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/10Succinic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention has a dopamine D2 receptor agonistic action and is useful as a prophylactic or therapeutic agent for Parkinson's disease, restless legs syndrome, hyperprolactinaemia, etc.
  • Compound represented by (Chemical name: 1- ⁇ [(4aR, 6R, 8aR) -2-amino-3-cyano-8-methyl-4,4a, 5,6,7,8,8a, 9-octa) Hydrothieno [3,2-g] quinoline-6-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea; hereinafter abbreviated as "Compound B”), or The hydrochloride salt is disclosed in Patent Documents 1 to 3. However, the succinate of compound (B) is only described as a general salt, and no reports have been made on the properties of succinate of compound (B).
  • An object of the present invention is to provide a different form of compound (B), which has high storage stability and is suitable for use as a drug substance.
  • the salt according to [5] above which has peaks at .5, 165.1 ⁇ 0.5 and 157.3 ⁇ 0.5.
  • the salt according to [5] above characterized by two or three physical properties selected from the group consisting of the following (a1) to (a3): (A1) Powder X-ray diffraction pattern having peaks at 11.2 ⁇ 0.3 and 11.8 ⁇ 0.3 as the diffraction angle (2 ⁇ (°)); (A2) Chemical shift values ( ⁇ (ppm)) are 183.6 ⁇ 0.5, 180.5 ⁇ 0.5, 174.1 ⁇ 0.5, 170.0 ⁇ 0.5, 165.1 ⁇ 0.
  • a method for treating or preventing Parkinson's disease, restless legs syndrome or hyperprolactinemia which comprises administering an effective amount of the compound according to any one of the above [1] to [12].
  • the succinate of the present invention is excellent in storage stability because it does not absorb moisture during long-term storage and almost no decrease in purity is observed. In addition, it has extremely good solubility and crystallinity, and is also excellent in fluidity, so that it is a compound that is easy to handle in formulation, for example.
  • the vertical axis shows the diffraction intensity (Counts) of X-rays, and the horizontal axis shows the diffraction angle (2 ⁇ (°)).
  • the vertical axis shows the diffraction intensity (Counts) of X-rays, and the horizontal axis shows the diffraction angle (2 ⁇ (°)).
  • the vertical axis shows the diffraction intensity (Counts) of X-rays, and the horizontal axis shows the diffraction angle (2 ⁇ (°)).
  • TG-DTA measurement diagram thermogravimetric differential thermal analysis chart
  • the vertical axis (left) shows the weight (%) in the thermal weight (TG) curve
  • the vertical axis (right) shows the heat flux ( ⁇ V) in the differential thermal analysis (DTA) curve
  • the horizontal axis shows the temperature (° C.). show.
  • the vertical axis (left) shows the weight (%) in the thermal weight (TG) curve
  • the vertical axis (right) shows the heat flux ( ⁇ V) in the differential thermal analysis (DTA) curve
  • the horizontal axis shows the temperature (° C.).
  • the vertical axis shows the intensity
  • the horizontal axis shows the chemical shift value ( ⁇ (ppm)).
  • the vertical axis shows the intensity
  • the horizontal axis shows the chemical shift value ( ⁇ (ppm)). It is a powder X-ray-diffraction diagram of the hydrochloride obtained in Comparative Example 1.
  • the vertical axis shows the diffraction intensity (Counts) of X-rays, and the horizontal axis shows the diffraction angle (2 ⁇ (°)). It is a powder X-ray-diffraction diagram of the crystal of sebacate obtained in Comparative Example 2.
  • the vertical axis shows the diffraction intensity (Counts) of X-rays, and the horizontal axis shows the diffraction angle (2 ⁇ (°)).
  • FIG. The vertical axis shows the diffraction intensity (Counts) of X-rays, and the horizontal axis shows the diffraction angle (2 ⁇ (°)).
  • the solid line shows the adsorption isotherm, and the broken line shows the desorption isotherm.
  • the vertical axis shows the mass change (%), and the horizontal axis shows the relative humidity (% RH). It is a powder X-ray diffraction pattern of the pharmaceutical composition obtained in Example 4.
  • FIG. The vertical axis shows the diffraction intensity (Counts) of X-rays, and the horizontal axis shows the diffraction angle (2 ⁇ (°)).
  • the vertical axis shows the intensity, and the horizontal axis shows the chemical shift value ( ⁇ (ppm)).
  • the succinate of the present invention can be produced, for example, by the following method. That is, for example, the compound (B) that can be produced according to the method described in Patent Document 1 or a method based thereto and 0.5 to 2 equivalents of succinic acid are mixed in an appropriate solvent, dissolved under heating, and then dissolved. It can be produced by isolating the precipitated succinate by appropriately concentrating or adding a solvent as needed and cooling. Further, the succinate can be purified by recrystallization using the same solvent.
  • the good solvent may be any solvent that does not interfere with salt formation, for example, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tetrahydrofuran, dimethyl sulfoxide, N, N. -Dimethylformamide, N, N-dimethylacetamide and the like can be used. Also, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol, ethers such as tetrahydrofuran and 1,4-dioxane, acetone, acetonitrile, dimethyl sulfoxide, N, N-dimethyl.
  • alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol, ethers such as tetrahydrofuran and 1,4-dioxane, acetone, ace
  • a solvent such as formamide, N, N-dimethylacetamide and two or more good solvents of water may be used in combination.
  • the poor solvent that can be appropriately added to the good solvent after salt formation include carboxylic acid esters such as methyl acetate, ethyl acetate and isopropyl acetate, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, tetrahydrofuran, 1, Ethers such as 4-dioxane, acetonitrile, toluene and the like can be used. Further, two or more kinds of poor solvents may be used in combination.
  • the succinate of the present invention is a succinate produced according to the above method or the like, and is suitable, for example, an acetone-water mixed solvent, a methanol-water mixed solvent, an ethanol-water mixed solvent, dimethylsulfoxide or the like. It can be purified by recrystallization using a recrystallization solvent.
  • the succinate of the present invention also includes a salt co-crystal with succinic acid, a co-crystal with succinic acid, a hydrate, or a solvate with a pharmaceutically acceptable solvent such as ethanol.
  • the succinate of the present invention has a dopamine D2 receptor agonist action and is useful as a prophylactic or therapeutic agent for Parkinson's disease, restless legs syndrome, hyperprolactinemia, etc.
  • the pharmaceutical composition of the present invention contains the succinate of the present invention as an active ingredient.
  • These pharmaceutical compositions are appropriately mixed with appropriate excipients, disintegrants, binders, lubricants and other pharmaceutical additives according to the dosage form according to ordinary dispensing methods, and are dispensed according to a conventional method.
  • the powder can be prepared by adding an appropriate excipient, lubricant, or the like to the active ingredient and mixing well to obtain the powder.
  • tablets can be made into tablets by adding appropriate excipients, disintegrants, binders, lubricants, etc. to the active ingredient and tableting according to a conventional method.
  • capsules are prepared by adding an appropriate excipient, lubricant, etc. to the active ingredient, mixing well, or granulating or finely granulating according to a conventional method, and then filling the capsule into an appropriate capsule to form a capsule. can do.
  • an orally administered preparation it may be an immediate release or sustained release preparation depending on the prophylactic or therapeutic method.
  • the dose of the succinate of the present invention which is the active ingredient thereof, is appropriately determined depending on the age, sex, body weight, disease, degree of treatment, etc. of the patient.
  • it can be administered once or in several divided doses in the range of approximately 0.1 to 300 mg per day for adults. It is preferable to produce the above-mentioned pharmaceutical composition so that the succinate of the present invention is administered in the range of 0.1 to 300 mg per day for an adult.
  • the relative intensity (relative peak height) of each peak in the powder X-ray diffraction pattern can vary depending on the sample condition, the measuring condition or the measuring device. Therefore, the relative strength can change slightly depending on the direction of crystal growth, particle size, measurement conditions, etc., and should not be strictly understood. It is also known that the 2 ⁇ value of each peak in powder X-ray diffraction slightly fluctuates depending on the sample conditions and measurement conditions. In the present invention, not only crystals in which the peak diffraction angles (2 ⁇ (°)) in powder X-ray diffraction completely match, but also all or part of the peak diffraction angles (2 ⁇ (°)) are ⁇ 0.3 °. Also includes crystals that match within the range of.
  • thermogravimetric differential thermal analysis chart the "endothermic peak” in the DTA curve is indicated by the temperature at the apex of the peak (peak top) or the “extrapolation start temperature”.
  • the “extrapolation start temperature” refers to the intersection of the rising portion or the falling portion of the DTA curve and the extrapolation of the baseline, and is also referred to as the “extrapolation start temperature”.
  • the “extrapolation start temperature” is the temperature at the start point of the peak, and means the heat generation or endothermic start temperature obtained by extrapolation.
  • the peak top and extrapolation start temperatures in the thermogravimetric differential thermal analysis chart may also vary slightly depending on the measurement conditions. As a general temperature fluctuation, for example, a range of ⁇ 5 ° C. can be considered. That is, the crystals specified by the above peaks include those that match in the range of ⁇ 5 ° C. In the present invention, "nearby" used in thermal analysis means a range of ⁇ 5 ° C.
  • the chemical shift value ( ⁇ (ppm)) can vary slightly depending on the measurement conditions, so even if the chemical shift value is slightly different, the crystal form identity is recognized. Crystals within such error range should also be included in the invention.
  • ⁇ 0.5 ppm can be considered. That is, the crystals specified by the chemical shift value ( ⁇ (ppm)) include those that match in the range of ⁇ 0.5 ppm.
  • the peak intensity may change, and peaks may appear or disappear due to differences in rotation frequency and measuring equipment.
  • Example 1 1- ⁇ [(4aR, 6R, 8aR) -2-amino-3-cyano-8-methyl-4,4a, 5,6,7,8,8a, 9-octahydrothieno [3,2-g] Quinoline-6-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea sesquisuccinate monohydrate (I-type crystal of salt (A-1)) 1- ⁇ [(4aR, 6R, 8aR) -2-amino-3-cyano-8-methyl-4,4a, 5,6,7,8,8a, 9-octahydrothieno [3,2-g] Add 102.8 g of acetone to quinoline-6-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea (22.00 g), suspend, heat and stir at an outside temperature of 52 ° C.
  • the reaction mixture was stirred at an internal temperature of 50 ° C. for 1 hour and cooled to 15 ° C. over 30 minutes.
  • the reaction mixture was stirred at an outside temperature of 10 ° C. for 2 hours, and the crystals were collected by filtration.
  • the crystals were washed twice with 52.8 g of acetone.
  • the obtained wet crystals were dried under reduced pressure at 50 ° C. for 37 hours and returned to room temperature over 3 hours under reduced pressure.
  • the crystals were stored in the atmosphere for 24 hours to obtain crystals of the title compound (27.75 g).
  • the powder X-ray diffraction of the obtained crystal was measured by the method of Test Example 1 and confirmed to be the same as the crystal form of the crystal obtained in Example 1.
  • Single crystals were collected from the powder, cut and shaped with a razor, mounted on a microloop using grease, and quickly frozen in a gas stream of a low temperature device.
  • the X-ray diffraction data was measured and acquired under the following measurement conditions using XtaLAB P200 MM007 (Rigaku Co., Ltd.).
  • (Measurement condition) X-ray source: CuK ⁇ Wavelength: 1.54187 ⁇ Tube voltage / tube current: 40kV, 30mA Measurement temperature: -100 ° C Crystal size: 0.15 x 0.08 x 0.04 mm Vibration angle: 1 ° Exposure time: 2 seconds / sheet Total number of measurements: 1637 Total measurement time: 55 minutes (data analysis program)
  • Elemental analysis was measured using a CHN automated analyzer vario EL (Elemental). (Elemental analysis results (C, H, N)) Theoretical value: 52.40%, 7.07%, 13.10% Measured values: 52.25%, 7.07%, 12.98%
  • the I-shaped crystal of the salt (A-1) has a Methylnic crystal system, a C2 space group, and a z value of 4, and 1- ⁇ [(4aR, 6R, 8aR) in the asymmetric unit.
  • Example 2 1- ⁇ [(4aR, 6R, 8aR) -2-amino-3-cyano-8-methyl-4,4a, 5,6,7,8,8a, 9-octahydrothieno [3,2-g] Quinoline-6-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea sesquisuccinate (type II crystal of salt (A-1)) 1- ⁇ [(4aR, 6R, 8aR) -2-amino-3-cyano-8-methyl-4,4a, 5,6,7,8,8a, 9-octahydrothieno [3,2-g] Quinoline-6-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea sesquisuccinate 121 mg in 1,4-dioxane / water (1: 1 volume ratio) mixed solvent (3 mL) Was heated to 60 ° C.
  • the obtained filtrate was freeze-dried. 2.5 mL of n-heptane was added to the obtained powder, and the mixture was heated to 60 ° C. in a suspended state and stirred for 1 hour. After stirring at room temperature for 1 day, the solid was collected by filtration and dried under reduced pressure at 40 ° C. to obtain crystals of the title compound (92 mg).
  • Example 3 1- ⁇ [(4aR, 6R, 8aR) -2-amino-3-cyano-8-methyl-4,4a, 5,6,7,8,8a, 9-octahydrothieno [3,2-g] Quinoline-6-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea monosuccinate (I-type crystal of salt (A-2)) 1- ⁇ [(4aR, 6R, 8aR) -2-amino-3-cyano-8-methyl-4,4a, 5,6,7,8,8a, 9-octahydrothieno [3,2-g] Kinolin-6-yl] carbonyl ⁇ -3- [2- (dimethylamino) ethyl] -1-propylurea (357 mg) is dissolved in 3.5 mL of acetone at an internal temperature of 50 to 55 ° C.
  • acetone / water (volume ratio 1: 1) mixed solvent (0.45 mL) was further added to the suspension, and the mixture was stirred at room temperature for 10 minutes. Further, 7.2 mL of acetone was added in 3 portions within 2 hours, and the mixture was stirred at room temperature for 1 hour. The precipitated crystals were collected by filtration, washed with a small amount of acetone, and dried under reduced pressure at room temperature for 1 hour to obtain crystals of the title compound (393 mg).
  • Example 4 A pharmaceutical composition containing I-shaped crystals of the salt (A-1) in a mixture (78.1 mg) of mannitol (49 parts), crystalline cellulose (50 parts) and sodium stearyl fumarate (1 part), according to Example 1. I-shaped crystals (8.7 mg) of the salt (A-1) were added and mixed well at room temperature to obtain a pharmaceutical composition containing 10% of the salt (A-1).
  • Radioactive source CuK ⁇ rays (CuK ⁇ 1 and CuK ⁇ 2) 1.5418 ⁇ Tube voltage: 45kV Tube current: 40mA
  • Data analysis software X'Pert HighScore (Panalytical Division, Spectris Co., Ltd.) Data analysis method (peak search): minimum significance (1.00), minimum peak chip (0.01, 2 ⁇ (°)), maximum peak chip (1.00, 2 ⁇ (°)), peak base (2. 00, 2 ⁇ (°)), Method (smoothed peak top) (2 ⁇ (°))
  • the powder X-ray diffraction of the salt (A-1) type II crystal is performed under the following measurement conditions using a powder X-ray diffractometer SmartLab (Rigaku Co., Ltd.) after lightly crushing the crystal in a mortar to crush coarse particles. Measured at. (Measurement condition) Radioactive source, wavelength: CuK ⁇ rays (CuK ⁇ 1 and CuK ⁇ 2) 1.5418 ⁇ Tube voltage: 40kV Tube current: 50mA Data analysis software: SmartLabStudioII (Rigaku Co., Ltd.) Data analysis method (peak definition): Peak position (peak top position, diffraction angle during CuK ⁇ 1 and CuK ⁇ 2 irradiation), peak height (not including background)
  • the diffraction diagram of the I-shaped crystal of the salt (A-1) is shown in FIG. 1, and the diffraction angle (2 ⁇ (°)) of a typical diffraction peak and the relative intensity (%) of the diffraction peak are shown in Table 2.
  • the diffraction diagram of the type II crystal of the salt (A-1) is shown in FIG. 2, and the diffraction angle (2 ⁇ (°)) of a typical diffraction peak and the relative intensity (%) of the diffraction peak are shown in Table 3. ..
  • the diffraction diagram of the I-shaped crystal of the salt (A-2) is shown in FIG. 3, and the diffraction angle (2 ⁇ (°)) of a typical diffraction peak and the relative intensity (%) of the diffraction peak are shown in Table 4. ..
  • the peak set of the following diffraction angle (2 ⁇ (°)) can be used.
  • One peak set is 11.2 ⁇ 0.3 and 11.8 ⁇ 0.3.
  • Yet another peak set is 11.2 ⁇ 0.3, 11.8 ⁇ 0.3 and 16.2 ⁇ 0.3.
  • Yet another peak set is 11.2 ⁇ 0.3, 11.8 ⁇ 0.3 and 23.6 ⁇ 0.3.
  • Yet another peak set is 11.2 ⁇ 0.3, 11.8 ⁇ 0.3, 23.6 ⁇ 0.3 and 25.4 ⁇ 0.3.
  • Yet another peak set is 11.2 ⁇ 0.3, 11.8 ⁇ 0.3, 16.2 ⁇ 0.3, 19.7 ⁇ 0.3, 22.3 ⁇ 0.3, 22. 4 ⁇ 0.3, 23.0 ⁇ 0.3, 23.6 ⁇ 0.3 and 25.4 ⁇ 0.3.
  • the peak set of the following diffraction angle (2 ⁇ (°)) can be used.
  • One peak set is 5.8 ⁇ 0.3, 20.4 ⁇ 0.3 and 24.4 ⁇ 0.3.
  • Yet another peak set is 5.8 ⁇ 0.3, 11.7 ⁇ 0.3, 11.9 ⁇ 0.3, 16.0 ⁇ 0.3, 20.4 ⁇ 0.3 and 24. It is 4 ⁇ 0.3.
  • the peak set of the following diffraction angle (2 ⁇ (°)) can be used.
  • One peak set is 8.3 ⁇ 0.3, 12.4 ⁇ 0.3, 15.6 ⁇ 0.3 and 23.2 ⁇ 0.3.
  • Yet another peak set is 8.3 ⁇ 0.3, 11.5 ⁇ 0.3, 12.4 ⁇ 0.3, 15.6 ⁇ 0.3, 22.1 ⁇ 0.3, 22. 7 ⁇ 0.3, 23.2 ⁇ 0.3, 24.1 ⁇ 0.3 and 24.7 ⁇ 0.3.
  • the TG-DTA measurement diagram of the I-shaped crystal of the salt (A-1) is shown in FIG.
  • Endothermic peak of I-shaped crystal of salt (A-1) Wide endothermic peak of 80-130 ° C, around 150 ° C (peak top (extrapolation start temperature around 142 ° C (melting)) Mass reduction (around 23 ° C to 150 ° C): 2.7%
  • the DSC chart of the I-shaped crystal of the salt (A-1) is shown in FIG.
  • Endothermic peak of I-shaped crystal of salt (A-1) wide endothermic peak of 80-130 ° C, around 153 ° C (peak top) (extrapolation start temperature around 145 ° C)
  • 13 C solid state NMR spectrum of Form I crystals of form I crystal and salts (Test Example 3) 13 C solid state NMR spectrum measurements salt of (A-1) (A- 2) is a sample of internal diameter 3.2mm solid NMR It was filled in a rotor for spectrum measurement and measured under the following measurement conditions to obtain an NMR chart.
  • NMR device 600MHz AVANCE III (bruker)
  • Probe Cross-polarization magic angle spinning (CP / MAS) accessories
  • Contact time 3 ms Recycling delay: 5 seconds
  • 1H pulse 3 microseconds
  • Rotation speed 15 kHz Total number of times: 2048
  • the solid-state NMR spectrum of the I-type crystal of the salt (A-1) obtained in Example 1 is shown in FIG. 6, and the chemical shift (ppm) is shown in Table 5. Further, the solid-state NMR spectrum of the I-type crystal of the salt (A-2) obtained in Example 3 is shown in FIG. 7, and the chemical shift (ppm) is shown in Table 6.
  • a set of chemical shift values ( ⁇ (pm)) of the following 13 C solid-state NMR spectrum can be used.
  • ⁇ (pm) chemical shift values of the following 13 C solid-state NMR spectrum.
  • Yet another set is 183.6 ⁇ 0.5, 180.5 ⁇ 0.5, 174.1 ⁇ 0.5, 170.0 ⁇ 0.5, 165.1 ⁇ 0.5, 157.3.
  • the following set of chemical shift values can be used.
  • One set is 177.7, 176.4, 166.2, 160.4, 154.0 and 152.4.
  • Another set is 177.7, 177.2, 176.4, 175.9, 166.2, 160.4, 154.0 and 152.4.
  • Another set is 177.7, 177.2, 176.4, 175.9, 168.8, 168.2, 167.3, 166.2, 160.4, 154.0 and 152.4.
  • Yet another set is 177.7, 177.2, 176.4, 175.9, 168.8, 168.2, 167.3, 166.2, 160.4, 154.0, 152.4. , 125.2, 114.4, 110.9, 77.1, 62.2, 54.6, 53.6, 44.3, 43.5, 41.0, 39.1, 37.0, 36 .4, 33.8, 33.2, 32.6, 31.8, 29.3, 28.7, 27.5, 27.3, 25.3, 23.1, 17.9, 17.5 , 16.9, 16.5, 10.2, 9.0, 7.5 and 6.6.
  • the I-shaped crystal of the salt (A-1) can also be identified by combining the above peaks of powder X-ray diffraction, 13C solid-state NMR spectrum and thermogravimetric differential thermal analysis chart.
  • Examples of the embodiment for identifying the I-shaped crystal of the salt (A-1) include the following embodiments (c1) to (c4).
  • (C1) Powder X-ray diffraction diagram with peaks at 11.2 ⁇ 0.3 and 11.8 ⁇ 0.3 as diffraction angle (2 ⁇ (°)); and 183. Chemical shift value ( ⁇ (ppm)). Peaks at 6 ⁇ 0.5, 180.5 ⁇ 0.5, 174.1 ⁇ 0.5, 170.0 ⁇ 0.5, 165.1 ⁇ 0.5 and 157.3 ⁇ 0.5 13 C solid-state NMR spectrum chart.
  • the powder X-ray diffraction of the crystal of the adipic acid salt of the obtained compound (B) was measured in the same manner as in Test Example 1, and the obtained diffraction diagram is shown in FIG.
  • Test Example 4 Stability test 1 I-type crystals of salt (A-1), I-type crystals of salt (A-2), hydrochloric acid crystals of compound (B), sevacinate crystals of compound (B) and adipate crystals at 60 ° C. It was stored under open conditions and the physical and chemical stability of each crystal form was investigated. The powder X-ray diffraction of the sample at the start of the sample and two months later was measured in the same manner as in Test Example 1, and the physical stability of the crystal form and the amount of related substances were measured using the following HPLC measurement conditions for chemistry. Confirmed stability. At the same time, changes in appearance were also observed. The results are shown in Table 7.
  • Sample solution A solution prepared by dissolving a sample in a dissolving solvent and preparing compound (B) at about 1.0 mg / mL. Except for the peaks derived from the blank, the area of each peak was measured by the automatic integration method, and those values were obtained by the area percentage method.
  • the crystals were stored at 75% relative humidity open, and the physical and chemical stability of each crystal form was examined.
  • the powder X-ray diffraction of the sample at the start of the sample and after 2 months was measured in the same manner as in Test Example 1 to measure the physical stability of the crystal form, and the amount of related substances was measured using the following HPLC measurement conditions. Confirmed chemical stability. At the same time, changes in appearance were also observed. The results are shown in Table 8.
  • Sample solution A solution prepared by dissolving a sample in a dissolving solvent and preparing compound (B) at about 1.0 mg / mL. Except for the peaks derived from the blank, the area of each peak was measured by the automatic integration method, and those values were obtained by the area percentage method.
  • the mass% is based on the dry sample, and the mass change before and after adsorption (or desorption) is expressed as a mass percentage.
  • the I-type crystal of the salt (A-1) does not show hygroscopicity, whereas the hydrochloride of the compound (B) is 25 to 41 times more hygroscopic, and the sebacate of the compound (B). was found to be 6 to 15 times more hygroscopic than the I-shaped crystals of salt (A-1).
  • the succinate of the present invention is more preferable as a drug substance because it is not hygroscopic.
  • Powder X-ray Diffraction Diagram of Pharmaceutical Composition A sample of the pharmaceutical composition was packed on a measuring plate for X-ray diffraction measurement and measured under the following measurement conditions to obtain a diffraction diagram.
  • the powder X-ray diffraction pattern of the pharmaceutical composition obtained in Example 4 is shown in FIG. 14, and the diffraction angle (2 ⁇ (°)) of a typical diffraction peak is shown in Table 11.
  • Powder X-ray diffractometer SmartLab (Rigaku Co., Ltd.) Radioactive source: CuK ⁇ ray Tube voltage: 40 kV Tube current: 50mA
  • Data analysis software SmartLabStudioII (Rigaku Co., Ltd.)
  • Peak position Peak top position, diffraction angle during CuK ⁇ 1 and CuK ⁇ 2 irradiation), peak height (not including background)
  • the peak set of the following diffraction angles (2 ⁇ (°)) can be used.
  • One peak set is 11.2 ⁇ 0.3 and 11.9 ⁇ 0.3.
  • Yet another peak set is 11.2 ⁇ 0.3, 11.9 ⁇ 0.3 and 16.2 ⁇ 0.3.
  • the following 13 C solid-state NMR spectral chemical shift (ppm) peak set can be used to identify I-shaped crystals of the salt (A-1) in the pharmaceutical composition, for example.
  • One peak set is 183.5 ⁇ 0.5 and 180.4 ⁇ 0.5.
  • Yet another peak set is 183.5 ⁇ 0.5, 180.4 ⁇ 0.5, 174.0 ⁇ 0.5, 169.8 ⁇ 0.5, 164.9 ⁇ 0.5 and 157. It is 0 ⁇ 0.5.
  • the succinate of the present invention has excellent storage stability and other physical characteristics, is useful as a drug substance, and is suitable for industrial production of pharmaceuticals.

Abstract

【課題】 本発明は、高い保存安定性を有し、医薬品原薬としての使用に適する化合物を提供することを課題とする。  【解決手段】 本発明は、パーキンソン病、レストレスレッグス症候群又は高プロラクチン血症等の治療又は予防用として有用な、優れた保存安定性と結晶性を有し医薬品原薬として好適な1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素のコハク酸塩に関する。

Description

オクタヒドロチエノキノリン化合物のコハク酸塩及びその結晶
 本発明は、ドパミンD2受容体アゴニスト作用を有し、パーキンソン病、レストレスレッグス症候群又は高プロラクチン血症等の予防又は治療薬として有用な、1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素のコハク酸塩(以下、「本発明のコハク酸塩」と略称する場合がある)に関するものである。
 ドパミンD2受容体アゴニスト作用を有し、パーキンソン病、レストレスレッグス症候群又は高プロラクチン血症等の予防又は治療薬として有用な、式:
Figure JPOXMLDOC01-appb-C000004
で表される化合物(化学名:1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素;以下、「化合物B」と略称する場合がある)、又はその塩酸塩が特許文献1~3に開示されている。しかし、化合物(B)のコハク酸塩については、一般的な塩として記載されているのみであり、化合物(B)のコハク酸塩の特性については何ら報告されていない。
国際公開第2012/124649号パンフレット 特開2014-088362号公報 特開2014-073013号公報
 本発明者が鋭意検討した結果、特許文献1~3記載の化合物(B)の塩酸塩は、下記の試験例4及び5の安定性試験にて記載の通り、熱に対し不安定な上に高い吸湿性による結晶形転移が認められるため保存安定性が悪く、医薬品原薬として使用するには物性の改良が必要である。
 本発明は、高い保存安定性を有し、医薬品原薬としての使用に適する化合物(B)の別異な形態を提供することを課題とする。
 本発明者らは、上記課題に鑑み鋭意検討した結果、1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素のコハク酸塩が、極めて優れた保存安定性を備え、しかも極めて良好な結晶性を有し工業的生産に適していることから、医薬品原薬として好適な化合物であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記の〔1〕から〔17〕等に関する。
〔1〕1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素のコハク酸塩。
〔2〕以下の式(A-1)又は式(A-2)で表される前記〔1〕記載の塩。
Figure JPOXMLDOC01-appb-C000005
〔3〕以下の式(A-1)で表される前記〔1〕記載の塩。
Figure JPOXMLDOC01-appb-C000006
〔4〕以下の式(A-2)で表される前記〔1〕記載の塩。
Figure JPOXMLDOC01-appb-C000007
〔5〕結晶性である、前記〔3〕記載の塩。
〔6〕結晶性である、前記〔4〕記載の塩。
〔7〕粉末X線回折図において、回折角(2θ(°))として11.2±0.3及び11.8±0.3にピークを有する、前記〔5〕記載の塩。
〔8〕熱重量示差熱分析チャートにおいて、150℃付近に吸熱ピークを有することを特徴とする、前記〔5〕記載の塩。
〔9〕13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として183.6±0.5、180.5±0.5、174.1±0.5、170.0±0.5、165.1±0.5及び157.3±0.5にピークを有する、前記〔5〕記載の塩。
〔10〕以下の(a1)~(a3)からなる群から選択される2又は3つの物理的特性によって特徴付けられる、前記〔5〕記載の塩:
(a1)回折角(2θ(°))として11.2±0.3及び11.8±0.3にピークを有する粉末X線回折図;
(a2)化学シフト値(δ(ppm))として183.6±0.5、180.5±0.5、174.1±0.5、170.0±0.5、165.1±0.5及び157.3±0.5にピークを有する13C固体NMRスペクトルチャート;及び
(a3)150℃付近に吸熱ピークのオンセット温度を有する熱重量示差熱分析チャート。
〔11〕粉末X線回折図において、回折角(2θ(°))として8.3±0.3、12.4±0.3、15.6±0.3及び23.2±0.3にピークを有する、前記〔6〕記載の塩。
〔12〕13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として177.7、176.4、166.2、160.4、154.0及び152.4にピークを有する、前記〔6〕記載の塩。
〔13〕前記〔1〕~〔12〕のいずれかに記載の塩を含有する医薬組成物。
〔14〕パーキンソン病、レストレスレッグス症候群または高プロラクチン血症の治療または予防用である、前記〔13〕記載の医薬組成物。
〔15〕パーキンソン病、レストレスレッグス症候群または高プロラクチン血症の治療または予防剤を製造するための、前記〔1〕~〔12〕のいずれかに記載の塩の使用。
〔16〕前記〔1〕~〔12〕のいずれかに記載の化合物の有効量を投与することを特徴とする、パーキンソン病、レストレスレッグス症候群または高プロラクチン血症の治療または予防方法。
〔17〕医薬組成物の粉末X線回折図において、回折角(2θ(°))として11.2±0.3及び11.9±0.3にピークを有する、前記〔1〕記載の塩及び少なくとも一つの追加的な賦形剤を含む医薬組成物。
〔18〕医薬組成物の13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として183.5±0.5及び180.4±0.5にピークを有する、前記〔1〕記載の塩及び少なくとも一つの追加的な賦形剤を含む医薬組成物。
 本発明のコハク酸塩は、長期保存において吸湿することなく、また純度低下がほとんど認められないため保存安定性に優れている。また、極めて良好な溶解性、結晶性を有し、流動性にも優れているので、例えば、製剤化において取扱い易い化合物である。
塩(A-1)のI形結晶の粉末X線回折図である。縦軸はX線の回折強度(Counts)を示し、横軸は回折角(2θ(°))を示す。 塩(A-1)のII形結晶の粉末X線回折図である。縦軸はX線の回折強度(Counts)を示し、横軸は回折角(2θ(°))を示す。 塩(A-2)のI形結晶の粉末X線回折図である。縦軸はX線の回折強度(Counts)を示し、横軸は回折角(2θ(°))を示す。 塩(A-1)のI形結晶の熱重量示差熱分析チャート(TG-DTA測定図)である。縦軸(左)は熱重量(TG)曲線における重量(%)を示し、縦軸(右)は示差熱分析(DTA)曲線における熱流束(μV)を示し、横軸は温度(℃)を示す。 塩(A-1)のI形結晶のDSC測定図である。縦軸(左)は熱重量(TG)曲線における重量(%)を示し、縦軸(右)は示差熱分析(DTA)曲線における熱流束(μV)を示し、横軸は温度(℃)を示す。 塩(A-1)のI形結晶の13C固体NMRスペクトルチャートである。縦軸は強度を示し、横軸は化学シフト値(δ(ppm))を示す。 塩(A-2)のI形結晶の13C固体NMRスペクトルチャートである。縦軸は強度を示し、横軸は化学シフト値(δ(ppm))を示す。 比較例1で得られた塩酸塩の粉末X線回折図である。縦軸はX線の回折強度(Counts)を示し、横軸は回折角(2θ(°))を示す。 比較例2で得られたセバシン酸塩の結晶の粉末X線回折図である。縦軸はX線の回折強度(Counts)を示し、横軸は回折角(2θ(°))を示す。 比較例3で得られたアジピン酸塩の結晶の粉末X線回折図である。縦軸はX線の回折強度(Counts)を示し、横軸は回折角(2θ(°))を示す。 塩(A-1)のI形結晶の水分吸脱着等温線である。実線は吸着等温線を示し、破線は脱着等温線を示す。縦軸は質量変化(%)を示し、横軸は相対湿度(%RH)を示す。 比較例1で得られた塩酸塩の水分吸脱着等温線である。実線は吸着等温線を示し、破線は脱着等温線を示す。縦軸は質量変化(%)を示し、横軸は相対湿度(%RH)を示す。 比較例2で得られたセバシン酸塩の結晶の水分吸脱着等温線である。実線は吸着等温線を示し、破線は脱着等温線を示す。縦軸は質量変化(%)を示し、横軸は相対湿度(%RH)を示す。 実施例4で得られた医薬組成物の粉末X線回折図である。縦軸はX線の回折強度(Counts)を示し、横軸は回折角(2θ(°))を示す。 実施例4で得られた医薬組成物の13C固体NMRスペクトルチャートである。縦軸は強度を示し、横軸は化学シフト値(δ(ppm))を示す。
 以下、本発明の実施形態についてより詳細に説明する。
 本発明のコハク酸塩は、例えば、以下の方法により製造することができる。すなわち、例えば、特許文献1に記載の方法又はそれに準拠した方法に従い製造できる化合物(B)と、0.5~2当量のコハク酸とを適当な溶媒中で混合し、加熱下に溶解後、必要に応じて適宜溶媒を濃縮又は添加し、冷却することにより析出したコハク酸塩を単離することにより製造することができる。更に、同様の溶媒を用いてコハク酸塩を再結晶により精製することもできる。
 良溶媒としては、塩形成を妨害しない溶媒であればよく、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールなどのアルコール類、テトラヒドロフラン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどを用いることができる。また、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールなどのアルコール類、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、アセトン、アセトニトリル、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどの溶媒と水の二種類以上の良溶媒を組み合わせて用いてもよい。
 塩形成後に良溶媒に適宜添加することができる貧溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸イソプロピルなどのカルボン酸エステル類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、テトラヒドロフラン、1,4-ジオキサンなどのエーテル類、アセトニトリル、トルエンなどを用いることができる。また、二種類以上の貧溶媒を組み合わせて用いてもよい。
 本発明のコハク酸塩は、上記の方法等に従い製造したコハク酸塩を、必要に応じて、例えば、アセトン-水混合溶媒、メタノール-水混合溶媒、エタノール-水混合溶媒、ジメチルスルホキシドなど適当な再結晶溶媒を用いて再結晶を行い精製することができる。
 本発明のコハク酸塩には、コハク酸との塩共結晶、コハク酸との共結晶、水和物、又はエタノール等の医薬品として許容される溶媒との溶媒和物も含まれる。
 本発明のコハク酸塩は、ドパミンD2受容体アゴニスト作用を有し、パーキンソン病、レストレスレッグス症候群又は高プロラクチン血症等の予防又は治療薬として有用である。
 本発明の医薬組成物は、本発明のコハク酸塩を有効成分として含む。
 これらの医薬組成物は、通常の調剤学的手法に従い、その剤形に応じ適当な賦形剤、崩壊剤、結合剤、滑沢剤などの医薬品添加物を適宜混合し、常法に従い調剤することにより製造することができる。
 例えば、散剤は、有効成分に必要に応じ、適当な賦形剤、滑沢剤などを加え、よく混和して散剤とすることができる。例えば、錠剤は、有効成分に、適当な賦形剤、崩壊剤、結合剤、滑沢剤などを加え、常法に従い打錠して錠剤とすることができる。さらに必要に応じ、適宜コーティングを施し、フィルムコート錠、糖衣錠、腸溶性皮錠などにすることができる。例えば、カプセル剤は、有効成分に、適当な賦形剤、滑沢剤などを加え、よく混和した後、又は常法に従い顆粒又は細粒とした後、適当なカプセルに充填してカプセル剤とすることができる。さらに、このような経口投与製剤の場合は予防又は治療方法に応じて、速放性もしくは徐放性製剤とすることもできる。
 本発明の医薬組成物を実際の予防又は治療に用いる場合、その有効成分である本発明のコハク酸塩の投与量は、患者の年齢、性別、体重、疾患及び治療の程度等により適宜決定されるが、例えば、経口投与の場合は成人1日当たり概ね0.1~300mgの範囲で、一回又は数回に分けて投与することができる。本発明のコハク酸塩が、成人1日当たり、経口投与剤では0.1~300mgの範囲で投与されるように、上記医薬組成物を製造するのが好ましい。
 粉末X線回折パターンにおける各ピークの相対強度(相対的なピークの高さ)が、試料条件、測定条件又は測定装置によって変動しうることは公知である。そのため、相対強度は結晶成長の方向、粒子の大きさ、測定条件等によって僅かに変わり得るものであるから、厳密に解されるべきではない。
 また、粉末X線回折における各ピークの2θ値は、試料条件や測定条件によって僅かに変動することも公知である。本発明は、粉末X線回折におけるピークの回折角(2θ(°))が完全に一致する結晶だけでなく、全部又は一部のピークの回折角(2θ(°))が±0.3°の範囲で一致する結晶も含む。
 熱重量示差熱分析チャートにおいて、DTA曲線における「吸熱ピーク」はピークの頂点の温度(ピークトップ)又は「外挿開始温度」で示される。「外挿開始温度」とは、DTA曲線の立ち上がり部又は立ち下り部と基線の外挿が交わる交点のことを言い、「補外開始温度」とも言う。
 「外挿開始温度」は、ピークの開始点の温度であり、外挿により求めた発熱又は吸熱開始温度をいう。熱重量示差熱分析チャートにおけるピークトップ及び外挿開始温度も測定条件によって多少変動しうる。一般的な温度の変動としては、例えば、±5℃の範囲が考えられる。すなわち、上記ピークで特定される結晶は、±5℃の範囲で一致するものも含まれる。
 本発明において、熱分析で用いる「付近」とは、±5℃の範囲を意味する。
 13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))は測定条件によって多少変動しうるものであるため、化学シフト値がわずかに異なる場合であっても結晶形の同一性は認定されるべきであり、かかる誤差の範囲の結晶も本発明に含まれる。化学シフト値の誤差としては、例えば、±0.5ppmが考えられる。すなわち、化学シフト値(δ(ppm))で特定される結晶には、±0.5ppmの範囲で一致するものも含まれる。また、回転周波数や測定機器の相違により、ピーク強度が変化したり、ピークが出現又は消滅することがある。
 本発明の内容を以下の実施例及び試験例を用いてさらに詳細に説明するが、本発明はこれらの内容に限定されるものではない。
(実施例1)
1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素・セスキコハク酸塩一水和物(塩(A-1)のI形結晶)
 1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素(22.00g)にアセトン102.8gを加え、懸濁し、外温52℃で加熱撹拌し、溶解させた。この溶液に活性炭(2.2g)を加え、10分間撹拌した。この懸濁液を熱時ろ過し、アセトン35.2gで洗いこんだ。さらに、アセトン220.0g加え、反応液を外温52℃に加熱し撹拌した。次いで、反応液に水を44.0g加えた。別に、コハク酸8.73gをアセトン156.1gと水19.8gの混合溶液に溶解した。このコハク酸溶液を反応液に約10分間かけて滴下した。滴下ロートをアセトン17.4gと水2.2gの混合溶液で洗いこみ反応液に滴下した。反応液を内温50℃で1時間撹拌し、30分かけて15℃まで冷却した。反応液を外温10℃で2時間撹拌し、結晶をろ取した。結晶をアセトン52.8gで2回洗浄した。得られた湿晶を減圧下50℃で37時間乾燥し、減圧下3時間かけて室温に戻した。結晶を大気下に24時間保存し、標題化合物の結晶(27.75g)を得た。
H-NMR(DMSO-d6)(δ(ppm)):0.85(3H,t,J=7.4H
z),1.32(1H,ddd,J=12.2Hz,12.2Hz,12.2Hz),1.42‐1.57(2H,m),1.57‐1.70(1H,m),1.89‐2.00(2H,m),2.20‐2.13(1H,m),2.13‐2.28(2H,m),2.21(3H,s),2.24(6H,s),2.35‐2.48(1H,m),2.40(6H,s),2.46(2H,t,J=6.4Hz),2.81‐2.96(2H,m),3.00‐3.12(1H,m),3.21‐3.33(2H,m),3.47‐3.66(2H,m),6.99(2H,s),8.50‐8.90(1H,br).
単結晶X線構造解析
 1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素・セスキコハク酸塩一水和物(塩(A-1))のI形の単結晶を調製し、X線構造解析を実施した。
(単結晶調製及び測定準備)
 1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素(30g)をアセトン84g、水110gの混合溶液に懸濁し、コハク酸11.9gを添加し、内温51℃に加熱し溶解させた。この溶液をろ紙に通しながら、50℃のアセトン720mLに撹拌下加えた。アセトン110gで容器及びろ紙を洗浄した。ろ液と洗液の混合液に塩(A-1)のI形結晶 6mgを添加し、結晶化を開始させた。内温50℃で1時間撹拌し、氷冷しながら2時間30分間撹拌した。得られた懸濁液をろ過し、ろ紙上の固体をアセトン72gで2回かけ洗浄した。得られた湿晶を50℃で18時間減圧乾燥し、標題化合物の結晶(43.2g)を得た。得られた結晶の粉末X線回折を試験例1の方法で測定し、実施例1で得られた結晶の結晶形と同一であることを確認した。 粉末の中から  単結晶を採取し、カミソリで切断・整形し、グリースを用いてマイクロループにマウントし、低温装置のガス流にて急速凍結した。
 X線回折データは、XtaLAB P200 MM007(株式会社リガク)を用いて下記の測定条件で測定し取得した。
(測定条件)
 X線源:CuKα
 波長:1.54187Å
 管電圧・管電流:40kV、30mA
 測定温度:-100℃
 結晶サイズ:0.15×0.08×0.04mm
 振動角:1°
 露光時間:2秒/枚
 全測定枚数:1637枚
 全測定時間:55分
(データ解析プログラム)
データ測定、回折データ処理:Crystal Clear
構造解析・精密化手法:Crystal Structure、SIR2011、SHELXL2013
(測定結果)
 得られた測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008

a、b、c=単位格子長さ
α、β、γ=単位格子角度
Z=単位格子中の分子の数
 元素分析は、CHN自動分析装置vario EL(エレメンタール社)を用いて測定した。
(元素分析結果(C、H、N))
理論値:52.40%、7.07%、13.10%
実測値:52.25%、7.07%、12.98%
 上記の測定結果より、塩(A-1)のI形結晶は、晶系はMonoclinic、空間群はC2、z値は4であり、非対称単位中に1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素が2分子、コハク酸が3分子、及び水が2分子存在する結晶である。
(実施例2)
1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素・セスキコハク酸塩(塩(A-1)のII形結晶)
 1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素・セスキコハク酸塩121mgを1,4-ジオキサン/水(体積比1:1)混合溶媒(3mL)に60℃に加熱し、溶解し、ろ過した。得られたろ液を凍結乾燥した。得られた粉末にn-ヘプタン2.5mLを添加し、懸濁状態で60℃に加熱し、1時間撹拌した。室温で1日間撹拌した後、固体をろ取し、40℃で減圧乾燥して、標題化合物の結晶(92mg)を得た。
H-NMR(MeOH-d4)(δ(ppm)):0.96(3H,t,J=7.2Hz),1.50(1H,ddd,J=12.0Hz,12.4Hz,12.4Hz),1.57‐1.70(2H,m),1.75‐1.88(1H,m),2.03‐2.26(3H,m),2.31‐2.46(4H,m),2.46‐2.56(7H,m),2.58‐2.66(1H,m),2.71(6H,s),2.98‐3.10(4H,m),3.15‐3.25(1H,m),3.52‐3.59(2H,m),3.62‐3.72(2H,m).
(実施例3)
1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素・モノコハク酸塩(塩(A-2)のI形結晶)
 1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素(357mg)をアセトン3.5mLに内温50~55℃で加熱下溶解した後、氷浴につけ内温4℃に冷却し反応液とした。別に、コハク酸(94mg)をアセトン/水(体積比1:1)混合溶媒(0.3mL)に内温55℃で加熱下溶解した。冷却した反応液にコハク酸溶液を滴下し減圧下濃縮乾固した。残渣にアセトン/水(体積比1:1)混合溶媒(1.35mL)を加え、内温55℃で加熱下溶解した。室温で撹拌し結晶を析出させた。10分間撹拌後、懸濁液に、さらに、アセトン/水(体積比1:1)混合溶媒(0.45mL)を加え室温で10分間撹拌した。さらに、アセトン7.2mLを2時間のうちに3回に分けて添加し室温で1時間撹拌した。析出した結晶をろ取し、少量のアセトンで洗浄し減圧下室温で1時間乾燥し標題化合物の結晶(393mg)を得た。
H-NMR(MeOH-d4)(δ(ppm)):0.96(3H,t,J=7.6Hz),1.50(1H,ddd,J=12.4,12.4,12.4Hz),1.59‐1.69(2H,m),1.73‐1.86(1H,m),2.03‐2.21(3H,m),2.30‐2.42(4H,m),2.43‐2.55(5H,m),2.57‐2.70(7H,m),2.92(2H,t,J=6.8Hz),2.97‐3.07(2H,m),3.49‐3.55(2H,m),3.63‐3.82(2H,m).
(実施例4)
塩(A-1)のI形結晶を含有する医薬組成物
 マンニトール(49部)、結晶セルロース(50部)、フマル酸ステアリルナトリウム(1部)の混合物(78.1mg)に、実施例1の塩(A-1)のI形結晶(8.7mg)を加え室温下でよく混合し、塩(A-1)を10%含有する医薬組成物を得た。
(試験例1)粉末X線回折の測定
 塩(A-1)のI形結晶及び塩(A-2)のI形結晶の粉末X線回折は、結晶を軽く乳鉢粉砕して粗大な粒子を粉砕した後、粉末X線回折装置X’Pert Pro MPD(スペクトリス株式会社パナリティカル事業部)を用いて以下の測定条件で測定した。
(測定条件)
 放射線源:CuKα線(CuKα1及びCuKα2)、1.5418Å
 管電圧:45kV
 管電流:40mA
 データ解析ソフト:X’Pert HighScore(スペクトリス株式会社パナリティカル事業部)
 データ解析方法(ピークサーチ):最小有意度(1.00)、最小ピークチップ(0.01、2θ(°))、最大ピークチップ(1.00、2θ(°))、ピークベース(2.00、2θ(°))、方法(スムージングしたピークトップ)(2θ(°))
 塩(A-1)のII形結晶の粉末X線回折は、結晶を軽く乳鉢粉砕して粗大な粒子を粉砕した後、粉末X線回折装置SmartLab(株式会社リガク)を用いて以下の測定条件で測定した。
(測定条件)
 放射線源、波長:CuKα線(CuKα1及びCuKα2)、1.5418Å
 管電圧:40kV
 管電流:50mA
 データ解析ソフト:SmartLabStudioII(株式会社リガク)
 データ解析方法(ピーク定義):ピーク位置(ピークトップ位置、CuKα1及びCuKα2照射時の回折角)、ピーク高さ(バックグラウンドを含めない)
 塩(A-1)のI形結晶の回折図を図1に示し、代表的な回折ピークの回折角(2θ(°))及び回折ピークの相対強度(%)を表2に示した。また、塩(A-1)のII形結晶の回折図を図2に示し、代表的な回折ピークの回折角(2θ(°))及び回折ピークの相対強度(%)を表3に示した。また、塩(A-2)のI形結晶の回折図を図3に示し、代表的な回折ピークの回折角(2θ(°))及び回折ピークの相対強度(%)を表4に示した。
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
 塩(A-1)のI形結晶の同定は、例えば、以下の回折角(2θ(°))のピークセットを使用することができる。一つのピークセットとしては、11.2±0.3及び11.8±0.3である。さらに別のピークセットとしては、11.2±0.3、11.8±0.3及び16.2±0.3である。さらに別のピークセットとしては、11.2±0.3、11.8±0.3及び23.6±0.3である。さらに別のピークセットとしては、11.2±0.3、11.8±0.3、23.6±0.3及び25.4±0.3である。さらに別のピークセットとしては、11.2±0.3、11.8±0.3、16.2±0.3、19.7±0.3、22.3±0.3、22.4±0.3、23.0±0.3、23.6±0.3及び25.4±0.3である。
 塩(A-1)のII形結晶の同定は、例えば、以下の回折角(2θ(°))のピークセットを使用することができる。一つのピークセットとしては、5.8±0.3、20.4±0.3及び24.4±0.3である。さらに別のピークセットとしては、5.8±0.3、11.7±0.3、11.9±0.3、16.0±0.3、20.4±0.3及び24.4±0.3である。
 塩(A-2)のI形結晶の同定は、例えば、以下の回折角(2θ(°))のピークセットを使用することができる。一つのピークセットとしては、8.3±0.3、12.4±0.3、15.6±0.3及び23.2±0.3である。さらに別のピークセットとしては、8.3±0.3、11.5±0.3、12.4±0.3、15.6±0.3、22.1±0.3、22.7±0.3、23.2±0.3、24.1±0.3及び24.7±0.3である。
(試験例2)熱分析の測定
 熱分析は、差動型示差熱天秤TG-DTA TG8120(株式会社リガク)を用いて窒素ガス雰囲気下にて以下の測定条件で測定した。
(測定条件)
 昇温速度:10℃/分
 基準物質:酸化アルミニウム
 雰囲気:窒素気流下
 塩(A-1)のI形結晶のTG-DTA測定図を図4に示す。
 塩(A-1)のI形結晶の吸熱ピーク:80~130℃の幅広い吸熱ピーク、150℃付近(ピークトップ(外挿開始温度142℃付近(融解))
質量減少(23℃~150℃付近):2.7%
 塩(A-1)のI形結晶のDSCチャートを図5に示す。
 塩(A-1)のI形結晶の吸熱ピーク:80~130℃の幅広い吸熱ピーク、153℃付近(ピークトップ)(外挿開始温度145℃付近)
(試験例3)13C固体NMRスペクトルの測定
 塩(A-1)のI形結晶及び塩(A-2)のI形結晶の13C固体NMRスペクトルは、検体を内径3.2mmの固体NMRスペクトル測定用ローターに充填し、以下の測定条件で測定しNMRチャートを得た。
(測定条件)
 NMR装置:600MHz AVANCE III(ブルカー)
 プローブ:交差分極マジック角回転(CP/MAS)アクセサリー
 接触時間:3ミリ秒
 リサイクル遅れ:5秒
 1Hパルス:3マイクロ秒
 回転速度:15kHz
 積算回数:2048
 化学シフト補正:グリシンを参照とした。(C=O共鳴に対し、δ=176.46ppm)
 実施例1で得られた塩(A-1)のI形結晶の固体NMRスペクトルを図6に示し、化学シフト(ppm)を表5に示した。また、実施例3で得られた塩(A-2)のI形結晶の固体NMRスペクトルを図7に示し、化学シフト(ppm)を表6に示した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 塩(A-1)のI形結晶の同定は、例えば、以下の13C固体NMRスペクトルの化学シフト値( δ ( p p m ) )のセットを使用することができる。一つのセットとしては、183.6±0.5、180.5±0.5、174.1±0.5、170.0±0.5、165.1±0.5及び157.3±0.5である。別のセットとしては、183.6±0.5、180.5±0.5、174.1±0.5、170.0±0.5、165.1±0.5、157.3±0.5、129.7±0.5、115.7±0.5、81.7±0.5、66.7±0.5、58.9±0.5、22.7±0.5及び11.1±0.5である。別のセットとしては、183.6±0.5、180.5±0.5、174.1±0.5、170.0±0.5、165.1±0.5、157.3±0.5、129.7±0.5、115.7±0.5、58.9±0.5、22.7±0.5及び11.1±0.5である。さらに別のセットとしては、183.6±0.5、180.5±0.5、174.1±0.5、170.0±0.5、165.1±0.5、157.3±0.5、129.7±0.5、118.7±0.5、115.7±0.5、81.7±0.5、66.7±0.5、58.9±0.5、57.0±0.5、50.1±0.5、44.7±0.5、41.7±0.5、41.1±0.5、37.6±0.5、36.9±0.5、36.5±0.5、35.0±0.5、33.4±0.5、32.1±0.5、31.8±0.5、29.8±0.5、27.6±0.5、22.7±0.5及び11.1±0.5である。
 塩(A-2)のI形結晶の同定は、例えば、以下の化学シフト値( δ ( p p m ) )のセットを使用することができる。一つのセットとしては、177.7、176.4、166.2、160.4、154.0及び152.4である。別のセットとしては、177.7、177.2、176.4、175.9、166.2、160.4、154.0及び152.4である。別のセットとしては、177.7、177.2、176.4、175.9、168.8、168.2、167.3、166.2、160.4、154.0及び152.4である。別のセットとしては、177.7、176.4、166.2、160.4、154.0、152.4、125.2、114.4、110.9、77.1、62.2、54.6及び7.5である。さらに別のセットとしては、177.7、177.2、176.4、175.9、168.8、168.2、167.3、166.2、160.4、154.0、152.4、125.2、114.4、110.9、77.1、62.2、54.6、53.6、44.3、43.5、41.0、39.1、37.0、36.4、33.8、33.2、32.6、31.8、29.3、28.7、27.5、27.3、25.3、23.1、17.9、17.5、16.9、16.5、10.2、9.0、7.5及び6.6である。
 本発明において、塩(A-1)のI形結晶は、粉末X線回折、13C固体NMRスペクトル及び熱重量示差熱分析チャートの上記ピークを組み合わせて、同定することもできる。
 塩(A-1)のI形結晶を同定する態様として、例えば、以下の(c1)~(c4)の態様が挙げられる。
(c1)回折角(2θ(°))として11.2±0.3及び11.8±0.3にピークを有する粉末X線回折図;及び化学シフト値(δ(ppm))として183.6±0.5、180.5±0.5、174.1±0.5、170.0±0.5、165.1±0.5及
び157.3±0.5にピークを有する13C固体NMRスペクトルチャート。
(c2)回折角(2θ(°))として11.2±0.3及び11.8±0.3にピークを有する粉末X線回折図;及び150℃付近に吸熱ピークの外挿開始温度(以下、「外挿開始温度」を「オンセット温度」と称する)を有する熱重量示差熱分析チャート。
(c3)化学シフト値(δ(ppm))として183.6±0.5、180.5±0.5、174.1±0.5、170.0±0.5、165.1±0.5及び157.3±0.5にピークを有する13C固体NMRスペクトルチャート;及び150℃付近に吸熱ピークのオンセット温度を有する熱重量示差熱分析チャート。
(c4)回折角(2θ(°))として11.2±0.3及び11.8±0.3にピークを有する粉末X線回折図;化学シフト値(δ(ppm))として183.6±0.5、180.5±0.5、174.1±0.5、170.0±0.5、165.1±0.5及び157.3±0.5にピークを有する13C固体NMRスペクトルチャート;及び150℃付近に吸熱ピークのオンセット温度を有する熱重量示差熱分析チャート。
(比較例1)
化合物(B)の塩酸塩の結晶
 特許文献1の実施例4-1に記載の方法で得られた化合物(B)の塩酸塩の結晶の粉末X線回折を試験例1と同様に測定した。得られた回折図を図8に示す。
(比較例2)
化合物(B)のセバシン酸塩の結晶
 化合物(B)(500mg)とセバシン酸(226mg)をエタノール(3mL)に加え50℃に加熱し溶解した。得られた溶液を室温下で1時間撹拌した後、ジイソプロピルエーテル(3mL)を加え、さらに室温下にて3日間撹拌した。析出した固体をろ取しエタノールおよびジイソプロピルエーテルの混液(1:1)で洗浄した後、室温下にて3時間風乾し、さらに60℃で3時間減圧乾燥し、標題の化合物(0.4938g)を得た。H-NMR(MeOH-d4)(δ(ppm)):0.95(3H,t,J=7.6Hz),1.33(6H,br),1.52(1H,q,J=12.4Hz),1.55‐1.70(5H,m),1.72‐1.85(1H,m),2.04‐2.10(1H,m),2.10‐2.21(2H,m),2.24(3H,t,J=7.2Hz),2.29‐2.40(4H,m),2.45(1H,t,J=11.2Hz),2.51(6H,s),2.57‐2.65(1H,m),2.78(2H,t,J=6.4Hz),2.95‐3.06(2H,m),3.13‐3.23(1H,m),3.45‐3.52(2H,m),3.63‐3.81(2H,m).
 得られた化合物(B)のセバシン酸塩の結晶の粉末X線回折を試験例1と同様に測定し、得られた回折図を図9に示す。
(比較例3)
化合物(B)のアジピン酸塩の結晶
 化合物(B)(500mg)とアジピン酸(164mg)とエタノール3mLを加え、50℃に加熱し溶解した。得られた溶液を室温下で1時間撹拌した後、ジイソプロピルエーテル3mLを加え、さらに室温下にて1時間撹拌した。混合物を50℃で10分加熱した後、室温下で1時間撹拌した。析出した固体を取り出し、エタノール1mLで洗浄した。得られた固体を実験室雰囲気下にて終夜風乾した後、60℃で3時間減圧乾燥し、標題の化合物(0.3854g)を得た。
H-NMR(MeOH-d4)(δ(ppm)):0.95(3H,t,J=7.6Hz),1.49(1H,q,J=12.4Hz),1.58‐1.69(4H,m),1.71‐1.85(1H,m),2.03‐2.22(3H,m),2.23‐2.40(6H,m),2.40‐2.54(7H,m),2.56‐2.66(1H,m),2.74(2H,t,J=6.4Hz),2.96‐3.05(2H,m),3.10‐3.23(1H,m),3.45‐3.52(2H,m),3.62‐3.81(2H,m).
 得られた化合物(B)のアジピン酸塩の結晶の粉末X線回折を試験例1と同様に測定し、得られた回折図を図10に示す。
(試験例4)安定性試験1
 塩(A-1)のI形結晶、塩(A-2)のI形結晶、化合物(B)の塩酸の結晶、化合物(B)のセバシン酸塩の結晶及びアジピン酸塩の結晶を60℃開放下で保存し、それぞれの結晶形の物理的安定性及び化学的安定性を調べた。検体の開始時と2箇月後の試料の粉末X線回折を試験例1と同様に測定して結晶形の物理的安定性、類縁物質の量を下記のHPLC測定条件を用いて測定して化学的安定性を確認した。また同時に外観の変化も観察した。結果を表7に示す。
 60℃開放下での保存において、塩(A-1)のI形結晶及び塩(A-2)のI形結晶の結晶形の変化は認められなかった。また、塩(A-1)のI形結晶及び塩(A-2)のI形結晶は化学的に安定で、外観の変化もほとんど無かった。一方、化合物(B)の塩酸塩及び化合物(B)のセバシン酸塩は結晶形が変化し、化学的にも不安定であった。また、化合物(B)の塩酸塩、化合物(B)のセバシン酸塩及び化合物(B)のアジピン酸塩は着色してしまった。
(HPLC条件)
 検出器:紫外可視吸光光度計/波長:225nm
 カラム:L-column2 ODS、3μm、4.6×150mm(一般財団法人化学物質評価研究機構製)
 カラム温度:30℃付近一定温度
 流量:1.0mL/分
 移動相A:水にリン酸二水素カリウム及びリン酸水素二カリウムをそれぞれ10mmol/Lとなるように混合した溶液(pH6.9)
 移動相B:アセトニトリル
 移動相比率
  0~25分:移動相A/移動相B=79/21
  25~45分:移動相A/移動相B=79/21~25/75(グラジエント)
  45~50分:移動相A/移動相B=25/75
 注入量:5μL
 サンプルクーラー:4℃
 溶解溶媒:pH3に調整した20mmol/Lリン酸二水素カリウム水溶液80部にアセトニトリル20部を加えて調製した混液。
 試料溶液:検体を溶解溶媒に溶解し、化合物(B)として約1.0mg/mLに調製した液。
 ブランクに由来するピークを除き、各々のピーク面積を自動積分法により測定し、面積百分率法によりそれらの値を求めた。
Figure JPOXMLDOC01-appb-T000014
 
(試験例5)安定性試験2
 塩(A-1)のI形結晶、塩(A-2)のI形結晶、化合物(B)の塩酸塩の結晶、化合物(B)のセバシン酸塩の結晶及びアジピン酸塩の結晶を40℃75%相対湿度開放下で保存し、それぞれの結晶形の物理的安定性及び化学的安定性を調べた。検体の開始時と2箇月後の試料の粉末X線回折を試験例1と同様に測定して結晶形の物理的安定性を、類縁物質の量を下記のHPLC測定条件を用いて測定して化学的安定性を確認した。また、同時に外観の変化も観察した。結果を表8に示す。
 40℃75%相対湿度開放下での保存において、塩(A-1)のI形結晶及び塩(A-2)のI形結晶の結晶形の変化は認められなかった。また、塩(A-1)のI形結晶及び塩(A-2)のI形結晶は化学的に安定であり、外観の変化もなかった。一方、化合物(B)の塩酸塩及び化合物(B)のセバシン酸塩の結晶形は変化した。また、化合物(B)のセバシン酸塩は化学的にも不安定で、化合物(B)のアジピン酸塩は化学的に不安定であり、外観も着色してしまった。
(HPLC条件)
 検出器:紫外可視吸光光度計/波長:225nm
 カラム:L-column2 ODS、3μm、4.6×150mm(一般財団法人化学物質評価研究機構製)
 カラム温度:30℃付近一定温度
 流量:1.0mL/分
 移動相A:水にリン酸二水素カリウム及びリン酸水素二カリウムをそれぞれ10mmol/Lとなるように混合した溶液(pH6.9)
 移動相B:アセトニトリル
 移動相比率
  0~25分:移動相A/移動相B=79/21
  25~45分:移動相A/移動相B=79/21~25/75(グラジエント)
  45~50分:移動相A/移動相B=25/75
 注入量:5μL
 サンプルクーラー:4℃
 溶解溶媒:pH3に調整した10mmol/Lリン酸二水素カリウム水溶液80部にアセトニトリル20部を加えて調製した混液。
 試料溶液:検体を溶解溶媒に溶解し、化合物(B)として約1.0mg/mLに調製した液。
 ブランクに由来するピークを除き、各々のピーク面積を自動積分法により測定し、面積百分率法によりそれらの値を求めた。
Figure JPOXMLDOC01-appb-T000015
 
(試験例6)水分吸脱着試験
 塩(A-1)のI形結晶、化合物(B)の塩酸塩の結晶及び化合物(B)のセバシン酸塩の結晶の水分吸脱着挙動を、IGA-Sorp(HIDEN isochema社製)を用いて以下の条件で測定した。塩(A-1)のI形結晶の水分吸脱着等温線を図11、化合物(B)の塩酸塩の水分吸脱着等温線を図12、化合物(B)のセバシン酸塩の水分吸脱着等温線を図13に示す。
測定に使用した検体及び量
 塩(A-1)のI形結晶:14.7mg
 化合物(B)の塩酸塩の結晶:10.4mg
 化合物(B)のセバシン酸塩の結晶:13.2mg
前処理:平衡化
 各検体を水分吸脱着測定装置内に置き、温湿度を25℃/40%RH又は50%RHに設定し、60分以上平衡化し質量を安定化させた。
測定
 質量平衡化した上記各検体につき、吸着及び脱着において5%RH毎に相対湿度を変化させながら検体質量を連続的に測定した。水分吸脱着測定装置の各測定条件設定は表9の通りとし、それぞれ共通する湿度範囲における質量変化量を表10に示した。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 
 質量%は、乾燥試料を基準とし、吸着(又は脱着)前後における質量変化を質量百分率で表した。上記条件において、塩(A-1)のI形結晶は吸湿性を示さないのに対し、化合物(B)の塩酸塩は25~41倍も吸湿性があり、化合物(B)のセバシン酸塩は、塩(A-1)のI形結晶と比較し6~15倍も吸湿性があることが判明した。
以上の通り、本発明のコハク酸塩は吸湿性が無いので医薬品原薬としてより好ましい。
(試験例7)医薬組成物の粉末X線回折図
 医薬組成物の検体をX線回折測定用の測定板上に充填し、以下の測定条件で測定し回折図を得た。実施例4で得られた医薬組成物の粉末X線回折図を図14に示し、代表的な回折ピークの回折角(2θ(°))を表11に示した。
(測定条件)
 粉末X線回折装置:SmartLab(株式会社リガク)
 放射線源:CuKα線
 管電圧:40kV
 管電流:50mA
 データ解析ソフト:SmartLabStudioII(株式会社リガク)
 データ解析方法(ピーク定義):ピーク位置(ピークトップ位置、CuKα1及びCuKα2照射時の回折角)、ピーク高さ(バックグラウンドを含めない)
Figure JPOXMLDOC01-appb-T000018
 
 医薬組成物中の塩(A-1)のI形結晶の同定は、例えば、以下の回折角(2θ(°))のピークセットを使用することができる。一つのピークセットとしては、11.2±0.3及び11.9±0.3である。さらに別のピークセットとしては、11.2±0.3、11.9±0.3及び16.2±0.3である。
(試験例8)医薬組成物の13C固体NMRスペクトル
 医薬組成物の検体を内径3.2mmの固体NMRスペクトル測定用ローターに充填し、以下の測定条件で測定し固体NMRスペクトルチャートを得た。実施例4で得られた医薬組成物の固体NMRスペクトルを図15に示し、塩(A-1)のI形結晶由来の化学シフト(ppm)を表12に示した。
(測定条件)
 核磁気共鳴装置:600MHz AVANCE III(ブルカー)
 プローブ:交差分極マジック角回転(CP/MAS)アクセサリー
 接触時間:3ミリ秒
 リサイクル遅れ:5秒
 1Hパルス:3マイクロ秒
 回転速度:15kHz
 積算回数:2048
 化学シフト補正:グリシンを参照とした。(C=O共鳴に対し、δ=176.46ppm)
Figure JPOXMLDOC01-appb-T000019
 
 医薬組成物中の塩(A-1)のI形結晶の同定は、例えば、以下の13C固体NMRスペクトル化学シフト(ppm)のピークセットを使用することができる。一つのピークセットとしては、183.5±0.5及び180.4±0.5である。さらに別のピークセットとしては、183.5±0.5、180.4±0.5、174.0±0.5、169.8±0.5、164.9±0.5及び157.0±0.5である。
 本発明のコハク酸塩は、優れた保存安定性やその他物性を有しており、医薬品原薬として有用である上、医薬品の工業的生産に適している。

Claims (16)

  1. 1-{[(4aR,6R,8aR)-2-アミノ-3-シアノ-8-メチル-4,4a,5,6,7,8,8a,9-オクタヒドロチエノ[3,2-g]キノリン-6-イル]カルボニル}-3-[2-(ジメチルアミノ)エチル]-1-プロピル尿素のコハク酸塩。
  2. 以下の式(A-1)又は式(A-2)で表される請求項1記載の塩。
    Figure JPOXMLDOC01-appb-C000001
  3. 以下の式(A-1)で表される請求項1記載の塩。
    Figure JPOXMLDOC01-appb-C000002
  4. 以下の式(A-2)で表される請求項1記載の塩。
    Figure JPOXMLDOC01-appb-C000003
  5. 結晶性である、請求項3記載の塩。
  6. 結晶性である、請求項4記載の塩。
  7. 粉末X線回折図において、回折角(2θ(°))として11.2±0.3及び11.8±0.3にピークを有する、請求項5記載の塩。
  8. 熱重量示差熱分析チャートにおいて、150℃付近に吸熱ピークを有する、請求項5記載の塩。
  9. 13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として183.6±0.5、180.5±0.5、174.1±0.5、170.0±0.5、165.1±0.5及び157.3±0.5にピークを有する、請求項5記載の塩。
  10. 以下の(a1)~(a3)からなる群から選択される2又は3つの物理的特性によって特徴付けられる、請求項5記載の塩:
    (a1)回折角(2θ(°))として11.2±0.3及び11.8±0.3にピークを有する粉末X線回折図;
    (a2)化学シフト値(δ(ppm))として183.6±0.5、180.5±0.5、174.1±0.5、170.0±0.5、165.1±0.5及び157.3±0.5にピークを有する13C固体NMRスペクトルチャート;及び
    (a3)150℃付近に吸熱ピークのオンセット温度を有する熱重量示差熱分析チャート。
  11. 粉末X線回折図において、回折角(2θ(°))として8.3±0.3、12.4±0.3、15.6±0.3及び23.2±0.3にピークを有する、請求項6記載の塩。
  12. 13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として177.7、176.4、166.2、160.4、154.0及び152.4にピークを有する、請求項6記載の塩。
  13. 請求項1~12の何れか一項に記載の塩を含有する医薬組成物。
  14. パーキンソン病、レストレスレッグス症候群または高プロラクチン血症の治療または予防用である、請求項13記載の医薬組成物。
  15. 医薬組成物の粉末X線回折図において、回折角(2θ(°))として11.2±0.3及び11.9±0.3にピークを有する、請求項1記載の塩及び少なくとも一つの追加的な賦形剤を含む医薬組成物。
  16. 医薬組成物の13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として183.5±0.5及び180.4±0.5にピークを有する、請求項1記載の塩及び少なくとも一つの追加的な賦形剤を含む医薬組成物。
     
     
PCT/JP2021/025233 2020-07-06 2021-07-05 オクタヒドロチエノキノリン化合物のコハク酸塩及びその結晶 WO2022009815A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/004,353 US20230286998A1 (en) 2020-07-06 2021-07-05 Succinate salts of octahydrothienoquinoline compound and crystals thereof
JP2022525569A JP7187733B2 (ja) 2020-07-06 2021-07-05 オクタヒドロチエノキノリン化合物のコハク酸塩及びその結晶
CA3183361A CA3183361A1 (en) 2020-07-06 2021-07-05 Succinate salts of octahydrothienoquinoline compound and crystals thereof
KR1020237002115A KR20230035050A (ko) 2020-07-06 2021-07-05 옥타히드로티에노퀴놀린 화합물의 숙신산염 및 그 결정
CN202180046334.0A CN115803329A (zh) 2020-07-06 2021-07-05 八氢噻吩并喹啉化合物的琥珀酸盐及其晶体
EP21837478.3A EP4177257A1 (en) 2020-07-06 2021-07-05 Succinate of octahydrothienoquinoline compound, and crystals thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-116507 2020-07-06
JP2020116507 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022009815A1 true WO2022009815A1 (ja) 2022-01-13

Family

ID=79553115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025233 WO2022009815A1 (ja) 2020-07-06 2021-07-05 オクタヒドロチエノキノリン化合物のコハク酸塩及びその結晶

Country Status (8)

Country Link
US (1) US20230286998A1 (ja)
EP (1) EP4177257A1 (ja)
JP (1) JP7187733B2 (ja)
KR (1) KR20230035050A (ja)
CN (1) CN115803329A (ja)
CA (1) CA3183361A1 (ja)
TW (1) TW202216726A (ja)
WO (1) WO2022009815A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124649A1 (ja) 2011-03-14 2012-09-20 キッセイ薬品工業株式会社 新規なオクタヒドロチエノキノリン誘導体、それを含有する医薬組成物およびそれらの用途
JP2014073013A (ja) 2012-09-28 2014-04-21 Asmo Co Ltd 回転電機
JP2014074013A (ja) * 2012-09-12 2014-04-24 Kissei Pharmaceutical Co Ltd 新規なドパミンd2受容体アゴニスト
JP2014088362A (ja) 2012-09-12 2014-05-15 Kissei Pharmaceutical Co Ltd オクタヒドロチエノキノリン誘導体の製造方法及びその製造中間体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124649A1 (ja) 2011-03-14 2012-09-20 キッセイ薬品工業株式会社 新規なオクタヒドロチエノキノリン誘導体、それを含有する医薬組成物およびそれらの用途
JP2014074013A (ja) * 2012-09-12 2014-04-24 Kissei Pharmaceutical Co Ltd 新規なドパミンd2受容体アゴニスト
JP2014088362A (ja) 2012-09-12 2014-05-15 Kissei Pharmaceutical Co Ltd オクタヒドロチエノキノリン誘導体の製造方法及びその製造中間体
JP2014073013A (ja) 2012-09-28 2014-04-21 Asmo Co Ltd 回転電機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Polymorphism and crystallization of the pharmaceutical drugs", 20 September 2002, ISBN: 4-901689-06-1, article ASHIZAWA, KAZUHIDE: "Table of content", pages: 1 - 13, XP009541519 *
"Saishin Soyaku Kagaku last volume TECHNOMICS [THE PRACTICE OF MEDICINAL CHEMISTRY], C.G. Wermuth (ed.)", vol. 2, 25 September 1999, TEKUNOMIKKU , JP , ISBN: 4-924746-80-0, article BRADLEY D. ANDERSON; KARL P. FLORA: "Passage; Chapter 34: Preparation of water-soluble organic compounds by salt formation", pages: 347 - 354, XP009541633 *

Also Published As

Publication number Publication date
JP7187733B2 (ja) 2022-12-12
JPWO2022009815A1 (ja) 2022-01-13
CA3183361A1 (en) 2022-01-13
US20230286998A1 (en) 2023-09-14
EP4177257A1 (en) 2023-05-10
TW202216726A (zh) 2022-05-01
KR20230035050A (ko) 2023-03-10
CN115803329A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
US9562024B2 (en) Vortioxetine salt and crystal thereof, their preparation method, pharmaceutical compositions and usage
US10723730B2 (en) Solid forms of a selective CDK4/6 inhibitor
AU2018259089B2 (en) Polymorphs and solid forms of (s)-2-((2-((s)-4-(difluoromethyl)-2-oxooxazolidin-3-yl)-5,6-dihydrobenzo(ƒ)imidazo(1,2-d)(1,4)oxazepin-9-yl)amino)propanamide, and methods of production
AU2015330554A1 (en) Crystal form of bisulfate of JAK inhibitor and preparation method therefor
JP2012512145A (ja) フリバンセリンの結晶性の塩形態
US9453011B2 (en) Crystal form of dabrafenib mesylate and preparation method thereof
EP2752414A1 (en) Crystalline form of apixaban
WO2022009815A1 (ja) オクタヒドロチエノキノリン化合物のコハク酸塩及びその結晶
WO2020065667A1 (en) Novel polymorphs of acalabrutinib, a bruton's tyrosine kinase inhibitor
EP3604284B1 (en) Crystalline eltrombopag monoethanolamine salt form d
WO2019086509A1 (en) Crystalline salt of a tricyclic poly(adp-ribose) polymerase inhibitor
KR20200140821A (ko) 아베마시클립의 고체-상태 형태, 그의 용도 및 제조
US9981912B2 (en) Cocrystal of lorcaserin, preparation methods, pharmaceutical compositions and uses thereof
WO2022199707A1 (zh) 哌马色林药用盐、制备方法、含其的药物组合物及应用
WO2023160542A1 (zh) 二肽基肽酶抑制剂化合物的盐及晶型
WO2024009977A1 (ja) 5H-ピロロ[2,3-d]ピリミジン-6(7H)-オン及びその塩体の結晶
WO2017093773A1 (en) New polymorphic and solvate form of idelalisib
WO2018130226A1 (zh) 利奥西呱的新晶型及其制备方法和用途
CN106061983A (zh) 吡嗪并[2,1‑c][1,2,4]三嗪化合物的晶体(1)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525569

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3183361

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237002115

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021837478

Country of ref document: EP

Effective date: 20230206