WO2022007884A1 - 一种动力总成的冷却系统、方法、动力总成及电动汽车 - Google Patents

一种动力总成的冷却系统、方法、动力总成及电动汽车 Download PDF

Info

Publication number
WO2022007884A1
WO2022007884A1 PCT/CN2021/105186 CN2021105186W WO2022007884A1 WO 2022007884 A1 WO2022007884 A1 WO 2022007884A1 CN 2021105186 W CN2021105186 W CN 2021105186W WO 2022007884 A1 WO2022007884 A1 WO 2022007884A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
passage
inverter
motor
medium
Prior art date
Application number
PCT/CN2021/105186
Other languages
English (en)
French (fr)
Inventor
王健刚
李泉明
陈君
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to JP2022580547A priority Critical patent/JP2023532503A/ja
Priority to EP21837956.8A priority patent/EP4140788A4/en
Publication of WO2022007884A1 publication Critical patent/WO2022007884A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/302Temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/61Arrangements of controllers for electric machines, e.g. inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present application relates to the technical field of electric vehicles, and in particular, to a cooling system for a powertrain, a method, a powertrain, and an electric vehicle.
  • the powertrain of an electric vehicle includes: a motor (engine), a DC-AC (DC-AC) inverter (hereinafter referred to as the inverter), a motor control system and a reducer.
  • the cooling system of the powertrain dissipates heat to the motor and reducer through the oil-cooling circuit, and dissipates heat to the inverter through the water-cooling circuit. , the above process is secondary heat dissipation.
  • the maximum speed of the powertrain needs to be continuously increased to output the same power as the existing powertrain.
  • Outputting the same power in a smaller volume means an increase in heat dissipation density, so heat needs to be dissipated in a timely and efficient manner.
  • the present application provides a powertrain cooling system, method, powertrain and electric vehicle, which can improve the heat dissipation effect on the powertrain.
  • an embodiment of the present application provides a cooling system for a powertrain, which is applied to an electric vehicle, including a cooling circuit and a cooling medium.
  • the cooling circuit includes a first cooling passage and a second cooling passage which are communicated.
  • the first cooling passage is used to dissipate heat from the inverter of the electric vehicle
  • the second cooling passage is used to dissipate heat from the motor of the electric vehicle.
  • the cooling medium used in the cooling circuit is an insulating medium, and the cooling medium flows from the first cooling passage into the second cooling passage.
  • the cooling medium used in this application is an insulating medium, which is a non-aqueous medium, and in some preferred embodiments, an insulating medium with low viscous resistance is used, that is, the viscous resistance is lower than that of oil coolant, so it can be Realize contact spray cooling for the inside of the motor and contact cooling for the inverter core.
  • the cooling system does not require secondary heat exchange between the water-cooling circuit and the oil-cooling circuit through an oil-water heat exchanger, which can improve the heat dissipation effect on the motor.
  • the cooling system further includes a bypass valve and a bypass flow path.
  • the bypass valve is a controllable valve, and the first cooling passage and the second cooling passage are connected through the bypass valve.
  • the bypass flow path is connected in parallel with the second cooling path, and the bypass valve is used to increase the first cooling power during the process of increasing the heating power of the inverter, or when the heating power of the inverter is determined to be increased. The proportion of the cooling medium in the cooling passage flowing into the bypass flow passage.
  • the bypass valve is used to control and increase the proportion of the cooling medium flowing into the bypass flow path, so that the heat absorbed by the cooling medium flowing into this part of the cooling medium is reduced, the temperature is reduced faster, and the circulation reaches the first A cooling passage again dissipates heat for the inverter, so the flow rate of the cooling medium in the first cooling passage is increased, thereby improving the heat dissipation capability of the inverter 11 .
  • the bypass valve is a solenoid valve
  • the cooling system further includes a temperature sensor and a motor controller.
  • the temperature sensor is used to obtain the temperature of the inverter and send it to the motor controller.
  • the motor controller is used to control the working state of the bypass valve so that all the cooling medium in the first cooling passage flows into the bypass passage, so as to improve the anti-reverse operation to the greatest extent.
  • the heat dissipation capacity of the inverter can achieve rapid heat dissipation of the inverter.
  • the cooling system can also dissipate heat for the reducer of the motor, and in this case, the cooling system further includes an oil cooling cycle.
  • the cooling circuit is isolated from the oil-cooling cycle, and the cooling medium of the oil-cooling cycle is oil-cooling liquid.
  • the oil-cooling liquid can be stirred, thereby driving the oil-cooling cycle.
  • the cooling system in order to isolate the cooling circuit from the oil cooling cycle, further includes a bearing and a high-speed oil seal.
  • the bearing and the high-speed oil seal are arranged at the connection end of the motor shaft of the motor and the reducer.
  • the cooling system of the powertrain and the vehicle thermal management circuit are also independent of each other, and at this time, the cooling system is not connected to the vehicle thermal management circuit.
  • the cooling system needs to use a heat exchanger to achieve heat exchange with the vehicle thermal management circuit.
  • the heat exchanger includes a first heat exchange passage and a second heat exchange passage, the input end of the first heat exchange passage is connected with the second cooling passage, the output end of the first heat exchange passage is connected with the first cooling passage, and the second heat exchange passage is connected with the first cooling passage.
  • the heat passage is connected to the vehicle thermal management circuit of the electric vehicle; the cooling medium in the second heat exchange passage absorbs the heat of the cooling medium in the first heat exchange passage and dissipates heat through the vehicle thermal management circuit.
  • the above implementation method is suitable for scenarios where the cooling system of the powertrain and the thermal management circuit of the whole vehicle need to be independently designed.
  • the cooling medium performs contact spray cooling on the motor. That is, the cooling medium can be directly contacted with the motor stator silicon steel sheet, the end winding, the magnetic steel constituting the motor mover, the motor shaft and the motor housing, which constitute the motor stator, thereby improving the heat dissipation efficiency.
  • the cooling medium performs contact cooling on the core of the inverter. This is because the cooling working fluid is an insulating working fluid, which can be designed without isolation. On the one hand, there is no potential safety hazard, and on the other hand, the heat dissipation efficiency is improved
  • the cooling system further includes a pump device, where the pump device is used to provide power required for circulation of the cooling medium in the cooling circuit.
  • the pump device since the first cooling passage and the second cooling passage of the present application communicate with each other, only one pump device may be provided, which reduces the number of pump devices, reduces the cost and occupied space, and facilitates the cooling system of the powertrain. And the powertrain is evolving in the direction of miniaturization.
  • the present application also provides a powertrain cooling method, which is applied to an electric vehicle.
  • the method includes: using a first cooling passage to dissipate heat from an inverter of the electric vehicle, and using a second cooling passage to cool the electric vehicle
  • the first cooling passage communicates with the second cooling passage to form a cooling circuit; the cooling medium is controlled to flow into the second cooling passage from the first cooling passage, and the cooling medium is an insulating medium.
  • the method further includes: During the process of increasing the heating power of the inverter, or when the heating power of the inverter is determined to be increased, the bypass valve is controlled to increase the cooling medium in the first cooling passage to flow into the bypass passage proportion.
  • the method further includes: acquiring the temperature of the inverter; when the temperature of the inverter is higher than a preset threshold, controlling the working state of the bypass valve to make the first All the cooling medium in a cooling passage flows into the bypass passage.
  • the method further includes: using an oil-cooling cycle to dissipate heat for the reducer of the electric vehicle, the cooling medium of the oil-cooling cycle is oil coolant, the oil-cooling cycle and cooling Loop isolation.
  • the method further includes: arranging a bearing and a high-speed oil seal at the connection end of the motor shaft of the motor and the reducer.
  • the method further includes: using a heat exchanger to realize heat exchange between the vehicle thermal management circuit and the cooling circuit.
  • the method further includes: using a cooling medium to perform contact spray cooling on the motor.
  • the method further includes: using a cooling medium to perform contact cooling on the core of the inverter.
  • the method further includes: using a pump device to provide the cooling medium of the cooling circuit with power required for circulation.
  • the present application further provides a powertrain, including a cooling system, an inverter, a motor, and a reducer of the powertrain described in the above implementation manner.
  • the inverter is used to convert the direct current into alternating current and then transmit it to the motor.
  • Electric motors are used to convert alternating current into mechanical energy to drive electric vehicles.
  • the reducer is used to convert the output speed of the motor shaft of the motor.
  • the powertrain includes the cooling system described in the above implementation manner, the powertrain has better heat dissipation performance and lower cost.
  • the present application further provides an electric vehicle, including the power assembly described in the above implementation manner and a power battery pack, where the power battery pack is used to provide the DC power to the inverter.
  • the first cooling passage and the second cooling passage of the cooling system of the electric vehicle are connected, and the entire cooling system adopts an insulating working medium with preset viscous resistance as the cooling working medium, and does not need to use an oil-water heat exchanger for water cooling circuit and oil cooling
  • the secondary heat exchange between the circuits can improve the heat dissipation effect of the motor, and can also reduce the cost of electric vehicles.
  • the cooling system provided by the present application includes a cooling circuit and a cooling medium, wherein the cooling circuit includes a first cooling passage and a second cooling passage that communicate with each other.
  • the first cooling passage is used to dissipate heat from the inverter of the electric vehicle, and the second cooling passage
  • the cooling passage is used to dissipate heat from the motor of the electric vehicle.
  • the first cooling passage is connected to the second cooling passage, the cooling medium used in the entire cooling system is an insulating medium, and when the cooling medium circulates in the cooling circuit, the first cooling passage first flows into the second cooling passage, that is, cooling The working fluid cools the inverter upstream first, because the operating temperature of the inverter is more stringent than that of the motor.
  • Cooling the inverter first can quickly absorb more heat, and then cool the motor downstream. Since the circuits for cooling the inverter and the motor are connected and use the same cooling medium, the oil-water heat exchanger does not need to be used for secondary heat exchange between the water-cooling circuit and the oil-cooling circuit. Improve the cooling effect of the powertrain.
  • FIG. 1 is a schematic diagram of the cooling system of the current powertrain
  • FIG. 2 is a schematic diagram of a cooling system for a powertrain provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of another powertrain cooling system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of yet another cooling system of a powertrain provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a working state of the cooling system provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of another working state of the cooling system provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of yet another cooling system of a powertrain provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a cooling method for a powertrain provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a powertrain provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an electric vehicle according to an embodiment of the application.
  • FIG. 1 this figure is a schematic diagram of the cooling system of the current powertrain.
  • the powertrain mainly includes an inverter 11 , a motor 12 and a reducer 13 .
  • the motor 12 includes a motor stator silicon steel sheet 121 , an end winding 122 , a magnetic steel 123 constituting a motor mover, a motor shaft 124 and a motor housing 125 , which constitute the motor stator.
  • the reducer 13 includes a gear set for reducing the motor, including a first countershaft gear 1301 , a second countershaft gear 1302 , an input shaft gear 1303 and an output shaft gear 1304 , and an oil filter 1305 .
  • the cooling system of the powertrain includes a water cooling circuit 14 (circuit indicated by dashed arrows in the drawing), an oil cooling circuit 15 (circuit indicated by solid arrows in the drawing), and an oil-water heat exchanger 16 .
  • the water cooling circuit 14 and the oil cooling circuit 15 are not connected.
  • the water cooling circuit 14 includes a water inlet pipe 141 and a water outlet pipe 142 connected to the oil-water heat exchanger 16 . As shown in FIG. 1 , the water cooling circuit 14 flows through the inverter 11 for cooling the inverter 11 and then flows through the oil-water heat exchanger 16 .
  • the oil cooling circuit 15 is used to dissipate heat for the motor 12 and the reducer 13 .
  • the oil-water heat exchanger 16 includes both a passage belonging to the water cooling circuit 14 and a passage belonging to the oil cooling circuit 15 , for dissipating heat to the oil cooling circuit 15 through the water cooling circuit 14 , that is, performing secondary heat exchange.
  • the entire cooling system is first controlled by the motor controller (not shown in the figure) to control the inverter 11 to convert the direct current into alternating current, during which there will be a part of energy loss due to the conversion efficiency, and this part of the energy loss will be converted into heat.
  • the alternating current enters the motor 12 and is converted into mechanical energy of the rotation of the motor 12 by electromagnetic induction. This process also generates heat energy due to the conversion efficiency.
  • the high speed of the motor 12 will be reduced by the reducer 13, and this part of the conversion will still generate heat.
  • the heat generated by the above three parts due to energy conversion needs to be discharged from the powertrain in time through the cooling system.
  • oil-water heat exchange inside the motor 12 requires an additional oil-water heat exchanger 16, which increases the cost of the cooling system accordingly.
  • the cooling circuit of the cooling system includes a first cooling passage and a second cooling passage that are communicated, wherein the first cooling passage
  • the passage is used to dissipate heat to the inverter of the electric vehicle
  • the second cooling passage is used to dissipate heat to the motor of the electric vehicle, that is, the cooling circuit of the inverter is connected with the cooling circuit of the motor, so the oil cooling circuit and the water cooling circuit are cancelled.
  • the process of secondary heat exchange between them improves the heat dissipation effect on the powertrain, and does not need to use the oil-water heat exchanger required for the secondary heat exchange process, and also reduces the cost of the cooling system.
  • directional terms such as “upper” and “lower” may include, but are not limited to, definitions relative to the schematic placement of components in the drawings. It should be understood that these directional terms may be relative concepts, They are used for relative description and clarification, which may vary accordingly depending on the orientation in which the components are placed in the drawings.
  • communication should be understood in a broad sense, for example, “communication” may be fixed communication, detachable communication, or integrated; it may be direct communication, or Indirect communication is possible through an intermediary.
  • circuit or “passage” is used to replace the "pipeline” in the physical structure or the container capable of carrying the cooling medium; and in the corresponding reference drawings, only The lines with arrows represent “circuits” or “passages”, and in practical applications, the lines with arrows correspond to corresponding heat dissipation pipelines or containers capable of carrying cooling medium.
  • Embodiments of the present application provide a cooling system for a powertrain, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 2 this figure is a schematic diagram of a cooling system of a powertrain according to an embodiment of the present application.
  • the illustrated powertrain includes an inverter 11 and an electric machine 12 .
  • the cooling system described in the embodiment of the present application includes a cooling circuit 17 (the circuit shown by the solid arrow in the figure) and a cooling medium (not shown in the figure).
  • the cooling circuit 17 specifically includes: a first cooling passage 171 and a second cooling passage 172 .
  • the first cooling passage 171 is used to dissipate heat from the inverter 11 of the electric vehicle, and the second cooling passage 172 is used to dissipate heat from the motor 12 of the electric vehicle.
  • the first cooling passage 171 and the second cooling passage 172 communicate with each other and use the same cooling medium.
  • the cooling medium is an insulating medium, and the embodiment of the present application does not specifically limit the type of the cooling medium, but in practical applications, since the cooling medium needs to dissipate heat to the inverter 11, and the inverter 11 has no effect on the operating temperature The requirements are relatively high.
  • the cooling medium can be an insulating medium with low viscous resistance.
  • the insulating medium with low viscous resistance means Therefore, its viscous resistance is lower than that of the oil coolant used in the oil cooling circuit 15 in FIG. 1 . While the cooling medium satisfies the heat dissipation requirements of the inverter 11 with higher requirements, it also meets the heat dissipation requirements of the motor 12 .
  • the embodiments of the present application do not specifically limit the insulating medium with low viscosity resistance, for example, fluorinated liquid, water oil, etc. can be used.
  • the following examples illustrate:
  • the physical properties of the cooling medium at 80 degrees Celsius are shown as follows:
  • the insulating working medium does not include water, and those skilled in the art should know that when water is used as a cooling working medium in practical applications, water is a non-insulating working medium.
  • the electronic pump 18 is used to provide power for the circulating flow of the cooling medium in the cooling circuit 17.
  • the cooling medium circulates in the cooling circuit 17, it first flows from the first cooling passage 171 into the second cooling passage 172, that is, the cooling medium first flows into the second cooling passage 172 upstream.
  • the inverter 11 dissipates heat, and then dissipates heat to the motor 12 downstream.
  • the cooling medium in the second cooling passage 172 returns to the vehicle thermal management circuit after exchanging heat for the motor 12 to discharge the heat.
  • the cooling system since the first cooling passage of the cooling system dissipates heat from the inverter, the second cooling passage dissipates heat from the motor, and the first cooling passage and the second cooling passage communicate with each other. , so the process of secondary heat dissipation between the water cooling circuit and the oil cooling circuit is cancelled, which can improve the heat dissipation effect on the powertrain.
  • the highest point temperature of the motor can be correspondingly reduced by 5 -15°C or so.
  • the cost of the cooling system is also reduced by avoiding the use of the oil-water heat exchanger required for the above secondary heat dissipation.
  • the oil-cooling cycle 15 inside the motor 12 needs an electronic oil pump to drive the cycle, and the water-cooling cycle that dissipates heat from the inverter 11 needs to be connected in series with the vehicle thermal management circuit, which requires another electronic
  • the water pump drives the cycle, and two electronic pumps mean that the cost of the electronic pump increases, and the space occupied by the electronic pump is also larger. Since the first cooling passage and the second cooling passage of the cooling system of the present application are communicated, only one pump device is required to provide the power required for the circulation of the cooling medium in the cooling circuit, which reduces the cost and the space occupied, which is more It meets the needs of the cooling system of the powertrain and the evolution of the powertrain in the direction of miniaturization.
  • the working fluid for cooling the inverter 11 is water, which is a conductive working fluid.
  • water which is a conductive working fluid.
  • the core body of the inverter 11 cannot be directly cooled, and heat can only be dissipated by indirect means (heat conduction), there are problems of large thermal resistance and low heat dissipation efficiency, resulting in the core body of the inverter 11 in some industries. There is an additional increase of more than 10 °C in the condition point.
  • the oil cooling liquid in the oil cooling circuit adopts an indirect method (heat conduction) to dissipate heat, which also has the problems of large thermal resistance and low heat dissipation efficiency.
  • the cooling medium used in the cooling circuit provided by the embodiments of the present application is an insulating medium, that is, a non-conductive medium, without the above hidden dangers. Therefore, in some embodiments, isolation design may not be performed, and the The core of the inverter is cooled by contact, which improves the heat dissipation efficiency.
  • the cooling medium used in the cooling circuit provided by the embodiments of the present application may be an insulating medium with low viscosity resistance, so the cooling medium can be directly caused by spray cooling.
  • the motor stator silicon steel sheet 121, the end winding 122, the magnetic steel 123 constituting the motor mover, the motor shaft 124, and the motor housing 125, which constitute the motor stator, are in contact, thereby improving the heat dissipation efficiency.
  • the above embodiment describes the working principle of the cooling system when cooling the inverter and the motor, and the working principle when the cooling system cools the reducer of the motor is described below.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 is a schematic diagram of another cooling system of a powertrain provided by an embodiment of the present application.
  • the illustrated powertrain includes an inverter 11 , a motor 12 and a reduction gear 13 .
  • the gear set of the reducer 13 includes a first countershaft gear 1301 , a second countershaft gear 1302 , an input shaft gear 1303 and an output shaft gear 1304 .
  • the cooling system described in this embodiment of the present application includes a cooling circuit 17 (the circuit shown by the solid arrow in the figure), the oil cooling cycle 18 (shown by the dashed arrow in the figure), and a cooling medium (not shown in the figure).
  • the cooling circuit 17 includes a first cooling passage 171 and a second cooling passage 172 , and the specific description may refer to Embodiment 1, which will not be repeated in this embodiment of the present application.
  • the oil-cooling cycle 18 is isolated from the cooling circuit 17 , that is, the oil-cooling cycle 18 is arranged independently, and is used to dissipate heat for the reducer 13 of the electric vehicle.
  • the cooling medium used in the oil cooling cycle 18 is oil coolant, which has a relatively large viscous resistance and a certain lubricating function.
  • the oil coolant can be agitated, thereby driving the oil cooling cycle 18 .
  • a bearing 131 and a high-speed oil seal 132 exist between the reducer 13 and the motor 12 to isolate the oil cooling cycle 18 from the cooling circuit 17 and prevent oil cooling liquid from leaking.
  • the bearing 131 and the high-speed oil seal 132 are arranged at the connection end of the motor shaft 124 of the motor 12 and the reducer 13 .
  • the inverter can be dissipated through the first cooling passage of the cooling system, and the motor can be dissipated through the second cooling passage, and then the heat can be dissipated through the independent oil
  • the cooling cycle dissipates heat from the motor's reducer.
  • the process of secondary heat dissipation between the water cooling circuit and the oil cooling circuit can improve the heat dissipation effect on the powertrain, and avoid the use of the above secondary heat dissipation.
  • the oil-water heat exchanger also reduces the cost of the cooling system.
  • the above embodiments are described by taking the direct communication between the first cooling passage 171 and the second cooling passage 172 as an example.
  • the communication between the first cooling passage 171 and the second cooling passage 172 can be improved by improving
  • the method is used to realize the adjustment of the heat dissipation capacity according to the current working state of the electric vehicle, which will be described in detail below.
  • this figure is a schematic diagram of yet another cooling system of a powertrain provided by an embodiment of the present application.
  • the illustrated powertrain includes an inverter 11 , a motor 12 and a reduction gear 13 .
  • the cooling system described in this embodiment of the present application includes a cooling circuit 17 (the circuit shown by the solid arrow in the figure), the oil cooling cycle 18 (shown by the dashed arrow in the figure), and a cooling medium (not shown in the figure).
  • the cooling circuit 17 includes a first cooling passage 171 and a second cooling passage 172 .
  • the bypass valve 19 is a controllable valve, and the first cooling passage 171 and the second cooling passage 172 are connected through the bypass valve 19.
  • the bypass valve 19 is specifically a three-way valve, which can realize the parallel connection of the bypass flow path 20 and the second cooling passage 172, that is, one end of the bypass flow path 20 is connected to the bypass valve 19, and the other end is connected to the second cooling passage 172. end connection.
  • the bypass valve 19 is controlled to increase the cooling power of the first cooling passage 171 in the process of increasing the heating power of the inverter 11 or when the heating power of the inverter 11 is determined to be increased.
  • the ratio of mass flow into the bypass flow path 20 is controlled to increase the cooling power of the first cooling passage 171 in the process of increasing the heating power of the inverter 11 or when the heating power of the inverter 11 is determined to be increased.
  • this part of the cooling medium does not flow into the second cooling passage 172 , so it does not absorb the heat of the motor 12 and can be dissipated directly through the vehicle thermal management circuit.
  • this part of the cooling working fluid absorbs less heat, and the temperature decreases faster, and on the other hand, it can circulate faster to reach the first cooling passage 171 to dissipate heat for the inverter 11, that is, to improve the first cooling
  • the flow rate of the cooling medium in the cooling passage 171 can improve the heat dissipation capability of the inverter 11 .
  • the bypass valve 19 is connected to the first cooling system. In the passage 171 and the second cooling passage 172, no cooling medium flows into the bypass flow passage 20; when the inverter needs to be cooled rapidly, the bypass valve 19 can be controlled so that the cooling medium in the first cooling passage 171 All flow into the bypass flow path 20 , thereby improving the heat dissipation capability of the inverter 11 to the greatest extent.
  • the above control of the bypass valve 19 may be active control or passive control, which will be described in detail below.
  • the cooling system also includes a temperature sensor 21 and a motor controller 22 .
  • the bypass valve 19 can be a solenoid valve, and the motor controller 22 can control the working state of the bypass valve 19 .
  • the temperature sensor 21 is used to acquire the temperature of the inverter 11 in real time and send the temperature to the motor controller 22 .
  • the motor controller 22 controls the working state of the bypass valve 19 in response to the operation of the driver of the electric vehicle.
  • the motor controller 22 can actively control the working state of the bypass valve 19 according to the preset corresponding relationship between the inverter temperature and the working state of the bypass valve. For example, in some embodiments, when the temperature of the inverter 11 is higher than a preset threshold, the motor controller 22 controls the working state of the bypass valve 19 so that all the cooling medium in the first cooling passage 171 flows into the bypass flow In the circuit 20, the heat dissipation capability of the inverter 11 is improved to the greatest extent.
  • the motor controller 22 may be an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Digital Signal Processor (DSP) or its combination.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • DSP Digital Signal Processor
  • the above-mentioned PLD can be a complex programmable logic device (Complex Programmable Logic Device, CPLD), a field-programmable gate array (Field-programmable Gate Array, FPGA), a general array logic (Generic Array Logic, GAL) or any combination thereof.
  • CPLD Complex Programmable Logic Device
  • FPGA Field-programmable Gate Array
  • GAL General array logic
  • the first cooling passage and the second cooling passage of the cooling circuit are communicated through a bypass valve, and the bypass passage and the second cooling passage are connected in parallel, and then the bypass valve is controlled by the bypass valve.
  • the working state of the valve is opened to control the proportion of the cooling medium in the first cooling passage flowing into the bypass passage.
  • the inverter has higher requirements on the working temperature. The proportion of working medium flow can improve the heat dissipation capacity of the inverter and quickly reduce the temperature of the inverter.
  • cooling system of the powertrain is connected to the thermal management circuit of the vehicle.
  • the cooling system of the powertrain and the thermal management circuit of the vehicle can also be independent of each other. Figures describe in detail.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 7 is a schematic diagram of yet another cooling system of a powertrain provided by an embodiment of the present application.
  • the cooling system is not communicated with the vehicle thermal management circuit, but conducts heat exchange through a heat exchanger 21 to transfer the heat to the vehicle thermal management circuit 22, which will be described in detail below. .
  • the heat exchanger 21 of the cooling system includes a first heat exchange passage (dotted line inside the heat exchanger) and a second heat exchange passage (solid line inside the heat exchanger), and the input end of the first heat exchange passage is connected to the second cooling passage.
  • the passage 172 is connected, the output end of the first heat exchange passage is connected with the first cooling passage 171, and the second heat exchange passage is connected with the vehicle thermal management circuit of the electric vehicle.
  • different types of cooling medium are used in the two heat exchange passages of the heat exchanger.
  • the first heat exchange passage and the second heat exchange passage are not connected but are in full contact, and the cooling medium in the second heat exchange passage absorbs the heat of the cooling medium in the first heat exchange passage and dissipates heat through the vehicle thermal management circuit 22 .
  • the electronic pump 18A provides the power required for the circulation of the cooling medium in the cooling circuit
  • the electronic pump 18B provides the power required for the circulation of the cooling medium in the vehicle thermal management circuit 22 .
  • the vehicle thermal management circuit is not in communication with the cooling system of the powertrain provided in the embodiment of the present application, and heat is exchanged between the two through a heat exchanger, and the vehicle thermal management circuit absorbs the heat from the cooling system. It is released to the external environment through the heat sink 23 . Therefore, the above embodiments are suitable for scenarios where the cooling system of the powertrain and the thermal management circuit of the whole vehicle need to be designed independently, and since the first cooling passage and the second cooling passage of the cooling system are connected, it is not necessary to use the oil-water heat exchanger
  • the secondary heat exchange between the water-cooled circuit and the oil-cooled circuit reduces the number of oil-water heat exchangers used, and can also improve the heat dissipation effect of the powertrain.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • Embodiments of the present application also provide a powertrain cooling method, which is applied to cooling the powertrain of an electric vehicle, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 8 this figure is a schematic diagram of a cooling method for a powertrain provided by an embodiment of the present application.
  • the method includes the following steps:
  • S801 Use the first cooling passage to dissipate heat from the inverter of the electric vehicle, use the second cooling passage to dissipate heat from the motor of the electric vehicle, and the first cooling passage and the second cooling passage communicate to form a cooling circuit.
  • the above method adopted in the embodiment of the present application cancels the process of secondary heat dissipation between the water cooling circuit and the oil cooling circuit, so it is not necessary to perform the secondary heat exchange between the water cooling circuit and the oil cooling circuit through the oil-water heat exchanger, which can improve the Cooling effect on the powertrain.
  • the first cooling passage and the second cooling passage can be connected through a bypass valve, the bypass valve is a controllable valve, and the bypass flow passage of the cooling circuit is connected in parallel with the second cooling passage, and the method also includes:
  • the bypass valve is controlled to increase the flow of the cooling medium in the first cooling passage into the bypass passage. ratio in .
  • this cycle can reach the first cooling passage faster for heat dissipation for the inverter, that is, the flow rate of the cooling medium in the first cooling passage can be increased to improve the heat dissipation capability of the inverter.
  • the temperature of the inverter can also be obtained, and when the temperature of the inverter is higher than a preset threshold, the working state of the bypass valve is controlled to make the cooling medium in the first cooling passageway All flow into the bypass flow path, thereby maximizing the heat dissipation capability of the inverter and realizing rapid heat dissipation of the inverter.
  • an oil cooling cycle in order to realize the cooling of the reducer of the motor, can be used to dissipate heat for the reducer of the electric vehicle, the cooling medium of the oil cooling cycle is oil coolant, and the oil cooling cycle and The cooling circuit is isolated.
  • a bearing and a high-speed oil seal may be provided at the connection end of the motor shaft of the motor and the reducer.
  • the cooling system of the powertrain and the vehicle thermal management circuit need to be independent of each other.
  • a heat exchanger can be used to achieve heat exchange between the vehicle thermal management circuit and the cooling circuit, that is, The heat from the cooling system is absorbed by the heat exchanger in the vehicle thermal management circuit and released to the outside environment through the radiator.
  • cooling medium used in the embodiments of the present application is an insulating medium
  • isolation design may not be performed between the cooling medium and the core of the inverter, and the cooling medium is used to contact the core of the inverter. type cooling to improve the heat dissipation efficiency of the inverter.
  • the cooling medium can also be used to perform contact spray cooling on the motor, that is, the cooling medium is directly connected to the motor stator silicon steel sheet, end windings, and motor movers that constitute the motor stator by spray cooling.
  • the contact between the magnetic steel, the motor shaft and the motor housing improves the heat dissipation efficiency of the motor.
  • a pump device can also be used to provide the power required for the circulation of the cooling medium of the cooling circuit. Since the first cooling passage and the second cooling passage communicate with each other, only one pump device is needed to provide the power required for the circulation of the cooling medium of the cooling circuit, which reduces the cost and the space occupied, which is more in line with the cooling of the powertrain The need for systems and powertrains to evolve towards miniaturization.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the embodiments of the present application further provide a powertrain applying the cooling system, which will be described in detail below with reference to the accompanying drawings.
  • this figure is a schematic diagram of a powertrain provided by an embodiment of the present application.
  • the powertrain 200 provided in this embodiment of the present application includes a cooling system 10 , an inverter 11 , a motor 12 and a reducer 13 .
  • the inverter 11 is used to convert the direct current into alternating current and transmit it to the motor 12, and the energy loss of the device due to the conversion efficiency will be converted into heat.
  • the motor 12 converts the alternating current into mechanical energy for the motor to rotate, and this process also generates heat due to the conversion efficiency.
  • the reducer 13 converts the output speed of the motor shaft of the motor 12, and reduces the high speed of the motor, and the loss generated by this part of the conversion is also converted into heat.
  • the cooling system 10 is used to dissipate heat for the inverter 11 , the motor 12 and the reducer 13 , that is, to dissipate the heat generated above in time.
  • the cooling system 10 please refer to the above embodiment, and the embodiment of the present application will not be repeated here. Repeat.
  • the powertrain provided by the present application includes a cooling system, and the cooling circuit of the cooling system includes a first cooling passage and a second cooling passage that communicate with each other, and the first cooling passage is used for cooling the inverter of the electric vehicle.
  • the second cooling passage is used to dissipate heat from the motor of the electric vehicle.
  • the first cooling passage is connected to the second cooling passage, the cooling medium used in the entire cooling system is an insulating medium, and when the cooling medium circulates in the cooling circuit, the first cooling passage first flows into the second cooling passage, that is, cooling The working fluid cools the inverter upstream first, because the operating temperature of the inverter is more stringent than that of the motor.
  • Cooling the inverter first can quickly absorb more heat, and then cool the motor downstream. Therefore, it is not necessary to conduct secondary heat exchange between the water-cooled circuit and the oil-cooled circuit through the oil-water heat exchanger, which can improve the heat dissipation effect of the powertrain.
  • cooling medium used is an insulating medium, there is no need to isolate the cooling medium and the inverter, and the core of the inverter can be contact-cooled, which improves the heat dissipation efficiency of the inverter.
  • Spray cooling can also be used to directly contact the cooling medium with the motor stator silicon steel sheet, end windings, magnetic steel, motor shaft and motor housing that constitute the motor stator, thereby improving the efficiency of the motor. cooling efficiency.
  • the embodiments of the present application further provide an electric vehicle applying the powertrain, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 10 this figure is a schematic diagram of an electric vehicle provided by an embodiment of the present application.
  • the electric vehicle 300 provided in the embodiment of the present application includes: a power battery pack 100 and a power assembly 200 .
  • the powertrain 200 includes the cooling system of the powertrain described in the above embodiment.
  • the cooling system reference may be made to the above embodiment, which is not repeated in the embodiment of the present application.
  • the power battery pack 100 provides DC power for the inverter of the powertrain 200 .
  • the electric vehicle includes the powertrain cooling system
  • the cooling system cooling circuit includes a first cooling passage and a second cooling passage that are communicated
  • the first cooling passage is used for inverting the electric vehicle.
  • the second cooling passage is used to dissipate heat from the motor of the electric vehicle.
  • the first cooling passage is connected to the second cooling passage, the cooling medium used in the entire cooling system is an insulating medium, and when the cooling medium circulates in the cooling circuit, the first cooling passage first flows into the second cooling passage, that is, cooling
  • the working fluid cools the inverter upstream first, because the operating temperature of the inverter is more stringent than that of the motor. Cooling the inverter first can quickly absorb more heat, and then cool the motor downstream. Therefore, it is not necessary to conduct secondary heat exchange between the water-cooled circuit and the oil-cooled circuit through the oil-water heat exchanger, which can improve the heat dissipation effect on the powertrain and reduce the cost of electric vehicles.
  • the cost of the electric vehicle is further reduced.
  • the cooling medium used is an insulating medium, there is no need to isolate the cooling medium and the inverter, and the core of the inverter can be contact-cooled, which improves the heat dissipation efficiency of the inverter and simplifies the The design difficulty is eliminated, and there is no potential safety hazard when the water-cooled circuit is used in Figure 1, which improves the safety performance of electric vehicles.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.

Abstract

本申请提供了一种动力总成的冷却系统、方法、动力总成及电动汽车,涉及电动汽车技术领域。其中,所述冷却系统包括:冷却回路和冷却工质。其中,所述冷却回路包括连通的第一冷却通路和第二冷却通路,所述第一冷却通路用于对电动汽车的逆变器进行散热,所述第二冷却通路用于对所述电动汽车的电机进行散热;所述冷却工质为绝缘工质,所述冷却工质由所述第一冷却通路流入所述第二冷却通路。利用该冷却系统能够提升对动力总成的散热效果。

Description

一种动力总成的冷却系统、方法、动力总成及电动汽车
本申请要求于2020年07月08日提交中国国家知识产权局、申请号为202010652837.X、发明名称为“一种动力总成的冷却系统、方法、动力总成及电动汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车技术领域,尤其涉及一种动力总成的冷却系统、方法、动力总成及电动汽车。
背景技术
电动汽车的动力总成包括:电机(发动机)、直流-交流(DC-AC)逆变器(以下简称逆变器)、电机控制系统及减速器。动力总成的冷却系统通过油冷回路对电机和减速器进行散热,通过水冷回路对逆变器进行散热,以上过程为一次散热,并通过油水换热器将油冷回路的热量传递到水冷回路,以上过程为二次散热。
随着动力总成朝小型化方向的不断演进,动力总成的最高转速需要不断提升,以输出与现有动力总成相同的功率。更小体积下输出相同的功率意味着热耗密度的上升,因此需要将热量及时高效地散出。
但是,负责对油冷回路和水冷回路之间换热的油水换热器的二次换热的效率存在瓶颈,其需要一定的温差才能实现二次换热,导致油冷却液的温度比水冷却液的温度高,从而导致电机的温度存在相应的升幅,散热效果差。
发明内容
为了解决现有技术存在的上述技术问题,本申请提供了一种动力总成的冷却系统、方法、动力总成及电动汽车,能够提升对动力总成的散热效果。
第一方面,本申请实施例提供了一种动力总成的冷却系统,应用于电动汽车,包括冷却回路和冷却工质。其中,冷却回路包括连通的第一冷却通路和第二冷却通路,第一冷却通路用于对电动汽车的逆变器进行散热,第二冷却通路用于对电动汽车的电机进行散热。冷却回路中采用的冷却工质为绝缘工质,冷却工质由第一冷却通路流入第二冷却通路。
本申请采用的冷却工质为绝缘工质,为非水工质,并且在一些较优的实施例中,采用的是低粘性阻力的绝缘工质,即粘性阻力低于油冷却液,因此可以实现对于电机内部进行接触式喷淋冷却并且对逆变器芯体进行接触式冷却。该冷却系统不需要通过油水换热器进行水冷回路和油冷回路之间的二次换热,能够提升对电机的散热效果。
结合第一方面,在第一种可能的实现方式中,冷却系统还包括旁通阀门和旁通流路。其中,旁通阀门为可控阀门,第一冷却通路和第二冷却通路通过旁通阀门连接。旁通流路与第二冷却通路并联连接,旁通阀门用于在逆变器的发热功率增大的过程中,或,当逆变器的发热功率被确定将要增大时,增大第一冷却通路中的冷却工质流入旁通流路中的比例。
本实现方式中,利用旁通阀门控制增大冷却工质流入旁通流路中的比例,使得流入该部分冷却工质一方面吸收的热量减少,温度降低更快,并且更快的循环到达第一冷却通路再次为逆变器进行散热,因此提升第一冷却通路中的冷却工质的流量,进而提升对于逆变器11的散热能力。
结合第一方面,在第二种可能的实现方式中,旁通阀门为电磁阀,冷却系统还包括温度传感器与电机控制器。其中,温度传感器用于获取逆变器的温度并发送给电机控制器。电机控制器用于当逆变器的温度高于预设阈值时,控制旁通阀门的工作状态以使第一冷却通路中的冷却工质全部流入旁通流路中,进而最大程度上提升对逆变器的散热能力,实现对逆变器的快速散热。
结合第一方面,在第三种可能的实现方式中,该冷却系统还可为电机的减速器进行散热,此时冷却系统还包括油冷循环。冷却回路与油冷循环隔离,并且油冷循环的冷却工质为油冷却液,减速器的齿轮旋转时,能够搅动油冷却液,进而驱动油冷循环。通过冷却系统的油冷循环,实现了对电动汽车的减速器的散热。
结合第一方面,在第四种可能的实现方式中,为了实现冷却回路与油冷循环隔离,冷却系统还包括轴承和高速油封。轴承和高速油封设置在电机的电机转轴和减速器的连接端。
结合第一方面,在第五种可能的实现方式中,动力总成的冷却系统与整车热管理回路也互相独立,此时冷却系统与整车热管理回路不连通。此时冷却系统需要利用换热器实现和整车热管理回路的热交换。该换热器包括第一换热通路和第二换热通路,第一换热通路的输入端与第二冷却通路连接,第一换热通路的输出端与第一冷却通路连接,第二换热通路与电动汽车的整车热管理回路连接;第二换热通路中的冷却工质吸收第一换热通路中的冷却工质的热量后通过整车热管理回路进行散热。
以上实现方式适于需要将动力总成的冷却系统和整车热管理回路独立设计的场景。
结合第一方面,在第六种可能的实现方式中,冷却工质对电机进行接触式喷淋冷却。即可以直接使冷却工质与构成电机定子的电机定子硅钢片、端部绕组、构成电机动子的磁钢、电机转轴以及电机壳体等接触,进而提升了散热效率。
结合第一方面,在第七种可能的实现方式中,冷却工质对逆变器的芯体进行接触式冷却。这是因为冷却工质为绝缘工质,可以不进行隔离设计,一方面无安全隐患,另一方面还提升了散热效率
结合第一方面,在第八种可能的实现方式中,冷却系统还包括泵装置,该泵装置用于为冷却回路的冷却工质提供循环所需的动力。在一些实施例中,由于本申请的第一冷却通路和第二冷却通路连通,因此可以仅设置一个泵装置,减少了泵装置的数量降低了成本以及占用的空间,便于动力总成的冷却系统以及动力总成朝着小型化方向演进。
第二方面,本申请还提供了一种动力总成的冷却方法,应用于电动汽车,该方法包括:利用第一冷却通路对电动汽车的逆变器进行散热,利用第二冷却通路对电动汽车的电机进行散热,第一冷却通路和所述第二冷却通路连通以形成冷却回路;控制冷却工质由第一冷却通路流入第二冷却通路,冷却工质为绝缘工质。
结合第二方面,在第一种可能的实现方式中,当第一冷却通路和第二冷却通路通过旁通阀门连接,旁通流路与第二冷却通路并联连接时,该方法还包括:在逆变器的发热功率增大的过程中,或,当逆变器的发热功率被确定将要增大时,控制旁通阀门以增大第一冷却通路中的冷却工质流入旁通流路中的比例。
结合第二方面,在第二种可能的实现方式中,该方法还包括:获取逆变器的温度;当 逆变器的温度高于预设阈值时,控制旁通阀门的工作状态以使第一冷却通路中的冷却工质全部流入旁通流路中。
结合第二方面,在第三种可能的实现方式中,该方法还包括:利用油冷循环为电动汽车的减速器进行散热,油冷循环的冷却工质为油冷却液,油冷循环与冷却回路隔离。
结合第二方面,在第四种可能的实现方式中,该方法还包括:在电机的电机转轴和减速器的连接端设置轴承和高速油封。
结合第二方面,在第五种可能的实现方式中,该方法还包括:利用换热器实现整车热管理回路和冷却回路之间的热交换。
结合第二方面,在第六种可能的实现方式中,该方法还包括:利用冷却工质对电机进行接触式喷淋冷却。
结合第二方面,在第七种可能的实现方式中,该方法还包括:利用冷却工质对逆变器的芯体进行接触式冷却。
结合第二方面,在第八种可能的实现方式中,该方法还包括:利用泵装置为冷却回路的冷却工质提供循环所需的动力。
第三方面,本申请还提供了一种动力总成,包括以上实现方式所述的动力总成的冷却系统、逆变器、电机以及减速器。其中,逆变器用于将直流电转换为交流电后传输至电机。电机用于将交流电转换为机械能以驱动电动汽车行驶。减速器用于对电机的电机转轴的输出转速进行转换。
由于动力总成包括以上实现方式所述的冷却系统,因此该动力总成具有更好的散热性能,并且成本更低。
第四方面,本申请还提供了一种电动汽车,包括以上实现方式所述的动力总成和动力电池组,该动力电池组用于为所述逆变器提供所述直流电。
该电动汽车的冷却系统的第一冷却通路和第二冷却通路连通,整个冷却系统采用一种预设粘性阻力的绝缘工质为冷却工质,不需要通过油水换热器进行水冷回路和油冷回路之间的二次换热,提升对电机的散热效果,还能够降低电动汽车的成本。
本申请提供的技术方案至少具有以下的技术效果:
本申请提供的冷却系统包括冷却回路和冷却工质,其中,该冷却回路包括连通的第一冷却通路和第二冷却通路,第一冷却通路用于对电动汽车的逆变器进行散热,第二冷却通路用于对电动汽车的电机进行散热。而第一冷却通路和第二冷却通路连通,整个冷却系统采用的冷却工质为绝缘工质,并且冷却工质在冷却回路中循环时,先由第一冷却通路流入第二冷却通路,即冷却工质先在上游冷却逆变器,这是因为逆变器对工作温度的要求较电机而言更加严格,先冷却逆变器可以快速吸收更多的热量,然后在下游冷却电机。由于该冷却系统中为逆变器散热和为电机散热的回路连通并使用了同一种冷却工质,因此不需要通过油水换热器进行水冷回路和油冷回路之间的二次换热,能够提升对动力总成的散热效果。
附图说明
图1为目前的动力总成的冷却系统的示意图;
图2为本申请实施例提供的一种动力总成的冷却系统的示意图;
图3为本申请实施例提供的另一种动力总成的冷却系统的示意图;
图4为本申请实施例提供的又一种动力总成的冷却系统的示意图;
图5为本申请实施例提供的冷却系统的一种工作状态示意图;
图6为本申请实施例提供的冷却系统的另外一种工作状态示意图;
图7为本申请实施例提供的再一种动力总成的冷却系统的示意图;
图8为本申请实施例提供的一种动力总成的冷却方法的示意图;
图9为本申请实施例提供的一种动力总成的示意图;
图10为本申请实施例提供的一种电动汽车的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面首先介绍电动汽车上的动力总成的冷却系统的工作原理。
参见图1,该图为目前的动力总成的冷却系统的示意图。
该动力总成中主要包括逆变器11、电机12和减速器13。
其中,电机12中包括构成电机定子的电机定子硅钢片121、端部绕组122、构成电机动子的磁钢123、电机转轴124以及电机壳体125。
减速器13中包括用于对电机进行减速的齿轮组,包括第一中间轴齿轮1301、第二中间轴齿轮1302、输入轴齿轮1303和输出轴齿轮1304,还包括油过滤器1305。
该动力总成的冷却系统包括水冷回路14(图中虚线箭头所示的回路)、油冷回路15(图中实线箭头所示的回路)和油水换热器16。水冷回路14和油冷回路15不连通。
其中,水冷回路14中包括与油水换热器16连接的入水管141和出水管142。如图1所示,水冷回路14流经逆变器11,用于对逆变器11进行散热后流经油水换热器16。
油冷回路15用于为电机12和减速器13进行散热。
油水换热器16中同时包括属于水冷回路14的通路和属于油冷回路15的通路,用于通过水冷回路14对油冷回路15进行散热,即进行二次换热。
整个冷却系统先由电机控制器(图中未示出)控制逆变器11,将直流电转换为交流电,其间由于转换效率的原因会有一部分的能量损失,这部分的能量损失转换成热量。同时交流电进入电机12,由电磁感应转换成电机12转动的机械能,这个过程由于转换效率的原因也会产生热能。最后电机12的高转速会由减速器13将转速调低,这部分转换依旧会产生热量。以上三部分由于能量转换产生的热量均需要通过冷却系统及时排出动力总成。
但是由于油水换热器16的换热效率存在瓶颈,需要水冷回路14和油冷回路15有一定温差才能实现油冷却液和水冷却液的换热,造成油冷却液的温度比水冷却液高约5-15℃,从而导致电机12的最高点温度有5-15℃以上的相应升幅。
再者,电机12内部的油水换热需要额外的油水换热器16,也相应提升了冷却系统的成本。
为了解决以上问题,本申请提供了一种动力总成的冷却系统、方法、动力总成及电动汽车,该冷却系统的冷却回路包括连通的第一冷却通路和第二冷却通路,其中第一冷却通 路用于对电动汽车的逆变器进行散热,第二冷却通路用于对电动汽车的电机进行散热,即将逆变器的冷却回路与电机的冷却回路连通,因此取消了油冷回路和水冷回路之间的二次换热的过程,提升了对动力总成的散热效果,并且不需使用该二次换热过程需要的油水换热器,还降低了冷却系统的成本。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请说明中的“第一”、“第二”等用词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
此外,本申请中,“上”、“下”等方位术语可以包括但不限于相对附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语可以是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件附图所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连通”应做广义理解,例如,“连通”可以是固定连通,也可以是可拆卸连通,或成一体;可以是直接连通,也可以通过中间媒介间接连通。
在本申请中,在说明冷却回路时,为了方便说明以“回路”或者“通路”代替实体结构中的“管路”或者能够承载冷却工质的容器;以及在对应的参考附图中,仅以带箭头的线路表示“回路”或者“通路”,而实际应用中,带箭头的线路对应相应的散热管路或者能够承载冷却工质的容器。
实施例一:
本申请实施例提供了一种动力总成的冷却系统,下面结合附图具体说明。
参见图2,该图为本申请实施例提供的一种动力总成的冷却系统的示意图。
图示动力总成包括逆变器11和电机12。
本申请实施例所述冷却系统包括冷却回路17(图中实线箭头所示回路)和冷却工质(图中未示出)。
其中,冷却回路17具体包括:第一冷却通路171和第二冷却通路172。
第一冷却通路171用于对电动汽车的逆变器11进行散热,第二冷却通路172用于对电动汽车的电机12进行散热。第一冷却通路171和第二冷却通路172连通并使用同一种冷却工质。
该冷却工质为绝缘工质,本申请实施例不具体限定冷却工质的类型,但实际应用中,由于该冷却工质需要对逆变器11进行散热,而逆变器11对工作温度的要求较高,为了确保对于逆变器11的散热效率,在一些实施例中,冷却工质可以选择低粘性阻力的绝缘工质,对于本领域技术人员而言,低粘性阻力的绝缘工质意味着其粘性阻力低于图1中的油冷回路15使用的油冷却液。而冷却工质满足要求较高的逆变器11的散热需求的同时也满足了电机12的散热需求。
本申请实施例对低粘性阻力的绝缘工质不作具体限定,例如可以采用氟化液、水机油等。下面举例进行说明:
在一种可能的实现方式中,示意出了该冷却工质的物理性质在80摄氏度如下:
动力粘度系数=1E-3~3E-3kg/m/s;导热系数=0.3~0.5W/m/K;
比热容=3000~4000J/kg/K;密度<1000kg/m3。
以上仅为一种可能的冷却工质的示例,本领域技术人员在不脱离本申请原理的前提下,在以上冷却回路中也可以采用的其它类型的冷却工质,也应视为本申请的保护范围。
该绝缘工质不包括水,本领域技术人员应当知晓的是,实际应用中使用水作为冷却工质时,水为非绝缘工质。
电子泵18用于为冷却工质在冷却回路17中的循环流动提供动力,冷却工质在冷却回路17中循环时,先由第一冷却通路171流入第二冷却通路172,即先在上游对逆变器11进行散热,然后在下游对电机12进行散热,第二冷却通路172中的冷却工质在对电机12进行热交换后回到整车热管理回路,将热量排出。
综上所述,利用本申请实施例提供的冷却系统,由于冷却系统的第一冷却通路对逆变器进行散热,第二冷却通路对电机进行散热,而第一冷却通路和第二冷却通路连通,因此取消了水冷回路和油冷回路之间的二次散热的过程,能够提升对动力总成的散热效果,与图1所示的冷却系统相比,可将电机的最高点温度相应降低5-15℃左右。此外,由于避免使用以上二次散热所需的油水换热器,还降低了冷却系统的成本。
再者,对于图1所示的冷却系统,电机12内部的油冷循环15需要电子油泵驱动循环,而对逆变器11散热的水冷循环需要与整车热管理回路串联,则需要另一个电子水泵驱动循环,两个电子泵意味着电子泵成本增加,设置电子泵占用的空间也较大。而由于本申请冷却系统的第一冷却通路和第二冷却通路连通,因此仅需要一个泵装置即可提供冷却回路的冷却工质循环所需的动力,降低了成本以及占用的空间,这也更加符合动力总成的冷却系统以及动力总成朝着小型化方向演进的需求。
发明人经研究发现,对于图1所示的冷却系统,还存在以下的缺点:
第一,对逆变器11冷却的工质是水,为导电工质,一方面需要采取水电隔离设计,难度较高,且有安全隐患。另一方面由于无法对逆变器11的芯体直接冷却,只能通过间接方式(热传导)散热,存在热阻大且散热效率低的问题,从而导致逆变器11的芯体在某些工况点有10℃以上的额外升幅。
第二,对电机12进行冷却时,油冷回路中的油冷却液采用间接方式(热传导)散热,同样存在热阻大且散热效率低的问题。
对于以上第一个缺点,本申请实施例提供的冷却回路使用的冷却工质为绝缘工质,即非导电工质,无以上的隐患,因此在一些实施例中,可以不进行隔离设计,对逆变器的芯体进行接触式冷却,提升了散热效率。
对于以上第二个缺点,在一些实施例中,本申请实施例提供的冷却回路使用的冷却工质可以为低粘性阻力的绝缘工质,因此可以通过喷淋冷却的方式直接使冷却工质与构成电机定子的电机定子硅钢片121、端部绕组122、构成电机动子的磁钢123、电机转轴124以及电机壳体125等接触,进而提升了散热效率。
以上实施例说明了冷却系统冷却逆变器和电机时的工作原理,下面说明该冷却系统冷 却电机的减速器时的工作原理。
实施例二:
参见图3,该图为本申请实施例提供的另一种动力总成的冷却系统的示意图;
图示动力总成包括逆变器11、电机12和减速器13。
减速器13的齿轮组包括第一中间轴齿轮1301、第二中间轴齿轮1302、输入轴齿轮1303和输出轴齿轮1304。
本申请实施例所述冷却系统包括:冷却回路17(图中实线箭头所示回路)、油冷循环18(图中虚线箭头所示)、和冷却工质(图中未示出)。
冷却回路17包括第一冷却通路171和第二冷却通路172,具体说明可以参见实施例一,本申请实施例在此不再赘述。
油冷循环18与冷却回路17隔离,即油冷循环18独立设置,用于为电动汽车的减速器13进行散热。
油冷循环18采用的冷却工质为油冷却液,其粘性阻力较大,还具备一定的润滑功能。
减速器13的齿轮旋转时,例如输出轴齿轮1304旋转时,能够搅动油冷却液,进而驱动油冷循环18。
减速器13与电机12之间存在轴承131以及高速油封132,用于隔离油冷循环18与冷却回路17,并防止油冷却液泄露。其中,轴承131和高速油封132设置在电机12的电机转轴124和减速器13的连接端。
综上所述,利用本申请实施例提供的动力总成的冷却系统,可以通过该冷却系统的第一冷却通路对逆变器进行散热,第二冷却通路对电机进行散热,再通过独立的油冷循环对电机的减速器进行散热。其中,由于第一冷却通路和第二冷却通路连通,因此水冷回路和油冷回路之间的二次散热的过程,能够提升对动力总成的散热效果,并且避免使用以上二次散热所需的油水换热器,还降低了冷却系统的成本。
继续参见图1,以上实施例以第一冷却通路171和第二冷却通路172直接连通为例进行说明,在另一些实施例中,可以通过改进第一冷却通路171和第二冷却通路172的连通方式以实现根据当前电动汽车工作状态调整散热能力,下面具体说明。
实施例三:
参见图4,该图为本申请实施例提供的又一种动力总成的冷却系统的示意图。
图示动力总成包括逆变器11、电机12和减速器13。
本申请实施例所述冷却系统包括:冷却回路17(图中实线箭头所示回路)、油冷循环18(图中虚线箭头所示)、和冷却工质(图中未示出)。
冷却回路17包括第一冷却通路171和第二冷却通路172。
关于冷却回路17和油冷循环18的说明可以参见以上实施例,本申请实施例在不在赘述。
图4所示冷却系统和以上实施例的区别在于,还包括了旁通阀门19和旁通流路20。
其中,旁通阀门19为可控阀门,第一冷却通路171和第二冷却通路172通过旁通阀 门19连接。
旁通阀门19具体为一个三通阀门,能够实现将旁通流路20与第二冷却通路172并联连接,即旁通流路20的一端连接旁通阀门19,另一端与第二冷却通路172的末端连接。
该旁通阀门19被控制为:在逆变器11的发热功率增大的过程中,或当逆变器11的发热功率被确定将要增大时,增大第一冷却通路中171的冷却工质流入旁通流路20中的比例。
通过增大冷却工质流入旁通流路20中的比例,使得该部分冷却工质不会流入第二冷却通路172,因而不会吸收电机12的热量而可以直接通过整车热管理回路进行散热,该部分冷却工质一方面吸收的热量减少,温度降低更快,另一方面可以更快的在此循环到达第一冷却通路中171,用于为逆变器11进行散热,即提升第一冷却通路171中的冷却工质的流量以提升对于逆变器11的散热能力。
以上的比例可以根据实际情况设定,本申请实施例不作具体限定,在一些实施例中,具体可以一并参见图5和图6所示的示意图,一般情况下旁通阀门19连通第一冷却通路171和第二冷却通路172,无冷却工质流入旁通流路20;在需要对逆变器快速降温的时刻,旁通阀门19可以被控制为使第一冷却通路171中的冷却工质全部流入旁通流路20中,进而最大程度上提升对逆变器11的散热能力。
以上对于旁通阀门19的控制可以为主动控制或者被动控制,下面具体说明。
该冷却系统还包括温度传感器21和电机控制器22。
在一些实施例中,旁通阀门19可以为电磁阀,电机控制器22能够控制旁通阀门19的工作状态。
其中,温度传感器21用于实时获取逆变器11的温度并将温度发送给电机控制器22。
当采用被动控制的方式时,电机控制器22响应于电动汽车的驾驶员的操作,控制旁通阀门19的工作状态。
当采用主动控制的方式时,电机控制器22可以根据预先设置的逆变器温度与旁通阀门的工作状态的对应关系主动控制旁通阀门19的工作状态。例如在一些实施例中,电机控制器22当逆变器11的温度高于预设阈值时,控制旁通阀门19的工作状态以使第一冷却通路171中的冷却工质全部流入旁通流路20中,进而最大程度上提升对逆变器11的散热能力。
在一些实施例中,该电机控制器22可以为专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)、数字信号处理器(Digital Signal Processor,DSP)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程逻辑门阵列(Field-programmable Gate Array,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合,本申请实施例不作具体限定。
综上所述,本申请实施例提供的冷却系统,通过旁通阀门连通冷却回路的第一冷却通路和第二冷却通路,并且使旁通流路与第二冷却通路并联连接,然后通过控制旁通阀门的工作状态以控制第一冷却通路中的冷却工质流入旁通流路中的比例,对于电动汽车的动力 总成而言,逆变器对工作温度的要求较高,通过以上控制冷却工质流量比例的方式,能够提升对于逆变器的散热能力,快速降低逆变器的温度。
以上实施例均以动力总成的冷却系统与整车热管理回路连通为例进行说明,但在一些实施例中,动力总成的冷却系统与整车热管理回路也可以互相独立,下面结合附图具体说明。
实施例四:
参见图7,该图为本申请实施例提供的再一种动力总成的冷却系统的示意图。
图示动力总成与以上实施例的区别在于:冷却系统与整车热管理回路不连通,而是通过一个换热器21进行热交换,将热量传递至整车热管理回路22,下面具体说明。
该冷却系统的换热器21包括第一换热通路(换热器内部虚线)和第二换热通路(换热器内部实线),所述第一换热通路的输入端与第二冷却通路172连接,第一换热通路的输出端与第一冷却通路171连接,第二换热通路与电动汽车的整车热管理回路连接。在一些实施例中,换热器的两个换热通路中使用的冷却工质种类不同。
第一换热通路和第二换热通路不连通但充分接触,第二换热通路中的冷却工质吸收第一换热通路中的冷却工质的热量后通过整车热管理回路22进行散热。
此时,电子泵18A提供冷却回路的冷却工质循环所需的动力,电子泵18B提供整车热管理回路22内冷却工质循环所需的动力。
综上所述,整车热管理回路与本申请实施例提供的动力总成的冷却系统不连通,两者之间通过换热器进行换热,由整车热管理回路吸收冷却系统的热量后通过散热器23释放到外界环境。因此以上实施例适用于需要将动力总成的冷却系统和整车热管理回路独立设计的场景,并且由于冷却系统的第一冷却通路和第二冷却通路连通,因此不需要通过油水换热器进行水冷回路和油冷回路之间的二次换热,减少了使用的油水换热器的数量,还能够提升对动力总成的散热效果。
实施例五:
本申请实施例还提供了一种动力总成的冷却方法,应用于对电动汽车的动力总成进行冷却,下面结合附图具体说明。
参见图8,该图为本申请实施例提供的一种动力总成的冷却方法的示意图。
该方法包括以下步骤:
S801:利用第一冷却通路对电动汽车的逆变器进行散热,利用第二冷却通路对电动汽车的电机进行散热,第一冷却通路和第二冷却通路连通以形成冷却回路。
S802:控制冷却工质由第一冷却通路流入第二冷却通路,冷却工质为绝缘工质。
本申请实施例采用的以上方法取消了水冷回路和油冷回路之间的二次散热的过程,因此不需要通过油水换热器进行水冷回路和油冷回路之间的二次换热,能够提升对动力总成的散热效果。
可选的,第一冷却通路和第二冷却通路可以通过旁通阀门连接,该旁通阀门为可控阀 门,冷却回路的旁通流路与第二冷却通路并联连接,该方法还包括:
在逆变器的发热功率增大的过程中,或,当逆变器的发热功率被确定将要增大时,控制旁通阀门以增大第一冷却通路中的冷却工质流入旁通流路中的比例。
因此使得部分冷却工质不会流入第二冷却通路,进而不会吸收电机的热量而可以直接通过整车热管理回路进行散热,该部分冷却工质一方面吸收的热量减少,温度降低更快,另一方面可以更快的在此循环到达第一冷却通路中,用于为逆变器进行散热,即提升第一冷却通路中的冷却工质的流量以提升对于逆变器的散热能力。
进一步的,在一些实施例中,还可以获取逆变器的温度,并且当逆变器的温度高于预设阈值时,控制旁通阀门的工作状态以使第一冷却通路中的冷却工质全部流入旁通流路中,进而最大程度上提升对逆变器的散热能力,实现对逆变器的快速散热。
可选的,在一些实施例中,为了实现对电机的减速器的冷却,可以利用油冷循环为电动汽车的减速器进行散热,油冷循环的冷却工质为油冷却液,油冷循环与所述冷却回路隔离。
可选的,为了实现油冷循环与冷却回路的隔离,可以在电机的电机转轴和减速器的连接端设置轴承和高速油封。
可选的,在一些实施例中,动力总成的冷却系统与整车热管理回路需要实现互相独立,此时可以利用换热器实现整车热管理回路和冷却回路之间的热交换,即由整车热管理回路利用换热器吸收冷却系统的热量后通过散热器释放到外界环境。
可选的,由于本申请实施例中采用的冷却工质为绝缘工质,因此与逆变器的芯体之间可以不进行隔离设计,而利用冷却工质对逆变器的芯体进行接触式冷却,提升对逆变器的散热效率。
可选的,还可以利用冷却工质对电机进行接触式喷淋冷却,即通过喷淋冷却的方式直接使冷却工质与构成电机定子的电机定子硅钢片、端部绕组、构成电机动子的磁钢、电机转轴以及电机壳体等接触,进而提升了对电机的散热效率。
可选的,还可以利用泵装置为冷却回路的冷却工质提供循环所需的动力。由于第一冷却通路和第二冷却通路连通,因此仅需要一个泵装置即可提供冷却回路的冷却工质循环所需的动力,降低了成本以及占用的空间,这也更加符合动力总成的冷却系统以及动力总成朝着小型化方向演进的需求。
实施例六:
基于上述实施例提供的动力总成的冷却系统,本申请实施例还提供了一种应用该冷却系统的动力总成,下面结合附图具体说明。
参见图9,该图为本申请实施例提供的一种动力总成的示意图。
本申请实施例提供的动力总成200包括:冷却系统10、逆变器11、电机12和减速器13。
逆变器11用于将直流电转换为交流电并传输至电机12,器件由于转换效率带来的能量损失会转换成热量。
电机12将交流电转换为电机转动的机械能,这个过程由于转换效率的原因也会产生热量。
减速器13对电机12的电机转轴的输出转速进行转换,将电机的高转速调低,此部分转换产生的损耗同样转换为热量。
冷却系统10用于为逆变器11、电机12和减速器13进行散热,即用于及时将以上产生的热量,关于冷却系统10的说明可以参见以上实施例,本申请实施例在此不再赘述。
综上所述,本申请提供的动力总成包括了冷却系统,该冷却系统的冷却回路包括连通的第一冷却通路和第二冷却通路,第一冷却通路用于对电动汽车的逆变器进行散热,第二冷却通路用于对电动汽车的电机进行散热。而第一冷却通路和第二冷却通路连通,整个冷却系统采用的冷却工质为绝缘工质,并且冷却工质在冷却回路中循环时,先由第一冷却通路流入第二冷却通路,即冷却工质先在上游冷却逆变器,这是因为逆变器对工作温度的要求较电机而言更加严格,先冷却逆变器可以快速吸收更多的热量,然后在下游冷却电机。因此不需要通过油水换热器进行水冷回路和油冷回路之间的二次换热,能够提升对动力总成的散热效果。
此外,对于冷却回路仅需要一个泵装置即可提供冷却回路的冷却工质循环所需的动力,降低了成本以及占用的空间,这也更加符合动力总成的冷却系统以及动力总成朝着小型化方向演进的需求。
并且由于使用的冷却工质为绝缘工质,不需要对冷却工质和逆变器进行隔离设计,可以对逆变器的芯体进行接触式冷却,提升了对逆变器的散热效率。还可以采用喷淋冷却的方式直接使冷却工质与构成电机定子的电机定子硅钢片、端部绕组、构成电机动子的磁钢、电机转轴以及电机壳体等接触,进而提升了对电机的散热效率。
实施例七
基于上述实施例提供的动力总成,本申请实施例还提供了一种应用该动力总成的电动汽车,下面结合附图具体说明。
参见图10,该图为本申请实施例提供的一种电动汽车的示意图。
本申请实施例提供的电动汽车300包括:动力电池组100和动力总成200。
其中,动力总成200可以参见图8所示,其包括以上实施例所述的动力总成的冷却系统,关于该冷却系统的说明可以参见以上实施例,本申请实施例在此不再赘述。
动力电池组100由于为动力总成200的逆变器提供直流电。
综上所述,该电动汽车包括了所述的动力总成的冷却系统,该冷却系统冷却回路包括连通的第一冷却通路和第二冷却通路,第一冷却通路用于对电动汽车的逆变器进行散热,第二冷却通路用于对电动汽车的电机进行散热。而第一冷却通路和第二冷却通路连通,整个冷却系统采用的冷却工质为绝缘工质,并且冷却工质在冷却回路中循环时,先由第一冷却通路流入第二冷却通路,即冷却工质先在上游冷却逆变器,这是因为逆变器对工作温度的要求较电机而言更加严格,先冷却逆变器可以快速吸收更多的热量,然后在下游冷却电机。因此不需要通过油水换热器进行水冷回路和油冷回路之间的二次换热,能够提升对动 力总成的散热效果,还能够降低电动汽车的成本。
在一些实施例中,对于冷却回路由于仅需要一个泵装置即可提供冷却回路的冷却工质循环所需的动力,因此进一步降低了电动汽车的成本。
并且由于使用的冷却工质为绝缘工质,不需要对冷却工质和逆变器进行隔离设计,可以对逆变器的芯体进行接触式冷却,提升了对逆变器的散热效率,简化了设计难度,同时不存在图1采用水冷回路时的安全隐患,提升了电动汽车的安全性能。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元及模块可以是或者也可以不是物理上分开的。另外,还可以根据实际的需要选择其中的部分或者全部单元和模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (20)

  1. 一种动力总成的冷却系统,其特征在于,应用于电动汽车,包括:冷却回路和冷却工质;
    所述冷却回路包括连通的第一冷却通路和第二冷却通路,所述第一冷却通路用于对电动汽车的逆变器进行散热,所述第二冷却通路用于对所述电动汽车的电机进行散热;
    所述冷却工质为绝缘工质,所述冷却工质由所述第一冷却通路流入所述第二冷却通路。
  2. 根据权利要求1所述的冷却系统,其特征在于,所述冷却系统还包括旁通阀门和旁通流路;
    所述旁通阀门为可控阀门,所述第一冷却通路和第二冷却通路通过所述旁通阀门连接;
    所述旁通流路与所述第二冷却通路并联连接;
    所述旁通阀门用于在所述逆变器的发热功率增大的过程中,或,当所述逆变器的发热功率被确定将要增大时,增大所述第一冷却通路中的冷却工质流入所述旁通流路中的比例。
  3. 根据权利要求2所述的冷却系统,其特征在于,所述旁通阀门为电磁阀,所述冷却系统还包括:温度传感器与电机控制器;
    所述温度传感器用于获取所述逆变器的温度并发送给所述电机控制器;
    所述电机控制器用于当所述逆变器的温度高于预设阈值时,控制所述旁通阀门的工作状态以使所述第一冷却通路中的冷却工质全部流入所述旁通流路中。
  4. 根据权利要求1所述的冷却系统,其特征在于,所述冷却系统还包括:油冷循环;
    所述冷却回路与所述油冷循环隔离;
    所述油冷循环的冷却工质为油冷却液,所述油冷循环用于为所述电动汽车的减速器进行散热。
  5. 根据权利要求4所述的冷却系统,其特征在于,还包括轴承和高速油封;
    所述轴承和高速油封设置在所述电机的电机转轴和所述减速器的连接端。
  6. 根据权利要求1所述的冷却系统,其特征在于,还包括:换热器;
    所述换热器包括第一换热通路和第二换热通路,所述第一换热通路的输入端与所述第二冷却通路连接,所述第一换热通路的输出端与所述第一冷却通路连接,所述第二换热通路与所述电动汽车的整车热管理回路连接;
    所述第二换热通路中的冷却工质吸收所述第一换热通路中的冷却工质的热量后通过所述整车热管理回路进行散热。
  7. 根据权利要求1-6中任意一项所述的冷却系统,其特征在于,所述冷却工质对所述电机进行接触式喷淋冷却。
  8. 根据权利要求1-6中任意一项所述的冷却系统,其特征在于,所述冷却工质对所述逆变器的芯体进行接触式冷却。
  9. 根据权利要求1-6中任意一项所述的冷却系统,其特征在于,还包括泵装置,所述泵装置为所述冷却回路的冷却工质提供循环所需的动力。
  10. 一种动力总成的冷却方法,其特征在于,应用于电动汽车,包括:
    利用第一冷却通路对电动汽车的逆变器进行散热,利用第二冷却通路对所述电动汽车 的电机进行散热,所述第一冷却通路和所述第二冷却通路连通以形成冷却回路;
    控制所述冷却工质由所述第一冷却通路流入所述第二冷却通路,所述冷却工质为绝缘工质。
  11. 根据权利要求10所述的冷却方法,其特征在于,所述方法还包括:
    在所述逆变器的发热功率增大的过程中,或,当所述逆变器的发热功率被确定将要增大时,控制旁通阀门以增大所述第一冷却通路中的冷却工质流入旁通流路中的比例,所述第一冷却通路和所述第二冷却通路通过所述旁通阀门连接,所述旁通流路与所述第二冷却通路并联连接。
  12. 根据权利要求11所述的冷却方法,其特征在于,所述方法还包括:
    获取所述逆变器的温度;
    当所述逆变器的温度高于预设阈值时,控制所述旁通阀门的工作状态以使所述第一冷却通路中的冷却工质全部流入所述旁通流路中。
  13. 根据权利要求10所述的冷却方法,其特征在于,所述方法还包括:
    利用油冷循环为所述电动汽车的减速器进行散热,所述油冷循环的冷却工质为油冷却液,所述油冷循环与所述冷却回路隔离。
  14. 根据权利要求13所述的冷却方法,其特征在于,所述方法还包括:
    在所述电机的电机转轴和所述减速器的连接端设置轴承和高速油封。
  15. 根据权利要求10所述的冷却方法,其特征在于,所述方法还包括:
    利用换热器实现整车热管理回路和所述冷却回路之间的热交换。
  16. 根据权利要求10-15中任意一项所述的冷却方法,其特征在于,所述方法还包括:
    利用所述冷却工质对所述电机进行接触式喷淋冷却。
  17. 根据权利要求10-15中任意一项所述的冷却方法,其特征在于,所述方法还包括:
    利用所述冷却工质对所述逆变器的芯体进行接触式冷却。
  18. 根据权利要求10-15中任意一项所述的冷却方法,其特征在于,所述方法还包括:
    利用泵装置为所述冷却回路的冷却工质提供循环所需的动力。
  19. 一种动力总成,其特征在于,包括:权利要求1-9中任意一项所述的动力总成的冷却系统、逆变器、电机以及减速器;
    所述逆变器,用于将直流电转换为交流电后传输至所述电机;
    所述电机,用于将所述交流电转换为机械能以驱动电动汽车行驶;
    所述减速器,用于对所述电机的电机转轴的输出转速进行转换。
  20. 一种电动汽车,其特征在于,包括:权利要求19所述的动力总成和动力电池组,所述动力电池组用于为所述逆变器提供所述直流电。
PCT/CN2021/105186 2020-07-08 2021-07-08 一种动力总成的冷却系统、方法、动力总成及电动汽车 WO2022007884A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022580547A JP2023532503A (ja) 2020-07-08 2021-07-08 パワートレイン冷却システム及び方法、パワートレイン、並びに電気自動車
EP21837956.8A EP4140788A4 (en) 2020-07-08 2021-07-08 POWERTRAIN COOLING SYSTEM AND METHOD, POWERTRAIN AND ELECTRIC VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010652837.XA CN111959252A (zh) 2020-07-08 2020-07-08 一种动力总成的冷却系统、方法、动力总成及电动汽车
CN202010652837.X 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022007884A1 true WO2022007884A1 (zh) 2022-01-13

Family

ID=73361878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105186 WO2022007884A1 (zh) 2020-07-08 2021-07-08 一种动力总成的冷却系统、方法、动力总成及电动汽车

Country Status (4)

Country Link
EP (1) EP4140788A4 (zh)
JP (1) JP2023532503A (zh)
CN (1) CN111959252A (zh)
WO (1) WO2022007884A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193846A1 (de) * 2022-04-07 2023-10-12 Schaeffler Technologies AG & Co. KG Kühlungseinrichtung und antriebsanordnung
DE102022210957A1 (de) 2022-10-17 2024-04-18 Vitesco Technologies GmbH Temperiereinrichtung für ein Kraftfahrzeug

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111959252A (zh) * 2020-07-08 2020-11-20 华为技术有限公司 一种动力总成的冷却系统、方法、动力总成及电动汽车
WO2022109808A1 (zh) * 2020-11-24 2022-06-02 华为数字能源技术有限公司 一种电机控制器、热交换系统及电流注入方法
CN114374294A (zh) * 2021-06-22 2022-04-19 华为数字能源技术有限公司 一种动力总成及电动车辆
DE102021125659A1 (de) 2021-10-04 2023-04-06 Bayerische Motoren Werke Aktiengesellschaft Kühlungsanordnungen für eine elektromotorische Antriebseinheit bzw. deren Komponenten
CN114204752A (zh) * 2021-11-10 2022-03-18 华为数字能源技术有限公司 一种油温控制方法、控制器、动力总成及电动汽车
EP4297251A1 (en) * 2022-06-21 2023-12-27 Valeo eAutomotive Germany GmbH Electric drive unit with improved cooling concept
CN115489289A (zh) * 2022-08-31 2022-12-20 华为数字能源技术有限公司 一种动力总成及机械设备
DE102022125586A1 (de) * 2022-10-05 2024-04-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlsystem für eine elektrische Traktionsmaschine für ein Kraftfahrzeug

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079614A (ja) * 2011-10-04 2013-05-02 Denso Corp ハイブリッド過給車用冷却装置
CN203372029U (zh) * 2012-07-02 2014-01-01 福特环球技术公司 电动车用加热和冷却循环系统
CN208035924U (zh) * 2018-02-02 2018-11-02 株洲齿轮有限责任公司 动力驱动总成及纯电动汽车
WO2019182622A1 (en) * 2018-03-23 2019-09-26 Sf Motors, Inc. Dual loop liquid cooling of integrated electric drivetrain
WO2019238343A1 (de) * 2018-06-12 2019-12-19 Bayerische Motoren Werke Aktiengesellschaft Elektrische antriebseinheit für ein kraftfahrzeug sowie kraftfahrzeug
CN209860741U (zh) * 2019-04-15 2019-12-27 比亚迪股份有限公司 电机总成及车辆
CN110770070A (zh) * 2017-07-24 2020-02-07 株式会社电装 冷却水回路
CN111959252A (zh) * 2020-07-08 2020-11-20 华为技术有限公司 一种动力总成的冷却系统、方法、动力总成及电动汽车

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210304B2 (en) * 2005-02-09 2007-05-01 General Motors Corporation Cooling arrangements for integrated electric motor-inverters
CN202405952U (zh) * 2011-11-29 2012-08-29 上海海光电机有限公司 设有冷却系统的电机
CN103683673B (zh) * 2013-11-13 2016-08-17 华南理工大学 一种直接喷淋式电机冷却系统
CN103825404B (zh) * 2014-03-25 2016-07-06 北汽大洋电机科技有限公司 电机与变速器集成冷却系统
JP6332120B2 (ja) * 2015-04-10 2018-05-30 トヨタ自動車株式会社 燃料電池システム及びその制御方法
CN106379184A (zh) * 2016-09-12 2017-02-08 奇瑞汽车股份有限公司 一种纯电动汽车冷却系统
JP7156265B2 (ja) * 2017-03-03 2022-10-19 日本電産トーソク株式会社 ポンプ装置
US10407048B1 (en) * 2018-03-12 2019-09-10 Ford Global Technologies, Llc Hybrid vehicle motor cooling
DE102018121203A1 (de) * 2018-08-30 2020-03-05 Thyssenkrupp Ag Kühlvorrichtung, Motorgehäuse und Motoreinheit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079614A (ja) * 2011-10-04 2013-05-02 Denso Corp ハイブリッド過給車用冷却装置
CN203372029U (zh) * 2012-07-02 2014-01-01 福特环球技术公司 电动车用加热和冷却循环系统
CN110770070A (zh) * 2017-07-24 2020-02-07 株式会社电装 冷却水回路
CN208035924U (zh) * 2018-02-02 2018-11-02 株洲齿轮有限责任公司 动力驱动总成及纯电动汽车
WO2019182622A1 (en) * 2018-03-23 2019-09-26 Sf Motors, Inc. Dual loop liquid cooling of integrated electric drivetrain
WO2019238343A1 (de) * 2018-06-12 2019-12-19 Bayerische Motoren Werke Aktiengesellschaft Elektrische antriebseinheit für ein kraftfahrzeug sowie kraftfahrzeug
CN209860741U (zh) * 2019-04-15 2019-12-27 比亚迪股份有限公司 电机总成及车辆
CN111959252A (zh) * 2020-07-08 2020-11-20 华为技术有限公司 一种动力总成的冷却系统、方法、动力总成及电动汽车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193846A1 (de) * 2022-04-07 2023-10-12 Schaeffler Technologies AG & Co. KG Kühlungseinrichtung und antriebsanordnung
DE102022210957A1 (de) 2022-10-17 2024-04-18 Vitesco Technologies GmbH Temperiereinrichtung für ein Kraftfahrzeug

Also Published As

Publication number Publication date
JP2023532503A (ja) 2023-07-28
EP4140788A1 (en) 2023-03-01
CN111959252A (zh) 2020-11-20
EP4140788A4 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
WO2022007884A1 (zh) 一种动力总成的冷却系统、方法、动力总成及电动汽车
RU2652469C1 (ru) Система охлаждения транспортного средства
US10287964B2 (en) Vehicular cooling system
WO2022057207A1 (zh) 电驱动系统的混合冷却系统及车辆
CN208842205U (zh) 一种用于新能源汽车的动力冷却系统
US10933725B2 (en) Electrical axle drive for a vehicle
US20120080983A1 (en) Stator with cooling system and associated motor
CN113227546B (zh) 车辆热交换系统
CN108859731A (zh) 带有集成式轮内冷却的无线轮内电动组件及结合有该组件的车辆
US10177624B2 (en) Electric machine having a first circuit and a second circuit, method for cooling an electric machine and motor vehicle having an electric machine
WO2022178868A1 (zh) 动力总成及电动车
CN108141110A (zh) 驱动单元和具有冷却器的机组
WO2024045664A1 (zh) 一种动力总成及机械设备
Yang et al. Design and analysis of cycling oil cooling in driving motors for electric vehicle application
CN208226748U (zh) 外接复合式水冷磁力耦合器散热器
CN106014882A (zh) 一种风电机组的冷却方法及冷却系统
WO2024050792A1 (zh) 动力装置、推进器及水域可移动设备
CN219673913U (zh) 用于车辆电驱系统的热交换系统、车辆电驱系统及车辆
Vetrovec High-performance heat sink for interfacing hybrid electric vehicles inverters to engine coolant loop
CN117677157A (zh) 冷却系统和汽车
WO2023060974A1 (zh) 一种可移动设备的散热系统及可移动设备
CN2671863Y (zh) 油冷式电动车辆用驱动电机
CN112583220B (zh) 一种双轴电机
CN211710611U (zh) 一种增程式车辆的热管理系统及增程式车辆
CN211376877U (zh) 用于储能充电桩的液体管路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021837956

Country of ref document: EP

Effective date: 20221125

ENP Entry into the national phase

Ref document number: 2022580547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE