WO2023060974A1 - 一种可移动设备的散热系统及可移动设备 - Google Patents

一种可移动设备的散热系统及可移动设备 Download PDF

Info

Publication number
WO2023060974A1
WO2023060974A1 PCT/CN2022/106790 CN2022106790W WO2023060974A1 WO 2023060974 A1 WO2023060974 A1 WO 2023060974A1 CN 2022106790 W CN2022106790 W CN 2022106790W WO 2023060974 A1 WO2023060974 A1 WO 2023060974A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
mobile device
circuit module
heat exchanger
heat
Prior art date
Application number
PCT/CN2022/106790
Other languages
English (en)
French (fr)
Inventor
彭耀锋
李泉明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023060974A1 publication Critical patent/WO2023060974A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the technical field of heat dissipation, and in particular to a heat dissipation system of a mobile device and the mobile device.
  • Electric vehicles have become a research hotspot in the automotive industry due to their low pollution, low noise, and high energy efficiency.
  • Electric vehicles are equipped with many high-power circuit modules, such as automatic driving modules, electronic control units (electronic control unit, ECU), etc. These circuit modules will generate a lot of heat when they work. In order to ensure that the performance of the circuit modules is not affected, it is necessary to Dissipate the heat in time.
  • a heat dissipation method for high-power circuit modules is to use a cold plate and a water-cooled radiator to dissipate heat.
  • the components of the cold plate and the circuit module can be in contact with each other through gel.
  • the water-cooled radiator is set on the cold plate away from the circuit.
  • the heat generated by the circuit module is transferred to the cold plate through the gel, and then transferred to the water-cooled radiator by the cold plate to dissipate.
  • the structure of the cold plate is relatively complicated, and glue needs to be dispensed separately for different components of the circuit module, resulting in high processing costs.
  • the cold plate can only realize heat conduction contact with some components on the circuit module, resulting in difficulty in heat dissipation for other components that are not in contact with it.
  • the present application provides a heat dissipation system for a mobile device and the mobile device, which are used to improve the heat dissipation performance of a circuit module of the mobile device and reduce heat dissipation costs.
  • the present application provides a mobile device, which may include a circuit module, a first heat exchanger, and a first circulation pump.
  • the circuit module may include a casing and a circuit board assembly, the casing is provided with a liquid inlet and a liquid outlet, and the circuit board assembly may be arranged in the casing.
  • the first heat exchanger may include a first port and a second port, and the first port may be connected with the liquid inlet of the circuit module.
  • the inlet of the first circulation pump can be connected with the liquid outlet of the circuit module, and the outlet of the first circulation pump can be connected with the second port of the first heat exchanger.
  • the first circulation pump, the first heat exchanger, and the circuit module can be connected to form a first circulation loop. Cooling oil is provided in the first circulation loop, and the circuit board assembly can be immersed in the cooling oil of the casing.
  • the cooling oil absorbs the heat generated by the circuit board assembly in the circuit module and then circulates to the first heat exchanger, and in the first heat exchanger After heat exchange and cooling down, return to the circuit module again to dissipate heat from the circuit board components to complete a cycle. Since the circuit board assembly can be submerged in the cooling oil, the cooling oil can dissipate heat for all the heating components on the circuit board assembly. Compared with the heat dissipation method of the water-cooled radiator, it can not only improve the heat dissipation performance of the circuit module, but also Reduce cooling costs.
  • the foregoing mobile device may specifically be a vehicle, a ship, or an airplane, and the like.
  • the movable equipment may also include a transmission system, which has a first heat dissipation passage, and the first heat dissipation passage can be connected to the first circulation loop, so that the heat generated during the operation of the transmission system is also
  • the circulating cooling oil can be brought into the first heat exchanger and dissipated, that is to say, the circuit module and the transmission system can share the same heat exchanger to realize heat dissipation, which is beneficial to simplify the heat dissipation structure of the vehicle.
  • the first heat dissipation passage can be connected between the liquid outlet of the circuit module and the inlet of the first circulation pump, so that the heat dissipation of the transmission system can be realized, and the impact on the circuit module can be reduced. adverse effects.
  • the first heat exchanger may include a first flow channel and a second flow channel, the first flow channel and the second flow channel are isolated from each other and can perform heat exchange, and the above-mentioned first port and the second port may specifically be are the two ports of the first runner.
  • the mobile device may further include a second circulation pump and a second heat exchanger, and the second circulation pump, the second heat exchanger, and the second flow path of the first heat exchanger may be connected in sequence to form a second circulation loop.
  • the high-temperature cooling oil in the first flow channel can exchange heat with the refrigerant in the second flow channel to achieve cooling, and the refrigerant in the second flow channel circulates to the second heat exchanger after absorbing the heat of the cooling oil in the first flow channel , return to the second flow passage again after heat exchange and cooling in the second heat exchanger, so as to continuously dissipate heat from the cooling oil in the first flow passage.
  • the refrigerant in the second circulation loop may specifically be cooling water
  • the second heat exchanger may be an air-cooled heat exchanger
  • the mobile device may also include a power system
  • the power system may have a second heat dissipation path
  • the second heat dissipation path may be connected to the second circulation loop, so that the heat generated by the power system can also be
  • the circulating refrigerant is brought into the second heat exchanger and dissipated, that is, the second flow channel and the power system can share the same heat exchanger to realize heat dissipation, which is beneficial to simplify the heat dissipation structure of the vehicle.
  • the operating temperature of the power system is also relatively high. If the second cooling channel of the power system is placed upstream of the second flow channel, the refrigerant entering the second flow channel will be too high, which will affect the effect of the second flow channel on the first flow channel. The heat dissipation effect will adversely affect the components of the circuit module. Based on this, in specific setting, the second heat dissipation passage can be connected between the second flow channel and the second circulation pump, so that the adverse effect on the circuit module can be reduced on the premise of realizing heat dissipation to the power system.
  • the mobile device may also include a battery, and the battery may have a third heat dissipation path, and the third heat dissipation path may be connected to the second circulation loop, so that the heat generated by the battery during operation may also be circulated.
  • the refrigerant is brought into the second heat exchanger to dissipate, and the second flow channel and the battery can share the second heat exchanger to realize heat dissipation, which is beneficial to simplify the heat dissipation structure of the vehicle.
  • the third heat dissipation passage can be connected between the second flow channel and the second circulation pump, so that the bad influence on the circuit module can be reduced under the premise of achieving heat dissipation to the battery.
  • the first heat exchanger can also be an air-cooled heat exchanger. At this time, there is no need to set up a second circulation loop, and the heat dissipation of the cooling oil can be realized by utilizing the characteristics of the air-cooled heat exchanger. Therefore, it is beneficial to simplify the heat dissipation structure of the mobile device.
  • the circuit board assembly may include a main board and a pinch plate, the pinch plate may be disposed on one side of the main board, the pinch plate and the main board may be spaced apart, and the pinch plate may cover some components on the main board. Since the circuit board assembly can be submerged in the cooling oil, all heating components on the main board and the sub-board, including some components covered by the sub-board, can dissipate heat, thereby improving the heat dissipation effect on the circuit module.
  • the circuit module may be a computing module of the mobile device, or the circuit module may also be an electronic control unit of the mobile device.
  • the present application also provides a circuit module that can be installed on a mobile device, including a housing and a circuit board assembly disposed in the housing, and the housing can be provided with a liquid inlet and a liquid outlet mouth.
  • the circuit module can be connected to the heat dissipation system of the mobile device.
  • the liquid inlet can be connected to the first port of the first heat exchanger of the heat dissipation system
  • the liquid outlet can be connected to the inlet of the first circulation pump of the heat dissipation system.
  • the outlet of the first circulation pump can be connected to the second port of the first heat exchanger, so that the first circulation pump, the first heat exchanger and the circuit module can be connected to form a first circulation loop, and the first circulation loop Cooling oil is provided, and the circuit board assembly can be submerged in the cooling oil of the casing.
  • the cooling oil can dissipate heat for all the heating components on the circuit board assembly. Compared with the heat dissipation method of the water-cooled radiator, it can not only improve the heat dissipation of the circuit module performance and reduce cooling costs.
  • the present application also provides a mobile device, which may include the heat dissipation system in any possible implementation of the foregoing first aspect.
  • the mobile device may specifically be a vehicle, a ship, or an airplane.
  • the circuit board assembly of the circuit module of the movable device can be immersed in the cooling oil to realize heat dissipation, and the heat dissipation effect is better, so the reliability of the movable device is also improved.
  • FIG. 1 is a schematic structural diagram of a mobile device provided in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a partial structure of a circuit module provided in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a possible heat dissipation circuit for a circuit module
  • FIG. 4 is a schematic structural diagram of a heat dissipation circuit of a mobile device provided in an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of another heat dissipation circuit of a mobile device provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another heat dissipation circuit of a mobile device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another heat dissipation circuit of a mobile device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another heat dissipation circuit of a mobile device provided by an embodiment of the present application.
  • 510-circuit board assembly 511-main board; 512-gusset; 5111, 5121-electronic components; 5112-interface;
  • FIG. 1 is a schematic structural diagram of a mobile device provided in an embodiment of the present application.
  • the mobile device 1 may be a vehicle, a ship, or an airplane, or other forms of equipment with a carrying function, which is not limited in the present application.
  • the mobile device 1 in the embodiment shown in FIG. 1 is described by taking a vehicle as an example. It should be noted that the reference numbers of the vehicles below are the same as those of the mobile equipment.
  • the vehicle 1 may include a power system 100, a transmission system 200, and wheels 300.
  • the power system 100 may be connected to the wheels 300 through the transmission system 200, so as to provide driving force to the wheels 300 through the conventional system 200 to drive the vehicle.
  • the vehicle 1 can be a fuel vehicle.
  • the power system 100 can be specifically an engine, and the transmission system 200 can include components such as a speed reducer, a transmission, and a transmission shaft.
  • the driving force output by the engine can be transmitted to the speed reducer. After being decelerated and torque-increased by the reducer, it is transmitted to the transmission, and then the transmission is shifted according to the gear position of the vehicle 1 and then output to the wheels 300 through the drive shaft to drive the vehicle 1 to travel.
  • FIG. 1 and the related drawings below only schematically show some components included in the mobile device 1, and the actual shape, actual size, actual position and actual structure of these parts are not affected by FIG. 1 and the following accompanying drawings. Figure limited.
  • the vehicle 1 can also be an electric vehicle.
  • the power system 100 can specifically be a motor
  • the transmission system 200 can include components such as a reducer and a transmission shaft.
  • the driving force output by the motor can be transmitted to the reducer. After being decelerated and increased by the speed reducer, the torque is output to the wheels 300 to drive the vehicle 1 to travel.
  • the vehicle 1 may also include a battery 400, which may be used as a power source of the vehicle 1 to provide electric energy for the motor, so that the electric motor converts electric energy into driving force for output.
  • the vehicle 1 is usually provided with a high-power circuit module such as an ECU.
  • the ECU can be used to monitor various driving information of the vehicle 1 to judge the driving state of the vehicle 1 and the intention of the driver, and control the vehicle 1 through related actuators.
  • some computing modules provided on the vehicle 1 such as the automatic driving module, also belong to high-power circuit modules.
  • the automatic driving module can be used to plan the driving path of the vehicle, collect and process the data collected by various sensors, generate real-time perception results, and make specific behavioral decisions.
  • the vehicle 1 can be controlled to change lanes, overtake or brake according to other vehicles, pedestrians, obstacles, etc. on the road, as well as traffic rule information.
  • FIG. 2 is a schematic diagram of a partial structure of a circuit module provided by an embodiment of the present application.
  • the circuit module 500 may include a housing (not shown in the figure) and a circuit board assembly 510 accommodated in the housing.
  • the circuit board assembly 510 may include a main board 511, a plurality of electronic components 5111 and various interfaces 5112 arranged on the main board 511, and these interfaces 5112 may be used to connect with various sensors provided on the vehicle, so as to connect the detection of the sensors The data is transmitted to the main board 511.
  • the circuit board assembly 510 may further include a pinch board 512, which is arranged on one side of the main board 511 with an interval therebetween.
  • a plurality of electronic components 5121 may also be arranged on the pinch plate 512.
  • the electronic components 5121 set on the pinch plate 512 may include power supply, artificial intelligence (AI) Chips, lidar, millimeter wave radar, ultrasonic sensors, etc.
  • the main board 511 and the daughter board 512 can be electrically connected through a connector, so as to realize data transmission between the electronic components 5121 on the daughter board 512 and the electronic components 5111 on the main board 511 .
  • the area on the main board 511 opposite to the pinch plate 512 can also be used to set the electronic components 5111, that is, when the pinch plate 512 is arranged on the main board 511, it will Part of the electronic components 5111 on the main board 511 forms a cover.
  • the high-power circuit module 500 will generate a lot of heat when it is working. If it cannot be dissipated in time, the heat will continue to accumulate in the circuit module 500, which will have adverse effects on various components on the circuit module 500. Poor heat dissipation over time may even cause damage to components, affecting the normal operation of the circuit module 500 .
  • FIG. 3 is a schematic structural diagram of a possible heat dissipation circuit for a circuit module.
  • the heat dissipation circuit includes a water pump 610 , a heat exchanger 620 and a water cooling radiator 630 connected in sequence, wherein the water cooling radiator 630 is arranged at the circuit module 500 and is in thermal contact with the circuit module 500 through the cold plate 640 .
  • the water pump 610 drives the cooling water to circulate in the heat dissipation circuit.
  • the cooling water enters the water-cooled radiator 630 and exchanges heat with the circuit module 500. To achieve cooling, the cooling water after cooling enters the water-cooling radiator 630 again to complete a cycle.
  • the disadvantage of this heat dissipation method is that many boss structures need to be provided on the cold plate 640 corresponding to the components of the circuit module 500, and each boss structure is in contact with the corresponding components through gel heat conduction, which causes the cold plate
  • the structure of the 640 is too complicated, and the dispensing process is relatively cumbersome, which increases the manufacturing and installation costs of the cold plate 640 .
  • the cold plate 640 cannot be in thermal contact with all the components on the circuit module 500. plate 640, so that the problem of heat dissipation of these components that are not in contact with the cold plate 640 still exists.
  • the mobile device provided by this application adopts an oil-cooled heat dissipation method for the high-power circuit module 500.
  • an oil-cooled heat dissipation method for the high-power circuit module 500 By immersing the circuit module 500 in cooling oil, effective heat dissipation for all components on the circuit module 500 is realized, not only The heat dissipation performance of the circuit module 500 can be improved, and the heat dissipation cost of the circuit module 500 can be reduced because the cold plate 640 and the high-cost water-cooling radiator 630 are no longer required.
  • FIG. 4 is a schematic structural diagram of a heat dissipation circuit of a mobile device provided by an embodiment of the present application.
  • the mobile device may further include a first heat exchanger 710 and a first circulation pump 720 , and the first circulation pump 720 , the first heat exchanger 710 and the circuit module 500 are sequentially connected through pipelines.
  • the housing of the circuit module 500 has a liquid inlet 501 and a liquid outlet 502, which can respectively connect the inside of the housing with the outside.
  • the first heat exchanger 710 may include a first port A and a second port B, the first port A may be connected to the liquid inlet 501 of the housing, the second port B may be connected to the outlet of the first circulating pump 720, and the first The inlet of the circulating pump 720 is connected with the liquid outlet 502 of the casing.
  • the first circulation pump 720 , the first heat exchanger 710 and the circuit module 500 can form a heat dissipation circulation loop, which can be denoted as a first circulation loop.
  • Cooling oil is provided in the first circulation loop, and the circuit board assembly can be immersed in the cooling oil in the casing of the circuit module 500 .
  • the cooling oil is specifically an oil medium that does not have electrical conductivity but can conduct heat, such as vegetable oil or mineral oil.
  • connection between two components can be understood as a direct connection between the two components, or it can also be understood as an indirect connection between the two components through other components, as long as cooling can be achieved It is sufficient for oil to circulate between the two components, which is not specifically limited in the present application.
  • the inlet of the first circulation pump 720 and the liquid outlet 502 of the casing can be directly connected through pipelines, Or other parts can also be arranged between the inlet of the first circulating pump 720 and the liquid outlet 502 of the housing, and at this time, the parts can be arranged between the inlet of the first circulating pump 720 and the liquid outlet 502 of the housing.
  • the inlet of the first circulating pump 720 is connected to the liquid outlet 502 of the casing through this component.
  • the first circulation pump 720 drives the cooling oil to circulate in the loop.
  • the low-temperature cooling oil enters the housing of the circuit module 500 and exchanges heat with the circuit board assembly, and the cooling oil absorbs the heat generated by the circuit board assembly.
  • the circuit board assembly cools down by transferring heat to the cooling oil.
  • the heated cooling oil is driven by the first circulating pump 720 to the first heat exchanger 710, and then returns to the circuit module 500 to exchange heat with the circuit board assembly after exchanging heat in the first heat exchanger 710, and the reciprocating cycle is Continuous cooling of the circuit module 500 can be achieved.
  • the cooling oil can dissipate heat to all heating components on the circuit board assembly, which not only improves the heat dissipation performance of the circuit module 500, but also eliminates the need to set The cold plate and the water-cooled radiator with high cost can reduce the cooling cost of the circuit module 500 .
  • the housing can be made of metal with good thermal conductivity, such as aluminum, copper, etc., so that part of the heat in the housing can also be dissipated to the external environment through the housing, thereby improving the heat dissipation efficiency of the circuit module 500 .
  • the circuit board assembly in the casing is no longer affected by the environment outside the casing, and the installation position of the circuit module 500 on the mobile device can be more flexible and convenient.
  • the circuit module 500 when the circuit module 500 is installed, the circuit module 500 can be located in the relatively clean cockpit of the vehicle, or in the front cabin with relatively poor air quality.
  • the circuit module 500 can be installed at a suitable location according to actual needs, thereby helping to save space in the cockpit and improve The user's ride comfort.
  • the first heat exchanger 710 can be a double-pass heat exchanger, that is, the first heat exchanger 710 can include a first flow passage 711 and a second flow passage 712, the first flow passage The channel 711 and the second flow channel 712 are isolated from each other and can perform heat exchange.
  • the first heat exchanger 710 may specifically be a plate heat exchanger.
  • the above-mentioned first port A and second port B may specifically be two ports of the first channel 711 .
  • the mobile device can also include a second circulation pump 730 and a second heat exchanger 740, and the second circulation pump 730, the second heat exchanger 740, and the second flow channel 712 of the first heat exchanger 710 can be connected in sequence A second circulation loop is formed.
  • the first circulating pump 720 drives the high-temperature cooling oil flowing out of the circuit module 500 into the first flow channel 711, and in the first heat exchanger 710, the high-temperature cooling oil in the first flow channel 711 can be combined with the second flow channel The refrigerant in 712 exchanges heat to achieve cooling.
  • the refrigerant in the second flow channel 712 absorbs the heat of the high-temperature cooling oil in the first flow channel 711, it is driven by the second circulation pump 730 to the second heat exchanger 740. After cooling down in the second heat exchanger 740, it returns to the second flow channel 712 again to continuously dissipate heat from the cooling oil in the first flow channel 711 and ensure the normal operation of the first circulation loop.
  • the refrigerant in the second circulation loop may specifically be cooling water.
  • the second heat exchanger 740 can be an air-cooled heat exchanger. After the high-temperature cooling water enters the second heat exchanger 740, it can exchange heat with the air flowing through the surface of the second heat exchanger 740 to achieve cooling.
  • a fan 741 may also be provided at the second heat exchanger 740 , so as to increase the flow rate of the air passing through the surface of the second heat exchanger 740 , thereby improving the heat exchange efficiency of the second heat exchanger 740 .
  • FIG. 5 is a schematic structural diagram of another heat dissipation circuit of a mobile device provided by an embodiment of the present application.
  • the transmission system 200 of the mobile device may have a first heat dissipation passage 210.
  • the first heat dissipation passage 210 may be connected to the first circulation circuit through a pipeline, so that the cooling oil passes through the first
  • the heat dissipation passage 210 can absorb the heat generated by the transmission system 200 during operation, and bring this part of heat into the first heat exchanger 710 to dissipate, so as to realize the heat dissipation of the transmission system 200 .
  • the heat dissipation paths of the circuit module 500 and the transmission system 200 can be located in the same heat dissipation circuit, and the heat generated by the two can be dissipated through the same heat exchanger, which not only simplifies the heat dissipation of the mobile device as a whole
  • the structure can also reduce cooling costs.
  • both the first cooling passage 210 and the circuit module 500 can be arranged between the first port A of the first heat exchanger 710 and the inlet of the first circulation pump 720, that is, the two in the first circulation loop are The cooling components are located upstream of the first circulation pump 720, so as to improve the circulation efficiency of the cooling oil in the first circulation loop.
  • the transmission system 200 is often provided with some gear structures. By introducing cooling oil into the transmission system 200, not only can the transmission system 200 be radiated, but also the gear structure can be lubricated, thereby ensuring that the transmission system can Reliable operation.
  • the operating temperature of the transmission system 200 is higher, and because the transmission system 200 is mainly composed of mechanical components, the temperature resistance level is higher, while the circuit module 500 is an electronic component, and the temperature resistance level is relatively high. Therefore, if the first heat dissipation passage 210 of the transmission system 200 is placed upstream of the circuit module 500, that is, between the liquid inlet 501 of the circuit module 500 and the first heat exchanger 710, the low-temperature cooling oil passes through the first heat exchanger 710. Once the heat dissipation passage 210 is opened, the temperature will rise greatly, and then enter the circuit module 500 , which may have a bad influence on the components of the circuit module 500 .
  • the first heat dissipation passage 210 can be connected between the liquid outlet 502 of the circuit module 500 and the first circulation pump 720, that is, the first heat dissipation passage 210 can be arranged in the circuit The downstream of the module 500, so that even if the cooling oil produces a small temperature rise in the circuit module 500, it will not have a great impact on the heat dissipation of the subsequent transmission system 200, so that the effective heat dissipation of the transmission system 200 can be realized. Improve the The reliability of the circuit module 500.
  • FIG. 6 is a schematic structural diagram of another heat dissipation circuit of a mobile device provided by an embodiment of the present application.
  • the power system 100 of the mobile device may have a second heat dissipation path 110.
  • the second heat dissipation path 110 may be connected to the second circulation loop through a pipeline, so that the refrigerant passes through the second heat dissipation path.
  • the heat generated by the power system 100 can be absorbed, and this part of the heat can be brought into the second heat exchanger 740 to dissipate, so as to realize the heat dissipation of the power system 100 .
  • the second flow channel 712 for realizing heat dissipation of the first circulation loop and the heat dissipation path of the power system 100 may be located in the same heat dissipation loop, and the heat generated by the circuit module 500 and the transmission system 200 The heat is transferred to the second flow channel 712 through the first flow channel 711, and dissipated together with the heat generated by the power system 100 through the second heat exchanger 740, which not only simplifies the overall heat dissipation structure of the mobile device, but also reduces the heat dissipation cost .
  • both the second heat dissipation passage 110 and the circuit module 500 can be arranged between the first port A of the first heat exchanger 710 and the inlet of the first circulation pump 720, that is, two of the first circulation loops are
  • the cooling components are located upstream of the first circulation pump 720, so as to improve the circulation efficiency of the cooling oil in the first circulation loop.
  • the second heat dissipation path 110 of the power system 100 is placed upstream of the second flow channel 712, that is, the second flow channel 712 exchanges heat with the second Between the radiators 740, the temperature of the low-temperature refrigerant will increase significantly when passing through the second heat dissipation passage 110, and then enter the second flow passage 712, the cooling effect on the cooling oil in the first flow passage 711 is limited, and even the temperature will drop. Higher than the temperature of the cooling oil in the first flow channel 711 , the cooling oil flowing out of the first flow channel 711 will enter the circuit module 500 again, which may have a bad influence on the components of the circuit module 500 .
  • the second cooling passage 110 can be connected between the second flow channel 712 and the second circulation pump 730, that is, the second cooling passage 110 can be arranged downstream of the second flow channel 712, so that even if the refrigerant After heat exchange in the first heat exchanger 710, a slight temperature rise occurs, which will not have a great impact on the heat dissipation of the subsequent power system 100, so that the power of the circuit module 500 can be improved under the premise of realizing effective heat dissipation of the power system 100. reliability.
  • FIG. 7 is a schematic structural diagram of another heat dissipation circuit of a mobile device provided by an embodiment of the present application.
  • the battery 400 of the mobile device may have a third heat dissipation path 410.
  • the third heat dissipation path 410 may be connected to the second circulation loop through a pipeline, so that The refrigerant can absorb the heat generated by the battery 400 when passing through the third heat dissipation passage 410 , and bring this part of heat into the second heat exchanger 740 to dissipate, so as to realize the heat dissipation of the power system 100 .
  • the second flow channel 712 for realizing heat dissipation of the first circulation loop and the heat dissipation path of the battery 400 may be located in the same heat dissipation loop, and the heat generated by the circuit module 500 and the transmission system 200 passes through the The first flow channel 711 is transferred to the second flow channel 712, and the heat generated by the battery 400 is dissipated through the second heat exchanger 740, which not only simplifies the overall heat dissipation structure of the mobile device, but also reduces heat dissipation costs.
  • the operating temperature of the battery 400 will be higher. If the third heat dissipation passage 410 of the battery 400 is placed upstream of the second flow passage 712, the temperature of the low-temperature refrigerant passing through the third heat dissipation passage 410 will be higher. A large rise will occur, and then enter the second flow channel 712, which has a limited cooling effect on the cooling oil in the first flow channel 711, so that the cooling oil flowing out of the first flow channel 711 will enter the circuit module 500 again, and the The components of the circuit module 500 may be adversely affected.
  • the third cooling passage 410 can be specifically connected between the second flow channel 712 and the second circulation pump 730, that is, the downstream of the second flow channel 712, so that even if the refrigerant is in the first heat exchanger 710 The slight temperature rise after the internal heat exchange will not have much impact on the heat dissipation of the subsequent battery 400 , so that the reliability of the circuit module 500 can be improved on the premise of realizing effective heat dissipation of the battery 400 .
  • FIG. 8 is a schematic structural diagram of another heat dissipation circuit of a mobile device provided by an embodiment of the present application.
  • the first heat exchanger 710 can also be an air-cooled heat exchanger.
  • the temperature is reduced by directly exchanging heat with the air flowing through the surface of the first heat exchanger 710 , and the cooled cooling oil enters the circuit module 500 again to dissipate heat from the circuit board assembly.
  • a fan 713 may also be provided at the first heat exchanger 710 to increase the flow rate of the air passing through the surface of the first heat exchanger 710 , thereby improving the heat exchange efficiency of the first heat exchanger 710 .
  • the first heat dissipation passage 210 of the transmission system 200 can also be connected to the first circulation loop, so that the heat generated by the circuit module 500 and the transmission system 200 It can be dissipated through the same heat exchanger to simplify the overall heat dissipation structure of the mobile device and reduce the heat dissipation cost.
  • the first heat dissipation passage 210 in the first circulation loop reference may be made to the description of the foregoing embodiments, and details are not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提供了一种可移动设备的散热系统及可移动设备,以提高可移动设备的电路模块的散热性能,并降低散热成本。可移动设备包括电路模块、第一换热器以及第一循环泵,其中:电路模块包括壳体以及设置于壳体内的电路板组件,壳体设置有进液口和出液口;第一换热器包括第一端口和第二端口,第一端口与进液口连接;第一循环泵的进口与出液口连接,第一循环泵的出口与第二端口连接;第一循环泵、第一换热器以及电路模块形成第一循环回路,第一循环回路内设置有冷却油,电路板组件浸没于冷却油内。

Description

一种可移动设备的散热系统及可移动设备
相关申请的交叉引用
本申请要求在2021年10月13日提交中国专利局、申请号为202111191512.7、申请名称为“一种可移动设备的散热系统及可移动设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热技术领域,尤其涉及到一种可移动设备的散热系统及可移动设备。
背景技术
近年内,环境污染和能源短缺加速了绿色可再生能源的开发和利用,电动汽车以其低污染、低噪声、高能效等优点,已成为汽车行业的研究热点。电动汽车上设置有许多大功率电路模块,例如自动驾驶模块、电子控制单元(electronic control unit,ECU)等,这些电路模块在工作时会产生大量热量,为了保证电路模块的性能不受影响,需要及时将这些热量进行散发。
目前,针对大功率电路模块的一种散热方式是采用冷板与水冷散热器进行散热,冷板与电路模块的元器件之间可通过凝胶实现导热接触,水冷散热器设置于冷板背离电路模块的一侧,电路模块产生的热量通过凝胶传递给冷板,进而由冷板传递至水冷散热器散发掉。采用这种散热方式,冷板的结构较为复杂,并且需要针对电路模块的不同元器件分别进行点胶,导致加工成本较高。另外在实际应用中,冷板只能与电路模块上的部分元器件实现导热接触,导致其它未能与之接触的元器件散热困难。
发明内容
本申请提供了一种可移动设备的散热系统及可移动设备,用以提高可移动设备的电路模块的散热性能,并降低散热成本。
第一方面,本申请提供了一种可移动设备,该可移动设备可包括电路模块、第一换热器以及第一循环泵。其中,电路模块可包括壳体以及电路板组件,壳体设置有进液口和出液口,电路板组件可设置于壳体内。第一换热器可包括第一端口和第二端口,第一端口可与电路模块的进液口连接。第一循环泵的进口可与电路模块的出液口连接,第一循环泵的出口则可与第一换热器的第二端口连接。这样,第一循环泵、第一换热器以及电路模块就可以连接形成第一循环回路,第一循环回路内设置有冷却油,电路板组件可浸没于壳体的冷却油内。
上述方案中,第一循环泵驱动冷却油在第一循环回路中循环流动时,冷却油在电路模块内吸收电路板组件产生的热量后循环到第一换热器,在第一换热器内换热降温后再次回到电路模块内对电路板组件进行散热,完成一次循环。由于电路板组件可浸没于冷却油内,因此冷却油可以对电路板组件上所有的发热元器件进行散热,相比于水冷散热器的散热方式,不仅可以提高对电路模块的散热性能,还可以降低散热成本。
示例性地,上述可移动设备具体可以为车辆、轮船或者飞机等等。
在一些可能的实施方案中,可移动设备还可以包括传动系统,传动系统内具有第一散热通路,该第一散热通路可连接于第一循环回路中,这样,传动系统工作时产生的热量也可以由循环的冷却油带入第一换热器内散发掉,也就是说,电路模块与传动系统可共用同一换热器实现散热,从而有利于简化车辆的散热结构。
由于传动系统的工作温度相对较高,若将传动系统的第一散热通路置于电路模块的上游,传动系统的高温会对电路模块的元器件产生不良影响。基于此,在具体设置时,第一散热通路可连接于电路模块的出液口与第一循环泵的进口之间,从而可以在实现对传动系统的散热的前提下,减小对电路模块的不良影响。
在一些可能的实施方案中,第一换热器可以包括第一流道和第二流道,第一流道与第二流道相互隔离且可以进行热交换,上述第一端口和第二端口具体可以为第一流道的两个端口。可移动设备还可以包括第二循环泵和第二换热器,第二循环泵、第二换热器以及第一换热器的第二流道可依次连接形成第二循环回路。采用这种设计,第一流道内的高温冷却油可与第二流道内的冷媒换热以实现降温,第二流道内的冷媒在吸收第一流道内的冷却油的热量后循环到第二换热器,在第二换热器内换热降温后再次回到第二流道内,以对第一流道内的冷却油进行持续散热。
示例性地,第二循环回路内的冷媒具体可以为冷却水,第二换热器可以为风冷换热器。
在一些可能的实施方案中,可移动设备还可以包括动力系统,动力系统可具有第二散热通路,第二散热通路可连接于第二循环回路中,这样,动力系统工作时产生的热量也可以由循环的冷媒带入第二换热器内散发掉,也即,第二流道与动力系统可共用同一换热器实现散热,从而有利于简化车辆的散热结构。
动力系统的工作温度也相对较高,若将动力系统的第二散热通路置于第二流道的上游,进入第二流道内的冷媒过高,就会影响第二流道对第一流道的散热效果,进而会对电路模块的元器件产生不良影响。基于此,在具体设置时,第二散热通路可连接于第二流道与第二循环泵之间,这样可以在实现对动力系统的散热的前提下,减小对电路模块的不良影响。
在另外一些可能的实施方案中,可移动设备还可以包括电池,电池可具有第三散热通路,第三散热通路可连接于第二循环回路中,这样,电池工作时产生的热量也可以由循环的冷媒带入第二换热器内散发掉,第二流道与电池可共用第二换热器实现散热,从而有利于简化车辆的散热结构。
类似地,在具体设置时,第三散热通路可连接于第二流道与第二循环泵之间,这样可以在实现对电池的散热的前提下,减小对电路模块的不良影响。
在一些可能的实施方案中,第一换热器还可以为风冷换热器,此时无需再设置第二循环回路,利用风冷换热器的自身特性即可实现对冷却油的散热,从而有利于简化可移动设备的散热结构。
在一些可能的实施方案中,电路板组件可包括主板和扣板,扣板可设置于主板的其中一面,扣板与主板之间间隔设置,且扣板可覆盖主板上的部分元器件。由于电路板组件可浸没于冷却油内,因此主板与扣板上的所有发热元器件,包括被扣板所覆盖的部分元器件,均可以实现散热,从而可以提高对电路模块的散热效果。
在一些可能的实施方案中,电路模块可以为可移动设备的计算模块,或者,电路模块也可以为可移动设备的电子控制单元。
第二方面,本申请还提供了一种电路模块,该电路模块可安装于可移动设备,包括壳体以及设置于所述壳体内的电路板组件,壳体可设置有进液口和出液口。电路模块可连接于可移动设备的散热系统中,具体设置时,进液口可与散热系统的第一换热器的第一端口连接,出液口可与散热系统的第一循环泵的进口连接,第一循环泵的出口则可与第一换热器的第二端口连接,从而使得第一循环泵、第一换热器以及电路模块可以连接形成第一循环回路,第一循环回路内设置有冷却油,电路板组件可浸没于壳体的冷却油内。
上述方案中,由于电路板组件可浸没于冷却油内,因此冷却油可以对电路板组件上所有的发热元器件进行散热,相比于水冷散热器的散热方式,不仅可以提高对电路模块的散热性能,还可以降低散热成本。
第三方面,本申请还提供了一种可移动设备,该可移动设备可包括前述第一方面中任一可能的实施方案中的散热系统。可移动设备具体可以为车辆、轮船或者飞机等。可移动设备电路模块的电路板组件可浸没于冷却油内实现散热,散热效果较好,因此可移动设备的使用可靠性也得以提高。
附图说明
图1为本申请实施例提供的可移动设备的结构示意图;
图2为本申请实施例提供的一种电路模块的局部结构示意图;
图3为针对电路模块的一种可能的散热回路的结构示意图;
图4为本申请实施例提供的可移动设备的一种散热回路的结构示意图;
图5为本申请实施例提供的可移动设备的另一种散热回路的结构示意图;
图6为本申请实施例提供的可移动设备的另一种散热回路的结构示意图;
图7为本申请实施例提供的可移动设备的另一种散热回路的结构示意图;
图8为本申请实施例提供的可移动设备的另一种散热回路的结构示意图。
附图标记:
1-可移动设备;100-动力系统;200-传动系统;300-车轮;400-电池;500-电路模块;
510-电路板组件;511-主板;512-扣板;5111、5121-电子元器件;5112-接口;
610-水泵;620-换热器;630-水冷散热器;640-冷板;710-第一换热器;
720-第一循环泵;501-进液口;502-出液口;711-第一流道;712-第二流道;
730-第二循环泵;740-第二换热器;741、713-风扇;210-第一散热通路;
110-第二散热通路;410-第三散热通路。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
请参考图1,图1为本申请实施例提供的可移动设备的结构示意图。在本申请实施例中,可移动设备1可以为车辆、轮船或者飞机等交通工具,或者具有运载功能的其它形态的装备,本申请对此不作限制。图1所示实施例的可移动设备1以车辆为例进行阐述。需要说明的是,下文车辆的标号与可移动设备的标号相同。车辆1可包括动力系统100、传动系统200以及车轮300,动力系统100可通过传动系统200与车轮300传动连接,从而 通过传统系统200向车轮300提供驱动力,驱动车辆行驶。
在一些实施例中,车辆1可以为燃油汽车,此时,动力系统100具体可以为发动机,传动系统200则可以包括减速器、变速器以及传动轴等部件,发动机输出的驱动力可传递至减速器,经过减速器的减速增矩作用后再传递至变速器,然后根据车辆1的档位设置由变速器变速后通过传动轴输出至车轮300,驱动车辆1行驶。需要说明的是,图1以及下文相关附图仅示意性的示出了可移动设备1包括的一些部件,这些部件的实际形状、实际大小、实际位置和实际构造不受图1以及下文各附图限定。
在另外一些实施例中,车辆1还可以为电动汽车,此时,动力系统100具体可以为电机,传动系统200可包括减速器、传动轴等部件,电机输出的驱动力可传递至减速器,经过减速器的减速增矩作用后输出至车轮300,驱动车辆1行驶。需要说明的是,当车辆1为电动汽车时,车辆1还可以包括电池400,电池400可以作为车辆1的动力源,为电机提供电能,使电机将电能转化为驱动力输出。
此外,车辆1上通常会设置有ECU等大功率电路模块,ECU可用于监控车辆1的各种行车信息,以判断车辆1行驶状态以及司机的意图,并通过相关的执行机构来操控车辆1。特别地,对于智能驾驶车辆1,车辆1上所设置的一些计算模块,例如自动驾驶模块,也属于大功率电路模块。自动驾驶模块可用于规划车辆的行车路径,并对各类传感器采集到的数据进行收集、处理,生成实时的感知结果,做出具体的行为决策。例如可以根据道路上的其它车辆、行人、障碍物等,以及交通规则信息,控制车辆1进行变道、超车或者刹车等。
参考图2所示,图2为本申请实施例提供的一种电路模块的局部结构示意图。电路模块500可包括壳体(图中未示出)和收纳于壳体内的电路板组件510。其中,电路板组件510可包括主板511和设置在主板511上的多个电子元器件5111以及各种接口5112,这些接口5112可用于与车辆上所设置的各类传感器连接,以将传感器的检测数据传输到主板511上。另外,为了灵活扩展算力,电路板组件510还可以包括扣板512,扣板512设置在主板511的其中一面,且两者之间间隔设置。扣板512上也可设置有多个电子元33器件5121,以电路模块500为自动驾驶模块为例,扣板512上所设置的电子元器件5121可以包括电源、人工智能(artificial intelligence,AI)芯片、激光雷达、毫米波雷达、超声波传感器等。具体实施时,主板511与扣板512可通过连接器电性连接,以实现扣板512上的电子元器件5121与主板511上的电子元器件5111的之间数据传输。需要说明的是,为了充分利用主板511上的空间,主板511上与扣板512相对的区域也可以用于设置电子元器件5111,也即,扣板512在设置在主板511上时,会对主板511上的部分电子元器件5111形成覆盖。
可以理解的,大功率电路模块500在工作时会产生大量热量,如果不能采取及时散热,这些热量就会持续在电路模块500内聚积,对电路模块500上的各种元器件产生不良影响,长时间的散热不良甚至会导致元器件发生损坏,影响电路模块500的正常工作。
图3为针对电路模块的一种可能的散热回路的结构示意图。参考图3所示,该散热回路包括依次连接的水泵610、换热器620以及水冷散热器630,其中,水冷散热器630设置在电路模块500处,通过冷板640与电路模块500导热接触。水泵610驱动冷却水在散热回路中循环,冷却水进入到水冷散热器630后与电路模块500进行换热,换热升温后的冷却水被驱动到换热器620内,通过与外界新风热交换而实现降温,降温后的冷却水再次 进入水冷散热器630,完成一次循环。这种散热方式的不足之处在于,冷板640上对应电路模块500的元器件的位置需要设置许多凸台结构,各个凸台结构与对应的元器件通过凝胶导热接触,这就导致冷板640的结构会过于复杂,并且点胶过程也较为繁琐,增加了冷板640的制作及安装成本。另外在实际应用中,冷板640无法做到与电路模块500上全部的元器件均能够导热接触,例如对于位于主板与扣板之间的元器件就会由于扣板的阻挡而无法接触到冷板640,从而导致这些未能与冷板640接触的元器件的散热问题仍然存在。
有鉴于此,本申请提供的可移动设备针对大功率电路模块500采用了油冷散热方式,通过将电路模块500浸没在冷却油内,实现对电路模块500上的所有元器件的有效散热,不仅可以提高电路模块500的散热性能,并且由于无需再设置冷板640以及成本较高的水冷散热器630,因此开可以降低电路模块500的散热成本。
图4为本申请实施例提供的可移动设备的一种散热回路的结构示意图。参考图4所示,可移动设备还可以包括第一换热器710和第一循环泵720,第一循环泵720、第一换热器710和电路模块500依次通过管路连接。具体设置时,电路模块500的壳体具有进液口501和出液口502,进液口501和出液口502可分别将壳体的内部与外部连通。第一换热器710可包括第一端口A和第二端口B,第一端口A可与壳体的进液口501连接,第二端口B可与第一循环泵720的出口连接,第一循环泵720的进口则与壳体的出液口502连接。这样,第一循环泵720、第一换热器710以及电路模块500就可形成一个散热循环回路,可记为第一循环回路。该第一循环回路内设置有冷却油,在电路模块500的壳体内,电路板组件可浸没于冷却油内。示例性地,冷却油具体以为不具有导电性但能够导热的油类介质,例如植物油或者矿物油等。
需要说明的是,在本申请实施例中,两个部件之间连接可以理解为该两个部件之间直接连接,也可以理解为该两个部件之间经过其它部件间接连接,只要能够实现冷却油在该两个部件之间流通即可,本申请对此不作具体限定。例如,针对上述的第一循环泵720的进口与壳体的出液口502连接,在实际应用中,第一循环泵720的进口与壳体的出液口502既可以通过管路直接连接,或者也可以在第一循环泵720的进口与壳体的出液口502之间设置其它部件,此时该部件可以设置在第一循环泵720的进口与壳体的出液口502之间的管路上,也即第一循环泵720的进口经过该部件与壳体的出液口502连接。
第一循环回路工作时,第一循环泵720驱动冷却油在回路中循环流动,低温冷却油进入电路模块500的壳体内后与电路板组件换热,冷却油吸收电路板组件产生的热量后温度升高,电路板组件则通过将热量传递给冷却油而实现降温。升温后的冷却油由第一循环泵720驱动到第一换热器710,在第一换热器710内换热降温后再次回到电路模块500与电路板组件进行换热,如此往复循环即可实现对电路模块500的持续散热。在本实施例中,由于电路板组件可完全浸没在冷却油内,因此冷却油可以对电路板组件上的所有发热元器件进行散热,不仅可以提高电路模块500的散热性能,并且由于无需再设置冷板以及成本较高的水冷散热器,因此开可以降低电路模块500的散热成本。
应当理解的是,为了避免壳体内的冷却油从进液口和出液口之外的地方泄露,除了进液口和出液口,壳体的其他部分是密封的,因此当电路板组件设置在壳体内时,电路板组件可以只和进入到壳体内的冷却油接触,壳体的进液口501和出液口502处均可通过密封件与管路连接。另外,在具体实施时,壳体可以采用导热性良好的金属材质,例如铝、铜等,这样壳体内的部分热量也可以通过壳体散发到外界环境,从而可以提高电路模块500 的散热效率。
另外,当壳体采用密封设计时,壳体内的电路板组件不再受壳体外部的环境影响,电路模块500在可移动设备上的安装位置可以更加灵活方便。以可移动设备为车辆为例,在安装电路模块500时,电路模块500既可以位于车辆内较为干净整洁的驾驶舱内,也可以位于空气质量相对差一些的前舱内。相较于现有技术中只能将电路模块500设置于驾驶舱内的方案,本实施例中可以根据实际需求选择合适的位置设置电路模块500,从而有助于节省驾驶舱内的空间,提高用户的乘车舒适性。
请继续参考图4,在一些实施例中,第一换热器710可以为双流道换热器,也即,第一换热器710可以包括第一流道711和第二流道712,第一流道711与第二流道712之间相互隔离且可进行热交换。示例性地,第一换热器710具体可以为板式换热器。上述第一端口A和第二端口B具体可以为第一流道711的两个端口。此时,可移动设备还可以包括第二循环泵730和第二换热器740,第二循环泵730、第二换热器740以及第一换热器710的第二流道712可依次连接形成第二循环回路。采用这种设计,第一循环泵720驱动电路模块500内流出的高温冷却油进入第一流道711,在第一换热器710内,第一流道711内的高温冷却油可与第二流道712内的冷媒换热以实现降温,第二流道712内的冷媒在吸收第一流道711内的高温冷却油的热量后,由第二循环泵730驱动到第二换热器740,在第二换热器740内降温后再次回到第二流道712内,以对第一流道711内的冷却油进行持续散热,保证第一循环回路的正常运行。
其中,第二循环回路内的冷媒具体可以为冷却水。第二换热器740可以为风冷换热器,高温冷却水进入第二换热器740后,可与流经第二换热器740表面的空气换热实现降温。另外,第二换热器740处还可以设置风扇741,这样可以提高流经第二换热器740表面的空气的流动速率,进而可以提高第二换热器740的换热效率。
图5为本申请实施例提供的可移动设备的另一种散热回路的结构示意图。参考图5所示,可移动设备的传动系统200可具有第一散热通路210,具体设计时,第一散热通路210可通过管路连接于第一循环回路中,这样,冷却油在经过第一散热通路210时可以吸收传动系统200工作时产生的热量,并将这部分热量一并带入第一换热器710内散发掉,实现对传动系统200的散热。也就是说,在本申请实施例中,电路模块500与传动系统200的散热通路可位于同一散热回路中,两者产生的热量可以通过同一换热器散发,不仅可以简化可移动设备整体的散热结构,还可以降低散热成本。示例性地,第一散热通路210与电路模块500均可以设置于第一换热器710的第一端口A与第一循环泵720的进口之间,也即第一循环回路中的两个被散热部件均位于第一循环泵720的上游,从而提高第一循环回路中冷却油的循环效率。
需要说明的是,传动系统200内往往设置有一些齿轮结构,通过向传动系统200内引入冷却油,不仅可以对传动系统200进行散热,还可以实现对齿轮结构的润滑作用,从而保证传动系统能够可靠运行。
另外,相较于电路模块500,传动系统200的工作温度要更高一些,并且由于传动系统200内主要是机械部件,耐温等级较高,而电路模块500是电子元器件,耐温等级相对较低,因此,若将传动系统200的第一散热通路210置于电路模块500的上游,也即电路模块500的进液口501与第一换热器710之间,低温冷却油在经过第一散热通路210时温度就会产生大幅升高,之后再进入电路模块500内,就可能会对电路模块500的元器件产 生不良的影响。鉴于此,在本申请的一个具体实施例中,第一散热通路210可连接于电路模块500的出液口502与第一循环泵720之间,也即,第一散热通路210可设置在电路模块500的下游,这样即使冷却油在电路模块500内产生小幅温升,对后续传动系统200的散热也不会产生太大影响,从而可以在实现对传动系统200的有效散热的前提下,提高电路模块500的可靠性。
图6为本申请实施例提供的可移动设备的另一种散热回路的结构示意图。参考图6所示,可移动设备的动力系统100可具有第二散热通路110,具体设计时,第二散热通路110可通过管路连接于第二循环回路中,这样,冷媒在经过第二散热通路时可以吸收动力系统100工作时产生的热量,并将这部分热量一并带入第二换热器740内散发掉,实现对动力系统100的散热。也就是说,在本申请实施例中,用于对实现对第一循环回路散热的第二流道712与动力系统100的散热通路可以位于同一散热回路中,电路模块500及传动系统200产生的热量通过第一流道711传递至第二流道712,并与动力系统100产生的热量一并通过第二换热器740散发,这样不仅可以简化可移动设备整体的散热结构,还可以降低散热成本。示例性地,第二散热通路110与电路模块500均可以设置于第一换热器710的第一端口A与第一循环泵720的进口之间,也即第一循环回路中的两个被散热部件均位于第一循环泵720的上游,从而提高第一循环回路中冷却油的循环效率。
由于动力系统100的工作温度要高于电路模块500的工作温度,若将动力系统100的第二散热通路110置于第二流道712的上游,也即第二流道712与第二换热器740之间,低温冷媒在经过第二散热通路110时温度就会产生大幅升高,之后再进入第二流道712内,对第一流道711内的冷却油的冷却效果有限,甚至温度会高于第一流道711内的冷却油的温度,这样由第一流道711流出的冷却油就再进入电路模块500内,就可能会对电路模块500的元器件产生不良的影响。因此,在具体设计时,第二散热通路110可连接于第二流道712与第二循环泵730之间,也即第二散热通路110可设置在第二流道712的下游,这样即使冷媒在第一换热器710内换热后产生小幅温升,对后续动力系统100的散热也不会产生太大影响,从而可以在实现对动力系统100有效散热的前提下,提高电路模块500的可靠性。
图7为本申请实施例提供的可移动设备的另一种散热回路的结构示意图。参考图7所示,可移动设备为电动汽车时,可移动设备的电池400可具有第三散热通路410,具体设计时,第三散热通路410可通过管路连接于第二循环回路中,这样,冷媒在经过第三散热通路410时可以吸收电池400工作时产生的热量,并将这部分热量一并带入第二换热器740内散发掉,实现对动力系统100的散热。也就是说,在本申请实施例中,用于实现对第一循环回路散热的第二流道712与电池400的散热通路可以位于同一散热回路中,电路模块500及传动系统200产生的热量通过第一流道711传递至第二流道712,并与电池400产生的热量一并通过第二换热器740散发,这样不仅可以简化可移动设备整体的散热结构,还可以降低散热成本。
类似地,相较于电路模块,电池400的工作温度会更高一些,若将电池400的第三散热通路410置于第二流道712的上游,低温冷媒在经过第三散热通路410时温度就会产生大幅升高,之后再进入第二流道712内,对第一流道711内的冷却油的冷却效果有限,这样由第一流道711流出的冷却油就再进入电路模块500内,就可能会对电路模块500的元器件产生不良的影响。因此,在本实施例中,第三散热通路410具体可连接于第二流道712 与第二循环泵730之间,即第二流道712的下游,这样即使冷媒在第一换热器710内换热后产生小幅温升,对后续电池400的散热也不会产生太大影响,从而可以在实现对电池400有效散热的前提下,提高电路模块500的可靠性。
图8为本申请实施例提供的可移动设备的另一种散热回路的结构示意图。参考图8所示,在该实施例中,第一换热器710还可以为风冷换热器,这时,由电路模块500内流出的高温冷却油进入第一换热器710后,可直接与流经第一换热器710表面的空气换热实现降温,降温后的冷却油再次进入电路模块500内对电路板组件进行散热。采用这种设计可无需再设置第二循环回路,利用风冷换热器的自身特性即可实现对冷却油的散热,从而有利于简化可移动设备的整体散热结构。具体实施时,第一换热器710处还可以设置风扇713,以提高流经第一换热器710表面的空气的流动速率,进而可以提高第一换热器710的换热效率。
可以理解的,当第一换热器710为风冷换热器时,也可以将传动系统200的第一散热通路210连接于第一循环回路内,使电路模块500与传动系统200产生的热量可以通过同一换热器散发,以简化可移动设备整体的散热结构,降低散热成本。第一散热通路210在第一循环回路中的设置位置可参考前述实施例的描述,此处不再过多赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种可移动设备的散热系统,其特征在于,包括电路模块、第一换热器以及第一循环泵,其中:
    所述电路模块包括壳体以及设置于所述壳体内的电路板组件,所述壳体设置有进液口和出液口;
    所述第一换热器包括第一端口和第二端口,所述第一端口与所述进液口连接;
    所述第一循环泵的进口与所述出液口连接,所述第一循环泵的出口与所述第二端口连接;
    所述第一循环泵、所述第一换热器以及所述电路模块形成第一循环回路,所述第一循环回路内设置有冷却油,所述电路板组件浸没于所述冷却油内。
  2. 如权利要求1所述的可移动设备的散热系统,其特征在于,所述可移动设备还包括传动系统,所述传动系统具有第一散热通路,所述第一散热通路连接于所述第一循环回路中。
  3. 如权利要求2所述的可移动设备的散热系统,其特征在于,所述第一散热通路连接于所述出液口与所述第一循环泵的进口之间。
  4. 如权利要求1~3任一项所述的可移动设备的散热系统,其特征在于,所述第一换热器包括第一流道和第二流道,所述第一流道与所述第二流道相隔离且可进行热交换,所述第一端口和所述第二端口分别为所述第一流道的两个端口;
    所述可移动设备还包括第二循环泵和第二换热器,所述第二循环泵、所述第二换热器以及所述第二流道依次连接形成第二循环回路。
  5. 如权利要求4所述的可移动设备的散热系统,其特征在于,所述可移动设备还包括动力系统,所述动力系统具有第二散热通路,所述第二散热通路连接于所述第二循环回路中。
  6. 如权利要求5所述的可移动设备的散热系统,其特征在于,所述第二散热通路连接于所述第二流道与所述第二循环泵之间。
  7. 如权利要求4所述的可移动设备的散热系统,其特征在于,所述可移动设备还包括电池,所述电池具有第三散热通路,所述第三散热通路连接于所述第二循环回路中。
  8. 如权利要求7所述的可移动设备的散热系统,其特征在于,所述第三散热通路连接于所述第二流道与所述第二循环泵之间。
  9. 如权利要求1~3任一项所述的可移动设备的散热系统,其特征在于,所述第一换热器为风冷换热器。
  10. 如权利要求1~9任一项所述的可移动设备的散热系统,其特征在于,所述电路板组件包括主板和扣板,所述扣板设置于所述主板的其中一面,且所述扣板与所述主板之间间隔设置,所述扣板可覆盖所述主板上的部分元器件。
  11. 如权利要求1~10任一项所述的可移动设备的散热系统,其特征在于,所述壳体为金属材质。
  12. 如权利要求1~11任一项所述的可移动设备的散热系统,其特征在于,所述电路模块为所述可移动设备的计算模块;或者,所述电路模块为所述可移动设备的电子控制单元。
  13. 一种可移动设备,其特征在于,包括如权利要求1~12任一项所述的散热系统。
PCT/CN2022/106790 2021-10-13 2022-07-20 一种可移动设备的散热系统及可移动设备 WO2023060974A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111191512.7 2021-10-13
CN202111191512.7A CN115968160A (zh) 2021-10-13 2021-10-13 一种可移动设备的散热系统及可移动设备

Publications (1)

Publication Number Publication Date
WO2023060974A1 true WO2023060974A1 (zh) 2023-04-20

Family

ID=85894928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106790 WO2023060974A1 (zh) 2021-10-13 2022-07-20 一种可移动设备的散热系统及可移动设备

Country Status (2)

Country Link
CN (1) CN115968160A (zh)
WO (1) WO2023060974A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036317A (ja) * 2007-08-02 2009-02-19 Aisin Aw Co Ltd 自動変速機用コントロールユニット冷却装置
CN103155381A (zh) * 2010-11-12 2013-06-12 川崎重工业株式会社 电动车辆的冷却结构
CN106314066A (zh) * 2015-06-17 2017-01-11 杭州三花研究院有限公司 一种车用能源管理系统及其控制方法
CN106385787A (zh) * 2016-11-16 2017-02-08 河北广通电子科技有限公司 一种浸入式电子产品及电子设备散热系统
CN107394072A (zh) * 2017-06-23 2017-11-24 北京机械设备研究所 一种动力电池的热管理系统以及混合动力汽车
CN108539327A (zh) * 2018-05-25 2018-09-14 上海汽车集团股份有限公司 基于液冷系统的动力电池液热系统及其控制方法
CN209184624U (zh) * 2019-01-31 2019-07-30 深圳市融创飞宇通讯有限公司 一种密封式大功率光纤交换机
CN211844078U (zh) * 2019-11-25 2020-11-03 中国第一汽车股份有限公司 一种混合动力汽车热管理系统及混合动力汽车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036317A (ja) * 2007-08-02 2009-02-19 Aisin Aw Co Ltd 自動変速機用コントロールユニット冷却装置
CN103155381A (zh) * 2010-11-12 2013-06-12 川崎重工业株式会社 电动车辆的冷却结构
CN106314066A (zh) * 2015-06-17 2017-01-11 杭州三花研究院有限公司 一种车用能源管理系统及其控制方法
CN106385787A (zh) * 2016-11-16 2017-02-08 河北广通电子科技有限公司 一种浸入式电子产品及电子设备散热系统
CN107394072A (zh) * 2017-06-23 2017-11-24 北京机械设备研究所 一种动力电池的热管理系统以及混合动力汽车
CN108539327A (zh) * 2018-05-25 2018-09-14 上海汽车集团股份有限公司 基于液冷系统的动力电池液热系统及其控制方法
CN209184624U (zh) * 2019-01-31 2019-07-30 深圳市融创飞宇通讯有限公司 一种密封式大功率光纤交换机
CN211844078U (zh) * 2019-11-25 2020-11-03 中国第一汽车股份有限公司 一种混合动力汽车热管理系统及混合动力汽车

Also Published As

Publication number Publication date
CN115968160A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
CN108390123B (zh) 一种动力电池包热管理系统及汽车
CN108766946B (zh) 液冷散热装置及电机控制器
CN210349980U (zh) 一种燃料电池发动机冷却系统
WO2020238193A1 (zh) 一种新组合的车辆双循环冷却系统
CN109830783B (zh) 一种基于大学生电动方程式赛车的整车热管理系统及其控制方法
CN109098832A (zh) 一种汽车动力传动总成联合冷却系统及控制方法
CN101111120A (zh) 用于等离子弧焊炬的冷却设备和系统以及相关的方法
WO2023060974A1 (zh) 一种可移动设备的散热系统及可移动设备
CN110273746B (zh) 一种并联式车用冷却系统及其运行方法
WO2024045664A1 (zh) 一种动力总成及机械设备
CN106602170A (zh) 一种可变接触式电池热管理系统
CN103179843B (zh) 一种高功率密度变频控制器的散热结构
CN105172577A (zh) 一种应用于混合动力载货汽车的冷却系统
CN206884725U (zh) 车辆的热管理系统及车辆
CN210068300U (zh) 一种并联式车用冷却系统
CN214295556U (zh) 混合动力冷却系统
CN115312909A (zh) 一种利用行驶风换热的换电重卡电池柜及换热系统
CN211106935U (zh) 一种新能源商用车电驱动系统冷却装置
CN211064034U (zh) 一种用于高压电机驱动器降温的液冷散热总成
CN114506230A (zh) 一种超级单体充电桩用液冷源
CN220894829U (zh) 一种气液双通道散热的边缘计算装置外壳
CN212716860U (zh) 一种gcy-1000型重型轨道车用冷却装置
CN217790129U (zh) 一种高散热性铝合金散热器
CN219181944U (zh) 液冷散热装置、液冷散热系统和车辆
CN111907292B (zh) 电动汽车热管理系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE