WO2022007773A1 - 主动冷却的搅拌器具 - Google Patents

主动冷却的搅拌器具 Download PDF

Info

Publication number
WO2022007773A1
WO2022007773A1 PCT/CN2021/104635 CN2021104635W WO2022007773A1 WO 2022007773 A1 WO2022007773 A1 WO 2022007773A1 CN 2021104635 W CN2021104635 W CN 2021104635W WO 2022007773 A1 WO2022007773 A1 WO 2022007773A1
Authority
WO
WIPO (PCT)
Prior art keywords
container body
stirring device
inner shell
heat exchanger
receiving area
Prior art date
Application number
PCT/CN2021/104635
Other languages
English (en)
French (fr)
Inventor
兹达诺夫·安德烈
杜普莱西斯·塞缪尔·文森特
R. 亨特·马修
Original Assignee
重庆海尔制冷电器有限公司
青岛海尔电冰箱有限公司
海尔智家股份有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆海尔制冷电器有限公司, 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, 海尔美国电器解决方案有限公司 filed Critical 重庆海尔制冷电器有限公司
Priority to CN202180048152.7A priority Critical patent/CN115836183A/zh
Priority to EP21837818.0A priority patent/EP4177541A4/en
Publication of WO2022007773A1 publication Critical patent/WO2022007773A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/04Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
    • A47J43/042Mechanically-driven liquid shakers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/32Time-controlled igniting mechanisms or alarm devices
    • A47J36/321Time-controlled igniting mechanisms or alarm devices the electronic control being performed over a network, e.g. by means of a handheld device
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/04Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
    • A47J43/046Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven with tools driven from the bottom side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/213Measuring of the properties of the mixtures, e.g. temperature, density or colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/214Measuring characterised by the means for measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/93Heating or cooling systems arranged inside the receptacle
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J2202/00Devices having temperature indicating means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/04Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
    • A47J43/07Parts or details, e.g. mixing tools, whipping tools
    • A47J43/0716Parts or details, e.g. mixing tools, whipping tools for machines with tools driven from the lower side
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/04Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
    • A47J43/07Parts or details, e.g. mixing tools, whipping tools
    • A47J43/08Driving mechanisms
    • A47J43/085Driving mechanisms for machines with tools driven from the lower side

Definitions

  • the present invention generally relates to stirring appliances, and more particularly to stirring appliances having one or more active elements for controlling the temperature of substances within the vessel of the stirring appliance.
  • Passive systems are used in some blenders, such as vacuum insulated blender vessels, to maintain the temperature of the food or beverage within the vessel. Such a system can provide a desired form factor with a relatively small increase in mass. However, since these passive systems cannot actively add or extract heat to/from the contents of the container, their efficacy is necessarily limited. As an example, if the temperature of the beverage within the blender container is lower than the ambient temperature, the beverage temperature may only increase over time.
  • Active systems exist for regulating the temperature within individual beverage containers by means of one or more electrically, chemically or mechanically propelled heat exchangers independent of the container contents.
  • these systems may suffer from a number of undesirable drawbacks.
  • such systems are often very fragile. Even a small shock or drop can cause an electrically, chemically or mechanically propelled heat exchanger (or another active component) to rupture.
  • containers including these systems must be cleaned in a very gentle manner, as active components may be damaged by fluids or moisture outside the container. This generally makes such vessels particularly unsuitable for the high vibration environment of agitators, where the rotating blades actively agitate the contents of the blender vessel.
  • a stirring appliance may include a vessel body, rotatable blades, a motor and a thermoelectric heat exchanger.
  • the container body may include an inner shell and conductive walls.
  • the inner shell may define a fluid chamber.
  • the conductive wall may be spaced radially outwardly from the fluid cavity.
  • the rotatable vanes may be rotatably disposed within the fluid chamber.
  • a motor may be in selective mechanical communication with the rotatable vanes to propel them in rotation.
  • a thermoelectric heat exchanger may be mounted within the vessel body in thermal communication with the fluid chamber.
  • a stirring appliance may include a vessel body, rotatable blades, a motor and a thermoelectric heat exchanger.
  • the container body may include an inner shell and conductive walls.
  • the inner shell may define a fluid chamber.
  • the conductive wall may be spaced radially outwardly from the fluid cavity.
  • An insulating chamber may be defined between the inner shell and the conductive wall in the radial direction.
  • the rotatable vanes may be rotatably disposed within the fluid chamber.
  • a motor may be in selective mechanical communication with the rotatable vanes to propel them in rotation.
  • a thermoelectric heat exchanger may be mounted within the vessel body in thermal communication with the fluid chamber.
  • a thermoelectric heat exchanger may be disposed within at least a portion of the insulating chamber.
  • Figure 1 provides a perspective view of a stirring appliance according to an exemplary embodiment of the present invention.
  • FIG. 2 provides a schematic cross-sectional view of the exemplary stirring appliance of FIG. 1 taken along line 2-2.
  • FIG. 3 provides a schematic cross-sectional view of the exemplary stirring appliance of FIG. 1 taken along line 3-3.
  • FIG. 4 provides an enlarged schematic cross-sectional view of a portion of the exemplary stirring appliance of FIG. 3 framed within block 4A.
  • Figure 5 provides a schematic cross-sectional view of a stirring appliance according to an exemplary embodiment of the present invention.
  • Figure 6 provides a schematic cross-sectional view of a stirring appliance according to another exemplary embodiment of the present invention.
  • Figure 7 provides a schematic cross-sectional view of a stirring appliance according to yet another exemplary embodiment of the present invention.
  • FIG. 1 provides a perspective view of a stirring appliance 100 according to an exemplary embodiment of the present invention.
  • 2 and 3 provide separate cross-sectional views of the stirring implement 100 taken along lines 2-2 and 3-3 of FIG. 1, respectively.
  • FIG. 4 provides an enlarged schematic cross-sectional view of a portion of the stirring implement 100 captured in area 4A of FIG. 3 .
  • the stirring implement 100 defines a vertical V.
  • a central axis A (eg, parallel to vertical V) may be further defined.
  • the radial direction R may extend outwardly from the central axis A (eg, perpendicular to the vertical V), while the circumferential direction C may be defined around the central axis A.
  • the stirring implement 100 includes a container body 110 and a motor 104 that may be configured to urge a rotatable blade 106 disposed within the container body 110 to rotate.
  • the container body 110 extends along the vertical direction V (eg, from the top end 112 to the bottom end 114).
  • the removable lid 120 can be placed on the container body 110 (eg, at the top end 112 ), wherein the removable lid 120 can be in a closed position (eg, as shown in FIG. 1 ) and an open position (not shown) move between.
  • the closed position covers the fluid opening 122 (FIG. 3) defined by the container body 110, while the open position at least partially exposes the fluid opening 122 to allow fluid (eg, beverage) to pass therethrough, as is commonly understood.
  • the container body 110 includes an inner shell 124 and a conductive wall 126, both of which may extend along a vertical V direction. At least a portion of both the inner shell 124 and the conductive wall 126 may be spaced apart from the central axis A and spaced apart from each other along the radial direction R.
  • the inner shell 124 is a solid (eg, impermeable) member that defines a fluid chamber 128 for receiving and storing a fluid volume (eg, a food or beverage to mix) or a solid item (eg, a food product to be blended) or fluid) fluid chamber 128.
  • the sidewall 130 of the inner shell 124 may extend generally around the central axis A in a circumferential direction C (according to any suitable shape).
  • the bottom wall 132 of the inner shell 124 may join the side wall 130 and extend across the central axis A (eg, at a non-parallel angle with respect to the central axis A).
  • the fluid cavity 128 is in fluid communication with the fluid opening 122 so that when a fluid volume is placed into or removed from the fluid cavity 128 , the fluid volume can pass through the fluid opening 122 .
  • the fluid chamber 128 may provide an open volume into which the food product of the mixed beverage may be placed and from which the mixed beverage may be poured.
  • the inner surface 134 of the inner shell 124 is directed toward the fluid cavity 128 (eg, such that the fluid cavity 128 is defined along the inner surface 134).
  • the opposing outer surface 136 of the inner shell 124 is remote from the fluid chamber 128 .
  • the conductive wall 126 When assembled, the conductive wall 126 generally surrounds or extends around the inner shell 124 (eg, along the circumferential direction C and according to any suitable shape).
  • the conductive wall 126 may be provided as a solid (eg, an impermeable member) formed of one or more suitable thermally conductive materials (eg, aluminum, including alloys thereof).
  • conductive wall 126 is coaxial with a portion of inner shell 124 (eg, sidewall 130 ), and optionally with central axis A.
  • the conductive wall 126 includes an outer surface 146 and an inner surface 144 spaced (eg, radially R outward) from the fluid cavity 128 .
  • a radial space may be defined between the conductive wall 126 and the inner shell 124 .
  • the container body 110 may define an insulating chamber 138 .
  • one or more suitable thermal insulators eg, aerogel, air, etc.
  • the insulating chamber 138 may provide a vacuum insulating void between the conductive wall 126 and the inner shell 124 .
  • the intermediate wall 148 maintains a radial distance between the conductive wall 126 and the inner shell 124 .
  • the intermediate wall 148 may extend radially from the inner surface 144 of the conductive wall 126 to the outer surface 146 of the inner shell 124 .
  • the intermediate wall 148 may be disposed on top of the conductive wall 126 (eg, near the top end 112).
  • the intermediate wall 148 may couple the conductive wall 126 to the inner shell 124 .
  • the conductive wall 126 and the inner shell 124 are formed together as a unitary, unitary member.
  • the intermediate wall 148 may be a portion of the one-piece member extending in the radial direction R. As shown in FIG.
  • the conductive wall 126 and the inner shell 124 are separate attachment members.
  • Intermediate wall 148 may be part of conductive wall 126, part of inner shell 124, or a separate member secured to conductive wall 126 or inner shell 124 by one or more suitable connectors, adhesives, adhesives, or the like.
  • one or more conductive fins 150 are provided on the conductive wall 126 .
  • a plurality of fins 150 may extend outward from the conductive wall 126 (eg, extend in the radial direction R).
  • the plurality of fins 150 may extend directly from the conductive wall 126 (eg, radially from the outer surface 146 of the conductive wall 126 ) and toward the surrounding environment opposite the insulating chamber 138 or fluid cavity 128 .
  • the plurality of fins 150 may be integrally formed with the conductive wall 126 as a single member, or alternatively, as separate attachment members coupled to the conductive wall 126 .
  • each fin 150 extends linearly between the top end 112 and the bottom end 114 .
  • alternative embodiments may provide fins 150 as another suitable shape.
  • the plurality of fins 150 are each equally spaced (eg, parallel) along the circumferential direction C. As shown in FIG. In an alternative embodiment, the spacing between the fins 150 along the circumferential direction C is varied such that some adjacent pairs of fins 150 are disposed closer together than other adjacent pairs of fins 150 .
  • the fins 150 When assembled, the fins 150 generally facilitate heat exchange between the conductive walls 126 and the surrounding or ambient environment.
  • the fins 150 may be formed from one or more suitable thermally conductive materials (eg, aluminum, including alloys thereof).
  • the rotatable blades 106 are rotatably arranged to cut, mix or agitate the contents of the fluid chamber 128 .
  • the rotatable vanes 106 may be provided as vane assemblies mounted to the bottom wall 132 .
  • a blade assembly may include a drive shaft extending from the bottom wall 132 .
  • a female coupling or gear may be provided for selectively engaging a corresponding male coupling or gear on the motor 104 .
  • the vane assembly or rotatable vanes 106 may be fixedly mounted to the bottom wall 132 such that the rotatable vanes 106 generally move with the bottom wall 132 while still allowing rotation relative to the bottom wall 132 .
  • the bottom wall 132 may be configured to be selectively detachable from and attached to the side wall 130 (eg, via a suitable clip or screw connection), as further understood.
  • thermoelectric heat exchangers are mounted within the vessel body 110 .
  • the TEHE 160 is mounted in thermal communication with the fluid chamber 128 .
  • the TEHE 160 can be any suitable solid state electrically driven heat exchanger, such as a Peltier device.
  • the TEHE 160 may include two distinct ends (ie, a first end 164 for heat exchange and a second end 166 for heat exchange). When activated, heat may be selectively directed between the first end 164 and the second end 166 . In particular, the heat flux created at the junction of the first end 164, the second end 166 can draw heat from one end to the other (eg, driven by electrical current).
  • the TEHE 160 is operably coupled (eg, electrically coupled) to a controller 162, which can thereby control the flow of electrical current to the TEHE 160.
  • the base 102 is provided to receive the container body 110 .
  • the base 102 can receive the container body 110 , optionally on a matching receiving area 108 .
  • the container body 110 may rest on the receiving area 108 during the stirring operation.
  • the vessel body 110 may be detached from the base 102 and move freely relative thereto before or after the stirring operation.
  • the motor 104 is mounted to the base 102 .
  • the motor 104 may be configured to selectively propel the rotation of the rotatable blades 106 .
  • the motor 104 may be in selective mechanical communication with the rotatable blades 106 such that the motor 104 and the vessel body 110 may alternately be disconnected (eg, before and after a stirring operation) and connected (eg, during a stirring operation).
  • the motor 104 may be physically coupled with the rotatable blades 106 directly or through one or more intermediate gears. Alternatively, as illustrated in FIG. 5 , the motor 104 may be included as part of the magnetic drive assembly 186 . In some such embodiments, the motor 104 includes a primary magnet set 188A coupled directly therewith. Secondary magnet set 188B may be directly coupled to rotatable blade 106 . Primary magnet set 188A may be secured to base 102 with motor 104, while secondary magnet set 188B may be secured to container body 110 so as to be selectively detachable from primary magnet set 188A.
  • the primary and secondary magnet sets 188A, 188B may be aligned and magnetically coupled to each other.
  • the rotation of the primary magnet set 188A may be transferred to the secondary magnet set 188B (and thus to the rotatable blades 106) without direct contact between the two.
  • the operation of the stirring appliance 100 is generally controlled by the controller 162 .
  • the controller 162 may be operably coupled (eg, electrically coupled via one or more conductive signal lines, wirelessly coupled via one or more wireless communication frequency bands, etc.) to the user interface.
  • the user interface may be provided, for example, at auxiliary device 170 ( FIG. 5 ) or a control panel (not shown) that is attached directly to container body 110 or base 102 .
  • the user interface may provide user manipulation to select the agitation period (eg, the speed, time span, or torque at which the rotatable blades 106 should rotate) or the temperature that the fluid chamber 128 should maintain.
  • controller 162 may be configured to direct various components of stirring appliance 100 (eg, motor 104, TEHE 160, etc.).
  • the direction of the controller 162 may allow the rotatable blades 106 to be rotated, or the stirring implement 100, to achieve or maintain the desired temperature in response to user manipulation of the user interface.
  • the controller 162 may be operably coupled to one or more temperature sensors (eg, thermocouples, thermistors, etc., not shown) disposed within the base 102 or container body 110 at a suitable location (eg, to measure or determine the temperature within the fluid chamber 128).
  • controller 162 is configured to direct various components of stirring appliance 100 (eg, motor 104, TEHE 160, etc.) based on one or more measurements of the temperature sensor.
  • the controller 162 may include a memory (eg, a non-transferable storage medium) and a microprocessor, such as a general-purpose or special-purpose microprocessor, operable to execute programmed instructions or micro-control code associated with the cleaning cycle.
  • the memory may represent random access memory such as DRAM or read only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a separate component from the processor, or may be contained on a board within the processor.
  • controller 162 may be implemented without the use of a microprocessor, eg, using a combination of discrete analog or digital logic circuits (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) Perform control functions instead of relying on software.
  • a microprocessor eg, using a combination of discrete analog or digital logic circuits (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) Perform control functions instead of relying on software.
  • the controller 162 may be mounted in any suitable location on the mixing appliance 100 , such as within the base 102 (eg, in selective electrical communication with the vessel body 110 ) or within the vessel body 110 .
  • the controller 162 may include multiple independent processors, such as a first controller 162A mounted within the container body 110 and a second controller 162B mounted within the base 102, as shown in FIG. 5 .
  • Motor 104, TEHE 160, and other components of stirring appliance 100 may be in operative communication (eg, in electrical communication) with controller 162 via one or more signal lines or a shared communication bus.
  • a user interface eg, auxiliary device 170
  • controller 162 may be in operative communication (eg, wireless communication) with controller 162 via one or more suitable shared networks.
  • auxiliary device 170 may correspond to any device that may be programmed to communicate with the controller using one of Wi-Fi, Bluetooth, ZigBee or similar types of wireless communication technologies and networks while running a program that provides user input 162 Communications.
  • devices such as, but not limited to, smartphones, tablet devices, and stand-alone devices may be used to implement the present invention.
  • TEHE 160 is mounted within container body 110 as shown in the exemplary embodiment of FIGS. 2-7 .
  • the TEHE 160 is also disposed within a hermetically sealed chamber (eg, the electronics compartment 172) that is fluidly isolated from the fluid chamber 128 or the surrounding environment.
  • an airtight sealed chamber eg, electronics compartment 172
  • electronics compartment 172 may be disposed within or as part of insulating chamber 138 .
  • the TEHE 160 may be shielded from the fluid within the fluid cavity 128 or the surrounding environment.
  • One heat exchange end of the TEHE 160 may be positioned on the inner housing 124 when assembled.
  • the first end 164 may contact the outer surface 136 of the inner shell 124 (eg, directly or through a suitable thermal paste/adhesive).
  • the TEHE 160 is disposed radially outward from the sidewall 130 .
  • a pair of TEHEs 160 may be provided at opposite radial ends of the sidewall 130 .
  • the first TEHE 160 may be disposed at one radial end of the outer surface 136 of the sidewall 130 while the second TEHE 160 may be disposed at the opposite radial end of the outer surface 136 of the sidewall 130 (eg, parallel to the first TEHE 160).
  • the TEHE 160 may be positioned proximate the bottom wall 132 and away from the opening 122.
  • any other suitable location or arrangement of the TEHE 160 relative to the inner housing 124 may be provided.
  • the TEHE 160 may abut against the portion of the bottom wall 132 disposed below the side wall 130 .
  • one or more conduction tubes 174 are disposed in thermal communication with the TEHE 160.
  • the conducting tube 174 is installed within the container body 110 .
  • At least a portion of the at least one conduction tube 174 may be disposed on the TEHE 160 .
  • the second end 166 of the TEHE 160 may contact the conductive tube 174 (eg, directly or through a suitable thermal paste/adhesive).
  • the conduction tube 174 is disposed radially outward from the TEHE 160, but another suitable location may be provided (eg, depending on the location of the TEHE 160 within the vessel body 110).
  • each conduction tube 174 is in thermal communication with the outer surface 146 of the conduction wall 126 .
  • the conduction tube 174 itself is typically provided as a thermally conductive body formed of one or more suitable materials (eg, copper or aluminum, including alloys thereof).
  • the conduction pipe 174 is a heat pipe, as will be understood by one of ordinary skill in the art.
  • each conduction tube 174 may form one or more sealed voids in which fluid refrigerant is contained.
  • the one or more conduction tubes 174 are formed as solid conduction members such that no voids or refrigerant is enclosed within the solid conduction tubes 174 .
  • the conduction tube 174 may be a solid metal member (eg, formed of copper or aluminum, including alloys thereof).
  • the conduction tube 174 may be disposed between the inner shell 124 and the outer surface 146 (eg, along the radial direction R).
  • one or more of the conductive tubes 174 may have a portion extending axially along the conductive wall 126 (eg, an axial portion perpendicular to the radial portion).
  • the axial portion of the conduction tube 174 may be a linear member parallel to the vertical V, as shown.
  • the axial portion may extend non-linearly with respect to the axis A (eg, as a curved, serpentine or helical member).
  • Some or all axial portions of the conduction tube 174 may be enclosed within the conduction wall 126 .
  • the axial portion of each conductive tube 174 may be embedded within the conductive wall 126 between the inner surface 144 and the outer surface 146 .
  • the axial portion of each conduction tube 174 is in thermally conductive communication with the outer surface 146 .
  • Other embodiments may place the axial portion of the conduction tube 174 directly along the inner surface 144 (eg, along a groove formed by the inner surface 144 ) while maintaining thermally conductive communication with the outer surface 146 .
  • the TEHE 160 may be provided in a heated or cooled configuration with the conduction tube 174 and vessel body 110.
  • the TEHE 160 may be provided in a cooled configuration.
  • the first end 164 of the TEHE 160 may be maintained at a lower temperature than the second end 166 of the TEHE 160 when in operation.
  • Heat may be directed from the fluid cavity 128 of the inner housing 124 to the first end 164 of the TEHE 160 as indicated by arrow 180 .
  • Heat 180 may then be pushed through TEHE 160 to second end 166 and conduction tube 174 .
  • Heat 180 may be carried from conduction tube 174 to vessel body 110, where it may be dissipated to the surrounding environment (eg, from outer surface 146 or fins 150).
  • the TEHE 160 may be provided in a heated configuration.
  • the first end 164 of the TEHE 160 may be maintained at a higher temperature than the second end 166 of the TEHE 160 when in operation.
  • heat may be directed from container body 110 to fluid cavity 128 (eg, as absorbed at conductive walls 126 or fins 150). Heat may be drawn from the vessel body 110 to the second end 166 of the TEHE 160 through the conduction tube 174 . Heat at the conduction tube 174 may be pushed through the second end 166 and the first end 164 of the TEHE 160 to the inner housing 124 and the fluid cavity 128, successively.
  • a DC power source 182 (eg, a battery) may be provided within the container body 110 (eg, to power certain operations thereof).
  • a DC power source 182 may be disposed within the non-vented electronics compartment 172 in electrical communication with the TEHE 160.
  • the first controller 162A may also be in electrical communication with the DC power source 182 .
  • the DC power source 182 is a rechargeable battery formed of, for example, lithium ion, nickel cadmium (NiCd), nickel metal hydride (NiMH), or the like.
  • a portion of the base 102 is configured to selectively recharge the DC power source when operably coupled with the DC power source 182 .
  • the second controller 162B may be configured to direct recharging of the DC power source 182 when the container body 110 is positioned on the receiving area 108 (e.g., mounted on the base 102). Second controller 162B may be operatively coupled (eg, electrically coupled) to DC power source 182 to supply charging current, such as through mating contact pads including first pad 190 retained on container body 110 and Second pad 192 on base 102 .
  • the stirring appliance 100 may include one or more secondary heat exchange assemblies 200 .
  • the secondary heat exchange assembly 200 is mounted to or included in the base 102 .
  • Secondary heat exchange assembly 200 may be operably coupled to controller 162, which may be further configured to direct activation or operation of secondary heat exchange assembly 200.
  • controller 162 may be further configured to direct activation or operation of secondary heat exchange assembly 200.
  • secondary heat exchange assembly 200 may typically be activated (eg, to facilitate heat exchange between container body 110 and one or more fluids being pushed).
  • the secondary heat exchange assembly 200 may include or be configured as one or more fans 210 (eg, axial fans, tangential fans, etc.) mounted to the base 102 .
  • each fan 210 is generally directed toward the receiving area 108 (eg, upward).
  • the fan 210 may be directed toward the container body 110 .
  • the cooling airflow 212 may be pushed across the outer surface 146 of the conductive wall 126 , through the surrounding environment as opposed to the insulating chamber 138 or fluid cavity 128 .
  • the cooling airflow 212 may generally facilitate heat exchange between the conductive walls 126 and the surrounding or ambient environment.
  • the secondary heat exchange assembly 200 may include or be configured as a hermetic cooling system 220 .
  • the sealed cooling system 220 includes one or more conduits or passages that define a flow path 222 through which a volume of refrigerant (eg, liquid coolant) is selectively forced.
  • a pump or compressor 224 may be installed along the flow path 222 to push the refrigerant.
  • the sealed cooling system 220 includes one or more additional evaporators, condensers or expansion valves for performing a closed loop vapor compression cycle.
  • the flow path 222 of the sealed cooling system 220 extends along the receiving area 108 .
  • the flow path 222 may extend around the receiving area 108 .
  • the guide walls 226 of the base 102 may define the receiving area 108 as an open chamber into which at least a portion of the container body 110 may be inserted.
  • the guide wall 226 may form a sleeve that is sized and shaped to match the container body 110 . Thereby, the guide wall 226 can contact the container body 110 in the receiving area 108 .
  • the flow path 222 may extend within the guide wall 226 .
  • the container body 110 may be in thermally conductive communication with the flow path 222 when inserted into the receiving area 108 .
  • the flow of cooling fluid may be forced through the flow path 222 surrounding the vessel body 110 .
  • Heat may be conducted from the outer surface 146 to the refrigerant (eg, liquid coolant) within the flow path 222 .
  • the cooling fluid flow may absorb heat from the fluid cavity 128 through the conductive wall 126 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Food-Manufacturing Devices (AREA)
  • Accessories For Mixers (AREA)

Abstract

本文提供的一种搅拌器具包括容器主体、可旋转叶片、马达和热电热交换器。容器主体可以包括内壳和传导壁。内壳可限定流体腔。传导壁可以沿着径向向外与流体腔隔开。可旋转叶片可以可旋转地布置在流体腔内。马达可以与可旋转叶片选择性地机械连通,以推动其旋转。热电热交换器可以安装在容器主体内,与流体腔热连通。

Description

主动冷却的搅拌器具 技术领域
本发明主要涉及搅拌器具,尤其涉及具有一个或多个主动元件的搅拌器具,这些主动元件用于控制搅拌器具的容器内的物质的温度。
背景技术
对于普通的搅拌器具或搅拌器,存在的挑战之一是调节位于搅拌器的容器内的内容物(例如,流体或饮料)的温度。在一些情况下,可能优选的是在低于容器周围的环境温度的温度下保持或饮用某些混合的食品或饮料。这对于诸如冰沙或奶昔的冷冻饮料尤其如此。当然,任何形式的独立容器都可以用于加热或冷却来自搅拌器的食品或饮料。不幸的是,这通常需要清空搅拌器容器并将内容物转移到新的容器。简单地将内容物留在大多数搅拌器的容器内通常会更方便。然而,大多数搅拌器容器不能防止内容物与周围环境达到平衡(例如,温度随时间升高)。
在一些搅拌器中使用被动系统,诸如真空绝热搅拌器容器,以保持容器内的食物或饮料温度。这种系统可以提供具有相对小的质量增加的期望的形状因数。然而,由于这些被动系统不能主动地向/从容器的内容物添加或汲取热量,因此它们的功效必然受到限制。作为示例,如果搅拌器容器内的饮料的温度低于环境温度,则饮料温度可能只能随着时间而升高。
存在一些主动系统,用于通过一个或多个独立于容器内容物的电、化学或机械推动的热交换器来调节独立饮料容器内的温度。然而,这些系统可能存在许多不期望的缺点。比如,这种系统通常非常脆弱。即使很小的冲击或掉落也可能导致电、化学或机械推动的热交换器(或另一主动部件)破裂。通常,包括这些系统的容器必须以非常柔和的方式清洁,因为主动部件可能被容器外部的流体或水分损坏。这通常使得这种容器尤其不适合搅拌器的高振动环境,在该环境中,旋转叶片主动地搅拌搅拌器容器的内容物。
因此,搅拌器领域中的进一步改进将是有用的。特别地,提供一种可以主动调节容器内的内容物的温度同时解决上述一个或多个问题的搅拌器将是有利的。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可 以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面,提供了一种搅拌器具。该搅拌器具可以包括容器主体、可旋转叶片、马达和热电热交换器。容器主体可以包括内壳和传导壁。内壳可限定流体腔。传导壁可以沿着径向向外与流体腔隔开。可旋转叶片可以可旋转地布置在流体腔内。马达可以与可旋转叶片选择性地机械连通,以推动其旋转。热电热交换器可以安装在容器主体内,与流体腔热连通。
在本发明的另一个示例性方面,提供了一种搅拌器具。该搅拌器具可以包括容器主体、可旋转叶片、马达和热电热交换器。容器主体可以包括内壳和传导壁。内壳可限定流体腔。传导壁可以沿着径向向外与流体腔隔开。沿着径向在内壳与传导壁之间可以限定绝热室。可旋转叶片可以可旋转地布置在流体腔内。马达可以与可旋转叶片选择性地机械连通,以推动其旋转。热电热交换器可以安装在容器主体内,与流体腔热连通。热电热交换器可以设置在绝热室的至少一部分内。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的搅拌器具的立体图。
图2提供了沿着线2-2截取的图1的示例性搅拌器具的示意性剖视图。
图3提供了沿着线3-3截取的图1的示例性搅拌器具的示意性剖视图。
图4提供了被框在方框4A内的图3的示例性搅拌器具的一部分的放大示意性剖视图。
图5提供了根据本发明的示例性实施方式的搅拌器具的示意性剖视图。
图6提供了根据本发明的另一示例性实施方式的搅拌器具的示意性剖视图。
图7提供了根据本发明的又一示例性实施方式的搅拌器具的示意性剖视图。
具体实施方式
现在将详细地提及本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本 领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,术语“或”通常是指包括在内的(即,“A或B”是指“A或B或两者”)。术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。
现在转向附图,图1提供了根据本发明的示例性实施方式的搅拌器具100的立体图。图2和图3分别提供了沿着图1的线2-2和3-3截取的搅拌器具100的独立剖视图。图4提供了在图3的区域4A中捕获的搅拌器具100的一部分的放大示意性剖视图。
通常,搅拌器具100限定竖向V。还可进一步限定中心轴线A(例如,平行于竖向V)。径向R可从中心轴线A向外延伸(例如,垂直于竖向V),而周向C可围绕中心轴线A限定。
搅拌器具100包括容器主体110和马达104,该马达104可以被构造成推动布置在容器主体110内的可旋转叶片106旋转。如图所示,容器主体110沿着竖向V延伸(例如,从顶端112延伸到底端114)。可移除盖120可以放置在容器主体110上(例如,在顶端112处),其中,可移除盖120可以在关闭位置(例如,如图1所示)与打开位置(未示出)之间移动。关闭位置覆盖由容器主体110限定的流体开口122(图3),而打开位置至少部分地露出流体开口122,以允许流体(例如饮料)通过,如通常理解的那样。
特别转到图2,容器主体110包括内壳124和传导壁126,二者都可以沿着竖向V延伸。内壳124和传导壁126两者的至少一部分可以与中心轴线A隔开并且沿着径向R彼此隔开。内壳124是固体(例如,不渗透的)构件,其限定了流体腔128,流体腔128用于接收和储存流体体积(例如,混合的食品或饮料)或固体物品(例如,待搅拌的食品或流体)的流体腔128。内壳124的侧壁130可以大体围绕中心轴线A沿着周向C(根据任何合适的形状)延伸。内壳124的底壁132可以联结侧壁130并且延伸跨过中心轴线A(例如,相对于中心轴线A成非平行角度)。流体腔128与流体开口122流体连通,因此当流体体积被放入流体腔128中或从其中移除时,流体体积可以穿过流体开口122。由此,流体腔128可以提供开放的容积,混合饮料的食品可以放置到该容积中,并且混合饮料可以从该容积中倒出。内壳124的内表面134 指向流体腔128(例如,使得流体腔128沿着内表面134被限定)。内壳124的相对的外表面136为远离流体腔128。
当组装时,传导壁126通常围绕内壳124或围绕其延伸(例如,沿着周向C并且根据任何合适的形状)。传导壁126可以设置为由一种或多种合适的导热材料(例如,铝,包括其合金)形成的固体(例如,不渗透构件)。在一些这样的实施方式中,传导壁126与内壳124的一部分(例如,侧壁130)同轴,并且可选地与中心轴线A同轴。如图所示,传导壁126包括外表面146和与流体腔128隔开(例如,沿着径向R向外)的内表面144。径向空间可以限定在传导壁126与内壳124之间。在径向空间内,容器主体110可以限定绝热室138。可选地,一个或多个合适的热绝缘体(例如,气凝胶、空气等)可以布置在绝热室138内,以热隔离内壳124和传导壁126。另外地或可选地,绝热室138可以在传导壁126与内壳124之间提供真空绝热空隙。
在一些实施方式中,中间壁148在传导壁126与内壳124之间保持径向距离。例如,中间壁148可以从传导壁126的内表面144径向地延伸到内壳124的外表面146。可选地,中间壁148可以设置在传导壁126的顶部(例如,接近顶端112)。而且,中间壁148可以将传导壁126联结到内壳124。作为示例,在一些实施方式中,传导壁126和内壳124一起形成为一体的单一构件。中间壁148可以是一体构件的在径向R上延伸的一部分。作为另一示例,在一些实施方式中,传导壁126和内壳124是分开的附接构件。中间壁148可以是传导壁126的一部分、内壳124的一部分、或者通过一个或多个合适的连接器、粘合剂、粘结剂等固定到传导壁126或内壳124的单独构件。
在可选实施方式中,一个或多个传导翅片150设置在传导壁126上。特别地,多个翅片150可以从传导壁126向外延伸(例如,沿着径向R延伸)。比如,如图所示,多个翅片150可以直接从传导壁126(例如,从传导壁126的外表面146径向地)并且朝向与绝热室138或流体腔128相对的周围环境延伸。可选地,多个翅片150可以与传导壁126一体形成,作为单一构件,或者可选地,作为联结到传导壁126的单独的附接构件。在一些实施方式中,各个翅片150在顶端112与底端114之间线性地延伸。然而,可选实施方式可以提供作为另一合适形状的翅片150。在示例性实施方式中,多个翅片150各自沿着周向C等距隔开(例如,平行地)。在可选实施方式中,沿着周向C的翅片150之间的间距是变化的,使得一些相邻对的翅片150设置成比其他相邻对的翅片150更近。
当组装时,翅片150通常可促进传导壁126与周围或周边环境之间的热交换。 由此,翅片150可由一种或多种合适的导热材料(例如,铝,包括其合金)形成。
在流体腔128内,可旋转叶片106可旋转地布置,以切割、混合或搅拌流体腔128的内容物。比如,可旋转叶片106可以设置为安装到底壁132的叶片组件。如所理解的,这种叶片组件可包括从底壁132延伸的驱动轴。可选地,可以设置阴联接器或齿轮,用于选择性地接合马达104上的对应的阳联接器或齿轮。另外地或可选地,叶片组件或可旋转叶片106可以固定地安装到底壁132,使得可旋转叶片106通常与底壁132一起移动,同时仍然允许相对于底壁132旋转。而且另外地或可选地,底壁132可以被构造成选择性地与侧壁130分离和附接到侧壁(例如,经由合适的夹具或螺纹连接),如进一步理解的。
一个或多个热电热交换器(TEHE 160)安装在容器主体110内。特别地,TEHE 160安装成与流体腔128热连通。通常,TEHE 160可以是任何合适的固态电驱动热交换器,诸如珀耳帖装置。TEHE 160可包括两个不同的端部(即,热交换的第一端164和热交换的第二端166)。当被启动时,热量可以选择性地在第一端164、第二端166之间被引导。特别地,在第一端164、第二端166的接合处产生的热通量可以将热量从一端汲取到另一端(例如,由电流驱动)。在一些实施方式中,TEHE 160可操作地联接(例如电联接)到控制器162,该控制器由此可以控制电流向TEHE 160的流动。
在一些实施方式中,设置底座102以接收容器主体110。例如,底座102可以接收容器主体110,选择性地在匹配的接收区域108上接收容器主体110。在搅拌操作期间,容器主体110可以搁置在接收区域108上。相反,在搅拌操作之前或之后,容器主体110可与底座102分离并相对于其自由移动。在一些这样的实施方式中,马达104安装到底座102。马达104可被构造成选择性地推动可旋转叶片106的旋转。比如,马达104可与可旋转叶片106选择性地机械连通,使得马达104和容器主体110可交替地分离(例如,在搅拌操作之前和之后)和连接(例如,在搅拌操作期间)。
如所理解的,马达104可以直接或通过一个或多个中间齿轮与可旋转叶片106物理连接。可选地,如图5例示,马达104可被包括作为磁驱动组件186的一部分。在一些这样的实施方式中,马达104包括直接与其联接的初级磁体组188A。次级磁体组188B可以直接联接到可旋转叶片106。初级磁体组188A可用马达104固定到底座102,而次级磁体组188B固定到容器主体110,由此可与初级磁体组188A选择性地分离。在搅拌操作期间,例如当容器主体110处于接收区域108上时,初级磁体组和次级磁体组188A、188B可以对齐并且彼此磁性联接。由此,在两者之间没有直接接触时,初级磁体组188A的旋转可被传递到次级磁体组188B(从而传递到可旋转 叶片106)。
在某些实施方式中,搅拌器具100的操作(例如,在马达104或TEHE 160处)通常由控制器162控制。控制器162可以可操作地联接(例如,经由一个或多个传导信号线电联接,经由一个或多个无线通信频带无线联接等)到用户界面。用户界面可设置在例如辅助装置170(图5)或控制板(未示出)处,该控制板直接附接到容器主体110或底座102。而且,用户界面可以提供用户操纵以选择搅拌周期(例如,可旋转叶片106应当旋转的速度、时间跨度或扭矩)或流体腔128应当保持的温度。由此,控制器162可以被配置成指导搅拌器具100的各种部件(例如,马达104、TEHE160等)。由此,控制器162的指导可以允许旋转可旋转叶片106,或者允许搅拌器具100,以响应用户界面的用户操纵而达到或保持期望的温度。另外地或可选地,控制器162可以可操作地联接到一个或多个温度传感器(例如,热电偶、热敏电阻等,未示出),这些传感器设置在底座102或容器主体110内的合适位置处(例如,以便测量或确定流体腔128内的温度)。在一些这样的实施方式中,控制器162被配置成基于温度传感器的一个或多个测量值来指导搅拌器具100的各种部件(例如,马达104、TEHE 160等)。
控制器162可以包括存储器(例如,非可递存储介质)和微处理器,诸如通用或专用微处理器,该微处理器可运行为执行与清洁周期关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。在一个实施方式中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以包含在处理器内的板上。可选地,控制器162可以在不使用微处理器的情况下,例如使用离散的模拟或数字逻辑电路的组合(诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。
控制器162可以安装在搅拌器具100上的任何合适的位置,诸如在底座102内(例如,与容器主体110选择性地电气通信)或在容器主体110内。可选地,控制器162可包括多个独立的处理器,诸如安装在容器主体110内的第一控制器162A和安装在底座102内的第二控制器162B,如图5所示。
马达104、TEHE 160和搅拌器具100的其它部件可以经由一条或多条信号线或共享的通信总线与控制器162可操作地通信(例如,电气通信)。用户界面(例如,辅助装置170)可以经由一个或多个合适的共享网络与控制器162可操作地通信(例如,无线通信)。
应当理解,辅助装置170可以对应于任何装置,其可被编程为在运行提供用户 输入的程序的同时使用Wi-Fi、蓝牙、ZigBee或类似类型的无线通信技术和网络中的一个来与控制器162通信。在该上下文中,诸如但不限于智能电话、平板装置和独立装置的装置可以用于实现本发明。
如图2至图7的示例性实施方式所示,TEHE 160安装在容器主体110内。在一些实施方式中,TEHE 160还设置在与流体腔128或周围环境流体隔离的不通气的密封室(例如,电子器件隔间172)内。可选地,不通气的密封室(例如,电子器件隔间172)至少部分地由传导壁126限定。例如,电子器件隔间172可设置在绝热室138内或作为其一部分。
有利地,在密封室内,TEHE 160可被屏蔽以免受流体腔128内的流体或周围环境影响。当组装时,TEHE 160的一个热交换端可以设置在内壳124上。比如,第一端164可以接触内壳124的外表面136(例如,直接地或者通过合适的热膏/粘合剂)。在一些这样的实施方式中,TEHE 160从侧壁130径向向外设置。另外或可选地,一对TEHE 160可设置在侧壁130的相对径向端。比如,第一TEHE 160可设置于侧壁130的外表面136的一个径向端处,而第二TEHE 160设置于侧壁130的外表面136的相对径向端处(例如平行于第一TEHE 160)。可选地,TEHE 160可以接近底壁132并远离开口122设置。然而,应当认识到,可以提供TEHE 160相对于内壳124的任何其它合适的位置或布置。比如,TEHE 160可抵靠设置于侧壁130下方的底壁132的部分。
在一些实施方式中,一个或多个传导管174设置成与TEHE 160热连通。特别地,传导管174安装在容器主体110内。至少一个传导管174的至少一部分可布置在TEHE160上。比如,TEHE 160的第二端166可接触传导管174(例如,直接地或通过合适的热膏/粘合剂)。在所例示的实施方式中,传导管174从TEHE 160径向向外设置,但也可设置另一合适的位置(例如,取决于TEHE 160在容器主体110内的位置)。通常,各个传导管174与传导壁126的外表面146热连通。
传导管174本身通常被设置为由一种或多种合适的材料(例如,铜或铝,包括其合金)形成的导热主体。在一些实施方式中,如本领域普通技术人员将理解的,传导管174是热管。由此,各个传导管174可形成其中容纳流体制冷剂的一个或多个密封的空隙。在可选实施方式中,一个或多个传导管174形成为实心传导构件,使得没有空隙或制冷剂被封闭在实心传导管174内。比如,传导管174可以是实心金属构件(例如,由铜或铝,包括其合金形成)。
如图所示,传导管174的至少一部分可以设置在内壳124与外表面146之间(例 如,沿着径向R)。比如,在传导壁126处,一个或多个传导管174可具有沿着传导壁126轴向延伸的部分(例如,垂直于径向部分的轴向部分)。可选地,传导管174的轴向部分可以是平行于竖向V的线性构件,如图所示。可选地,轴向部分可相对于轴向A非线性地延伸(例如,作为弯曲的、蜿蜒的或螺旋形的构件)。
传导管174的一些或全部轴向部分可以被封闭在传导壁126内。比如,如图2至图7的示例性实施方式所示,各个传导管174的轴向部分可以嵌入在内表面144与外表面146之间的传导壁126内。由此,各个传导管174的轴向部分与外表面146导热连通。其它实施方式可将传导管174的轴向部分直接沿着内表面144(例如,沿着由内表面144形成的凹槽)设置,同时保持与外表面146导热连通。
根据搅拌器具100的期望操作,TEHE 160可以被设置为具有传导管174和容器主体110的加热或冷却构造。
如图例示,尤其是在图4中,TEHE 160可以设置成冷却构造。由此,当工作时,TEHE 160的第一端164可保持为低于TEHE 160的第二端166的温度。如箭头180所示,热量可从内壳124的流体腔128被引导到TEHE 160的第一端164。热量180随后可通过TEHE 160被推动到第二端166以及传导管174。热量180可从传导管174被携带至容器主体110,在那里热量可被耗散至周围环境(例如,从外表面146或翅片150)。
然而,如所理解的,在另外的或可选的实施方式中,TEHE 160可以设置成加热构造。由此,当工作时,TEHE 160的第一端164可保持为高于TEHE 160的第二端166的温度。比如,热量可以从容器主体110被引导到流体腔128(例如,如在传导壁126或翅片150处吸收)。热量可从容器主体110通过传导管174被汲取到TEHE 160的第二端166。传导管174处的热量可以相继地通过TEHE 160的第二端166和第一端164被推动到内壳124和流体腔128。
现在尤其转到图5,直流电源182(例如电池)可以设置在容器主体110内(例如,以为其某些操作供电)。比如,直流电源182可以设置在不通气的电子器件隔间172内,与TEHE 160电气通信。可选地,第一控制器162A还可以与直流电源182电气通信。
在示例性实施方式中,直流电源182是由比如锂离子、镍镉(NiCd)、镍金属氢化物(NiMH)等形成的可再充电电池。在一些这样的实施方式中,底座102的一部分被配置为当可操作地与直流电源182联接时选择性地对直流电源再充电。比如,第二控制器162B可以被配置成当容器主体110设置于接收区域108上(例如,安装 到底座102上)时,指导直流电源182的再充电。第二控制器162B可以操作性地联接(例如,电联接)到直流电源182以供应充电电流,诸如通过配合的接触垫,这些接触垫包括保持在容器主体110上的第一垫190和保持在底座102上的第二垫192。
现在一般转到图6和图7,示例了搅拌器具100的进一步的示例性实施方式。如图所示,搅拌器具100可以包括一个或多个次级热交换组件200。在一些实施方式中,次级热交换组件200安装到或包括在底座102中。次级热交换组件200可以可操作地联接到控制器162,该控制器可以进一步配置成指导次级热交换组件200的启动或操作。例如,当底座102上接收到容器主体110时,通常可以启动次级热交换组件200(例如,以促进容器主体110与一种或多种被推动流体之间的热交换)。
如图6所示,次级热交换组件200可包括或设置为安装到底座102的一个或多个风扇210(例如,轴流风扇、切向风扇等)。在一些实施方式中,各个风扇210通常被导向接收区域108(例如,向上)。由此,当容器主体110设置在接收区域108上时,风扇210可被导向容器主体110。由此,当风扇210旋转时,冷却气流212可被推动跨过传导壁126的外表面146,穿过与绝热室138或流体腔128相对的周围环境。进而,冷却气流212通常可促进传导壁126与周围或周边环境之间的热交换。
如图7所示,次级热交换组件200可包括或设置为密封冷却系统220。通常,密封冷却系统220包括限定流路222的一个或多个管道或通道,一定体积的制冷剂(例如,液体冷却剂)被选择性地推动通过该流路。比如,泵或压缩机224可以沿着流路222安装以推动制冷剂。可选地,如所理解的,密封冷却系统220包括一个或多个另外的蒸发器、冷凝器或膨胀阀,用于执行闭环蒸气压缩循环。
在某些实施方式中,密封冷却系统220的流路222沿着接收区域108延伸。比如,流路222可以围绕接收区域108延伸。可选地,底座102的引导壁226可以将接收区域108限定为开放室,容器主体110的至少一部分可以插入该开放室内。可选地,引导壁226可形成尺寸和形状与容器主体110匹配的套筒。由此,引导壁226可以在接收区域108中接触容器主体110。另外地或可选地,流路222可以在引导壁226内延伸。当插入接收区域108内时,容器主体110可与流路222导热连通。当泵或压缩机224工作时,冷却流体流可被推动通过围绕容器主体110的流路222。热量可从外表面146传导到流动路径222内的制冷剂(例如,液体冷却剂)。进而,冷却流体流可通过传导壁126从流体腔128吸收热量。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任何装置或系统并且执行所包 含的任何方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (19)

  1. 一种搅拌器具,其限定了竖向和径向,其特征在于,所述搅拌器具包括:
    容器主体,所述容器主体包括内壳和传导壁,所述内壳限定流体腔,并且所述传导壁沿着所述径向向外与所述流体腔隔开;
    可旋转叶片,所述可旋转叶片可旋转地布置在所述流体腔内;
    马达,所述马达与所述可旋转叶片选择性地机械连通,以推动其旋转;以及
    热电热交换器,所述热电热交换器安装在所述容器主体内,与所述流体腔热连通。
  2. 根据权利要求1所述的搅拌器具,其特征在于,所述热电热交换器包括第一热交换端和第二热交换端,热量在所述第一热交换端与第二热交换端之间被选择性地引导,其中,所述第一热交换端被设置成与所述内壳接触,并且,所述第二热交换端被设置成与所述传导壁接触。
  3. 根据权利要求1所述的搅拌器具,其特征在于,还包括从所述容器主体内的所述热电热交换器延伸的传导管,所述传导管的至少一部分设置在所述内壳与所述传导壁之间。
  4. 根据权利要求3所述的搅拌器具,其特征在于,所述传导管被设置在所述热电热交换器与所述传导壁之间。
  5. 根据权利要求1所述的搅拌器具,其特征在于,所述容器主体还包括从所述传导壁径向向外延伸的多个翅片。
  6. 根据权利要求1所述的搅拌器具,其特征在于,还包括:
    底座,所述底座限定接收区域,所述接收区域上选择性地接收所述容器主体;和
    风扇,所述风扇安装在所述底座内并且指向所述接收区域,以推动气流跨过所述容器主体的外表面。
  7. 根据权利要求1所述的搅拌器具,其特征在于,还包括:
    底座,所述底座限定接收区域,所述接收区域上选择性地接收所述容器主体;和
    密封冷却组件,所述密封冷却组件限定流路,一定体积的制冷剂被选择性地推动通过所述流路,所述密封冷却组件安装在所述底座内,所述流路沿着所述接收区域延伸。
  8. 根据权利要求1所述的搅拌器具,其特征在于,所述热电热交换器是珀尔帖装置。
  9. 根据权利要求1所述的搅拌器具,其特征在于,还包括:
    底座,所述底座限定接收区域,所述接收区域上选择性地接收所述容器主体;和
    磁驱动组件,所述磁驱动组件包括容纳在所述底座内的马达,所述马达在所述可旋转叶片内选择性地磁连通,以推动可旋转叶片在所述流体腔内的旋转。
  10. 根据权利要求1所述的搅拌器具,其特征在于,沿着所述径向,在所述内壳与所述传导壁之间限定了绝热室。
  11. 一种搅拌器具,其限定了竖向和径向,其特征在于,所述搅拌器具包括:
    容器主体,所述容器主体包括内壳和传导壁,所述内壳限定流体腔,并且所述传导壁沿着所述径向向外与所述流体腔隔开,其中,沿着所述径向,在所述内壳与所述传导壁之间限定了绝热室;
    可旋转叶片,所述可旋转叶片可旋转地布置在所述流体腔内;
    马达,所述马达与所述可旋转叶片选择性地机械连通,以推动其旋转;以及
    热电热交换器,所述热电热交换器安装在所述容器主体内,与所述流体腔热连通,所述热电热交换器设置在所述绝热室的至少一部分内。
  12. 根据权利要求11所述的搅拌器具,其特征在于,所述热电热交换器包括第一热交换端和第二热交换端,热量在所述第一热交换端与第二热交换端之间被选择性地引导,其中,所述第一热交换端被设置成与所述内壳接触,并且,所述第二热交换端被设置成与所述传导壁接触。
  13. 根据权利要求11所述的搅拌器具,其特征在于,还包括从所述容器主体内的所述热电热交换器延伸的传导管,所述传导管的至少一部分设置在所述内壳与所述传导壁之间。
  14. 根据权利要求13所述的搅拌器具,其特征在于,所述传导管被设置在所述热电热交换器与所述传导壁之间。
  15. 根据权利要求11所述的搅拌器具,其特征在于,所述容器主体还包括从所述传导壁径向向外延伸的多个翅片。
  16. 根据权利要求11所述的搅拌器具,其特征在于,还包括:
    底座,所述底座限定接收区域,所述接收区域上选择性地接收所述容器主体;和
    风扇,所述风扇安装在所述底座内并且指向所述接收区域,以推动气流跨过所述容器主体的外表面。
  17. 根据权利要求11所述的搅拌器具,其特征在于,还包括:
    底座,所述底座限定接收区域,所述接收区域上选择性地接收所述容器主体;和
    密封冷却组件,所述密封冷却组件限定流路,一定体积的制冷剂被选择性地推动通过所述流路,所述密封冷却组件安装在所述底座内,所述流路沿着所述接收区域延伸。
  18. 根据权利要求11所述的搅拌器具,其特征在于,所述热电热交换器是珀尔帖装置。
  19. 根据权利要求11所述的搅拌器具,其特征在于,还包括:
    底座,所述底座限定接收区域,所述接收区域上选择性地接收所述容器主体;和
    磁驱动组件,所述磁驱动组件包括容纳在所述底座内的马达,所述马达在所述可旋转叶片内选择性地磁连通,以推动可旋转叶片在所述流体腔内的旋转。
PCT/CN2021/104635 2020-07-06 2021-07-06 主动冷却的搅拌器具 WO2022007773A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180048152.7A CN115836183A (zh) 2020-07-06 2021-07-06 主动冷却的搅拌器具
EP21837818.0A EP4177541A4 (en) 2020-07-06 2021-07-06 AGITATOR WITH ACTIVE COOLING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/920,879 2020-07-06
US16/920,879 US20220001344A1 (en) 2020-07-06 2020-07-06 Actively-cooled blender appliance

Publications (1)

Publication Number Publication Date
WO2022007773A1 true WO2022007773A1 (zh) 2022-01-13

Family

ID=79166455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104635 WO2022007773A1 (zh) 2020-07-06 2021-07-06 主动冷却的搅拌器具

Country Status (4)

Country Link
US (1) US20220001344A1 (zh)
EP (1) EP4177541A4 (zh)
CN (1) CN115836183A (zh)
WO (1) WO2022007773A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1742780S (ja) * 2022-02-11 2023-04-25 コーヒーミル

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205358065U (zh) * 2014-03-11 2016-07-06 布瑞威利私人有限公司 用于食物处理器的带齿轮的心轴
CN106524566A (zh) * 2016-12-26 2017-03-22 上海工程技术大学 一种利用半导体制冷的装置
CN110248841A (zh) * 2017-02-01 2019-09-17 Lg电子株式会社 冷热柜
CN110680211A (zh) * 2018-07-05 2020-01-14 德国福维克控股公司 具有冷却装置的制备容器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540288A (en) * 1983-08-01 1985-09-10 Brevetti Gaggia S.P.A. Apparatus for producing ice cream utilizing the Peltier effect
US9555384B2 (en) * 2013-10-25 2017-01-31 Whirlpool Corporation Blender assembly
WO2018158170A1 (en) * 2017-02-28 2018-09-07 Nestec S.A. Beverage cooling device for preparing cooled beverage when paired with a beverage preparation machine
DE202017107544U1 (de) * 2017-12-12 2019-03-15 Vorwerk & Co. Interholding Gmbh Zubereitungsgefäß für eine Küchenmaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205358065U (zh) * 2014-03-11 2016-07-06 布瑞威利私人有限公司 用于食物处理器的带齿轮的心轴
CN106524566A (zh) * 2016-12-26 2017-03-22 上海工程技术大学 一种利用半导体制冷的装置
CN110248841A (zh) * 2017-02-01 2019-09-17 Lg电子株式会社 冷热柜
CN110680211A (zh) * 2018-07-05 2020-01-14 德国福维克控股公司 具有冷却装置的制备容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177541A4 *

Also Published As

Publication number Publication date
EP4177541A4 (en) 2024-01-17
CN115836183A (zh) 2023-03-21
US20220001344A1 (en) 2022-01-06
EP4177541A1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
US11298667B2 (en) Preparation vessel with a cooling device
CN109838956B (zh) 温度调节容器
ES2879822T3 (es) Gestión de calor para procesador de alimentos
JP2017538413A (ja) アイスクリーム製造器およびアイスクリーム製造器用熱交換装置
JP2017536838A (ja) アイスクリーム製造器およびアイスクリーム製造器用熱交換装置
ES2898439T3 (es) Recipiente de preparación para un aparato de cocina
US5572872A (en) Liquid cooling, storing and dispensing device
WO2022007773A1 (zh) 主动冷却的搅拌器具
WO2006064432A1 (en) A thermoelectric cooling/heating appliance
CN110248841B (zh) 冷热柜
TWI549640B (zh) 致冷加熱裝置
US20220026133A1 (en) Method and System for Cooler Conversion to a Refrigerator
JP2023522678A (ja) 空気の冷却効率を向上させた冷風機
KR100436907B1 (ko) 열전 모듈을 내장한 매니폴드
US4255060A (en) Homogenizing device
US20190226728A1 (en) Thermo-electric beverage container
JP2012242076A (ja) 貯湯式給湯装置
TWI756157B (zh) 冷熱多用途飲料調理器
CN219895374U (zh) 液体加热装置
CN218222938U (zh) 一种冷热温控离心机
KR20170099685A (ko) 펠티어 열전소자를 사용하는 컵 보온/보냉 장치
CN109349889A (zh) 一种冷热温控杯
CN213841492U (zh) 制冷棒
CN211242869U (zh) 一种智能电磁双腔锁水电热水壶
CN215016071U (zh) 烹饪器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021837818

Country of ref document: EP

Effective date: 20230206