WO2022007744A1 - 一种功率放大器的温度补偿电路及温度补偿方法 - Google Patents

一种功率放大器的温度补偿电路及温度补偿方法 Download PDF

Info

Publication number
WO2022007744A1
WO2022007744A1 PCT/CN2021/104501 CN2021104501W WO2022007744A1 WO 2022007744 A1 WO2022007744 A1 WO 2022007744A1 CN 2021104501 W CN2021104501 W CN 2021104501W WO 2022007744 A1 WO2022007744 A1 WO 2022007744A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical signal
temperature
current
compensation circuit
voltage
Prior art date
Application number
PCT/CN2021/104501
Other languages
English (en)
French (fr)
Inventor
苏强
李咏乐
Original Assignee
广州慧智微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州慧智微电子有限公司 filed Critical 广州慧智微电子有限公司
Publication of WO2022007744A1 publication Critical patent/WO2022007744A1/zh
Priority to US18/064,264 priority Critical patent/US20230104737A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/301Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/447Indexing scheme relating to amplifiers the amplifier being protected to temperature influence

Definitions

  • the present application relates to electronic technology, and in particular, to a temperature compensation circuit and a temperature compensation method of a power amplifier.
  • the power amplifier (referred to as “power amplifier”) is in the saturation working mode, in order to meet the 3rd Generation Partnership Project (3GPP) protocol to the Global System for Mobile Communication (Global System for Mobile Communication, GSM) output power in the time domain
  • 3GPP 3rd Generation Partnership Project
  • GSM Global System for Mobile Communication
  • PVT upper power time template
  • the power amplifier circuit works at high and low temperature, since the circuit device parameters will change with temperature, the gain and output power of the power amplifier will decrease at high temperature; on the contrary, at low temperature, the gain and output power of the power amplifier will increase. In this case, the change of high and low temperature will make the gain and output power of the power amplifier change greatly compared with the normal temperature, so it is difficult to meet the needs of industry indicators.
  • the embodiments of the present application expect to provide a temperature compensation circuit and a temperature compensation method for a power amplifier.
  • the present application provides the temperature compensation circuit, which is configured to generate a first electrical signal corresponding to the current ambient temperature, and use the first electrical signal to compare the second electrical signal received by the electrical signal input end. performing adjustment to obtain a third electrical signal; outputting the third electrical signal to the power control circuit;
  • the power control circuit is configured to convert the third electrical signal into a fourth electrical signal, and output the fourth electrical signal to a power amplifier; wherein the fourth electrical signal is used to control the power amplifier
  • the gain exhibits a preset variation law with temperature.
  • the temperature compensation circuit includes: a current compensation circuit and a current-voltage conversion circuit; the current compensation circuit is configured to generate a first electrical signal corresponding to the current ambient temperature; the current compensation circuit outputs the first electrical signal.
  • An electrical signal adjusts the second electrical signal to obtain an intermediate electrical signal; the first electrical signal, the second electrical signal and the intermediate electrical signal are current signals; the current-voltage conversion circuit is configured as The intermediate electrical signal is converted into the third electrical signal for output; wherein, the third electrical signal is a voltage signal.
  • the current compensation circuit includes: a temperature-controlled current source and a current adjustment circuit; the temperature-controlled current source is configured to provide a current signal that changes with temperature; the current adjustment circuit is configured to The current signal provided by the current source is adjusted to the first electrical signal.
  • the current adjustment circuit includes: a steady state current source, a first field effect transistor and a second field effect transistor; one end of the steady state current source is connected to the first voltage source, and the other end of the steady state current source is connected to the first voltage source. One end is connected to the temperature-controlled current source, and the intermediate connection node of the steady-state current source and the temperature-controlled current source is connected to the gate and drain of the first field effect transistor; the source of the first field effect transistor The electrode and the source of the second field effect transistor are connected to a second voltage source; the drain of the second field effect transistor is used as the output end of the current compensation circuit to output the first electrical signal.
  • the current-voltage conversion circuit includes: a first resistor; one end of the first resistor is grounded, and the other end of the first resistor is connected to the output end of the current compensation circuit and the input of the power control circuit end connected.
  • the current-voltage conversion circuit further includes: a first capacitor; the first capacitor is connected in parallel with both ends of the first resistor.
  • the preset variation rule is that the gain of the power amplifier increases as the temperature increases, and decreases as the temperature decreases.
  • the temperature compensation circuit is a voltage compensation circuit; the first electrical signal and the second electrical signal are voltage signals; wherein, the voltage compensation circuit includes: a temperature-controlled voltage source and a voltage adjustment circuit; The temperature-controlled voltage source is configured to provide a voltage signal that varies with temperature; the voltage adjustment circuit is configured to adjust the voltage signal provided by the temperature-controlled voltage source to the first electrical signal.
  • the power control circuit includes at least a low dropout linear regulator, and a forward input terminal of the low dropout linear regulator serves as an input terminal of the power control circuit to receive the third electrical signal.
  • a temperature compensation method for a power amplifier comprising:
  • controlling the power control circuit to convert the third electrical signal into a fourth electrical signal, and outputting the fourth electrical signal to a power amplifier
  • the fourth electrical signal is used to control the gain of the power amplifier to exhibit a preset variation rule with temperature variation.
  • Embodiments of the present application provide a temperature compensation circuit and a temperature compensation method for a power amplifier.
  • the temperature compensation circuit is configured to generate a first electrical signal corresponding to a current ambient temperature, and use the first electrical signal to compare the electrical signal
  • the second electrical signal received at the input end is adjusted to obtain a third electrical signal; the third electrical signal is output to the power control circuit; the power control circuit is configured to convert the third electrical signal into a third electrical signal Four electrical signals, the fourth electrical signal is output to the power amplifier; the fourth electrical signal is used to control the gain of the power amplifier to exhibit a preset variation law with temperature changes.
  • FIG. 1 is a schematic diagram of a first composition structure of a temperature compensation circuit in an embodiment of the present application
  • FIG. 2 is a schematic diagram of the composition and structure of a power control circuit in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a second composition structure of a temperature compensation circuit in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a linear relationship between voltage and current in an embodiment of the application.
  • FIG. 6 is a schematic diagram of a third composition structure of a temperature compensation circuit in an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a temperature control method for a power amplifier in an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a first composition structure of a temperature compensation circuit in an embodiment of the application, as shown in FIG. 1 ,
  • the temperature compensation circuit 11 is configured to generate a first electrical signal corresponding to the current ambient temperature, and use the first electrical signal to adjust the second electrical signal received by the electrical signal input terminal to obtain a third electrical signal; outputting the third electrical signal to the power control circuit 12;
  • the power control circuit 12 is configured to convert the third electrical signal into a fourth electrical signal, and output the fourth electrical signal to the power amplifier 13; wherein the fourth electrical signal is used to control the power
  • the gain of the amplifier 13 exhibits a preset variation law with temperature variation.
  • the temperature compensation circuit 11 can adaptively adjust the third electrical signal according to the change of the current ambient temperature to ensure the stability of the gain of the power amplifier 13 and the stability of the output power, so that the performance of the power amplifier is not affected by the temperature change.
  • the stability of the gain of the power amplifier can be ensured by adjusting the fourth electrical signal.
  • the temperature compensation circuit can compensate the current signal converted by the external input voltage Vramp, and can also directly compensate the external input voltage Vramp signal. That is, the second electrical signal received by the electrical signal input end is a current signal or a voltage signal.
  • FIG. 2 is a schematic diagram of the composition and structure of the power control circuit in the embodiment of the application.
  • the temperature compensation circuit 21 performs temperature compensation on the electrical signal at the input end of the electrical signal, it is input to the power control circuit 22.
  • the voltage signal input to the V+ terminal is adjusted to obtain a voltage signal Vout (ie, Vcc), which is supplied to the power amplifying circuit 23 .
  • the power control circuit 22 includes: a low dropout linear regulator (LDO), resistors R1 and R2, and a capacitor C1.
  • LDO low dropout linear regulator
  • the forward input terminal V+ of the LDO receives the voltage signal output by the temperature compensation circuit 21, and the resistors R1 and R2 are connected in series
  • the rear end is connected to the output end of the LDO and the other end is grounded.
  • the negative input end of the LDO is connected to the intermediate node of R1 and R2.
  • One end of the capacitor C1 is connected to the output end of the LDO and the other end is grounded.
  • the output end of the LDO is connected to the collector of the power amplifier through RF choke. connected.
  • the change of RFOUT output power with Vcc can be realized by controlling the collector voltage of the PA.
  • the larger the Vcc the greater the output power of the power amplifier because the output power of the power amplifier is proportional to Vcc ⁇ 2; the smaller the Vcc, the higher the output power of the power amplifier.
  • the power amplifying circuit 23 includes: a power amplifier (Power Amplifier, PA) and a radio frequency choke (Radio Frequency choke, RF choke), the PA radio frequency input terminal (RFIN) inputs the radio frequency signal before amplification, and the radio frequency output terminal (RFOUT) outputs the amplified radio frequency signal.
  • the RF choke is used to eliminate the influence of the RF signal of the PA on the electrical signal of the power control circuit 22.
  • the composition and structure of the temperature compensation circuit are exemplarily described.
  • the temperature compensation circuit performs temperature compensation on the current signal, that is, the second electrical signal is a current signal
  • the temperature compensation circuit performs temperature compensation on the current converted by the external input voltage Vramp, or performs direct temperature compensation on the external input voltage Vramp.
  • the practical application circuit when the external voltage Vramp is input, the practical application circuit also includes a voltage-current conversion circuit 24 , which converts the voltage Vramp into a current, and the temperature compensation circuit performs temperature compensation on the current.
  • the temperature compensation circuit includes: a current compensation circuit and a current-voltage conversion circuit; the current compensation circuit is configured to generate a first electrical signal corresponding to the current ambient temperature; the current compensation circuit outputs the The first electrical signal adjusts the second electrical signal to obtain an intermediate electrical signal; the first electrical signal, the second electrical signal and the intermediate electrical signal are current signals; the current-voltage conversion circuit, It is configured to convert the intermediate electrical signal into the third electrical signal for output; wherein, the third electrical signal is a voltage signal.
  • the current compensation circuit when compensating the current, the current compensation circuit generates the first electrical signal corresponding to the current ambient temperature. Since the LDO can only receive the voltage signal, the current-voltage conversion circuit is used to convert the intermediate current signal into The voltage signal is input to the positive input terminal V+ of the LDO.
  • the current compensation circuit includes: a temperature-controlled current source and a current adjustment circuit; the temperature-controlled current source is configured to provide a current signal that changes with temperature; the current adjustment circuit is configured to adjust the temperature-controlled current The current signal provided by the source is adjusted to the first electrical signal.
  • the temperature-controlled current source is configured to provide the current adjustment circuit with a current signal that changes with temperature; the current signal output by the temperature-controlled current source is proportional to the absolute temperature.
  • the current adjustment circuit has the functions of current amplification and reduction, and can provide accurate current signals for subsequent circuits.
  • the current adjustment circuit can be composed of resistors, capacitors, transistors and other devices.
  • the current adjustment circuit includes: a steady state current source, a first field effect transistor and a second field effect transistor; one end of the steady state current source is connected to the first voltage source, and the other end of the steady state current source is connected to the first voltage source.
  • a temperature-controlled current source is connected, and an intermediate connection node between the steady-state current source and the temperature-controlled current source is connected to the gate and the drain of the first field effect transistor; the source of the first field effect transistor and the The source of the second field effect transistor is connected to the second voltage source; the drain of the second field effect transistor is used as the output end of the current compensation circuit to output the first electrical signal.
  • the first field effect transistor and the second field effect transistor are P-type field effect transistors.
  • the current-voltage conversion circuit converts the intermediate current signal compensated by the current compensation circuit into a voltage signal (ie, the third electrical signal) and inputs it to the forward input terminal V+ of the LDO.
  • the current-voltage conversion circuit includes: a first resistor; one end of the first resistor is grounded, and the other end of the first resistor is connected to the output end of the current compensation circuit and the input of the power control circuit. end connected.
  • a capacitor may also be connected in parallel with both ends of the first resistor to ensure the stability of the output voltage.
  • FIG. 3 is a schematic diagram of the second structure of the temperature compensation circuit in the embodiment of the application.
  • the temperature compensation circuit includes a current compensation circuit 31 and a current-voltage conversion circuit 32 .
  • the current compensation circuit 31 includes a temperature-controlled current source I PTAT , a steady-state current source Iref, a first field effect transistor M1 and a second field effect transistor M2, where the steady-state current source is used to provide a fixed current signal, and the steady-state power supply
  • M1 and M2 are P-type field effect transistors
  • one end of Iref is connected to the voltage source Vbat1 and the other end is connected to I PTAT
  • the other end of I PTAT is grounded
  • the intermediate node of I PTAT and Iref is connected to the gate of M1
  • the poles and the drains, the sources of M1 and M2 are connected to the voltage source Vbat2, and the drain of M2 outputs the first electrical signal I1.
  • the current-voltage conversion circuit 32 is composed of a resistor R3 and a capacitor C2 in parallel. R3 performs current-voltage conversion, and the capacitor C2 is used to stabilize the voltage across R3.
  • I PTAT current increases, and Iref remains unchanged.
  • I PTAT -Iref increases and flows into M1.
  • M1 mirrors the current I PTAT -Iref to M2, and after being amplified by M2, it outputs the current I1, which is combined with the electrical signal.
  • the current I2 at the input end converges at the point A to obtain the current I3, and the point A is the connection point between the current compensation circuit 31 and the LDO V+.
  • the output current I3 of the current compensation circuit 31 flows into R1, so that the voltage on R1 increases from I2*R1 to (I1+I2)*R1, even if the input voltage V+ of the LDO in FIG.
  • I PTAT -Iref decreases and flows into M1.
  • M1 mirrors the current I PTAT -Iref to M2, and outputs the current I1 after being amplified by M2.
  • a current I3 is obtained by intersecting with the current I2 of the electrical signal input terminal at point A, which is the connection point between the current compensation circuit 31 and the LDO V+.
  • the output current I3 of the current compensation circuit 31 flows into R1, so that the voltage on R1 is reduced from I2*R1 to (I2-I1)*R1, even if the input voltage V+ of the LDO in FIG.
  • I PTAT is a current source proportional to absolute temperature
  • Iref is used to adjust the slope of temperature compensation.
  • FIG. 5 is a schematic diagram of the linear relationship between voltage and current in the embodiment of the application, the abscissa is the voltage (Vramp), and the ordinate is the current I2, when the voltage (Vramp) is less than V1, the current I2 is 0, which is used to improve the PA off state
  • the forward isolation of when the voltage (Vramp) is greater than V1, the current I2 is proportional to the voltage (Vramp).
  • the above-mentioned temperature-controlled current source I PATA and steady-state current source Iref can be implemented in various forms, and the transistors of the power amplifier can be metal-oxide-semiconductor (MOS) field effect transistors, heterojunction bipolar transistors Transistor (Heterojunction Bipolar Transistor, HBT), Bipolar Junction Transistor (Bipolar Junction Transistor, BJT) and other circuit components with radio frequency power amplifying function.
  • MOS metal-oxide-semiconductor
  • HBT heterojunction Bipolar Transistor
  • BJT Bipolar Junction Transistor
  • the power amplifier may be composed of multiple transistors, for example, multiple transistors are connected in series, and the gain of the power amplifier is the total gain after the multiple transistors are connected in series.
  • the first field effect transistor and the second field effect transistor in the temperature compensation circuit form a current mirror circuit, and the first field effect transistor and the second field effect transistor may also be N-type field effect transistors.
  • the current adjustment circuit includes: a steady state current source, a first field effect transistor and a second field effect transistor; one end of the steady state current source is connected to the first voltage source, and the other end of the steady state current source is connected to the first voltage source. is connected to a temperature-controlled current source, and the intermediate connection nodes of the steady-state current source and the temperature-controlled current source are connected to the gate and source of the first field effect transistor; the gate of the first field effect transistor connected to the gate of the second field effect transistor; the drain of the first field effect transistor and the drain of the second field effect transistor are connected to a second voltage source; the source of the second field effect transistor As an output end of the current compensation circuit, the first electrical signal is output.
  • the composition and structure of the temperature compensation circuit are exemplarily described.
  • the temperature compensation circuit performs temperature compensation on the voltage signal
  • the first electrical signal and the second electrical signal are voltage signals
  • the temperature compensation circuit directly compensates the external input voltage Vramp.
  • FIG. 6 is a schematic diagram of the third structure of the temperature compensation circuit in the embodiment of the present application.
  • the temperature compensation circuit 11 may also be a voltage compensation circuit, and the voltage compensation circuit may specifically include: a temperature-controlled voltage source 61 and a voltage adjustment circuit 62.
  • the temperature-controlled voltage source 61 is configured to provide a voltage signal that varies with temperature; the voltage adjustment circuit 62 is configured to adjust the voltage signal provided by the temperature-controlled voltage source to the first electrical signal.
  • the voltage compensation circuit when compensating the voltage, the voltage compensation circuit generates a first electrical signal corresponding to the current ambient temperature, and uses the first electrical signal to adjust the second electrical signal received at the electrical signal input terminal to obtain third electrical signal; outputting the third electrical signal to the power control circuit 12 .
  • the power control circuit 12 is configured to convert the third electrical signal into a fourth electrical signal, and output the fourth electrical signal to the power amplifier 13; wherein the fourth electrical signal is used to control the power
  • the gain of the amplifier 13 exhibits a preset variation law with temperature variation.
  • the temperature-controlled voltage source is configured to provide the voltage adjustment circuit with a voltage signal that changes with temperature; the voltage signal output by the temperature-controlled voltage source is proportional to the absolute temperature.
  • the voltage adjustment circuit has the functions of voltage amplification and reduction, and can provide accurate voltage signals for subsequent circuits.
  • the voltage adjustment circuit can be composed of resistors, capacitors, transistors and other devices.
  • temperature compensation is performed on the external input voltage Vramp used for power control, so as to ensure the stability of the gain of the power amplifier and the stability of the output power, and improve the performance of the power amplifier. Not affected by temperature changes.
  • FIG. 7 is a schematic flowchart of the temperature control method of the power amplifier in the embodiment of the present application, as shown in FIG. 7 . shown, the method includes:
  • Step 701 Control the temperature compensation circuit to generate a first electrical signal corresponding to the current ambient temperature
  • Step 702 Use the first electrical signal to adjust the second electrical signal to obtain a third electrical signal
  • Step 703 Control the power control circuit to convert the third electrical signal into a fourth electrical signal, and output the fourth electrical signal to a power amplifier;
  • Step 704 Use the fourth electrical signal to control the gain of the power amplifier to exhibit a preset variation law with temperature changes.
  • the temperature compensation circuit includes: a current compensation circuit and a current-voltage conversion circuit
  • the current compensation circuit configured to generate a first electrical signal corresponding to the current ambient temperature
  • the current compensation circuit outputs the first electrical signal to adjust the second electrical signal to obtain an intermediate electrical signal; the first electrical signal, the second electrical signal and the intermediate electrical signal are current signals;
  • the current-voltage conversion circuit is configured to convert the intermediate electrical signal into the third electrical signal for output; wherein, the third electrical signal is a voltage signal.
  • the current compensation circuit includes: a temperature-controlled current source and a current adjustment circuit;
  • the temperature-controlled current source configured to provide a current signal that changes with temperature
  • the current adjustment circuit is configured to adjust the current signal provided by the temperature-controlled current source to the first electrical signal.
  • the current adjustment circuit includes: a steady-state current source, a first field effect transistor and a second field effect transistor;
  • One end of the steady-state current source is connected to the first voltage source, the other end of the steady-state current source is connected to the temperature-controlled current source, and the intermediate connection node between the steady-state current source and the temperature-controlled current source is connected to the temperature-controlled current source.
  • the gate and drain of the first FET are connected;
  • the source of the first field effect transistor and the source of the second field effect transistor are connected to a second voltage source
  • the drain of the second field effect transistor is used as the output end of the current compensation circuit to output the first electrical signal.
  • the first field effect transistor and the second field effect transistor are P-type field effect transistors.
  • the current-to-voltage conversion circuit includes: a first resistor
  • One end of the first resistor is grounded, and the other end of the first resistor is connected to the output end of the current compensation circuit and the input end of the power control circuit.
  • the current-voltage conversion circuit further includes: a first capacitor
  • the first capacitor is connected in parallel with both ends of the first resistor.
  • the preset variation rule is that the gain of the power amplifier increases as the temperature increases, and decreases as the temperature decreases.
  • the temperature compensation circuit is a voltage compensation circuit; the first electrical signal and the second electrical signal are voltage signals;
  • the voltage compensation circuit includes: a temperature-controlled voltage source and a voltage adjustment circuit;
  • the temperature-controlled voltage source configured to provide a voltage signal that changes with temperature
  • the voltage adjustment circuit is configured to adjust the voltage signal provided by the temperature-controlled voltage source to the first electrical signal.
  • the power control circuit includes at least a low dropout linear regulator, and a forward input terminal of the low dropout linear regulator receives the third electrical signal as an input terminal of the power control circuit.
  • the present application provides a temperature compensation circuit and a temperature compensation method for a power amplifier.
  • the temperature compensation circuit is configured to generate a first electrical signal corresponding to the current ambient temperature, and use the first electrical signal to receive the electrical signal input terminal. Adjust the received second electrical signal to obtain a third electrical signal; output the third electrical signal to the power control circuit; the power control circuit is configured to convert the third electrical signal into a fourth electrical signal , and output the fourth electrical signal to the power amplifier; the fourth electrical signal is used to control the gain of the power amplifier to present a preset variation law with temperature changes.
  • the stability of the gain of the power amplifier and the stability of the output power are ensured, so that the performance of the power amplifier is not affected by temperature changes.

Abstract

本申请公开了一种功率放大器的温度补偿电路及温度补偿方法,所述温度补偿电路,配置为产生与当前环境温度相对应的第一电信号,利用所述第一电信号对电信号输入端接收到的第二电信号进行调整,得到第三电信号;输出所述第三电信号到所述功率控制电路;所述功率控制电路,配置为将所述第三电信号转化为第四电信号,输出所述第四电信号到功率放大器;所述第四电信号,用于控制所述功率放大器的增益随温度变化呈现预设的变化规律。如此,通过在功率放大电路中增加上述温度补偿电路,保证功率放大器增益的稳定性以及输出功率的稳定性,使功率放大器的性能不受温度变化的影响。

Description

一种功率放大器的温度补偿电路及温度补偿方法
相关申请的交叉引用
本申请基于申请号为202010641999.3、申请日为2020年07月06日、发明创造名称为“一种功率放大器的温度补偿电路及温度补偿方法”的在先中国专利申请提出,并要求该在先中国专利申请的优先权,该在先中国专利申请的全部内容在此以全文引入的方式引入本申请作为参考。
技术领域
本申请涉及电子技术,尤其涉及一种功率放大器的温度补偿电路及温度补偿方法。
背景技术
功率放大器(简称“功放”)在饱和工作模式下,为了满足第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议对全球移动通信系统(Global System for Mobile Communication,GSM)输出功率在时域上功率时间模板(PVT)要求,功率放大器输出功率是受外部电压Vramp控制的。
功放电路工作在高低温状态时,由于电路器件参数会随着温度变化,在高温下,功放的增益及输出功率会减小;相反,在低温下,功放的增益及输出功率会增大。在这种情况下,高低温的变化会使功放的增益及输出功率较常温有较大的变化,从而很难满足行业指标的需求。
发明内容
为解决上述技术问题,本申请实施例期望提供一种功率放大器的温度 补偿电路及温度补偿方法。
第一方面,本申请提供了一种所述温度补偿电路,配置为产生与当前环境温度相对应的第一电信号,利用所述第一电信号对电信号输入端接收到的第二电信号进行调整,得到第三电信号;输出所述第三电信号到所述功率控制电路;
所述功率控制电路,配置为将所述第三电信号转化为第四电信号,输出所述第四电信号到功率放大器;其中,所述第四电信号,用于控制所述功率放大器的增益随温度变化呈现预设的变化规律。
上述方案中,所述温度补偿电路包括:电流补偿电路和电流电压转换电路;所述电流补偿电路,配置为产生与当前环境温度相对应的第一电信号;所述电流补偿电路输出所述第一电信号对所述第二电信号进行调整,得到中间电信号;所述第一电信号、所述第二电信号和所述中间电信号为电流信号;所述电流电压转换电路,配置为将所述中间电信号转化为所述第三电信号输出;其中,所述第三电信号为电压信号。
上述方案中,所述电流补偿电路包括:温控电流源和电流调整电路;所述温控电流源,配置为提供随温度变化的电流信号;所述电流调整电路,配置为将所述温控电流源提供的电流信号调整为所述第一电信号。
上述方案中,所述电流调整电路包括:稳态电流源、第一场效应管和第二场效应管;所述稳态电流源的一端连接第一电压源,所述稳态电流源的另一端与温控电流源相连,所述稳态电流源和所述温控电流源的中间连接节点与所述第一场效应管的栅极和漏极相连;所述第一场效应管的源极和所述第二场效应管的源极连接第二电压源;所述第二场效应管的漏极作为所述电流补偿电路的输出端,输出所述第一电信号。
上述方案中,所述电流电压转换电路包括:第一电阻;所述第一电阻的一端接地,所述第一电阻的另一端与所述电流补偿电路的输出端以及所 述功率控制电路的输入端相连。
上述方案中,所述电流电压转换电路还包括:第一电容;所述第一电容并联在所述第一电阻的两端。
上述方案中,所述预设的变化规律为所述功率放大器的增益随着温度的升高而增大,随着温度的降低而减小。
上述方案中,所述温度补偿电路为电压补偿电路;所述第一电信号和所述第二电信号为电压信号;其中,所述电压补偿电路包括:温控电压源和电压调整电路;所述温控电压源,配置为提供随温度变化的电压信号;所述电压调整电路,配置为将所述温控电压源提供的电压信号调整为所述第一电信号。
上述方案中,所述功率控制电路至少包括低压差线性稳压器,所述低压差线性稳压器的正向输入端作为所述功率控制电路的输入端接收所述第三电信号。
第二方面,提供了一种功率放大器的温度补偿方法,所述方法包括:
控制温度补偿电路产生与当前环境温度相对应的第一电信号;
利用所述第一电信号对第二电信号进行调整,得到第三电信号;
控制功率控制电路将所述第三电信号转化为第四电信号,输出所述第四电信号到功率放大器;
利用所述第四电信号控制所述功率放大器的增益随温度变化呈现预设的变化规律。
本申请实施例提供的一种功率放大器的温度补偿电路及温度补偿方法,所述温度补偿电路,配置为产生与当前环境温度相对应的第一电信号,利用所述第一电信号对电信号输入端接收到的第二电信号进行调整,得到第三电信号;输出所述第三电信号到所述功率控制电路;所述功率控制电路,配置为将所述第三电信号转化为第四电信号,输出所述第四电信号到 功率放大器;所述第四电信号,用于控制所述功率放大器的增益随温度变化呈现预设的变化规律。如此,通过在功率放大电路中增加上述温度补偿电路,保证功率放大器增益的稳定性以及输出功率的稳定性,使功率放大器的性能不受温度变化的影响。
附图说明
图1为本申请实施例中温度补偿电路的第一组成结构示意图;
图2为本申请实施例中功率控制电路的组成结构示意图;
图3为本申请实施例中温度补偿电路的第二组成结构示意图;
图4为本申请实施例中电流和温度的线性关系示意图;
图5为本申请实施例中电压和电流的线性关系示意图;
图6为本申请实施例中温度补偿电路的第三组成结构示意图;
图7为本申请实施例中功率放大器的温度控制方法的流程示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
图1为本申请实施例中温度补偿电路的第一组成结构示意图,如图1所示,
所述温度补偿电路11,配置为产生与当前环境温度相对应的第一电信号,利用所述第一电信号对电信号输入端接收到的第二电信号进行调整,得到第三电信号;输出所述第三电信号到所述功率控制电路12;
所述功率控制电路12,配置为将所述第三电信号转化为第四电信号,输出所述第四电信号到功率放大器13;其中,所述第四电信号,用于控制所述功率放大器13的增益随温度变化呈现预设的变化规律。
这里,所述温度补偿电路11能够根据当前环境温度的变化自适应调整第三电信号,保证功率放大器13增益的稳定性以及输出功率的稳定性,使功率放大器的性能不受温度变化的影响。
功率放大器工作在高低温状态时,由于电路器件参数会随着温度变化,在高温下,功率放大器的增益及输出功率会减小;相反,在低温下,功率放大器的增益及输出功率会增大。因此,可以通过对第四电信号进行调整来保证功率放大器增益的稳定性。
实际应用中,温度补偿电路可以对外部输入电压Vramp转换的电流信号进行补偿,也可以对外部输入电压Vramp信号进行直接补偿。即电信号输入端接收的第二电信号为电流信号或电压信号。
图2为本申请实施例中功率控制电路的组成结构示意图,如图2所示,温度补偿电路21对电信号输入端的电信号进行温度补偿后,输入到功率控制电路22,功率控制电路22对输入到V+端的电压信号进行调整,得到电压信号Vout(即Vcc)供给功率放大电路23。
功率控制电路22包括:低压差线性稳压器(Low Dropout Regulator,LDO)、电阻R1和R2、电容C1,LDO的正向输入端V+接收温度补偿电路21输出的电压信号,电阻R1和R2串联后一端连接LDO的输出端另一端接地,LDO的负向输入端连接R1和R2的中间节点,电容C1一端连接LDO的输出端另一端接地,LDO的输出端通过RF choke与功率放大器的集电极相连。通常可以通过控制PA的集电极电压来实现RFOUT输出功率随Vcc的变化,Vcc越大,由于功率放大器的输出功率正比于Vcc^2,所以功率放大器的输出功率也会越大;Vcc越小,功率放大器的输出功率也会越小。
功率放大电路23包括:功率放大器(Power Amplifier,PA)和射频扼流圈(Radio Frequency choke,RF choke),PA射频输入端(RFIN)输入放 大前射频信号,射频输出端(RFOUT)输出放大后的射频信号,RF choke用于消除PA的射频信号对功率控制电路22的电信号的影响。
在上述应用电路的基础上,对温度补偿电路的组成结构进行示例性举例说明。当温度补偿电路对电流信号进行温度补偿时,即第二电信号为电流信号,所述温度补偿电路对外部输入电压Vramp转换的电流进行温度补偿、或者对外部输入电压Vramp进行直接温度补偿。
如图2所示,外部输入电压Vramp时,实际应用电路中还包括电压电流转换电路24,电压电流转换电路24将电压Vramp转换为电流,温度补偿电路对电流进行温度补偿。
在一些实施例中,所述温度补偿电路包括:电流补偿电路和电流电压转换电路;所述电流补偿电路,配置为产生与当前环境温度相对应的第一电信号;所述电流补偿电路输出所述第一电信号对所述第二电信号进行调整,得到中间电信号;所述第一电信号、所述第二电信号和所述中间电信号为电流信号;所述电流电压转换电路,配置为将所述中间电信号转化为所述第三电信号输出;其中,所述第三电信号为电压信号。
也就是说,在对电流进行补偿时,电流补偿电路产生与当前环境温度相对应的第一电信号,由于LDO只能接收电压信号的特点,再利用电流电压转换电路对将中间电流信号转化为电压信号输入到LDO的正向输入端V+。
具体的,所述电流补偿电路包括:温控电流源和电流调整电路;所述温控电流源,配置为提供随温度变化的电流信号;所述电流调整电路,配置为将所述温控电流源提供的电流信号调整为第一电信号。
温控电流源,配置为向电流调整电路提供随温度改变的电流信号;温控电流源输出的电流信号与绝对温度成正比。
电流调整电路具有电流放大、缩小等作用,能够为后续电路提供准确 的电流信号,电流调整电路可以由电阻、电容、晶体管等器件组合而成。
比如,所述电流调整电路包括:稳态电流源、第一场效应管和第二场效应管;所述稳态电流源的一端连接第一电压源,所述稳态电流源的另一端与温控电流源相连,所述稳态电流源和所述温控电流源的中间连接节点与所述第一场效应管的栅极和漏极相连;所述第一场效应管的源极和所述第二场效应管的源极连接第二电压源;所述第二场效应管的漏极作为所述电流补偿电路的输出端,输出所述第一电信号。这里,第一场效应管和第二场效应管为P型场效应管。
电流电压转换电路顾名思义将电流补偿电路补偿后的中间电流信号转化电压信号(即第三电信号)输入到LDO的正向输入端V+。
示例性的,所述电流电压转换电路包括:第一电阻;所述第一电阻的一端接地,所述第一电阻的另一端与所述电流补偿电路的输出端以及所述功率控制电路的输入端相连。
还可以在第一电阻两端并联一个电容,来保证输出电压的稳定性。
图3为本申请实施例中温度补偿电路的第二组成结构示意图,如图3所示,温度补偿电路包括:电流补偿电路31和电流电压转换电路32。
电流补偿电路31包括温控电流源I PTAT、稳态电流源Iref、第一场效应管M1和第二场效应管M2,这里,稳态电流源,用于提供固定的电流信号,稳态电源的电信号不随温度的变化而变化,M1和M2为P型场效应管,Iref一端连接电压源Vbat1另一端连接I PTAT,I PTAT的另一端接地,I PTAT和Iref的中间节点连接M1的栅极和漏极,M1和M2的源极连接电压源Vbat2,M2的漏极输出第一电信号I1。
电流电压转换电路32由电阻R3和电容C2并联组成,R3执行电流电压转换,电容C2用于稳定R3两端的电压。
当温度上升时,I PTAT电流增大,Iref不变,此时I PTAT-Iref增大,并流入 M1,M1将电流I PTAT-Iref镜像到M2,经M2放大之后输出电流I1,与电信号输入端的电流I2在A点汇聚得到电流I3,A点为电流补偿电路31与LDO V+的连接点。电流补偿电路31的输出电流I3流入R1,使得R1上的电压从I2*R1增大为(I1+I2)*R1,即使图2中LDO的输入电压V+增大,进而使LDO的输出电压Vout增大,即功放的集电极电压Vcc增大。由于功率放大器的增益及输出功率正比于Vcc^2,所以功放的增益及输出功率也会越大。从而使得和常温相比,功率放大器在高温的增益及输出功率变化不大或保持一致。
相反的,当温度下降时,I PTAT电流减小,Iref不变,此时I PTAT-Iref减小,并流入M1,M1将电流I PTAT-Iref镜像到M2,经M2放大之后输出电流I1,与电信号输入端的电流I2在A点交汇得到电流I3,A点为电流补偿电路31与LDO V+的连接点。电流补偿电路31的输出电流I3流入R1,使得R1上的电压从I2*R1减小为(I2-I1)*R1,即使图2中LDO的输入电压V+减小,进而使LDO的输出电压Vout减小,即功放的集电极电压Vcc减小。由于功率放大器的增益及输出功率正比于Vcc^2,所以功放的增益及输出功率也会减小。从而使得和常温相比,功率放大器在低温的增益及输出功率变化不大或保持一致。
I PTAT为与绝对温度成正比的电流源,Iref用来调整温度补偿的斜率。图4为本申请实施例中电流和温度的线性关系示意图,横坐标为温度,纵坐标为电流补偿电路31输出的第一电流I1,电流I1与温度Temp正线性相关,T0为I PTAT-Iref=0时的温度。
实际应用中,温度补偿电路对外部输入电压Vramp转换为电流进行温度补偿时,温度补偿电路前端需加入电压电流转换电路,电压电流呈线性正相关。图5为本申请实施例中电压和电流的线性关系示意图,横坐标为电压(Vramp),纵坐标为电流I2,当电压(Vramp)小于V1时,电流I2 为0,用于改善PA off态的前向隔离度,当电压(Vramp)大于V1时,电流I2与电压(Vramp)成正比。
上述温控电流源I PATA和稳态电流源Iref可以以各种形式实现,功率放大器的晶体管可以为金属-氧化物-半导体(Metal-Oxide-Semiconductor,MOS)场效应管、异质结双极晶体管(Heterojunction Bipolar Transistor,HBT)、双极结型晶体管(Bipolar Junction Transistor,BJT)等具有射频功率放大功能的电路元件。
功率放大器可以由多个晶体管组成,比如,多个晶体管串联,功率放大器的增益为多个晶体管串联之后总的增益。
本申请实施例中,温度补偿电路中第一场效应管和第二场效应管组成电流镜像电路,第一场效应管和第二场效应管还可以为N型场效应管。
具体的,所述电流调整电路包括:稳态电流源、第一场效应管和第二场效应管;所述稳态电流源的一端连接第一电压源,所述稳态电流源的另一端与温控电流源相连,所述稳态电流源和所述温控电流源的中间连接节点与所述第一场效应管的栅极和源极相连;所述第一场效应管的栅极和所述第二场效应管的栅极相连;所述第一场效应管的漏极和所述第二场效应管的漏极连接第二电压源;所述第二场效应管的源极作为所述电流补偿电路的输出端,输出所述第一电信号。
采用上述方案,通过在功率放大电路中增加上述温度补偿电路,对用于进行功率控制的外部输入电压Vramp转换得到的电流信号进行温度补偿,保证功率放大器增益的稳定性以及输出功率的稳定性,使功率放大器的性能不受温度变化的影响。
在上述应用电路的基础上,对温度补偿电路的组成结构进行示例性举例说明。当温度补偿电路对电压信号进行温度补偿时,所述第一电信号和所述第二电信号为电压信号,所述温度补偿电路对外部输入电压Vramp直 接进行补偿。
图6为本申请实施例中温度补偿电路的第三组成结构示意图,如图6所示,温度补偿电路11还可以为电压补偿电路,电压补偿电路具体可以包括:温控电压源61和电压调整电路62。
所述温控电压源61,配置为提供随温度变化的电压信号;所述电压调整电路62,配置为将所述温控电压源提供的电压信号调整为所述第一电信号。
也就是说,在对电压进行补偿时,电压补偿电路产生与当前环境温度相对应的第一电信号,利用所述第一电信号对电信号输入端接收到的第二电信号进行调整,得到第三电信号;输出所述第三电信号到所述功率控制电路12。
所述功率控制电路12,配置为将所述第三电信号转化为第四电信号,输出所述第四电信号到功率放大器13;其中,所述第四电信号,用于控制所述功率放大器13的增益随温度变化呈现预设的变化规律。
具体的,温控电压源,配置为向电压调整电路提供随温度改变的电压信号;温控电压源输出的电压信号与绝对温度成正比。电压调整电路具有电压放大、缩小等作用,能够为后续电路提供准确的电压信号,电压调整电路可以由电阻、电容、晶体管等器件组合而成。
采用上述方案,通过在功率放大电路中增加上述温度补偿电路,对用于进行功率控制的外部输入电压Vramp进行温度补偿,保证功率放大器增益的稳定性以及输出功率的稳定性,使功率放大器的性能不受温度变化的影响。
基于上述功率放大器的温度控制电路,本申请实施例还提供了一种功率放大器的温度控制方法的实施例,图7为本申请实施例中功率放大器的温度控制方法的流程示意图,如图7所示,该方法包括:
步骤701:控制温度补偿电路产生与当前环境温度相对应的第一电信号;
步骤702:利用所述第一电信号对第二电信号进行调整,得到第三电信号;
步骤703:控制功率控制电路将所述第三电信号转化为第四电信号,输出所述第四电信号到功率放大器;
步骤704:利用所述第四电信号控制所述功率放大器的增益随温度变化呈现预设的变化规律。
在一些实施例中,所述温度补偿电路包括:电流补偿电路和电流电压转换电路;
所述电流补偿电路,配置为产生与当前环境温度相对应的第一电信号;
所述电流补偿电路输出所述第一电信号对所述第二电信号进行调整,得到中间电信号;所述第一电信号、所述第二电信号和所述中间电信号为电流信号;
所述电流电压转换电路,配置为将所述中间电信号转化为所述第三电信号输出;其中,所述第三电信号为电压信号。
在一些实施例中,所述电流补偿电路包括:温控电流源和电流调整电路;
所述温控电流源,配置为提供随温度变化的电流信号;
所述电流调整电路,配置为将所述温控电流源提供的电流信号调整为所述第一电信号。
在一些实施例中,所述电流调整电路包括:稳态电流源、第一场效应管和第二场效应管;
所述稳态电流源的一端连接第一电压源,所述稳态电流源的另一端与温控电流源相连,所述稳态电流源和所述温控电流源的中间连接节点与所 述第一场效应管的栅极和漏极相连;
所述第一场效应管的源极和所述第二场效应管的源极连接第二电压源;
所述第二场效应管的漏极作为所述电流补偿电路的输出端,输出所述第一电信号。这里,所述第一场效应管和所述第二场效应管为P型场效应管。
在一些实施例中,所述电流电压转换电路包括:第一电阻;
所述第一电阻的一端接地,所述第一电阻的另一端与所述电流补偿电路的输出端以及所述功率控制电路的输入端相连。
在一些实施例中,所述电流电压转换电路还包括:第一电容;
所述第一电容并联在所述第一电阻的两端。
在一些实施例中,所述预设的变化规律为所述功率放大器的增益随着温度的升高而增大,随着温度的降低而减小。
在一些实施例中,所述温度补偿电路为电压补偿电路;所述第一电信号和所述第二电信号为电压信号;
其中,所述电压补偿电路包括:温控电压源和电压调整电路;
所述温控电压源,配置为提供随温度变化的电压信号;
所述电压调整电路,配置为将所述温控电压源提供的电压信号调整为所述第一电信号。
在一些实施例中,所述功率控制电路至少包括低压差线性稳压器,所述低压差线性稳压器的正向输入端作为所述功率控制电路的输入端接收所述第三电信号。
采用上述方案,通过在功率放大电路中增加上述温度补偿电路,保证功率放大器增益的稳定性以及输出功率的稳定性,使功率放大器的性能不受温度变化的影响。
本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本申请所提供的几个实施例中,应该理解到,以上所描述的温度补偿电路实施例仅仅是示意性的,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。
工业实用性
本申请提供一种功率放大器的温度补偿电路及温度补偿方法,所述温度补偿电路,配置为产生与当前环境温度相对应的第一电信号,利用所述第一电信号对电信号输入端接收到的第二电信号进行调整,得到第三电信号;输出所述第三电信号到所述功率控制电路;所述功率控制电路,配置为将所述第三电信号转化为第四电信号,输出所述第四电信号到功率放大器;所述第四电信号,用于控制所述功率放大器的增益随温度变化呈现预设的变化规律。如此,通过在功率放大电路中增加上述温度补偿电路,保证功率放大器增益的稳定性以及输出功率的稳定性,使功率放大器的性能不受温度变化的影响。

Claims (10)

  1. 一种功率放大器的温度补偿电路,其中,
    所述温度补偿电路,配置为产生与当前环境温度相对应的第一电信号,利用所述第一电信号对电信号输入端接收到的第二电信号进行调整,得到第三电信号;输出所述第三电信号到所述功率控制电路;
    所述功率控制电路,配置为将所述第三电信号转化为第四电信号,输出所述第四电信号到功率放大器;其中,所述第四电信号,用于控制所述功率放大器的增益随温度变化呈现预设的变化规律。
  2. 根据权利要求1所述的温度补偿电路,其中,所述温度补偿电路包括:电流补偿电路和电流电压转换电路;
    所述电流补偿电路,配置为产生与当前环境温度相对应的第一电信号;
    所述电流补偿电路输出所述第一电信号对所述第二电信号进行调整,得到中间电信号;所述第一电信号、所述第二电信号和所述中间电信号为电流信号;
    所述电流电压转换电路,配置为将所述中间电信号转化为所述第三电信号输出;其中,所述第三电信号为电压信号。
  3. 根据权利要求2所述的温度补偿电路,其中,所述电流补偿电路包括:温控电流源和电流调整电路;
    所述温控电流源,配置为提供随温度变化的电流信号;
    所述电流调整电路,配置为将所述温控电流源提供的电流信号调整为所述第一电信号。
  4. 根据权利要求3所述的温度补偿电路,其中,所述电流调整电路包括:稳态电流源、第一场效应管和第二场效应管;
    所述稳态电流源的一端连接第一电压源,所述稳态电流源的另一端与温控电流源相连,所述稳态电流源和所述温控电流源的中间连接节点与所 述第一场效应管的栅极和漏极相连;
    所述第一场效应管的栅极和所述第二场效应管的栅极相连;
    所述第一场效应管的源极和所述第二场效应管的源极连接第二电压源;
    所述第二场效应管的漏极作为所述电流补偿电路的输出端,输出所述第一电信号。
  5. 根据权利要求2所述的温度补偿电路,其中,所述电流电压转换电路包括:第一电阻;
    所述第一电阻的一端接地,所述第一电阻的另一端与所述电流补偿电路的输出端以及所述功率控制电路的输入端相连。
  6. 根据权利要求5所述的温度补偿电路,其中,所述电流电压转换电路还包括:第一电容;
    所述第一电容并联在所述第一电阻的两端。
  7. 根据权利要求1所述的温度补偿电路,其中,所述预设的变化规律为所述功率放大器的增益随着温度的升高而增大,随着温度的降低而减小。
  8. 根据权利要求1所述的温度补偿电路,其中,所述温度补偿电路为电压补偿电路;所述第一电信号和所述第二电信号为电压信号;
    其中,所述电压补偿电路包括:温控电压源和电压调整电路;
    所述温控电压源,配置为提供随温度变化的电压信号;
    所述电压调整电路,配置为将所述温控电压源提供的电压信号调整为所述第一电信号。
  9. 根据权利要求1所述的温度补偿电路,其中,所述功率控制电路至少包括低压差线性稳压器,所述低压差线性稳压器的正向输入端作为所述功率控制电路的输入端接收所述第三电信号。
  10. 一种功率放大器的温度补偿方法,其中,所述方法包括:
    控制温度补偿电路产生与当前环境温度相对应的第一电信号;
    利用所述第一电信号对第二电信号进行调整,得到第三电信号;
    控制功率控制电路将所述第三电信号转化为第四电信号,输出所述第四电信号到功率放大器;
    利用所述第四电信号控制所述功率放大器的增益随温度变化呈现预设的变化规律。
PCT/CN2021/104501 2020-07-06 2021-07-05 一种功率放大器的温度补偿电路及温度补偿方法 WO2022007744A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/064,264 US20230104737A1 (en) 2020-07-06 2022-12-10 Temperature compensation circuit of power amplifier and temperature compensation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010641999.3A CN111969965A (zh) 2020-07-06 2020-07-06 一种功率放大器的温度补偿电路及温度补偿方法
CN202010641999.3 2020-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/064,264 Continuation US20230104737A1 (en) 2020-07-06 2022-12-10 Temperature compensation circuit of power amplifier and temperature compensation method

Publications (1)

Publication Number Publication Date
WO2022007744A1 true WO2022007744A1 (zh) 2022-01-13

Family

ID=73361159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104501 WO2022007744A1 (zh) 2020-07-06 2021-07-05 一种功率放大器的温度补偿电路及温度补偿方法

Country Status (3)

Country Link
US (1) US20230104737A1 (zh)
CN (1) CN111969965A (zh)
WO (1) WO2022007744A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969965A (zh) * 2020-07-06 2020-11-20 广州慧智微电子有限公司 一种功率放大器的温度补偿电路及温度补偿方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099098A1 (ja) * 2011-01-17 2012-07-26 日本電気株式会社 温度補償機能を有する自動利得制御回路を用いたディジタル復調回路
CN107147366A (zh) * 2017-06-12 2017-09-08 广州慧智微电子有限公司 一种射频功率放大器的温度补偿电路
US20190245492A1 (en) * 2016-09-30 2019-08-08 Skyworks Solutions, Inc. Temperature compensated power amplifier gain
CN111969965A (zh) * 2020-07-06 2020-11-20 广州慧智微电子有限公司 一种功率放大器的温度补偿电路及温度补偿方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514485B2 (ja) * 2004-03-19 2010-07-28 パナソニック株式会社 高周波電力増幅器
CN101447770A (zh) * 2007-11-27 2009-06-03 锐迪科微电子(上海)有限公司 射频功率放大器温度补偿电路和方法
US20100311362A1 (en) * 2009-06-05 2010-12-09 Yi-Bin Lee Gain compensation device over temperature and method thereof
JP5958774B2 (ja) * 2014-02-04 2016-08-02 株式会社村田製作所 電力増幅モジュール
CN110808718B (zh) * 2018-08-06 2023-07-14 锐迪科创微电子(北京)有限公司 一种高稳定性的射频功率放大器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099098A1 (ja) * 2011-01-17 2012-07-26 日本電気株式会社 温度補償機能を有する自動利得制御回路を用いたディジタル復調回路
US20190245492A1 (en) * 2016-09-30 2019-08-08 Skyworks Solutions, Inc. Temperature compensated power amplifier gain
CN107147366A (zh) * 2017-06-12 2017-09-08 广州慧智微电子有限公司 一种射频功率放大器的温度补偿电路
CN111969965A (zh) * 2020-07-06 2020-11-20 广州慧智微电子有限公司 一种功率放大器的温度补偿电路及温度补偿方法

Also Published As

Publication number Publication date
US20230104737A1 (en) 2023-04-06
CN111969965A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
KR100830361B1 (ko) 능동 바이어스 회로
CN102053645B (zh) 一种宽输入电压高电源抑制比基准电压源
US7888987B2 (en) Temperature compensation circuit
US5493253A (en) IC having an output signal amplitude kept constant against temperature variation
CN113311898B (zh) 一种具有电源抑制的ldo电路、芯片及通信终端
CN108710401B (zh) 一种高精度大驱动电流的带隙基准电压源
KR20150111301A (ko) 전압 레귤레이터
CN101739051A (zh) 双极低压差线性稳压器的动态阻容补偿装置
WO2022007744A1 (zh) 一种功率放大器的温度补偿电路及温度补偿方法
CN108566165B (zh) 一种控制电路、功率放大电路及控制方法
US7728669B2 (en) Output stage circuit and operational amplifier thereof
US8890612B2 (en) Dynamically biased output structure
KR100712430B1 (ko) 전계 효과 트랜지스터의 바이어스 회로
WO2023025314A1 (zh) 一种功率放大器及控制方法
CN105630063A (zh) 一种基准电源的产生电路
CN109842389B (zh) 一种射频功率放大器及其功率控制电路
CN115993867A (zh) 一种可调输出电压的低功耗高压线性稳压器及其稳压方法
CN203982247U (zh) 高性能基准源
US10958222B2 (en) Bias circuit
CN113992165A (zh) 一种偏置与增益可调的射频放大器
US6535055B2 (en) Pass device leakage current correction circuit for use in linear regulators
KR20150071646A (ko) 볼티지 레귤레이터
CN114115415B (zh) 一种低压差线性稳压电路
WO2023032608A1 (ja) 電力増幅器
JP2010273284A (ja) 高周波増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13.06.2023.)

122 Ep: pct application non-entry in european phase

Ref document number: 21837034

Country of ref document: EP

Kind code of ref document: A1