WO2022007388A1 - 丙烯直接环氧化以制备环氧丙烷的方法 - Google Patents

丙烯直接环氧化以制备环氧丙烷的方法 Download PDF

Info

Publication number
WO2022007388A1
WO2022007388A1 PCT/CN2021/073750 CN2021073750W WO2022007388A1 WO 2022007388 A1 WO2022007388 A1 WO 2022007388A1 CN 2021073750 W CN2021073750 W CN 2021073750W WO 2022007388 A1 WO2022007388 A1 WO 2022007388A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
gas
volume
reaction
catalyst
Prior art date
Application number
PCT/CN2021/073750
Other languages
English (en)
French (fr)
Inventor
赵辰阳
孙冰
朱红伟
冯俊杰
王林
杨哲
徐伟
姜慧芸
安飞
金艳
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司青岛安全工程研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010663795.XA external-priority patent/CN113912569B/zh
Priority claimed from CN202010663791.1A external-priority patent/CN113912574B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司青岛安全工程研究院 filed Critical 中国石油化工股份有限公司
Priority to US18/005,001 priority Critical patent/US20230339875A1/en
Priority to EP21838273.7A priority patent/EP4163274A4/en
Publication of WO2022007388A1 publication Critical patent/WO2022007388A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms

Definitions

  • the invention relates to the field of preparation of propylene oxide, in particular to a method for preparing propylene oxide by direct epoxidation of propylene.
  • Propylene oxide also known as propylene oxide and methyl ethylene oxide, is a very important organic compound raw material and the third largest propylene derivative after polypropylene and acrylonitrile.
  • Propylene oxide is a colorless ethereal liquid with a low boiling point and is flammable. With chirality, the industrial product is generally a racemic mixture of two enantiomers. It is partially miscible with water, miscible with ethanol and ether. Forms binary azeotropes with pentane, pentene, cyclopentane, cyclopentene, dichloromethane.
  • Propylene oxide is mainly used in the production of polyether polyol, propylene glycol and various nonionic surfactants, among which polyether polyol is an important raw material for the production of polyurethane foam, thermal insulation materials, elastomers, adhesives and coatings, etc. Ionic surfactants are widely used in petroleum, chemical, pesticide, textile, daily chemical and other industries. At the same time, propylene oxide is also an important basic chemical raw material.
  • the relatively novel production method of propylene oxide in the industry is the HPPO method, which is a direct oxidation method with titanium silicon molecular sieve as the catalyst and hydrogen peroxide as the oxidant.
  • the products of the HPPO method are only propylene oxide and water, the product selectivity is high, the by-products are few, and the technological process is simple and pollution-free.
  • this method has problems such as short catalyst life, high energy consumption, large amount of solvent, and low utilization rate of H 2 O 2 .
  • the object of the present invention is to provide a kind of direct epoxidation of propylene in order to overcome the defects of short service life of catalyst, high dilution gas consumption, low oxygen concentration, low reaction selectivity and low conversion rate in the existing propylene epoxidation technology. for the preparation of propylene oxide.
  • the invention uses gaseous olefin as at least part of the diluent gas to carry out the propylene epoxidation reaction, which can significantly prolong the service life of the catalyst and effectively reduce the amount of the diluent gas, thereby reducing the difficulty of subsequent product separation and reducing energy consumption.
  • the concentration of oxygen in the reaction system can be effectively increased, thereby increasing the concentration of reaction gas, and at the same time, the reaction selectivity and the conversion rate of propylene are also improved.
  • the present invention provides a method for the direct epoxidation of propylene, the method comprising: under the conditions of the propylene epoxidation reaction, the mixed gas containing the reaction raw material gas and the dilution gas is contacted and reacted with the catalyst, In order to obtain propylene oxide; wherein, the reaction feed gas includes propylene, oxygen and hydrogen, and the at least part of the dilution gas is gaseous olefin.
  • the gaseous olefin is propylene.
  • the propylene epoxidation reaction is carried out in the presence of alkali.
  • the amount of the alkali used is 1-10000 ppm.
  • the epoxidation reaction is carried out in a microchannel reactor.
  • the catalyst and the inert packing are packed in the reactor in an alternate layered manner.
  • the volume space velocity of the propylene epoxidation reaction is 500-30000 ml g cat -1 h -1 .
  • the method before contacting the mixed gas with the catalyst, the method further comprises preheating the mixed gas.
  • the method further comprises: mixing the first feed gas and the second feed gas to obtain the mixed gas;
  • the first feed gas contains oxygen and is free or substantially free of hydrogen
  • the second feed gas contains hydrogen and is free or substantially free of oxygen
  • the first feed gas and/or the second feed gas contains propylene
  • At least one of the first feed gas and the second feed gas also contains gaseous olefins.
  • the present invention can obtain the following beneficial effects:
  • the present invention uses gaseous olefin as at least part of the dilution gas of the propylene direct epoxidation reaction, which significantly prolongs the service life of the catalyst.
  • gaseous olefin as at least part of the dilution gas of the propylene direct epoxidation reaction, which significantly prolongs the service life of the catalyst.
  • the tubular reactor as an example, it can be extended to more than 500 hours by conventional 100 hours. In the microchannel reactor, the lifetime of the catalyst can be further extended.
  • the present invention uses gaseous olefin as at least part of the diluent gas in the direct epoxidation reaction of propylene, which effectively reduces the amount of the diluent gas.
  • the amount of diluent gas can be further reduced, even to a level close to zero.
  • the reduction in the amount of diluent gas also reduces the difficulty of subsequent product separation and reduces energy consumption.
  • the detonation tube detonation experiment shows that compared with N2 as the diluent gas, when the gaseous olefin is at least a part of the diluent gas, the system can tolerate a higher limit oxygen content, which can be greater than 10% by volume, and the ratio of the raw material gas can be manipulated The scope is wider, so it can be safer without the risk of explosion and further realize the intrinsic safety of the reaction process.
  • the present invention uses gaseous olefin as at least part of the diluent gas in the direct epoxidation reaction of propylene, which can reduce the amount of the diluent gas and increase the tolerable limit oxygen content of the system, thereby increasing the concentration of the reaction gas, improving the reaction selectivity and Propylene conversion.
  • gaseous olefins as at least part of the diluent gas, can quickly absorb the reaction heat released during the epoxidation process, ensuring that the gas-phase direct epoxidation of propylene is carried out safely and efficiently.
  • gaseous olefin is preferably propylene
  • propylene is used both as a diluent gas and as a reaction gas, which further improves the concentration of the reaction gas, promotes the forward progress of the target reaction, and improves the other two feed gases (H 2 , O 2 ) utilization rate.
  • the reaction system is alkaline, which can further reduce the amount of diluent gas and increase the tolerable limit oxygen content of the system; in addition, the active center of the catalyst can be improved, the original reaction path can be changed, and the side reactions can be suppressed. Occurs, further improves propylene oxide selectivity, propylene conversion, space-time yield, hydrogen utilization rate, and prolongs the service life of the catalyst.
  • Fig. 1 is the microchannel reactor of a kind of heart-shaped structure used in the present invention
  • Fig. 2 is the microchannel reactor of a kind of rhombus structure that the present invention uses;
  • Fig. 3 is the microchannel reactor of a kind of S-shaped structure used in the present invention.
  • Fig. 4 is a kind of spiral reactor that the present invention uses
  • Fig. 5 shows the filling method of the catalyst provided by the present invention.
  • the invention provides a method for direct epoxidation of propylene.
  • the method comprises: under the conditions of propylene epoxidation, a mixed gas containing a reaction raw material gas and a dilution gas is contacted and reacted with a catalyst to obtain propylene oxide ;
  • the reaction feed gas includes propylene, oxygen and hydrogen, and at least part of the dilution gas is gaseous olefin;
  • the method includes: under the conditions of propylene epoxidation, contacting and reacting a mixed gas containing a reaction raw material gas and a diluent gas with a catalyst to obtain propylene oxide; wherein, the reaction raw material gas includes propylene, oxygen and Hydrogen, the diluent contains or is gaseous olefins.
  • an inert gas such as nitrogen or argon
  • the diluent gas which makes the reaction safer and the risk of explosion is lower.
  • the inventors of the present invention found in the process of research that when a non-inert gas-gaseous olefin is used as at least part of the diluent gas, in addition to improving the service life of the catalyst, the usage amount of the diluent gas can also be reduced, and the reaction rate can be improved.
  • the oxygen tolerance of the system therefore, reduces the risk of explosion while reducing the subsequent separation pressure of the reaction products.
  • the concentration of the reaction gas is relatively increased, which can effectively promote the forward progress of the reaction, thereby improving the reaction selectivity and conversion rate.
  • the energy consumption for driving and separating the diluent gas is also reduced.
  • the "at least part” may be at least 0.1 vol%, 1 vol%, 5 vol%, 10 vol%, 15 vol%, 20 vol%, 25 vol%, 30 vol%, 35 vol%, 40 vol% vol%, 45vol%, 50vol%, 55vol%, 60vol%, 65vol%, 70vol%, 75vol%, 80vol%, 85vol%, 90vol%, 91vol%, 92vol% , 93% by volume, 94% by volume, 95% by volume, 96% by volume, 97% by volume, 98% by volume, 99% by volume, 100% by volume.
  • the dilution gas may contain 0.1 vol%, 1 vol%, 5 vol%, 10 vol%, 15 vol%, 20 vol%, 25 vol%, 30 vol%, 35 vol%, 40 vol%, 45% by volume, 50% by volume, 55% by volume, 60% by volume, 65% by volume, 70% by volume, 75% by volume, 80% by volume, 85% by volume, 90% by volume, 91% by volume, 92% by volume, 93% by volume %, 94 vol%, 95 vol%, 96 vol%, 97 vol%, 98 vol%, 99 vol%, 99.9 vol% gaseous olefin, or the diluent gas may be a gaseous olefin.
  • the improvement of the oxygen concentration in the direct epoxidation reaction system of propylene, the service life of the catalyst, the reduction of the amount of diluent gas, the improvement of the reaction selectivity and the conversion rate, and the reduction of energy consumption are relative to nitrogen. in terms of dilution gas.
  • the gaseous olefin is a C2-C4 olefin, for example, at least one of ethylene, propylene and butene.
  • the concentration of oxygen is generally not higher than 10% by volume, preferably not higher than 5% by volume, but at least part of the dilution gas is In the case of gaseous olefins, the proportion of oxygen may be greater than 14% by volume, preferably not higher than 60% by volume, for example, 14% by volume, 15% by volume, 16% by volume, 17% by volume, 18% by volume, 19% by volume, 20% by volume % by volume, 21% by volume, 22% by volume, 23% by volume, 24% by volume, 25% by volume, 26% by volume, 27% by volume, 28% by volume, 29% by volume, 30% by volume, 32% by volume, 34% by volume , 36% by volume, 38% by volume, 40% by volume, 42% by volume, 44% by volume, 46% by volume, 48% by volume, 50% by volume, 52% by volume, 54% by volume, 56% by volume, 58% by volume, 60 volume
  • the method of the present invention can increase the amount of oxygen, increase the concentration of the reaction gas, and can promote the forward progress of the reaction.
  • the proportion of the diluent gas in the mixed gas should not be less than 70% by volume.
  • the proportion of the diluent gas is not higher than 60% by volume, for example, it can be 15% by volume, 20% by volume, 25% by volume, 30% by volume, 35% by volume, 40% by volume, 45% by volume, 50% by volume, 55% by volume %, 60% by volume; more preferably less than 55% by volume, further preferably less than 35% by volume.
  • the method of the present invention can reduce the amount of diluent gas, and can reduce the pressure of the separation process of the subsequent reaction products.
  • the volume ratio of propylene (reaction raw material gas), oxygen and hydrogen is preferably 0.2-2.5:0.2-2.5:1.
  • the gaseous olefin is propylene.
  • propylene acts as both the diluent gas and the reaction gas, which can further promote the forward progress of the reaction. It should be noted in the present invention that when propylene is used as at least part of the diluent gas, it means that at least part of the diluent gas is replaced by propylene, so that the amount of propylene in the mixed gas is greatly excessive.
  • this part of propylene is not used as an additional reaction raw material that is generally used to promote the forward reaction of the reaction by increasing the amount of the reaction raw material, but appears as a diluent gas, which is not used to offset the forward reaction for promoting the reaction.
  • the amount of additional reaction starting material to proceed Therefore, in the context of the present invention, propylene cannot simply be considered to be an excess, which is different from an excess in the conventional sense.
  • the propylene epoxidation reaction is carried out in the presence of a base.
  • the alkali can be a basic gas or a basic substance existing in a gaseous form under the reaction conditions of propylene epoxidation.
  • the type of the base is not particularly limited, as long as it can provide basic conditions for the propylene epoxidation reaction.
  • the basic substance is a compound with a lone electron pair and/or a substance capable of accepting protons.
  • Examples of the compound having a lone electron pair may include at least one of ammonia, pyridine, hydrazine, cyanide, amine, alcohol, ether, and thiol.
  • Examples of the proton-accepting substance may include at least one of Cl ⁇ , [Al(H 2 O) 5 OH] 2+ , Ac ⁇ , HPO 4 2-, and PO 4 3-.
  • the base is ammonia.
  • the form in which the base is introduced into the reaction system is not particularly limited, and can be introduced into the reaction system by any of the following modes:
  • a new gas pipeline is added, which is connected to the reaction system, and is fully mixed with the original reaction raw material gas in the mixer and then enters the reactor.
  • the amount of the alkali added can be changed within a wide range, preferably, in the mixed gas, the amount of the basic substance is 1-10000ppm, for example, it can be 1ppm, 10ppm, 20ppm , 30ppm, 40ppm, 50ppm, 60ppm, 70ppm, 80ppm, 90ppm, 100ppm, 200ppm, 300ppm, 400ppm, 500ppm, 600ppm, 700ppm, 800ppm, 900ppm, 1000ppm, 2000ppm, 3000ppm, 4000ppm, 5000ppm, 6000ppm, 7000ppm, 8000ppm, 9000ppm , 10000ppm; preferably 10-1000ppm, more preferably 100-800ppm.
  • the gaseous olefin is propylene
  • the propylene epoxidation reaction is carried out in the presence of a base.
  • the proportion of oxygen may be greater than 16% by volume, but preferably not higher than 60% by volume, for example, the proportion of oxygen may be 16% by volume, 17% by volume, 18% by volume, 19% by volume, 20% by volume %, 21% by volume, 22% by volume, 23% by volume, 24% by volume, 25% by volume, 26% by volume, 27% by volume, 28% by volume, 29% by volume, 30% by volume, 31% by volume, 32% by volume, 33% by volume, 34% by volume, 35% by volume, 36% by volume, 38% by volume, 40% by volume, 42% by volume, 44% by volume, 46% by volume, 48% by volume, 50% by volume, 52% by volume, 54% by volume %, 56 vol%, 58 vol%, 60 vol%.
  • the proportion of the diluent gas is lower than 57.5% by volume, for example, it can be 10% by volume, 12% by volume, 15% by volume, 20% by volume, 22% by volume, 23% by volume, 24% by volume, 25% by volume, 30 % by volume, 35% by volume, 40% by volume, 45% by volume, 50% by volume, 55% by volume, 57.5% by volume; more preferably less than 40% by volume, even more preferably less than 33.5% by volume.
  • the volume ratio of propylene (reaction raw material gas), oxygen and hydrogen is preferably 0.1-3:0.1-3:1.
  • the amount of diluent gas can be further reduced, the amount of oxygen gas can be increased, the concentration of the reaction gas can be increased, and the forward progress of the reaction can be promoted, and can further Reducing the amount of diluent gas can reduce the pressure of the separation process of subsequent reaction products.
  • the propylene epoxidation reaction can be carried out in a conventional reactor in the art, as long as the gaseous olefin of the present invention is selected as at least part of the dilution gas, the service life of the catalyst for the direct propylene epoxidation reaction can be improved, Reduce the amount of diluent gas and increase the amount of reaction gas, improve the reaction selectivity and conversion rate, and reduce energy consumption.
  • the propylene epoxidation reaction is carried out in a tubular reactor.
  • the tubular reactor can be various tubular reactors conventional in the art, for example, a quartz tube reactor.
  • the epoxidation reaction is carried out in a microchannel reactor.
  • the microchannel reactor although the flame propagation can be quenched due to the wall effect of the microchannel, so that the reactant concentration is no longer limited by the explosion limit, therefore, the oxygen concentration limit can be ignored, that is, the dilution can not be used gas.
  • the reaction product propylene oxide can be separated from the catalytic active center in time to promote the positive movement of the reaction equilibrium. Therefore, in order to ensure the reaction efficiency, a certain proportion of diluent gas is usually used, for example, the proportion of the diluent gas in the mixed gas ratio is generally not less than 40% by volume.
  • the microchannel reactor can be various conventional reactors, which are not particularly limited in the present invention.
  • the inside of the microchannel reactor is provided with a or a plurality of spoiler components, and the catalyst is filled in at least a part of the spoiler components.
  • these multiple turbulent components can form a serpentine structure, and the catalyst can be filled in a section of the channel of the serpentine structure, or can be filled with in all channels.
  • the shape of the spoiler is not particularly limited. C shape etc.
  • interdigital means that the spoiler is a hollow tube with a braided structure, the hollow tube is provided with a plurality of connecting rods in the axial direction, and the braids are alternately and orthogonally braided perpendicular to the connecting rods.
  • a plurality of heart-shaped structures are arranged inside the microchannel reactor, as shown in FIG. 1 .
  • gaseous olefin is used as at least part of the diluent gas, and the proportion of the diluent gas is reduced to less than 30% by volume, for example, 10% by volume, 15% by volume, 25% by volume, 30% by volume , can also effectively ensure that the reaction has equivalent or higher propylene conversion and product selectivity.
  • a plurality of diamond-shaped structures are arranged inside the microchannel reactor, as shown in FIG. 2 .
  • gaseous olefin is used as at least part of the diluent gas, and the proportion of the diluent gas is reduced to less than 30% by volume, for example, 10% by volume, 15% by volume, 25% by volume, 30% by volume , can also effectively ensure that the reaction has equivalent or higher propylene conversion and product selectivity.
  • a plurality of S-shaped structures are arranged inside the microchannel reactor, as shown in FIG. 3 .
  • gaseous olefin is used as at least part of the diluent gas, and the proportion of the diluent gas is reduced to less than 30% by volume, for example, 10% by volume, 15% by volume, 25% by volume, 30% by volume , can also effectively ensure that the reaction has equivalent or higher propylene conversion and product selectivity.
  • the microchannel reactor is a helical microchannel reactor, as shown in FIG. 4 , and the catalyst is filled in at least a part of the helical structure.
  • the helical microchannel reactor may be a serpentine structure formed in a helical manner, and the catalyst may be filled in a section of channels of the serpentine structure, or may be filled in all channels.
  • gaseous olefin when gaseous olefin is used as the diluent gas, and the proportion of the diluent gas is reduced to less than 30% by volume, for example, 10% by volume, 15% by volume, 25% by volume, 30% by volume, or It can effectively ensure that the reaction has equivalent or higher propylene conversion rate and product selectivity.
  • the length of the microchannel reactor can be changed in a wide range, preferably, its length is 1-1000mm, preferably 10-500mm.
  • the length of each flow turbulence part is preferably 1-100 mm, preferably 5-50 mm.
  • the width of the microchannel reactor in the radial direction is not particularly limited, as long as it meets the standards of the microchannel reactor.
  • the width is the same along the length of the microchannel reactor (for example, when the microchannel reactor is a helical microchannel reactor) or different (for example, when the interior of the microchannel reactor is provided with a heart-shaped structure turbulence component), according to a preferred embodiment of the present invention, when the same, the width in the radial direction is 20-2000 microns; when not, the minimum width in the radial direction is 10-1000 microns, and the maximum is 10-1000 microns. 100-3000 microns.
  • the material of the microchannel reactor can be any material that can withstand the reaction temperature of the present invention and does not react with the raw materials and products of the present invention, for example, it can be plexiglass, ceramic glass, stainless steel Metal, Quartz, Resin, etc.
  • the catalyst may have any size and shape suitable for the tubular reactor or the microchannel reactor.
  • the catalyst can be any catalyst disclosed in the prior art that can catalyze the reaction of propylene, oxygen, hydrogen and diluent gas to generate propylene oxide
  • the catalyst is a supported metal catalyst
  • the supported Metal catalysts contain supports and active metal components.
  • the active metal component can be selected from at least one of gold, silver, copper, ruthenium, palladium, platinum, rhodium, cobalt, nickel, tungsten, bismuth, molybdenum and their oxides, preferably gold
  • the carrier for supporting the metal can be carbon black, activated carbon, silica, alumina, cerium oxide and zeolite, preferably zeolite, more preferably titanium-silicon molecular sieve.
  • the content of metals in terms of metallic elements can be varied within a wide range, for example, in terms of the total weight of the catalyst, the active metal components in the catalyst in terms of metallic elements
  • the content is 0.01-50% by weight, for example, it can be 0.01% by weight, 0.05% by weight, 0.06% by weight, 0.07% by weight, 0.08% by weight, 0.09% by weight, 0.1% by weight, 0.2% by weight, 0.3% by weight, 0.4% by weight wt%, 0.5 wt%, 0.6 wt%, 0.7 wt%, 0.8 wt%, 0.9 wt%, 1 wt%, 1.1 wt%, 1.2 wt%, 1.3 wt%, 1.4 wt%, 1.5 wt%, 1.6 wt% , 1.7% by weight, 1.8% by weight, 1.9% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 10% by weight, 15%
  • the catalyst is a gold-supported titanium-silicon molecular sieve (Au@TS-1), wherein the loading of the active metal component gold in terms of gold element is 0.1-2 wt%,
  • the TS-1 molecular sieve can be prepared by hydrothermal synthesis, and the active metal component Au can be loaded by deposition and precipitation.
  • the catalyst can be packed in the reactor for propylene epoxidation reaction alone (as shown in Fig. 5a), or can be packed in the reactor in combination with other inert substances.
  • the catalyst is packed in the form of a combination of catalyst and inert filler. in the reactor.
  • the inert filler can be an inert solid phase substance commonly used in the art, preferably, the inert filler is selected from at least one of quartz sand, Al 2 O 3 , porous silica gel and ceramic rings.
  • the amount of the inert filler can be changed in a wide range, but preferably, the amount of the inert filler is 1-200 parts by weight relative to 1 part by weight of the catalyst (for example, it can be 1 part by weight parts, 10 parts by weight, 20 parts by weight, 50 parts by weight, 80 parts by weight, 90 parts by weight, 95 parts by weight, 100 parts by weight, 105 parts by weight, 110 parts by weight, 115 parts by weight, 120 parts by weight, 125 parts by weight, 130 parts by weight, 135 parts by weight, 140 parts by weight, 145 parts by weight, 150 parts by weight, 160 parts by weight, 170 parts by weight, 180 parts by weight, 190 parts by weight, 200 parts by weight), preferably 80-150 parts by weight, more It is preferably 90-110 parts by weight.
  • the combination form of the catalyst and the inert packing may not be particularly limited, for example, the two may be directly mixed and then filled in the reactor, or the two may be designed into a sandwich structure ( Figure 5b), wherein the catalyst or inert packing is located in the middle.
  • Figure 5b sandwich structure
  • the inventors of the present invention found that the catalyst and the inert packing are packed in the reactor in a layered manner, and the catalyst and the inert packing are alternately packed in the reactor in a layered manner.
  • the life of the catalyst, the selectivity of the reaction, the conversion rate, the space-time yield and the hydrogen utilization rate can be further improved, and the amount of the catalyst can be reduced.
  • each layer of catalyst and each layer of inert packing can be selected in a wide range, and they can be layered in a way of equal height or in a way of unequal height, preferably, each layer
  • the catalyst and each layer of inert packing are independently 1-2000 layers/meter, for example, it can be 1 layer/meter, 2 layers/meter, 3 layers/meter, 4 layers/meter, 5 layers/meter, 6 layers/meter m, 7 floors/m, 8 floors/m, 9 floors/m, 10 floors/m, 15 floors/m, 18 floors/m, 20 floors/m, 50 floors/m, 100 floors/m, 200 floors/ m, 300 floors/m, 400 floors/m, 500 floors/m, 600 floors/m, 700 floors/m, 800 floors/m, 900 floors/m, 1000 floors/m, 1200 floors/m, 1400 floors/ meter, 1600 layers/meter, 1800 layers/meter, 2000 layers/meter; preferably 1000-2000 layers/meter, or 10-20 layers/meter.
  • the layer height ratio of each layer of catalyst and each layer of inert packing can be changed in a wide range.
  • the layer height ratio of each layer of catalyst and each layer of inert packing 1:1-10 for example, can be 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10 , preferably 1:1-3, more preferably 1:1.5-2.5.
  • the manner of filling the catalyst in the reactor may not be particularly limited, for example, a coating method, an electrodeposition method, a solution electroplating method, a mechanical filling method and the like may be used.
  • the filling amount of the catalyst is 0.1-0.5g.
  • the filling amount of the catalyst needs to be at least 1 g, and it can be seen that the technical solution of the present invention can also reduce the filling amount of the catalyst.
  • the temperature of the propylene epoxidation reaction can be a conventional reaction temperature in the art, for example, can be 20-300 ° C, but in order to further improve the conversion rate, selectivity, space-time yield and hydrogen utilization rate of the reaction , and improve the service life of the catalyst and reduce the amount of the catalyst, preferably, the temperature of the reaction is 50-250 ° C, more preferably 120-200 ° C, for example, it can be 120 ° C, 125 ° C, 130 ° C, 135 ° C , 140°C, 145°C, 150°C, 155°C, 160°C, 165°C, 170°C, 175°C, 180°C, 185°C, 190°C, 195°C, 200°C.
  • the temperature of the reaction is 50-250 ° C, more preferably 120-200 ° C, for example, it can be 120 ° C, 125 ° C, 130 ° C, 135 ° C , 140°C, 145°
  • the heating rate of the system can also further affect the conversion rate, selectivity, space-time yield and hydrogen utilization rate of the reaction, the service life of the catalyst, and the amount of catalyst used.
  • -1 preferably 0.5-5°C min -1 , more preferably 0.5-2°C min -1 , (for example, it can be 0.5°C min -1 , 0.8°C min -1 , 1.0°C min -1 , 1.2°C min -1 , 1.5 °C min -1 , 2.0 °C min -1 , more preferably 0.8-1.5 °C min -1
  • the conversion rate of the reaction can be further improved, Selectivity, space-time yield and hydrogen utilization rate, as well as improving the service life of the catalyst, reducing the amount of catalyst and the amount of diluent gas.
  • the mixed gas in order to further improve the efficiency of the reaction, it is also preferable to preheat the mixed gas before bringing the mixed gas into contact with the catalyst.
  • the degree of preheating is preferably at least 50% of the target reaction temperature, eg 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%.
  • the pressure of the propylene epoxidation reaction can be the conventional reaction pressure in the art, for example, can be 0-5MPa, but in order to further improve the conversion rate, selectivity, space-time yield and hydrogen utilization rate of the reaction,
  • the reaction pressure is 0-1.5MPa, more preferably 0.05-0.25MPa, for example, can be 0.05MPa, 0.07MPa, 0.09MPa, 0.11MPa, 0.13MPa MPa, 0.15MPa, 0.17MPa, 0.19MPa, 0.21MPa, 0.23MPa, 0.25MPa.
  • the space velocity of the propylene epoxidation reaction can be the conventional reaction volume space velocity in the field, but in order to further improve the conversion rate, selectivity, space-time yield and hydrogen utilization rate of the reaction, and improve the use of catalysts life, reduce the amount of catalyst, preferably, the reaction volume space velocity is 500-30000ml g cat -1 h -1 , more preferably 1000-20000ml g cat -1 h -1 , more preferably 2000-15000ml g cat -1 h -1 , for example, can be 2000ml g cat -1 h -1 , 3000ml g cat -1 h -1 , 4000ml g cat -1 h -1 , 5000ml g cat -1 h -1 , 6000ml g cat -1 h -1, 7000ml g cat -1 h -1 , 8000ml g cat -1 h -1, 9000ml g cat -1 h -1
  • the flow rates of propylene, oxygen, hydrogen and diluent gas are not particularly limited, as long as it can be ensured that they are mixed according to the above volume ratio.
  • the method of the present invention may further comprise component analysis of the reaction product, which may be performed in a gas chromatographic analysis device, for example, by introducing the reaction product into a gas chromatograph equipped with TCD and FID detectors for analysis.
  • the reaction product is transported to the component analysis equipment under the heating condition of 50-200 ° C, specifically, heating can be set between the outlet of the reactor and the injection port of the component analysis equipment.
  • Heating can be set between the outlet of the reactor and the injection port of the component analysis equipment.
  • the propylene epoxidation reaction provided by the method of the present invention is preferably carried out in the absence of a solvent.
  • the solvent includes any externally-incorporated liquid phase.
  • the method further comprises: the first feed gas Mixing with the second feed gas to obtain the mixed gas;
  • the first feed gas contains oxygen and is free or substantially free of hydrogen
  • the second feed gas contains hydrogen and is free or substantially free of oxygen
  • the first feed gas and/or the second feed gas contains propylene
  • At least one of the first feed gas and the second feed gas also contains gaseous olefins.
  • the proportion of gaseous olefins is not particularly limited, and it can be any value or range between 0 and 100% of the total gaseous olefins, For example, 0, 0.01%, 0.1%, 1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 0.05-100%, 50- 90% and so on.
  • the proportion of propylene is not particularly limited, and it can be any value or range between 0 and 100% of the total propylene, for example, 0, 0.01%, 0.1%, 1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 0.05-100%, 50-90% etc.
  • the first feed gas does not contain hydrogen.
  • substantially free of hydrogen means that the amount of hydrogen contained in the first feed gas is insufficient to cause an explosion, for example, the volume fraction of hydrogen in the first feed gas is less than 4% (excluding this number), for example , can be 3.5% or less, 3% or less, 2.5% or less, 2% or less, 1.5% or less, 1% or less, 0.5% or less, 0.1% or less.
  • the second feed gas does not contain oxygen.
  • substantially free of oxygen means that the amount of oxygen contained in the first feed gas is insufficient to cause an explosion, for example, the volume fraction of oxygen in the second feed gas is below 25% (excluding this number), for example , can be 20% or less, 15% or less, 10% or less, 8% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, 0.5% or less, 0.1% or less.
  • the first feed gas contains oxygen and no or substantially no hydrogen, contains at least part of propylene and at least part of gaseous olefins;
  • the second feed gas contains hydrogen and does not contain hydrogen or substantially free of oxygen, with the remainder of the propylene and the remainder of the gaseous olefins; or
  • the second feed gas contains hydrogen and no or substantially no oxygen, and contains at least a portion of propylene and at least a portion of gaseous olefins; the second feed gas contains oxygen and no or substantially no hydrogen, and contains the remainder of propylene and the remainder of the gaseous olefins.
  • the first feed gas contains oxygen and is free or substantially free of hydrogen, all propylene and all gaseous olefins; the second feed gas contains hydrogen and is free or substantially free Contains oxygen.
  • the first feed gas contains oxygen and is free or substantially free of hydrogen, all propylene and part of gaseous olefins (>0); the second feed gas contains hydrogen and no With or substantially free of oxygen and the remainder of the gaseous olefins.
  • the first feed gas contains oxygen and is free or substantially free of hydrogen, part of propylene (>0) and part of gaseous olefins (>0);
  • the second feed gas Contains hydrogen and no or substantially no oxygen, the remainder of the propylene and the remainder of the gaseous olefins.
  • the first feed gas contains oxygen and is free or substantially free of hydrogen, part of propylene (>0) and all gaseous olefins; the second feed gas contains hydrogen and no With or substantially free of oxygen and the remainder of propylene.
  • the first feed gas contains oxygen and is free or substantially free of hydrogen and all gaseous olefins; the second feed gas contains hydrogen and is free or substantially free of oxygen and All acrylic.
  • the first feed gas contains oxygen and is free or substantially free of hydrogen and partially gaseous olefins (>0); the second feed gas contains hydrogen and is free or substantially free Free of oxygen, the remainder of the gaseous olefins and all of the propylene.
  • the first feed gas contains oxygen and is free or substantially free of hydrogen and part of propylene (>0); the second feed gas contains hydrogen and is free or substantially free Contains oxygen, all gaseous olefins and some propylene.
  • the first feed gas contains oxygen and is free or substantially free of hydrogen; the second feed gas contains hydrogen and is free or substantially free of oxygen, all gaseous olefins and All acrylic.
  • partial propylene refers to any value between 0 and 100 vol% (excluding endpoint values), for example, 0.1 vol%, 1 vol%, 5 vol%, 10 vol%, 15 vol% vol%, 20vol%, 25vol%, 30vol%, 35vol%, 40vol%, 45vol%, 50vol%, 55vol%, 60vol%, 65vol%, 70vol%, 75vol% , 80% by volume, 85% by volume, 90% by volume, 91% by volume, 92% by volume, 93% by volume, 94% by volume, 95% by volume, 96% by volume, 97% by volume, 98% by volume, 99% by volume, 99.5 volume%.
  • the concentrations of oxygen independently satisfy the following formula:
  • X O2 is the volume fraction (%) of oxygen in the gas mixture
  • Xn is the volume fraction (%) of gaseous olefin n in the gas mixture
  • X propylene is the volume fraction (%) of propylene in the mixed gas
  • X hydrogen is the volume fraction (%) of hydrogen in the mixed gas
  • Nn is the lower explosion limit (%) of gaseous olefin n in the mixed gas
  • N propylene is the lower explosion limit (%) of propylene in mixed gas
  • N hydrogen is the lower explosion limit (%) of hydrogen in mixed gas
  • Ln is the explosion upper limit (%) of gaseous olefin n in the mixed gas
  • L propylene is the explosion upper limit (%) of propylene in mixed gas
  • LHydrogen is the explosion upper limit (%) of hydrogen in the mixed gas.
  • the above mixed gas refers to the first feed gas
  • the above mixed gas refers to the mixed gas
  • the explosion limit range of propylene refers to the explosion limit range determined by the combustible gas explosion test method in a closed space (tested according to relevant regulations of GB/T12474-2008) under the conditions of room temperature and normal pressure, and its explosion range is 2 -11%.
  • the lower explosion limit is 2% and the upper explosion limit is 11%.
  • X propylene can refer to the volume fraction of all propylene in the system, and the sum of propylene used as diluent gas is 0 at this time; in addition, propylene can also be used as diluent gas according to the above formula The amount of propylene and the amount of propylene as the reactant gas were used to calculate the formula.
  • the explosion limit range of hydrogen refers to the explosion limit range determined by the test method of combustible gas explosion in a closed space (tested according to relevant regulations of GB/T12474-2008) under the conditions of room temperature and normal pressure, and its explosion range is 4 -75%.
  • the lower explosion limit is 4% and the upper explosion limit is 75%.
  • the tubular reactor is a quartz tube reactor with a diameter of 3 cm.
  • Microchannel reaction unit including a mixer, a preheater, and a microchannel reactor, wherein the mixer, the preheater, and the microchannel reactor are all provided with a plurality of heart-shaped turbulence components as shown in Figure 1 , the difference is that the microchannel reactor is filled with catalyst, the outer periphery is provided with temperature control equipment, and the outer periphery of the preheater is provided with a heating device; wherein the length of each heart-shaped structure is 7mm, and the width of the heart-shaped structure is the widest part.
  • the diameter of the pipe connecting two adjacent heart-shaped structures is circular, the diameter is 1 mm, and the total length of the microchannel reactor is 1 cm.
  • gas chromatographs Two gas chromatographs were used, and the products were sampled for gas chromatographic analysis.
  • the two analytical chromatographic models are Agilent 7890B, and the chromatographic columns of gas chromatograph A are (1) HayeSep Q column (SFt 0.9m, OD 1/8, ID 2mm), (2) Molsieve 5A column (SFt 2.44m, OD 1/8, ID 2mm), (3) PoraBOND U column (25m, 0.32mm, 7 ⁇ m); equipped with TCD and FID detectors for analysis of permanent gases such as H 2 , O 2 , diluent gas and propylene, propane, cyclic Oxypropane, acrolein, acetone, propionaldehyde, acetaldehyde, etc., among which the peak positions of propylene and hydrogen are similar, and the mutual influence of the two cannot be accurately distinguished, so gas chromatography B is used to assist the analysis.
  • permanent gases such as H 2 , O 2 , dil
  • the TS-1 molecular sieve catalyst was prepared by hydrothermal synthesis, and the active metal Au was supported by the method of deposition and precipitation.
  • the tubular reactor is a quartz tube reactor with a diameter of 3 cm.
  • the reaction volume space velocity was 4000ml g cat -1 h -1 , the reaction pressure of the system was controlled at 0.2MPa, and the temperature was programmed to 200°C at a rate of 1.5°C min -1 .
  • the reaction system does not explode within 20min of the reaction.
  • the diluent gas is nitrogen, it cannot be carried out safely.
  • the first feed gas is mixed with hydrogen by 180° hedging to obtain a mixed gas.
  • the ratio of hydrogen, oxygen and propylene is 1:1:2, and the oxygen concentration conforms to formula (1);
  • the intake amount of propylene includes its amount as a diluent gas and an amount as a raw material reaction gas.
  • the mixed gas was passed into the preheater, preheated to 160°C, and then entered into the reactor.
  • the reaction volume space velocity was 4000ml g cat -1 h -1 , the reaction pressure of the system was controlled at 0.2MPa, and the temperature was programmed to 200°C at a rate of 1.5°C min -1 .
  • the reaction system does not explode within 20min of the reaction.
  • the raw gas H 2 , O 2 , C 3 H 6 (as the reaction gas), and C 3 H 6 (as the dilution gas) enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 160 ° C
  • the reaction volume space velocity was 9000ml g cat -1 h -1
  • the reaction pressure of the control system was 0.15MPa
  • the temperature was programmed to 200°C at a rate of 0.8°C min -1
  • the propylene gas phase was directly epoxidized.
  • Table 1 The analysis is shown in Table 1, and the approximate time (recorded every 50 hours) when the indicators such as propylene conversion and propylene oxide selectivity begin to decline are recorded.
  • the raw gas H 2 , O 2 , C 3 H 6 (as reaction gas) and C 3 H 6 (as diluent gas) enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 130°C , the reaction volume space velocity was 15000ml g cat -1 h -1 , the reaction pressure of the control system was 0.05MPa, and the temperature was programmed to 170°C at a rate of 1.5°C min -1 . After the reaction was stable for 20 minutes, the propylene gas phase was directly epoxidized. The analysis is shown in Table 1, and the approximate time (recorded every 50 hours) when the indicators such as propylene conversion and propylene oxide selectivity begin to decline are recorded.
  • the raw gas H 2 , O 2 , C 3 H 6 (as the reaction gas), and C 3 H 6 (as the dilution gas) enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 100 ° C , the reaction volume space velocity is 2000ml g cat -1 h -1 , the reaction pressure of the control system is 0.25MPa, and the temperature is programmed to 120°C at a rate of 1.2°C min -1 . After the reaction is stable for 20 minutes, the propylene gas phase is directly epoxidized.
  • Table 1 The analysis is shown in Table 1, and the approximate time (recorded every 50 hours) when the indicators such as propylene conversion and propylene oxide selectivity begin to decline are recorded.
  • the raw gas H 2 , O 2 , C 3 H 6 (as the reaction gas), and C 3 H 6 (as the dilution gas) enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 100 ° C , the reaction volume space velocity is 1000ml g cat -1 h -1 , the reaction pressure of the system is controlled at 0.5MPa, the temperature is programmed to 100°C at a rate of 0.5°C min -1 , and after the reaction is stable for 20 minutes, the propylene gas phase is directly epoxidized.
  • Table 1 The analysis is shown in Table 1, and the approximate time (recorded every 50 hours) when the indicators such as propylene conversion and propylene oxide selectivity begin to decline are recorded.
  • the raw gas H 2 , O 2 , C 3 H 6 (as the reaction gas), and C 3 H 6 (as the dilution gas) enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 100 ° C
  • the reaction volume space velocity was 20000ml g cat -1 h -1
  • the reaction pressure of the control system was 0.01MPa
  • the temperature was programmed to 250°C at a rate of 2.0°C min -1
  • the propylene gas phase was directly epoxidized.
  • Table 1 The analysis is shown in Table 1, and the approximate time (recorded every 50 hours) when the indicators such as propylene conversion and propylene oxide selectivity begin to decline are recorded.
  • the tubular reactor is replaced with a microchannel reactor (including a mixer, a preheater and a microchannel reactor, wherein, The mixer, preheater and microchannel reactor are all heart-shaped structures as shown in Figure 1.
  • the microchannel reactor is filled with catalyst, the periphery is provided with temperature control equipment, and the periphery of the preheater is provided with a heating device ;
  • the length of each heart-shaped structure is 7mm
  • the width of the heart-shaped structure is 2mm at the widest point
  • the cross-section of the pipeline connecting two adjacent heart-shaped structures is circular
  • the diameter is 1mm
  • the microchannel reactor The total length is 1 cm)
  • H 2 : O 2 : C 3 H 6 : diluent gas 1:1:1:1.
  • Table 1 The analysis is shown in Table 1.
  • the direct epoxidation of propylene to prepare propylene oxide is carried out according to the method of Examples 1-10, the difference is that the structure of the microchannel reactor is a spiral structure (as shown in FIG. 4 ).
  • the analysis is shown in Table 2.
  • the direct epoxidation of propylene to prepare propylene oxide was carried out according to the method of Examples 1-10, except that the structure of the microchannel reactor was a diamond structure (as shown in FIG. 2 ). The analysis is shown in Table 2.
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the direct epoxidation of propylene is carried out to prepare propylene oxide, the difference is that the microchannel reactor is not a heart-shaped structure, it is a structure with a rectangular cross-section, and the rectangular structure is 500 microns long, The width of the microchannel reactor is 200 microns, the length of the entire microchannel reactor is 1 cm, the filling amount of the catalyst is 0.3 g, and the diluent gas is nitrogen.
  • Table 1 The analysis is shown in Table 1.
  • the conversion of propylene is calculated only for propylene as the reaction gas, and the amount of propylene as the diluent gas is not included, that is, when the conversion of propylene is calculated by analyzing the amount of each component of the gas after the reaction , it is necessary to subtract the amount of propylene as the diluent gas, and it is considered that the diluent gas does not participate in the reaction.
  • the diluent gas used in the present invention can not only reduce the amount of diluent gas, but also improve the propylene conversion rate, the selective space-time yield of propylene oxide, and the hydrogen utilization rate of the catalyst. For example, it can be extended from the conventional 100 hours to more than 650 hours. Compared with the tubular reactor, the microchannel reactor has more advantages in this reaction.
  • Embodiment 2 alkali
  • the obtained mixed system was put into the preheater, and then put into the reactor after being preheated to 160°C.
  • the reaction volume space velocity was 4000ml g cat -1 h -1 , the reaction pressure of the system was controlled at 0.2MPa, and the temperature was programmed to 200°C at a rate of 1.5°C min -1 .
  • the reaction system does not explode within 20min of the reaction.
  • the diluent gas is nitrogen, it cannot be carried out safely.
  • the raw gas H 2 , O 2 , C 3 H 6 (as the reaction gas), and C 3 H 6 (as the dilution gas) enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 160 ° C
  • ammonia gas is added by mixing with hydrogen gas, and the doping amount of ammonia gas is 800ppm relative to the mixed gas of reaction raw material gas and diluent gas.
  • the reaction volume space velocity was 9000ml g cat -1 h -1
  • the reaction pressure of the control system was 0.15MPa
  • the temperature was programmed to 200°C at a rate of 0.8°C min -1 .
  • the raw gas H 2 , O 2 , C 3 H 6 (as reaction gas) and C 3 H 6 (as diluent gas) enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 130°C
  • ammonia gas is added by mixing with hydrogen gas, and the doping amount of ammonia gas is 500ppm relative to the mixed gas of reaction raw material gas and diluent gas.
  • the reaction volume space velocity was 4000ml g cat -1 h -1
  • the reaction pressure of the control system was 0.05MPa
  • the temperature was programmed to 170°C at a rate of 1.5°C min -1 .
  • the raw gas H 2 , O 2 , C 3 H 6 (as the reaction gas), and C 3 H 6 (as the dilution gas) enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 100 ° C
  • ammonia gas is added by mixing with hydrogen gas, and the doping amount of ammonia gas is 100ppm relative to the mixed gas of reaction raw material gas and diluent gas.
  • the reaction volume space velocity was 13000ml g cat -1 h -1
  • the reaction pressure of the control system was 0.25MPa
  • the temperature was programmed to 120°C at a rate of 1.2°C min -1 .
  • the raw gas H 2 , O 2 , C 3 H 6 (as the reaction gas), and C 3 H 6 (as the dilution gas) enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 100 ° C
  • pyridine is added by doping with hydrogen gas, and the doping amount of ammonia gas is 5 ppm relative to the mixed gas of reaction raw material gas and diluent gas.
  • the reaction volume space velocity was 1000ml g cat -1 h -1
  • the reaction pressure of the control system was 0.5MPa
  • the temperature was programmed to 100°C at a rate of 0.5°C min -1 .
  • the raw gas H 2 , O 2 , C 3 H 6 (as the reaction gas), and C 3 H 6 (as the dilution gas) enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 100 ° C
  • ethylenediamine is added by mixing with hydrogen gas, and the doping amount of ammonia gas is 1500ppm relative to the mixed gas of reaction raw material gas and diluent gas.
  • the reaction volume space velocity was 20000ml g cat -1 h -1
  • the reaction pressure of the control system was 0.01MPa
  • the temperature was programmed to 250°C at a rate of 2.0°C min -1 .
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the conversion of propylene is calculated only for propylene as the reaction gas, and the amount of propylene as the diluent gas is not included, that is, when the conversion of propylene is calculated by analyzing the amount of each component of the gas after the reaction , it is necessary to subtract the amount of propylene as the diluent gas, and it is considered that the diluent gas does not participate in the reaction.
  • the diluent gas used in the present invention combined with alkali can reduce the amount of diluent gas, and can also improve the conversion rate of propylene, the selective space-time yield of propylene oxide, and the service life of the catalyst.
  • Comparative Example 3 - Diluent gas is methane, ethane or butane
  • the reaction volume space velocity was 4000ml g cat -1 h -1 , the reaction pressure of the system was controlled at 0.2MPa, and the temperature was programmed to 200°C at a rate of 1.5°C min -1 .
  • the reaction system does not explode within 20 minutes of the reaction.
  • the diluent gas is nitrogen, it cannot be carried out safely.
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the raw gas H 2 , O 2 , C 3 H 6 , and CH 4 enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 160 ° C.
  • the reaction volume space velocity is 9000ml g cat -1 h -1 , control the reaction pressure of the system to 0.15MPa, program the temperature to 200°C at a rate of 0.8°C min -1 , and after the reaction was stable for 20 minutes, the gas-phase direct epoxidation reaction of propylene was analyzed as shown in Table 3, and the conversion rate of propylene was recorded. , the approximate time when indicators such as propylene oxide selectivity begin to decline (recorded every 50 hours).
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the raw gas H 2 , O 2 , C 3 H 6 , and CH 4 enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 130 °C, and the reaction volume space velocity is 13000ml g cat -1 h -1 , control the reaction pressure of the system to 0.05 MPa, program the temperature to 150 °C at a rate of 1.5 °C min -1 , and after the reaction was stable for 20 minutes, the gas-phase direct epoxidation reaction of propylene was analyzed as shown in Table 3, and the conversion rate of propylene was recorded. , the approximate time when indicators such as propylene oxide selectivity begin to decline (recorded every 50 hours).
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the raw gas H 2 , O 2 , C 3 H 6 , and CH 4 enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 100 °C, and the reaction volume space velocity is 2000ml g cat -1 h -1 , control the reaction pressure of the system to 0.25 MPa, program the temperature to 120 °C at a rate of 1.2 °C min -1 , and after the reaction was stable for 20 minutes, the gas-phase direct epoxidation reaction of propylene was analyzed as shown in Table 3, and the conversion rate of propylene was recorded. , the approximate time when indicators such as propylene oxide selectivity begin to decline (recorded every 50 hours).
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the raw gas H 2 , O 2 , C 3 H 6 , and CH 4 enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 100 °C, and the reaction volume space velocity is 1000ml g cat -1 h -1 , control the reaction pressure of the system to 0.5 MPa, program the temperature to 100 °C at a rate of 0.5 °C min -1 , and after the reaction was stable for 20 minutes, the gas-phase direct epoxidation of propylene was analyzed as shown in Table 3, and the conversion rate of propylene was recorded. , the approximate time when indicators such as propylene oxide selectivity begin to decline (recorded every 50 hours).
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the raw gas H 2 , O 2 , C 3 H 6 , and CH 4 enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 100 ° C.
  • the reaction volume space velocity is 10000ml g cat -1 h -1 , control the reaction pressure of the system to 0.01 MPa, program the temperature to 250 °C at a rate of 2.0 °C min -1 , and after the reaction was stable for 20 minutes, the gas-phase direct epoxidation reaction of propylene was analyzed as shown in Table 3, and the conversion rate of propylene was recorded. , the approximate time when indicators such as propylene oxide selectivity begin to decline (recorded every 50 hours).
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the tubular reactor is a quartz tube reactor with a diameter of 3 cm.
  • the reaction volume space velocity was 4000ml g cat -1 h -1 , the reaction pressure of the system was controlled at 0.2MPa, and the temperature was programmed to 200°C at a rate of 1.5°C min -1 .
  • the reaction system does not explode within 20min of the reaction.
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the raw gas H 2 , O 2 , C 3 H 6 , and propane enter the mixer to be mixed and then enter the preheater. After preheating to 160 °C, they enter the tubular reactor.
  • the reaction volume space velocity is 9000ml g cat -1 h - 1.
  • Control the reaction pressure of the system to 0.15MPa program the temperature to 200°C at a rate of 0.8°C min -1 , and after the reaction is stable for 20 minutes, the gas-phase direct epoxidation reaction of propylene is analyzed as shown in Table 4, and the propylene conversion rate, Approximate time when indicators such as propylene oxide selectivity begin to decline (recorded every 50 hours).
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the raw gas H 2 , O 2 , C 3 H 6 , and propane enter the mixer to be mixed and then enter the preheater. After preheating to 130 °C, they enter the tubular reactor.
  • the reaction volume space velocity is 15000ml g cat -1 h - 1.
  • Control the reaction pressure of the system to 0.05MPa, and program the temperature to 170°C at a rate of 1.5°C min -1 .
  • the gas-phase direct epoxidation reaction analysis of propylene is shown in Table 4, and the propylene conversion rate, Approximate time when indicators such as propylene oxide selectivity begin to decline (recorded every 50 hours).
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the raw gas H 2 , O 2 , C 3 H 6 , and propane enter the mixer to be mixed and then enter the preheater. After preheating to 100°C, they enter the tubular reactor.
  • the reaction volume space velocity is 2000ml g cat -1 h - 1.
  • Control the reaction pressure of the system to 0.25MPa program the temperature to 120°C at a rate of 1.2°C min -1 , and after the reaction is stable for 20 minutes, the gas-phase direct epoxidation reaction analysis of propylene is shown in Table 4, and the propylene conversion rate, Approximate time when indicators such as propylene oxide selectivity begin to decline (recorded every 50 hours).
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the raw gas H 2 , O 2 , C 3 H 6 , and propane enter the mixer for mixing and then enter the preheater, and then enter the tubular reactor after preheating to 100 ° C.
  • the reaction volume space velocity is 1000ml g cat -1 h - 1.
  • Control the reaction pressure of the system to 0.5MPa, and program the temperature to 100°C at a rate of 0.5°C min -1 .
  • the gas-phase direct epoxidation reaction of propylene is analyzed as shown in Table 4, and the propylene conversion rate, Approximate time when indicators such as propylene oxide selectivity begin to decline (recorded every 50 hours).
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • the raw gas H 2 , O 2 , C 3 H 6 and propane enter the mixer to mix and then enter the preheater, and then enter the tubular reactor after preheating to 100°C.
  • the reaction volume space velocity is 25000ml g cat -1 h - 1.
  • Control the reaction pressure of the system to 0.01MPa, and program the temperature to 250°C at a rate of 2.0°C min -1 .
  • the gas-phase direct epoxidation reaction of propylene is analyzed as shown in Table 4, and the propylene conversion rate, Approximate time when indicators such as propylene oxide selectivity begin to decline (recorded every 50 hours).
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene
  • This comparative example is used to illustrate the method for the direct epoxidation of reference propylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Compounds (AREA)

Abstract

本发明涉及环氧丙烷制备领域,公开了一种丙烯直接环氧化以制备环氧丙烷的方法。该方法包括:在丙烯环氧化反应条件下,将含有反应原料气和稀释气的混合气体与催化剂进行接触反应,以得到环氧丙烷;其中,所述反应原料气包括丙烯、氧气和氢气,至少部分所述稀释气为气态烯烃。本发明以气态烯烃作为至少部分稀释气进行丙烯环氧化反应,可显著延长催化剂的使用寿命,有效降低稀释气的用量,从而降低了后续产物分离难度,降低了能耗,在保障安全的情况下,可有效提高反应体系中氧气的浓度,从而提高了原料利用效率,同时还提高了反应选择性和丙烯转化率。

Description

丙烯直接环氧化以制备环氧丙烷的方法
相关申请的交叉引用
本申请要求2020年07月10日提交的中国专利申请202010663795.X的权益,该申请的内容通过引用被合并于本文。
本申请要求2020年07月10日提交的中国专利申请202010663791.1的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及环氧丙烷制备领域,具体涉及一种丙烯直接环氧化以制备环氧丙烷的方法。
背景技术
环氧丙烷,又名氧化丙烯、甲基环氧乙烷,是非常重要的有机化合物原料,是仅次于聚丙烯和丙烯腈的第三大丙烯类衍生物。环氧丙烷为无色醚味液体,低沸点、易燃。有手性,工业品一般为两种对映体的外消旋混合物。与水部分混溶,与乙醇、乙醚混溶。与戊烷、戊烯、环戊烷、环戊烯、二氯甲烷形成二元共沸混合物。
环氧丙烷主要用于生产聚醚多元醇、丙二醇和各类非离子表面活性剂等,其中聚醚多元醇是生产聚氨酯泡沫、保温材料、弹性体、胶粘剂和涂料等的重要原料,各类非离子型表面活性剂在石油、化工、农药、纺织、日化等行业得到广泛应用。同时,环氧丙烷也是重要的基础化工原料。
目前工业上较新颖的环氧丙烷生产方法是HPPO法,是以钛硅分子筛为催化剂,过氧化氢为氧化剂的直接氧化法。HPPO法的产物中只有环氧丙烷和水,产品选择性高,副产物少,且工艺流程简单无污染。但是,该法存在催化剂寿命短、能耗高、溶剂量大、H 2O 2利用率低等问题。
近年来,丙烯直接氧化制备环氧丙烷的方法由于其选择性高、反应过程简单等优点受到研究者越来越多的关注。该方法在催化剂和稀释气N 2的存在下,氢气、氧气直接对丙烯进行环氧化得到环氧丙烷。该反应突出的优势是反应条件温和,选择性高,绿色清洁。但也存在明显问题,例如,1)为了解决安全性问题,研究人员大多数选择掺杂大量惰性保护气(例如,70-95体积%的氮气或氩气)来避免体系的爆炸,但稀释气的过度使用显著增加了后续产物分离工艺的难度,从而增加了能耗;2)该方法中催化剂寿命短,一般催化剂寿命都在100小时以下;3)为了解决安全性问题,反应过程中通常控制氧气的浓度不高于5体积%,但这样一来,由于氧气浓度的降低,导致反应气浓度降低,原料利用率差,反应选择性和丙烯转化率下降。
发明内容
本发明的目的是为了克服现有丙烯环氧化技术中存在的催化剂使用寿命短、稀释气用量高、氧气浓度低、反应的选择性和转化率低的缺陷,提供一种丙烯直接环氧化以制备环氧丙烷的方法。本发明以气态烯烃作为至少部分稀释气进行丙烯环氧化反应,可显著延长催化剂的使用寿命,有效降低稀释气的用量,从而降低了后续产物分离难度,降低了能耗,在保障安全的情况下,可有效提高反应体系中氧气的浓度,从而提高了反应气浓度,同时还提高了反应选择性和丙烯转化率。
为了实现上述目的,本发明提供了一种丙烯直接环氧化反应的方法,该方法包括:在丙烯环氧化反应条件下,将含有反应原料气和稀释气的混合气体与催化剂进行接触反应,以得到环氧丙烷;其中, 所述反应原料气包括丙烯、氧气和氢气,所述至少部分稀释气为气态烯烃。
优选的,所述气态烯烃为丙烯。
优选的,所述丙烯环氧化反应在碱质的存在下进行。
优选的,所述碱的用量为1-10000ppm。
优选的,所述环氧化反应在微通道反应器中进行。
优选的,所述催化剂与惰性填充物以交替分层堆积的方式填充于反应器中。
优选的,所述丙烯环氧化反应的体积空速为500-30000ml g cat -1h -1
优选地,在将所述混合气体与催化剂进行接触之前,该方法还包括对所述混合气体进行预热。
优选地,该方法进一步包括:将第一进料气和第二进料气混合,得到所述混合气体;
其中,第一进料气含有氧气且不含或基本不含氢气,第二进料气含有氢气且不含或基本不含氧气,第一进料气和/或第二进料气含有丙烯,所述第一进料气和第二进料气中至少一者还含有气态烯烃。
通过上述技术方案,本发明可取得如下的有益效果:
1.本发明以气态烯烃作为丙烯直接环氧化反应的至少部分稀释气,显著延长了催化剂的使用寿命,以在管式反应器中为例,可由常规的100小时延长至500小时以上,在微通道反应器中,所述催化剂的寿命还能够进一步延长。
2.本发明以气态烯烃作为丙烯直接环氧化反应的至少部分稀释气,有效降低了稀释气的用量,例如,管式反应器中,采用本发明的方案可降低至70体积%以下,而在微通道中,可以进一步降低稀释气的用量,甚至可以降低至接近0的水平。此外,稀释气用量的降低还降低了后续产物分离困难,降低了能耗。
3.爆轰管燃爆实验显示,相比于N2作为稀释气,在气态烯烃为至少部分稀释气的情况下,体系可容忍极限氧含量更高,可大于10体积%,原料气比例可操作范围更广,因而可以更加安全而无燃爆风险,进一步实现了反应流程的本质安全化。
4.本发明以气态烯烃作为丙烯直接环氧化反应的至少部分稀释气,可降低稀释气的用量且可提高体系可容忍极限氧含量,从而提高了反应气的浓度,提高了反应选择性和丙烯转化率。
5.气态烯烃的比热容较大,相比于氮气来说,气态烯烃作为至少部分稀释气可以迅速的吸收环氧化过程中释放出来的反应热,保证丙烯气相直接环氧化反应安全高效进行。
6.在所述气态烯烃优选为丙烯时,丙烯既作为稀释气又作为反应气,进一步提高了反应气的浓度,促进目标反应的正向进行,提高了其他两种原料气(H 2、O 2)的利用率。
7.优选情况下,反应体系为碱性条件,可进一步降低稀释气的用量和提高体系可容忍极限氧含量;此外,可改善了催化剂活性中心,改变了原有反应路径,抑制了副反应的发生,进一步提高环氧丙烷选择性、丙烯转化率、空时产率,氢气利用率,延长催化剂的使用寿命。
附图说明
图1是本发明使用的一种心形结构的微通道反应器;
图2是本发明使用的一种菱形结构的微通道反应器;
图3是本发明使用的一种S形结构的微通道反应器;
图4是本发明使用的一种螺旋形反应器;
图5是本发明提供的催化剂的填充方式。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明提供了一种丙烯直接环氧化反应的方法,该方法包括:在丙烯环氧化反应条件下,将含有反应原料气和稀释气的混合气体与催化剂进行接触反应,以得到环氧丙烷;其中,所述反应原料气包括丙烯、氧气和氢气,至少部分所述稀释气为气态烯烃;
或者,该方法包括:在丙烯环氧化反应条件下,将含有反应原料气和稀释气的混合气体与催化剂进行接触反应,以得到环氧丙烷;其中,所述反应原料气包括丙烯、氧气和氢气,所述稀释气含有或者为气态烯烃。
一般来讲,在丙烯直接环氧化反应中,通常会选用惰性气体,例如,氮气或氩气作为稀释气,如此会使得反应更为安全,燃爆风险更低。然而本发明的发明人在研究的过程中发现,在采用非惰性气体——气态烯烃作为至少部分稀释气的情况下,除了能够提高催化剂的使用寿命,还能够降低稀释气的使用量,提高反应体系的氧气容忍度,因此,在降低反应产物后续分离压力的同时,降低了燃爆风险。同时由于稀释气用量的降低,反应气的浓度相对得到了提高,能够有效推进反应的正向进行,从而提高反应选择性和转化率。另外,由于稀释气用量的降低,稀释气的驱动和分离能耗也得到了降低。
根据本发明,所述“至少部分”可以为至少0.1体积%、1体积%、5体积%、10体积%、15体积%、20体积%、25体积%、30体积%、35体积%、40体积%、45体积%、50体积%、55体积%、60体积%、65体积%、70体积%、75体积%、80体积%、85体积%、90体积%、91体积%、92体积%、93体积%、94体积%、95体积%、96体积%、97体积%、98体积%、99体积%、100体积%。
根据本发明,所述稀释气可以含有0.1体积%、1体积%、5体积%、10体积%、15体积%、20体积%、25体积%、30体积%、35体积%、40体积%、45体积%、50体积%、55体积%、60体积%、65体积%、70体积%、75体积%、80体积%、85体积%、90体积%、91体积%、92体积%、93体积%、94体积%、95体积%、96体积%、97体积%、98体积%、99体积%、99.9体积%的气态烯烃,或者所述稀释气可以为气态烯烃。
需要说明的是,本发明所述涉及的提高丙烯直接环氧化反应体系中氧气浓度、催化剂的使用寿命、降低稀释气用量、提高反应选择性和转化率,以及降低能耗是相对于氮气为稀释气而言的。
优选的,所述气态烯烃为C2-C4的烯烃,例如,乙烯、丙烯和丁烯中的至少一种。
根据本发明,通常情况下,为了确保反应的安全性,在所述混合气体中,氧气的浓度一般不得高于10体积%,优选不高于5体积%,然而在至少部分所述稀释气为气态烯烃的情况下,氧气的比例可以大于14体积%,优选不高于60体积%,例如,14体积%、15体积%、16体积%、17体积%、18体积%、19体积%、20体积%、21体积%、22体积%、23体积%、24体积%、25体积%、26体积%、27体积%、28体积%、29体积%、30体积%、32体积%、34体积%、36体积%、38体积%、40体积%、42体积%、44体积%、46体积%、48体积%、50体积%、52体积%、54体积%、56体积%、58体积%、60体积%。优选大于20体积%,进一步优选大于22体积%。
由以上可以看出,本发明的方法可以提高氧气的用量,提高了反应气的浓度,可以促进反应的正向进行。
根据本发明,通常情况下,为了确保反应的安全性,在所述混合气体中,稀释气的比例一般不得低于70体积%,然而在至少部分所述稀释气为气态烯烃的情况下,所述稀释气的比例不高于60体积%,例如,可以为15体积%、20体积%、25体积%、30体积%、35体积%、40体积%、45体积%、50体积%、 55体积%、60体积%;更优选小于55体积%,进一步优选小于35体积%。
由以上可以看出,本发明的方法可以降低稀释气的用量,可降低后续反应产物的分离工艺的压力。
根据本发明,丙烯(反应原料气)、氧气、氢气的用量体积比优选为0.2-2.5∶0.2-2.5∶1。
根据本发明一种特别优选的实施方式,所述气态烯烃为丙烯。本发明的发明人独创的发现,在采用丙烯作为至少部分稀释气的情况下,丙烯既作为稀释气又作为反应气,能够进一步推动反应的正向进行。本发明需要说明的是,丙烯作为至少部分稀释气的情况下,是指至少部分稀释气被丙烯所取代,从而导致所述混合气体中丙烯的量大大过量。也就是说,该部分丙烯不作为一般情况下通过提高反应原料的用量从而达到促进反应正向进行的多添加的反应原料,而是作为稀释气出现的,其不用于抵消出于促进反应正向进行而多加的反应原料的量。因此,在本发明情况下,不能简单的认为丙烯是过量的,其和常规理解意义上的过量是不同的。
根据本发明,为了进一步提高催化剂的寿命,降低稀释气的用量、提高氧气容忍度,以及提高反应的选择性和转化率,优选的,所述丙烯环氧化反应在碱的存在下进行。
根据本发明,所述碱可以为碱性气体,也可以为在丙烯环氧化反应条件下以气态形式存在的碱性物质。
根据本发明,所述碱的种类不受特别的限制,只要能够为丙烯环氧化反应提供碱性条件即可。优选的,所述碱性物质为带有孤电子对的化合物和/或能够接受质子的物质。
所述带有孤电子对的化合物的实例可以包括氨、吡啶、肼、氰、胺、醇、醚和硫醇中的至少一种。
所述能够接受质子的物质的实例可以包括Cl -、[Al(H 2O) 5OH] 2+、Ac -、HPO 4 2-和PO 4 3-中的至少一种。
根据本发明一种优选的实施方式,所述碱为氨。
根据本发明,所述碱通入到反应体系中的形式不受特别的限制,可以通过如下任意一种方式通入至反应体系中:
(1)不改变气路,在反应原料气配置过程中,添加一定量的碱。如在H 2中掺入碱性气体,配制H 2和碱性气体混合气,通过H 2气路进入反应体系,不改变原有反应装置的管路布局。
(2)新增一路气体管线,接入反应体系中,与原有的反应原料气在混合器中充分混合后进入反应器。
(3)在反应原料气或稀释气路上进行改造,使反应原料气或稀释气通过碱环境,碱随着反应原料气或稀释气进入反应器。
根据本发明,所述碱的加入量可以在较宽的范围内改变,优选的,在所述混合气体中,所述碱性物质的用量为1-10000ppm,例如,可以为1ppm、10ppm、20ppm、30ppm、40ppm、50ppm、60ppm、70ppm、80ppm、90ppm、100ppm、200ppm、300ppm、400ppm、500ppm、600ppm、700ppm、800ppm、900ppm、1000ppm、2000ppm、3000ppm、4000ppm、5000ppm、6000ppm、7000ppm、8000ppm、9000ppm、10000ppm;优选10-1000ppm,进一步优选为100-800ppm。
根据本发明一种优选的实施方式,所述气态烯烃为丙烯,且丙烯环氧化反应在碱的存在下进行。在所述混合气体中,氧气的比例可以大于16体积%,但优选不高于60体积%,例如,氧气的比例可以为16体积%、17体积%、18体积%、19体积%、20体积%、21体积%、22体积%、23体积%、24体积%、25体积%、26体积%、27体积%、28体积%、29体积%、30体积%、31体积%、32体积%、33体积%、34体积%、35体积%、36体积%、38体积%、40体积%、42体积%、44体积%、46体积%、48体积%、50体积%、52体积%、54体积%、56体积%、58体积%、60体积%。更优选大于22体积%,进一步优选大于25体积%。所述稀释气的比例低于57.5体积%,例如,可以为、10体积%、12体积%、15体积%、20体积%、22体积%、23体积%、24体积%、25体积%、30体积%、35体积%、40体积%、45体积%、 50体积%、55体积%、57.5体积%;更优选小于40体积%,进一步优选小于33.5体积%。
根据本发明,在如上情况下,丙烯(反应原料气)、氧气、氢气的用量体积比优选为0.1-3∶0.1-3∶1。
由以上可以看出,丙烯环氧化反应在碱的存在下进行的情况下,可以进一步降低稀释气的用量,提高氧气的用量,提高反应气的浓度,促进反应的正向进行,并且可以进一步降低稀释气的用量,可降低后续反应产物的分离工艺的压力。
此处需要说明的是,在丙烯作为稀释气时,本文中所述的丙烯转化率的提高是针对作为反应气的丙烯的量进行计算的,并没有把作为稀释气的丙烯的量计算在内。
根据本发明,所述丙烯环氧化反应可以在本领域常规的反应器中进行,只要选用本发明的气态烯烃作为至少部分稀释气,即可提高丙烯直接环氧化反应用催化剂的使用寿命,降低稀释气用量和提高反应气用量,提高反应选择性和转化率,以及降低能耗。
根据本发明一种具体的实施方式,所述丙烯环氧化反应在管式反应器中进行。所述管式反应器可以为本领域常规的各种管式反应器,例如,石英管反应器。
根据本发明另一种优选的实施方式,为了进一步实现本发明的目的,所述环氧化反应在微通道反应器中进行。在微通道反应器中,虽然由于微通道的器壁效应,可淬灭火焰传播,使得反应物浓度不再受爆炸极限限制,因此,可以不考虑氧气浓度的限制,也即,可以不使用稀释气。但通常情况下,因为稀释气有吹扫气的作用,可以将反应产物环氧丙烷及时从催化活性中心分离,促进反应平衡正向移动。因此,为了保证反应效率,通常会使用一定比例的稀释气,例如,稀释气在混合气体比例中的比例一般不低于40体积%。
根据本发明,所述微通道反应器可以为常规的各种反应器,本发明对此并没有特别的限制,根据本发明一种优选的实施方式,所述微通道反应器的内部设置有一个或多个扰流部件,所述催化剂填充于所述扰流部件中的至少一部分。其中,当所述微通道反应器的内部设置有多个扰流部件,这些多个扰流部件可以形成蛇形结构,所述催化剂可以填充在所述蛇形结构的一段通道中,也可以填充在所有通道中。
其中,所述扰流部件的形状并没有特别的限制,优选的,选自心形、菱形、S形、三角形、长方形、正方形、圆形、交叉指形、螺旋形、V形、T形、C形等。
术语“交叉指形”是指所述扰流部件为编织结构的中空管,所述中空管沿轴向上设置有多个连接杆,编条垂直于所述连接杆交替正交编织。
根据本发明一种具体的实施方式,所述微通道反应器的内部设置有多个心形结构,如图1所示。在该优选的技术方案下,以气态烯烃作为至少部分稀释气,所述稀释气的比例降低至小于30体积%的情况下,例如,10体积%、15体积%、25体积%、30体积%,也能够有效的保证反应具有相当或是更高的丙烯转化率和产物的选择性。
根据本发明一种具体的实施方式,所述微通道反应器的内部设置有多个菱形结构,如图2所示。在该优选的技术方案下,以气态烯烃作为至少部分稀释气,所述稀释气的比例降低至小于30体积%的情况下,例如,10体积%、15体积%、25体积%、30体积%,也能够有效的保证反应具有相当或是更高的丙烯转化率和产物的选择性。
根据本发明一种具体的实施方式,所述微通道反应器的内部设置有多个S形结构,如图3所示。在该优选的技术方案下,以气态烯烃作为至少部分稀释气,所述稀释气的比例降低至小于30体积%的情况下,例如,10体积%、15体积%、25体积%、30体积%,也能够有效的保证反应具有相当或是更高的丙烯转化率和产物的选择性。
根据本发明一种优选的实施方式,所述微通道反应器为螺旋形微通道反应器,如图4所示,所述 催化剂填充于螺旋形结构中的至少一部分。其中,所述螺旋形微通道反应器可以为以螺旋的方式形成的蛇形结构,所述催化剂可以填充在所述蛇形结构的一段通道中,也可以填充在所有通道中。在该优选的技术方案下,以气态烯烃作为稀释气,所述稀释气的比例降低至小于30体积%的情况下,例如,10体积%、15体积%、25体积%、30体积%,也能够有效的保证反应具有相当或是更高的丙烯转化率和产物的选择性。
根据本发明,所述微通道反应器的长度可以在较宽的范围内进行改变,优选的,其长度为1-1000mm,优选10-500mm。所述微通道反应器的内部设置有多个扰流部件时,每个扰流部件的长度优选为1-100mm,优选5-50mm。
根据本发明,所述微通道反应器在径向方向上的宽度不受特别的限制,只要符合微通道反应器的标准即可,本发明所示的微通道反应器,其在径向方向上的宽度沿着微通道反应器的长度相同(例如,当所述微通道反应器为螺旋结构微通道反应器时)或不同(例如,当所述微通道反应器的内部设置有心形结构扰流部件时),根据本发明一种优选的实施方式,相同时,其径向方向上的宽度为20-2000微米;不同时,其径向方向上的宽度最小处为10-1000微米,最大为处100-3000微米。
根据本发明,所述微通道反应器的材质可以为任意的能够耐受本发明反应温度且与本发明的原料和生成物不发生反应的材质,例如,其可为有机玻璃、陶瓷玻璃、不锈钢金属、石英、树脂材质等。
根据本发明,所述催化剂可以具有任意适合所述管式反应器或所述微通道反应器的尺寸和形状。
根据本发明,所述催化剂可以为现有技术公开的任意能够将丙烯、氧气、氢气和稀释气催化反应以生成环氧丙烷的催化剂,优选的,所述催化剂为负载型金属催化剂,该负载型金属催化剂含有载体和活性金属组分。其中,所述活性金属组分可以选自金、银、铜、钌、钯、铂、铑、钴、镍、钨、铋、钼及它们的氧化物中的至少一种,优选为金;用于负载所述金属的载体可以为炭黑、活性炭、二氧化硅、三氧化二铝、氧化铈和沸石,优选为沸石,更优选为钛硅分子筛。
根据本发明,在所述负载型金属催化剂中,以金属元素计的金属的含量可以在较宽的范围内改变,例如,以催化剂的总重量计,催化剂中以金属元素计的活性金属组分的含量为0.01-50重量%,例如,可以为0.01重量%、0.05重量%、0.06重量%、0.07重量%、0.08重量%、0.09重量%、0.1重量%、0.2重量%、0.3重量%、0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%、1重量%、1.1重量%、1.2重量%、1.3重量%、1.4重量%、1.5重量%、1.6重量%、1.7重量%、1.8重量%、1.9重量%、2重量%、3重量%、4重量%、5重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%,优选为0.05-5重量%,更优选0.1-2重量%。
根据本发明一种优选的实施方式,所述催化剂为负载金的钛硅分子筛(Au@TS-1),其中,以金元素计的活性金属组分金的负载量为0.1-2重量%,TS-1分子筛可以通过水热合成的方式制备,活性金属组分Au可以通过沉积沉淀的方法进行负载。
根据本发明,所述催化剂可以单独填充在丙烯环氧化反应的反应器中(如图5a所示),也可以与其他惰性物质结合填充在所述反应器中。但为了进一步提高催化剂的使用寿命,提高反应的选择性、转化率、时空产率以及氢气利用率,降低催化剂的用量,优选的,所述催化剂以与催化剂和惰性填充物相结合的形式填充于所述反应器中。其中,所述惰性填充物可以为本领域常规使用的惰性固相物质,优选的,所述惰性填充物选自石英砂、Al 2O 3、多孔硅胶和陶瓷环中的至少一种。
其中,所述惰性填充物的用量可以在较宽的范围内改变,但优选的,相对于1重量份的催化剂,所述惰性填充物的用量为1-200重量份(例如,可以为1重量份、10重量份、20重量份、50重量份、80重量份、90重量份、95重量份、100重量份、105重量份、110重量份、115重量份、120重量份、125重量份、130重量份、135重量份、140重量份、145重量份、150重量份、160重量份、170重量份、 180重量份、190重量份、200重量份),优选为80-150重量份,更优选为90-110重量份。
根据本发明,所述催化剂与所述惰性填充物的结合形式可以不受特别的限制,例如,可以直接将二者混合后填充于所述反应器中,也可以将二者设计成三明治结构(如图5b),其中,催化剂或者惰性填充物位于中间。然而本发明的发明人在研究中发现,所述催化剂与惰性填充物以分层堆积的方式填充于所述反应器中,更所述催化剂与惰性填充物以交替分层堆积的方式填充于反应器中(如图5c所示),能够进一步提高催化剂的寿命,反应的选择性、转化率、时空产率以及氢气利用率,以及降低催化剂的用量。其中,在该方式中,每层催化剂和每层惰性填充物的高度可以在较宽的范围内选择,他们可以以等高度的方式或不等高度的方式进行分层堆积,优选的,每层催化剂和每层惰性填充物各自独立地为1-2000层/米,例如,可以为1层/米、2层/米、3层/米、4层/米、5层/米、6层/米、7层/米、8层/米、9层/米、10层/米、15层/米、18层/米、20层/米,50层/米、100层/米、200层/米、300层/米、400层/米、500层/米、600层/米、700层/米、800层/米、900层/米、1000层/米、1200层/米、1400层/米、1600层/米、1800层/米、2000层/米;优选为1000-2000层/米,或者10-20层/米。
根据本发明,每层催化剂和每层惰性填充物的层高比可以在较宽的范围内改变,优选的,为了进一步提高本发明的效果,每层催化剂和每层惰性填充物的层高比为1∶1-10,例如,可以为1∶1、1∶2、1∶3、1∶4、1∶5、1∶6、1∶7、1∶8、1∶9、1∶10,优选为1∶1-3,进一步优选为1∶1.5-2.5。
根据本发明,将所述催化剂填充于所述反应器中的方式可以不受特别的限制,例如,可以采用涂层法、电沉积法、溶液电镀法、机械填充法等。
根据本发明,优选的,相对于10ml的反应器,所述催化剂的填充量为0.1-0.5g。通常情况下,催化剂的填充量至少需要1g,而可以看出,本发明的技术方案还可以降低催化剂的填充量。
根据本发明,所述丙烯环氧化反应的温度可以为本领域常规的反应温度,例如,可以为20-300℃,但为了进一步提高反应的转化率、选择性、时空产率以及氢气利用率,以及提高催化剂的使用寿命,降低催化剂的用量,优选的,所述反应的温度为50-250℃,更优选为120-200℃,例如,可以为120℃、125℃、130℃、135℃、140℃、145℃、150℃、155℃、160℃、165℃、170℃、175℃、180℃、185℃、190℃、195℃、200℃。
本发明的发明人在研究中发现,体系的升温速度也能够进一步影响反应的转化率、选择性、时空产率以及氢气利用率,催化剂的使用寿命,催化剂的用量,当以0.1-10℃min -1,优选0.5-5℃min -1,更优选0.5-2℃min -1,(例如,可以为0.5℃min -1、0.8℃min -1、1.0℃min -1、1.2℃min -1、1.5℃min -1、2.0℃min -1,进一步优选0.8-1.5℃min -1)的速率将反应体系的温度升温至丙烯环氧化反应所需温度时,能够进一步提高反应的转化率、选择性、时空产率以及氢气利用率,以及提高催化剂的使用寿命,降低催化剂的用量和稀释气用量。
根据本发明,为了进一步提高反应的效率,在将所述混合气体与催化剂进行接触之前,还优选对所述混合气体进行预热。
根据本发明,所述预热的程度优选至少达到目标反应温度的50%,例如,50%、55%、60%、65%、70%、75%、80%、85%。
根据本发明,所述丙烯环氧化反应的压力可以为本领域常规的反应压力,例如,可以为0-5MPa,但为了进一步提高反应的转化率、选择性、时空产率以及氢气利用率,以及提高催化剂的使用寿命,降低催化剂的用量,优选的,所述反应的压力0-1.5MPa,更优选为0.05-0.25MPa,例如,可以为0.05MPa、0.07MPa、0.09MPa、0.11MPa、0.13MPa、0.15MPa、0.17MPa、0.19MPa、0.21MPa、0.23MPa、0.25MPa。
根据本发明,所述丙烯环氧化反应的空速可以为本领域常规的反应体积空速,但为了进一步提高 反应的转化率、选择性、时空产率以及氢气利用率,以及提高催化剂的使用寿命,降低催化剂的用量,优选的,反应体积空速为500-30000ml g cat -1h -1,更优选为1000-20000ml g cat -1h -1,进一步优选为2000-15000ml g cat -1h -1,例如,可以为2000ml g cat -1h -1、3000ml g cat -1h -1、4000ml g cat -1h -1、5000ml g cat -1h -1、6000ml g cat -1h -1、7000ml g cat -1h -1、8000ml g cat -1h -1、9000ml g cat -1h -1、10000ml g cat -1h -1、12000ml g cat -1h -1、13000ml g cat -1h -1、14000ml g cat -1h -1、15000ml g cat -1h -1
根据本发明,丙烯、氧气、氢气和稀释气的流速不受特别的限制,只要能够保证按照如上的用量体积比混合即可。
根据本发明,本发明的方法还可以包括对反应产物进行组分分析,可以在气相色谱分析设备中进行,例如,将反应产物引入到配备有TCD和FID检测器的气相色谱中进行分析。
更优选的,为了保证分析的效果,所述反应产物在50-200℃的加热条件下输送至组分分析设备中,具体可以在反应器的出口和组分分析设备进样口之间设置加热带以维持50-200℃的温度,优选80-150℃,例如,80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃。
根据本发明,本发明的方法提供的所述丙烯环氧化反应优选在不存在溶剂的情况下进行。其中,所述溶剂包括任意的外援引入的液相。
根据本发明,为了进一步提高反应的转化率、选择性、时空产率以及氢气利用率,以及提高催化剂的使用寿命,降低催化剂的用量和稀释气用量,该方法进一步包括:将第一进料气和第二进料气混合,得到所述混合气体;
其中,第一进料气含有氧气且不含或基本不含氢气,第二进料气含有氢气且不含或基本不含氧气,第一进料气和/或第二进料气含有丙烯,所述第一进料气和第二进料气中至少一者还含有气态烯烃。
根据本发明,在所述第一进料气或所述第二进料气中,气态烯烃的比例不受特别的限制,其可以为0至100%之间任意值或范围的总气态烯烃,例如,0、0.01%、0.1%、1%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%,0.05-100%、50-90%等等。
根据本发明,在所述第一进料气或所述第二进料气中,丙烯的比例不受特别的限制,其可以为0至100%之间任意值或范围的总丙烯,例如,0、0.01%、0.1%、1%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%,0.05-100%、50-90%等等。
优选的,所述第一进料气不含氢气。
其中,“基本不含氢气”是指第一进料气中含有的氢气的量不足以引发爆炸,例如,氢气在第一进料气中的体积分数在4%以下(不包括本数),例如,可以在3.5%以下、3%以下、2.5%以下、2%以下、1.5%以下、1%以下、0.5%以下、0.1%以下。
优选的,所述第二进料气不含氧气。
其中,“基本不含氧气”是指第一进料气中含有的氧气的量不足以引发爆炸,例如,氧气在第二进料气中的体积分数在25%以下(不包括本数),例如,可以在20%以下、15%以下、10%以下、8%以下、5%以下、4%以下、3%以下、2%以下、1%以下、0.5%以下、0.1%以下。
根据本发明一种优选的实施方式,所述第一进料气含有氧气且不含或基本不含氢气,含有至少部分丙烯和至少部分气态烯烃;所述第二进料气含有氢气且不含或基本不含氧气,含有剩余部分丙烯和剩余部分气态烯烃;或者
所述第二进料气含有氢气且不含或基本不含氧气,含有至少部分丙烯和至少部分气态烯烃;所述第二进料气含有氧气且不含或基本不含氢气,含有剩余部分丙烯和剩余部分气态烯烃。
根据本发明进一步优选的实施方式A,所述第一进料气含有氧气且不含或基本不含氢气、全部丙烯和全部气态烯烃;所述第二进料气含有氢气且不含或基本不含氧气。
根据本发明进一步优选的实施方式B,所述第一进料气含有氧气且不含或基本不含氢气、全部丙烯和部分气态烯烃(>0);所述第二进料气含有氢气且不含或基本不含氧气和剩余部分气态烯烃。
根据本发明进一步优选的实施方式C,所述第一进料气含有氧气且不含或基本不含氢气、部分丙烯(>0)和部分气态烯烃(>0);所述第二进料气含有氢气且不含或基本不含氧气、剩余部分丙烯和剩余部分气态烯烃。
根据本发明进一步优选的实施方式D,所述第一进料气含有氧气且不含或基本不含氢气、部分丙烯(>0)和全部气态烯烃;所述第二进料气含有氢气且不含或基本不含氧气和剩余部分丙烯。
根据本发明进一步优选的实施方式E,所述第一进料气含有氧气且不含或基本不含氢气和全部气态烯烃;所述第二进料气含有氢气且不含或基本不含氧气和全部丙烯。
根据本发明进一步优选的实施方式F,所述第一进料气含有氧气且不含或基本不含氢气和部分气态烯烃(>0);所述第二进料气含有氢气且不含或基本不含氧气、剩余部分气态烯烃和全部丙烯。
根据本发明进一步优选的实施方式G,所述第一进料气含有氧气且不含或基本不含氢气和部分丙烯(>0);所述第二进料气含有氢气且不含或基本不含氧气、全部气态烯烃和部分丙烯。
根据本发明进一步优选的实施方式H,所述第一进料气含有氧气且不含或基本不含氢气;所述第二进料气含有氢气且不含或基本不含氧气、全部气态烯烃和全部丙烯。
本发明中,如上所述的“部分气态烯烃”是指0-100体积%之间的任意数值(不包括端点值),例如,0.1体积%、1体积%、5体积%、10体积%、15体积%、20体积%、25体积%、30体积%、35体积%、40体积%、45体积%、50体积%、55体积%、60体积%、65体积%、70体积%、75体积%、80体积%、85体积%、90体积%、91体积%、92体积%、93体积%、94体积%、95体积%、96体积%、97体积%、98体积%、99体积%、99.5体积%。
本发明中,如上所述的“部分丙烯”是指0-100体积%之间的任意数值(不包括端点值),例如,0.1体积%、1体积%、5体积%、10体积%、15体积%、20体积%、25体积%、30体积%、35体积%、40体积%、45体积%、50体积%、55体积%、60体积%、65体积%、70体积%、75体积%、80体积%、85体积%、90体积%、91体积%、92体积%、93体积%、94体积%、95体积%、96体积%、97体积%、98体积%、99体积%、99.5体积%。
根据本发明一种优选的实施方式,在第一进料气和所述混合气体中,氧气的浓度各自独立地满足如下公式:
Figure PCTCN2021073750-appb-000001
Figure PCTCN2021073750-appb-000002
其中,
X O2为氧气在混合气中的体积分数(%);
Xn为气态烯烃n在混合气中的体积分数(%);
X丙烯为丙烯在混合气中的体积分数(%);
X氢气为氢气在混合气中的体积分数(%);
Nn为气态烯烃n在混合气中的爆炸下限(%);
N丙烯为丙烯在混合气中的爆炸下限(%);
N氢气为氢气在混合气中的爆炸下限(%);
Ln为气态烯烃n在混合气中的爆炸上限(%);
L丙烯为丙烯在混合气中的爆炸上限(%);
L氢气为氢气在混合气中的爆炸上限(%)。
在如上优选的实施方式下,通过将氧气控制在如上式(1)或式(2)的范围内,可有效避免反应体系的爆炸,从而使得反应安全进行。
需要说明的是,当控制第一进料气中氧气浓度时,如上的混合气是指第一进料气,当控制所述混合气体中氧气浓度时,如上的混合气是指所述混合气体。
根据本发明,丙烯的爆炸极限范围是指在室温、常压条件下通过密闭空间的可燃气体燃爆实验方法(GB/T12474-2008相关规定进行测试)测定的爆炸极限范围,其爆炸范围为2-11%。爆炸下限为2%,爆炸上限为11%。
能够理解的是,当丙烯作为稀释气时,X丙烯可以指体系中全部的丙烯的体积分数,此时作为稀释气的丙烯的加和为0;此外,也可以按照如上公式以丙烯作为稀释气的量和丙烯作为反应气的量进行公式的运算。
根据本发明,氢气的爆炸极限范围是指在室温、常压条件下通过密闭空间的可燃气体燃爆实验方法(GB/T12474-2008相关规定进行测试)测定的爆炸极限范围,其爆炸范围为4-75%。爆炸下限为4%,爆炸上限为75%。
以下将通过实施例对本发明进行详细描述。
管式反应器为石英管反应器,直径3cm。
微通道反应单元:包括混合器、预热器和微通道反应器,其中,混合器、预热器和微通道反应器的内部均设置有多个如图1所示心形结构的扰流部件,区别在于微通道反应器中填充有催化剂,外周设置有温度控制设备,预热器中的外周设置有加热装置;其中,每个心形结构的长度为7mm,心形结构的宽度最宽处为2mm,将相邻两个心形结构相连的管路横截面为圆形,直径为1mm,微通道反应器的总长度为1cm。
产物分析使用2台气相色谱仪,对产物采样进气相色谱分析。两台分析色谱型号均为安捷伦7890B,其中气相色谱A的色谱柱为(1)HayeSep Q柱(SFt 0.9m,OD 1/8,ID 2mm),(2)Molsieve 5A柱(SFt 2.44m,OD 1/8,ID 2mm),(3)PoraBOND U柱(25m,0.32mm,7μm);配有TCD和FID检测器用于分析H 2、O 2、稀释气等永久性气体和丙烯、丙烷、环氧丙烷、丙烯醛、丙酮、丙醛、乙醛等,其中丙烯和氢气的出峰位置相似,两者相互影响不能准确区分,所以用气相色谱B辅助分析。气相色谱B的色谱柱为(1)HayeSep Q柱(SFt 1.83m,OD 1/8,ID 2mm),(2)Molsieve 5A柱(SFt 2.44m,OD 1/8,ID 2mm),(3)HP-AL\S柱(25m,0.32mm,8μm);配有TCD和FID检测器用于分析H 2、O 2、稀释气等永久性气体和丙烯、丙烷。
Au@TS-1分子筛催化剂中,TS-1分子筛通过水热合成的方式制备,活性金属Au通过沉积沉淀的方法进行负载。
实施例1——稀释气为丙烯
管式反应器为石英管反应器,直径3cm。
燃爆实验
1)在管式反应器中,相对于10ml的反应器,填充0.3g Au@TS-1分子筛催化剂(Au的负载量为1重量%),其与30g石英砂分层堆积,如图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2,所述催化剂层和惰性填充物层各自独立地为15层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气按照比例H 2∶O 2∶C 3H 6∶稀释气(丙烯)=24%∶24%∶24%∶28%通入混合器混合后进入预热器,预热至160℃后进入反应器中。
反应体积空速4000ml g cat -1h -1,控制体系的反应压力0.2MPa,以1.5℃min -1的速率程序升温至200℃。
其中,反应20min时间内,反应体系不爆炸。而稀释气为氮气情况下,无法安全进行。
2)在管式反应器中,相对于10ml的反应器,填充0.3g Au@TS-1分子筛催化剂(Au的负载量为1重量%),其与30g石英砂分层堆积,如图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2,所述催化剂层和惰性填充物层各自独立地为15层/厘米,进行丙烯气相直接环氧化反应。
将丙烯与氧气2∶1的比例进行混合,得到第一进料气,氧气浓度符合式(1);
将所述第一进料气与氢气180°对冲混合,得到混合气体,混合气体中,氢气、氧气、丙烯的比例为1∶1∶2,氧气浓度符合式(1);
其中,丙烯的进气量包括其作为稀释气的量以及作为原料反应气的量。
将所述混合气体通入预热器,预热至160℃后进入反应器中。
反应体积空速4000ml g cat -1h -1,控制体系的反应压力0.2MPa,以1.5℃min -1的速率程序升温至200℃。
其中,反应20min时间内,反应体系不爆炸。
以下实施例1-1至1-8以H 2∶O 2∶C 3H 6∶稀释气=24%∶24%∶24%∶28%的比例进行其他效果的验证。
实施例1-1
本实施例用于说明本发明提供的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和20g石英砂交替分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2,所述催化剂层和惰性填充物层各自独立地为15层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6(作为反应气)、C 3H 6(作为稀释气)进入混合器混合后进入预热器,预热至160℃后进入管式反应器中,反应体积空速9000ml g cat -1h -1,控制体系的反应压力0.15MPa,以0.8℃min -1的速率程序升温至200℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表1所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
实施例1-2
本实施例用于说明本发明提供的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和18g石英砂交替分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶1.5,所述催化剂层和惰性填充物层各自独立地为10层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6(作为反应气)、C 3H 6(作为稀释气)进入混合器混合后进入预热器,预热至130℃后进入管式反应器中,反应体积空速15000ml g cat -1h -1,控制体系的反应压力0.05MPa,以 1.5℃min -1的速率程序升温至170℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表1所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
实施例1-3
本实施例用于说明本发明提供的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和22g石英砂交替分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2.5,所述催化剂层和惰性填充物层各自独立地为20层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6(作为反应气)、C 3H 6(作为稀释气)进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,反应体积空速2000ml g cat -1h -1,控制体系的反应压力0.25MPa,以1.2℃min -1的速率程序升温至120℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表1所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
实施例1-4
本实施例用于说明本发明提供的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和16g石英砂交替分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶1,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6(作为反应气)、C 3H 6(作为稀释气)进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,反应体积空速1000ml g cat -1h -1,控制体系的反应压力0.5MPa,以0.5℃min -1的速率程序升温至100℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表1所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
实施例1-5
本实施例用于说明本发明提供的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和30g石英砂交替分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶3,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6(作为反应气)、C 3H 6(作为稀释气)进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,反应体积空速20000ml g cat -1h -1,控制体系的反应压力0.01MPa,以2.0℃min -1的速率程序升温至250℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表1所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
实施例1-6
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例1-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,所述催化剂按照图5中(b)中所示进行填装。分析如表1所示。
实施例1-7
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例1-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,所述催化剂按照图5中(a)中所示进行填装。分析如表1所示。
实施例1-8
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例1-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,在进入管式反应器单元之前不进行预热。分析如表1所示。
实施例1-9
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例1-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,H 2∶O 2∶C 3H 6∶稀释气=15%∶40%∶15%∶30%,通过爆炸实验分析,反应体系不爆炸,反应结果分析如表1所示。
实施例1-10
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例1-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,将管式反应器替换为微通道反应器(包括混合器、预热器和微通道反应器,其中,混合器、预热器和微通道反应器均为如图1所示心形结构,区别在于微通道反应器中填充有催化剂,外周设置有温度控制设备,预热器中的外周设置有加热装置;其中,每个心形结构的长度为7mm,心形结构的宽度最宽处为2mm,将相邻两个心形结构相连的管路横截面为圆形,直径为1mm,微通道反应器的总长度为1cm),H 2∶O 2∶C 3H 6∶稀释气=1∶1∶1∶1。分析如表1所示。
实施例1-11
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例1-10的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,所述微通道反应器的结构为螺旋形结构(如图4所示)。分析如表2所示。
实施例1-12
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例1-10的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,所述微通道反应器的结构为菱形结构(如图2所示)。分析如表2所示。
实施例1-13
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例1-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,按照“燃爆实验”中气体混合方式第一种通入方式和混合量进行混合,然后将所述混合气体通入气体预热区,分析如表2所示。
对比例1-1
本对比例用于说明参比的丙烯直接环氧化的方法
按照实施例1-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,将稀释气替换为氮气,但 为了确保反应的安全顺利进行,调节H 2∶O 2∶C 3H 6∶稀释气=1∶1∶1∶7,催化剂的填充量为0.3g。分析如表1所示。
对比例1-2
本对比例用于说明参比的丙烯直接环氧化的方法
按照实施例1-10的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,所述微通道反应器不是心形结构,其为横截面是矩形的结构,该矩形结构长500微米,宽200微米,整个微通道反应器的长度为1厘米,催化剂的填充量为0.3g,稀释气为氮气。分析如表1所示。
表1
Figure PCTCN2021073750-appb-000003
注:丙烯转化率仅针对作为反应气的丙烯计算而得,并没有把作为稀释气的丙烯的量计算在内,也即,在通过分析反应后气体的各组分的量计算丙烯转化率时,需要将作为稀释气的丙烯的量减去,认为稀释气不参与反应。
如表1所示,本发明使用的稀释气在能够降低稀释气用量的同时,还能够提高丙烯转化率、环氧丙烷选择性空时产率氢气利用率催化剂使用寿命,以在管式反应器中为例,可由常规的100小时延长至650小时以上。而相比于管式反应器,微通道反应器在该反应上更具有优势。
尽管如上的试验示例性的验证了稀释气全部为气态烯烃的情况下的有益效果,但能够清楚的是,当稀释气的部分被气态烯烃所代替时,仍然能够取得相较于100%氮气作为稀释气更好的效果。
实施例2——碱
燃爆实验
1)在管式反应器中,相对于10ml的反应器,填充0.3g Au@TS-1分子筛催化剂(Au的负载量为1重量%),其与30g石英砂分层堆积,如图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2,所述催化剂层和惰性填充物层各自独立地为15层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气按照比例H 2∶O 2∶C 3H 6∶稀释气=26%∶26%∶26%∶22%通入混合器中,其中,氨气通过掺入氢气中加入,体系中最终掺杂量为500ppm。将得到的混合体系进入预热器,预热至160℃后进入反应器中。
反应体积空速4000ml g cat -1h -1,控制体系的反应压力0.2MPa,以1.5℃min -1的速率程序升温至200℃。
其中,反应20min时间内,反应体系不爆炸。而稀释气为氮气情况下,无法安全进行。
其中,不通入碱性气体且稀释气为氮气的情况下,无法安全进行。
以下实施例2-1至2-9以H 2∶O 2∶C 3H 6∶稀释气=25%∶25%∶25%∶25%的比例进行其他效果的验证。
实施例2-1
本实施例用于说明本发明提供的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和20g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2,所述催化剂层和惰性填充物层各自独立地为15层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6(作为反应气)、C 3H 6(作为稀释气)进入混合器混合后进入预热器,预热至160℃后进入管式反应器中,其中,氨气通过掺入氢气中加入,相对于反应原料气和稀释气的混合气体,氨气的掺杂量为800ppm。反应体积空速9000ml g cat -1h -1,控制体系的反应压力0.15MPa,以0.8℃min -1的速率程序升温至200℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表2所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
实施例2-2
本实施例用于说明本发明提供的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和18g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶1.5,所述催化剂层和惰性填充物层各自独立地为10层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6(作为反应气)、C 3H 6(作为稀释气)进入混合器混合后进入预热器,预热至130℃后进入管式反应器中,其中,氨气通过掺入氢气中加入,相对于反应原料气和稀释气的混合气体,氨气的掺杂量为500ppm。反应体积空速4000ml g cat -1h -1,控制体系的反应压力0.05MPa,以1.5℃min -1的速率程序升温至170℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表2所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
实施例2-3
本实施例用于说明本发明提供的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和22g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2.5,所述催化剂层和惰性填充物层各自独立地为20层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6(作为反应气)、C 3H 6(作为稀释气)进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,其中,氨气通过掺入氢气中加入,相对于反应原料气和稀释气的混合气体,氨气的掺杂量为100ppm。反应体积空速13000ml g cat -1h -1,控制体系的反应压力0.25MPa,以1.2℃min -1的速率程序升温至120℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表2所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
实施例2-4
本实施例用于说明本发明提供的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和16g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶1,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6(作为反应气)、C 3H 6(作为稀释气)进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,其中,吡啶通过掺入氢气中加入,相对于反应原料气和稀释气的混合气体,氨气的掺杂量为5ppm。反应体积空速1000ml g cat -1h -1,控制体系的反应压力0.5MPa,以0.5℃min -1的速率程序升温至100℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表2所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
实施例2-5
本实施例用于说明本发明提供的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和30g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶3,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6(作为反应气)、C 3H 6(作为稀释气)进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,其中,乙二胺通过掺入氢气中加入,相对于反应原料气和稀释气的混合气体,氨气的掺杂量为1500ppm。反应体积空速20000ml g cat -1h -1,控制体系的反应压力0.01MPa,以2.0℃min -1的速率程序升温至250℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表2所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
实施例2-6
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例2-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,所述催化剂按照图5中(b)中所示进行填装。分析如表2所示。
实施例2-7
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例2-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,所述催化剂按照图5中(a)中所示进行填装。分析如表2所示。
实施例2-8
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例2-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,在进入管式反应器单元之前不进行预热。分析如表2所示。
实施例2-9
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例2-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,使用的稀释气为等量的乙烯。分析如表2所示。
实施例2-10
本实施例用于说明本发明提供的丙烯直接环氧化的方法
按照实施例2-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,不同的是,H 2∶O 2∶C 3H 6∶稀释气=17%∶42%∶17%∶24%,通过爆炸实验分析,反应体系不爆炸,反应结果分析如表2所示。
对比例2-1
本对比例用于说明参比的丙烯直接环氧化的方法
按照实施例2-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,将稀释气替换为氮气,且不通入碱性气体,但为了确保反应的安全顺利进行,调节H 2∶O 2∶C 3H 6∶稀释气=1∶1∶1∶7,催化剂的填充量为0.3g。分析如表2所示。
表2
Figure PCTCN2021073750-appb-000004
注:丙烯转化率仅针对作为反应气的丙烯计算而得,并没有把作为稀释气的丙烯的量计算在内,也即,在通过分析反应后气体的各组分的量计算丙烯转化率时,需要将作为稀释气的丙烯的量减去,认为稀释气不参与反应。
如表2所示,本发明使用的稀释气并结合碱在能够降低稀释气用量的同时,还能够提高丙烯转化率、环氧丙烷选择性空时产率氢气利用率催化剂使用寿命。
对比例3——稀释气为甲烷、乙烷或丁烷
燃爆实验
1)在管式反应器中,相对于10ml的反应器,填充0.3g Au@TS-1分子筛催化剂(Au的负载量为1重量%),其与30g石英砂分层堆积,如图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2,所述催化剂层和惰性填充物层各自独立地为15层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气按照比例H 2∶O 2∶C 3H 6∶稀释气=22.2%∶22.2%∶22.2%∶33.4%通入混合器混合后进入预热器,预热至160℃后进入反应器中。
反应体积空速4000ml g cat -1h -1,控制体系的反应压力0.2MPa,以1.5℃min -1的速率程序升温至200℃。
其中,稀释气为甲烷、乙烷或丁烷的情况下,反应20min时间内,反应体系不爆炸。而稀释气为氮气情况下,无法安全进行。
以下对比例3-1至3-9以H 2∶O 2∶C 3H 6∶稀释气=22.2%∶22.2%∶22.2%∶33.4%的比例进行其他效果的验证。
对比例3-1
本对比例用于说明参比丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和20g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2,所述催化剂层和惰性填充物层各自独立地为15层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6、CH 4进入混合器混合后进入预热器,预热至160℃后进入管式反应器中,反应体积空速9000ml g cat -1h -1,控制体系的反应压力0.15MPa,以0.8℃min -1的速率程序升温至200℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表3所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
对比例3-2
本对比例用于说明参比丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和18g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2.5,所述催化剂层和惰性填充物层各自独立地为10层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6、CH 4进入混合器混合后进入预热器,预热至130℃后进入管式反应器中,反应体积空速13000ml g cat -1h -1,控制体系的反应压力0.05MPa,以1.5℃min -1的速率程序升温至150℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表3所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
对比例3-3
本对比例用于说明参比丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和22g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为 1∶1.5,所述催化剂层和惰性填充物层各自独立地为20层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6、CH 4进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,反应体积空速2000ml g cat -1h -1,控制体系的反应压力0.25MPa,以1.2℃min -1的速率程序升温至120℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表3所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
对比例3-4
本对比例用于说明参比丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和30g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶1,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6、CH 4进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,反应体积空速1000ml g cat -1h -1,控制体系的反应压力0.5MPa,以0.5℃min -1的速率程序升温至100℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表3所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
对比例3-5
本对比例用于说明参比丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和16g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶3,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6、CH 4进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,反应体积空速10000ml g cat -1h -1,控制体系的反应压力0.01MPa,以2.0℃min -1的速率程序升温至250℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表3所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
对比例3-6
本对比例用于说明参比丙烯直接环氧化的方法
按照对比例3-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,所述催化剂按照图5中(b)中所示进行填装。分析如表3所示。
对比例3-7
本对比例用于说明参比丙烯直接环氧化的方法
按照对比例3-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,所述催化剂按照图5中(a)中所示进行填装。分析如表3所示。
对比例3-8
本对比例用于说明参比丙烯直接环氧化的方法
按照对比例3-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,在进入管式反应器单元之前不进行预热。分析如表3所示。
对比例3-9
本对比例用于说明参比丙烯直接环氧化的方法
按照对比例3-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,使用的稀释气为等量的乙烷。分析如表3所示。
表3
Figure PCTCN2021073750-appb-000005
对比例4——稀释气为丙烷
管式反应器为石英管反应器,直径3cm。
燃爆实验
1)在微通道或管式反应器中,相对于10ml的反应器,填充0.3g Au@TS-1分子筛催化剂(Au的负载量为1重量%),其与30g石英砂分层堆积,如图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2,所述催化剂层和惰性填充物层各自独立地为15层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气按照比例H 2∶O 2∶C 3H 6∶丙烷=23%∶23%∶23%∶31%通入混合器混合后进入预热器,预热至160℃后进入管式反应器中。
反应体积空速4000ml g cat -1h -1,控制体系的反应压力0.2MPa,以1.5℃min -1的速率程序升温至200℃。
其中,反应20min时间内,反应体系不爆炸。
在管式反应器中,将稀释气替换为氮气,无法安全进行。
以下对比例4-1至4-8以H 2∶O 2∶C 3H 6∶稀释气=23%∶23%∶23%∶31%的比例进行其他效果的验证。
对比例4-1
本对比例用于说明参比的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和20g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2,所述催化剂层和惰性填充物层各自独立地为15层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6、丙烷进入混合器混合后进入预热器,预热至160℃后进入管式反应器中,反应体积空速9000ml g cat -1h -1,控制体系的反应压力0.15MPa,以0.8℃min -1的速率程序升温至200℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表4所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
对比例4-2
本对比例用于说明参比的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和18g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶1.5,所述催化剂层和惰性填充物层各自独立地为10层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6、丙烷进入混合器混合后进入预热器,预热至130℃后进入管式反应器中,反应体积空速15000ml g cat -1h -1,控制体系的反应压力0.05MPa,以1.5℃min -1的速率程序升温至170℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表4所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
对比例4-3
本对比例用于说明参比的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和22g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶2.5,所述催化剂层和惰性填充物层各自独立地为20层/厘米,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6、丙烷进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,反应体积空速2000ml g cat -1h -1,控制体系的反应压力0.25MPa,以1.2℃min -1的速率程序升温至120℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表4所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
对比例4-4
本对比例用于说明参比的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和16g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶1,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6、丙烷进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,反应体积空速1000ml g cat -1h -1,控制体系的反应压力0.5MPa,以0.5℃min -1的速率程序升温至100℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表4所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
对比例4-5
本对比例用于说明参比的丙烯直接环氧化的方法
在管式反应器中,相对于10ml的反应器,将0.20g Au@TS-1分子筛催化剂(Au的负载量为1重量%)和30g石英砂分层填充在反应器中,如附图5中(c)所示,其中,催化剂层和石英砂层的层高比为1∶3,进行丙烯气相直接环氧化反应。
其中,原料气H 2、O 2、C 3H 6、丙烷进入混合器混合后进入预热器,预热至100℃后进入管式反应器中,反应体积空速25000ml g cat -1h -1,控制体系的反应压力0.01MPa,以2.0℃min -1的速率程序升温至250℃,反应稳定20分钟后,丙烯气相直接环氧化反应分析如表4所示,并记录丙烯转化率、环氧丙烷选择性等指标开始下降时的大概时间(每50小时记录一次)。
对比例4-6
本对比例用于说明参比的丙烯直接环氧化的方法
按照对比例4-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,所述催化剂按照图5中(b)中所示进行填装。分析如表4所示。
对比例4-7
本对比例用于说明参比的丙烯直接环氧化的方法
按照对比例4-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,所述催化剂按照图5中(a)中所示进行填装。分析如表4所示。
对比例4-8
本对比例用于说明参比的丙烯直接环氧化的方法
按照对比例4-1的方法进行丙烯直接环氧化制备环氧丙烷,不同的是,在进入管式反应器单元之前不进行预热。分析如表4所示。
表4
Figure PCTCN2021073750-appb-000006
由表1与表3和表4可以看出,相比于气态烷烃,采用本发明的气态烯烃作为稀释气更具有优势。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (19)

  1. 一种丙烯直接环氧化反应的方法,其特征在于,该方法包括:在丙烯环氧化反应条件下,将含有反应原料气和稀释气的混合气体与催化剂进行接触反应,以得到环氧丙烷;其中,所述反应原料气包括丙烯、氧气和氢气,至少部分所述稀释气为气态烯烃。
  2. 根据权利要求1所述的方法,其中,所述气态烯烃为C2-C4的烯烃;
    优选的,所述气态烯烃为丙烯。
  3. 根据权利要求1或2所述的方法,其中,在所述混合气体中,氧气的比例大于14体积%,优选大于20体积%,更优选大于22体积%。
  4. 根据权利要求1-3中任意一项所述的方法,其中,在所述混合气体中,所述稀释气的比例小于60体积%;优选小于55体积%,进一步优选小于35体积%。
  5. 根据权利要求1-4中任意一项所述的方法,其中,所述丙烯环氧化反应在碱的存在下进行,所述碱为碱性气体或反应条件下为气态的碱性物质。
  6. 根据权利要求5所述的方法,其中,所述碱为带有孤电子对的化合物和/或能够接受质子的物质;
    优选的,所述带有孤电子对的化合物选自氨、吡啶、肼、氰、胺、醇、醚和硫醇中的至少一种;和/或
    所述能够接受质子的物质选自Cl -、[Al(H 2O) 5OH] 2+、Ac -、HPO 4 2-和PO 4 3-中的至少一种。
  7. 根据权利要求5或6所述的方法,其中,在所述混合气体中,所述碱的用量为1-10000ppm,优选为10-1000ppm。
  8. 根据权利要求5-7中任意一项所述的方法,其中,所述稀释气为丙烯。
  9. 根据权利要求8所述的方法,其中,在所述混合气体中,氧气的比例大于16体积%,更优选大于22体积%,进一步优选大于25体积%。
  10. 根据权利要求8或9所述的方法,其中,在所述混合气体中,所述稀释气的比例小于57.5体积%;更优选小于40体积%,进一步优选小于33.5体积%。
  11. 根据权利要求1-10中任意一项所述的方法,其中,所述环氧化反应在管式反应器或微通道反应器中进行。
  12. 根据权利要求11所述的方法,其中,所述微通道反应器的内部设置有一个或多个扰流部件;
    其中,所述扰流部件的形状选自心形、菱形、S形、三角形、长方形、正方形、圆形、交叉指形、螺旋形、V形、T形和C形;
    或者,所述微通道反应器为螺旋形微通道反应器。
  13. 根据权利要求1-12中任意一项所述的方法,其中,所述催化剂为负载型金属催化剂,该负载型金属催化剂含有载体和活性金属组分,所述活性金属组分选自金、银、铜、钌、钯、铂、铑、钴、镍、钨、铋、钼及它们的氧化物中的至少一种,所述载体为炭黑、活性炭、二氧化硅、三氧化二铝、氧化铈和沸石中的至少一种,以催化剂的总重量计,催化剂中以金属元素计的活性金属组分的含量为0.01-50重量%;
    优选的,所述载体为钛硅分子筛,所述活性金属组分为金。
  14. 根据权利要求1-13中任意一项所述的方法,其中,所述催化剂以与惰性填充物结合的形式填充于反应器中;
    优选的,所述惰性填充物选自石英砂、Al 2O 3、多孔硅胶和陶瓷环中的至少一种;
    优选的,相对于1重量份的催化剂,所述惰性填充物的用量为1-200重量份;
    优选的,所述催化剂与惰性填充物以分层堆积的方式填充于反应器中;
    更优选的,所述催化剂与惰性填充物以交替分层堆积的方式填充于反应器中;
    更优选的,每层催化剂和每层惰性填充物的层高比为1:1-10。
  15. 根据权利要求1-14中任意一项所述的方法,其中,所述丙烯环氧化反应条件包括:反应温度为20-300℃,优选为50-250℃;反应压力为0-5MPa,优选为0-1.5MPa;体积空速为500-30000ml g cat -1 h -1,优选为1000-20000ml g cat -1 h -1
  16. 根据权利要求1-15中任意一项所述的方法,其中,在将所述混合气体与催化剂进行接触之前,该方法还包括对所述混合气体进行预热。
  17. 根据权利要求1-16中任意一项所述的方法,其中,所述丙烯环氧化反应在不存在溶剂的情况下进行。
  18. 根据权利要求1-17中任意一项所述的方法,其中,该方法进一步包括:将第一进料气和第二进料气混合,得到所述混合气体;
    其中,第一进料气含有氧气且不含或基本不含氢气,第二进料气含有氢气且不含或基本不含氧气,第一进料气和/或第二进料气含有丙烯,所述第一进料气和第二进料气中至少一者还含有气态烯烃。
  19. 根据权利要求18所述的方法,其中,在第一进料气和所述混合气体中,氧气的浓度各自独立地满足如下公式:
    Figure PCTCN2021073750-appb-100001
    Figure PCTCN2021073750-appb-100002
    其中,
    X O2为氧气在混合气中的体积分数(%);
    Xn为气态烯烃n在混合气中的体积分数(%);
    X丙烯为丙烯在混合气中的体积分数(%);
    X氢气为氢气在混合气中的体积分数(%);
    Nn为气态烯烃n在混合气中的爆炸下限(%);
    N丙烯为丙烯在混合气中的爆炸下限(%);
    N氢气为氢气在混合气中的爆炸下限(%);
    Ln为气态烯烃n在混合气中的爆炸上限(%);
    L丙烯为丙烯在混合气中的爆炸上限(%);
    L氢气为氢气在混合气中的爆炸上限(%)。
PCT/CN2021/073750 2020-07-10 2021-01-26 丙烯直接环氧化以制备环氧丙烷的方法 WO2022007388A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/005,001 US20230339875A1 (en) 2020-07-10 2021-01-26 Method for preparing propylene oxide by means of direct epoxidation of propylene
EP21838273.7A EP4163274A4 (en) 2020-07-10 2021-01-26 PROCESS FOR PREPARING PROPYLENE OXIDE BY DIRECT EPOXIDATION OF PROPYLENE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010663795.X 2020-07-10
CN202010663795.XA CN113912569B (zh) 2020-07-10 2020-07-10 可降低稀释气用量的丙烯直接环氧化的方法
CN202010663791.1A CN113912574B (zh) 2020-07-10 2020-07-10 碱性条件下进行丙烯直接环氧化制备环氧丙烷的方法
CN202010663791.1 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022007388A1 true WO2022007388A1 (zh) 2022-01-13

Family

ID=79553717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073750 WO2022007388A1 (zh) 2020-07-10 2021-01-26 丙烯直接环氧化以制备环氧丙烷的方法

Country Status (3)

Country Link
US (1) US20230339875A1 (zh)
EP (1) EP4163274A4 (zh)
WO (1) WO2022007388A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223644A (zh) * 1996-07-01 1999-07-21 陶氏化学公司 烯烃直接氧化成烯烃氧化物的方法
CN1268072A (zh) * 1997-06-30 2000-09-27 陶氏化学公司 烯烃直接氧化成烯化氧的方法
CN1297443A (zh) * 1998-04-15 2001-05-30 陶氏化学公司 将烯烃直接氧化成烯烃氧化物的方法
CN1330644A (zh) * 1998-12-16 2002-01-09 陶氏化学公司 将烯烃直接氧化成烯烃氧化物的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223644A (zh) * 1996-07-01 1999-07-21 陶氏化学公司 烯烃直接氧化成烯烃氧化物的方法
CN1268072A (zh) * 1997-06-30 2000-09-27 陶氏化学公司 烯烃直接氧化成烯化氧的方法
CN1297443A (zh) * 1998-04-15 2001-05-30 陶氏化学公司 将烯烃直接氧化成烯烃氧化物的方法
CN1330644A (zh) * 1998-12-16 2002-01-09 陶氏化学公司 将烯烃直接氧化成烯烃氧化物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4163274A4

Also Published As

Publication number Publication date
EP4163274A4 (en) 2023-12-13
EP4163274A1 (en) 2023-04-12
US20230339875A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP2619660B2 (ja) 酸化エチレン用触媒および酸化エチレンの接触製造方法
NL2000388C2 (nl) Werkwijze ter bereiding van een olefineoxide of een chemisch product dat van een olefineoxide kan worden afgeleid.
US9079154B2 (en) Catalyst for the epoxidation of alkenes
TWI352701B (en) A process for the production of alkylene oxide usi
CN107074795A (zh) 一种烯烃氧化方法、反应装置和系统
WO2022007388A1 (zh) 丙烯直接环氧化以制备环氧丙烷的方法
CN113912571B (zh) 丙烯直接环氧化以制备环氧丙烷的方法
CN110903265A (zh) 一种在钯膜反应器中进行气相丙烯环氧化反应的方法
CN110357837A (zh) 一种乙烯环氧化方法
CN103831105A (zh) 用于烯烃环氧化的催化剂及其应用
SK1896A3 (en) Epoxidation catalyst
CN103831106B (zh) 一种银催化剂的制备方法及应用
CN113912574B (zh) 碱性条件下进行丙烯直接环氧化制备环氧丙烷的方法
CN113912570B (zh) 以降低稀释气为目的的丙烯直接环氧化反应以制备环氧丙烷的方法
CN113912568B (zh) 可提高极限氧含量的制环氧丙烷的方法
CN113912569A (zh) 可降低稀释气用量的丙烯直接环氧化的方法
CN113912572B (zh) 用于丙烯直接环氧化制备环氧丙烷的反应系统和方法
CN105330617B (zh) 一种生产环氧乙烷的方法
CN113912573B (zh) 丙烯直接环氧化制备环氧丙烷的方法
WO2022007387A1 (zh) 丙烯直接环氧化制备环氧丙烷的方法和系统
TW202237261A (zh) 用於立式沸騰反應器的波紋狀格柵支架
CN116943653A (zh) 一种烯烃环氧化用催化剂及其制备方法和应用
WO2022159370A1 (en) Tube to tube sheet welding for fabrication of vertical boiling reactor with reduced tube pitch
CN112569934A (zh) 一种氧化催化剂、制备方法及苯乙烯空气氧化联产环氧苯乙烷和苯甲醛的方法
CN1938085B (zh) 用于制备含氧化合物的钯、钨和锆基催化剂,该催化剂的制备方法和利用该催化剂制备含氧化合物的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021838273

Country of ref document: EP

Effective date: 20230109

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523442099

Country of ref document: SA