WO2022007051A1 - 破碎系统 - Google Patents

破碎系统 Download PDF

Info

Publication number
WO2022007051A1
WO2022007051A1 PCT/CN2020/105411 CN2020105411W WO2022007051A1 WO 2022007051 A1 WO2022007051 A1 WO 2022007051A1 CN 2020105411 W CN2020105411 W CN 2020105411W WO 2022007051 A1 WO2022007051 A1 WO 2022007051A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
pressure chamber
pipeline
valve
cooling
Prior art date
Application number
PCT/CN2020/105411
Other languages
English (en)
French (fr)
Inventor
曾基灵
王明波
孙欢
李犇
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022007051A1 publication Critical patent/WO2022007051A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Definitions

  • the present application relates to the technical field of material crushing, and in particular, to a crushing system.
  • the crushing system can be used for material crushing to form powder with smaller particle size.
  • the material of the block magnetic sheet after passing hydrogen gas to the crushing system, can be crushed to form powder with a particle size of less than 100 ⁇ m.
  • the traditional crushing system includes a furnace structure.
  • the powder after hydrogen crushing needs to be heated in this furnace structure for high temperature dehydrogenation, and then cooled to realize the collection of powder.
  • the heating and cooling processes are completed in the same furnace structure. As a result, the heating and cooling takes a long time, the production efficiency is low, and the energy consumption of repeated heating and cooling is serious.
  • the purpose of this application is to provide a crushing system, to solve the problem that the heating and cooling processes of the current crushing system are completed in the same furnace structure, resulting in a long time for heating and cooling, low production efficiency, and serious energy consumption for repeated heating and cooling. technical issues.
  • a crushing system comprising: a hydrogen supply device, a negative pressure chamber, a positive pressure chamber, a heating chamber, a cooling chamber, a first pipeline, a second pipeline, a third pipeline, a first gas supply pipeline and a second supply pipeline Gas pipeline, the hydrogen supply device and the negative pressure chamber are connected through the first gas supply pipeline, the hydrogen supply device and the positive pressure chamber are connected through the second gas supply pipeline, the hydrogen supply device For supplying hydrogen into the negative pressure chamber and the positive pressure chamber, and making the air pressure in the negative pressure chamber a negative pressure and the air pressure in the positive pressure chamber as a positive pressure;
  • the negative pressure chamber is used to mix the material with the hydrogen, so that the material absorbs hydrogen to form a first product
  • the positive pressure chamber and the negative pressure chamber are connected through the first pipeline
  • the positive pressure chamber is connected to the negative pressure chamber.
  • the pressure chamber is used to mix the first product with the hydrogen, so that the first product absorbs hydrogen to form a second product
  • the heating chamber and the positive pressure chamber are connected through the second pipeline
  • the heating chamber is used for heating the second product, so that the hydrogen in the second product is desorbed to form a third product
  • the cooling chamber is connected with the heating chamber through the third pipeline, and the cooling chamber for cooling the third product.
  • the positive pressure chamber is arranged below the negative pressure chamber, so that the first product can fall into the positive pressure chamber from the negative pressure chamber, and the heating chamber is arranged at the below the positive pressure chamber, so that the second product can fall into the heating chamber from the positive pressure chamber, and the cooling chamber is arranged below the heating chamber, so that the third product can be discharged from the heating chamber The heating chamber falls into the cooling chamber.
  • the negative pressure chamber, the positive pressure chamber, the heating chamber and the cooling chamber are arranged at intervals along the vertical direction.
  • the first valve is arranged at the bottom of the negative pressure chamber and is used to control the communication or disconnection between the negative pressure chamber and the positive pressure chamber. open
  • the second valve is arranged at the bottom of the positive pressure chamber, and is used to control the connection or disconnection between the positive pressure chamber and the heating chamber
  • the third valve is arranged on the third pipeline, and is used for The heating chamber is controlled to be connected or disconnected from the cooling chamber.
  • a discharging device and a fourth pipeline are also included, the discharging device is connected with the cooling chamber through the fourth pipeline, and the discharging device is used for collecting the third product.
  • a fourth valve is also included, the fourth valve is arranged on the fourth pipeline and is used to control the communication or disconnection between the cooling chamber and the discharging device.
  • it also includes a cooling water jacket, the cooling water jacket is disposed on at least one of the third pipeline and the fourth pipeline, and the cooling water jacket is used for Cool the third product.
  • it also includes a vacuum device, a first pumping pipeline, a second pumping pipeline and a third pumping pipeline.
  • the vacuum device and the negative pressure chamber are connected through the first pumping pipeline.
  • the vacuum device and the positive pressure chamber are connected through the second exhaust pipeline, and the vacuum device and the heating chamber are connected through the third exhaust pipeline.
  • it also includes a fifth valve arranged on the first air supply pipeline, a sixth valve arranged on the first air extraction pipeline, a seventh valve arranged on the second air supply pipeline, and
  • the eighth valve, the fifth valve and the sixth valve on the second pumping pipeline are used to adjust the gas flow of the hydrogen, so that the air pressure in the negative pressure chamber is negative pressure, and the first valve
  • the seventh valve and the eighth valve are used to adjust the gas flow of the hydrogen gas, so that the air pressure in the positive pressure chamber is positive pressure.
  • the negative pressure chamber further includes a cover plate and a negative pressure main body, and the negative pressure main body is sealedly connected to the cover plate.
  • the beneficial effect of the crushing system is that: the heating chamber and the positive pressure chamber are connected through a second pipeline, the heating chamber is used to heat the second product, so that the hydrogen in the second product is desorbed to form the third product, and the cooling chamber is connected to the second product.
  • the heating chamber is connected by a third pipeline, and the cooling chamber is used to cool the third product.
  • the processing efficiency of the three products avoids repeated heating and cooling processes in the same processing space, and continuously realizes the heating process in the heating chamber and the cooling process in the cooling chamber, which can improve the energy utilization rate of heating and cooling.
  • FIG. 1 is a schematic diagram of a crushing system provided by an embodiment of the present application
  • Fig. 2 is the schematic diagram that the material in the crushing system shown in Fig. 1 is crushed to form the first product
  • FIG. 3 is a schematic diagram of crushing the first product to form the second product in the crushing system shown in FIG. 1 .
  • the present application discloses a crushing system, including: a hydrogen supply device 600, a negative pressure chamber 100, a positive pressure chamber 200, a heating chamber 300, a cooling chamber 400, a first pipeline 150, a second The pipeline 250, the third pipeline 310, the first gas supply pipeline 110 and the second gas supply pipeline 210, the hydrogen supply device 600 is connected with the negative pressure chamber 100 through the first gas supply pipeline 110, and the hydrogen supply device 600 is connected with the positive pressure chamber 200 is connected through the second gas supply pipeline 210, and the hydrogen supply device 600 is used to supply hydrogen to the negative pressure chamber 100 and the positive pressure chamber 200, so that the air pressure of the negative pressure chamber 100 is negative pressure, and the air pressure of the positive pressure chamber 200 is positive pressure
  • the negative pressure chamber 100 is used to mix the material with hydrogen, so that the material absorbs hydrogen to form the first product, and the unsaturated hydrogen absorbs to achieve the preliminary rough crushing of the material, but the first product can meet the particle size requirements through the valve, and the positive The pressure chamber 200 is connected with the negative pressure chamber 100 through
  • the heating chamber 300 and the positive pressure chamber 200 are connected through the second pipeline 250, and the heating chamber 300 is used to heat the second product, so that the hydrogen in the second product is desorbed to form the third product , the cooling chamber 400 and the heating chamber 300 are connected by the third pipeline 310, the cooling chamber 400 is used to cool the third product, and the heating and cooling of the third product are realized in the heating chamber 300 and the cooling chamber 400 respectively, and the third product can be realized.
  • the continuous heating and cooling of the product improves the processing efficiency of the third product.
  • the repeated heating and cooling processes in the same processing space are avoided, and the heating process in the heating chamber 300 and the cooling process in the cooling chamber 400 can be continuously realized.
  • Improve the energy utilization rate of heating and cooling solve the traditional single furnace structure, the heating and cooling process are completed in the same furnace body, the heating and cooling process takes a long time, the energy waste is serious, and the production efficiency is low The problem.
  • the negative pressure chamber 100 further includes a cover plate 101 and a negative pressure main body, the negative pressure main body is sealedly connected to the cover plate 101, and the cover plate 101 is detachably connected to the negative pressure main body, and the cover plate 101 can be opened to realize the negative pressure of the material.
  • the cover plate 101 is sealed with the negative pressure main body, the material is isolated from the external space, so as to facilitate the hydrogen absorption reaction in the negative pressure chamber 100 to realize the crushing and pulverization of the material.
  • the positive pressure chamber 200 is arranged below the negative pressure chamber 100, so that the first product can fall into the positive pressure chamber 200 from the negative pressure chamber 100, and the unsaturated material absorbs hydrogen and is broken to form the first product.
  • the particle size of the first product is small, and can flow from the negative pressure chamber 100 into the positive pressure chamber 200 under the action of gravity.
  • the first material is saturated with hydrogen to form a second material
  • the second material has been crushed by hydrogen, and can flow into the heating chamber 300 from the positive pressure chamber 200 under the action of gravity
  • the cooling chamber 400 is arranged in Below the heating chamber 300, so that the third product can fall into the cooling chamber 400 from the heating chamber 300, and the second product is dehydrogenated in a vacuum heating ring in the heating chamber 300 to form the third product, which can be heated from the heating chamber 300 under the action of gravity.
  • the chamber 300 flows into the cooling chamber 400, and the cooling of the third product is realized in the cooling chamber 400, the hydrogen fragmentation of the material is completed to form the final third product, and the processing of the hydrogen fragmentation is realized.
  • the negative pressure chamber 100, the positive pressure chamber 200, the heating chamber 300 and the cooling chamber 400 are arranged at intervals along the vertical direction, so as to realize the arrangement of the crushing system, and can provide a relatively high ratio for the first product, the second product and the third product.
  • the negative pressure chamber 100, positive pressure chamber 200, heating chamber 300 and cooling chamber 400 can be arranged in the vertical material tank, and the negative pressure chamber 100, The positive pressure chamber 200, the heating chamber 300 and the cooling chamber 400 are vertically connected in the vertical material tank, and the product powder itself after being crushed by the material hydrogen has good fluidity, and the powder passes through the negative pressure chamber 100, the positive pressure chamber 100 and the positive pressure chamber by its own gravity in turn.
  • Chamber 200 and heating chamber 300 and complete the coarse crushing hydrogen absorption, saturated hydrogen absorption, dehydrogenation and powder cooling of the material in the vertical material tank.
  • the negative pressure chamber 100 , the positive pressure chamber 200 , the heating chamber 300 and the cooling chamber 400 may be spaced in other directions, so as to satisfy the requirement that the negative pressure chamber 100 is sequentially provided with positive pressure. chamber 200, heating chamber 300 and cooling chamber 400 to realize the transfer of adjacent processing space products under the action of gravity.
  • the specific positions of negative pressure chamber 100, positive pressure chamber 200, heating chamber 300 and cooling chamber 400 can also be According to the whole equipment of the crushing system, it can be independently designed or designed in conjunction with the external equipment of the crushing system to improve the space utilization rate of the crushing system or the crushing system and external equipment.
  • the crushing system further includes a first valve 160 , a second valve 260 and a third valve 320 .
  • the first valve 160 is disposed at the bottom of the negative pressure chamber 100 and is used to control the communication between the negative pressure chamber 100 and the positive pressure chamber 200 or disconnected
  • the second valve 260 is arranged at the bottom of the positive pressure chamber 200 and is used to control the connection or disconnection between the positive pressure chamber 200 and the heating chamber 300
  • the third valve 320 is arranged on the third pipeline 310 and is used to control the heating chamber 300 is connected or disconnected from the cooling chamber 400 to realize the on-off control of the first pipeline 150, the second pipeline 250 and the third pipeline 310 to control the negative pressure chamber 100, the positive pressure chamber 200, the heating chamber 300 and the Gravity transfer of product between cooling chambers 400 .
  • first valve 160 and the second valve 260 can also be arranged on the first pipeline 150 and the second pipeline 250 or other positions, and the negative pressure chamber 100 and the positive pressure chamber 200 can also be realized.
  • the positive pressure chamber 200 is connected or disconnected from the heating chamber 300
  • the third valve 320 can also be arranged at the bottom of the heating chamber 300 or at other positions, and can also connect or disconnect the heating chamber 300 and the cooling chamber 400 .
  • the first valve 160 , the second valve 260 and the third valve 320 are electromagnetic butterfly valves with high on-off control speed, so as to realize the rapid opening and closing of the first valve 160 , the second valve 260 and the third valve 320 . closure.
  • the crushing system further includes a discharge device 500 and a fourth pipeline 410.
  • the discharge device 500 is connected to the cooling chamber 400 through the fourth pipeline 410.
  • the discharge device 500 is used to collect the third product, and can The final product of the hydrogen crushing processing of the material in the discharging device 500 is packed and transported to complete the final collection of the powder.
  • the crushing system further includes a fourth valve 420, which is arranged on the fourth pipeline 410 and is used to control the communication or disconnection between the cooling chamber 400 and the discharging device 500, so as to process the material by hydrogen crushing The final product is collected in the discharge device 500.
  • the fourth valve 420 disconnects the cooling chamber 400 from the discharging device 500 , the cooling chamber 400 may pass inert gas into the cooling chamber 400 to cool the third product, so as to perform the cooling process.
  • the crushing system further includes a cooling water jacket, a cooling water jacket, the cooling water jacket is disposed on at least one of the third pipeline 310 and the fourth pipeline 410, and the cooling water jacket is used for cooling the third product
  • the cooling water jacket includes a first cooling water jacket 430 sleeved on the third pipeline 310 and a second cooling water jacket 440 sleeved on the fourth pipeline 410.
  • the cooling water jacket 430 and the second cooling water jacket 440 are supplied with circulating cooling water to cool the third product.
  • the cooling water jacket can also be directly sleeved outside the cooling chamber 400 to achieve water cooling for the cooling chamber 400 .
  • the cooling water jacket may also be a cooling oil jacket, so that cooling oil is passed into the cooling oil jacket to realize circulating cooling.
  • the crushing system further includes a vacuum device 700 , a first air extraction line 130 , a second air extraction line and a third air extraction line 230 .
  • the vacuum device 700 and the negative pressure chamber 100 are connected through the first air extraction line 130 .
  • the vacuum device 700 and the positive pressure chamber 200 are connected through the second pumping pipeline 230
  • the vacuum device 700 and the heating chamber 300 are connected through the third pumping pipeline, so as to realize the negative pressure chamber 100, the positive pressure chamber 200 and the heating chamber 300 respectively.
  • evacuating to provide a vacuum environment for the negative pressure chamber 100 , the positive pressure chamber 200 and the heating chamber 300 evacuating to provide a vacuum environment for the negative pressure chamber 100 , the positive pressure chamber 200 and the heating chamber 300 .
  • the crushing system further includes a fifth valve 120 disposed on the first air supply line 110 , a sixth valve 140 disposed on the first
  • the seventh valve 220 and the eighth valve 240 disposed on the second pumping pipeline 230, the fifth valve 120 and the sixth valve 140 are used to adjust the gas flow of hydrogen, so that the air pressure in the negative pressure chamber 100 is negative pressure
  • the seventh valve 220 and the eighth valve 240 are used to adjust the gas flow of hydrogen, so that the air pressure in the positive pressure chamber 200 is positive pressure, so as to realize the on-off of the pipeline and the adjustment of the gas through the valve.
  • the sixth valve 140, the seventh valve 220 and the eighth valve 240 are electric gas valves, which can better realize the gas adjustment function.
  • the negative pressure chamber 100 , the positive pressure chamber 200 , the heating chamber 300 , the cooling chamber 400 and the discharging device 500 are vertically connected in the vertical tank, so that the powder of the material hydrogen crushing can be transported by its own gravity, and can pass through the valve system. control to realize continuous automatic production.
  • the downstream valves of the negative pressure chamber 100, the positive pressure chamber 200, the heating chamber 300, the cooling chamber 400 and the discharging device 500 are opened, the upstream valves are closed, and when the downstream valves are closed, the upstream cover Plate 101 and valves can be opened to complete charging or blanking.
  • the material can be loaded into the negative pressure chamber 100, and the material can be a quick-setting tablet
  • the cover plate 101 is closed, the sixth valve 140 is opened, and the sixth valve 140 is opened to evacuate to the washing pressure, and inflate 0.02MPa, wash twice, adjust the fifth valve 120 and the sixth valve 140, so that the hydrogen charge is less than 0.1mPa until the material is coarsely crushed to form the first product, open the first valve 160 for blanking, close the first valve 160, Vacuum is drawn, the vent valve is opened, and the cover plate 101 is opened to work cyclically.
  • the seventh valve 220 is opened to charge hydrogen to the positive pressure hydrogen absorption pressure, and after the pressure is lower than the minimum positive pressure hydrogen absorption pressure, the seventh valve 220 is adjusted to Supplement hydrogen, after the hydrogen charging is completed, the second product is formed, open the second valve 260 for blanking, close the second valve 260, open the eighth valve 240 to pump to a vacuum state, and wait for the negative pressure chamber 100 to blank, so as to cycle work.
  • the heating chamber 300 After the second product enters the heating chamber 300, the second valve 260 is closed, the heating chamber 300 is heated to the dehydrogenation temperature, and the vacuum pumping state is maintained for more than 2 hours to form the third product, and the third valve 320 is opened for blanking. , close the third valve 320, and wait for the positive pressure chamber 200 to be blanked to cycle work.
  • the third product enters the cooling chamber 400.
  • the cooling chamber 400 uses cooling water or air cooling, and can be filled with an inert gas to cool the third product in the cooling chamber 400 to below 50 °C, and open the fourth valve. 420 blanking, close the fourth valve 420, and wait for the upper heating chamber 300 to blank, so as to cycle work.
  • the third product enters the discharge device 500, and the third product is stored in the discharge device 500 under inert gas protection or is evacuated to a vacuum state, and when needed, the third product is removed from the discharge device 500. Take out and transport, and put the discharging device 500 under the protection of inert gas or vacuum again.
  • the crushing system in this embodiment is applied in the sintered NdFeB powder-making process, and the brittle fracture caused by the difference in volume expansion coefficient after hydrogen absorption between the Nd2Fe14B main phase and the intergranular Nd-rich phase is used to complete the crushing of the bulk magnetic sheet.
  • Coarse crushing process In the process of hydrogen crushing, the thickness can be about 200 ⁇ 600
  • the ⁇ m quick-setting sheet is finally broken into coarse powder with a particle size of less than 100 ⁇ m with good overall fluidity.
  • the pulverization of the block magnetic sheet mainly occurs in the hydrogen absorption process of the negative pressure chamber 100 and the positive pressure chamber 200.
  • the hydrogen powder is not easy to be oriented, and the hydrogen is difficult to escape during the subsequent sintering process of the magnetic powder.
  • the heating temperature of the heating chamber 300 is 530 °C ⁇ 620°C, preferably, the heating temperature of the heating chamber 300 is 580°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

一种破碎系统,包括:供氢装置(600)、负压室(100)、正压室(200)、加热室(300)、冷却室(400)、第一管路(150)、第二管路(250)、第三管路(310)、第一供气管路(110)及第二供气管路(210),供氢装置与负压室通过第一供气管路连接,供氢装置与正压室通过第二供气管路连接,正压室与负压室通过第一管路连接,加热室与正压室通过第二管路连接,冷却室与加热室通过第三管路连接,分别在加热室与冷却室中实现第三产物的加热与冷却,可实现第三产物的连续加热与冷却,以提高第三产物的加工效率,避免了对同一处理空间重复加热与冷却的工序,持续性在加热室实现加热工序、在冷却室实现冷却工序,可提高加热与冷却的能源利用率。

Description

破碎系统 技术领域
本申请涉及材料破碎技术领域,尤其涉及一种破碎系统。
背景技术
破碎系统作为一种材料破碎设备,可以用于材料破碎形成颗粒度较小的粉料。例如,在烧结钕铁硼制粉的工艺中,向破碎系统通过氢气后,可以将块体磁片的材料破碎形成颗粒度小于100μm的粉料。
技术问题
传统的破碎系统包括炉体结构,氢破碎后的粉料需要在此炉体结构中先加热以高温脱氢,再降温以实现粉料的收集,加热及降温工序在同一炉体结构中完成,导致加热与降温耗时较久,生产效率较低,且重复加热与降温能源消耗严重。
因此,有必要提供一种新的破碎系统以解决上述技术问题。
技术解决方案
本申请的目的在于提供一种破碎系统,以解决目前破碎系统加热及降温工序在同一炉体结构中完成,导致加热与降温耗时较久,生产效率较低,且重复加热与降温能源消耗严重的技术问题。
本申请的技术方案如下:
提供一种破碎系统,包括:供氢装置、负压室、正压室、加热室、冷却室、第一管路、第二管路、第三管路、第一供气管路及第二供气管路,所述供氢装置与所述负压室通过所述第一供气管路连接,所述供氢装置与所述正压室通过所述第二供气管路连接,所述供氢装置用于向所述负压室及所述正压室中供应氢气,并使所述负压室的气压为负压、所述正压室的气压为正压;
所述负压室用于将物料与所述氢气混合,以使所述物料吸氢形成第一产物,所述正压室与所述负压室通过所述第一管路连接,所述正压室用于将所述第一产物与所述氢气混合,以使所述第一产物吸氢形成第二产物,所述加热室与所述正压室通过所述第二管路连接,所述加热室用于加热所述第二产物,以使所述第二产物内的氢脱离形成第三产物,所述冷却室与所述加热室通过所述第三管路连接,所述冷却室用于将所述第三产物冷却。
作为一种改进,所述正压室设置于所述负压室的下方,以使所述第一产物能从所述负压室落入所述正压室中,所述加热室设置于所述正压室下方,以使所述第二产物能从所述正压室落入所述加热室中,所述冷却室设置于所述加热室下方,以使所述第三产物能从所述加热室落入所述冷却室中。
作为一种改进,所负压室、所述正压室、所述加热室及所述冷却室沿竖直方向间隔设置。
作为一种改进,还包括第一阀门、第二阀门及第三阀门,所述第一阀门设置于所述负压室底部,并用于控制所述负压室与所述正压室连通或断开,所述第二阀门设置于所述正压室底部,并用于控制所述正压室与所述加热室连通或断开,所述第三阀门设置于所述第三管路上,并用于控制所述加热室与所述冷却室连通或断开。
作为一种改进,还包括出料装置及第四管路,所述出料装置与所述冷却室通过所述第四管路连接,所述出料装置用于收集所述第三产物。
作为一种改进,还包括第四阀门,所述第四阀门设置于所述第四管路上,并用于控制所述冷却室与所述出料装置连通或断开。
作为一种改进,还包括冷却水套,所述冷却水套,所述冷却水套设置于所述第三管路和所述第四管路中的至少一者上,所述冷却水套用于降温所述第三产物。
作为一种改进,还包括真空装置、第一抽气管路、第二抽气管路及第三抽气管路,所述真空装置与所述负压室通过所述第一抽气管路连接,所述真空装置与所述正压室通过所述第二抽气管路连接,所述真空装置与所述加热室通过所述第三抽气管路连接。
作为一种改进,还包括设置于所述第一供气管路上的第五阀门、设置于所述第一抽气管路上的第六阀门、设置于所述第二供气管路上的第七阀门及设置于所述第二抽气管路上的第八阀门,所述第五阀门及所述第六阀门用于调整所述氢气的气体流量,以使所述负压室内的气压为负压,所述第七阀门及所述第八阀门用于调整所述氢气的气体流量,以使所述正压室内的气压为正压。
作为一种改进,所述负压室还包括盖板及负压主体,所述负压主体与所述盖板密封连接。
有益效果
本申请提供的破碎系统的有益效果在于:加热室与正压室通过第二管路连接,加热室用于加热第二产物,以使第二产物内的氢脱离形成第三产物,冷却室与加热室通过第三管路连接,冷却室用于将第三产物冷却,分别在加热室与冷却室中实现第三产物的加热与冷却,可实现第三产物的连续加热与冷却,以提高第三产物的加工效率,另外,避免了对同一处理空间重复加热与冷却的工序,持续性在加热室实现加热工序、在冷却室实现冷却工序,可提高加热与冷却的能源利用率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为本申请的一个实施例提供的破碎系统的示意图;
图2为图1所示的破碎系统中物料破碎形成第一产物的示意图;
图3为图1所示的破碎系统中第一产物破碎形成第二产物的示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1至图3,本申请公开了一种破碎系统,包括:供氢装置600、负压室100、正压室200、加热室300、冷却室400、第一管路150、第二管路250、第三管路310、第一供气管路110及第二供气管路210,供氢装置600与负压室100通过第一供气管路110连接,供氢装置600与正压室200通过第二供气管路210连接,供氢装置600用于向负压室100及正压室200中供应氢气,并使负压室100的气压为负压、正压室200的气压为正压;负压室100用于将物料与氢气混合,以使物料吸氢形成第一产物,不饱和吸氢以实现物料的初步粗破碎,但第一产物能满足通过阀门的颗粒度要求,正压室200与负压室100通过第一管路150连接,正压室200用于将第一产物与氢气混合,以使第一产物吸氢形成第二产物,在第一产物的基础上,进行更进一步的饱和吸氢完成氢碎,加热室300与正压室200通过第二管路250连接,加热室300用于加热第二产物,以使第二产物内的氢脱离形成第三产物,冷却室400与加热室300通过第三管路310连接,冷却室400用于将第三产物冷却,分别在加热室300与冷却室400中实现第三产物的加热与冷却,可实现第三产物的连续加热与冷却,以提高第三产物的加工效率,另外,避免了对同一处理空间重复加热与冷却的工序,持续性在加热室300实现加热工序、在冷却室400实现冷却工序,可提高加热与冷却的能源利用率,解决了传统单炉体结构中,加热与降温过程均在同一个炉体中完成,在加热与降温过程中耗费时间较长,能源浪费严重,生产效率较低的问题。
在一实施例中,负压室100还包括盖板101及负压主体,负压主体与盖板101密封连接,盖板101与负压主体可拆卸连接,可以开启盖板101实现物料向负压主体内的投入,并在盖板101与负压主体密封连接后,实现物料与外界空间的隔离,以利于负压室100内吸氢反应的进行,以实现物料的破碎粉化。
在一实施例中,正压室200设置于负压室100的下方,以使第一产物能从负压室100落入正压室200中,物料不饱和吸氢破碎形成第一产物,该第一产物的颗粒度较小,可以在重力的作用下,从负压室100流入正压室200内,加热室300设置于正压室200下方,以使第二产物能从正压室200落入加热室300中,第一物料饱和吸氢形成第二物料,该第二物料已经完成氢破碎,可以在重力的作用下,从正压室200流入加热室300内,冷却室400设置于加热室300下方,以使第三产物能从加热室300落入冷却室400中,第二产物在加热室300内的真空加热环形脱氢形成第三产物,可以在重力的作用下,从加热室300流入冷却室400内,并在冷却室400内实现第三产物的冷却,完成物料的氢破碎以形成最终的第三产物,实现氢破碎的加工。
优选的,负压室100、正压室200、加热室300及冷却室400沿竖直方向间隔设置,以实现破碎系统的布置,并可为第一产物、第二产物及第三产物提供较好的重力流动性,利于相邻加工空间产物的转移;此时,负压室100、正压室200、加热室300及冷却室400可以设置在立式料罐内,且负压室100、正压室200、加热室300及冷却室400在立式料罐内垂直连接,利用物料氢破碎后的产物粉末本身所具有较好流动性,粉末通过自身重力依次通过负压室100、正压室200及加热室300,并在立式料罐内完成物料的粗破碎吸氢、饱和吸氢、脱氢及粉体冷却。 当然,可以理解的是,在不同实施例中,负压室100、正压室200、加热室300及冷却室400可以沿其他方向间隔设置,以满足负压室100的下方依次设置有正压室200、加热室300及冷却室400,以实现相邻加工空间产物在重力作用下的转移,另外,负压室100、正压室200、加热室300及冷却室400的具体位置,还可根据破碎系统的整机设备进行独立设计或与破碎系统的外部设备配合设计,以提高破碎系统或破碎系统及外部设备的空间利用率。
在一实施例中,破碎系统还包括第一阀门160、第二阀门260及第三阀门320,第一阀门160设置于负压室100底部,并用于控制负压室100与正压室200连通或断开,第二阀门260设置于正压室200底部,并用于控制正压室200与加热室300连通或断开,第三阀门320设置于第三管路310上,并用于控制加热室300与冷却室400连通或断开,以实现第一管路150、第二管路250及第三管路310的通断控制,以控制负压室100、正压室200、加热室300及冷却室400之间产物在重力作用下的转移。当然,在其他实施方式中,该第一阀门160及第二阀门260还可设置在第一管路150及第二管路250上或其他位置,也可实现负压室100与正压室200连通或断开、正压室200与加热室300连通或断开,第三阀门320也可设置在加热室300底部或其他位置,也可实现加热室300与冷却室400的连接或断开。
优选的,第一阀门160、第二阀门260及第三阀门320为电磁蝶阀,具有较高的通断控制速度,以实现第一阀门160、第二阀门260及第三阀门320的快速开启及关闭。
在一实施例中,破碎系统还包括出料装置500及第四管路410,出料装置500与冷却室400通过第四管路410连接,出料装置500用于收集第三产物,并可将出料装置500中的物料氢碎加工的最终产物装罐转运,完成粉体的最终收集。
在一实施例中,破碎系统还包括第四阀门420,第四阀门420设置于第四管路410上,并用于控制冷却室400与出料装置500连通或断开,以将物料氢碎加工的最终产物在出料装置500内进行收集。第四阀门420将冷却室400与出料装置500断开时,冷却室400可以通入惰性气体实现第三产物的冷却,以进行冷却工序。
在一实施例中,破碎系统还包括冷却水套,冷却水套,冷却水套设置于第三管路310和第四管路410中的至少一者上,冷却水套用于降温第三产物,实现第三产物的降温,优选的,冷却水套包括套设于第三管路310上的第一冷却水套430及套设于第四管路410上的第二冷却水套440,第一冷却水套430及第二冷却水套440内通入有循环冷却水,以对第三产物进行降温。另外,该冷却水套还可直接套设在冷却室400外部,以对冷却室400实现水冷。当然,可以理解的是,在不同实施例中,冷却水套还可以为冷却油套,以向冷却油套内通入冷却油,以实现循环冷却。
在一实施例中,破碎系统还包括真空装置700、第一抽气管路130、第二抽气管路及第三抽气管路230,真空装置700与负压室100通过第一抽气管路130连接,真空装置700与正压室200室通过第二抽气管路230连接,真空装置700与加热室300通过第三抽气管路连接,以分别实现负压室100、正压室200及加热室300的抽真空,以为负压室100、正压室200及加热室300提供真空环境。
在一实施例中,破碎系统还包括设置于第一供气管路110上的第五阀门120、设置于第一抽气管路130上的第六阀门140、设置于第二供气管路210上的第七阀门220及设置于第二抽气管路230上的第八阀门240,第五阀门120及第六阀门140用于调整氢气的气体流量,以使负压室100内的气压为负压,第七阀门220及第八阀门240用于调整氢气的气体流量,以使正压室200内的气压为正压,以通过阀门实现管路的通断及气体的调整,优选的,第五阀门120、第六阀门140、第七阀门220及第八阀门240为电动气阀,可以更好的实现气体的调节功能。
具体的,负压室100、正压室200、加热室300、冷却室400及出料装置500在立式罐体垂直连接,便于物料氢碎的粉末通过自身重力完成转运,并通过阀门系统的控制,实现连续自动化生产。 在负压室100、正压室200、加热室300、冷却室400及出料装置500中下游的阀门打开时,其上游的阀门处于关闭状态,在其下游的阀门关闭时,其上游的盖板101及阀门可打开以完成装料或落料。
在负压室100中,当盖板101打开,可将物料装入负压室100中,此物料可为速凝片,盖板101关闭,打开第六阀门140抽真空至洗气压力,充气0.02MPa,洗气2次,调整第五阀门120及第六阀门140,以使充氢小于0.1mPa至物料完成粗碎形成第一产物,打开第一阀门160落料,关闭第一阀门160,抽真空,放空阀开启,盖板101开启以循环工作。
在正压室200中,第一产物进入正压室200中后,打开第七阀门220充氢至正压吸氢压力,并在低于最低正压吸氢压力后,调整第七阀门220以补充氢气,充氢结束后形成第二产物,打开第二阀门260落料,关第二阀门260,开启第八阀门240抽至真空状态,等待负压室100落料,以循环工作。
加热室300中,第二产物进入加热室300后,关闭第二阀门260,加热室300加热工作至脱氢温度,维持真空抽气状态2h以上以形成第三产物,开启第三阀门320落料,关闭第三阀门320,等待正压室200落料,以循环工作。
冷却室400中,第三产物进入冷却室400中,冷却室400中使用冷却水或风冷,可充入惰性气体,将冷却室400内的第三产物冷却至50℃以下,开启第四阀门420落料,关闭第四阀门420,等待上加热室300落料,以循环工作。
出料装置500中,第三产物进入出料装置500中,将第三产物在出料装置500中惰性气体保护或抽至真空状态存储,待需要时,将第三产物从出料装置500中取出并转运,并再次将出料装置500位于惰性气体保护或抽至真空状态。
在烧结钕铁硼制粉工艺中应用本实施例中的破碎系统,利用Nd2Fe14B主相与晶间富钕相之间吸氢后体积膨胀系数不同而带来的脆性断裂完成对块体磁片的粗破碎过程。在氢碎过程中,可以将厚度约200~600 μm的速凝片最终破碎为整体流动性较好的颗粒度小于100μm的粗粉,块体磁片的粉化主要发生在负压室100及正压室200的吸氢过程,但由于存在含氢粉不易取向,磁粉后续烧结过程氢气难以脱出等问题 ,磁粉吸氢后可以在加热室300的完成真空高温脱氢,在冷却室400实现降温冷却,该加热室300的加热温度为530 ℃~620℃,优选的,该加热室300的加热温度为580 ℃。
需要说明的是,本申请中提到的“多个”指的是两个或两个以上;术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
以上的仅是本申请的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出改进,但这些均属于本申请的保护范围。

Claims (10)

  1. 一种破碎系统,其特征在于,包括:供氢装置、负压室、正压室、加热室、冷却室、第一管路、第二管路、第三管路、第一供气管路及第二供气管路,所述供氢装置与所述负压室通过所述第一供气管路连接,所述供氢装置与所述正压室通过所述第二供气管路连接,所述供氢装置用于向所述负压室及所述正压室中供应氢气,并使所述负压室的气压为负压、所述正压室的气压为正压;
    所述负压室用于将物料与所述氢气混合,以使所述物料吸氢形成第一产物,所述正压室与所述负压室通过所述第一管路连接,所述正压室用于将所述第一产物与所述氢气混合,以使所述第一产物吸氢形成第二产物,所述加热室与所述正压室通过所述第二管路连接,所述加热室用于加热所述第二产物,以使所述第二产物内的氢脱离形成第三产物,所述冷却室与所述加热室通过所述第三管路连接,所述冷却室用于将所述第三产物冷却。
  2. 根据权利要求1所述的破碎系统,其特征在于,所述正压室设置于所述负压室的下方,以使所述第一产物能从所述负压室落入所述正压室中,所述加热室设置于所述正压室下方,以使所述第二产物能从所述正压室落入所述加热室中,所述冷却室设置于所述加热室下方,以使所述第三产物能从所述加热室落入所述冷却室中。
  3. 根据权利要求2所述的破碎系统,其特征在于,所负压室、所述正压室、所述加热室及所述冷却室沿竖直方向间隔设置。
  4. 根据权利要求1所述的破碎系统,其特征在于,还包括第一阀门、第二阀门及第三阀门,所述第一阀门设置于所述负压室底部,并用于控制所述负压室与所述正压室连通或断开,所述第二阀门设置于所述正压室底部,并用于控制所述正压室与所述加热室连通或断开,所述第三阀门设置于所述第三管路上,并用于控制所述加热室与所述冷却室连通或断开。
  5. 根据权利要求1所述的破碎系统,其特征在于,还包括出料装置及第四管路,所述出料装置与所述冷却室通过所述第四管路连接,所述出料装置用于收集所述第三产物。
  6. 根据权利要求5所述的破碎系统,其特征在于,还包括第四阀门,所述第四阀门设置于所述第四管路上,并用于控制所述冷却室与所述出料装置连通或断开。
  7. 根据权利要求5所述的破碎系统,其特征在于,还包括冷却水套,所述冷却水套,所述冷却水套设置于所述第三管路和所述第四管路中的至少一者上,所述冷却水套用于降温所述第三产物。
  8. 根据权利要求1所述的破碎系统,其特征在于,还包括真空装置、第一抽气管路、第二抽气管路及第三抽气管路,所述真空装置与所述负压室通过所述第一抽气管路连接,所述真空装置与所述正压室通过所述第二抽气管路连接,所述真空装置与所述加热室通过所述第三抽气管路连接。
  9. 根据权利要求8所述的破碎系统,其特征在于,还包括设置于所述第一供气管路上的第五阀门、设置于所述第一抽气管路上的第六阀门、设置于所述第二供气管路上的第七阀门及设置于所述第二抽气管路上的第八阀门,所述第五阀门及所述第六阀门用于调整所述氢气的气体流量,以使所述负压室内的气压为负压,所述第七阀门及所述第八阀门用于调整所述氢气的气体流量,以使所述正压室内的气压为正压。
  10. 根据权利要求1所述的破碎系统,其特征在于,所述负压室还包括盖板及负压主体,所述负压主体与所述盖板密封连接。
PCT/CN2020/105411 2020-07-10 2020-07-29 破碎系统 WO2022007051A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021356343.9U CN213104494U (zh) 2020-07-10 2020-07-10 破碎系统
CN202021356343.9 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022007051A1 true WO2022007051A1 (zh) 2022-01-13

Family

ID=75676395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105411 WO2022007051A1 (zh) 2020-07-10 2020-07-29 破碎系统

Country Status (2)

Country Link
CN (1) CN213104494U (zh)
WO (1) WO2022007051A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143560A (en) * 1990-04-20 1992-09-01 Hitachi Metals, Inc., Ltd. Method for forming Fe-B-R-T alloy powder by hydrogen decrepitation of die-upset billets
CN1483538A (zh) * 2003-08-12 2004-03-24 北京科技大学 一种氢致稀土类磁各向异性磁粉的制备方法及制备装置
CN102568738A (zh) * 2012-02-18 2012-07-11 西安西工大思强科技有限公司 高机械强度烧结钕铁硼永磁体的制造方法
CN102886523A (zh) * 2012-11-01 2013-01-23 山西京宇天成科技有限公司 一种钕铁硼不饱和吸氢工艺方法
CN103339277A (zh) * 2011-01-31 2013-10-02 日立金属株式会社 R-t-b系烧结磁铁的制造方法
CN103990805A (zh) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 一种钕铁硼稀土永磁合金的制粉方法和设备
CN104190944A (zh) * 2014-08-12 2014-12-10 宁波韵升股份有限公司 一种烧结钕铁硼磁体的粉料制备方法及装置
KR20160078735A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 회전분쇄형 수소파쇄 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143560A (en) * 1990-04-20 1992-09-01 Hitachi Metals, Inc., Ltd. Method for forming Fe-B-R-T alloy powder by hydrogen decrepitation of die-upset billets
CN1483538A (zh) * 2003-08-12 2004-03-24 北京科技大学 一种氢致稀土类磁各向异性磁粉的制备方法及制备装置
CN103339277A (zh) * 2011-01-31 2013-10-02 日立金属株式会社 R-t-b系烧结磁铁的制造方法
CN102568738A (zh) * 2012-02-18 2012-07-11 西安西工大思强科技有限公司 高机械强度烧结钕铁硼永磁体的制造方法
CN102886523A (zh) * 2012-11-01 2013-01-23 山西京宇天成科技有限公司 一种钕铁硼不饱和吸氢工艺方法
CN103990805A (zh) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 一种钕铁硼稀土永磁合金的制粉方法和设备
CN104190944A (zh) * 2014-08-12 2014-12-10 宁波韵升股份有限公司 一种烧结钕铁硼磁体的粉料制备方法及装置
KR20160078735A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 회전분쇄형 수소파쇄 장치

Also Published As

Publication number Publication date
CN213104494U (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN105290409B (zh) 氢化脱氢炉及低氧含量钛粉的制备方法
CN106001582B (zh) 稀土永磁氢破及氢循环利用储放氢气装置及其系统和方法
US9543063B2 (en) Continuous hydrogen pulverization method and production device of rare earth permanent magnetic alloy
CN102849693B (zh) 一种碲化镉粉末的高温液相合成方法
CN206854659U (zh) 连续量产超细纳米级金属粒子的纳米粒子生长器
CN104827041A (zh) 一种剥离废旧钕铁硼永磁体表面金属镀层的方法及设备
WO2022007051A1 (zh) 破碎系统
CN203061881U (zh) 新型真空炉和脱蜡烧结设备
CN205403462U (zh) 一种用于软磁铁氧体烧结高温气体的冷却装置及系统
CN102757056A (zh) 摆动式高温真空氯化炉及利用该氯化炉提纯石英砂的方法
CN206496655U (zh) 一种真空冶炼炉降温装置
CN103436691A (zh) 一种流态化磁化还原焙烧装置
CN214486909U (zh) 一种用于制备一氧化硅的竖式反应炉及制备装置
CN213396479U (zh) 一种钕铁硼磁体高效烧结炉
CN111014702B (zh) 一种用于气雾化制粉设备的节能系统
CN101474677B (zh) 一种低松比铜粉直接还原发生器及工艺
CN104561913B (zh) 一种低电阻率铜铟镓硒四元合金溅射靶材及其制备方法
CN102538444A (zh) 一种锰锌铁氧体烧结炉
CN102853666A (zh) 微波高温烧结箱式炉
CN203642666U (zh) 高温氢气烧结炉
CN105108158A (zh) 一种钕铁硼氢破碎工艺氢气收集系统及应用方法
CN113587653A (zh) 一种用于氧化亚硅刮粉式连续生产的真空炉及氧化亚硅连续生产的方法
CN202087797U (zh) 真空快淬熔炉二次冷却装置
CN205909700U (zh) 一种两段式烧结球团冷却装置
CN220835891U (zh) 一种钐钴永磁材料氢化反应球磨装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944145

Country of ref document: EP

Kind code of ref document: A1