WO2022006978A1 - 低温助剂合金粉末、软磁合金及其制备方法 - Google Patents

低温助剂合金粉末、软磁合金及其制备方法 Download PDF

Info

Publication number
WO2022006978A1
WO2022006978A1 PCT/CN2020/102628 CN2020102628W WO2022006978A1 WO 2022006978 A1 WO2022006978 A1 WO 2022006978A1 CN 2020102628 W CN2020102628 W CN 2020102628W WO 2022006978 A1 WO2022006978 A1 WO 2022006978A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
low
alloy powder
preparation
soft magnetic
Prior art date
Application number
PCT/CN2020/102628
Other languages
English (en)
French (fr)
Inventor
张航
余金辉
李犇
张晓晗
裴坤
孙欢
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022006978A1 publication Critical patent/WO2022006978A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Definitions

  • the application relates to the technical field of sintering aids, in particular to a low-temperature aid alloy powder, a soft magnetic alloy and a preparation method thereof.
  • Power conversion refers to the conversion between mechanical energy and electrical energy, which is largely done by electrical machines (both motors and generators). Soft magnetic materials and their related devices play a key role in energy conversion.
  • FeCo alloy has high saturation magnetic induction intensity, magnetostrictive coefficient and Curie temperature, low resistivity, magnetic isotropy, and high magnetic stability. It can be used to make parts that work at higher temperature, but it is not suitable for high frequency use below. It is used to make electromagnets, which can generate a large pull-in force; it is used to make magnetostrictive transducers with high output energy, and it can also be used to make iron cores of micro motors, pulse transformers and other magnets. The alloy is expensive, has poor plasticity, and is difficult to form.
  • the powder metallurgy process has the advantage of being able to form the final shape and, to a large extent, eliminates subsequent operations such as stamping, grinding and polishing, drilling, etc.
  • Low temperature sintering can effectively reduce the cost of sintering, which is one of the focuses of attention at home and abroad.
  • the object of the present application is to provide a cryogenic aid alloy powder, soft magnetic alloy and its method of preparation, the low-temperature alloy expression aid alloy powder comprising Ni a Fe b Si c B d , with excellent overall soft magnetic properties , Good wettability, can significantly reduce the sintering temperature.
  • the alloy expression is Ni 88 Fe 5 Si 4 B 3 .
  • the present application also provides a method for preparing the low-temperature additive alloy powder as described above, and the method for preparing the low-temperature additive alloy powder includes the following steps:
  • Batching Weigh various raw materials containing Ni, Fe, Si and B elements according to the ratio of the alloy expression for batching;
  • Strip preparation use induction heating to melt the master alloy ingot, and then rapidly solidify in a single-roller spin quenching system to obtain a thin strip of the low-temperature additive alloy;
  • Powder preparation adopt at least one of high-energy ball milling method, planetary ball milling method and mechanical crushing method to pulverize the thin strip to prepare the low-temperature auxiliary alloy powder.
  • the conditions for the vacuum arc melting include: a degree of vacuum ⁇ 6.0 ⁇ 10 -1 Pa, and a protective atmosphere of argon with a purity of 99.999 %.
  • the surface linear velocity of the copper roll is 20 m/s ⁇ 50 m/s
  • the injection pressure is 0.4 to 1.00 Pa
  • the thickness of the prepared thin strip is 10-350 ⁇ m.
  • the step of smelting the master alloy includes: first smelting a titanium alloy ingot in a smelting furnace, then smelting the ingredients, and smelting repeatedly for several times to obtain the master alloy ingot.
  • the batching step includes: removing oxide film and impurities on the raw material containing each element, specifically:
  • the oxide film on the surface of the raw material is polished and removed, it is placed in anhydrous ethanol, cleaned by ultrasonic waves, and then dried.
  • the present application also provides a method for preparing a soft magnetic alloy.
  • the method for preparing a soft magnetic alloy includes: fully mixing Fe 50 Co 50 alloy powder with 3 wt.% of the above-mentioned low-temperature additive alloy powder, After granulation and compression molding, isothermal sintering was carried out at 900°C ⁇ 1200°C for 2 h.
  • the isothermal sintering temperature is one of 950°C, 1000°C, 1050°C, 1100°C and 1150°C.
  • the present application also provides a soft magnetic alloy prepared by the above-mentioned preparation method of the soft magnetic alloy.
  • the low-temperature additive alloy powder of the present application has excellent comprehensive soft magnetic properties and good wettability. During the sintering process, the sintering temperature can be significantly reduced, the production cost and energy consumption can be greatly reduced, and the production efficiency can be greatly improved. Conducive to industrial production.
  • Fig. 1 is the Ni 88 Fe 5 Si 4 B 3 low temperature additive alloy powder of the embodiment of the application, the sintering density curve of Fe 50 Co 50 soft magnetic alloy powder before and after addition at different sintering temperatures;
  • Figure 2 shows the Ni 88 Fe 5 Si 4 B 3 low-temperature additive alloy powder of the embodiment of the application, the Fe 50 Co 50 soft magnetic alloy powder sintered body before and after addition at 1150°C, and the vibrating sample magnetometer ( VSM) in the curve;
  • Fig. 3 is the Ni 88 Fe 5 Si 4 B 3 low-temperature additive alloy powder of the embodiment of the application, the Fe 50 Co 50 soft magnetic alloy powder sintered body before and after adding at 1150 °C, and the scanning electron microscope (SEM) under different magnetic fields )picture
  • the present application also provides a preparation method of low-temperature auxiliary alloy powder, and the preparation method of the low-temperature auxiliary alloy powder includes the following steps:
  • step S1 the ingredients: the low temperature according to the foregoing expression aid Alloyed Ni a Fe b Si c B d in atomic ratio of Ni, Fe, Si and B to each of the elements Ni, Fe, Si and B elements were included Ingredients for ingredients.
  • step S1 high-purity raw materials containing Ni, Fe, Si, and B elements are selected, and the above-mentioned raw materials containing each element are batched according to the expression of low-temperature additive alloy alloy.
  • each raw material in step S1 is subjected to deoxidation film and impurity treatment. Specifically, the oxide film on the surface of the raw material containing Ni, Fe, Si and B elements was polished and removed, and then placed in a beaker filled with absolute ethanol, ultrasonically cleaned for 250 s, and then completely dried.
  • step S2 smelting the master alloy: the ingredients are subjected to vacuum arc smelting and then ingot is cast to obtain a master alloy ingot.
  • the prepared master alloy components into the water-cooled copper crucible of the non-consumable vacuum arc melting furnace, and place the alloy elements with high density and high melting point on it.
  • the vacuum degree of the furnace cavity is pumped to 4 ⁇ 10 -1 Pa, close the valve of the mechanical pump, use the diffusion pump to pump the vacuum of the furnace chamber to below 4 ⁇ 10 -3 Pa, then close the valve of the diffusion pump, and fill with 0.05 MPa of 99.999 % argon gas, as a shielding gas; finally, turn on the switch of the power system, use the tungsten electrode and the copper motor to contact the arc to start the smelting.
  • the overturning spoon of the manual cantilever to turn it over, and repeat the smelting 6 times to ensure that the composition of the master alloy ingot is uniform.
  • the titanium alloy ingot needs to be smelted before smelting the raw material of the master alloy, because the titanium alloy can absorb the air remaining in the furnace cavity under the high temperature condition during smelting, and further improve the vacuum degree in the smelting furnace cavity.
  • step S3 strip preparation: the master alloy ingot is melted by induction heating, and then rapidly solidified in a single-roll spin quenching system to obtain a thin strip of the low-temperature additive alloy.
  • the smelted master alloy is broken, it is put into a quartz tube with a circular hole at the bottom and the diameter of the hole is 0.6 mm, and then placed in the induction coil in the vacuum chamber of the quick quenching equipment, and the bottom of the quartz tube is fixed in At a height of 0.8 mm above the copper roller, use a mechanical pump and a diffusion pump to evacuate to 5.0 ⁇ 10 -3 Pa, and then fill with 0.05 MPa of argon with a purity of 99.999 %, and then open the copper roller with cooling circulating water, induction
  • the heating coil power supply under the protection of high-purity argon gas and using high-frequency induction heating, melts the master alloy in the quartz tube uniformly, and then sprays the molten master alloy to a high speed under the pressure difference between the inside and outside of the quartz tube is 0.05 MPa.
  • a rotating copper roll to prepare a low alloy aid Ni a Fe b Si c B d ribbon.
  • step S4 powder preparation: using at least one of high-energy ball milling, planetary ball milling and mechanical crushing to pulverize the thin strip to obtain the low-temperature additive alloy powder.
  • the auxiliary low alloy Ni a Fe b Si c B d ribbon into high energy ball milling the ball to powder ratio of 5: 1, 10 wt% ethanol was added, the rotational speed of 2000 r / min, milling 1h. , take out the vacuum drying to obtain the low-temperature auxiliary alloy powder of the present application.
  • the present application also provides a method for preparing a soft magnetic alloy, wherein the soft magnetic alloy includes FeCo alloy and the low-temperature auxiliary alloy powder described above.
  • the d 50 particle size of approximately 7 ⁇ m Fe 50 Co 50 alloy powder previously prepared 3 wt.% Of auxiliaries c B d cryogenic alloy powder mixed Ni a Fe b Si, by granulation, molding
  • the Fe 50 Co 50 soft magnetic alloy system sintered body was obtained by isothermal sintering at 900°C-1200°C for 2 h.
  • the temperature in the isothermal sintering process may be one of 950°C, 1000°C, 1050°C, 1100°C, and 1150°C.
  • the low-temperature additive alloy powder of the present application has a wide range of compositions and can be continuously adjusted, and contains a plurality of elements such as Fe, Ni, Si, B, etc., which are favorable for improving the comprehensive performance of the soft magnetic alloy.
  • the B-type metal element in the alloy composition forms a eutectic with the Ni element within the proportion range of the present application, so that the melting point of the Ni-based low-temperature additive alloy is obviously lowered, and the high-temperature strength of the alloy is improved at the same time;
  • Si-type metal element in the alloy composition within the proportion of the present application, the formation of interstitial solid solution with Ni element makes the melting point of Ni-based low-temperature additive alloy significantly lower, and improves the wettability of low-temperature additive alloy powder and FeCo-based soft magnetic alloy powder;
  • the Ni-Ni 3 B liquid phase formed by the alloy powder in the sintering process has good wettability with the FeCo-based soft magnetic alloy powder, and does not react with the FeCo-based soft
  • the sintering temperature of the usual FeCo-based soft magnetic alloy (above 1200 °C)
  • the sintering temperature can be reduced by 200 °C, which can greatly reduce the FeCo-based soft magnetic alloy. Production cost and energy consumption, in order to greatly improve production efficiency.
  • the low-temperature additive alloy powder of the present application has excellent comprehensive soft magnetic properties, good wettability, and can significantly reduce the sintering temperature of FeCo-based soft magnetic alloy powder, so that its production cost and energy consumption are greatly reduced, and production efficiency A substantial increase is conducive to industrialized production.
  • step S1 ingredients: select Ni with a purity of 99.9wt.%, Fe with a purity of 99.99wt.%, Si with a purity of 99.999wt.%, and FeB with a purity of 99.5wt.%, according to the low-temperature auxiliary alloy alloy
  • Ni 88 Fe 5 Si 4 B 3 is used for batching; before weighing the raw materials, the oxide film on the raw materials is removed by grinding, and then the raw materials such as Ni, Fe, Si and FeB are put into a beaker filled with anhydrous ethanol, Ultrasonic cleaning was performed for 250 s, after which it was completely dried.
  • step S2 smelting the master alloy: put the prepared master alloy components into the water-cooled copper crucible of the non-consumable vacuum arc melting furnace, put the alloy elements with high density and high melting point on it, and first use a mechanical pump to smelt the furnace cavity
  • the vacuum degree of the furnace is pumped to 4 ⁇ 10 -1 Pa, close the valve of the mechanical pump, use the diffusion pump to pump the vacuum degree of the furnace chamber to below 4 ⁇ 10 -3 Pa, then close the valve of the diffusion pump, and fill it with 0.05 MPa Argon gas with a purity of 99.999% is used as a protective gas; finally, the switch of the power supply system is turned on, and the tungsten electrode and the copper motor are used to contact the arc to start the smelting.
  • the titanium alloy Before smelting the raw material of the master alloy, it is necessary to smelt the titanium alloy ingot first, because the titanium alloy can absorb the air remaining in the furnace cavity under the high temperature condition during smelting, and further improve the vacuum degree in the smelting furnace cavity.
  • the overturning spoon of the manual cantilever After smelting, after each smelting, after the alloy is completely solidified, it is turned over by the overturning spoon of the manual cantilever, and the smelting is repeated 6 times to ensure that the composition of the master alloy ingot is uniform.
  • step S3 strip preparation: after crushing the smelted master alloy, put it into a quartz tube with a circular hole at the bottom and a diameter of 0.6 mm, and then place it in the induction coil in the vacuum chamber of the rapid quenching equipment
  • the bottom of the quartz tube is fixed at a height of 0.8 mm above the copper roller, and the vacuum is evacuated to 5.0 ⁇ 10 -3 Pa by a mechanical pump and a diffusion pump, and then filled with argon gas with a purity of 99.999 % at 0.05 MPa, and then a cooling cycle is turned on.
  • the copper roller of the water and the power supply of the induction heating coil make the master alloy in the quartz tube melt evenly, and then melt evenly when the pressure difference between the inside and outside of the quartz tube is 0.05 MPa.
  • the master alloy is sprayed onto a copper roll rotating at high speed to prepare a low alloy aid Ni a Fe b Si c B d the ribbon.
  • step S4 powder preparation: put the thin ribbon of low-temperature additive alloy Ni 88 Fe 5 Si 4 B 3 into a high-energy ball mill, the ball-to-material ratio is 5:1, add 10 wt.% of anhydrous ethanol, and the rotational speed is 2000 r/min, ball milling for 1 h, and vacuum drying to prepare low-temperature additive alloy powder, namely Ni 88 Fe 5 Si 4 B 3 powder.
  • the Fe 50 Co 50 alloy powder with a particle size d 50 of about 7 ⁇ m is fully mixed with the 3 wt.% Ni 88 Fe 5 Si 4 B 3 low-temperature additive alloy powder prepared in the example, and formed by granulation and compression molding Then, isothermal sintering was performed at 950°C, 1000°C, 1050°C, 1100°C, and 1150°C for 2 h to sinter Fe 50 Co 50 soft magnetic alloy.
  • Figure 1 shows Fe 50 Co 50 alloy powders before and after adding 3 wt.% Ni 88 Fe 5 Si 4 B 3 low temperature additive alloy powders at different sintering temperatures (950°C, 1000°C, 1050°C, 1100°C and 1150°C)
  • the sintering density curve shows from Fig. 1 that the Ni 88 Fe 5 Si 4 B 3 low-temperature additive alloy powder can sinter and densify the Fe 50 Co 50 alloy powder at a lower temperature, which significantly reduces the sintering temperature.
  • Fig. 2 shows the vibrating sample magnetometer (VSM) of Fe 50 Co 50 alloy powder sintered body before and after adding 3 wt.% Ni 88 Fe 5 Si 4 B 3 low-temperature additive alloy powder at 1150°C under different applied magnetic fields It can be seen from Figure 2 that the Fe 50 Co 50 alloy powder sintered body before and after the addition of Ni 88 Fe 5 Si 4 B 3 low-temperature additive alloy powder exhibits typical soft magnetic characteristics, in which 3 wt.% Ni 88 Fe is added
  • the B s of the Fe 50 Co 50 alloy powder sintered body after 5 Si 4 B 3 low temperature additive alloy powder is 2.32 T, which has relatively excellent soft magnetic properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种低温助剂合金粉末、软磁合金及其制备方法,所述低温助剂合金粉末的合金表达式为Ni aFe bSi cB d,所述合金表达式中,满足:83≤a≤93,2≤b≤8,2≤c≤8,1≤d≤5,a+b+c+d=100。该低温助剂合金粉末,具有优异的综合软磁性能、良好的润湿性,能够明显降低烧结温度,使得生产成本及能耗大幅度降低,生产效率大幅度提高,有利于工业化生产。

Description

低温助剂合金粉末、软磁合金及其制备方法 技术领域
本申请涉及烧结助剂技术领域,具体涉及一种低温助剂合金粉末、软磁合金及其制备方法。
背景技术
能源存储和电网之间的双向电力流动需要更加高效的功率转换。功率转换是指机械能和电能之间的转换,而电能在很大程度上是由电机(包括电机和发电机)完成的。软磁材料及其相关器件在能量转换中起着关键作用。
FeCo合金具有高的饱和磁感应强度、磁致伸缩系数及居里温度,电阻率小,磁各向同性,磁稳定性高,可以用于制作在较高温度下工作的零件,但不宜在高频下使用。用于制作电磁铁,可产生大的吸合力;用于制作磁致伸缩换能器,输出能量高,也可用于制作微电机、脉冲变压器的铁芯及其它磁体。该合金价格较贵,塑性较差,难以进行成型加工。
粉末冶金工艺具有可成形最终形状的优势,而且,在很大程度上,可省掉后续作业,诸如冲压、磨抛加工、钻孔等。低温烧结可以有效降低烧结成本,是国内外关注的焦点之一。
因此,有必要提供一种低温助剂合金粉末、软磁合金及其制备方法,以对FeCo合金的溶蚀增加,且与FeCo合金粉末具有良好的润湿性,降低FeCo合金粉末的烧结温度。
技术问题
本申请的目的在于提供一种低温助剂合金粉末、软磁合金及其制备方法,所述低温助剂合金粉末的合金表达式包括Ni aFe bSi cB d,具有优异的综合软磁性能、良好的润湿性,能够明显降低烧结温度。
技术解决方案
本申请的技术方案如下:一种低温助剂合金粉末,所述低温助剂合金粉末的合金表达式为Ni aFe bSi cB d,所述合金表达式中,满足:83≤a≤93,2≤b≤8,2≤c≤8,1≤d≤5,a+b+c+d=100。
优选的,所述合金表达式为Ni 88Fe 5Si 4B 3
本申请还提供了一种如以上所述的低温助剂合金粉末的制备方法,所述低温助剂合金粉末的制备方法包括以下步骤:
配料:按所述合金表达式的配比分别称取包含Ni、Fe、Si和B元素的各种原料以进行配料;
熔炼母合金:将所述配料进行真空电弧熔炼后得到母合金铸锭;
带材制备:采用感应加热的方法熔化所述母合金铸锭,熔化后在单辊旋淬系统中快速凝固制得所述低温助剂合金的薄带;
粉末制备:采用高能球磨法、行星球磨法和机械破碎法中至少一种方法将所述薄带粉碎制得制备所述低温助剂合金粉末。
优选的,所述真空电弧熔炼的条件包括:真空度≥6.0×10 -1 Pa,保护气氛为99.999 % 纯度的氩气。
优选的,所述单辊旋淬的过程中,铜辊表面线速度为20 m/s~50 m/s,喷射压强为0.4~1.00 Pa,制得的所述薄带厚度为10~350 μm。
优选的,所述熔炼母合金步骤中,包括:在熔炼炉中先熔炼钛合金锭,再熔炼所述配料,反复熔炼多次,得到所述母合金铸锭。
优选的,所述配料步骤之前包括:对包含各元素的原料进行氧化膜和杂质去除处理,具体为:
将所述原料表面的氧化膜打磨去除后,置于无水乙醇中利用超声波清洗后干燥。
本申请还提供了一种软磁合金的制备方法,所述软磁合金的制备方法包括:将Fe 50Co 50合金粉末与3 wt.%的如以上所述的低温助剂合金粉末充分混合,并通过造粒、模压成型后在900℃~1200℃条件下进行等温烧结2 h。
优选的,所述等温烧结的温度为950℃、1000℃、1050℃、1100℃和1150℃中的一种。
本申请还提供了一种软磁合金,所述软磁合金由以上所述软磁合金的制备方法制得。
有益效果
本申请的有益效果在于:本申请提供了一种低温助剂合金粉末、软磁合金及其制备方法,所述低温助剂合金粉末的合金表达式为Ni aFe bSi cB d,所述合金表达式中,满足:83≤a≤93,2≤b≤8,2≤c≤8,1≤d≤5,a+b+c+d=100。本申请的低温助剂合金粉末,具有优异的综合软磁性能、良好的润湿性,在烧结过程中,能够明显降低烧结温度,使得生产成本及能耗大幅度降低,生产效率大幅度提高,有利于工业化生产。
附图说明
图1为本申请实施例的Ni 88Fe 5Si 4B 3低温助剂合金粉末,在不同烧结温度下添加前后Fe 50Co 50软磁合金粉末的烧结密度曲线;
图2为本申请实施例的Ni 88Fe 5Si 4B 3低温助剂合金粉末,在1150℃下添加前后的Fe 50Co 50软磁合金粉末烧结体外加不同磁场下的振动样品磁强计(VSM)中的曲线;
图3为本申请的实施例的Ni 88Fe 5Si 4B 3低温助剂合金粉末,在1150℃下添加前后的Fe 50Co 50软磁合金粉末烧结体外加不同磁场下的扫描电子显微镜(SEM)图
本发明的实施方式
下面结合附图和实施方式对本申请作进一步说明。
本申请提供了一种低温助剂合金粉末,所述低温助剂合金粉末的合金表达式为Ni aFe bSi cB d,所述合金表达式中,满足:83≤a≤93,2≤b≤8,2≤c≤8,1≤d≤5,a+b+c+d=100。优选的,所述合金表达式中,满足:a=88,b=5,c=4,d=3,则低温助剂合金粉末的合金表达式为Ni 88Fe 5Si 4B 3
基于以上低温助剂合金粉末,本申请还提供了一种低温助剂合金粉末的制备方法,所述低温助剂合金粉末的制备方法包括以下步骤:
在步骤S1中,配料:按前文低温助剂合金合金表达式Ni aFe bSi cB d中Ni、Fe、Si和B各元素的原子比例对分别包含Ni、Fe、Si和B元素的各原料进行配料。其中,所述合金表达式中,满足:83≤a≤93,2≤b≤8,2≤c≤8,1≤d≤5,a+b+c+d=100。
具体的,选取高纯度包含Ni、Fe、Si以及B各元素的原料,按照低温助剂合金合金表达式对以上包含各元素的原料进行配料。优选的,在步骤S1之前,对步骤S1中的各原料进行去氧化膜和杂质处理。具体的,将包含Ni、Fe、Si以及B各元素的原料表面的氧化膜打磨去除后放入盛有无水乙醇的烧杯中,进行超声波清洗250 s,之后将其完全干燥。
在步骤  S2中,熔炼母合金:将所述配料进行真空电弧熔炼后铸锭得到母合金铸锭。
具体的,将配制好的母合金成分放入非自耗真空电弧熔炼炉的水冷铜坩埚里,密度大且熔点高的合金元素放在上面,首先利用机械泵将炉腔的真空度抽至4×10 -1 Pa,关闭机械泵阀门,使用扩散泵将炉腔的真空度抽至4×10 -3 Pa以下,然后将扩散泵阀门关闭,充入0.05 MPa的纯度为99.999 %的氩气,作为保护气体;最后,打开电源系统的开关,利用钨电极与铜电机来接触引弧,并开始熔炼。可选的,熔炼时,每熔炼一次,待合金完全凝固后,利用手动悬臂的翻转勺将其翻转过来,并反复熔炼6次保证母合金铸锭的成分均匀。可选的,在熔炼母合金原料之前,需要先熔炼钛合金锭,这是因为在熔炼时的高温条件下,钛合金可以吸附炉腔内残留的空气,进一步提高熔炼炉腔体内的真空度。
在步骤S3中,带材制备:采用感应加热的方法熔化所述母合金铸锭,熔化后在单辊旋淬系统中快速凝固制得所述低温助剂合金的薄带。
具体的,将熔炼好的母合金破碎后,放入底部开有圆孔且孔的直径为0.6 mm的石英管中,然后放置在快淬设备真空腔里的感应线圈中并石英管底部固定在距离铜辊上方0.8 mm高度处,采用机械泵和扩散泵抽真空至5.0×10 -3 Pa后充入0.05 MPa的纯度为99.999 %的氩气,然后开启通有冷却循环水的铜辊、感应加热线圈电源,在高纯氩气的保护下并采用高频感应加热的方式使石英管中的母合金熔化均匀,然后在石英管内外压差为0.05 MPa下把熔融均匀的母合金喷射到高速旋转的铜辊上,制备出低温助剂合金Ni aFe bSi cB d薄带。
在步骤S4中,粉末制备:采用高能球磨法、行星球磨法和机械破碎法中至少一种方法将所述薄带粉碎制得所述低温助剂合金粉末。
具体的,将低温助剂合金Ni aFe bSi cB d薄带放入高能球磨中,球料比为5:1,加入10 wt.%无水乙醇,转速为2000 r/min,球磨1h,取出真空干燥获得本申请的低温助剂合金粉末。
本申请还提供了一种软磁合金的制备方法,所述软磁合金包括FeCo合金和前文记载的低温助剂合金粉末。具体的,将粒径d 50约为7μm的Fe 50Co 50合金粉末与前文制得的3 wt.%的Ni aFe bSi cB d低温助剂合金粉末充分混合,并通过造粒、模压成型后在900℃-1200℃的条件下进行等温烧结2 h制得Fe 50Co 50软磁合金体系烧结体。优选的,等温烧结过程中的温度可以为950℃、1000℃、1050℃、1100℃、1150℃中的一种。
本申请的低温助剂合金粉末,成分范围广且可连续调整,含有多个对提高软磁合金综合性能有利的元素Fe、Ni、Si、B等。合金成分中的B类金属元素,在本申请的比例范围内,与Ni元素形成共晶使得Ni基低温助剂合金的熔点明显下降,同时提高合金的高温强度;合金成分中的Si类金属元素,在本申请的比例范围内,与Ni元素形成间隙固溶体使得Ni基低温助剂合金的熔点明显下降,提高低温助剂合金粉末与FeCo基软磁合金粉末的润湿性;本申请的低温助剂合金粉末在烧结过程中形成的Ni-Ni 3B液相与FeCo基软磁合金粉末润湿性良好,且不与FeCo基软磁合金发生反应,有利于促进FeCo基软磁合金的完全致密化;在通常的FeCo基软磁合金的低温烧结温度较(1200 ℃以上 )的基础上添加本申请的低温助剂合金粉末后,烧结温度能降低200 ℃,可以大幅度降低FeCo基软磁合金生产成本及能耗,以大幅度提高生产效率。
因此,本申请的低温助剂合金粉末具有优异的综合软磁性能、良好的润湿性、能够明显降低FeCo基软磁合金粉末的烧结温度,使得其生产成本及能耗大幅度降低,生产效率大幅度提高,有利于工业化生产。
实施例
在步骤S1中,配料:选取纯度为99.9wt.%的Ni、纯度为99.99wt.%的Fe、纯度为99.999wt.%的Si、纯度为99.5wt.%的FeB,按照低温辅助剂合金合金表达式Ni 88Fe 5Si 4B 3进行配料;在称取原材料之前,把原材料上面的氧化膜打磨去除,后将Ni、Fe、Si和FeB等原材料放入盛有无水乙醇的烧杯中,进行超声波清洗250 s,之后将其完全干燥。
在步骤S2中,熔炼母合金:将配制好的母合金成分放入非自耗真空电弧熔炼炉的水冷铜坩埚里,密度大且熔点高的合金元素放在上面,首先利用机械泵将炉腔的真空度抽至4×10 -1 Pa,关闭机械泵阀门,使用扩散泵将炉腔的真空度抽至4×10 -3 Pa以下,然后将扩散泵阀门关闭,充入0.05 MPa的纯度为99.999 %的氩气,作为保护气体;最后,打开电源系统的开关,利用钨电极与铜电机来接触引弧,并开始熔炼。在熔炼母合金原料之前,需要先熔炼钛合金锭,这是因为在熔炼时的高温条件下,钛合金可以吸附炉腔内残留的空气,进一步提高熔炼炉腔体内的真空度。熔炼时,每熔炼一次,待合金完全凝固后,利用手动悬臂的翻转勺将其翻转过来,并反复熔炼6次保证母合金铸锭的成分均匀。
在步骤S3中,带材制备:将熔炼好的母合金破碎后,放入底部开有圆孔且孔的直径为0.6 mm的石英管中,然后放置在快淬设备真空腔里的感应线圈中并石英管底部固定在距离铜辊上方0.8 mm高度处,采用机械泵和扩散泵抽真空至5.0×10 -3 Pa后充入0.05 MPa的纯度为99.999 %的氩气,然后开启通有冷却循环水的铜辊、感应加热线圈电源,在高纯氩气的保护下并采用高频感应加热的方式使石英管中的母合金熔化均匀,然后在石英管内外压差为0.05 MPa下把熔融均匀的母合金喷射到高速旋转的铜辊上,制备出低温助剂合金Ni aFe bSi cB d的薄带。
在步骤S4中,粉体制备:将低温助剂合金Ni 88Fe 5Si 4B 3的薄带放入高能球磨中,球料比为5:1,加入无水乙醇10 wt.%,转速为2000 r/min,球磨1h,取出真空干燥,即可制备出低温助剂合金粉末,即Ni 88Fe 5Si 4B 3粉末。
Ni 88Fe 5Si 4B 3低温助剂合金粉末性能检测结果
将粒径d 50约为7μm的Fe 50Co 50合金粉末与实施例中制得的3 wt.%的Ni 88Fe 5Si 4B 3低温助剂合金粉末充分混合,并通过造粒、模压成型后分别在950℃、1000℃、1050℃、1100℃、1150℃进行等温烧结2 h以烧结Fe 50Co 50软磁合金。
图1为不同烧结温度(950℃、1000℃、1050℃、1100℃和1150℃)下添加3 wt.%的Ni 88Fe 5Si 4B 3低温助剂合金粉末前后的Fe 50Co 50合金粉末烧结密度曲线,由图1可见,Ni 88Fe 5Si 4B 3低温助剂合金粉末可以在较低的温度下使Fe 50Co 50合金粉末烧结致密,明显降低了烧结温度。
图2为1150℃下添加3 wt.%的Ni 88Fe 5Si 4B 3低温助剂合金粉末前后的Fe 50Co 50合金粉末烧结体在不同外加磁场下的振动样品磁强计(VSM)中的曲线,由图2可见,Ni 88Fe 5Si 4B 3低温助剂合金粉末添加前后的Fe 50Co 50合金粉末烧结体都呈现典型的软磁特征,其中添加3 wt.%的Ni 88Fe 5Si 4B 3低温助剂合金粉末后的Fe 50Co 50合金粉末烧结体的 B s为2.32 T,具有较为优异的软磁性能。
图3为1150℃下添加3 wt.%的Ni 88Fe 5Si 4B 3低温助剂合金粉末前(图3中的(b))后(图3中的(a))的Fe 50Co 50合金粉末烧结体在不同外加磁场下的扫描电子显微镜(SEM)下的图片,由图3可见,添加3 wt.%的Ni 88Fe 5Si 4B 3低温助剂合金粉末后(图3中的(a))的Fe 50Co 50合金粉末烧结体晶粒尺寸更大,有利于增强磁软度,进一步降低合金的矫顽力。
以上所述的仅是本申请的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出改进,但这些均属于本申请的保护范围。

Claims (10)

1.一种用于制备软磁合金的低温助剂合金粉末,其特征在于,所述低温助剂合金粉末的合金表达式为Ni aFe bSi cB d,所述合金表达式中,满足:83≤a≤93,2≤b≤8,2≤c≤8,1≤d≤5,a+b+c+d=100。
2.根据权利要求1所述的低温助剂合金,其特征在于,所述合金表达式为Ni 88Fe 5Si 4B 3
3.一种如权利要求1或2所述的低温助剂合金粉末的制备方法,其特征在于,所述低温助剂合金粉末的制备方法包括以下步骤:
配料:按所述合金表达式的配比分别称取包含Ni、Fe、Si和B元素的各种原料以进行配料;
熔炼母合金:将所述配料进行真空电弧熔炼后得到母合金铸锭;
带材制备:采用感应加热的方法熔化所述母合金铸锭,熔化后在单辊旋淬系统中快速凝固制得所述低温助剂合金的薄带;
粉末制备:采用高能球磨法、行星球磨法和机械破碎法中至少一种方法将所述薄带粉碎制备所述低温助剂合金粉末。
4.根据权利要求3所述低温助剂合金粉末的制备方法,其特征在于,所述真空电弧熔炼的条件包括:真空度≥6.0×10 -1 Pa,保护气氛为99.999 % 纯度的氩气。
5.根据权利要求3所述低温助剂合金粉末的制备方法,其特征在于,
所述单辊旋淬的过程中,铜辊表面线速度为20 m/s~50 m/s,喷射压强为0.4~1.00 Pa,制得的所述薄带厚度为10~350 μm。
6.如权利可要求3所述低温助剂合金粉末的制备方法,其特征在于,所述熔炼母合金步骤中,包括:在熔炼炉中先炼熔钛合金锭,再熔炼所述配料,反复熔炼多次,得到所述母合金铸锭。
7.如权利可要求3所述低温助剂合金粉末的制备方法,其特征在于,所述配料步骤之前包括:对包含各元素的原料进行氧化膜和杂质去除处理,具体为:
将所述原料表面的氧化膜打磨去除后,置于无水乙醇中利用超声波清洗后干燥。
8.一种软磁合金的制备方法,其特征在于,所述软磁合金的制备方法包括:将Fe 50Co 50合金粉末与3 wt.%的低温助剂合金粉末充分混合,并通过造粒、模压成型后在900℃~1200℃条件下进行等温烧结2 h;所述的低温助剂合金粉末采用如权利要求3-7所述的制备方法制得。
9.如权利要求8所述的软磁合金的制备方法,其特征在于,所述等温烧结的温度为950℃、1000℃、1050℃、1100℃和1150℃中的一种。
10.一种软磁合金,其特征在于,所述软磁合金由权利要求8或9所述软磁合金的制备方法制得。
PCT/CN2020/102628 2020-07-10 2020-07-17 低温助剂合金粉末、软磁合金及其制备方法 WO2022006978A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010663264.0 2020-07-10
CN202010663264.0A CN111961983B (zh) 2020-07-10 2020-07-10 低温助剂合金粉末、软磁合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2022006978A1 true WO2022006978A1 (zh) 2022-01-13

Family

ID=73361497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102628 WO2022006978A1 (zh) 2020-07-10 2020-07-17 低温助剂合金粉末、软磁合金及其制备方法

Country Status (2)

Country Link
CN (1) CN111961983B (zh)
WO (1) WO2022006978A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160166A1 (en) * 1981-11-26 1985-11-06 Allied Corporation Low magnetostriction amorphous metal alloys
CN102290179A (zh) * 2011-05-06 2011-12-21 常州市科晶电子有限公司 一种半硬磁材料及其制备方法
CN104109822A (zh) * 2014-06-05 2014-10-22 同济大学 一种含Ni钴基非晶巨磁阻抗合金薄带及其制备方法
CN104399984A (zh) * 2014-12-02 2015-03-11 中南大学 一种磁极和电磁开关用铁基粉末冶金软磁材料的制备方法
US20150096652A9 (en) * 2013-01-07 2015-04-09 Glassimetal Technology, Inc. Bulk nickel-silicon-boron glasses bearing iron
CN104878324A (zh) * 2015-06-01 2015-09-02 大连理工大学 一种软磁性FeCoNiMB高熵块体非晶合金及其制备方法
CN107614715A (zh) * 2015-04-23 2018-01-19 国立大学法人东北大学 含有l10型铁镍规则相的铁镍合金组成物、含有l10型铁镍规则相的铁镍合金组成物的制造方法、以非晶作为主相的铁镍合金组成物、非晶材的母合金、非晶材、磁性材料以及磁性材料的制造方法
CN109797344A (zh) * 2019-01-25 2019-05-24 上海电力学院 一种Fe基软磁合金及软磁合金带材制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265358B2 (ja) * 2003-10-03 2009-05-20 パナソニック株式会社 複合焼結磁性材の製造方法
JP4849545B2 (ja) * 2006-02-02 2012-01-11 Necトーキン株式会社 非晶質軟磁性合金、非晶質軟磁性合金部材、非晶質軟磁性合金薄帯、非晶質軟磁性合金粉末、及びそれを用いた磁芯ならびにインダクタンス部品
JP4327214B2 (ja) * 2007-05-21 2009-09-09 三菱製鋼株式会社 焼結軟磁性粉末成形体
CN102011049B (zh) * 2010-11-22 2012-09-05 北京航空航天大学 一种Ta掺杂的FeCo基软磁合金及其制备方法
CN102651264B (zh) * 2011-02-25 2016-11-16 有研稀土新材料股份有限公司 一种烧结复合软磁材料及制备该材料的方法
JP6511832B2 (ja) * 2014-05-14 2019-05-15 Tdk株式会社 軟磁性金属粉末、およびその粉末を用いた軟磁性金属圧粉コア
JP5920495B2 (ja) * 2014-05-14 2016-05-18 Tdk株式会社 軟磁性金属粉末、およびその粉末を用いた軟磁性金属圧粉コア
CN107683512B (zh) * 2015-06-19 2019-11-26 株式会社村田制作所 磁性体粉末及其制造方法、磁芯及其制造方法和线圈部件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160166A1 (en) * 1981-11-26 1985-11-06 Allied Corporation Low magnetostriction amorphous metal alloys
CN102290179A (zh) * 2011-05-06 2011-12-21 常州市科晶电子有限公司 一种半硬磁材料及其制备方法
US20150096652A9 (en) * 2013-01-07 2015-04-09 Glassimetal Technology, Inc. Bulk nickel-silicon-boron glasses bearing iron
CN104109822A (zh) * 2014-06-05 2014-10-22 同济大学 一种含Ni钴基非晶巨磁阻抗合金薄带及其制备方法
CN104399984A (zh) * 2014-12-02 2015-03-11 中南大学 一种磁极和电磁开关用铁基粉末冶金软磁材料的制备方法
CN107614715A (zh) * 2015-04-23 2018-01-19 国立大学法人东北大学 含有l10型铁镍规则相的铁镍合金组成物、含有l10型铁镍规则相的铁镍合金组成物的制造方法、以非晶作为主相的铁镍合金组成物、非晶材的母合金、非晶材、磁性材料以及磁性材料的制造方法
CN104878324A (zh) * 2015-06-01 2015-09-02 大连理工大学 一种软磁性FeCoNiMB高熵块体非晶合金及其制备方法
CN109797344A (zh) * 2019-01-25 2019-05-24 上海电力学院 一种Fe基软磁合金及软磁合金带材制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KACZMAREK W A: "Magnetic Properties of Ni73Fe5Si12B10 Ribbons", PHYSICA STATUS SOLIDI. A: APPLICATIONS AND MATERIALS SCIENCE, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 130, no. 1, 1 March 1992 (1992-03-01), DE , pages 177 - 182, XP055887720, ISSN: 1862-6300, DOI: 10.1002/pssa.2211300121 *
WEI HENG-DOU, CHEN XUE-DING, HAO LEI, ZHANG JING: "Formation and Thermal Stability of Amorphous Alloys of Ni-Fe-Si-B", JOURNAL OF LANZHOU UNIVERSITY OF TECHNOLOGY, vol. 31, no. 6, 31 December 2005 (2005-12-31), pages 9 - 12, XP055887726, ISSN: 1673-5196 *

Also Published As

Publication number Publication date
CN111961983A (zh) 2020-11-20
CN111961983B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
KR102096958B1 (ko) 고열안정성 희토류 영구자석 재료, 그 제조 방법 및 이를 함유한 자석
CN101620906B (zh) 一种块体纳米晶软磁合金材料及其制备方法
CN104576028A (zh) 富铈各向异性纳米晶稀土永磁体的制备方法
CN104043834B (zh) 使用热压利用减少的镝或铽制造Nd-Fe-B磁体
JP3893729B2 (ja) Nb・Al系金属材料の球状粉末とその製造体の製造方法
WO2013000147A1 (zh) 铜铬触头及其制备方法
JPH0366105A (ja) 希土類系異方性粉末および希土類系異方性磁石
KR101428672B1 (ko) 가스 분무 공정을 이용한 Nd-Fe-B 자성분말의 제조방법, 자성분말, 자성체 및 자성체의 제조방법
CN103000324A (zh) 一种烧结稀土永磁材料及其制备方法
WO2022006979A1 (zh) 软磁合金粉末及其制备方法
JPH05209210A (ja) 磁石合金粒子を製造する方法
CN112216460A (zh) 纳米晶钕铁硼磁体及其制备方法
WO2022006978A1 (zh) 低温助剂合金粉末、软磁合金及其制备方法
CN115354244B (zh) 一种纳米相强化型亚共晶高熵合金及其制备方法
JPH03261104A (ja) 異方性希土類永久磁石の製造方法
CN103794355B (zh) 一种具有高居里点的钕铁硼磁体的制备方法
KR102632582B1 (ko) 소결 자석의 제조 방법
KR100262488B1 (ko) 소결철-규소연자성합금의제조방법
JPH058562B2 (zh)
JPH0562814A (ja) 希土類元素−Fe−B系磁石の製造方法
JPS62214602A (ja) 圧粉体永久磁石の製造方法
CN113903538A (zh) 一种具有高温度稳定性的稀土永磁材料及其制备方法
CN105938746A (zh) 一种低成本无稀土纳米复合永磁材料及其制备方法
CN105938747A (zh) 一种高矫顽力高性能纳米复合永磁体及其制备方法
JPS60125338A (ja) 永久磁石合金の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944798

Country of ref document: EP

Kind code of ref document: A1