WO2022006899A1 - 电池盒、电池单体、电池、制备电池盒的方法和装置 - Google Patents

电池盒、电池单体、电池、制备电池盒的方法和装置 Download PDF

Info

Publication number
WO2022006899A1
WO2022006899A1 PCT/CN2020/101444 CN2020101444W WO2022006899A1 WO 2022006899 A1 WO2022006899 A1 WO 2022006899A1 CN 2020101444 W CN2020101444 W CN 2020101444W WO 2022006899 A1 WO2022006899 A1 WO 2022006899A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
battery
opening
groove
battery case
Prior art date
Application number
PCT/CN2020/101444
Other languages
English (en)
French (fr)
Inventor
赵丰刚
柯海波
李全坤
吴宁生
孙占宇
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020227019094A priority Critical patent/KR20220119369A/ko
Priority to JP2022534439A priority patent/JP7325642B2/ja
Priority to PCT/CN2020/101444 priority patent/WO2022006899A1/zh
Priority to EP20811229.2A priority patent/EP3965218B1/en
Priority to CN202080096259.4A priority patent/CN115066800B/zh
Priority to US17/113,047 priority patent/US20220013855A1/en
Publication of WO2022006899A1 publication Critical patent/WO2022006899A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage components, in particular to a battery case, a battery cell, a battery, and a method and device for preparing a battery case.
  • Lithium-ion batteries have the advantages of small size, high energy density, long cycle life and long storage time, and have been widely used in some electronic devices, electric vehicles and electric toys, for example, in mobile phones, notebook computers, electric bicycles, etc. , electric vehicles, electric planes, electric ships, electric toy cars, electric toy ships, electric toy planes and electric tools have been widely used.
  • the pressure relief mechanism on the lithium-ion battery has an important impact on the safety performance of the lithium-ion battery. For example, when the lithium-ion battery is short-circuited, overcharged, etc., it may cause the internal thermal runaway of the lithium-ion battery to cause a sudden increase in the internal air pressure. At this time, the pressure relief mechanism needs to be actuated to release the internal air pressure to prevent Lithium-ion battery exploded. Therefore, the design of the pressure relief mechanism is extremely important.
  • the present application proposes a battery case, a battery cell, a battery, and a method and device for preparing the battery case, which can improve the performance of a pressure relief mechanism on the battery case.
  • a battery case comprising: at least two walls, the at least two walls including a first wall and a second wall, the first wall intersecting the second wall; And, a pressure relief mechanism, the pressure relief mechanism includes a first part and a second part connected to each other, the first part and the second part are respectively provided on the first wall and the second wall; wherein, the The first part and/or the second part are configured to be broken to relieve the internal pressure when the internal pressure of the battery case reaches a threshold value.
  • a pressure relief mechanism is provided at the intersection of any two adjacent walls, that is, the pressure relief mechanism is located at the intersection of the two walls of the battery box, which can increase the area of the pressure relief mechanism.
  • the pressure relief mechanism on the battery box can be broken open in time to release the temperature and air pressure to the outside to prevent the battery from exploding and catching fire; since the pressure relief mechanism is set on two walls The intersection position of the battery box is less affected by the various components inside the battery box.
  • the drop impact of the electrode assembly is small, which can prevent the pressure relief mechanism from breaking open in advance; moreover, the battery box is less deformed at the intersection of the two walls. It can also ensure that the pressure relief mechanism is not affected by deformation and creep, which improves the overall performance of the battery.
  • the first wall is provided with a first opening in a region where the first part is located, and the first part covers the first opening; and/or, the second wall is in the second wall The area where the part is located is provided with a second opening, and the second part covers the second opening.
  • a first opening may be provided at a position of the first wall close to the second wall, so that the pressure relief mechanism covers the first wall.
  • an opening to form a first part of the pressure relief mechanism similarly, a second opening is provided on the second wall at a position close to the first wall, so that the pressure relief mechanism covers the second opening, thereby forming a second part of the pressure relief mechanism part.
  • the pressure relief mechanism can be provided separately from the battery box.
  • the material of the pressure relief mechanism can be different from that of the battery box, and the thickness can also be set to be different, so that the pressure relief mechanism can be set according to actual needs.
  • the first opening is connected to the second opening.
  • the first opening on the first wall and the second opening on the second wall are actually a connected opening, so only one opening needs to be processed at the intersection of the two adjacent walls of the battery box. The process is convenient.
  • the battery case is a hollow cuboid.
  • the battery case can also be in other shapes, such as a hollow cylinder or other polyhedrons.
  • the battery box includes: a casing, which is a hollow cuboid and has an opening at one end; and a cover plate that covers the opening of the casing.
  • the battery box is usually divided into two parts: a shell and a cover.
  • the shell is a hollow cuboid with an opening, which is convenient for accommodating the internal electrode components, etc.; the cover can be closed at the opening of the shell, which is convenient to set Machining and installation.
  • first wall and the second wall are respectively a bottom wall and a side wall of the housing, and the bottom wall of the housing is a wall opposite to the opening of the housing.
  • the electrode terminals are usually arranged on the cover plate
  • the pressure relief mechanism is also arranged on the cover plate, then when thermal runaway occurs inside the battery cell, the pressure relief mechanism is ruptured, and while releasing the internal pressure of the battery cell, it is also Liquid or solid combustion materials may be ejected outward, which may also include conductive substances, which will cause a short circuit between the electrode terminals, thereby aggravating the thermal runaway of the battery cell; at the same time, considering that when the battery is installed in the vehicle, Usually, the electrode terminal is facing upward, that is, towards the passenger.
  • the pressure relief mechanism is installed on the same side of the electrode terminal, the air flow and other substances released after the pressure relief mechanism is ruptured will be discharged upwards, which may cause burns or scalds to passengers. , increasing the danger to passengers. Therefore, in the embodiment of the present application, the pressure relief mechanism is arranged at the intersection of the bottom wall and the side wall to solve the above problems.
  • the second wall is the side wall with the smallest area among the side walls of the housing.
  • the placement between two adjacent battery cells is usually the wall contact with the larger area in the side walls of the two battery cells. If the pressure relief mechanism Some parts are arranged on the wall with a larger area, which will affect the opening of the pressure relief mechanism, which is not conducive to installation. Therefore, installing the pressure relief mechanism on the bottom wall and the side wall with a small area can make the pressure relief mechanism open smoothly. , and does not affect the placement of multiple battery cells.
  • the first portion and the second portion are perpendicular to each other.
  • the battery box is usually a regular polyhedron, such as a rectangular parallelepiped
  • the two adjacent walls of the battery box are usually perpendicular to each other, and the pressure relief mechanism is arranged at the intersection of the two walls.
  • the two parts are also set to be perpendicular to each other, and are consistent with other parts at the intersection of the two walls, so that the area of the pressure relief mechanism is larger, and the overall shape of the battery box can also be kept unchanged, which is convenient for installation.
  • the first portion is the same shape and/or area as the second portion.
  • the two parts included in the pressure relief mechanism can be set to have the same shape and area, for example, can be set as a semicircle with the same size, or can be set as an oval shape with the same size, or can also be set for other shapes.
  • the thickness of the bottom wall of the housing is 1.5 mm to 2.5 mm; and/or the thickness of the side wall is 1 mm to 1.5 mm.
  • the bottom wall of the casing can be set slightly thicker than the side wall, which can increase the strength of the battery box.
  • the pressure relief mechanism has a thickness of 0.4 mm to 0.7 mm.
  • the pressure relief mechanism needs to rupture when thermal runaway occurs inside the battery cell to release the internal air pressure. Therefore, the thickness of the pressure relief mechanism is usually smaller than the thickness of the battery box itself, that is, it can be determined according to the thickness of the two walls where the pressure relief mechanism is located. , and reasonably set the thickness of the pressure relief mechanism itself.
  • the pressure relief mechanism has a total area of 600 mm 2 to 1400 mm 2 .
  • the area of the pressure relief mechanism should not be too large; but when thermal runaway occurs inside the battery cell, the pressure relief mechanism needs to be opened in time to release the internal air pressure as soon as possible to prevent the battery from exploding. Therefore, the pressure relief mechanism The area cannot be set too small.
  • the first portion is mounted on the outer surface of the first wall; and/or the second portion is mounted on the outer surface of the second wall.
  • the pressure relief mechanism is usually installed on the bottom wall and side wall of the battery box casing, considering the depth of the casing, it is difficult to install the pressure relief mechanism on the inner surface of the casing. Therefore, the pressure relief mechanism is installed on the outer surface of the battery box, which is more convenient for processing.
  • the outer surface of the first portion is flush with the outer surface of the first wall, and/or the outer surface of the second portion is flush with the outer surface of the second wall.
  • an outer surface of the first wall is provided with a first groove
  • the first opening is provided in a bottom wall of the first groove
  • the first portion is mounted in the first groove and/or
  • the outer surface of the second wall is provided with a second groove
  • the second opening is provided on the bottom wall of the second groove
  • the second part is installed in the first Two grooves in the bottom wall.
  • the pressure relief mechanism can be installed on the bottom wall of the groove by arranging a groove on the wall of the battery box.
  • the first portion and/or the second portion are provided with a third groove, the first portion and/or the second portion being configured to be configured when the internal pressure of the battery compartment reaches a threshold value Rupture at the third groove to relieve the internal pressure.
  • a notch can be added to the surface of the pressure relief mechanism, that is, a groove area is arranged on the surface of the pressure relief mechanism, and the thickness in the groove is thinner, so that the leakage The pressing mechanism can break at the groove.
  • the third groove is provided on the outer surface of the first portion and/or the outer surface of the second portion.
  • the groove is arranged inside the battery box, that is, on the inner surface of the pressure relief mechanism close to the inside of the battery box, due to the presence of electrolyte in the battery box, the electrolyte will accumulate in the groove and corrode the groove. This may cause the pressure relief mechanism to rupture in advance, so grooves are usually arranged on the outer surface of the pressure relief mechanism.
  • the thickness of the first portion and/or the second portion at the third groove is 0.1 mm to 0.3 mm.
  • the thickness of the groove of the pressure relief mechanism can be set according to the thickness of the pressure relief mechanism.
  • the battery case further includes: an electrode terminal including a positive electrode terminal and a negative electrode terminal both disposed on the cover plate.
  • a battery cell comprising: the battery case described in the first aspect and any possible implementation manner of the first aspect; and an electrode assembly, the electrode Components are arranged in the battery compartment.
  • the battery box includes: a casing, which is a hollow cuboid and has an opening at one end; and a cover plate that covers the opening of the casing.
  • the battery cell further includes: a backing plate, the backing plate is located between the electrode assembly and the bottom wall of the case, and the bottom wall of the case is the bottom wall of the case a wall opposite the opening of the housing.
  • the first wall is the bottom wall of the casing, and a notch corresponding to the first part is provided on the backing plate, so that the backing plate does not block the first part.
  • the first wall is provided with a first opening in an area where the first part is located, the area of the notch is larger than that of the first opening, and the edge of the notch is far from the first opening The distance between the edges is greater than or equal to 1mm.
  • the backing plate may block the gas from breaking through the pressure relief mechanism, so in order to make the pressure relief mechanism It is easier to break, and part of the backing plate can be removed, that is, where the pressure relief mechanism is located, a gap is set on the backing plate so that the backing plate will not block the pressure relief area.
  • a battery comprising: a plurality of battery cells, wherein the plurality of battery cells includes at least one of the second aspect and any possible implementation manner of the second aspect
  • the battery cells described in ; a bus component for realizing the electrical connection of the plurality of battery cells; a box for accommodating the plurality of battery cells and the bus component.
  • an electrical device comprising: the battery according to the third aspect.
  • the electrical equipment can be a vehicle, a ship or a spacecraft.
  • a method of manufacturing a battery case comprising: providing at least two walls, the at least two walls including a first wall and a second wall, the first wall being connected to the first wall two walls intersect; and, providing a pressure relief mechanism including a first portion and a second portion connected to each other, the first portion and the second portion being disposed on the first wall and the second portion, respectively a wall, wherein the first portion and/or the second portion are configured to be breached to relieve the internal pressure when the internal pressure of the battery compartment reaches a threshold value.
  • the method further includes: arranging a first groove in an area where the first portion of the outer surface of the first wall is located, and arranging a first opening in a bottom wall of the first groove and/or, a second groove is provided in the area where the second part of the outer surface of the second wall is located, and a second opening is provided on the bottom wall of the second groove.
  • the method further includes: the first part is mounted on the bottom wall of the first groove and covers the first opening; and/or the second part is mounted on the first The bottom wall of the groove covers the second opening.
  • the method for preparing a battery box in the embodiments of the present application can be used to prepare the battery box in the first aspect and any possible implementation manner of the first aspect.
  • an apparatus for preparing a battery case comprising: providing a module for: providing at least two walls, the at least two walls including a first wall and a second wall two walls, the first wall intersecting the second wall; and a pressure relief mechanism is provided, the pressure relief mechanism including a first portion and a second portion connected to each other, the first portion and the second portion respectively provided on the first wall and the second wall, wherein the first part and/or the second part are configured to be broken to release the interior when the internal pressure of the battery compartment reaches a threshold value pressure.
  • the device further includes: a setting module, the setting module is configured to: set a first groove in the area where the first part of the outer surface of the first wall is located, and set a first groove in the first part of the outer surface of the first wall.
  • the bottom wall of a groove is provided with a first opening, and/or, a second groove is provided in the area where the second part of the outer surface of the second wall is located, and the bottom wall of the second groove is provided A second opening is provided.
  • the device further comprises: an installation module, the installation module is used for: installing the first part on the bottom wall of the first groove and covering the first opening; and/or, The second part is mounted on the bottom wall of the first groove and covers the second opening.
  • the apparatus for preparing a battery box may be used to execute the method in the fifth aspect or any possible implementation manner of the fifth aspect.
  • the apparatus includes a unit for performing the method in the above fifth aspect or any possible implementation manner of the fifth aspect.
  • FIG. 1 is a schematic outline view of some embodiments of a vehicle using the battery of the present application
  • FIG. 2 is a schematic structural diagram of some embodiments of the battery of the present application.
  • FIG. 3 is a schematic structural diagram of some embodiments of battery modules in the battery of the present application.
  • FIG. 6 is a cross-sectional view of some embodiments of the housing in the battery box of the present application.
  • FIG. 7 is a partial enlarged view of the casing of the battery box of the present application shown in FIG. 6;
  • FIG. 8-13 are partial enlarged views of the pressure relief mechanism of the battery box of the present application shown in FIG. 7;
  • FIG. 14 is a schematic structural diagram of some embodiments of the backing plate in the battery box of the present application.
  • 15 is a schematic flowchart of some embodiments of the method for preparing a battery case of the present application.
  • FIG. 16 is a schematic structural diagram of some embodiments of the apparatus for preparing a battery box of the present application.
  • multiple refers to two or more (including two), and similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple sheets” refers to two or more sheets (includes two pieces).
  • the battery boxes, battery cells, and batteries including a plurality of battery cells described in the embodiments of the present application are applicable to various devices using batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric vehicles, ships, and spacecraft , electric toys and power tools, etc.
  • spacecraft include aircraft, rockets, space shuttles and spacecraft, etc.
  • electric toys include stationary or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric aircraft toys, etc.
  • Power tools include metal cutting power tools, grinding power tools, assembling power tools and railway power tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibration and electric planer.
  • the battery boxes, battery cells, and batteries including a plurality of battery cells described in the embodiments of the present application are not only applicable to the devices described above, but also applicable to all devices using batteries. However, for the sake of brevity, the following implementations The examples are explained by taking an electric vehicle as an example.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle car or extended-range car, etc.
  • a battery 10 may be provided inside the vehicle 1, and the battery 10 may be a battery pack or a battery module.
  • the battery 10 may be provided at the bottom, front or rear of the vehicle 1;
  • the controller 30 and the motor 40 may also be provided inside.
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as the operating power source of the vehicle 1 , used for the circuit system of the vehicle 1 , for example, used for starting, navigating and running the vehicle 1 working electricity demand.
  • the battery 10 can not only be used as the operating power source of the vehicle 1 , but also can be used as the driving power source of the vehicle 1 to provide driving for the vehicle 1 in place of or partially in place of fuel or natural gas. power.
  • the battery 10 may include one or more battery modules (or may also be referred to as battery modules), wherein a plurality of battery modules may be connected in series or in parallel or in a mixed connection, and the mixed connection is Refers to a mix of series and parallel.
  • FIG. 2 which is a schematic structural diagram of a battery 10 according to another embodiment of the present application, the battery 10 includes a first cover 111 , a second cover 112 and a plurality of battery modules 11 , wherein the first cover The shapes of the first cover 111 and the second cover 112 may be determined according to the combined shape of the one or more battery modules 11.
  • the first cover 111 and the second cover 112 each have an opening, for example, the first cover 111 and the second cover 112
  • Each of the covers 112 can be hollow cuboids and each has only one face that is an open face, that is, this face does not have a shell wall so that the inside and outside of the shell communicate with each other.
  • the first cover 111 and the second cover 112 are snapped together at the opening to form a battery.
  • one or more battery modules 11 are placed in the casing formed after the first cover 111 and the second cover 112 are snapped together after being combined with each other in parallel or in series or in a mixed connection.
  • the battery 10 when the battery 10 includes one battery module 11 , the battery module 11 is placed in a casing formed after the first cover 111 and the second cover 112 are snapped together.
  • the electricity generated by the one or more battery modules 11 is drawn out through the housing through a conductive mechanism (not shown).
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may further include a bus component for realizing electrical connection between a plurality of battery cells (not shown); for another example, the battery 10 may further include a cooling component for accommodating a cooling medium , to cool one or more battery modules 11 , but the embodiment of the present application is not limited to this.
  • the battery module 11 may include one or more battery cells.
  • one battery module 11 may include multiple battery cells 20, and the multiple battery cells 20 may pass It is connected in series, in parallel or in a mixed manner to achieve larger capacity or power, and the number of the battery cells 20 included in one battery module 11 can be set to any value.
  • each battery cell 20 may include a lithium-ion-containing secondary battery, a lithium-ion primary battery, a lithium-sulfur battery, a sodium-lithium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cells 20 may be cylindrical, flat, rectangular, or other shapes.
  • a plurality of battery cells 20 may be stacked together, and the plurality of battery cells 20 are connected in series, in parallel or in a mixed connection.
  • each battery The cells 20 may be square, cylindrical or other shapes.
  • Each battery cell 20 may include a battery case and an electrode assembly disposed in the battery case, wherein the battery case may include a casing and a cover plate, and the casing may be a hollow cuboid or a square or a cylinder one side of the case has an opening so that the electrode assembly can be placed in the case; and the cover plate is connected to the case at the opening of the case to form the battery cell 20 A closed battery box, and the casing can be filled with electrolyte.
  • the battery box also includes two electrode terminals, which are usually disposed on the cover plate and connected to the electrode assembly; a pressure relief mechanism can also be provided on the flat surface of the cover plate, and the pressure relief mechanism can be a cover plate A part of the flat surface of the cover plate can also be welded with the flat surface of the cover plate. Under normal conditions, the pressure relief mechanism is sealed with the cover plate, that is, the cover plate is connected to the casing at the opening of the casing to form a battery box of the battery cells 20 , and the space formed by the battery box is airtight.
  • the gas expands and the air pressure in the battery box rises beyond the preset value, and the pressure relief mechanism can be cracked, causing the inside and outside of the battery box to communicate, and the gas passes through the crack of the pressure relief mechanism. The opening is released outward to avoid an explosion.
  • the current battery cells usually set the pressure relief mechanism on the cover plate, which is located on the same side as the electrode terminals.
  • the pressure relief mechanism When thermal runaway occurs inside the battery cell, the pressure relief mechanism is ruptured.
  • the liquid or solid burning material which may also include conductive substances, will cause a short circuit between the electrode terminals; at the same time, considering that when the battery is installed in the vehicle, the electrode terminals are usually facing upwards, that is, toward If the pressure relief mechanism is installed on the same side of the electrode terminal, the air flow and other substances released after the pressure relief mechanism is ruptured will be discharged upwards, which may cause burns or scalds to the passengers, increasing the danger to the passengers. Therefore, it can be considered to install the pressure relief mechanism in other positions to solve the above problems, for example, it can be installed on the casing under the cover plate, such as the bottom wall of the casing.
  • the pressure relief mechanism is installed on the bottom wall of the casing, since the casing is a hollow structure with one end open, and the pressure relief mechanism is usually a sheet, it may be inconvenient to install the pressure relief mechanism on the casing. , especially when installed on the bottom wall of the casing opposite to the opening, due to the limitation of the depth of the casing, it is difficult to directly weld the sheet-shaped pressure relief mechanism to the bottom wall.
  • the strength of the pressure relief mechanism should also be considered. For example, when the pressure relief mechanism is installed on the bottom wall of the casing, it is also necessary to consider the pressure of the internal electrode assembly on the pressure relief mechanism.
  • the electrode assembly will affect the casing.
  • the bottom wall of the body has a pressure effect, so the pressure relief mechanism needs to have a certain strength; for another example, the shell of the battery is usually an aluminum shell.
  • the process leads to the deformation of the aluminum shell, which in turn affects the creep of the pressure relief mechanism at the notch, which may cause the pressure relief mechanism to open in advance, which in turn leads to a decline in battery life.
  • the area of the pressure relief mechanism arranged on the bottom wall of the casing should not be too large, then there may be problems such as insufficient exhaust area, low exhaust rate and poor exhaust, pressure relief.
  • the mechanism is not easy to open and is prone to the risk of explosion and fire.
  • the embodiments of the present application provide a battery case and a battery with a pressure relief mechanism, which can solve the problems of installation and strength of the pressure relief mechanism.
  • FIG. 4 shows an embodiment of the battery cell 20 according to the embodiment of the present application.
  • the battery cell 20 includes a battery case (not shown), one or more electrode assemblies 22 and a connecting member 23 , wherein the battery case in the embodiment of the present application includes a casing 211 and a cover plate 212 .
  • the casing 211 included in the battery box of the battery cell 20 may be determined according to the shape of the combination of one or more electrode assemblies 22 .
  • the casing 211 may be a hollow cuboid or A cube or a cylinder, and one surface of the casing 211 has an opening so that one or more electrode assemblies 22 can be placed in the casing 211.
  • One of the planes of the casing 211 is an open surface, that is, the plane does not have a casing wall, so that the casing 211 communicates with the inside and the outside.
  • the circle of the casing 211 is an open surface, that is, the circular side surface does not have a shell wall, so that the inside and outside of the shell 211 communicate with each other.
  • the cover plate 212 is connected with the casing 211 at the opening of the casing 211 to form a closed battery box, and the casing 211 is filled with electrolyte.
  • the battery case of the battery cell 20 may further include two electrode terminals 214, and the two electrode terminals 214 may be disposed on the cover plate 212.
  • the cover plate 212 is generally in the shape of a flat plate, and two electrode terminals 214 are located on the flat plate surface of the cover plate 212 and pass through the flat plate surface of the cover plate 212.
  • the two electrode terminals 214 are respectively a positive electrode terminal 214a and a negative electrode terminal 214b.
  • Each of the electrode terminals 214 is provided with a connecting member 23 , which may also be called a current collecting member 23 , or a copper-aluminum transition piece 23 , which is located between the cover plate 212 and the electrode assembly 22 .
  • each electrode assembly 22 may specifically include at least one positive electrode tab 221 and at least one negative electrode tab 222.
  • the electrode assembly 22 may further include a bare cell and an insulating sheet wrapping the bare cell, wherein, In FIG. 4 , the specific positions of the positive electrode tabs 221 and the negative electrode tabs 222 are not distinguished.
  • the positive tabs 221 of the one or more electrode assemblies 22 are connected to one electrode terminal through a connecting member 23
  • the negative tabs 222 of the one or more electrode assemblies 22 are connected to another electrode through another connecting member 23 .
  • Terminal connection for example, the positive electrode terminal 214a is connected to the positive electrode tab 221 through one connecting member 23, and the negative electrode terminal 214b is connected to the negative electrode tab 222 through the other connecting member 23.
  • the electrode assembly 22 may be provided in a single or multiple number. As shown in FIG. 4 , at least two independent electrode assemblies 22 are provided in the battery cell 20 .
  • the electrode assembly 22 may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
  • the battery cell 20 in the embodiment of the present application may further include a backing plate 24 , the backing plate 24 is located between the electrode assembly 22 and the bottom wall of the casing 211 , and can support the electrode assembly 22 It can also effectively prevent the electrode assembly 22 from interfering with the rounded corners around the bottom wall of the casing 211 .
  • the shape of the backing plate 24 in the embodiment of the present application can be set according to the actual application.
  • the backing plate 24 can be in the same shape as the bottom wall, and is set as a cuboid; in addition, the backing plate 24 can be One or more through holes are provided.
  • FIG. 4 the backing plate 24 can be In the same shape as the bottom wall, and is set as a cuboid; in addition, the backing plate 24 can be One or more through holes are provided.
  • FIG. 4 the backing plate 24 can be In the same shape as the bottom wall, and is set as a cuboid; in addition, the backing plate 24 can be One or more through holes are provided.
  • the backing plate 24 can be provided with a plurality of uniformly or symmetrically arranged through holes, so that the space between the upper and lower surfaces of the backing plate 24 can be communicated, and the electrolyte and the electrode assembly can be connected.
  • the gas generated inside 22 and the electrolyte can freely pass through the backing plate 24 to facilitate liquid and gas conduction.
  • the thickness of the backing plate 24 is generally set to be 0.3-5 mm, which is preferably an insulating component, but may not be insulated.
  • the material of the backing plate 24 can be PP, PE, PET, PPS, Teflon, stainless steel, aluminum and other materials that are both electrolyte-resistant and insulating.
  • PP, PE, PET, PPS and other plastic materials can be fire-resistant Material
  • the surface of metal materials such as aluminum or stainless steel can be anodized for insulation.
  • the battery cell 20 in the embodiment of the present application may also include other components.
  • the battery cell 20 may further include at least one of a top cover patch, a sealing nail, and a plastic nail, wherein the top cover patch, the sealing nail, and the plastic nail can be installed on the cover plate 212; in addition, the battery cell 20 may also include a blue film, which is arranged on the outer surface of the battery case 211 to achieve the function of insulating and protecting the battery cells.
  • the embodiments of the present application are not limited thereto.
  • the battery case of the battery cell 20 further includes a pressure relief mechanism 213, and the pressure relief mechanism 213 may be located on any two adjacent walls of the battery case.
  • the battery box of the battery cell 20 shown in FIG. 4 includes a casing 211 and a cover plate 212 .
  • the casing 211 is a hollow cuboid as an example for description, and the battery box is also a hollow cuboid.
  • the battery box of a rectangular parallelepiped ie, a hexahedron
  • the battery box includes six walls (or six faces).
  • any adjacent three walls of the battery box 21 of the cover plate 212, and the pressure relief mechanism 213 in the embodiment of the present application is provided on any adjacent two walls of the battery box 21, for example, the pressure relief mechanism 213 can be provided
  • An example is the bottom wall and the side wall of the housing 211, but the embodiment of the present application is not limited thereto.
  • the battery box 21 in the embodiment of the present application includes at least two walls, and any two adjacent walls therein are referred to as the first wall 21 a and the second wall 21 b here, that is, the battery
  • the box 21 has at least two walls including a first wall 21a and a second wall 21b, the first wall 21a intersecting the second wall 21b.
  • the pressure relief mechanism 213 in the embodiment of the present application includes a first part 2131 and a second part 2132 that are connected to each other, wherein the first part 2131 is disposed on the first wall 21a, and the second part 2132 is disposed on the second wall 21b, that is,
  • the pressure relief mechanism 213 can be formed by bending to form two parts, a first part 2131 and a second part 2132 , so as to be disposed on the first wall 21 a and the second wall 21 b respectively.
  • the pressure relief mechanism 213 is respectively arranged on the two walls.
  • the first part 2131 and/or the second part 2132 are configured so that when the internal pressure of the battery box 21 reaches The threshold can be breached to relieve this internal pressure.
  • the pressure relief mechanism is provided at the intersection of any two adjacent walls, that is, the pressure relief mechanism is located at the intersection of the two walls of the battery case, compared to only being provided on one wall. , the total area of the pressure relief mechanism can be increased, then when a short circuit or overcharge occurs, and the internal temperature and air pressure of the battery box rise sharply, the pressure relief mechanism on the battery box can be broken in time from the two parts corresponding to the two walls.
  • the pressure relief mechanism is set at the intersection of the two walls, it is less affected by the various components inside the battery box, for example, the drop impact of the electrode assembly is relatively small. It is small, which can prevent the pressure relief mechanism from breaking open in advance; moreover, the deformation of the battery box at the intersection of the two walls is small, and it can also ensure that the pressure relief mechanism is not affected by deformation and creep, which improves the overall performance of the battery.
  • the pressure relief mechanism 213 can be arranged on the first wall 21a and the second wall 21b in various ways, and the first part 2131 and the second part 2132 of the pressure relief mechanism 213 can also be the same or different processing methods.
  • the first part 2131 and the second part 2132 of the pressure relief mechanism 213 usually adopt the same processing method, and the first part 2131 and the second part 2132 of the pressure relief mechanism 213 in the embodiment of the present application also generally adopt the same kind of processing method.
  • the processing method is taken as an example for description, but the embodiments of the present application are not limited to this.
  • disposing the pressure relief mechanism 213 on the first wall 21a and the second wall 21b may include: the pressure relief mechanism 213, the first wall 21a and the second wall 21b may be integrally formed, that is, the first wall 21a and the second wall 21b can be directly formed Corresponding areas of wall 21b are thinned to form pressure relief mechanism 213 .
  • disposing the pressure relief mechanism 213 on the first wall 21a and the second wall 21b may further include: disposing openings on the first wall 21a and the second wall 21b respectively, so that the pressure relief mechanism 213 covers the opening area.
  • the first wall 21a is provided with a first opening 2111 in the area where the first part 2131 is located, and the first part 2131 covers the first opening 2111; similarly, the second wall 21b is located in the The region where the second portion 2132 is located is provided with a second opening 2112 , and the second portion 2132 covers the second opening 2112 .
  • the pressure relief mechanism 213 is not integrally formed with the casing 211 of the battery box 210 . In this way, the pressure relief mechanism 213 can be provided separately from the battery box 21 .
  • the material of the pressure relief mechanism 213 and the material of the battery box 21 can be different.
  • the thickness can also be set to be different, so that the pressure relief mechanism 213 can be flexibly set according to actual needs.
  • the first opening 2111 and the second opening 2112 may also be connected, for example, as shown in FIG. 5 . That is, the first opening 2111 on the first wall 21a and the second opening 2112 on the second wall 21b are actually connected openings, so only one opening needs to be processed at the intersection of the two adjacent walls of the battery box 21 .
  • the hole can be used, and the processing process is convenient.
  • first part 2131 and the second part 2132 of the pressure relief mechanism 213 in the embodiment of the present application may also be connected, so the pressure relief mechanism 213 before installation can be a sheet-like structure, and then the pressure relief mechanism 213 is installed after the installation.
  • the bottom surface can be welded first, that is, the first part 2131 of the pressure relief mechanism 213 is welded on the bottom wall, and then the pressure relief mechanism 213 is bent.
  • the second part 2132 is formed, and the second part 2132 is welded on the side wall, so that the processing is more convenient and quicker.
  • the battery box 21 has a hexahedral structure, so the first wall 21a and the second wall 21b are perpendicular to each other, then correspondingly, as shown in FIG. 5 , the first part 2131 of the pressure relief mechanism 213 and the second The parts 2132 can also be arranged to be perpendicular to each other, so that the pressure relief mechanism 213 and the rest of the TV box 21 can still form a complete hexahedron.
  • the pressure relief mechanism 213 in the embodiment of the present application is mainly described by taking the bottom wall and the side wall of
  • the case 211 is a hollow cuboid with an opening at one end as an example.
  • the upper part of the case 211 shown in FIG. Open your mouth.
  • the pressure relief mechanism can be arranged on the bottom wall and side wall of the casing 211 , the bottom wall of the casing 211 is the wall opposite to the opening of the casing 211 , and the casing 211
  • the side wall is the wall adjacent to the opening of the casing 211, that is, the first wall 21a shown in FIG. 5 is the bottom wall of the casing 211 shown in FIG. 6, and the second wall 21b shown in FIG. side wall of the housing 211 shown.
  • the battery box 21 is a rectangular parallelepiped
  • the housing 211 has four side walls, two side walls with a larger area and two side walls with a smaller area.
  • the pressure relief mechanism 213 is usually arranged on a smaller area. on the small side wall. Considering that when a plurality of battery cells are assembled into a battery, for example, as shown in Figure 3, for a rectangular parallelepiped battery cell, the placement between two adjacent battery cells is usually the case of the two battery cells. The larger area of the side wall is in contact with each other. Therefore, if the pressure relief mechanism 213 is partially arranged on the larger area side wall, the pressure relief mechanism will be affected when a plurality of battery cells are tightly discharged to be assembled into a battery.
  • the opening of 213, for example, requires a space between the battery cells for the opening of the pressure relief mechanism 213, which is not conducive to the installation of multiple battery cells, so the pressure relief mechanism 213 is installed on the bottom wall and the side with a smaller area On the wall, it is favorable for the placement of multiple battery cells, which can further improve the energy density of the battery.
  • the casing 211 is a hollow structure, affected by its depth, for example, when the pressure relief mechanism 213 is installed on the bottom wall and the side wall, it is difficult to install the pressure relief mechanism 213 on the inner surface of the casing. Therefore, Usually, the pressure relief mechanism 213 is installed on the outer surface of the housing, that is, the first part 2131 of the pressure relief mechanism 213 is installed on the outer surface of the first wall 21a; the second part 2132 is installed on the outer surface of the second wall 21b .
  • FIG. 6 is taken as an example for detailed description here, and FIG. 7 is an enlarged view of the pressure relief mechanism 213 shown in FIG. 6 .
  • the pressure relief mechanism 213 may be installed by providing a step mechanism at the openings of the first wall 21 a and the second wall 21 b.
  • FIG. 7 is an enlarged view of the pressure relief mechanism 213 shown in FIG. 6 .
  • the pressure relief mechanism 213 may be installed by providing a step mechanism at the openings of the first wall 21 a and the second wall 21 b.
  • FIG. 7 is an enlarged view of the pressure relief mechanism 213 shown in FIG. 6 .
  • the pressure relief mechanism 213 may be installed by providing a step mechanism at the openings of the first wall 21 a and the second wall 21 b.
  • the outer surface of the first wall 21a is provided with a first groove
  • the first opening 2111 is provided on the bottom wall of the first groove
  • the first portion 2131 is installed in the first groove
  • the bottom wall of the groove that is, the bottom wall of the first groove is provided with the first opening 2111 so that the first wall 21a forms a stepped structure, and the first part 2131 is installed at the stepped structure formed by the bottom wall of the first groove
  • the outer surface of the second wall 21b is provided with a second groove
  • the second opening 2112 is disposed on the bottom wall of the second groove
  • the second portion 2132 is installed on the bottom wall of the second groove, namely the first
  • the second opening 2112 is provided on the bottom wall of the two grooves so that the second wall 21b also forms a stepped structure
  • the second portion 2132 is installed at the stepped structure formed by the bottom wall of the second groove.
  • the bottom wall of the groove in the embodiments of the present application refers to the wall opposite to the opening of the groove, and similarly,
  • Providing grooves on the first wall 21a and the second wall 21b of the battery box 21 to install the pressure relief mechanism 213 can make the outer surface of the pressure relief mechanism 213 flush with the outer surface of the battery box 21, for example, as shown in FIG. 7 As shown, the outer surface of the first portion 2131 is flush with the outer surface of the first wall 21a; similarly, the outer surface of the second portion 2132 is flush with the outer surface of the second wall 21b.
  • the shape of the pressure relief mechanism 213 in the embodiment of the present application can be set to any shape according to the actual application, wherein, in order to facilitate the installation, the first part 2131 and the second part 2132 of the pressure relief mechanism 213 are generally set to the shape and / or the same area.
  • the first part 2131 and the second part 2132 can be set in a semicircle with the same size, or can also be set in an oval shape with the same size, or can also be set in other shapes, for example, the pressure relief mechanism 213 can be set in a racetrack shape, That is, both ends of the pressure relief mechanism 213 are arcs, and the middle portion is a rectangle.
  • the pressure relief mechanism 213 is bent from the middle into a first portion 2131 and a second portion 2132 .
  • FIG. 8 shows an enlarged view of the area A
  • FIGS. 9 and 10 respectively show the enlargement of the first wall 21 a and the first part 2131 in the area A.
  • Fig. 8 can be obtained after Fig. 9 and Fig. 10 are installed.
  • a first groove 21a-1 is provided on the outer surface of the first wall 21a-1
  • the first opening 2111 is provided on the bottom wall of the first groove 21a-1
  • the first wall 21a forms a stepped structure as shown in FIG. 10
  • the pressure relief mechanism 213 is generally a sheet-like structure as shown in FIG.
  • the first part 2131 of the pressure relief mechanism 213 is installed on the step of the first wall 21a Structurally, it is installed on the bottom wall of the first groove 21a-1 of the first wall 21a.
  • the first part 2131 is installed on the bottom wall of the first groove 21a-1 of the first wall 21a means that the first part 2131 is relatively fixed to the bottom wall of the first groove 21a-1, for example 8, the first part 2131 can be placed on the bottom wall of the first groove 21a-1, so that the first part 2131 and the side wall of the first groove 21a-1 can be welded at position a. connected, for example, by laser welding, but the embodiments of the present application are not limited thereto.
  • FIG. 11 shows an enlarged view of the area B
  • FIGS. 12 and 13 show the second wall 21b and the second part 2132 in the area B, respectively.
  • Figure 11 can be obtained after Figure 12 and Figure 13 are installed.
  • a second groove 21b-1 is provided on the outer surface of the second wall 21b-1
  • the second opening 2112 is provided on the bottom wall of the second groove 21b-1
  • the second wall 21b forms a stepped structure as shown in FIG. 13
  • the pressure relief mechanism 213 is generally a sheet-like structure as shown in FIG. 12 .
  • the second part 2132 is installed on the bottom wall of the second groove 21b-1 of the second wall 21b means that the second part 2132 is relatively fixed to the bottom wall of the second groove 21b-1
  • the second portion 2132 may be placed on the bottom wall of the second groove 21b-1 so as to connect the second portion 2132 with the side wall of the second groove 21b-1 at position b They are connected by welding or the like, but the embodiments of the present application are not limited to this.
  • the first wall 21a is the bottom wall of the casing 211.
  • the bottom wall of the casing 211 usually has a uniform thickness.
  • the thickness h1 of the bottom wall of the casing 211 can usually be set to 1.5 mm to 2.5mm, for example, can be set to 1.5mm, 2mm or 2.5mm; as shown in FIG.
  • the side wall of the casing 211 also generally has a uniform thickness
  • the thickness h2 of the side wall may generally be set to 1 mm to 1.5 mm, for example, may be set to 1 mm, 1.3 mm or 1.5 mm, but the embodiment of the present application is not limited thereto.
  • "mm" in the embodiments of the present application represents millimeters.
  • the thickness h3 of the pressure relief mechanism 213 in the embodiment of the present application may be set to 0.4 mm to 0.7 mm, for example, may be set to 0.4 mm, 0.5 mm or 0.7 mm.
  • the thickness h3 of the pressure relief mechanism 213 represents the thickness of the thickest region of the pressure relief mechanism 213 .
  • the first part 2131 and/or the second part 2132 may also be provided with a third groove, for example, the first part 2131 may be provided with a third groove 2131-1, the second part 2132 may be provided with a third groove 2132-1, so that when the internal pressure of the battery case 21 reaches a threshold value, the first part 2131 is in the third groove 2131-1 and/or the second part 2132 is in the third groove 2131-1.
  • the three grooves 2132-1 are ruptured to release the internal pressure, that is to say, in order to make the pressure release mechanism more easily ruptured when thermal runaway occurs inside the battery cell, a notch can be added on the surface of the pressure release mechanism, that is, in the Areas of the third grooves 2131-1 and 2132-1 are arranged on the surface of the pressure relief mechanism 213, the inner thicknesses of the third grooves 2131-1 and 2132-1 are thinner, and the third grooves 2131-1 and 2132-1 can make
  • the pressure relief mechanism 213 is ruptured at a preset position to release the internal pressure, that is, the rupture position of the pressure relief mechanism is more precise, and directional rupture can be achieved.
  • the third grooves 2131-1 and 2132-1 are arranged inside the battery case 21, that is, on the inner surface of the pressure relief mechanism 213 close to the inside of the battery case 21, due to the presence of electrolyte in the battery case 21, The electrolyte will accumulate in the third grooves 2131-1 and 2132-1 and corrode the third grooves 2131-1 and 2132-1, which may cause the pressure relief mechanism 213 to rupture in advance.
  • Grooves 2131 - 1 and 2132 - 1 are provided on the outer surface of the pressure relief mechanism 213 .
  • the thickness h4 of the first part 2131 at the third groove 2131-1 and/or the second part 2132 at the third groove 2132-1 is generally set It is 0.1 mm to 0.3 mm, for example, 0.1 mm, 0.2 mm or 0.3 mm may be set.
  • the shapes of the bottom walls of the third grooves 2131-1 and 2132-1 can be flexibly set according to practical applications.
  • the shapes of the bottom walls of the third grooves 2131-1 and 2132-1 can be set as strips. , a circular ring or a semi-circular ring, or other patterns may also be set, and the embodiments of the present application are not limited thereto.
  • first groove 21a-1 and the second groove 21b-1 in the embodiment of the present application may also be set according to practical applications, and may be set to the same or different values.
  • first groove 21a-1 corresponds to the width h5 of the formed step structure and the second groove 21b-1
  • the width h5 of the correspondingly formed step structure is generally set to be the same, for example, the width h5 may be set to 0.4 mm to 0.6 mm, for example, may be set to 0.4 mm, 0.5 mm or 0.6 mm.
  • the thickness h6 of the stepped structure corresponding to the first groove 21a-1 is generally set to be 0.4mm to 0.6mm, for example, can be set to 0.4mm, 0.5mm or 0.6mm; as shown in FIG. 13 , for the second wall 21b, the thickness h7 of the step structure corresponding to the second groove 21b-1 is generally set to be 0.5mm to 1.5mm, for example, may be set to 0.5mm, 1mm or 1.5mm, but the embodiment of the present application is not limited thereto.
  • the area of the pressure relief mechanism 213 in the embodiment of the present application may be set according to practical applications. For example, considering the strength of the battery box 21, the area of the pressure relief mechanism 213 should not be too large; however, when thermal runaway occurs inside the battery cell, the pressure relief mechanism 213 needs to be opened in time to release the internal air pressure as soon as possible to prevent the battery from exploding. , the area of the pressure relief mechanism 213 can not be set too small, for example, the total area of the pressure relief mechanism 213 can usually be set to 600mm 2 to 1400mm 2 , for example, can be set to 600mm 2 , 1000mm 2 or 1400mm 2 , wherein the first A part 2131 and a second part 2132 each occupy half. Wherein, “mm 2 ” in the embodiments of the present application represents a square millimeter.
  • the backing plate 24 will not prevent the gas from breaking through the pressure relief when thermal runaway occurs inside the battery cell.
  • the mechanism 213 can remove part of the backing plate 24, that is, at the position where the pressure relief mechanism 213 is located, a gap is provided on the backing plate 24 so that the backing plate 24 will not block the pressure relief area.
  • a rectangular backing plate 24 is taken as an example.
  • the backing plate 24 may be provided with a notch 241 corresponding to the first part 2131 of the pressure relief mechanism 213 , so that the backing plate 24 does not block the backing plate 24 .
  • the shape of the first portion 2131 for example, the notch 241 on the backing plate 24 is generally consistent with the shape of the first portion 2131 of the pressure relief mechanism 213 .
  • the area of the notch 241 of the backing plate 24 is usually set to be larger than the area of the first opening covered by the first portion 2131 , for example, the edge of the notch is far from the first opening.
  • the distance between the edges is greater than or equal to 1 mm.
  • two notches 241 can be symmetrically arranged on the backing plate 24 , so that when the backing plate 24 is installed, the pressure relief mechanism 213 will not be blocked due to the wrong installation direction.
  • the battery case, battery cell, and battery of the embodiments of the present application are described above with reference to FIGS. 1 to 14 , and the method and apparatus for preparing a battery case of the embodiments of the present application will be described below with reference to FIGS. 15 and 16 .
  • FIG. 15 shows a schematic flowchart of a method 200 for preparing a battery case according to an embodiment of the present application.
  • the method 200 includes: S210, providing at least two walls, the at least two walls including a first wall and a second wall, the first wall intersecting the second wall; and S220, A pressure relief mechanism is provided, the pressure relief mechanism including interconnected first and second portions, the first and second portions being disposed on the first and second walls, respectively, wherein the The first part and/or the second part are configured to be broken to relieve the internal pressure when the internal pressure of the battery case reaches a threshold value.
  • the method 200 further includes: providing a first groove in an area where the first part of the outer surface of the first wall is located, and forming a bottom wall of the first groove A first opening is provided; and/or a second groove is provided in the area where the second part of the outer surface of the second wall is located, and a second opening is provided on the bottom wall of the second groove.
  • the method further includes: the first part is mounted on the bottom wall of the first groove and covers the first opening; and/or the second part is mounted on the bottom wall of the first groove; the bottom wall of the first groove and cover the second opening.
  • the method 200 in the embodiment of the present application may be used to prepare the battery case 21 in the embodiment of the present application, and for brevity, no further description is given here.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • FIG. 16 shows a schematic block diagram of an apparatus 300 for preparing a battery case according to an embodiment of the present application.
  • the device 300 includes: a providing module 310 for: providing at least two walls, the at least two walls including a first wall and a second wall, so the first wall intersects the second wall; and a pressure relief mechanism is provided, the pressure relief mechanism including a first portion and a second portion connected to each other, the first portion and the second portion being respectively disposed in the The first wall and the second wall, wherein the first portion and/or the second portion is configured to be broken to relieve the internal pressure when the internal pressure of the battery compartment reaches a threshold value.
  • the device 300 further includes: a setting module 320, and the setting module 320 is used for: setting a first groove in an area where the first part of the outer surface of the first wall is located , and a first opening is arranged on the bottom wall of the first groove, and/or a second groove is arranged in the area where the second part of the outer surface of the second wall is located, and a second groove is arranged on the second wall.
  • the bottom walls of the two grooves are provided with second openings.
  • the device 300 further includes: an installation module 330, and the installation module 330 is used for: installing the first part on the bottom wall of the first groove and covering the first part and/or, installing the second portion on the bottom wall of the first groove and covering the second opening.
  • the apparatus 300 may correspond to executing the method 200 in the embodiment of the present application, and the above-mentioned and other operations and/or functions of the various units in the apparatus 300 are respectively intended to implement the method 200 in FIG. 15 .
  • the corresponding process is not repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种电池盒、电池单体(20)、电池、制备电池盒的方法和装置。该电池盒包括:至少两个壁,所述至少两个壁包括第一壁(21a)和第二壁(21b),所述第一壁(21a)与所述第二壁(21b)相交;以及,泄压机构(213),所述泄压机构(213)包括相互连接的第一部分(2131)和第二部分(2132),所述第一部分(2131)和所述第二部分(2132)分别设置于所述第一壁(21a)和所述第二壁(21b);其中,所述第一部分(2131)和/或所述第二部分(2132)被配置为当所述电池盒的内部压力达到阈值能够被破坏以泄放所述内部压力。因此,上述电池盒、电池单体(20)、电池、制备电池盒的方法和装置将泄压机构设置在电池盒的两个壁相交处,能够提高电池盒上泄压机构(213)的性能。

Description

电池盒、电池单体、电池、制备电池盒的方法和装置 技术领域
本申请涉及储能元器件领域,具体涉及一种电池盒、电池单体、电池、制备电池盒的方法和装置。
背景技术
锂离子电池具有体积小、能量密度高、循环使用寿命长和存储时间长等优点,在一些电子设备、电动交通工具和电动玩具等领域得到了广泛应用,例如,在手机、笔记本电脑、电动自行车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等得到了广泛的应用。
随着锂离子电池技术的不断发展,对锂离子电池的安全性能也提出了更高的要求。锂离子电池上的泄压机构对锂离子电池的安全性能有着重要影响。例如,当锂离子电池发生短路、过充等现象时,可能会导致锂离子电池内部热失控进而使内部气压骤升,此时需要泄压机构致动,以将内部气压向外释放,从而防止锂离子电池发生爆炸。因此,泄压机构的设计极为重要。
发明内容
本申请提出一种电池盒、电池单体、电池、制备电池盒的方法和装置,能够提高电池盒上泄压机构的性能。
根据本申请的第一方面,提供了一种电池盒,包括:至少两个壁,所述至少两个壁包括第一壁和第二壁,所述第一壁与所述第二壁相交;以及,泄压机构,所述泄压机构包括相互连接的第一部分和第二部分,所述第一部分和所述第二部分分别设置于所述第一壁和所述第二壁;其中,所述第一部分和/或所述第二部分被配置为当所述电池盒的内部压力达到阈值能够被破坏以泄放所述内部压力。
本申请实施例的电池盒,在相邻的任意两个壁的相交位置设置泄压机构,即泄压机构位于电池盒的两个壁的相交处,可以增加泄压机构的面积,那么当发生短路、过充时,电池盒的内部气压和温度骤升,电池盒上的泄压机构能够及时破开,将温度及气压向外释放,防止电池爆炸起火;由于泄压机构设置在两个壁的相交位置,受电池盒内部各个组件的影响较小,例如,受电极组件的跌落冲击作用较小,可以避免泄压 机构提前破开;而且,电池盒在两个壁的相交位置变形小,也可以保证泄压机构不受变形蠕变影响,从整体提高了电池的综合性能。
在一些实施例中,所述第一壁在所述第一部分所在的区域设置有第一开口,所述第一部分覆盖所述第一开口;和/或,所述第二壁在所述第二部分所在的区域设置有第二开口,所述第二部分覆盖所述第二开口。
由于本申请实施例中的泄压机构占用相邻的第一壁和第二壁,则可以在第一壁的靠近第二壁的位置处设置第一开口,以使得泄压机构覆盖该第一开口,从而形成泄压机构的第一部分;类似的,在第二壁的靠近第一壁的位置处设置第二开口,以使得泄压机构覆盖该第二开口,从而形成泄压机构的第二部分。这样,泄压机构可以与电池盒分开提供,例如泄压机构的材质与电池盒的材质可以不同,厚度也可以设置为不同,以使得泄压机构可以根据实际需要进行设置。
在一些实施例中,所述第一开口与所述第二开口相连。
即第一壁上的第一开口和第二壁上的第二开口实际上是一个连通的开口,这样只需要在电池盒的相邻两个壁的相交位置处加工一个开孔即可,加工过程方便。
在一些实施例中,所述电池盒为中空的长方体。
可选地,该电池盒也可以为其他形状,例如中空的圆柱或者其他多面体。
在一些实施例中,所述电池盒包括:壳体,所述壳体为中空的长方体且一端具有开口;盖板,盖合所述壳体的开口。
电池盒通常分为壳体和盖板两部分,壳体是具有开口且中空的长方体,这样便于将内部的电极组件等容纳在其中;盖板可以盖合在壳体的开口处,这样设置便于加工和安装。
在一些实施例中,所述第一壁和所述第二壁分别为所述壳体的底壁和侧壁,所述壳体的底壁为与所述壳体的开口相对的壁。
考虑到电极端子通常设置在盖板上,如果将泄压机构也设置在盖板上,那么当电池单体内部发生热失控时,泄压机构破裂,在释放电池单体内部气压的同时,也会向外喷射出液体或者固体的燃烧物,其中也可能包括导电物质,则会导致电极端子之间短路,从而加剧电池单体的热失控;同时,考虑到在将电池安装在车辆内时,通常将电极端子朝上,也就是朝向乘客的方向,那么如果将泄压机构安装在电极端子同侧,泄压机构破裂后释放的气流等物质会向上排放,这样可能会对乘客造成烧伤或烫伤,增加了乘客的危险。因此,本申请实施例将泄压机构设置在底壁和侧壁相交处可以解决上述问题。
在一些实施例中,所述第二壁为所述壳体的侧壁中面积最小的侧壁。
考虑到将多个电池单体组装为电池时,相邻的两个电池单体之间的摆放通常是两个电池单体的壳体侧壁中面积较大的壁接触,如果泄压机构有部分设置在该面积较大的壁上,会影响该泄压机构的打开,不利于安装,因此将泄压机构安装在底壁和面积较小的侧壁上,可以使得泄压机构顺利打开,而且不影响多个电池单体之间的摆放。
在一些实施例中,所述第一部分与所述第二部分相互垂直。
考虑到电池盒通常为规则的多面体,例如长方体,所以电池盒相邻的两个壁通常为互相垂直的,而将泄压机构设置在两个壁的相交处,则可以将泄压机构的两个部分也设置为互相垂直的,与两个壁相交处的其他部分保持一致,这样泄压机构的面积较大,而且也可以使得电池盒整体的形状不变,便于安装。
在一些实施例中,所述第一部分与所述第二部分的形状和/或面积相同。
为了便于加工和安装,可以将泄压机构包括的两个部分设置成形状和面积相同,例如,可以设置为大小相同的半圆形,或者也可以设置为大小相同的椭圆形,或者也可以设置为其他形状。
在一些实施例中,所述壳体的底壁的厚度为1.5mm至2.5mm;和/或,所述侧壁的厚度为1mm至1.5mm。
由于电池盒内部容纳电极组件,考虑到电极组件的重量和电池使用过程中电极组件可能对电池盒造成的冲击,壳体底壁可以设置的比侧壁略厚,这样可以增加电池盒的强度。
在一些实施例中,所述泄压机构的厚度为0.4mm至0.7mm。
泄压机构需要在电池单体内部发生热失控时,发生破裂,以释放内部气压,因此泄压机构的厚度通常要小于电池盒本身的厚度,即可以根据泄压机构所在的两个壁的厚度,合理设置泄压机构本身的厚度。
在一些实施例中,所述泄压机构的总面积为600mm 2至1400mm 2
考虑到电池盒的强度,泄压机构的面积不宜过大;但当电池单体内部发生热失控时,泄压机构又需要及时打开,尽快释放内部气压以防止电池爆炸,因此,泄压机构的面积也不能设置太小。
在一些实施例中,所述第一部分安装于所述第一壁的外表面;和/或,所述第二部分安装于所述第二壁的外表面。
由于电池盒通常为中空的长方体,并且通常会将泄压机构安装在电池盒的壳体的底壁和侧壁,那么考虑到壳体的深度,很难将泄压机构安装在壳体内表面,所以将泄 压机构安装在电池盒的外表面,更加便于加工。
在一些实施例中,所述第一部分的外表面与所述第一壁的外表面齐平,和/或,所述第二部分的外表面与所述第二壁的外表面齐平。
将泄压机构的外表面与电池盒的外表面齐平设置,可以在将多个电池单体组装为电池时,更加便于安装,节省空间。
在一些实施例中,所述第一壁的外表面设置有第一凹槽,所述第一开口设置在所述第一凹槽的底壁,所述第一部分安装于所述第一凹槽的底壁,和/或,所述第二壁的外表面设置有第二凹槽,所述第二开口设置在所述第二凹槽的底壁,所述第二部分安装于所述第二凹槽的底壁。
为了保证泄压机构的外表面与电池盒的外表面齐平设置,可以通过在电池盒的壁上设置凹槽,将泄压机构安装在凹槽底壁。
在一些实施例中,所述第一部分和/或所述第二部分设置有第三凹槽,所述第一部分和/或所述第二部分配置为当所述电池盒的内部压力达到阈值时在所述第三凹槽处破裂以泄放所述内部压力。
为了在电池单体内部发生热失控时,泄压机构更加容易破裂,可以在泄压机构的表面增加刻痕,即在泄压机构表面上设置凹槽区域,凹槽内厚度更薄,使得泄压机构可以在凹槽处破裂。
在一些实施例中,所述第三凹槽设置在所述第一部分的外表面和/或所述第二部分的外表面。
如果将凹槽设置在电池盒的内部,也就是泄压机构的靠近电池盒内部的内表面上,由于电池盒内存在电解液,该电解液会在凹槽内堆积,腐蚀该凹槽部分,则可能导致该泄压机构提前破裂,所以通常将凹槽设置在泄压机构的外表面。
在一些实施例中,所述第一部分和/或所述第二部分在所述第三凹槽处的厚度为0.1mm至0.3mm。
泄压机构的凹槽的厚度可以根据泄压机构的厚度进行设置。
在一些实施例中,所述电池盒还包括:电极端子,所述电极端子包括均设置在所述盖板上的正电极端子和负电极端子。
根据本申请的第二方面,提供了一种电池单体,包括:如上述第一方面以及第一方面的任一种可能的实现方式中所述的电池盒;以及,电极组件,所述电极组件设置在所述电池盒内。电池盒
在一些实施例中,所述电池盒包括:壳体,所述壳体为中空的长方体且一端具有开口;盖板,盖合所述壳体的开口。
在一些实施例中,所述电池单体还包括:垫板,所述垫板位于所述电极组件和所述壳体的底壁之间,所述壳体的底壁为所述壳体的与所述壳体的开口相对的壁。
在一些实施例中,所述第一壁为所述壳体的底壁,所述垫板上设置有与所述第一部分对应的缺口,以使所述垫板不遮挡所述第一部分。
在一些实施例中,所述第一壁在所述第一部分所在的区域设置有第一开口,所述缺口的面积大于所述第一开口的面积,所述缺口的边缘距离所述第一开口的边缘的距离大于或者等于1mm。
在泄压机构一部分设置在底壁上时,由于底壁上还设置有垫板,那么在电池单体内部发生热失控时,垫板可以会阻挡气体冲破泄压机构,所以为了使得泄压机构更加容易破裂,可以将垫板的部分区域去除,即在泄压机构所在的位置,在垫板上设置一个缺口,使得垫板不会遮挡泄压区域。
根据本申请的第三方面,提供了一种电池,包括:多个电池单体,所述多个电池单体中包括至少一个如上述第二方面以及第二方面的任一种可能的实现方式中所述的电池单体;汇流部件,用于实现所述多个电池单体的电连接;箱体,用于容纳所述多个电池单体和所述汇流部件。
根据本申请的第四方面,提供了一种用电设备,包括:如上述第三方面所述的电池。
该用电设备可以为车辆、船舶或航天器。
根据本申请的第五方面,提供了一种制备电池盒的方法,包括:提供至少两个壁,所述至少两个壁包括第一壁和第二壁,所述第一壁与所述第二壁相交;以及,提供泄压机构,所述泄压机构包括相互连接的第一部分和第二部分,所述第一部分和所述第二部分分别设置于所述第一壁和所述第二壁,其中,所述第一部分和/或所述第二部分被配置为当所述电池盒的内部压力达到阈值能够被破坏以泄放所述内部压力。
在一些实施例中,所述方法还包括:在所述第一壁的外表面的所述第一部分所在的区域设置第一凹槽,并在所述第一凹槽的底壁设置第一开口;和/或,在所述第二壁的外表面的所述第二部分所在的区域设置第二凹槽,并在所述第二凹槽的底壁设置第二开口。
在一些实施例中,所述方法还包括:所述第一部分安装于所述第一凹槽的底壁并 覆盖所述第一开口;和/或,所述第二部分安装于所述第一凹槽的底壁并覆盖所述第二开口。
应理解,本申请实施例的制备电池盒的方法,可以用于制备上述第一方面以及第一方面的任一种可能的实现方式中的电池盒。
根据本申请的第六方面,提供了一种用于制备电池盒的装置,包括:提供模块,所述提供模块用于:提供至少两个壁,所述至少两个壁包括第一壁和第二壁,所述第一壁与所述第二壁相交;以及,提供泄压机构,所述泄压机构包括相互连接的第一部分和第二部分,所述第一部分和所述第二部分分别设置于所述第一壁和所述第二壁,其中,所述第一部分和/或所述第二部分被配置为当所述电池盒的内部压力达到阈值能够被破坏以泄放所述内部压力。
在一些实施例中,所述装置还包括:设置模块,所述设置模块用于:在所述第一壁的外表面的所述第一部分所在的区域设置第一凹槽,并在所述第一凹槽的底壁设置第一开口,和/或,在所述第二壁的外表面的所述第二部分所在的区域设置第二凹槽,并在所述第二凹槽的底壁设置第二开口。
在一些实施例中,所述装置还包括:安装模块,所述安装模块用于:将所述第一部分安装于所述第一凹槽的底壁并覆盖所述第一开口;和/或,将所述第二部分安装于所述第一凹槽的底壁并覆盖所述第二开口。
应理解,本申请实施例的制备电池盒的装置,可以用于执行上述第五方面或第五方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第五方面或第五方面的任意可能的实现方式中的方法的单元。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为采用本申请电池的车辆的一些实施例的外形示意图;
图2为本申请电池的一些实施例的结构示意图;
图3为本申请电池中的电池模块的一些实施例的结构示意图;
图4为本申请的电池单体的一些实施例的分解图;
图5为本申请电池盒的一些实施例的分解图;
图6为本申请电池盒中壳体的一些实施例的剖视图;
图7为图6所示的本申请电池盒的壳体的局部放大图;
图8-图13为图7所示的本申请电池盒的泄压机构的局部放大图;
图14为本申请电池盒中垫板的一些实施例的结构示意图;
图15为本申请制备电池盒的方法的一些实施例的流程示意图;
图16为本申请制备电池盒的装置的一些实施例的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请实施例描述的电池盒、电池单体以及包括多个电池单体的电池均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮 船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请实施例描述的电池盒、电池单体以及包括多个电池单体的电池不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动汽车为例进行说明。
例如,如图1所示,为本申请一实施例的一种车辆1的结构示意图,所述车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。所述车辆1的内部可以设置电池10,电池10可以是电池包,也可以是电池模块,例如,在所述车辆1的底部或车头或车尾可以设置所述电池10;所述车辆1的内部还可以设置控制器30和马达40。所述电池10可以用于车辆1的供电,例如,所述电池10可以作为所述车辆1的操作电源,用于所述车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为所述车辆1的操作电源,还可以作为所述车辆1的驱动电源,替代或部分地替代燃油或天然气为所述车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括一个或者多个电池模块(或者也可以称为电池模组),其中,多个电池模块之间可以串联或并联或混联,所述混联是指串联和并联的混合。例如,如图2所示,为本申请另一实施例的一种电池10的结构示意图,所述电池10包括第一盖111、第二盖112和多个电池模块11,其中,第一盖111和第二盖112的形状可以根据所述一个或者多个电池模块11组合的形状而定,所述第一盖111和第二盖112均具有一个开口,例如,第一盖111和第二盖112均可以为中空长方体且各自只有一个面为开口面,即这个面位不具有壳体壁使得壳体内外相通,所述第一盖111和第二盖112在开口处相互扣合形成电池10的封闭的外壳,一个或者多个电池模块11相互并联或串联或混联组合后置于第一盖111和第二盖112扣合后形成的外壳内。
在本申请的另一实施例中,所述电池10包括一个电池模块11时,所述电池模块11置于第一盖111和第二盖112扣合后形成的外壳内。
所述一个或多个电池模块11产生的电通过导电机构(未图示)穿过所述外壳而 引出。
除此之外,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,用于实现多个电池单体(未图示)之间的电连接;再例如,该电池10还可以包括冷却部件,该冷却部件用于容纳冷却介质,以给一个或者多个电池模组11降温,但本申请实施例并不限于此。
根据不同的电力需求,所述电池模块11可以包括一个或多个电池单体,例如,如图3所示,一个电池模块11可以包括多个电池单体20,多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率,且一个电池模块11中包括的所述电池单体20的数量可以设置为任意数值。其中,每个电池单体20可以包括含锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
在本申请的另一实施例中,多个电池单体20可以叠加在一起,多个电池单体20之间相互串联、并联或混联,在本申请的另一实施例中,每个电池单体20可以为方形,圆柱形或其他形状。
对于每一个电池单体20,可以包括电池盒和设置在电池盒内的电极组件,其中,电池盒可以包括壳体和盖板两个部分,所述壳体可以为中空的长方体或正方体或圆柱体,且所述壳体的其中一个面具有一开口,以便电极组件可以放置于壳体内;而所述盖板在所述壳体的开口处与壳体连接,以形成该电池单体20的封闭的电池盒,且壳体内可以填充电解液。
另外,电池盒还包括两个电极端子,该两个电极端子通常设置在盖板上,并与电极组件相连;盖板的平板面上还可设置泄压机构,该泄压机构可以为盖板的平板面的一部分,也可以与盖板的平板面焊接。在正常状态下,泄压机构与盖板密封结合,即通过盖板在所述壳体的开口处与壳体连接形成电池单体20的电池盒,该电池盒形成的空间密封不透气。当电池单体20产生的气体太多时,气体发生膨胀使电池盒内的气压升高至超出预设值时,泄压机构可以处裂开而导致电池盒内外相通,气体通过泄压机构的裂开处向外释放,进而避免发生爆炸。
目前的电池单体通常将泄压机构设置在盖板上,与电极端子位于同一侧,当电池单体内部发生热失控时,泄压机构破裂,在释放电池单体内部气压的同时,也会向外喷射出液体或者固体的燃烧物,其中也可能包括导电物质,则会导致电极端子之间短路;同时,考虑到在将电池安装在车辆内时,通常将电极端子朝上,也就是朝向乘客 的方向,那么如果将泄压机构安装在电极端子同侧,泄压机构破裂后释放的气流等物质会向上排放,这样可能会对乘客造成烧伤或烫伤,增加了乘客的危险。因此,可以考虑将泄压机构安装在其他位置处以解决上述问题,例如,安装在盖板下面的壳体上,比如可以安装在壳体的底壁。
但是如果将泄压机构安装在壳体的底壁上,由于壳体为一端开口的中空结构,而泄压机构通常为片状,将泄压机构安装在壳体上可能存在安装不方便的问题,尤其是安装在壳体的与开口相对设置的底壁上时,由于壳体深度的限制,很难将片状的泄压机构直接焊接在底壁。另外,还要考虑泄压机构的强度问题。例如,泄压机构安装在壳体的底壁上还需要考虑内部电极组件对泄压机构的压力,比如对于安装在车辆里面的电池,在车辆行驶过程中会有颠簸,那么电极组件会对壳体底壁有压力作用,因此需要泄压机构有一定的强度;再例如,电池的壳体通常采用铝壳,在电极组件寿命的周期内,由于充放电过程会使得电池内部正常产气,该过程导致铝壳变形,进而会影响泄压机构在刻痕处的蠕变,就可能会导致泄压机构提前开启,进而导致电池寿命衰减。同时,由于壳体的体积有限,设置在壳体的底壁的泄压机构的面积不宜过大,那么就可能存在排气面积不足、排气速率较低以及排气不畅等问题,泄压机构不易打开,容易发生爆炸起火风险。
因此,本申请的实施例提供了一种具有泄压机构的电池盒以及电池,能够解决上述泄压机构的安装和强度等问题。下面将结合附图进行具体描述。
具体地,仍然以如图1-3所示的实施例为例,图4示出了本申请实施例的电池单体20的实施例。如图4所示,该电池单体20包括电池盒(未图示)、一个或多个电极组件22以及连接构件23,其中,本申请实施例中的电池盒包括壳体211和盖板212。
具体地,如图4所示,电池单体20的电池盒包括的壳体211可以根据一个或多个电极组件22组合后的形状而定,例如,所述壳体211可以为中空的长方体或正方体或圆柱体,且所述壳体211的其中一个面具有一开口以便一个或多个电极组件22可以放置于壳体211内,例如,当所述壳体211为中空的长方体或正方体时,所述壳体211的其中一个平面为开口面,即该平面不具有壳体壁而使得壳体211内外相通,当所述壳体211可以为中空的圆柱体时,所述壳体211的圆形侧面为开口面,即该圆形侧面不具有壳体壁而使得壳体211内外相通。所述盖板212在所述壳体211的开口处与壳体211连接形成封闭的电池盒,且壳体211内填充电解液。
如图4所示,该电池单体20的电池盒还可以包括两个电极端子214,两个电极 端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214位于盖板212的平板面上且穿过盖板212的平板面,两个电极端子214分别为正电极端子214a和负电极端子214b,每个电极端子214对应各设置一个连接构件23,或者也可以称为集流构件23,或者铜铝转接片23,其位于盖板212与电极组件22之间。
如图4所示,每个电极组件22可以具体包括至少一个正极极耳221和至少一个负极极耳222,另外,电极组件22还可以包括裸电芯以及包裹裸电芯的绝缘片,其中,图4中不区分正极极耳221和负极极耳222的具体位置的设置。所述一个或多个电极组件22的正极极耳221耳通过一个连接构件23与一个电极端子连接,所述一个或多个电极组件22的负极极耳222通过另一个连接构件23与另一个电极端子连接,例如,正电极端子214a通过一个连接构件23与正极极耳221连接,负电极端子214b通过另一个连接构件23与负极极耳222连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图4所示,电池单体20内设置至少两个独立电极组件22。
在该电池单体20中,电极组件22可以是卷绕结构,也可以是叠片式结构,本申请实施例并不限于此。
如图4所示,本申请实施例的该电池单体20还可以包括垫板24,该垫板24位于电极组件22与壳体211的底壁之间,可以对电极组件22起到承托作用,还可以有效防止电极组件22与壳体211的底壁四周的圆角发生干涉。本申请实施例中的垫板24的形状可以根据实际应用进行设置,例如,如图4所示,该垫板24可以与底壁形状一致,设置为长方体;另外,该该垫板24上可以设置有一个或者多个通孔,例如,如图4所示,垫板24上可以设置多个均匀或者对称排列的通孔,这样可以使得垫板24上下表面的空间连通,电解液和电极组件22内部产生的气体以及电解液都能够自由地穿过垫板24,以便于导液和导气。
在本申请实施例中,该垫板24的厚度一般设置为0.3~5mm,优选为绝缘部件,但也可以不绝缘。例如,该垫板24的材料可以是PP、PE、PET、PPS、铁氟龙、不锈钢、铝等既耐电解液又绝缘的材料,其中,PP、PE、PET、PPS等塑胶材料可以选用防火材料,铝或不锈钢等金属材料表面可以做阳极化处理绝缘。
除此以外,本申请实施例中的电池单体20还可以包括其他部件。例如,该电池单体20还可以包括顶盖贴片、密封钉、塑胶钉中的至少一个,其中,顶盖贴片、密封钉、塑胶钉可以安装在盖板212上;另外,电池单体20还可以包括蓝膜,设置在电池 壳体211的外表面,以达到绝缘以及保护电池单体的作用。但本申请实施例并不限于此。
在本申请实施例中,该电池单体20的电池盒还包括泄压机构213,该泄压机构213可以位于电池盒的任意相邻的两个壁。具体地,图4所示的电池单体20的电池盒包括壳体211和盖板212,其中,这里以该壳体211为中空的长方体为例进行说明,则该电池盒也为中空的长方体。由于这里以长方体(即六面体)的电池盒为例进行说明,那么该电池盒包括六个壁(或者说六个面),例如,图5示出了本申请实施例中的包括壳体211和盖板212的电池盒21的任意相邻的三个壁,而本申请实施例中的泄压机构213设置在该电池盒21的任意相邻的两个壁,例如,泄压机构213可以设置在壳体211的底壁和侧壁的示例,但本申请实施例并不限于此。
具体地,如图5所示,本申请实施例中的电池盒21包括至少两个壁,对于其中的任意相邻的两个壁,这里称为第一壁21a和第二壁21b,即电池盒21具有的至少两个壁包括第一壁21a和第二壁21b,所述第一壁21a与所述第二壁21b相交。本申请实施例中的泄压机构213包括相互连接的第一部分2131和第二部分2132,其中,第一部分2131设置于第一壁21a,第二部分2132设置于第二壁21b,也就是说,泄压机构213可以通过折弯形成第一部分2131和第二部分2132两个部分,以分别设置在第一壁21a与所述第二壁21b。将泄压机构213分别设置在两个壁上,对应的,对于该泄压机构213的两个部分该第一部分2131和/或该第二部分2132被配置为当该电池盒21的内部压力达到阈值能够被破坏以泄放该内部压力。
因此,本申请实施例的电池盒,在相邻的任意两个壁的相交位置设置泄压机构,即泄压机构位于电池盒的两个壁的相交处,相比于只设置在一个壁上,可以增加泄压机构的总面积,那么当发生短路、过充时,电池盒的内部温度和气压骤升时,电池盒上的泄压机构能够从两个壁对应的两个部分及时破开,将温度及气压向外释放,防止电池爆炸起火;另外,由于泄压机构设置在两个壁的相交位置,受电池盒内部各个组件的影响较小,例如,受电极组件的跌落冲击作用较小,可以避免泄压机构提前破开;而且,电池盒在两个壁的相交位置变形小,也可以保证泄压机构不受变形蠕变影响,从整体提高了电池的综合性能。
应理解,本申请实施例中的将泄压机构213设置在第一壁21a和第二壁21b可以采用多种方式,并且泄压机构213的第一部分2131和第二部分2132也可以采用相同或者不同的加工方式。但为了便于加工,泄压机构213的第一部分2131和第二部分 2132通常会采用相同的加工方式,而本申请实施例也以泄压机构213的第一部分2131和第二部分2132通常采用同一种加工方式为例进行说明,但本申请实施例并不限于此。
例如,将泄压机构213设置在第一壁21a和第二壁21b可以包括:泄压机构213、第一壁21a和第二壁21b可以为一体成型,即直接将第一壁21a和第二壁21b的相应区域减薄,以形成泄压机构213。但是考虑到如果第一壁21a和第二壁21b为壳体211的底壁和侧壁,由于壳体211为中空结构,那么对底壁和侧壁局部减薄就很难实现。因此,将泄压机构213设置在第一壁21a和第二壁21b还可以包括:在第一壁21a和第二壁21b上分别设置开口,以使泄压机构213覆盖开口区域。
具体地,如图5所示,该第一壁21a在该第一部分2131所在的区域设置有第一开口2111,该第一部分2131覆盖该第一开口2111;类似的,该第二壁21b在该第二部分2132所在的区域设置有第二开口2112,该第二部分2132覆盖该第二开口2112。也就是说,泄压机构213相对于电池盒210的壳体211不是一体成型,这样,泄压机构213可以与电池盒21分开设置,例如泄压机构213的材质与电池盒21的材质可以不同,厚度也可以设置为不同,以使得泄压机构213可以根据实际需要进行灵活设置。
考虑到泄压机构213的第一部分2131和第二部分2132是相连的,那么为了便于加工,该第一开口2111与该第二开口2112也可以相连,例如,如图5所示。即第一壁21a上的第一开口2111和第二壁21b上的第二开口2112实际上是一个连通的开口,这样只需要在电池盒21的相邻两个壁的相交位置处加工一个开孔即可,加工过程方便。
另外,本申请实施例中的泄压机构213的第一部分2131和第二部分2132也可以为相连的,那么对于安装前的泄压机构213,可以为片状结构,则在安装泄压机构213时,以将其安装在壳体211的底壁和侧壁为例,可以先焊接底面,即先将泄压机构213的第一部分2131焊接在底壁上,再将泄压机构213折弯,形成第二部分2132,并将第二部分2132焊接在侧壁上,这样加工更加方便快捷。
在本申请实施例中,电池盒21为六面体结构,所以第一壁21a和第二壁21b为相互垂直的,那么对应的,如图5所示,泄压机构213的第一部分2131与第二部分2132也可以设置为相互垂直,以使得泄压机构213与电视盒21的其余部分仍然可以形成完整的六面体。
应理解,考虑到电极端子214通常设置在盖板212上,如果将泄压机构213也设 置在盖板212上,那么当电池单体20内部发生热失控时,泄压机构213破裂,在释放电池单体内部气压的同时,也会向外喷射出液体或者固体的燃烧物,其中也可能包括导电物质,则会导致电极端子214之间短路;同时,考虑到在将电池安装在车辆内时,通常将电极端子214朝上,也就是朝向乘客的方向,那么如果将泄压机构213安装在电极端子214同侧,泄压机构213破裂后释放的气流等物质会向上排放,这样可能会对乘客造成烧伤或烫伤,增加了乘客的危险。因此,本申请实施例的泄压机构213主要以设置在电池盒21的壳体211的底壁和侧壁为例进行说明。
具体地,如图6所示,这里以壳体211为中空的长方体且一端具有开口为例,图6所示的壳体211上方为开口,以使得盖板212可以盖合该壳体211的开口。对应的,如图6所示,可以将泄压机构设置在该壳体211的底壁与侧壁,该壳体211的底壁为与该壳体211的开口相对的壁,该壳体211的侧壁为与该壳体211的开口相邻的壁,即图5所示第一壁21a为图6所示的壳体211的底壁,图5所示第二壁21b为图6所示的壳体211的侧壁。
在本申请实施例中,电池盒21为长方体,则壳体211具有4个侧壁,两个较大面积的侧壁和两个面积较小的侧壁,泄压机构213通常设置在面积较小的侧壁上。考虑到将多个电池单体组装为电池时,例如如图3所示,对于长方体的电池单体,相邻的两个电池单体之间的摆放通常是两个电池单体的壳体侧壁中面积较大的壁相接触,所以如果泄压机构213有部分设置在该面积较大的侧壁上,将多个电池单体紧密排放以组装为电池时,会影响该泄压机构213的打开,比如需要电池单体之间空出用于泄压机构213打开的空间,这样不利于多个电池单体的安装,因此将泄压机构213安装在底壁和面积较小的侧壁上,有利于多个电池单体之间的摆放,进一步可以提高电池的能量密度。
应理解,由于壳体211为中空结构,受其深度的影响,比如,将泄压机构213安装在底壁和侧壁时,很难将泄压机构213安装在壳体的内表面,因此,通常将泄压机构213安装在壳体的外表面,即该泄压机构213的第一部分2131安装于该第一壁21a的外表面;该第二部分2132安装于该第二壁21b的外表面。
为了便于说明,这里以图6所示的泄压机构213为例进行详细说明,图7为图6所示的泄压机构213的放大图。具体地,如图7所示,可以通过在第一壁21a和第二壁21b的开口处设置台阶机构,以安装泄压机构213。具体地,如图7所示,该第一壁21a的外表面设置有第一凹槽,该第一开口2111设置在该第一凹槽的底壁,该第一 部分2131安装于该第一凹槽的底壁,即第一凹槽的底壁设置第一开口2111可以使得第一壁21a形成一个台阶结构,第一部分2131安装于该第一凹槽的底壁形成的台阶结构处;类似的,该第二壁21b的外表面设置有第二凹槽,该第二开口2112设置在该第二凹槽的底壁,该第二部分2132安装于该第二凹槽的底壁,即第二凹槽的底壁设置第二开口2112可以使得第二壁21b也形成一个台阶结构,第二部分2132安装于该第二凹槽的底壁形成的台阶结构处。其中,本申请实施例中凹槽的底壁表示的是与凹槽的开口相对的壁,类似的,凹槽的侧壁表示的是与凹槽的开口相邻的壁。
在电池盒21的第一壁21a和第二壁21b上设置凹槽,以安装泄压机构213可以使得泄压机构213的外表面与电池盒21的外表面齐平,例如,如图7所示,该第一部分2131的外表面与该第一壁21a的外表面齐平;类似的,该第二部分2132的外表面与该第二壁21b的外表面齐平。这种将泄压机构的外表面与电池盒的外表面齐平设置,可以使得电池盒21的外表面不存在凸出的部分,那么在将多个电池单体组装为电池时,不必设置用于避让泄压机构213的结构,更加便于多个电池单体的安装,节省空间。
应理解,本申请实施例中的泄压机构213的形状可以根据实际应用,设置为任意形状,其中,为了便于安装,通常将泄压机构213的第一部分2131与第二部分2132设置为形状和/或面积相同。例如,第一部分2131与第二部分2132可以设置为大小相同的半圆形,或者也可以设置为大小相同的椭圆形,或者也可以设置为其他形状,比如泄压机构213可以设置为跑道形,即泄压机构213的两端为圆弧,中间部分为长方形,将该泄压机构213从中间弯折分为第一部分2131与第二部分2132。
具体地,对于图7所示的区域A,图8示出了该区域A的放大图,进一步的,图9和图10分别示出了该区域A中第一壁21a和第一部分2131的放大图,其中,图9和图10安装后可得到图8。具体地,如图8-10所示,对于第一壁21a,在其外表面向内表面设置第一凹槽21a-1,第一开口2111设置在该第一凹槽21a-1的底壁,从而使得第一壁21a形成如图10所示的台阶结构,而泄压机构213通常为如图9所示的片状结构,该泄压机构213的第一部分2131安装在第一壁21a的台阶结构上,即安装在第一壁21a的第一凹槽21a-1的底壁。其中,本申请实施例中的第一部分2131安装在第一壁21a的第一凹槽21a-1的底壁指的是:第一部分2131与第一凹槽21a-1的底壁相对固定,例如,如图8所示,可以将第一部分2131放置在第一凹槽21a-1的底壁,以便于将第一部分2131与第一凹槽21a-1的侧壁在位置a处通过焊接等方式相连接,例 如,激光焊接,但本申请实施例并不限于此。
类似的,对于图7所述的区域B,图11示出了该区域B的放大图,进一步的,图12和图13分别示出了该区域B中第二壁21b和第二部分2132的放大图,其中,图12和图13安装后可得到图11。具体地,如图11-13所示,对于第二壁21b,在其外表面向内表面设置第二凹槽21b-1,第二开口2112设置在该第二凹槽21b-1的底壁,从而使得第二壁21b形成如图13所示的台阶结构,而泄压机构213通常为如图12所示的片状结构,该泄压机构213的第二部分2132安装在第二壁21b的台阶结构上,即安装在第二壁21b的第二凹槽21b-1的底壁。其中,本申请实施例中的第二部分2132安装在第二壁21b的第二凹槽21b-1的底壁指的是:第二部分2132与第二凹槽21b-1的底壁相对固定,例如,如图11所示,可以将第二部分2132放置在第二凹槽21b-1的底壁,以便于将第二部分2132与第二凹槽21b-1的侧壁在位置b处通过焊接等方式相连接,但本申请实施例并不限于此。
另外,本申请实施例中的泄压机构213的各个尺寸可以根据实际情况进行合理设置。例如,如图10所示,这里假设第一壁21a为壳体211的底壁,壳体211的底壁通常具有均匀的厚度,比如该壳体211的底壁的厚度h1通常可以设置为1.5mm至2.5mm,例如,可以设置为1.5mm、2mm或者2.5mm;如图13所示,假设第二壁21b为壳体211的侧壁,壳体211的侧壁通常也具有均匀的厚度,该侧壁的厚度h2通常可以设置为1mm至1.5mm,例如,可以设置为1mm、1.3mm或者1.5mm,但本申请实施例并不限于此。其中,本申请实施例中的“mm”表示毫米。
对应的,如图9所示,本申请实施例中的泄压机构213的厚度h3可以设置为0.4mm至0.7mm,例如,可以设置为0.4mm、0.5mm或者0.7mm。考虑到泄压机构可能不是均匀厚度,所以该泄压机构213的厚度h3表示泄压机构213的最厚的区域的厚度。例如,如图9和图12所示,该第一部分2131和/或该第二部分2132还可以设置有第三凹槽,例如,第一部分2131可以设置第三凹槽2131-1,第二部分2132可以设置有第三凹槽2132-1,从而使得当该电池盒21的内部压力达到阈值时,该第一部分2131在该第三凹槽2131-1和/或该第二部分2132在该第三凹槽2132-1处破裂以泄放该内部压力,也就是说,为了在电池单体内部发生热失控时,泄压机构更加容易破裂,可以在泄压机构的表面增加刻痕,即在泄压机构213表面上设置该第三凹槽2131-1和2132-1区域,第三凹槽2131-1和2132-1内厚度更薄,第三凹槽2131-1和2132-1可以使得泄压机构213在预先设定的位置处破裂以泄放内部压力,即泄压机构破裂位置更加精确, 可以实现定向破裂。
考虑到如果将该第三凹槽2131-1和2132-1设置在电池盒21的内部,也就是泄压机构213的靠近电池盒21内部的内表面上,由于电池盒21内存在电解液,该电解液会在第三凹槽2131-1和2132-1内堆积,腐蚀该第三凹槽2131-1和2132-1部分,则可能导致该泄压机构213提前破裂,所以通常将第三凹槽2131-1和2132-1设置在泄压机构213的外表面。
如图9所示,根据泄压机构213的厚度,该第一部分2131在该第三凹槽2131-1和/或该第二部分2132在该第三凹槽2132-1处的厚度h4通常设置为0.1mm至0.3mm,例如,可以设置为0.1mm、0.2mm或者0.3mm。另外,该第三凹槽2131-1和2132-1的底壁的形状可以根据实际应用灵活设置,例如,可以将第三凹槽2131-1和2132-1的底壁的形状设置为条状、圆环状或者半圆环状,或者也可以设置为其他图案,本申请实施例并不限于此。
应理解,本申请实施例中第一凹槽21a-1和第二凹槽21b-1的相关尺寸也可以根据实际应用进行设置,并且可以设置为相同或者不同的数值。具体地,如图10和图13,由于第一部分2131和第二部分2132通常是完全相同的结构,所以第一凹槽21a-1对应形成的台阶结构的宽度h5以及第二凹槽21b-1对应形成的台阶结构的宽度h5通常设置为相同的,例如,该宽度h5可以设置为0.4mm至0.6mm,例如,可以设置为0.4mm、0.5mm或者0.6mm。但是,由于壳体211的底壁和侧壁的厚度可能不同,对应的,如图10所示,对于第一壁21a,第一凹槽21a-1对应形成的台阶结构的厚度h6通常设置为0.4mm至0.6mm,例如,可以设置为0.4mm、0.5mm或者0.6mm;如图13所示,对于第二壁21b,第二凹槽21b-1对应形成的台阶结构的厚度h7通常设置为0.5mm至1.5mm,例如,可以设置为0.5mm、1mm或者1.5mm,但本申请实施例并不限于此。
本申请实施例中的泄压机构213的面积可以根据实际应用进行设置。例如,考虑到电池盒21的强度,泄压机构213的面积不宜过大;但当电池单体内部发生热失控时,泄压机构213又需要及时打开,尽快释放内部气压以防止电池爆炸,因此,泄压机构213的面积也不能设置太小,比如,该泄压机构213的总面积通常可以设置为600mm 2至1400mm 2,例如,可以设置为600mm 2、1000mm 2或者1400mm 2,其中,第一部分2131和第二部分2132各占一半。其中,本申请实施例中的“mm 2”表示平方毫米。
在本申请实施例中,由于本申请实施例中的泄压机构213可以部分设置在壳体 211底壁上,为了在电池单体内部发生热失控时,垫板24不会阻挡气体冲破泄压机构213,可以将垫板24的部分区域去除,即在泄压机构213所在的位置,在垫板24上设置一个缺口,使得垫板24不会遮挡泄压区域。例如,如图14所示,这里以长方形的垫板24为例,该垫板24上可以设置有与该泄压机构213的第一部分2131对应的缺口241,以使该垫板24不遮挡该第一部分2131,例如,该垫板24上的缺口241的形状通常与泄压机构213的第一部分2131的形状一致。
为了使得垫板24完全不遮挡泄压机构213,通常会将垫板24的缺口241的面积设置为大于第一部分2131覆盖的第一开口的面积,比如,该缺口的边缘距离该第一开口的边缘的距离大于或者等于1mm。
为了便于安装,如图14所示,可以在垫板24上对称设置两个缺口241区域,这样在安装该垫板24时,不会因为安装方向错误,导致遮挡泄压机构213。
上文中结合图1至图14描述了本申请实施例的电池盒、电池单体以及电池,下面将结合图15和图16描述本申请实施例的制备电池盒的方法和装置。
具体地,图15示出了本申请实施例的制备电池盒的方法200的示意性流程图。如图15所示,该方法200包括:S210,提供至少两个壁,所述至少两个壁包括第一壁和第二壁,所述第一壁与所述第二壁相交;以及S220,提供泄压机构,所述泄压机构包括相互连接的第一部分和第二部分,所述第一部分和所述第二部分分别设置于所述第一壁和所述第二壁,其中,所述第一部分和/或所述第二部分被配置为当所述电池盒的内部压力达到阈值能够被破坏以泄放所述内部压力。
可选地,作为一个实施例,所述方法200还包括:在所述第一壁的外表面的所述第一部分所在的区域设置第一凹槽,并在所述第一凹槽的底壁设置第一开口;和/或,在所述第二壁的外表面的所述第二部分所在的区域设置第二凹槽,并在所述第二凹槽的底壁设置第二开口。
可选地,作为一个实施例,所述方法还包括:所述第一部分安装于所述第一凹槽的底壁并覆盖所述第一开口;和/或,所述第二部分安装于所述第一凹槽的底壁并覆盖所述第二开口。
应理解,本申请实施例的方法200可以用于制备本申请实施例的电池盒21,为了简洁,在此不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的 实施过程构成任何限定。
图16示出了本申请实施例的制备电池盒的装置300的示意性框图。如图16所示,根据本申请实施例的装置300包括:提供模块310,所述提供模块310用于:提供至少两个壁,所述至少两个壁包括第一壁和第二壁,所述第一壁与所述第二壁相交;以及,提供泄压机构,所述泄压机构包括相互连接的第一部分和第二部分,所述第一部分和所述第二部分分别设置于所述第一壁和所述第二壁,其中,所述第一部分和/或所述第二部分被配置为当所述电池盒的内部压力达到阈值能够被破坏以泄放所述内部压力。
可选地,作为一个实施例,所述装置300还包括:设置模块320,所述设置模块320用于:在所述第一壁的外表面的所述第一部分所在的区域设置第一凹槽,并在所述第一凹槽的底壁设置第一开口,和/或,在所述第二壁的外表面的所述第二部分所在的区域设置第二凹槽,并在所述第二凹槽的底壁设置第二开口。
可选地,作为一个实施例,所述装置300还包括:安装模块330,所述安装模块330用于:将所述第一部分安装于所述第一凹槽的底壁并覆盖所述第一开口;和/或,将所述第二部分安装于所述第一凹槽的底壁并覆盖所述第二开口。
应理解,根据本申请实施例的装置300可对应于执行本申请实施例中的方法200,并且装置300中的各个单元的上述和其它操作和/或功能分别为了实现图15中的方法200的相应流程,为了简洁,在此不再赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (31)

  1. 一种电池盒,其特征在于,包括:
    至少两个壁,所述至少两个壁包括第一壁(21a)和第二壁(21b),所述第一壁(21a)与所述第二壁(21b)相交;以及
    泄压机构(213),所述泄压机构(213)包括相互连接的第一部分(2131)和第二部分(2132),所述第一部分(2131)和所述第二部分(2132)分别设置于所述第一壁(21a)和所述第二壁(21b);
    其中,所述第一部分(2131)和/或所述第二部分(2132)被配置为当所述电池盒的内部压力达到阈值能够被破坏以泄放所述内部压力。
  2. 根据权利要求1所述的电池盒,其特征在于,所述第一壁(21a)在所述第一部分(2131)所在的区域设置有第一开口(2111),所述第一部分(2131)覆盖所述第一开口(2111);和/或,
    所述第二壁(21b)在所述第二部分(2132)所在的区域设置有第二开口(2112),所述第二部分(2132)覆盖所述第二开口(2112)。
  3. 根据权利要求2所述的电池盒,其特征在于,所述第一开口(2111)与所述第二开口(2112)相连。
  4. 根据权利要求2或3所述的电池盒,其特征在于,所述第一部分(2131)安装于所述第一壁(21a)的外表面;和/或,
    所述第二部分(2132)安装于所述第二壁(21b)的外表面。
  5. 根据权利要求4所述的电池盒,其特征在于,所述第一部分(2131)的外表面与所述第一壁(21a)的外表面齐平,和/或,
    所述第二部分(2132)的外表面与所述第二壁(21b)的外表面齐平。
  6. 根据权利要求2至5中任一项所述的电池盒,其特征在于,所述第一壁(21a)的外表面设置有第一凹槽(21a-1),所述第一开口(2111)设置在所述第一凹槽(21a-1)的底壁,所述第一部分(2131)安装于所述第一凹槽(21a-1)的底壁,和/或,
    所述第二壁(21b)的外表面设置有第二凹槽(21b-1),所述第二开口(2112)设置在所述第二凹槽(21b-1)的底壁,所述第二部分(2132)安装于所述第二凹槽(21b-1)的底壁。
  7. 根据权利要求1至6中任一项所述的电池盒,其特征在于,所述第一部分(2131) 与所述第二部分(2132)相互垂直。
  8. 根据权利要求1至7中任一项所述的电池盒,其特征在于,所述第一部分(2131)与所述第二部分(2132)的形状和/或面积相同。
  9. 根据权利要求1至8中任一项所述的电池盒,其特征在于,所述泄压机构(213)的厚度为0.4mm至0.7mm。
  10. 根据权利要求1至9中任一项所述的电池盒,其特征在于,所述泄压机构(213)的总面积为600mm 2至1400mm 2
  11. 根据权利要求1至10中任一项所述的电池盒,其特征在于,所述第一部分(2131)和/或所述第二部分(2132)设置有第三凹槽(2131-1,2132-1),所述第一部分(2131)和/或所述第二部分(2132)配置为当所述电池盒的内部压力达到阈值时在所述第三凹槽(2131-1,2132-1)处破裂以泄放所述内部压力。
  12. 根据权利要求11所述的电池盒,其特征在于,所述第三凹槽(2131-1,2132-1)设置在所述第一部分(2131)的外表面和/或所述第二部分(2132)的外表面。
  13. 根据权利要求11或12所述的电池盒,其特征在于,所述第一部分(2131)和/或所述第二部分(2132)在所述第三凹槽(2131-1,2132-1)处的厚度为0.1mm至0.3mm。
  14. 根据权利要求1至13中任一项所述的电池盒,其特征在于,所述电池盒为中空的长方体。
  15. 根据权利要求14所述的电池盒,其特征在于,所述电池盒包括:
    壳体(211),所述壳体(211)为中空的长方体且一端具有开口;
    盖板(212),盖合所述壳体(211)的开口。
  16. 根据权利要求15所述的电池盒,其特征在于,所述第一壁(21a)和所述第二壁(21b)分别为所述壳体(211)的底壁和侧壁,所述壳体(211)的底壁为与所述壳体(211)的开口相对的壁。
  17. 根据权利要求16所述的电池盒,其特征在于,所述第二壁(21b)为所述壳体(211)的侧壁中面积最小的侧壁。
  18. 根据权利要求16或17所述的电池盒,其特征在于,所述壳体(211)的底壁的厚度为1.5mm至2.5mm;和/或,所述壳体(211)的侧壁的厚度为1mm至1.5mm。
  19. 一种电池单体,其特征在于,包括:
    如权利要求1至18中任一项所述的电池盒,
    电极组件(22),所述电极组件(22)设置在所述电池盒内。
  20. 根据权利要求19所述的电池单体,其特征在于,所述电池盒包括:
    壳体(211),所述壳体(211)为中空的长方体且一端具有开口;
    盖板(212),盖合所述壳体(211)的开口。
  21. 根据权利要求20所述的电池单体,其特征在于,所述电池单体还包括:
    垫板(24),所述垫板(24)位于所述电极组件和所述壳体(211)的底壁之间,所述壳体(211)的底壁为所述壳体(211)的与所述壳体(211)的开口相对的壁。
  22. 根据权利要求21所述的电池单体,其特征在于,所述第一壁(21a)为所述壳体(211)的底壁,所述垫板(24)上设置有与所述第一部分(2131)对应的缺口,以使所述垫板(24)不遮挡所述第一部分(2131)。
  23. 根据权利要求22所述的电池单体,其特征在于,所述第一壁(21a)在所述第一部分(2131)所在的区域设置有第一开口(2111),所述缺口的面积大于所述第一开口(2111)的面积,所述缺口的边缘距离所述第一开口(2111)的边缘的距离大于或者等于1mm。
  24. 一种电池,其特征在于,包括:
    多个电池单体,所述多个电池单体中包括至少一个如权利要求19至23中任一项所述的电池单体;
    汇流部件,用于实现所述多个电池单体的电连接;
    箱体,用于容纳所述多个电池单体和所述汇流部件。
  25. 一种用电设备,其特征在于,包括:如权利要求24所述的电池。
  26. 一种制备电池盒的方法,其特征在于,包括:
    提供至少两个壁,所述至少两个壁包括第一壁和第二壁,所述第一壁与所述第二壁相交;以及
    提供泄压机构,所述泄压机构包括相互连接的第一部分和第二部分,所述第一部分和所述第二部分分别设置于所述第一壁和所述第二壁,
    其中,所述第一部分和/或所述第二部分被配置为当所述电池盒的内部压力达到阈值能够被破坏以泄放所述内部压力。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    在所述第一壁的外表面的所述第一部分所在的区域设置第一凹槽,并在所述第一凹槽的底壁设置第一开口;和/或,
    在所述第二壁的外表面的所述第二部分所在的区域设置第二凹槽,并在所述第二凹槽的底壁设置第二开口。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述第一部分安装于所述第一凹槽的底壁并覆盖所述第一开口;和/或,
    所述第二部分安装于所述第一凹槽的底壁并覆盖所述第二开口。
  29. 一种用于制备电池盒的装置,其特征在于,包括:提供模块,所述提供模块用于:
    提供至少两个壁,所述至少两个壁包括第一壁和第二壁,所述第一壁与所述第二壁相交;以及
    提供泄压机构,所述泄压机构包括相互连接的第一部分和第二部分,所述第一部分和所述第二部分分别设置于所述第一壁和所述第二壁,
    其中,所述第一部分和/或所述第二部分被配置为当所述电池盒的内部压力达到阈值能够被破坏以泄放所述内部压力。
  30. 根据权利要求29所述的装置,其特征在于,所述装置还包括:设置模块,所述设置模块用于:
    在所述第一壁的外表面的所述第一部分所在的区域设置第一凹槽,并在所述第一凹槽的底壁设置第一开口,和/或,
    在所述第二壁的外表面的所述第二部分所在的区域设置第二凹槽,并在所述第二凹槽的底壁设置第二开口。
  31. 根据权利要求30所述的装置,其特征在于,所述装置还包括:安装模块,所述安装模块用于:
    将所述第一部分安装于所述第一凹槽的底壁并覆盖所述第一开口;和/或,
    将所述第二部分安装于所述第一凹槽的底壁并覆盖所述第二开口。
PCT/CN2020/101444 2020-07-10 2020-07-10 电池盒、电池单体、电池、制备电池盒的方法和装置 WO2022006899A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227019094A KR20220119369A (ko) 2020-07-10 2020-07-10 배터리 케이스, 배터리 셀, 배터리, 배터리 케이스 제조 방법 및 장치
JP2022534439A JP7325642B2 (ja) 2020-07-10 2020-07-10 電池ケース、電池セル、電池、電池ケースの製造方法及び装置
PCT/CN2020/101444 WO2022006899A1 (zh) 2020-07-10 2020-07-10 电池盒、电池单体、电池、制备电池盒的方法和装置
EP20811229.2A EP3965218B1 (en) 2020-07-10 2020-07-10 Battery case, battery cell, battery, and method and device for preparing battery case
CN202080096259.4A CN115066800B (zh) 2020-07-10 2020-07-10 电池盒、电池单体、电池、制备电池盒的方法和装置
US17/113,047 US20220013855A1 (en) 2020-07-10 2020-12-05 Battery box, battery cell, battery, and method and apparatus for preparing battery box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101444 WO2022006899A1 (zh) 2020-07-10 2020-07-10 电池盒、电池单体、电池、制备电池盒的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/113,047 Continuation US20220013855A1 (en) 2020-07-10 2020-12-05 Battery box, battery cell, battery, and method and apparatus for preparing battery box

Publications (1)

Publication Number Publication Date
WO2022006899A1 true WO2022006899A1 (zh) 2022-01-13

Family

ID=79173108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101444 WO2022006899A1 (zh) 2020-07-10 2020-07-10 电池盒、电池单体、电池、制备电池盒的方法和装置

Country Status (6)

Country Link
US (1) US20220013855A1 (zh)
EP (1) EP3965218B1 (zh)
JP (1) JP7325642B2 (zh)
KR (1) KR20220119369A (zh)
CN (1) CN115066800B (zh)
WO (1) WO2022006899A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247346A (zh) * 2022-12-31 2023-06-09 宁德新能源科技有限公司 电芯及用电设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220018832A (ko) 2020-08-07 2022-02-15 현대자동차주식회사 전기 차량용 배터리의 열폭주 감지 장치
KR20220028991A (ko) 2020-09-01 2022-03-08 현대자동차주식회사 전기 차량용 배터리의 열폭주 감지 장치
KR20220039226A (ko) * 2020-09-22 2022-03-29 현대자동차주식회사 전기 차량용 배터리의 난연 장치
KR102597439B1 (ko) 2023-03-31 2023-11-02 (주)협화산업 배터리셀 커버의 비전 검사 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149901A (ja) * 1998-11-10 2000-05-30 Japan Storage Battery Co Ltd 電池及びこの電池を用いた組電池
CN1960027A (zh) * 2005-10-31 2007-05-09 日立麦克赛尔株式会社 密封方形电池
CN201181714Y (zh) * 2007-12-04 2009-01-14 黄穗阳 电池外壳及带有该外壳的锂离子电池
CN102420299A (zh) * 2011-12-02 2012-04-18 苏州冠硕新能源有限公司 一种锂电池
US20170033343A1 (en) * 2015-07-30 2017-02-02 Gs Yuasa International Ltd. Energy storage apparatus
CN108134020A (zh) * 2017-12-21 2018-06-08 苏州精控能源科技有限公司 安全电池箱

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590809U (ja) * 1992-05-22 1993-12-10 三洋電機株式会社 安全弁を備える角形電池
JP4604441B2 (ja) * 2002-07-18 2011-01-05 日本電気株式会社 フィルム外装電池及びその製造方法
KR100601508B1 (ko) * 2004-09-22 2006-07-19 삼성에스디아이 주식회사 종압축에 대한 안전성이 향상된 이차 전지
JP2007328940A (ja) * 2006-06-06 2007-12-20 Toyota Motor Corp 電池の製造方法及び弁部材
CN101170167B (zh) * 2006-10-27 2012-01-25 深圳市比克电池有限公司 防爆盖板组件
CN101170168A (zh) * 2006-10-27 2008-04-30 深圳市比克电池有限公司 具有防爆功能的盖板组件
KR20110003866A (ko) * 2009-07-06 2011-01-13 에스비리모티브 주식회사 리튬 이온 전지
WO2011048782A1 (ja) 2009-10-19 2011-04-28 パナソニック株式会社 二次電池
JP2012009317A (ja) * 2010-06-25 2012-01-12 Hitachi Vehicle Energy Ltd リチウムイオン二次電池および組電池
US10109831B2 (en) * 2012-09-26 2018-10-23 Robert Bosch Battery Systems, Llc Pressure relief device
JP6416536B2 (ja) * 2014-08-07 2018-10-31 日本協能電子株式会社 空気電池
JP6572692B2 (ja) * 2015-09-09 2019-09-11 株式会社豊田自動織機 電池パック
KR102629177B1 (ko) * 2016-07-12 2024-01-26 삼성에스디아이 주식회사 이차 전지
KR102245620B1 (ko) * 2016-08-18 2021-04-27 삼성에스디아이 주식회사 이차 전지
US20210013483A1 (en) 2018-03-29 2021-01-14 Kabushiki Kaisha Toshiba Battery assembly, battery, lid and case
JP6808903B2 (ja) * 2018-11-09 2021-01-06 矢崎総業株式会社 電池モジュール及び電池パック

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149901A (ja) * 1998-11-10 2000-05-30 Japan Storage Battery Co Ltd 電池及びこの電池を用いた組電池
CN1960027A (zh) * 2005-10-31 2007-05-09 日立麦克赛尔株式会社 密封方形电池
CN201181714Y (zh) * 2007-12-04 2009-01-14 黄穗阳 电池外壳及带有该外壳的锂离子电池
CN102420299A (zh) * 2011-12-02 2012-04-18 苏州冠硕新能源有限公司 一种锂电池
US20170033343A1 (en) * 2015-07-30 2017-02-02 Gs Yuasa International Ltd. Energy storage apparatus
CN108134020A (zh) * 2017-12-21 2018-06-08 苏州精控能源科技有限公司 安全电池箱

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247346A (zh) * 2022-12-31 2023-06-09 宁德新能源科技有限公司 电芯及用电设备

Also Published As

Publication number Publication date
JP2023505971A (ja) 2023-02-14
EP3965218A1 (en) 2022-03-09
CN115066800A (zh) 2022-09-16
EP3965218B1 (en) 2022-10-05
CN115066800B (zh) 2023-12-15
KR20220119369A (ko) 2022-08-29
EP3965218A4 (en) 2022-03-09
JP7325642B2 (ja) 2023-08-14
US20220013855A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2022006899A1 (zh) 电池盒、电池单体、电池、制备电池盒的方法和装置
WO2022006903A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022006900A1 (zh) 泄压机构、电池盒、电池单体、电池、制备方法和装置
WO2022006892A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022105010A1 (zh) 电池单体、电池及用电装置
WO2022109884A1 (zh) 电池单体及其制造方法和系统、电池以及用电装置
CN217182373U (zh) 连接构件、电池单体、电池和用电设备
WO2022006901A1 (zh) 电池盒、电池单体、电池、制备电池盒的方法和装置
WO2023028864A1 (zh) 泄压装置、电池单体、电池及用电设备
CN212991190U (zh) 电池盒、电池单体、电池和用电设备
WO2023193334A1 (zh) 电池和用电设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023050098A1 (zh) 泄压装置、电池单体、电池及用电设备
EP4235922A1 (en) Battery box, battery, electrical device, method and device for preparing battery
WO2022170495A1 (zh) 电池、用电装置、制备电池的方法和装置
CN115832603A (zh) 外壳、电池单体、电池及用电设备
RU2809341C1 (ru) Батарейная коробка, элемент батареи, батарея, а также способ и устройство для получения батарейной коробки
CN218385448U (zh) 壳体组件、电池单体、电池和用电设备
CN218414822U (zh) 电池单体、电池和用电设备
EP3979400B1 (en) Battery cell, battery, and method and apparatus for preparing battery cell
RU2813836C1 (ru) Механизм сброса давления, батарейная коробка, батарейный элемент, батарея, способ и аппарат для изготовления
RU2815077C1 (ru) Батарейная коробка, элемент батареи, батарея, а также способ и устройство для изготовления батарейной коробки
CN220066024U (zh) 一种电池单体、电池及用电设备
WO2022082391A1 (zh) 电池、用电装置、制备电池的方法和设备
WO2023193256A1 (zh) 连接构件、电池单体、电池和用电设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020811229

Country of ref document: EP

Effective date: 20201201

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20811229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534439

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE