WO2022004739A1 - 液位センサ - Google Patents
液位センサ Download PDFInfo
- Publication number
- WO2022004739A1 WO2022004739A1 PCT/JP2021/024612 JP2021024612W WO2022004739A1 WO 2022004739 A1 WO2022004739 A1 WO 2022004739A1 JP 2021024612 W JP2021024612 W JP 2021024612W WO 2022004739 A1 WO2022004739 A1 WO 2022004739A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid level
- grounding means
- float
- side end
- warning signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/30—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
- G01F23/64—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
- G01F23/72—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means
- G01F23/74—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means for sensing changes in level only at discrete points
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/30—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
- G01F23/56—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using elements rigidly fixed to, and rectilinearly moving with, the floats as transmission elements
- G01F23/60—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using elements rigidly fixed to, and rectilinearly moving with, the floats as transmission elements using electrically actuated indicating means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/30—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
- G01F23/56—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using elements rigidly fixed to, and rectilinearly moving with, the floats as transmission elements
- G01F23/62—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using elements rigidly fixed to, and rectilinearly moving with, the floats as transmission elements using magnetically actuated indicating means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/80—Arrangements for signal processing
- G01F23/802—Particular electronic circuits for digital processing equipment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/80—Arrangements for signal processing
- G01F23/802—Particular electronic circuits for digital processing equipment
- G01F23/804—Particular electronic circuits for digital processing equipment containing circuits handling parameters other than liquid level
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/80—Arrangements for signal processing
- G01F23/806—Particular electronic circuits for handling non-digital processing equipment
- G01F23/808—Particular electronic circuits for handling non-digital processing equipment containing circuits handling parameters other than liquid level
Definitions
- the present invention relates to a liquid level sensor.
- a type of liquid level sensor that converts information about the liquid level into an electric signal is known.
- the liquid level sensor 1' according to the prior art illustrated in FIG. 8 includes a sleeve 2 provided in the vertical direction, a float 3 that moves along the sleeve 2 as the liquid level fluctuates, and a float 3. It is composed of a reed switch (not shown) that is operated by a magnetic field generated by a magnet built in the float when approaching.
- a reed switch (not shown) that is operated by a magnetic field generated by a magnet built in the float when approaching.
- Patent Document 1 describes an invention of a liquid level sensor including a resistance row in which a plurality of resistors are connected in series and a plurality of reed switches for supplying a current to the connection portions of the resistors. ing.
- a current is supplied to a part of the resistance row via the connection portion.
- the resistance value of the part where the current flows changes depending on the position where the reed switch is closed. By detecting this resistance value, the remaining amount of the liquid corresponding to the resistance value can be detected.
- the liquid level sensor 1'illustrated in FIG. 8 can pinpoint whether or not the liquid level is at a specific position.
- the structure is simple and highly reliable.
- it is necessary to provide a number of liquid level sensors according to the number of liquid levels that can be detected. Therefore, in order to increase the number of liquid levels to be detected in one device, it is necessary to increase the number of liquid level sensors to be installed, which increases the cost for installation and can be stored in a tank. There is a problem that the volume of the liquid is reduced.
- the liquid level sensor described in Patent Document 1 has an accuracy in which the height of the liquid level between the reed switch at the highest position and the reed switch at the lowest position is determined by the interval at which the reed switch is provided. Can be detected as a pseudo-analog signal.
- the structure is complicated as compared with the liquid level sensor illustrated in FIG. 8, there is a possibility that an erroneous signal due to a failure may be output.
- the present invention has been made in view of the above problems, and an object of the present invention is to realize a compact and highly reliable liquid level sensor.
- the liquid level sensor includes a sleeve provided in the vertical direction, a float configured to move along the sleeve as the liquid level fluctuates, and a plurality of resistances connected in series at both ends. Connect to the resistance row that is always connected to the DC power supply, multiple grounding means provided inside the sleeve corresponding to the connection part of the adjacent resistance in the resistance row, and the positive electrode of the DC power supply at both ends of the resistance row. Liquid configured to extract the electrical signal detected between the positive end side end, which is the end of the ground, and the connection, which is grounded by the grounding means, as a liquid level signal, which is a signal corresponding to the liquid level. It has a position signal output means.
- the plurality of grounding means are configured to ground the corresponding connection when the float is located within a predetermined distance and not to ground the corresponding connection when the float is not located within a predetermined distance.
- the liquid level sensor according to the present invention outputs a warning signal when the float is positioned within a predetermined distance from the warning position, which is a predetermined position within the movable range of the float, and outputs a warning signal at a predetermined distance from the warning position. It further has a warning signal output means configured not to output a warning signal when the float is not located within.
- the liquid level sensor when the position of the float is within the range where a plurality of grounding means are provided, the liquid level is detected by the liquid level signal obtained from the resistance train.
- the warning signal emitted by the warning signal output means separate from the resistance train can be output.
- the liquid level sensor is used when the float is located within a predetermined distance from the grounding means corresponding to the connection portion closest to the positive end side end among the plurality of grounding means, or from the grounding means.
- a negative electrode which is the end of the resistance row opposite to the positive end of the positive grounding means and / or a plurality of grounding means configured to ground the positive side end when the float is located on the outside. Ground the connection closest to the negative end when the float is located within a predetermined distance from the grounding means corresponding to the connection closest to the side end or when the float is located outside the grounding means. It has a negative grounding means configured as described above.
- the grounding is performed.
- the positive electrode side end is grounded by the positive electrode grounding means, so that the connection part closest to the positive electrode side end is supported.
- the liquid level signal corresponding to the position of the grounding means to be grounded can be taken out.
- the configuration having the negative electrode grounding means for example, even if an abnormality occurs in the grounding means corresponding to the connection portion closest to the negative electrode side end portion and the corresponding connection portion cannot be grounded.
- the negative electrode side end portion is grounded by the negative electrode grounding means because the connection portion closest to the negative electrode side end portion is grounded. It is possible to extract the liquid level signal corresponding to the position of the grounding means corresponding to the connection portion closest to.
- the liquid level sensor composed of one sleeve can detect the liquid level with high accuracy based on the liquid level signal, and at the same time, generate a highly reliable warning signal.
- the liquid level sensor according to the present invention when the liquid level sensor according to the present invention is applied to the tank, the liquid level can be accurately and surely managed without impairing the liquid storage capacity of the tank.
- 6 is a schematic graph showing another example of the range of the liquid level at which each of the sensors constituting the plurality of grounding means operates and the magnitude of the liquid level signal output when each sensor is operated.
- It is a perspective view which shows the example of the resistance train and the grounding means which concerns on this invention.
- the liquid level sensor 1 has a sleeve 2 provided in the vertical direction.
- the sleeve 2 is fixed so that its longitudinal direction coincides with the direction perpendicular to the liquid level of the liquid. At least a part of the sleeve 2 is in contact with the liquid on the outside, and the grounding means 5 described later is provided inside. That is, the sleeve 2 has a function as a protective tube for separating the grounding means 5, which is an electronic component constituting the liquid level sensor 1, from the liquid.
- the resistance row 4 described later may be provided inside the sleeve 2.
- the resistance row 4 is provided outside the sleeve 2 and each of the plurality of grounding means 5 provided inside the sleeve 2 and each of the plurality of connection portions 4c of the resistance row 4 provided outside the sleeve 2. May be connected by, for example, a lead wire or a flexible printed circuit board.
- the sleeve 2 also has a function as a guide for the float 3, which will be described later, which moves according to the fluctuation of the liquid level.
- the float 3 has a hole having a cross-sectional shape corresponding to the cross-sectional shape of the sleeve 2, and the float 3 moves up and down with the sleeve 2 inserted in the hole.
- the cross-sectional shape of the sleeve 2 may be circular, or may be elliptical or polygonal. It is preferable that the cross-sectional shape of the sleeve 2 is the same along the length direction of the sleeve 2 for stable movement of the float 3.
- the material constituting the sleeve 2 a material having corrosion resistance against a liquid is preferable, and for example, stainless steel can be used.
- the float 3 when the float 3 is equipped with a magnet and the grounding means 5 detects and operates the magnetic field generated by the magnet, the float 3 does not interfere with the arrival of the magnetic field at the grounding means 5 and the vertical movement of the sleeve 2.
- the material constituting the sleeve 2 it is preferable to select a material that is difficult to magnetize.
- the liquid level sensor 1 has a float 3 that moves along the sleeve 2 as the liquid level fluctuates.
- the float 3 is configured to float on the liquid surface by buoyancy.
- the float 3 has a hollow structure.
- the liquid level is indirectly detected by detecting the position of the float 3.
- the float 3 When a liquid enters the inside of the float 3 (for example, a hollow portion), the positional relationship between the float 3 and the liquid level changes and an error occurs in the detection of the liquid level. Therefore, the float 3 needs to be configured so that the liquid does not flow in and out. There is. It is preferable that at least the portion of the float 3 facing the sleeve 2 is made of a material that is difficult to magnetize.
- the liquid level sensor 1 includes a plurality of resistors provided inside or outside the sleeve 2 and connected in series, and both ends (positive electrode side end portion 4a and negative electrode side end portion 4b) are always connected to a DC power supply. It has a connected resistance row 4.
- the positive electrode side end portion 4a is the end portion of both ends of the resistance row 4 connected to the positive electrode of the DC power supply
- the negative electrode side end portion 4b is the end portion of both ends of the resistance row 4 opposite to the positive electrode side end portion 4a. It is the end of.
- the resistance row 4 has a function of converting the position information of the float 3, that is, the liquid level, into an electric liquid level signal in combination with the grounding means 5 described later.
- the plurality of grounding means 5 provided inside the sleeve 2 corresponding to the connecting portions 4c of the adjacent resistors in the resistance row 4 are arranged in the order of the plurality of resistors along the longitudinal direction of the sleeve 2, that is, the vertical direction. It is preferable that they are arranged in parallel (that is, between the connection portion 4c and the ground) in the same order as or in the reverse order of.
- the plurality of resistors constituting the resistance row 4 are preferably those having good resistance value accuracy, and when the resistance row 4 is provided inside the sleeve 2, the one having a small installation area is preferable.
- a resistor for example, a chip resistor or the like can be used.
- the number of resistances constituting the resistance row 4 can be appropriately selected depending on the length of the range of the liquid level to be detected, the size of the resistance, the detection accuracy of the liquid level, and the like.
- wirings, lead wires, terminals, etc. that electrically connect adjacent resistances in the resistance row 4 and conductors having the same potential as these are referred to as connection portions 4c.
- the liquid level sensor 1 has a plurality of grounding means 5 provided inside the sleeve 2 corresponding to the connecting portions 4c of adjacent resistors in the resistance row 4.
- the plurality of grounding means 5 are configured so that the corresponding connecting portion 4c is grounded when the float 3 is positioned within a predetermined distance and the corresponding connecting portion 4c is not grounded when the float 3 is not positioned within a predetermined distance.
- the number of grounding means 5 may be equal to or smaller than the number of resistors included in the resistance row 4. When the number of grounding means 5 is equal to the number of resistors, the liquid level detection accuracy is the highest. If the grounding means 5 is thinned out from that, the liquid level detection accuracy is lowered.
- grounding the connection portion means electrically connecting the connection portion 4c to the ground of the electric circuit constituting the liquid level sensor 1.
- the connection portion 4c When the connection portion 4c is connected to the ground, the negative electrode side end portion 4b originally connected to the ground in the resistance row 4 and the grounded connection portion 4c have the same potential, so that the resistance between them becomes the same. No current flows through, and current flows only through the resistance between the positive electrode side end 4a and the grounded connection 4c.
- This electric signal is output to the outside as a liquid level signal which is a signal corresponding to the liquid level by using the liquid level signal output means 6 described later.
- the plurality of grounding means 5 included in the liquid level sensor 1 according to the present invention ground the corresponding connecting portion 4c when the float 3 is in a close position.
- the number of grounding means 5 operated at this time may be one closest to the float or a plurality of adjacent grounding means 5. Specifically, only one grounding means 5 closest to the float 3 may be operated so as to ground the connection portion 4c corresponding to the grounding means 5. Alternatively, at the same time as one grounding means 5 closest to the float 3, the grounding means 5 closest to the second or the grounding means 5 closest to the second and third is activated, and the connection portion corresponding to each of these grounding means 5 is operated. It may be configured to ground 4c.
- any grounding means 5 operates until the position of the float 3 changes and the adjacent grounding means 5 operates.
- the distance between the grounding means 5 and the strength of the magnetic field generated by the magnet which will be described later, so that such a moment does not occur, and it is within the range of the position of the float 3 in which the adjacent grounding means 5 operates. It is more preferable to configure the parts so that they overlap each other.
- the plurality of grounding means 5 operate at the same time.
- FIG. 1 is a schematic graph showing an example of the range of the liquid level at which each of the sensors S1 to S25 constituting the 25 grounding means 5 operates and the magnitude of the liquid level signal output when each sensor operates.
- the horizontal axis represents the liquid level [mm]
- the vertical axis represents the magnitude [V] of the liquid level signal.
- the range of the liquid level at which each sensor operates and the range of the liquid level at which adjacent sensors operate slightly overlap each other.
- the liquid level sensor 1 is located between the positive electrode side end 4a, which is the end of both ends of the resistance row connected to the positive electrode of the DC power supply, and the connection portion 4c grounded by the grounding means 5. It has a liquid level signal output means 6 configured to take out a detected electric signal as a liquid level signal which is a signal corresponding to the liquid level.
- the electric signal between the positive electrode side end portion 4a taken out as a liquid level signal and the connection portion 4c grounded by the grounding means 5 may be a voltage signal or a current signal.
- the electric signal taken out as a liquid level signal is a voltage signal
- the voltage range can be, for example, 1.0 V or more and 5.0 V or less, and depending on the application, 0.0 V or more and 5.0 V or less. You can also.
- the electric signal is a current signal
- the range of the current can be, for example, 4 mA or more and 20 mA or less.
- the liquid level signal extracted in this way is a pseudo-analog signal including liquid level information.
- the liquid level can be detected by electrically processing the liquid level signal by a known method.
- the grounding means 5 corresponding to the connection portion 4c closest to the positive electrode side end portion 4a of the resistance row 4 and the grounding means corresponding to the connection portion 4c closest to the negative electrode side end portion 4b It is not particularly limited whether 5 is provided at the upper limit position or the lower limit position of the liquid level to be detected.
- the grounding means 5 corresponding to the connecting portion 4c closest to the positive electrode side end portion 4a of the resistance row 4 is provided at the lower limit position of the liquid level, the higher the liquid level, the more the grounding means is grounded with the positive electrode side end portion 4a.
- the number of resistances existing between the connection 4c grounded by the means 5 increases.
- the strength of the liquid level signal increases as the liquid level rises. Further, when the DC power supply is a constant voltage power supply and the electric signal taken out as a liquid level signal is a current signal, the strength of the liquid level signal decreases as the liquid level rises.
- the grounding means 5 corresponding to the connection portion 4c closest to the negative electrode side end portion 4b of the resistance row 4 is provided at the lower limit position of the liquid level, the higher the liquid level, the higher the positive electrode side end portion 4a. The number of resistors existing between the grounded connection 4c and grounded by the grounding means 5 is reduced.
- the strength of the liquid level signal decreases as the liquid level rises. Further, when the DC power supply is a constant voltage power supply and the electric signal taken out as a liquid level signal is a current signal, the strength of the liquid level signal increases as the liquid level rises. In either case, since the obtained liquid level signal can be electrically processed and converted into liquid level information, there is no problem in practical use.
- the behavior of the liquid level sensor when any one of the sensors constituting the plurality of grounding means 5 fails will be described in detail below.
- S (2), S (3) ... S (n-1) and S (n) are arranged in the order from the lower limit to the upper limit of the liquid level, and only one grounding means 5 closest to the float 3 is provided.
- a liquid level sensor configured to operate is described.
- the sensor as the grounding means 5 near the position of the float 3 corresponding to the liquid level is activated, and the sensor of each sensor is activated.
- the liquid level signal corresponding to the position is output.
- the third sensor S (3) from the lower limit of the liquid level is always in the "ON" state due to a failure (the corresponding connection is operated regardless of the position of the float 3). It is assumed that the portion 4c is in a state of being grounded). In this case, the value of the output liquid level signal changes as shown in Table 2 below as the liquid level rises.
- the liquid level signal corresponding to the position of the grounding means 5 corresponding to the unit 4c is output. Therefore, as shown in Table 2, even if the liquid level is higher than that of the third sensor S (3) from the lower limit, the same liquid level signal (output) as when the liquid level is at the position of the sensor S (3). 3) is output. However, when the liquid level is at the same position as the sensor S (3) or at a position lower than the sensor S (3), it is the first, second and third from the lower limit as in the normal state shown in Table 1.
- the liquid level signals (output 1, output 2 and output 3) corresponding to the positions of the sensors S (1), S (2) and S (3) are correctly output.
- the operating state of the third sensor S (3) from the lower limit of the liquid level is in an "indefinite" state due to a failure (for example, it operates or does not operate regardless of the position of the float 3 or outputs an abnormal signal. It is assumed that it is in the state of In this case, the value of the output liquid level signal changes as shown in Table 3 below as the liquid level rises.
- the operating state of the sensor S (3) is "undefined".
- the liquid level signal is also indefinite.
- the positions of the first and second sensors S (1) and S (2) from the lower limit are the same as in the normal state shown in Table 1.
- the liquid level signals (output 1 and output 2) corresponding to the above are output correctly.
- the sensor S (3) is always in the "OFF" state (a state in which the sensor S (3) does not operate regardless of the position of the float 3 and the corresponding connection portion 4c is not grounded) due to a failure.
- the value of the output liquid level signal changes as shown in Table 4 below as the liquid level rises.
- the liquid level sensor 1 As described above with reference to Tables 2 to 4, in the liquid level sensor 1 according to the present invention, a part of the plurality of grounding means 5 fails and it becomes impossible to operate normally. Even in such a case, not all the functions as the liquid level sensor are lost, and a part of the range of the liquid level to be detected can be detected in the same manner as in the normal state. That is, it can be said that the liquid level sensor having such a configuration has high redundancy.
- FIG. 2 is a schematic graph showing an example of the range of the liquid level at which each of the sensors S1 to S25 constituting the 25 grounding means 5 operates and the magnitude of the liquid level signal output when each sensor operates. Is. As shown in the graph of FIG. 2, in this example, the distance between the grounding means 5 and the generation of the magnet provided in the float 3 so that at least two adjacent grounding means 5 operate corresponding to the position of the float 3. The strength of the magnetic field is adjusted. Except for this point, FIG. 2 is a graph similar to that of FIG. In the liquid level sensor having such a configuration, as illustrated in Table 4, even when the sensor S (3) is always in the “OFF” state due to a failure, the liquid level signal is transmitted as the liquid level rises. The values vary as shown in Table 5 below.
- the liquid level sensor 1 outputs a warning signal when the float is positioned within a predetermined distance from a warning position, which is a predetermined position within the movable range of the float 3, and floats within a predetermined distance from the warning position.
- the warning signal output means 7 configured not to output the warning signal when the 3 is not located is provided.
- the warning signal output means 7 may be configured to output a warning signal when the float 3 is located outside the range in which the plurality of grounding means 5 are provided.
- the float 3 is located outside the range in which the grounding means 5 is provided” means that the float 3 is within the range from the upper limit position to the lower limit position of the liquid level to be detected by the plurality of grounding means 5. Does not exist, and the float 3 exists above the position of the upper limit of the liquid level or below the position of the lower limit of the liquid level. In this case, a predetermined position above the upper limit position of the liquid level or below the lower limit position of the liquid level becomes the warning position, and the warning signal output means 7 has the float 3 above the upper limit position. If it is located, an upper limit warning signal can be output, and if the float 3 is located below the lower limit position, a lower limit warning signal can be output. In the present invention, the warning signal output means 7 may be configured to output only one of the upper limit warning signal and the lower limit warning signal.
- a warning signal is output when the float 3 is present at a predetermined position (within a predetermined distance) within a range in which a plurality of grounding means 5 are provided.
- the warning signal output means 7 may be configured.
- the above-mentioned "predetermined position" within the range in which the plurality of grounding means 5 are provided becomes the warning position, and when the float 3 is present at the warning position (within a predetermined distance), the warning signal output means 7 Can output a warning signal.
- one or more alert positions can be set as needed.
- the warning signal output means 7 is provided as an independent configuration separate from the liquid level signal output means 6. Therefore, even if an error occurs somewhere in the liquid level signal output means 6 and the liquid level signal does not indicate the actual liquid level, the warning signal such as the upper limit warning signal and / or the lower limit warning signal is warned.
- the signal can be generated normally. As a result, the reliability of the liquid level sensor can be improved as compared with the conventional technique not provided with the independent warning signal output means 7.
- the additional grounding means 7a constituting the warning signal output means 7 is movable outside or within the range in which the grounding means 5 constituting the liquid level signal output means 6 is provided. It can be provided at a predetermined position within the range. As described above, if the grounding means 7a is added outside the position of the upper limit of the liquid level, the upper limit warning signal can be generated, and if the grounding means 7a is added outside the position of the lower limit of the liquid level, the lower limit warning signal can be generated. can. Alternatively, both of these may be added.
- the added grounding means 7a constituting the warning signal output means 7 may be provided at the same position as any of the plurality of grounding means 5 constituting the liquid level signal output means 6, and may be inserted between the adjacent grounding means 5. May be provided.
- the configuration common to the liquid level signal output means 6 can be used. It is preferable because it can be done.
- the common configuration is, for example, a magnet or a light source (described later) installed on the float 3.
- a means different from the grounding means 5 constituting the liquid level signal output means 6, such as a limit switch, may be adopted.
- the float 3 when the float 3 is located within a predetermined distance from the grounding means 5 corresponding to the connecting portion 4c closest to the positive electrode side end portion 4a among the plurality of grounding means 5, or the positive grounding means.
- the resistance row 4 opposite to the positive side end 4a of the positive grounding means 8a and / or the plurality of grounding means 5 for grounding the positive side end 4a when the float 3 is located outside.
- the negative electrode side end portion 4b It has a negative grounding means 8b configured to ground the connection portion 4c closest to the ground.
- the resistance value (between the positive electrode side end portion 4a and the negative electrode side end portion 4b) is the smallest.
- the positive electrode side end portion 4a is the most.
- the operation of the grounding means 5 corresponding to the close connection portion 4c may be stopped, and the grounding at the connection portion 4c may be cut off.
- the grounding of the resistance row 4 on the positive electrode side is cut off in this way, the resistance value of the resistance row 4, which had been the smallest until then, suddenly jumps to the largest value.
- the magnitude of the signal also jumps suddenly.
- liquid level information indicated by the liquid level signal output means 6 and the liquid level information indicated by the warning signal output means 7 do not match, causing confusion for the operator.
- a similar defect is an accidental error in the liquid level signal output means 6 when the position of the float 3 is near the grounding means 5 corresponding to the connection portion 4c closest to the positive electrode side end 4a or the negative electrode side end 4b. Can also occur if
- the grounding means 5 when the grounding means 5 is near the grounding means 5 corresponding to the connecting portion 4c closest to the positive electrode side end portion 4a or outside the grounding means 5, the positive electrode is grounded.
- the positive electrode side end 4a of the resistance row 4 is forcibly grounded by the means 8a.
- the warning signal output means 7 includes a logic inversion means 9.
- the logic inversion outputs a signal opposite to the ON and OFF of the input signal, and can be configured by, for example, a transistor.
- the warning signal output means 7 is configured by the grounding means 7a added as described above, in the configuration lacking the logic inversion means 9, when the output signal from the added grounding means 7a is ON (that is, the float 3).
- the warning signal is turned on (when operating according to the approach of), and an alarm can be generated based on this.
- the wiring connecting the sensor unit 1a, which is a part including the plurality of grounding means 5, and the control unit 1b, which is a part for supplying power to the sensor unit 1a and extracting a signal from the sensor unit 1a is disconnected.
- the output signal from the added grounding means 7a is turned off. Then, even when the alarm should be generated, the warning signal is not turned on, so that the alarm does not occur.
- the warning signal output means 7 is configured so that the warning signal output is logically inverted and an alarm is generated when the warning signal is OFF. Then, when the output signal from the added grounding means 7a is ON (that is, when the float 3 is operating in response to the approach), the warning signal is turned OFF to generate an alarm, and the added grounding is performed. When the output signal from the means 7a is OFF (that is, when the operation corresponding to the approach of the float 3 is not performed), the warning signal can be turned ON to prevent the alarm from being generated. As a result, the warning signal is turned off and an alarm is generated in both cases when the output signal from the added grounding means 7a is ON and when an error occurs in the signal wiring, so that the fail-safe function is provided. Is achieved.
- the plurality of grounding means 5 in the present invention are any means as long as they can ground the connecting portion 4c corresponding to the grounding means 5 located at a position close to the float 3 among the connecting portions 4c of adjacent resistors. May be adopted.
- the float 3 is provided with a magnet, and the grounding means 5 operates when the magnetic field generated by the magnet is detected (grounds the corresponding connecting portion 4c) to generate a magnetic field generated by the magnet. It is configured so that it does not operate when it is not detected (the corresponding connection is not grounded).
- the grounding means 5 is configured by either a reed switch or a Hall IC.
- a reed switch is a mechanical switch that closes when a magnetic field is detected and opens when it does not.
- a Hall IC is an electric element composed of a Hall element and a switching circuit. When the Hall element detects a magnetic field, the output terminal is grounded to the ground, and when not, the output terminal is cut off from the ground. be.
- the above-mentioned configuration including a magnet and a reed switch or a Hall IC can also be applied to the warning signal output means 7.
- the sleeve 2 and the float 3 are made of a material that transmits light
- the float 3 is provided with a light source
- the grounding means 5 is made up of a switch that operates by sensing light.
- the DC power supply includes a constant current circuit, and the resistance values of the resistors constituting the resistance row 4 are all the same.
- the constant current circuit keeps the current value flowing in the resistance row 4 at a constant value.
- the magnitude of the voltage signal is proportional to the total resistance value of the resistance between the positive side end portion 4a of the resistance row 4 and the grounded grounding means 5. do. Therefore, if the resistance values of all the resistors are the same and a plurality of grounding means 5 are arranged at equal intervals, the magnitude of the voltage signal, which is a liquid level signal, is grounded with the positive electrode side end 4a of the resistance row 4.
- the warning signal output means 7 is configured by a power source different from the DC power source (+ Vcc) used for extracting the liquid level signal described above.
- the warning signal output means 7 is configured with a separate and independent power supply different from the DC power supply used for the resistance row 4, the reliability of the warning signal output means 7 can be further improved.
- FIG. 3 is a perspective view showing an example of the resistance row 4 and the grounding means 5 according to the present invention.
- 25 chip resistors constituting the resistance row 4 and 25 Hall ICs constituting the grounding means 5 are alternately soldered onto an elongated plate composed of a printed wiring board. It has been implemented.
- the size of the installation area of the chip resistor is 0.5 mm in length and 1.0 mm in width.
- the height of the Hall IC is 3.2 mm, the pitch interval is 2.5 mm, and the Hall ICs are arranged in the vertical direction in FIG.
- the Hall IC detects the magnetic field in the vertical direction shown in FIG.
- the pitch spacing of the Hall ICs is limited by the size of the Hall ICs themselves and the size of the chip resistors placed between the Hall ICs.
- an additional grounding constituting the warning signal output means 7 is performed on the upper side of the one located at the top and the lower side of the one located at the bottom.
- a Hall IC as means 7a is mounted.
- two transformers are mounted as logic inversion means 9 for logically inverting the outputs of these two Hall ICs, respectively.
- the power supply to these Hall ICs and transistors is performed by a DC power source different from the DC power source always connected to the Hall IC constituting the grounding means 5. Is preferable.
- FIG. 4 is a partial cross-sectional view showing an example of the liquid level sensor 1 according to the present invention.
- a sleeve 2 is provided in the tank in the vertical direction, and the tip of the printed wiring board shown in FIG. 3 is inserted into the sleeve 2 and fixed. That is, in this example, not only the 25 Hall ICs constituting the grounding means 5 but also the 25 chip resistors constituting the resistance row 4 are provided inside the sleeve 2.
- the sleeve 2 is inserted into the hole in the center of the float 3, and the float 3 is configured to move up and down along the sleeve 2 as the liquid level in the tank fluctuates.
- the float 3 is provided with a ring-shaped magnet (not shown), and the magnetic field generated by the magnet operates the grounding means 5 near the float 3 and the added grounding means 7a.
- the output of the liquid level signal and the warning signal generated by the printed wiring board provided inside the sleeve 2 is taken out from the upper part of the printed wiring board and guided to the outside via an output terminal (not shown).
- FIG. 5 is a circuit diagram showing an example of the liquid level sensor according to the present invention.
- the liquid level sensor 1 is operated by a constant current.
- the left half of FIG. 5 shows the circuit of the sensor unit 1a composed of the printed wiring board illustrated in FIG. 3, and the right half shows the circuit of the control unit 1b separated from the sensor unit 1a.
- the sensor unit 1a and the control unit 1b are connected by a plurality of wirings.
- R1, R2, ... R (n-1), R (n) included in the sensor unit 1a are n resistances connected in series constituting the resistance row 4 of the present invention.
- the resistance R1 is connected to the resistance R0 via the output terminal LQout, and a total of n + 1 resistances including the resistance R0 constitute the resistance row 4.
- n resistances R1 to R (n) are provided inside the sleeve 2, and one resistance R0 is the sleeve 2. It is provided outside.
- the positive electrode side end portion 4a and the negative electrode side end portion 4b of the resistance row 4 are always connected to the DC power supply (+ Vcc).
- the direct current flowing in the resistance row 4 is controlled to a constant value, for example, 1 mA by a constant current circuit (CCC).
- the second resistance R1 in the resistance row 4 from the positive electrode side end 4a corresponds to the lower limit of the liquid level
- the resistance R (n) closest to the negative electrode side end 4b is the liquid level. It corresponds to the upper limit.
- S (1), ... S (n-1), S (n) are n grounding means 5 for grounding the connecting portions 4c of adjacent resistors.
- the grounding means 5 is composed of a Hall IC and includes an input electrode (+ Vs), an output electrode (OUT), and a ground electrode (GND).
- a voltage (+ Vcc) for operating the Hall IC is applied between the input electrode (+ Vs) and the ground electrode (GND).
- Each output electrode (OUT) is connected to the connection portion 4c of the resistance row 4.
- the ground electrode (GND) and output electrode (OUT) of the Hall IC (S) are insulated in the non-operating state.
- the Hall IC (S) senses the magnetic field generated by the magnet, it goes into operation, the resistance between the ground electrode (GND) and the output electrode (OUT) becomes almost zero, and the output electrode (OUT) is substantially grounded. It becomes the state that was done.
- no current flows through the resistance between the resistance R (n) closest to the negative electrode side end 4b to the connection portion 4c grounded by the grounding means 5, and the resistance R0 closest to the positive electrode side end 4a is used.
- a current flows through the resistance between the connection portions 4c grounded by the grounding means 5 and the connection portion 4c closest to the positive electrode side end portion 4a.
- the voltage signal corresponding to this current is output to the output terminal (LQout) as a liquid level signal via the buffer amplifier (U1).
- the grounding means 5 (S (1)) corresponding to the connection portion 4c closest to the positive electrode side end portion 4a is on the lower limit side of the liquid level, and is located on the connection portion 4c closest to the negative electrode side end portion 4b.
- N grounding means 5 are arranged so that the corresponding grounding means 5 (S (n)) is on the upper limit side of the liquid level.
- the resistance values from the resistors R1 to R (n) are all the same. Therefore, as the liquid level rises, the number of resistances through which the current flows increases almost linearly. That is, a proportional relationship is established between the position of the float and the magnitude of the liquid level signal.
- the liquid level signal is generated in the range of 1.0 V to 5.0 V. In order to set the lower limit of the liquid level signal to 1.0 V, the resistance value of the resistor R0 is set to 1 k ⁇ .
- a warning signal output means 7 for outputting a lower limit warning Lout as a warning signal is provided.
- An additional grounding means 7a (S (L)) to be configured is provided.
- the added grounding means 7a (S (L)) is operated by a DC power supply common to the DC power supply (+ Vcc) that drives the resistance row 4, but is different from the resistance row 4 in that it does not have a constant current circuit.
- the positive electrode grounding means 8a configured by the photocoupler (PL2) is activated, and the connection portion 4c between the resistance R0 and the resistance R1 is grounded.
- the liquid level signal shows a lower limit of 1.0 V regardless of the state of the grounding means 5.
- a warning signal output means 7 for outputting an upper limit warning Hout as a warning signal is provided.
- An additional grounding means 7a (S (H)) to be configured is provided.
- This current signal is logically inverted by the transition QH1 which is the logic inversion means 9, the terminal of the upper limit alarm Hout is turned off, and the upper limit alarm is generated at the output terminal (LQ_Hout) via the photocoupler (PH1).
- the added grounding means 7a (S (H)) is also operated by a DC power supply common to the DC power supply (+ Vcc) that drives the resistance row 4, but does not have a constant current circuit.
- the warning signal output means 7 that generates the upper limit alarm is not interlocked with the positive electrode grounding means 8a.
- the warning signal output means 7 for generating the upper limit alarm and the negative electrode grounding means 8b may be interlocked with each other.
- the negative electrode grounding means 8b is activated at the same time as the upper limit alarm is generated, and the connection portion 4c closest to the negative electrode side end portion 4b (the connection portion 4c between the resistance R (n) and the resistance R (n-1)). May be configured to be grounded. According to this configuration, even if an abnormality occurs in the grounding means 5 corresponding to the connecting portion 4c closest to the negative electrode side end portion 4b and the connecting portion 4c cannot be grounded, the grounding means 5 can be used.
- connection portion 4c When the float is located within a predetermined distance or when the float is located outside the grounding means 5, the connection portion 4c can be grounded by the negative electrode grounding means 8b, so that it is closest to the negative electrode side end portion 4b.
- the liquid level signal corresponding to the position of the grounding means 5 corresponding to the connection portion 4c can be taken out. Further, according to the negative electrode grounding means 8b, an error accidentally occurs in the liquid level signal output means 6 when the position of the float 3 is near the grounding means 5 corresponding to the connecting portion 4c closest to the negative electrode side end portion 4b. It is possible to prevent the above-mentioned problems that may occur when they occur.
- the output value of the upper limit alarm output when the added grounding means 7a (S (H)) constituting the warning signal output means 7 for generating the upper limit alarm is grounded is the liquid level signal.
- the configuration of the resistance row 4 may be adjusted so as to match the upper limit value (for example, 5.0 V).
- connection portion 4c closest to the positive electrode side end portion 4a may be grounded instead of the positive electrode side end portion 4a as described above. According to this configuration, at least one of the plurality of sensors S (1) to S (n) constituting the plurality of grounding means 5 always grounds the corresponding connection portion 4c regardless of the position of the float. Therefore, it is preferable because the logic circuit and the liquid level signal are matched.
- FIG. 6 is a circuit diagram showing another example of the liquid level sensor according to the present invention.
- the liquid level sensor 1 is driven at a constant voltage.
- the resistance row 4 is composed of n + 1 resistances from R0 to R (n) provided inside the sleeve 2, and the positive electrode side end portion 4a and the negative electrode side end portion 4b thereof are constantly connected to a DC power supply (+ Vcc). Be connected.
- the resistance R0 is provided as a load resistance for preventing the DC power supply (+ Vcc) from being short-circuited when the grounding means S (1) is operated.
- the grounding means 5 (S (1)) corresponding to the connection portion 4c closest to the positive electrode side end portion 4a is on the lower limit side of the liquid level, and is located on the connection portion 4c closest to the negative electrode side end portion 4b.
- N grounding means 5 are arranged so that the corresponding grounding means 5 (S (n)) is on the upper limit side of the liquid level. Therefore, as the liquid level rises, the number of resistances to which the voltage is applied increases, and the current flowing through the resistance train becomes smaller. That is, the magnitude of the liquid level signal output to the output terminal (LQout) changes non-linearly as the liquid level rises.
- FIG. 7 is a schematic diagram showing an example of the operation of the liquid level sensor according to the present invention.
- This embodiment is an example of the constant current drive shown in FIG.
- the horizontal axis in the figure represents the position of the float measured from the lower limit position in mm.
- the vertical axis represents the liquid level signal actually measured as a voltage signal in V units.
- the liquid level signal is adjusted to be 1.0 V when the float is in the lower limit position and 5.0 V when the float is in the upper limit position.
- the liquid level signal is shown by a fine step-like graph, and it can be seen that a pseudo-analog signal having excellent linearity with respect to the liquid level is output.
- the position of the float when the warning signal output means 7 is activated and the lower limit warning (L) and the upper limit warning (H) as warning signals are output is shown by a thick line.
- the liquid level signal When the float is in the lower limit position in FIG. 7, if some error occurs in the liquid level sensor 1 and the grounding means 5 does not operate normally, the liquid level signal is as shown by the dotted line in the figure. There is a risk of jumping to 0V.
- the warning signal output means 7 including the added grounding means 7a is configured by an electric circuit different from that of the liquid level signal output means 6, the warning signal (lower limit warning) itself is normally generated. do.
- the positive electrode grounding means 8a when the positive electrode grounding means 8a operates, the liquid level signal maintains 1.0 V as shown by the solid line in the figure, so that the liquid level signal and caution are given. It matches the signal and does not cause confusion for the operator.
- Liquid level sensor 1a Sensor unit 1b Control unit 1'Liquid level sensor (conventional technology) 2 Sleeve 3 Float 4 Resistance row 4a Positive electrode side end 4b Negative electrode side end 4c Connection part 5 Grounding means 6 Liquid level signal output means 7 Warning signal output means 7a Additional grounding means 8a Positive electrode grounding means 8b Negative electrode grounding means 9 Logic Inversion means
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Level Indicators Using A Float (AREA)
Abstract
液位センサ1は、鉛直方向に設けられたスリーブ2と、液位の変動に伴いスリーブに沿って移動するフロート3と、抵抗列4と、スリーブの内部に設けられた複数の接地手段5と、正極側端部4aと接地手段5によって接地された接続部との間において検出される電気信号を液位に対応する信号である液位信号として取り出す液位信号出力手段6とを有し、フロート3の可動範囲内の所定の位置である警戒位置から所定の距離以内にフロート3が位置するときに警戒信号を出力する警戒信号出力手段7をさらに有する。これにより、コンパクトで信頼性の高い液位センサを実現する。
Description
この発明は、液位センサに関する。
液位に関する情報を電気信号に変換するタイプの液位センサが知られている。
例えば、図8に例示された従来技術に係る液位センサ1’は、鉛直方向に設けられたスリーブ2と、液位の変動に伴ってスリーブ2に沿って移動するフロート3と、フロート3が接近するとフロートに内蔵されたマグネットが発生する磁界によって作動する図示しないリードスイッチとによって構成されている。タンク内に複数の液位センサ1’を設けることによって、液位が例えば上限位置、中間位置又は下限位置のいずれの位置にあるかを知ることができる。
また、例えば、特許文献1には、複数の抵抗器を直列に接続した抵抗列と、抵抗器の接続部に電流を供給する複数のリードスイッチとで構成された液位センサの発明が記載されている。この液位センサにおいては、フロートと連動する磁力源の位置に応じてリードスイッチが閉じると、接続部を経由して抵抗列の一部に電流が供給される。リードスイッチが閉じる位置によって電流が流れる部分の抵抗値が変化する。この抵抗値を検知することにより、抵抗値に対応した液体の残量を検出することができる。
図8に例示された液位センサ1’は、液位が特定の位置にあるかどうかについてピンポイントで検知することができる。また、構造がシンプルなため信頼性が高い。しかし、検知することができる液位の数に応じた数の液位センサを設けなければならない。このため、1つの装置において検知しようとする液位の数を増やすためには設置する液位センサの数を増やす必要があり、設置のためのコストが増大したり、タンクに貯蔵することができる液体の容積が減ったりするという課題がある。
一方、特許文献1に記載された液位センサは、最も高い位置にあるリードスイッチと最も低い位置にあるリードスイッチとの間にある液位の高低を、リードスイッチを設ける間隔によって決定される精度にて疑似アナログ信号として検知することができる。しかし、図8に例示された液位センサと比べると構造が複雑になるため、故障に起因する誤った信号を出力するおそれがある。
本発明は、上記の課題に鑑みてなされたものであり、コンパクトで信頼性の高い液位センサを実現することを目的としている。
本発明に係る液位センサは、鉛直方向に設けられたスリーブと、液位の変動に伴いスリーブに沿って移動するように構成されたフロートと、直列に接続された複数の抵抗を含み両端が直流電源に常時接続された抵抗列と、抵抗列において隣り合う抵抗の接続部にそれぞれ対応してスリーブの内部に設けられた複数の接地手段と、抵抗列の両端のうち直流電源の正極と接続された方の端部である正極側端部と接地手段によって接地された接続部との間において検出される電気信号を液位に対応する信号である液位信号として取り出すように構成された液位信号出力手段と、を有する。複数の接地手段は、所定の距離以内にフロートが位置するときに対応する接続部を接地し所定の距離以内にフロートが位置しないときに対応する接続部を接地しないように構成されている。上記に加えて、本発明に係る液位センサは、フロートの可動範囲内の所定の位置である警戒位置から所定の距離以内にフロートが位置するときに警戒信号を出力し警戒位置から所定の距離以内にフロートが位置しないときに警戒信号を出力しないように構成された警戒信号出力手段をさらに有する。
上記の構成により、本発明に係る液位センサにおいては、フロートの位置が複数の接地手段が設けられている範囲内にあるときは、抵抗列から得られる液位信号によって液位を検知することができ、フロートの位置が警戒位置から所定の距離以内にあるときは、抵抗列とは別個の警戒信号出力手段が発する警戒信号を出力することができる。
本発明の好ましい実施の形態において、液位センサは、複数の接地手段のうち正極側端部に最も近い接続部に対応する接地手段から所定の距離以内にフロートが位置するとき若しくは当該接地手段よりも外側にフロートが位置するときに正極側端部を接地するように構成された正極接地手段及び/又は複数の接地手段のうち抵抗列の正極側端部とは反対側の端部である負極側端部に最も近い接続部に対応する接地手段から所定の距離以内にフロートが位置するとき若しくは当該接地手段よりも外側にフロートが位置するときに負極側端部に最も近い接続部を接地するように構成された負極接地手段を有する。正極接地手段を有する構成によれば、例えば、正極側端部に最も近い接続部に対応する接地手段に異常が発生して対応する接続部を接地することができない場合であっても、当該接地手段から所定の距離以内にフロートが位置するとき若しくは当該接地手段よりも外側にフロートが位置するときは正極接地手段によって正極側端部が接地されるため正極側端部に最も近い接続部に対応する接地手段の位置に対応する液位信号を取り出すことができる。また、負極接地手段を有する構成によれば、例えば、負極側端部に最も近い接続部に対応する接地手段に異常が発生して対応する接続部を接地することができない場合であっても、当該接地手段から所定の距離以内にフロートが位置するとき若しくは当該接地手段よりも外側にフロートが位置するときは負極接地手段によって負極側端部に最も近い接続部が接地されるため負極側端部に最も近い接続部に対応する接地手段の位置に対応する液位信号を取り出すことができる。
本発明によれば、1本のスリーブで構成された液位センサによって、液位信号に基づいて液位を高精度で検知することができると同時に、信頼性の高い警戒信号を発生させることができる。これにより、例えば本発明に係る液位センサをタンクに適用した場合には、タンクの貯液容量を損なうことなく液位を正確且つ確実に管理することができる。
本発明を実施するための形態について、以下詳細に説明する。以下の説明及び図面は本発明を実施するための形態の例を示したものであり、本発明を実施するための形態は、以下の説明及び図面に示された形態に限定されない。
本発明に係る液位センサ1は、鉛直方向に設けられたスリーブ2を有する。スリーブ2は、その長手方向が液体の液面に垂直な方向と一致するように固定される。スリーブ2は、外部のうち少なくとも一部が液体と接し、後述する接地手段5が内部に設けられる。すなわち、スリーブ2は、液位センサ1を構成する電子部品である接地手段5を液体から隔離するための保護管としての機能を有する。尚、後述する抵抗列4は、スリーブ2の内部に設けられてもよい。或いは、抵抗列4がスリーブ2の外部に設けられて、スリーブ2の内部に設けられた複数の接地手段5の各々とスリーブ2の外部に設けられた抵抗列4の複数の接続部4cの各々とが例えばリード線又はフレキシブルプリント基板などによって接続されていてもよい。
スリーブ2は、液位の変動に伴い移動する後述するフロート3のガイドとしての機能をも有する。本発明の好ましい実施の形態において、フロート3は、スリーブ2の横断面形状に対応する横断面形状を有する穴を有し、その穴にスリーブ2が差し込まれた状態で上下に移動する。スリーブ2の横断面形状は円形であってもよく、また、楕円形や多角形であってもよい。スリーブ2の横断面形状は、スリーブ2の長さ方向に沿って同一であることが、フロート3の安定な移動のために好ましい。
スリーブ2を構成する材料としては、液体に対する耐食性を有するものが好ましく、例えばステンレス鋼を用いることができる。後述するように、フロート3がマグネットを備え且つ接地手段5がマグネットの発生する磁界を検知して作動する場合は、接地手段5への磁界の到達及びスリーブ2の上下方向における移動を妨げないように、スリーブ2を構成する材料としては、磁化しにくいものを選択することが好ましい。
本発明に係る液位センサ1は、液位の変動に伴いスリーブ2に沿って移動するフロート3を有する。フロート3は浮力によって液面に浮遊するように構成される。典型的には、フロート3は中空構造を有する。本発明においては、フロート3の位置を検知することによって、液位を間接的に検知する。フロート3の内部(例えば中空部など)に液体が浸入するとフロート3と液面の位置関係が変化して液位の検出に誤差が生じるので、フロート3は液体の出入りが無いように構成する必要がある。フロート3のうち少なくともスリーブ2に面する部分は、磁化しにくい材料によって構成することが好ましい。
本発明に係る液位センサ1は、スリーブ2の内部又は外部に設けられ、直列に接続された複数の抵抗を含み、両端(正極側端部4a及び負極側端部4b)が直流電源に常時接続された抵抗列4を有する。正極側端部4aは抵抗列4の両端のうち直流電源の正極と接続された方の端部であり、負極側端部4bは抵抗列4の両端のうち正極側端部4aとは反対側の端部である。抵抗列4は、後述する接地手段5と組み合わされて、フロート3の位置情報、すなわち液位、を電気的な液位信号に変換する機能を有する。抵抗列4において隣り合う抵抗の接続部4cにそれぞれ対応してスリーブ2の内部に設けられた複数の接地手段5は、スリーブ2の長手方向、すなわち鉛直方向、に沿って複数の抵抗の並び順と同じ順序又は逆の順序に並列に(即ち、接続部4cとアースとの間に)配列されることが好ましい。抵抗列4に直流電源を常時接続することによって液位信号を常時監視することができるので、液位信号の信頼性が高まる。
抵抗列4を構成する複数の抵抗は、抵抗値の精度がよいものが好ましく、スリーブ2の内部に抵抗列4が設けられる場合は設置面積の小さいものが好ましい。このような抵抗としては、例えばチップ抵抗などを用いることができる。抵抗列4を構成する抵抗の数は、検知する液位の範囲の長さ、抵抗のサイズ及び液位の検知精度などによって適宜選択することができる。本発明において、抵抗列4において隣り合う抵抗同士を電気的に接続している配線、リード線、端子など及びこれらと同電位の導体を、接続部4cという。
本発明に係る液位センサ1は、抵抗列4において隣り合う抵抗の接続部4cにそれぞれ対応してスリーブ2の内部に設けられた複数の接地手段5を有する。複数の接地手段5は、所定の距離以内にフロート3が位置するときに対応する接続部4cを接地し所定の距離以内にフロート3が位置しないときに対応する接続部4cを接地しないように構成されている。本発明において、接地手段5の数は抵抗列4に含まれる抵抗の数と同等であってもよく、それよりも少ない数であってもよい。接地手段5の数が抵抗の数と同等であるときは、液位の検知精度が最も高くなる。接地手段5をそれよりも間引いて設けた場合は、液位の検知精度は下がる。
本発明において、「接続部を接地する」とは、液位センサ1を構成する電気回路のアースに接続部4cを電気的に接続することをいう。接続部4cがアースに接続されると、抵抗列4のうちもともとアースに接続されていた負極側端部4bと、接地された接続部4cとが同電位になるので、両者の間にある抵抗には電流が流れなくなり、正極側端部4aと、接地された接続部4cとの間にある抵抗にのみ電流が流れる。この電気信号を後述する液位信号出力手段6を用いて液位に対応する信号である液位信号として外部に出力する。
本発明に係る液位センサ1が有する複数の接地手段5は、フロート3が近い位置にあるときに、対応する接続部4cを接地する。このとき作動する接地手段5の数は、フロートに最も近い1個であってもよく或いは隣り合う複数個であってもよい。具体的には、フロート3に最も近い1個の接地手段5のみが作動して、当該接地手段5に対応する接続部4cを接地するように構成されていてもよい。或いは、フロート3に最も近い1個の接地手段5と同時に、2番目に近い接地手段5又は2番目及び3番目に近い接地手段5が作動して、これらの接地手段5にそれぞれ対応する接続部4cを接地するように構成されていてもよい。
但し、フロート3に近い1個の接地手段5のみが作動するように構成されている場合、フロート3の位置が変化して隣の接地手段5が作動するまでの間にどの接地手段5も作動していない(どの接続部4cも接地されていない)瞬間が生じて液位信号に予測不能なジャンプが生ずるおそれがある。したがって、このような瞬間が生じないように接地手段5の間隔及び後述するマグネットの発生磁界の強度などを調整しておくことが好ましく、隣り合う接地手段5が作動するフロート3の位置の範囲の一部が互いに重なり合うように構成することがより好ましい。このように隣り合う接地手段5が作動するフロート3の位置の範囲が互いに重なり合うように構成されている場合、当該範囲内にフロート3の位置があるときは複数の接地手段5が同時に作動している。この場合、作動中の接地手段5によって接地されている複数の接続部4cのうち抵抗例4の正極側端部4aに最も近い接続部4cに対応する接地手段5の位置に対応する液位信号が出力される。
図1は、25個の接地手段5を構成するセンサS1乃至S25の各々が作動する液位の範囲及び各々のセンサの作動時に出力される液位信号の大きさの例を示す模式的なグラフであり、横軸は液位[mm]を示し、縦軸は液位信号の大きさ[V]を示す。図1のグラフに示すように、各々のセンサが動作する液位の範囲と、隣り合うセンサが動作する液位の範囲とが、互いに僅かに重なりあっている。その結果、フロート3に最も近い1個の接地手段5のみが作動する構成を実質的に達成しつつ、フロート3の位置が変化して隣の接地手段5が作動するまでの間にどの接地手段5も作動していない瞬間が生ずる可能性を低減して、液位信号に予測不能なジャンプが生ずる可能性を低減することができる。
本発明に係る液位センサ1は、抵抗列の両端のうち直流電源の正極と接続された方の端部である正極側端部4aと接地手段5によって接地された接続部4cとの間において検出される電気信号を液位に対応する信号である液位信号として取り出すように構成された液位信号出力手段6を有する。ここで、液位信号として取り出される正極側端部4aと接地手段5によって接地された接続部4cとの間の電気信号は、電圧信号であってもよく、電流信号であってもよい。液位信号として取り出される電気信号が電圧信号である場合、電圧の範囲は例えば1.0V以上、5.0V以下とすることができ、用途によっては0.0V以上、5.0V以下とすることもできる。電気信号が電流信号である場合、電流の範囲は例えば4mA以上、20mA以下とすることができる。このようにして取り出された液位信号は、液位の情報を含む疑似アナログ信号である。液位信号を公知の方法により電気的に処理することによって、液位を検知することができる。
本発明に係る液位センサ1の構成において、抵抗列4の正極側端部4aに最も近い接続部4cに対応する接地手段5及び負極側端部4bに最も近い接続部4cに対応する接地手段5を、検知しようとする液位の上限の位置又は下限の位置のいずれに設けるかは、特に限定されない。例えば、抵抗列4の正極側端部4aに最も近い接続部4cに対応する接地手段5を液位の下限の位置に設けた場合は、液位が上がれば上がるほど正極側端部4aと接地手段5によって接地された接続部4cとの間に存在する抵抗の数が増加する。したがって、直流電源が定電流電源であり且つ液位信号として取り出される電気信号が電圧信号である場合、液位が上がれば上がるほど液位信号の強度は大きくなる。また、直流電源が定電圧電源であり且つ液位信号として取り出される電気信号が電流信号である場合、液位が上がれば上がるほど液位信号の強度は小さくなる。逆に、抵抗列4の負極側端部4bに最も近い接続部4cに対応する接地手段5を液位の下限の位置に設けた場合は、液位が上がれば上がるほど正極側端部4aと接地手段5によって接地された接続部4cとの間に存在する抵抗の数が減少する。したがって、直流電源が定電流電源であり且つ液位信号として取り出される電気信号が電圧信号である場合、液位が上がれば上がるほど液位信号の強度は小さくなる。また、直流電源が定電圧電源であり且つ液位信号として取り出される電気信号が電流信号である場合、液位が上がれば上がるほど液位信号の強度は大きくなる。いずれの場合でも、得られた液位信号を電気的に処理して液位の情報に変換することができるので、実用上は問題ない。
ここで、複数の接地手段5を構成するセンサのうちのいずれか1つが故障した場合における液位センサの挙動について以下に詳しく説明する。以下の説明においては、抵抗列4の正極側端部4aから負極側端部4bに向かって直列に存在するそれぞれの接続部4cに対応して複数の接地手段5を構成するセンサS(1)、S(2)、S(3)…S(n-1)及びS(n)が液位の下限から上限に向かう順に配設されており且つフロート3に最も近い1個の接地手段5のみが作動するように構成された液位センサについて説明する。
上記液位センサにおいて接地手段5を構成するセンサS(1)乃至S(n)が全て正常である場合、出力される液位信号の値は液位の上昇にしたがって以下の表1に示すように変化する。尚、表中に記載された「ON」は、接地手段5としてのセンサがフロート3の接近により作動して対応する接続部4cが接地されていることを意味し、1~nは液位の下限から上限へと上昇する液位及び対応するセンサの位置を示す。
上記のように、全てのセンサS(1)乃至S(n)が正常である場合は、液位に対応するフロート3の位置に近い接地手段5としてのセンサが作動して、それぞれのセンサの位置に対応する液位信号が出力される。
次に、センサS(1)乃至S(n)のうち液位の下限から3番目のセンサS(3)が故障により常に「ON」状態(フロート3の位置にかかわりなく作動して対応する接続部4cが接地されている状態)にある場合を想定する。この場合、出力される液位信号の値は液位の上昇にしたがって以下の表2に示すように変化する。
上述したように、複数の接地手段5が同時に作動している場合は、作動中の接地手段5によって接地されている複数の接続部4cのうち抵抗例4の正極側端部4aに最も近い接続部4cに対応する接地手段5の位置に対応する液位信号が出力される。したがって、表2に示すように、下限から3番目のセンサS(3)よりも液位が上昇していても、センサS(3)の位置に液位がある場合と同じ液位信号(出力3)が出力されてしまう。しかしながら、センサS(3)と同じ位置又はセンサS(3)よりも低い位置に液位があるときは、表1に示した正常時と同様に、下限から1番目、2番目及び3番目のセンサS(1)、S(2)及びS(3)の位置に応じた液位信号(出力1、出力2及び出力3)が正しく出力される。
次に、液位の下限から3番目のセンサS(3)の作動状態が故障により「不定」状態(例えば、フロート3の位置にかかわりなく作動したり作動しなかったり異常な信号を出力したりする状態)にある場合を想定する。この場合、出力される液位信号の値は液位の上昇にしたがって以下の表3に示すように変化する。
上記のように、故障しているセンサS(3)と同じ位置又はセンサS(3)よりも低い位置に液位があるときは、センサS(3)の作動状態が「不定」であるために液位信号のもまた不定となってしまう。しかしながら、センサS(3)よりも低い位置に液位がある場合は、表1に示した正常時と同様に、下限から1番目及び2番目のセンサS(1)及びS(2)の位置に応じた液位信号(出力1及び出力2)が正しく出力される。
次に、センサS(3)が故障により常に「OFF」状態(フロート3の位置にかかわりなく作動せず対応する接続部4cが接地されていない状態)にある場合を想定する。この場合、出力される液位信号の値は液位の上昇にしたがって以下の表4に示すように変化する。
この場合、フロート3がセンサS(3)の近くにあるときは、本来であればセンサ(3)が作動して「ON」状態となり対応する接続部4cを接地することにより本来の液位信号(出力3)が出力されるべきところ、故障によりセンサS(3)が「ON」状態とならず「OFF」状態のままである。したがって、フロート3がセンサS(3)の近くにあるときは、どの接地手段5も作動していない(どの接続部4cも接地されていない)状態となり、液位信号の大きさは抵抗列4によって出力され得る最大値となる。その結果、フロート3がセンサS(3)の位置を通過する際に液位信号の大きさが突然ジャンプして、例えばオペレータに混乱が生じるなどの不具合を招く虞がある。しかしながら、フロート3がセンサS(3)以外のセンサの近くにあるときは、表1に示した正常時と同様に、下限から1番目、2番目、…n-1番目及びn番目のセンサS(1)、S(2)、…S(n-1)及びS(n)の位置に応じた液位信号(出力1、出力2、…出力n-1及び出力n)が正しく出力される。
以上、表2乃至表4を参照しながら説明してきたように、本発明に係る液位センサ1においては、複数の接地手段5の一部が故障して正常に作動することが不可能となった場合に於いても、液位センサとしての機能の全てが失われる訳ではなく、検知しようとする液位の範囲の一部については正常時と同様に検知することができる。即ち、このような構成を有する液位センサは高い冗長性を備えると言うことができる。
ところで、表4に例示したように、一部のセンサが故障により常に「OFF」状態にある場合、当該センサの近くにフロート3が位置するときには、どの接地手段5も作動していない状態となり、液位信号の大きさが突然ジャンプするという不具合が生じる。これは、フロート3に最も近い1個の接地手段5のみが作動するように当該液位センサが構成されているためである。このような不具合を低減するためには、フロート3の位置に対応して少なくとも2個の隣り合う接地手段5が作動するように液位センサを構成することが好ましい。
図2は、25個の接地手段5を構成するセンサS1乃至S25の各々が作動する液位の範囲及び各々のセンサの作動時に出力される液位信号の大きさの例を示す模式的なグラフである。図2のグラフに示すように、この例においては、フロート3の位置に対応して少なくとも2個の隣り合う接地手段5が作動するように、接地手段5の間隔及びフロート3が備えるマグネットの発生磁界の強度などが調整されている。この点を除き、図2は図1と同様のグラフである。このような構成を有する液位センサにおいては、表4に例示したようにセンサS(3)が故障により常に「OFF」状態にある場合であっても、液位の上昇にしたがって液位信号の値は以下の表5に示すように変化する。
表5に示すように、本来であればセンサS(3)及びセンサS(4)が同時にON状態になっているべき位置にフロート3があるときであっても、故障によりセンサ(3)がOFF状態のままであるために、作動しているセンサのうち最も正極側端部に近いセンサがセンサS(4)になる。このため、フロート3が当該位置にあるときは本来であればセンサS(3)の位置に対応する液位信号(出力3)が出力されるべきであるにもかかわらず、センサS(4)の位置に対応する液位信号(出力4)が出力される。その結果、センサS(4)の位置に対応する液位信号(出力4)が出力される期間が長くなるものの、表4に例示したような「どの接地手段5も作動していない(どの接続部4cも接地されていない)状態」とはならない。その結果、フロート3がセンサS(3)の位置を通過する際に液位信号の大きさが突然ジャンプしてオペレータに混乱が生じるなどの不具合を招く虞が低減される。即ち、このような構成を有する液位センサは更に高い冗長性を備えると言うことができる。
次に、本発明において特徴的な警報機能の信頼性に関係する構成について説明する。本発明に係る液位センサ1は、フロート3の可動範囲内の所定の位置である警戒位置から所定の距離以内にフロートが位置するときに警戒信号を出力し警戒位置から所定の距離以内にフロート3が位置しないときに警戒信号を出力しないように構成された警戒信号出力手段7をさらに有する。例えば、複数の接地手段5が設けられている範囲よりも外側にフロート3が位置するときに警戒信号を出力するように警戒信号出力手段7を構成してもよい。「接地手段5が設けられている範囲の外側にフロート3が位置する」とは、複数の接地手段5によって検知しようとする液位の上限の位置から下限の位置までの範囲内にはフロート3が存在せず、液位の上限の位置よりも上側又は液位の下限の位置よりも下側にフロート3が存在することをいう。この場合、液位の上限の位置よりも上側又は液位の下限の位置よりも下側にある所定の位置が警戒位置となり、警戒信号出力手段7は、上限の位置よりも上側にフロート3が位置する場合は上限警戒信号を、下限の位置よりも下側にフロート3が位置する場合は下限警戒信号を、それぞれ出力することができる。本発明において、上限警戒信号又は下限警戒信号のいずれか一方のみを出力するように警戒信号出力手段7を構成してもよい。
上記に加えて又は上記に代えて、例えば、複数の接地手段5が設けられている範囲内の所定の位置(から所定の距離以内)にフロート3が存在するときに警戒信号を出力するように警戒信号出力手段7を構成してもよい。この場合、複数の接地手段5が設けられている範囲内の上記「所定の位置」が警戒位置となり、当該警戒位置(から所定の距離以内)にフロート3が存在するときに警戒信号出力手段7が警戒信号を出力することができる。いずれの場合においても、必要に応じて1つ又は2つ以上の警戒位置を設定することができる。
本発明において、警戒信号出力手段7は、液位信号出力手段6とは別個の独立した構成として設けられる。このため、仮に液位信号出力手段6のどこかにエラーが発生して、液位信号が実際の液位を示さなくなった場合であっても、上限警戒信号及び/又は下限警戒信号などの警戒信号を正常に発生させることができる。これにより、独立した警戒信号出力手段7を備えない従来技術に比べて液位センサの信頼性を高めることができる。
本発明に係る警戒信号出力手段7の具体的な構成は特に限定されない。好ましくは、警戒信号出力手段7を構成する追加された接地手段7aを、液位信号出力手段6を構成する接地手段5が設けられている範囲の外側又は当該範囲内であってフロート3の可動範囲内の所定の位置に設けることができる。上述したように、液位の上限の位置の外側に接地手段7aを追加すれば上限警戒信号を、液位の下限の位置の外側に接地手段7aを追加すれば下限警戒信号を発生させることができる。あるいは、これらの双方を追加してもよい。警戒信号出力手段7を構成する追加された接地手段7aは、液位信号出力手段6を構成する複数の接地手段5のいずれかと同じ位置に設けてもよく、隣り合う接地手段5の間に挿入して設けてもよい。
これらの追加された接地手段7aを、液位信号出力手段6を構成する接地手段5の作動原理と同じ作動原理で作動させれば、液位信号出力手段6と共通する構成を使用することができるので、好ましい。ここで、共通する構成とは、例えば、フロート3に設置されたマグネット又は光源(後述する)など、である。あるいは、警戒信号出力手段7を構成する追加された接地手段7aとして、液位信号出力手段6を構成する接地手段5とは異なる手段、例えばリミットスイッチなど、を採用してもよい。
本発明の好ましい実施の形態においては、複数の接地手段5のうち正極側端部4aに最も近い接続部4cに対応する接地手段5から所定の距離以内にフロート3が位置するとき若しくは正極接地手段よりも外側にフロート3が位置するときに正極側端部4aを接地する正極接地手段8a及び/又は複数の接地手段5のうち抵抗列4の正極側端部4aとは反対側の端部である負極側端部4bに最も近い接続部4cに対応する接地手段5から所定の距離以内にフロート3が位置するとき若しくは当該接地手段よりも外側にフロート3が位置するときに負極側端部4bに最も近い接続部4cを接地するように構成された負極接地手段8bを有する。上述のとおり、正極側端部4aに最も近い接続部4cに対応する接地手段5の近くにフロート3が位置するとき、抵抗列4を構成する全ての抵抗がバイパスされるため、抵抗列4の(正極側端部4aと負極側端部4bとの間の)抵抗値は最も小さくなる。ところが、正極側端部4aに最も近い接続部4cに対応する接地手段5の近くから接地手段5が設けられている範囲の外側へとフロート3が通り過ぎた場合は、正極側端部4aに最も近い接続部4cに対応する接地手段5の作動が停止し、接続部4cにおける接地が遮断されるおそれがある。このように正極側における抵抗列4の接地が遮断されると、それまでは最も小さい値になっていた抵抗列4の抵抗値が突然最も大きい値にジャンプするため、これに対応して液位信号の大きさも突然ジャンプする。そうすると、液位信号出力手段6が示す液位の情報と、警戒信号出力手段7が示す液位の情報とが整合しなくなり、オペレータに混乱が生じる。同様の不具合は、フロート3の位置が正極側端部4a又は負極側端部4bに最も近い接続部4cに対応する接地手段5の近くにあるときに液位信号出力手段6に偶発的にエラーが発生した場合にも起こり得る。
上述の好ましい実施の形態においては、複数の接地手段5のうち正極側端部4aに最も近い接続部4cに対応する接地手段5の近く若しくは当該接地手段5よりも外側にあるときに、正極接地手段8aによって抵抗列4の正極側端部4aが強制的に接地される。これによって、正極側端部4aに最も近い接続部4cに対応する接地手段5の作動が停止しても正極側端部4aの接地が維持されるので、上記の不具合の発生を未然に防止することができる。この効果は、抵抗列4の正極側端部4aに最も近い接続部4cに対応する接地手段5を液位の下限の位置に設けた場合と上限の位置に設けた場合のいずれの場合においても、等しく得ることができる。また、負極接地手段8bによれば、フロート3の位置が負極側端部4bに最も近い接続部4cに対応する接地手段5の近くにあるときに液位信号出力手段6に偶発的にエラーが発生した場合に発生し得る上記の不具合を未然に防止することができる。
本発明の好ましい実施の形態においては、警戒信号出力手段7が、論理反転手段9を備える。論理反転とは、入力信号のONとOFFとは逆の信号を出力するものであり、例えばトランジスタによって構成することができる。上述したように追加された接地手段7aによって警戒信号出力手段7を構成した場合、論理反転手段9を欠く構成においては、追加された接地手段7aからの出力信号がONのとき(即ち、フロート3の接近に応じた作動をしているとき)に警戒信号がONになり、これに基づいて警報を発生させることができる。ところが、例えば、複数の接地手段5を含む部分であるセンサ部1aとセンサ部1aへの電源供給及びセンサ部1aからの信号の取り出しなどを行う部分である制御部1bとをつなぐ配線が断線したり接続不良になったりしたときは、追加された接地手段7aからの出力信号がOFFになる。そうすると、警報を発生させるべきときにも、警戒信号がONにならないので、警報が発生しないことになる。
そこで、本発明の好ましい実施の形態においては、警戒信号出力を論理反転させるとともに、警戒信号がOFFのときに警報を発生するように警戒信号出力手段7が構成される。そうすると、追加された接地手段7aからの出力信号がONのとき(即ち、フロート3の接近に応じた作動をしているとき)に警戒信号がOFFとなって警報を発生させ、追加された接地手段7aからの出力信号がOFFのとき(即ち、フロート3の接近に応じた作動をしていないとき)に警戒信号がONになって警報を発生させないようにすることができる。これにより、追加された接地手段7aからの出力信号がONのときと、信号配線にエラーが生じたときのいずれの場合においても、警戒信号がOFFになり、警報が発生するので、フェイルセーフ機能が達成される。
本発明における複数の接地手段5は、隣り合う抵抗の接続部4cのうちフロート3に近い位置にある接地手段5に対応する接続部4cを接地することができる手段であれば、どのような手段を採用してもよい。本発明の好ましい実施の形態においては、フロート3がマグネットを備え、接地手段5がマグネットの発生する磁界を検知したときに作動する(対応する接続部4cを接地する)しマグネットの発生する磁界を検知しないときには作動しない(対応する接続部を接地しない)ように構成される。また、他の好ましい実施の形態においては、接地手段5がリードスイッチ又はホールICのいずれかによって構成される。リードスイッチとは、磁界を検知したときに閉じ、そうでないときは開く機械式のスイッチをいう。ホールICとは、ホール素子とスイッチング回路とで構成された電気素子であって、ホール素子が磁界を検知したときには出力端子をアースと接地し、そうでないときは出力端子をアースから遮断するものである。上述のマグネットとリードスイッチ又はホールICを備える構成は、警戒信号出力手段7にも適用することができる。他の好ましい実施の形態においては、スリーブ2及びフロート3が光を透過する材料によって構成され、フロート3が光源を備え、接地手段5が光を感知して作動するスイッチによって構成される。
本発明の好ましい実施の形態においては、直流電源が定電流回路を含み、抵抗列4を構成する抵抗の抵抗値が全て同一である。定電流回路は、抵抗列4に流れる電流値を一定の値に保持する。このとき、液位信号として電圧信号を採用すると、電圧信号の大きさは、抵抗列4のうち正極側端部4aと接地された接地手段5との間にある抵抗の抵抗値の合計に比例する。そこで、全ての抵抗の抵抗値を同一にすると共に複数の接地手段5を等間隔に配置しておけば、液位信号である電圧信号の大きさは抵抗列4の正極側端部4aと接地された接地手段5のうち正極側端部4aに最も近い接続部4cとの間の抵抗の数に概ね比例する。しかも、複数の接地手段5が等間隔に配置されているので、液位信号と実際の液位との間の線形性に優れた液位センサを構成することができる。
本発明の好ましい実施の形態においては、警戒信号出力手段7が、上述した液位信号を取り出すために使用される直流電源(+Vcc)とは異なる電源によって構成される。警戒信号出力手段7を、抵抗列4に用いられる直流電源とは異なる別個の独立した電源によって構成することにより、警戒信号出力手段7の信頼性をさらに高めることができる。
次に、図面を使って本発明の好ましい実施の形態をさらに詳細に説明する。図3は、本発明に係る抵抗列4及び接地手段5の例を示す斜視図である。この実施例では、プリント配線基板によって構成された細長い板の上に、抵抗列4を構成する25個のチップ抵抗と、接地手段5を構成する25個のホールICとが、交互にはんだ付けによって実装されている。チップ抵抗の設置面積のサイズは縦0.5mm、横1.0mmである。ホールICの高さは3.2mmであり、ピッチ間隔は2.5mmであり、図3の上下方向に配列されている。ホールICは、図3の上下方向の磁界を検知する。この構成において、ホールICのピッチ間隔は、ホールIC自体のサイズと、ホールICの間に配置されるチップ抵抗のサイズによって制限される。接地手段5を構成する25個のホールICのうち、最も上に位置するもののさらに上側と、最も下に位置するもののさらに下側には、いずれも警戒信号出力手段7を構成する追加された接地手段7aとしてのホールICが実装されている。抵抗列4の上方には、これらの2個のホールICの出力をそれぞれ論理反転させるための論理反転手段9としての2個のトランスジスタが実装されている。液位センサとしての信頼性を高める観点からは、これらのホールIC及びトランジスタへの電力の供給は、接地手段5を構成するホールICに常時接続された直流電源とは異なる直流電源によって行われることが好ましい。
図4は、本発明に係る液位センサ1の例を示す部分断面図である。タンク内に鉛直方向にスリーブ2が設けられ、図3に示すプリント配線基板の先端がスリーブ2の内部に挿入され、固定される。即ち、この例においては、接地手段5を構成する25個のホールICのみならず、抵抗列4を構成する25個のチップ抵抗もまた、スリーブ2の内部に設けられている。フロート3の中央の孔にスリーブ2が挿入され、タンク内の液位の変動に伴いフロート3がスリーブ2に沿って上下に移動するように構成されている。フロート3には図示しないリング形状のマグネットが設けられ、マグネットが発生する磁界によってフロート3の近くの接地手段5及び追加された接地手段7aが作動する。スリーブ2の内部に設けられたプリント配線基板で発生する液位信号及び警戒信号の出力は、プリント配線基板の上部から取り出され、図示しない出力端子を経由して外部に導かれる。
図5は、本発明に係る液位センサの例を示す回路図である。この実施例は、液位センサ1を定電流によって作動させるものである。図5の左半分は、図3に例示されたプリント配線基板によって構成されるセンサ部1aの回路を示し、右半分は、センサ部1aと分離された制御部1bの回路を示す。センサ部1aと制御部1bとは、複数の配線によって接続されている。センサ部1aに含まれるR1、R2、・・・R(n-1)、R(n)は、本発明の抵抗列4を構成する直列に接続されたn個の抵抗である。抵抗R1は、出力端子LQoutを介して抵抗R0に接続されており、このR0を含む全部でn+1の抵抗が抵抗列4を構成している。即ち、この例においては、抵抗列4を構成するn+1個の抵抗のうち、n個の抵抗R1乃至R(n)はスリーブ2の内部に設けられており、1個の抵抗R0はスリーブ2の外部に設けられている。抵抗列4の正極側端部4aと負極側端部4bとが、直流電源(+Vcc)に常時接続されている。抵抗列4に流れる直流電流は、定電流回路(CCC)によって一定の値、例えば1mA、に制御される。この実施例においては、抵抗列4のうち正極側端部4aから数えて2番目の抵抗R1が液位の下限に対応し、負極側端部4bに最も近い抵抗R(n)が液位の上限に対応している。
S(1)、・・・S(n-1)、S(n)は、隣り合う抵抗の接続部4cを接地するn個の接地手段5である。接地手段5はホールICによって構成され、入力電極(+Vs)、出力電極(OUT)及びアース電極(GND)を備えている。入力電極(+Vs)とアース電極(GND)との間にはホールICを作動させるための電圧(+Vcc)が印加されている。各出力電極(OUT)は、抵抗列4の接続部4cに接続されている。
ホールIC(S)のアース電極(GND)と出力電極(OUT)とは、非作動状態では絶縁されている。ホールIC(S)がマグネットの発生する磁界を感知すると、作動状態となり、アース電極(GND)と出力電極(OUT)との間の抵抗がほとんどゼロとなり、出力電極(OUT)は実質的に接地された状態になる。そうすると、負極側端部4bに最も近い抵抗R(n)から接地手段5によって接地された接続部4cまでの間の抵抗には電流が流れず、正極側端部4aに最も近い抵抗R0から、接地手段5によって接地された接続部4cのうち正極側端部4aに最も近い接続部4cまでの間の抵抗に電流が流れる。この電流に対応する電圧信号が、バッファーアンプ(U1)を介して液位信号として出力端子(LQout)に出力される。
この実施例においては、正極側端部4aに最も近い接続部4cに対応する接地手段5(S(1))が液位の下限側にあり、負極側端部4bに最も近い接続部4cに対応する接地手段5(S(n))が液位の上限側にあるように、n個の接地手段5が配置されている。また、抵抗R1からR(n)までの抵抗値は全て同一になっている。したがって、液位の上昇に伴い、電流が流れる抵抗の数が概ね線形的に増加する。即ち、フロートの位置と液位信号の大きさとの間に比例関係が成立する。液位信号は、1.0Vから5.0Vの範囲で発生する。液位信号の下限値を1.0Vとするために、抵抗R0の抵抗値は1kΩとしている。
抵抗列4の正極側端部4aに最も近い接続部4cに対応する接地手段5(S(1))の外側には、警戒信号としての下限警報Loutを出力するための警戒信号出力手段7を構成する追加された接地手段7a(S(L))が設けられている。この追加された接地手段7a(S(L))が作動すると、抵抗RL1に電流が流れる。この電流信号は論理反転手段9であるトランジスタQL1によって論理反転され、下限警報Loutの端子がOFFとなり、フォトカプラー(PL1)を経由して出力端子(LQ_Lout)に下限警報が発生する。追加された接地手段7a(S(L))は、抵抗列4を駆動する直流電源(+Vcc)と共通する直流電源によって作動するが、定電流回路を備えない点において抵抗列4とは異なる構成を有する。
下限警報の発生と同時に、フォトカプラー(PL2)によって構成された正極接地手段8aが作動して、抵抗R0と抵抗R1との間の接続部4cが接地される。これにより、接地手段5の状態の如何にかかわらず、液位信号は下限値である1.0Vを示す。フォトカプラーを介して信号を伝達することにより、外部の電気回路において発生したノイズが液位センサを構成する電気回路に伝わらないようにして、液位センサの作動をより安定させることができる。
抵抗列4の負極側端部4bに最も近い接続部4cに対応する接地手段5(S(n))の外側には、警戒信号としての上限警報Houtを出力するための警戒信号出力手段7を構成する追加された接地手段7a(S(H))が設けられている。この追加された接地手段7a(S(H))が作動すると、抵抗RH1に電流が流れる。この電流信号は、論理反転手段9であるトランジスQH1によって論理反転され、上限警報Houtの端子がOFFとなり、フォトカプラー(PH1)を経由して出力端子(LQ_Hout)に上限警報が発生する。追加された接地手段7a(S(H))も、抵抗列4を駆動する直流電源(+Vcc)と共通する直流電源によって作動するが、定電流回路を備えない。上限警報を発生する警戒信号出力手段7は正極接地手段8aと連動していない。
尚、図示しないが、負極接地手段8bを有する本発明の好ましい実施の形態においては、上限警報を発生する警戒信号出力手段7と負極接地手段8bとを連動させてもよい。例えば、上限警報の発生と同時に負極接地手段8bが作動して、負極側端部4bに最も近い接続部4c(抵抗R(n)と抵抗R(n-1)との間の接続部4c)が接地されるように構成してもよい。当該構成によれば、負極側端部4bに最も近い接続部4cに対応する接地手段5に異常が発生して当該接続部4cを接地することができない場合であっても、当該接地手段5から所定の距離以内にフロートが位置するとき若しくは当該接地手段5よりも外側にフロートが位置するときに当該接続部4cを負極接地手段8bによって接地することができるので、負極側端部4bに最も近い接続部4cに対応する接地手段5の位置に対応する液位信号を取り出すことができる。また、負極接地手段8bによれば、フロート3の位置が負極側端部4bに最も近い接続部4cに対応する接地手段5の近くにあるときに液位信号出力手段6に偶発的にエラーが発生した場合に発生し得る前述したような不具合を未然に防止することができる。尚、この場合は、上限警報を発生する警戒信号出力手段7を構成する追加された接地手段7a(S(H))が接地されたときに出力される上限警報の出力値が液位信号の上限値(例えば、5.0V)と一致するように抵抗列4の構成を調整してもよい。
尚、正極接地手段8aについても、上記と同様に、正極側端部4aではなく、正極側端部4aに最も近い接続部4cを接地するように構成してもよい。当該構成によれば、フロートの位置にかかわらず、複数の接地手段5を構成する複数のセンサS(1)乃至S(n)のうちの少なくとも1つが対応する接続部4cを常に接地していることとなり、論理回路と液位信号とが整合することとなるので好ましい。
図6は、本発明に係る液位センサの別の例を示す回路図である。この実施例においては、図5に示した実施例と異なり、液位センサ1を定電圧で駆動する。抵抗列4は、スリーブ2の内部に設けられたR0からR(n)までのn+1個の抵抗によって構成され、その正極側端部4aと負極側端部4bとが直流電源(+Vcc)に常時接続される。抵抗R0は、接地手段S(1)が作動したときに直流電源(+Vcc)がショートしないようにするための負荷抵抗として設けられる。この実施例においても、正極側端部4aに最も近い接続部4cに対応する接地手段5(S(1))が液位の下限側にあり、負極側端部4bに最も近い接続部4cに対応する接地手段5(S(n))が液位の上限側にあるように、n個の接地手段5が配置されている。したがって、液位の上昇に伴い、電圧が印加される抵抗の数が増加するので、抵抗列に流れる電流が小さくなる。即ち、出力端子(LQout)に出力される液位信号の大きさは、液位の上昇に伴って非線形的に変化する。この実施例においては、定電流駆動の場合と比べて電気回路がシンプルになるので、全体として故障のリスク及び製造コストを低減することができる。上記を除く図5と共通する部分の構成とその機能は図5に示した実施例の場合と同じであるから、ここでは説明を省略する。
図7は、本発明に係る液位センサの作動の例を示す模式図である。この実施例は、図5に示した定電流駆動の例である。図の横軸は、下限位置から測ったフロートの位置をmm単位で表している。縦軸は、電圧信号として実測された液位信号をV単位で表している。液位信号は、フロートが下限の位置にあるときは1.0V、上限の位置にあるときは5.0Vとなるように調整されている。液位信号は細かいステップ状のグラフで示されており、液位に関して線形性に優れた疑似アナログ信号が出力されていることが分かる。また、図の下部には警戒信号出力手段7が作動して警戒信号としての下限警報(L)と上限警報(H)が出力されるときのフロートの位置が太い線によって示されている。
図7においてフロートが下限の位置にあるときに、液位センサ1になんらかのエラーが発生して接地手段5が正常に作動しなかった場合、液位信号は、図の点線で示すように5.0Vまでジャンプするおそれがある。しかし、本発明において、追加された接地手段7aを含む警戒信号出力手段7は、液位信号出力手段6とは異なる電気回路によって構成されているため、警戒信号(下限警報)自体は正常に発生する。さらに、正極接地手段8aを有する本発明の好ましい実施の形態において、正極接地手段8aが動作した場合は、液位信号は図の実線のように1.0Vを維持するので、液位信号と警戒信号とが整合し、オペレータに混乱は生じない。
1 液位センサ
1a センサ部
1b 制御部
1’液位センサ(従来技術)
2 スリーブ
3 フロート
4 抵抗列
4a 正極側端部
4b 負極側端部
4c 接続部
5 接地手段
6 液位信号出力手段
7 警戒信号出力手段
7a 追加された接地手段
8a 正極接地手段
8b 負極接地手段
9 論理反転手段
1a センサ部
1b 制御部
1’液位センサ(従来技術)
2 スリーブ
3 フロート
4 抵抗列
4a 正極側端部
4b 負極側端部
4c 接続部
5 接地手段
6 液位信号出力手段
7 警戒信号出力手段
7a 追加された接地手段
8a 正極接地手段
8b 負極接地手段
9 論理反転手段
Claims (7)
- 鉛直方向に設けられたスリーブと、
液位の変動に伴い前記スリーブに沿って移動するように構成されたフロートと、
直列に接続された複数の抵抗を含み両端が直流電源に常時接続された抵抗列と、
前記抵抗列において隣り合う前記抵抗の接続部にそれぞれ対応して前記スリーブの内部に設けられた複数の接地手段であって、所定の距離以内に前記フロートが位置するときに対応する前記接続部を接地し所定の距離以内に前記フロートが位置しないときに対応する前記接続部を接地しないように構成された複数の接地手段と、
前記抵抗列の前記両端のうち前記直流電源の正極と接続された方の端部である正極側端部と前記接地手段によって接地された前記接続部との間において検出される電気信号を前記液位に対応する信号である液位信号として取り出すように構成された液位信号出力手段と、
を有する液位センサであって、
前記フロートの可動範囲内の所定の位置である警戒位置から所定の距離以内に前記フロートが位置するときに警戒信号を出力し前記警戒位置から所定の距離以内に前記フロートが位置しないときに警戒信号を出力しないように構成された警戒信号出力手段をさらに有する
液位センサ。 - 複数の前記接地手段のうち前記正極側端部に最も近い前記接続部に対応する接地手段から所定の距離以内に前記フロートが位置するとき若しくは当該接地手段よりも外側に前記フロートが位置するときに前記正極側端部若しくは前記正極側端部に最も近い前記接続部を接地するように構成された正極接地手段及び/又は複数の前記接地手段のうち前記抵抗列の前記正極側端部とは反対側の端部である負極側端部に最も近い前記接続部に対応する接地手段から所定の距離以内に前記フロートが位置するとき若しくは当該接地手段よりも外側に前記フロートが位置するときに前記負極側端部に最も近い前記接続部を接地するように構成された負極接地手段を有する
請求項1に記載の液位センサ。 - 前記警戒信号出力手段が論理反転手段を備える
請求項1又は2のいずれかに記載の液位センサ。 - 前記フロートがマグネットを備え、
前記接地手段が、前記マグネットの発生する磁界を検知したときに対応する前記接続部を接地し前記マグネットの発生する磁界を検知しないときに対応する前記接続部を接地しないように構成されており、
前記警戒信号出力手段が、前記マグネットの発生する磁界を検知したときに前記警戒信号を出力し前記マグネットの発生する磁界を検知しないときに前記警戒信号を出力しないように構成されている
請求項1乃至3のいずれかに記載の液位センサ。 - 前記接地手段及び前記警戒信号出力手段がリードスイッチ又はホールICのいずれかを含む
請求項4に記載の液位センサ。 - 前記直流電源が定電流回路を含み、
前記抵抗列を構成する前記抵抗の抵抗値が全て同一である
請求項1から5までのいずれかに記載の液位センサ。 - 前記警戒信号出力手段が、前記直流電源とは異なる電源によって構成される
請求項1から6までのいずれかに記載の液位センサ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022534052A JPWO2022004739A1 (ja) | 2020-06-30 | 2021-06-29 | |
US18/011,860 US20230258491A1 (en) | 2020-06-30 | 2021-06-29 | Liquid level sensor |
CN202180046150.4A CN115735102A (zh) | 2020-06-30 | 2021-06-29 | 液位传感器 |
KR1020227045828A KR20230028317A (ko) | 2020-06-30 | 2021-06-29 | 액위 센서 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-112462 | 2020-06-30 | ||
JP2020112462 | 2020-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022004739A1 true WO2022004739A1 (ja) | 2022-01-06 |
Family
ID=79316600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024612 WO2022004739A1 (ja) | 2020-06-30 | 2021-06-29 | 液位センサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230258491A1 (ja) |
JP (1) | JPWO2022004739A1 (ja) |
KR (1) | KR20230028317A (ja) |
CN (1) | CN115735102A (ja) |
WO (1) | WO2022004739A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6232334U (ja) * | 1985-08-13 | 1987-02-26 | ||
JPH0729423U (ja) * | 1993-11-08 | 1995-06-02 | 文化貿易工業株式会社 | マグネット式液面計用点灯指示器 |
JP2003050151A (ja) * | 2001-08-07 | 2003-02-21 | Yashima Kogyo Kk | 液面検出装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3282196B2 (ja) | 1991-09-07 | 2002-05-13 | 博文 大成 | 化学反応装置 |
-
2021
- 2021-06-29 CN CN202180046150.4A patent/CN115735102A/zh active Pending
- 2021-06-29 WO PCT/JP2021/024612 patent/WO2022004739A1/ja active Application Filing
- 2021-06-29 JP JP2022534052A patent/JPWO2022004739A1/ja active Pending
- 2021-06-29 US US18/011,860 patent/US20230258491A1/en active Pending
- 2021-06-29 KR KR1020227045828A patent/KR20230028317A/ko active Search and Examination
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6232334U (ja) * | 1985-08-13 | 1987-02-26 | ||
JPH0729423U (ja) * | 1993-11-08 | 1995-06-02 | 文化貿易工業株式会社 | マグネット式液面計用点灯指示器 |
JP2003050151A (ja) * | 2001-08-07 | 2003-02-21 | Yashima Kogyo Kk | 液面検出装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115735102A (zh) | 2023-03-03 |
US20230258491A1 (en) | 2023-08-17 |
JPWO2022004739A1 (ja) | 2022-01-06 |
KR20230028317A (ko) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6215961B2 (ja) | デジタル液体レベルセンサ | |
US9291666B2 (en) | Detecting device and current sensor | |
US7439874B2 (en) | Load status indicator | |
US9218923B2 (en) | Device for indicating the state of a switching apparatus | |
US6255923B1 (en) | Arc fault circuit breaker | |
US20140117911A1 (en) | Electromagnetic actuators and monitoring thereof | |
US20110128012A1 (en) | Operation status diagnosing device for external control means | |
ES2325691T3 (es) | Aparato y metodo para la verificacion de interconexion. | |
US11239651B2 (en) | Electronic temperature switch | |
WO2022004739A1 (ja) | 液位センサ | |
US4121457A (en) | Liquid sensor | |
JP4149440B2 (ja) | アナログセンサのための保護回路 | |
JP2009145083A (ja) | 電路接続部の接続不良検出回路 | |
JP2018200242A (ja) | 電流センサ | |
JP2006349466A (ja) | 温度検出装置 | |
JP2010107331A (ja) | 物理量検出装置および物理量検出システム | |
JP7124042B2 (ja) | サージ電流検出装置、サージカウンタ、通信システム、および、サージ電流検出方法 | |
JP2007198927A (ja) | 抵抗検査方法 | |
JP2017161505A (ja) | 磁気センサ及び磁気センサ装置 | |
JPH0334808B2 (ja) | ||
JPH02297070A (ja) | 2つの動作電圧のモニター回路配置 | |
JP3289815B2 (ja) | 断線検出装置 | |
ES2283485T3 (es) | Dispositivo para la deteccion de contaminaciones conductoras de electricidad en el lado de conexion de un conector electrico. | |
JPS6239393B2 (ja) | ||
JP4589954B2 (ja) | 過電流保護回路およびプローブ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21833221 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022534052 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21833221 Country of ref document: EP Kind code of ref document: A1 |