WO2022002787A1 - Beschichtungen aus polyisocyanuratbeschichtungen (rim) und deren anwendung in spritzgiessprozessen - Google Patents

Beschichtungen aus polyisocyanuratbeschichtungen (rim) und deren anwendung in spritzgiessprozessen Download PDF

Info

Publication number
WO2022002787A1
WO2022002787A1 PCT/EP2021/067488 EP2021067488W WO2022002787A1 WO 2022002787 A1 WO2022002787 A1 WO 2022002787A1 EP 2021067488 W EP2021067488 W EP 2021067488W WO 2022002787 A1 WO2022002787 A1 WO 2022002787A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
reaction mixture
coating
isocyanate
weight
Prior art date
Application number
PCT/EP2021/067488
Other languages
English (en)
French (fr)
Inventor
Jan Weikard
Yvonne REIMANN
Florian Golling
Frank Richter
Michael Glawe
Richard MEISENHEIMER
Holger Mundstock
Dirk Achten
Original Assignee
Covestro Deutschland Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland Ag filed Critical Covestro Deutschland Ag
Priority to CN202180047196.8A priority Critical patent/CN115768616A/zh
Priority to KR1020227046034A priority patent/KR20230033654A/ko
Priority to EP21735950.4A priority patent/EP4175820A1/de
Priority to US18/001,083 priority patent/US20230211530A1/en
Publication of WO2022002787A1 publication Critical patent/WO2022002787A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/092Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1816Catalysts containing secondary or tertiary amines or salts thereof having carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2018Heterocyclic amines; Salts thereof containing one heterocyclic ring having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • B29C37/0028In-mould coating, e.g. by introducing the coating material into the mould after forming the article
    • B29C2037/0035In-mould coating, e.g. by introducing the coating material into the mould after forming the article the coating being applied as liquid, gel, paste or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C2045/0079Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping applying a coating or covering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • B29C2045/14286Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure means for heating the insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • B29C37/0028In-mould coating, e.g. by introducing the coating material into the mould after forming the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2120/00Compositions for reaction injection moulding processes

Definitions

  • the present invention relates to the use of polyisocyanate compositions and trimerization catalysts for the production of coatings by reaction injection molding, the coatings obtained through this use and correspondingly coated workpieces.
  • WO 2016/170058 or WO 2016/170059.
  • WO 2018/073303 describes the production of coatings from reaction mixtures with a large excess of isocyanate groups over isocyanate-reactive groups.
  • a well-known process for building up coatings is reaction injection molding.
  • a workpiece to be coated is introduced into a mold which is dimensioned such that a cavity is present between the inside of the mold and the surface of the workpiece, the width of which corresponds to the layer thickness of the coating to be produced.
  • this method offers advantages in terms of production technology, since the injection of the coating agent into a mold can be carried out more easily and quickly than building up a coating by spraying, dipping or brushing. This is especially true when the workpiece to be coated has a more complex three-dimensional shape.
  • Reaction injection molding can particularly advantageously be combined with the production of a plastic component to be coated by producing the plastic component in a first mold and then transferring it directly to a further mold in which the coating is applied. It is also possible to change the geometry of the first mold, for example by moving part of the mold, in such a way that a cavity for the coating agent is created between the workpiece and the inside of the mold.
  • polyurethane coatings are produced by injecting a mixture of a polyol, a polyisocyanate and a urethanization catalyst into the gap.
  • a polyol a polyol
  • a polyisocyanate a polyisocyanate
  • a urethanization catalyst In order to achieve sufficiently short cycle times, systems are required that cure quickly. This requires, especially when using aliphatic isocyanate and hydroxyl compounds, the use of catalysts of high activity in very large amounts. These large amounts of highly active catalysts can reduce the service life of the coating because they remain in the product and often also catalyze hydrolysis or other degradation processes that destroy the coating in the long term.
  • the other method is based on the formation of polyureas.
  • the required high reaction rates can be achieved quite easily due to the high reactivity of isocyanates towards amines.
  • the coatings produced in this way are less scratch-resistant than comparable polyurethane coatings and are therefore unsuitable for a number of applications.
  • the present invention relates to the use of a reaction mixture with a molar ratio of isocyanate groups to isocyanate-reactive groups of at least 3: 1 for coating workpieces by reaction injection molding, the reaction mixture a) at least one polyisocyanate composition A, and b) at least one Contains trimerization catalyst B and at least 30 mol% of the free isocyanate groups present in the reaction mixture are converted to isocyanurate groups.
  • the reaction mixture according to the invention contains the constituents defined above in a mixing ratio which enables the polyisocyanate A to cure to form a polyisocyanurate plastic.
  • the components are mixed and are reactive with the temperature increase defined below in this application.
  • the molar ratio of isocyanate groups to isocyanate-reactive groups in the reaction mixture is at least 3: 1, preferably at least 5: 1.
  • isocyanate-reactive groups in the present application includes epoxy, hydroxyl, carboxyl, amino and Understood thiol groups. The study on which the present invention is based has shown that reaction mixtures with a stoichiometric ratio of isocyanate groups to isocyanate-reactive groups of at least 3: 1 have noticeably better performance properties than reaction mixtures which do not achieve this value.
  • the isocyanurate groups that are formed are formed. Therefore, in a preferred embodiment of the present invention, at least 40 mol%, preferably at least 50 mol% and most preferably at least 60 mol% of the free isocyanate groups present in the reaction mixture are converted to isocyanurate groups.
  • solvents can be added to adjust the viscosity.
  • a solvent is characterized in that it has no isocyanate-reactive groups.
  • a solvent can escape from the coating, but can also remain in the film and act as a plasticizer there.
  • Suitable solvents are the solvents known to those skilled in the art for diluting polyisocyanates, preferably aliphatic acetates, aromatic hydrocarbons, esters, ethers and polyethers, glycol ethers and water. Water, butyl acetate, ethyl acetate, 1-methoxy-2-propyl acetate, butanone, solvent naphtha, xylene and toluene are particularly preferred.
  • the reaction mixture according to the invention therefore contains a maximum of 10% by weight, preferably a maximum of 5% by weight and more preferably a maximum of 2% by weight of organic solvent which contains neither isocyanate groups nor isocyanate-reactive groups.
  • the viscosity of the reaction mixture in the application is preferably at most 10,000 mPas, preferably at most 5,000 mPas, even more preferably at most 2,500 mPas and most preferably 1,000 mPas at the injection temperature determined in accordance with DIN EN ISO 3219 / B (edition of October 1, 1994) at a Shear rate of 100 s 1 .
  • Typical injection temperatures are 20-140 ° C, preferably 30-100 ° C and particularly preferably 40-90 ° C, and very particularly preferably 50-60 ° C. If the reaction mixture contains oligomeric polyisocyanates as defined below in this application, its viscosity can be above the aforementioned values. In these cases, the viscosity can be reduced by using monomeric polyisocyanates as reactive thinners.
  • polyisocyanate composition A denotes the entirety of all compounds contained in the reaction mixture which contain at least one isocyanate group per molecule Has proportion of compounds with an average of at least two isocyanate groups per molecule in order to cause crosslinking of the reaction mixture. As long as this criterion is met, the presence of compounds with an average of one isocyanate group per molecule is harmless.
  • the polyisocyanate A can thus consist of a single polyisocyanate. But it can also be a mixture of several different polyisocyanates. In the context of the embodiments defined below, the polyisocyanate A can also contain admixtures of isocyanates with an average functionality of less than two.
  • polyurethanes e.g. polyurethanes, polyureas and polyisocyanurates
  • low molecular weight compounds e.g. those with uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure
  • polyisocyanates e.g. polyurethanes, polyureas and polyisocyanurates
  • low molecular weight compounds e.g. those with uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure
  • polyisocyanates refers to monomeric and / or oligomeric polyisocyanates. To understand many aspects of the invention, however, it is important to distinguish between monomeric diisocyanates and oligomeric polyisocyanates.
  • oligomeric polyisocyanates are used in this application, then polyisocyanates are meant which are built up from at least two monomeric diisocyanate molecules, ie they are compounds which represent or contain a reaction product of at least two monomeric diisocyanate molecules.
  • oligomeric polyisocyanates from monomeric diisocyanates is also referred to here as modification of monomeric diisocyanates.
  • modification means the reaction of monomeric diisocyanates, optionally other isocyanate-reactive molecules, to give oligomeric polyisocyanates with a uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure.
  • flexamethylene 1,6-diisocyanate is a "monomeric diisocyanate” because it contains two isocyanate groups and is not a reaction product of at least two polyisocyanate molecules: HDI
  • reaction products of at least two HDI molecules which still have at least two isocyanate groups are "oligomeric polyisocyanates" within the meaning of the invention.
  • oligomeric polyisocyanates are, based on the monomeric HDI, for example the HDI isocyanurate and the HDI biuret , each made up of three monomeric HDI molecules:
  • the proportion by weight of isocyanate groups based on the total amount of polyisocyanate composition A is preferably at least 5% by weight. More preferably at least 10% by weight.
  • the polyisocyanate composition A can consist essentially of monomeric polyisocyanates or essentially of oligomeric polyisocyanates. However, it can also contain oligomeric and monomeric polyisocyanates in any mixing ratio.
  • the polyisocyanate composition A used as starting material is low in monomers (i.e. low in monomeric diisocyanates) and already contains oligomeric polyisocyanates.
  • the terms “low in monomer” and “low in monomeric diisocyanates” are used synonymously in relation to the polyisocyanate composition A.
  • the polyisocyanate composition A has a proportion of monomeric diisocyanates of not more than 20% by weight, in particular not more than 15% by weight or not more than 10% by weight, based in each case on the weight of the polyisocyanate composition A.
  • the polyisocyanate composition preferably has A has a monomeric diisocyanate content of not more than 5% by weight, preferably not more than 2.0% by weight, particularly preferably not more than 1.0% by weight, based in each case on the weight of the polyisocyanate composition A.
  • Particularly simple and safe processing is ensured if the polyisocyanate composition A is essentially free from monomeric diisocyanates. Essentially free here means that the content of monomeric diisocyanates is at most 0.5% by weight, particularly preferably even below 0.10%, based on the weight of the polyisocyanate composition A.
  • the polyisocyanate composition A consists entirely or at least 80, 85, 90, 95, 98, 99 or 99.5% by weight, based in each case on the weight of the polyisocyanate composition A, of oligomeric polyisocyanates.
  • a content of oligomeric polyisocyanates of at least 99% by weight is preferred here.
  • This oligomeric polyisocyanate content relates to polyisocyanate composition A as provided. That is, the oligomeric polyisocyanates are not formed as an intermediate product during the process according to the invention, but are already present in the polyisocyanate composition A used as starting material at the beginning of the reaction.
  • Polyisocyanate compositions which are low in monomer or essentially free from monomeric isocyanates can be obtained by carrying out at least one further process step in each case to separate off the unreacted excess monomeric diisocyanates after the actual modification reaction.
  • This separation of monomers can be carried out in a particularly practical manner by methods known per se, preferably by thin-film distillation in a high vacuum or by extraction with suitable solvents which are inert towards isocyanate groups, for example aliphatic or cycloaliphatic hydrocarbons such as pentane, hexane, heptane, cyclopentane or cyclohexane.
  • the polyisocyanate A is obtained by modifying monomeric diisocyanates with subsequent removal of unreacted monomers.
  • a low-monomer polyisocyanate composition A contains a monomeric foreign diisocyanate.
  • “monomeric foreign diisocyanate” means that it differs from the monomeric diisocyanates that were used to prepare the oligomeric polyisocyanates contained in polyisocyanate composition A.
  • the isocyanate A has a proportion of monomeric external diisocyanate of at most 50% by weight, in particular at most 30% by weight or at most 15% by weight, based in each case on the weight of the polyisocyanate composition A.
  • the polyisocyanate composition A preferably has a content of monomeric foreign diisocyanate of not more than 10% by weight, preferably not more than 2.0% by weight, particularly preferably not more than 1.0% by weight, based in each case on the weight of the polyisocyanate composition A.
  • the polyisocyanate composition A contains monomeric isocyanates with an isocyanate functionality greater than two, i.e. with more than two isocyanate groups per molecule.
  • the addition of monomeric isocyanates with an isocyanate functionality greater than two has proven to be advantageous in order to influence the network density of the coating.
  • Particularly practical results are obtained when the polyisocyanate composition A contains a proportion of monomeric isocyanates with an isocyanate functionality greater than two in the polyisocyanate composition A of at most 20% by weight, in particular at most 15% by weight or at most 10% by weight on the weight of the polyisocyanate composition A.
  • the polyisocyanate composition A preferably has a content of monomeric monoisocyanates or monomeric isocyanates with an isocyanate functionality greater than two of at most 5% by weight, preferably at most 2.0% by weight, particularly preferably at most 1.0% by weight, in each case based on the weight of the polyisocyanate composition A on.
  • no monomeric monoisocyanate or monomeric isocyanate with an isocyanate functionality greater than two is also used in the trimerization reaction according to the invention.
  • Monomeric isocyanates with an isocyanate functionality> 2 are, for example, triisocyanatononane and PMDI.
  • the oligomeric polyisocyanates can in particular have uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure.
  • the oligomeric polyisocyanates have at least one of the following oligomeric structure types or mixtures thereof:
  • a polyisocyanate composition A is used whose isocyanurate structural content is at least 50 mol%, preferably at least 60 mol% %, more preferably at least 70 mol%, even more preferably at least 80 mol%, even more preferably at least 90 mol% and particularly preferably at least 95 mol% based on the sum of the oligomeric structures present from the group consisting of uretdione -, isocyanurate, allophanate, biuret, iminooxadiazinedione and oxadiazinetrione structure in the polyisocyanate composition A.
  • a polyisocyanate composition A is used in the process according to the invention which, in addition to the isocyanurate structure, contains at least one further oligomeric polyisocyanate with uretdione, biuret, allophanate, iminooxadiazinedione and oxadiazinetrione structure and mixtures thereof.
  • the proportions of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure in polyisocyanate composition A can be determined, for example, by NMR spectroscopy. 13C-NMR spectroscopy, preferably proton-decoupled, can preferably be used here, since the oligomeric structures mentioned provide characteristic signals.
  • an oligomeric polyisocyanate composition A to be used in the process according to the invention preferably has an (average) NCO functionality of 2.0 to 5 , 0, preferably from 2.3 to 4.5.
  • the polyisocyanate composition A to be used according to the invention has an isocyanate group content of 8.0 to 28.0% by weight, preferably from 14.0 to 25.0% by weight, based in each case on the weight of the Polyisocyanate composition A, has.
  • the polyisocyanate composition A is defined in that it contains oligomeric polyisocyanates which are particularly preferred from monomeric diisocyanates regardless of the type of modification reaction used while maintaining a degree of oligomerization of 5 to 45%, preferably 10 to 40% 15 to 30%.
  • the "degree of oligomerization” is to be understood as the percentage of isocyanate groups originally present in the starting mixture which is to be understood during the Manufacturing process with the formation of urethane, uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structures is consumed.
  • Suitable polyisocyanates for producing the polyisocyanate composition A to be used according to the invention and the monomeric and / or oligomeric polyisocyanates contained therein are any polyisocyanates accessible in various ways, for example by phosgenation in the liquid or gas phase or by phosgene-free route, such as, for example, by thermal urethane cleavage. Particularly good results are obtained when the polyisocyanates are monomeric diisocyanates.
  • Preferred monomeric diisocyanates are those which have a molecular weight in the range from 140 to 400 g / mol, with aliphatically, cycloaliphatically, araliphatically and / or aromatically bound isocyanate groups, such as. B.
  • 1,4-diisocyanatobutane 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5-diisocyanato-2,2-dimethylpentane , 2,2,4- or 2,4,4-trimethyl-1,6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclohexane, 1,4-diisocyanato-3,3, 5-trimethylcyclohexane, 1,3-diisocyanato-2-methylcyclohexane, 1,3-diisocyanato-4-methylcyclohexane, l-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane
  • IPDI Isophorone diisocyanate
  • H12MDI 2,4'- and 4,4'-diisocyanatodicyclohexylmethane
  • 1,3- and 1,4-bis isocyanatomethyl cyclohexane, bis-
  • Suitable monomeric monoisocyanates which can optionally be used in polyisocyanate composition A are, for example, n-butyl isocyanate, n-amyl isocyanate, n-hexyl isocyanate, n-heptyl isocyanate, n-octyl isocyanate, undecyl isocyanate, dodecyl isocyanate, tetradecyl isocyanate, cetyl isocyanate, stearyl isocyanate, cyclohexyl isocyanate, cyclohexyl isocyanate, 3- or 4-methylcyclohexyl isocyanate or any mixtures of such monoisocyanates.
  • polyisocyanate composition A contains at most 30% by weight, in particular at most 20% by weight, at most 15% by weight, at most 10% by weight, at most 5% by weight or at most 1% by weight %, in each case based on the weight of the polyisocyanate composition A, of aromatic polyisocyanates.
  • aromatic polyisocyanate means a polyisocyanate which has at least one aromatically bound isocyanate group.
  • Aromatically bound isocyanate groups are understood to mean isocyanate groups which are bound to an aromatic hydrocarbon radical.
  • the polyisocyanate composition A consists of at least 70, 80, 85, 90, 95, 98 or 99% by weight, based in each case on the weight of the polyisocyanate composition A, of polyisocyanates which are exclusively aliphatically and / or cycloaliphatically bound Have isocyanate groups. Practical tests have shown that particularly good results can be achieved with polyisocyanate compositions A in which the isocyanates contained therein exclusively have aliphatically and / or cycloaliphatically bound isocyanate groups.
  • Aliphatically or cycloaliphatically bound isocyanate groups are understood to mean isocyanate groups which are bound to an aliphatic or cycloaliphatic hydrocarbon radical.
  • a polyisocyanate A is used which consists of or contains one or more oligomeric polyisocyanates, the one or more oligomeric polyisocyanates exclusively having aliphatically and / or cycloaliphatically bound isocyanate groups.
  • a polyisocyanate composition A which consists of or contains one or more oligomeric polyisocyanates, the one or more oligomeric polyisocyanates based on 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), isophorone diisocyanate (IPDI) or 4,4'-diisocyanatodicyclohexylmethane (H12MDI) or mixtures thereof.
  • BDI 1,4-diisocyanatobutane
  • PDI 1,5-diisocyanatopentane
  • HDI 1,6-diisocyanatohexane
  • IPDI isophorone diisocyanate
  • H12MDI 4,4'-diisocyanatodicyclohexylmethane
  • the polyisocyanates contained in the polyisocyanate composition A are blocked. “Blocking” means that the isocyanate groups of a polyisocyanate have reacted with another compound, the blocking agent, so that the blocked isocyanate groups are no longer those for free Isocyanate groups show typical reactivity. Only thermal activation of the blocked isocyanate leads to an increase in the reactivity towards isocyanate-reactive groups or free isocyanate groups, so that polymerization can take place. Suitable blocking agents are generally known to the person skilled in the art.
  • At least one compound is selected from the group consisting of alcohols, phenols, pyridinoies, thiophenols, quinolinoies, mercaptopyridines, quinolinoies, amides, imides, imidazoles, imidazolines, lactams, oximes, pyrazoles, triazoles, malonic esters, acetoacetic esters, acetyl ketones and cyclopentyl ketones -Alkyl esters, used as blocking agents.
  • the blocking takes place with a compound selected from the group consisting of mercaptopyridines, quinolinoies, amides, imides, imidazoles, imidazolines, lactams, oximes, pyrazoles, triazoles, malonic esters, acetoacetic esters, acetyl ketones and cyclopentanone-2-alkyl esters. At least one cyclopentanone-2-alkyl ester is very particularly preferably used.
  • lactams, amides and imides are selected from the group consisting of N-methylacetamide, acetanilide, g-butyrolactam, x-enantholactam, d-valerolactam, laurolactam, e-caprolactam, 5-methyl-2-piperidone, 3,6-dialkyl 2,5-piperazidinone or phthalimide.
  • a particularly preferred lactam is e-caprolactam.
  • Preferred oximes are selected from the group consisting of 2-butanone oxime, 3-methyl-2-butanone oxime, 3,3-dimethyl-2-butanone oxime, 4-methyl-2-pentanone oxime, 5-methyl-2-hexanone oxime, 2-heptanone oxime , 4,6-dimethyl-2-heptanone oxime, 3-ethyl-2-nonoxime, 2,4-dimethyl-3-pentanone oxime, 2,6-dimethyl-4-heptanone oxime, formal doxime, acetophenone oxime, dieth glyoxime, pentanone oxime, flexanon oxime, cyclohexanone oxime , 2,2,6,6-tetramethylcyclohexanone oxime, 2, 2,4,4-
  • Tetramethylcyclobutane-l, 3-dione-l-oxime and flydroxamic acid is 2-butanone oxime.
  • Suitable phenols, quinolines and pyridinoies include the esters of 2-hydroxybenzoic acid and 4-hydroxybenzoic acid, such as methyl 2-hydroxybenzoate, ethyl 2-hydroxybenzoate, 2-ethylhexyl-2-hydroxybenzoate, methyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate -hydroxybenzoate or 2-ethylhexyl-4-hydroxybenzoate, 2- [(dimethylamino) methyl] phenol, 2 - [(dimethylamino) methyl] -4-nonylphenol, phenol, 2,3,5-trimethylphenol, 2,3,6- Trimethylphenol, 2,4,6-trimethylphenol, o-cresol, m-cresol, p-cresol, 2-tert-butylphenol, 4-tert-butylphenol, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxy
  • Preferred phenols are selected from the group consisting of phenol, 2,3,5-trimethylphenol, 2,3,6-trimethylphenol, 2,4,6-trimethylphenol, o-cresol, m-cresol, p-cresol, 2-tert -Butylphenol and 4-tert-butylphenol.
  • Suitable alcohols include, for example, linear and branched aliphatic alcohols such as isopropanol, n-butanol, sec-butanol, tert-butanol, n-pentanol, 2,2-dimethyl-1-propanol, n-hexanol, 2-ethylhexanol, 1-octanol or 2-0ctanol, cyclohexanol, furfuryl alcohol, monoethers of ethylene glycol, such as 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, 2-butoxyethanol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, N-, diethylene glycol monobutyl ether or ethanol, 2-ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, N-, 2-ethylene glycol monobutyl ether, N-, 2-ethylene glycol monobutyl
  • Suitable imidazoles, imidazolines, pyrazoles and triazoles are, for example, 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-ethyl-4-methylimidazole, 2,4-dimethylimidazoline, 4-methylimidazoline, 2-phenylimidazoline, 4-methyl-2- phenylimidazoline, 3-methylpyrazole, 3,5-dimethylpyrazole, 1,2,4-triazole or benzotriazole.
  • Preferred pyrazole is 3,5-dimethylpyrazole.
  • Malonic acid esters, acetoacetic acid esters and acetyl ketona include, for example, dimethyl malonate, diethyl malonate, diisopropyl malonate, tert-butyl methyl malonate, di-tert-butyl malonate, isopropylidene malonate, methyl acetoacetate, ethyl aetoacetate, isoprpylacetoacetate, 2, 4 oxy acetyl acetonate, isoprpylacetoacetate, 2, 4 oxy acetyl acetonate, acetyl acetonate, isopropyl acetonate, 2, 4, anyl methoxyacetonate, isoprpylacetoacetate, acetylacetone acetone, isoprpylacetoacetate, 2, 4, oxy methylacetone, acetone, acetone, acetone, acetone, acetone
  • Preferred secondary amines are selected from the group consisting of diisopropylamine, dibutylamine, di-tert-butylamine, N-methyl-tert-butylamine, tert-butylbenzylamine, 2,2,4-trimethylhexamethyleneamine, 2,2,5-trimethylhexamethyleneamine, N- Methylhexylamine, N-isopropylcyclohexylamine, dicyclohexylamine, bis (3,3,5-trimethylcyclohexyl) -amine, 3-tert-butylaminomethylpropionate, piperidine, 2,6-dimethylpiperidine, 2,2,6,6-tetramethylpiperidine, 4- (dimethylamino) -2,2,6,6-tetramethylpiperidine, 2,2,6,6-tetramethyl-4-piperidon-bis (2,2,6,6-
  • Tetramethylpieridinyl) amine N-methylaniline, diphenylamine or N-phenylnaphthalene.
  • Diisopropylamine, tetramethylpiperidine and N-methyl-tert-butylamine, tert-butylbenzylamine, n-dibutylamine and 3-tert-butylaminomethylpropionate are particularly preferred.
  • Cyclopentanone-2-alkyl ester cyclopentanone-2-methyl ester, cyclopentanone-2-ethyl ester, cyclopentanone-2-propyl ester, cyclopentanone-2-butyl ester and cyclopentanone-2-pentylyl ester are preferred. Cyclopentanone-2-methyl ester is particularly preferred. According to the invention, it is possible to use a mixture of two, three or more of the aforementioned compounds as blocking agents.
  • the majority of the isocyanate groups present in the polyisocyanate composition A are blocked. Most preferably at least 90% by weight, even more preferably at least 95% by weight and most preferably 98% by weight of the isocyanate groups present in the polyisocyanate composition A are blocked.
  • the polyisocyanate composition A very particularly preferably does not contain any detectable free isocyanate groups. Free isocyanate groups can be determined by means of IR spectroscopy. The NCO band is observed at 2700 cm 1.
  • Silane modifications are used in coatings, for example to increase the hardness and / or the scratch resistance of the coating. If silane-modified isocyanates are used, both silane-functional groups and isocyanate groups are present in one molecule.
  • the crosslinking of the silane groups with one another can be catalyzed, but it can also take place through post-curing, e.g. via air humidity.
  • formulations with silane-functional isocyanates are designed in such a way that, after the first curing step, a coating is already present which can be demolded and which then reaches its final hardness through postcrosslinking.
  • the polyisocyanate composition A contains at least one silane-functional polyisocyanate, particularly preferably at least one silane-functional oligomeric polyisocyanate. These are compounds containing at least one silane group and at least one isocyanate group.
  • Silane-functional oligomeric polyisocyanates are usually obtained by oligomerizing simple aliphatic, cycloaliphatic, araliphatic and / or aromatic, monomeric diisocyanates, as described above as starting diisocyanates for the preparation of the oligomeric polyisocyanates, in a mixture with silicon-modified diisocyanates and / or isocyanatoalkysilanes or by partial conversion obtained oligomeric polyisocyanates with isocyanate-reactive silicon-containing compounds.
  • partial reaction with silicon-containing compounds or “silicon-modified” are used interchangeably in the context of the invention and mean in particular that 1 to 99.9 mol%, preferably 5 to 80 mol%, particularly preferably 10 to 50 mol%, very particularly preferably 15 to 40 mol%, of the isocyanate groups originally present in the oligomeric polyisocyanate or in the diisocyanate have been reacted with silicon-containing compounds.
  • those produced by partial reaction of oligomeric polyisocyanates with silicon-containing compounds oligomeric, silane-functional polyisocyanates have an isocyanate content of 99.0 to 0.1 mol%, preferably 95 to 20 mol%, particularly preferably 90 to 50 mol%, very particularly preferably 85 to 60 mol%. based on the isocyanate groups originally present in the oligomeric polyisocyanates.
  • oligomeric, silane-functional polyisocyanates are, for example, the polyisocyanates containing allophanate and silane groups, which are described in EP-A 2014692 and EP-A 2 305 691 and obtainable by reacting hydroxy urethanes or hydroxyamides containing silane groups with excess amounts of monomeric diisocyanates.
  • thioallophanates described in WO 2015/189164 in polyisocyanate composition A is also preferred, since, with a high content of silane groups, they also have a high average isocyanate functionality.
  • These are compounds that are characterized by the general formula (I), in which R 1 , R 2 and R 3 stand for identical or different radicals and each represent a saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or an optionally substituted aromatic or araliphatic radical with up to 18 carbon atoms, which optionally has up to 3 May contain heteroatoms from the series oxygen, sulfur, nitrogen,
  • X is a linear or branched organic radical with at least 2 carbon atoms
  • Y is a linear or branched, aliphatic or cycloaliphatic, an araliphatic or aromatic radical with up to 18 carbon atoms
  • n is an integer from 1 to 20.
  • silane-functional polyisocyanates obtained by reacting the polyisocyanates mentioned earlier in this application as constituents of the polyisocyanate composition with silane-functional compounds, preferably silane-functional amines, aspartates, amides and thiols, is also preferred.
  • silane-functional amines are selected from the group consisting of compounds according to formula (II), (III) and (IV).
  • R 5 , R 6 and R 7 stand for identical or different radicals and each represent a saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or an optionally substituted aromatic or araliphatic radical with up to 18 carbon atoms, which optionally has up to 3 May contain heteroatoms from the series oxygen, sulfur, nitrogen,
  • X stands for a linear or branched organic radical having at least 2 carbon atoms, which can optionally contain up to 2 imino groups (-NH-), and
  • R 8 represents hydrogen, a saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or an optionally substituted aromatic or araliphatic radical with up to 18 carbon atoms or a radical of the formula stands in which R 5 , R 6 , R 7 and X have the meaning given above.
  • Suitable aminosilanes of the general formula (II) are, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropylethyldiethoxysilane, 3-aminopropyldimethoxysilane, 3-aminopropyldimethylethoxysilane, 3-aminopropyldimethylethoxysilane, 3-aminopropyldimethylethoxysilane, 3-aminopropyldimethylethoxysilane, 3-aminopropyldimethylethoxysilane, 3-aminopropyldimethylethoxysilane, 3-aminopropyldimethylethoxysilane, 3-aminopropyldimethylethoxysilane, 3-aminoprop
  • R 9 and R 10 are independently saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or aromatic organic radicals having 1 to 18 carbon atoms, which are substituted or unsubstituted and / or have heteroatoms in the chain.
  • R 5 , R s and R 7 have the meaning given for formula (II)
  • R 11 represents a saturated linear or branched, aliphatic or cycloaliphatic organic radical having 1 to 8 carbon atoms.
  • aminosilanes of the general formula (IV) are the known silane-functional alkylamides, such as can be obtained, for example, by the processes disclosed in US Pat.
  • the trimerization catalyst B contains at least one catalyst which effects the trimerization of isocyanate groups to give isocyanurates and / or to give iminooxadiazinediones.
  • Suitable catalysts for the process according to the invention are, for example, simple tertiary amines, such as, for example, triethylamine, tributylamine, N, N-dimethylaniline, N-ethylpiperidine or N, N'-dimethylpiperazine.
  • Suitable catalysts are also the tertiary hydroxyalkylamines described in GB 2221465, such as triethanolamine, N-methyl-diethanolamine, dimethylethanolamine, N-isopropyldiethanolamine and 1- (2-hydroxyethyl) pyrrolidine, or those known from GB 2 222 161, from mixtures tertiary bicyclic amines, such as DBU, with simple low molecular weight aliphatic alcohols existing catalyst systems.
  • a large number of different metal compounds are also suitable as trimerization catalysts for the process according to the invention.
  • the octoates and naphthenates of manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium or lead or their mixtures with acetates of lithium, sodium, potassium, calcium or barium, which are described as catalysts in DE-A 3240613, are suitable, the sodium and potassium salts known from DE-A 3 219608 of linear or branched alkanecarboxylic acids with up to 10 carbon atoms, such as propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, pelargonic acid, capric acid and undecylic acid, which from EP-A 0 100 129 known alkali or alkaline earth metal salts of aliphatic, cycloaliphatic or aromatic mono- and polycarboxylic acids having 2 to 20 carbon atoms, such as sodium or potassium benzoate, which are disclosed in GB-PS 1,391,066 and GB-PS 1,386,399 known
  • trimerization catalysts suitable for the process according to the invention are, for example, the quaternary ammonium hydroxides known from DE-A 1667309, EP-A 0013880 and EP-A 0047452, such as tetraethylammonium hydroxide, trimethylbenzylammonium hydroxide, N, N-dimethyl-N-dodecyl-N- (2 -hydroxyethyl) ammonium hydroxide, N- (2-hydroxyethyl) -N, N-dimethylN- (2,2'-dihydroxymethylbutyl) ammonium hydroxide and 1- (2-hydroxyethyl) -1, 4-diazabicyclo- [2.2.2 ] Octane hydroxide (monoadduct of ethylene oxide and water with 1,4-diazabicyclo [2.2.2] octane), the quaternary hydroxyalkylammonium hydroxides known from EP-A 37 65 or EP-A 10 589
  • Tetraalkylammonium alkyl carbonates which are obtainable by reacting tertiary amines with dialkyl carbonates, or betaine-structured quaternary ammonio alkyl carbonates, the quaternary ammonium hydrogen carbonates known from WO 1999/023128, such as choline bicarbonate, the esters known from EP 0 102482 from tertiary amines and alkylating esters Quaternary ammonium salts obtainable from acids of phosphorus, such as reaction products of triethylamine, DABCO or N-methylmorpholine with dimethyl methanephosphonate, or the tetrasubstituted ammonium salts of lactams known from WO 2013/167404, such as trioctylammonium caprolactamate or dodecylcaprolactamate or dodecyltrimethyl ester.
  • trimerization catalysts B suitable according to the invention can be found, for example, in J. H. Saunders and K. C. Frisch, Polyurethanes Chemistry and Technology, pp. 94 ff (1962) and the literature cited there.
  • Carboxylates and phenates with metal or ammonium ions as counterions are particularly preferred.
  • Suitable carboxylates are the anions of all aliphatic or cycloaliphatic carboxylic acids, preferably those with mono- or polycarboxylic acids having 1 to 20 carbon atoms.
  • Suitable metal ions are derived from alkali or alkaline earth metals, manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium, tin, titanium, hafnium or lead.
  • Preferred alkali metals are lithium, sodium and potassium, particularly preferably sodium and potassium.
  • Preferred alkaline earth metals are magnesium, calcium, strontium and barium.
  • the octoates and naphthenates of manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium or lead or mixtures thereof with acetates of lithium, sodium, potassium, calcium are very particularly preferred or barium.
  • trimerization catalyst B is poorly or not soluble in the polyisocyanate composition A, its effect can be made possible or enhanced by adding a solubilizer.
  • Trimerization catalysts B based on alkali and alkaline earth oxides, hydroxides, carbonates or alcoholates preferably contain a polyether. This is particularly preferred when the catalyst contains metal ions.
  • Preferred polyethers are selected from the group consisting of crown ethers, diethylene glycol, polyethylene and polypropylene glycols.
  • a trimerization catalyst B which contains, as polyether, a polyethylene glycol or a crown ether, particularly preferably 18-crown-6 or 15-crown-5.
  • the trimerization catalyst B preferably contains a polyethylene glycol with a number average molecular weight of 100 to 1000 g / mol, preferably 300 g / mol to 500 g / mol and in particular 350 g / mol to 450 g / mol.
  • trimerization catalysts described in EP 3 337 836 and WO2015 / 124504 are particularly well suited for the use according to the invention.
  • the reaction mixture contains at least one isocyanate-reactive compound C.
  • An “isocyanate-reactive compound” is a compound which carries at least one isocyanate-reactive group as defined above in this application suggest that the stoichiometric ratio of isocyanate groups to isocyanate-reactive groups according to the claims is maintained in the reaction mixture.
  • Isocyanate-reactive compounds C are preferably used as solvents for the trimerization catalyst B and / or as a flexibilizing component.
  • a "flexibilizing component" lowers the Tg of a coating compared to a coating obtained from the same reaction mixture without adding the flexibilizing component.
  • monohydric or polyhydric alcohols, amino alcohols, amines and thiols are suitable as isocyanate-reactive compound C.
  • the aforementioned compounds preferably have an average functionality of at least 2 isocyanate-reactive groups per molecule.
  • Preferred amines are organic di- or polyamines, preferably selected from the group consisting of 1,2-ethylenediamine, 1,2- and 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, isophoronediamine, the isomer mixture of 2 , 2,4- and 2,4,4-trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylenetriamine, 4,4-diaminodicyclohexamethane, hydrazine hydrate, Dimethylethylenediamine, polyethers modified with amino end groups and compounds according to formula (V) are used.
  • the aforementioned compounds are preferably used as a flexibilizing component.
  • X stands for an n-valent radical which is inert towards isocyanate groups, as it is by
  • R 1 and R 2 for identical or different organic radicals with 1 to 18 carbon atoms and n for an integer> 1.
  • Amines which contain at least one amino group and at least one hydroxyl group are likewise preferred.
  • Such compounds are preferably selected from the group consisting of diethanolamine, 3-amino-1-methylaminopropane, 3-amino-1-ethylaminopropane, 3-amino-1-cyclohexyl-aminopropane, 3-amino-1-methylaminobutane,
  • Alkanolamines such as N-aminoethylethanolamine, ethanolamine, 3-aminopropanol and neopentanolamine.
  • the aforementioned compounds are preferably used as a flexibilizing component.
  • all known monomeric and polymeric polyols can be used individually or as a mixture as a flexibilizing component.
  • These are in particular the usual polyester polyols, polyether polyols, polyacrylate polyols and polycarbonate polyols known from polyurethane chemistry.
  • Suitable polyester polyols are preferably those having an average molecular weight, which can be calculated from functionality and hydroxyl number, of 200 g / mol to 3000 g / mol, preferably of 250 to 2500, with a hydroxyl group content of 1 to 21% by weight, preferably 2 to 18% by weight, as they are in a manner known per se by reacting polyhydric alcohols with insufficient amounts of polybasic carboxylic acids Let carboxylic acid anhydrides, corresponding polycarboxylic acid esters of lower alcohols or lactones be produced.
  • Suitable polyether polyols are preferably those with an average molecular weight, which can be calculated from functionality and hydroxyl number, of 200 g / mol to 6000 g / mol, preferably 250 g / mol to 4000 g / mol with a hydroxyl group content of 0.6 to 34 wt. %, preferably 1 to 27% by weight, as can be obtained in a manner known per se by alkoxylation of suitable starter molecules.
  • Any polyhydric alcohols for example those in the molecular weight range 62 g / mol to 400 g / mol, can be used to produce these polyether polyols.
  • Suitable polyacrylate polyols are, for example, those having an average molecular weight, which can be calculated from functionality and hydroxyl number or can be determined by gel permeation chromatography (GPC), of 800 to 50,000, preferably 1000 to 20,000, with a hydroxyl group content of 0.1 to 12% by weight, preferably 1 to 10, how they can be produced in a manner known per se by copolymerization of olefinically unsaturated monomers containing hydroxyl groups with olefinic monomers free of hydroxyl groups.
  • GPC gel permeation chromatography
  • Suitable monomers for producing the polyacrylate polyols are vinyl or vinylidene monomers such as styrene, ⁇ -methylstyrene, o- or p-chlorostyrene, o-, m- or p-methylstyrene, p-tert-butylstyrene, acrylic acid, acrylonitrile , Methacrylonitrile, acrylic and methacrylic acid esters of alcohols with up to 18 carbon atoms, such as. B.
  • B vinyl acetate or vinyl propionate, hydroxyalkyl esters of acrylic acid or methacrylic acid with 2 to 5 carbon atoms in the hydroxyalkyl radical, such as.
  • the compounds mentioned above as solvents for the trimerization catalyst B are also suitable for use as flexibilizing components. These connections can thus fulfill a double function.
  • Particularly preferred isocyanate-reactive compounds are those compounds which do not contribute to a substantial increase in the viscosity of the reaction mixture as defined above, but allow the reaction mixture to be processed at the injection temperature within the viscosity limits defined above.
  • the reaction mixture preferably contains at least one additive D selected from the group consisting of stabilizers also against UV light, antioxidants, water scavengers, leveling agents, rheology additives, slip additives, defoamers, wetting and dispersing agents, adhesion promoters, corrosion inhibitors, flame retardants, nanoparticles, fillers also in the form of inorganic or organic fibers, dyes and pigments.
  • additive D selected from the group consisting of stabilizers also against UV light, antioxidants, water scavengers, leveling agents, rheology additives, slip additives, defoamers, wetting and dispersing agents, adhesion promoters, corrosion inhibitors, flame retardants, nanoparticles, fillers also in the form of inorganic or organic fibers, dyes and pigments.
  • Suitable UV stabilizers can preferably be selected from the group consisting of piperidine derivatives, such as 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-1,2,2,6,6-pentamethylpiperidine, bis- ( 2,2,6,6-tetra-methyl-4-piperidyl) sebacate, bis (1,2,2,6, 6-pentamethyl-l-4-piperidinyl) sebacate, bis- (2,2,6 , 6-tetramethyl-4-piperidyl) suberate, bis (2,2,6,6-tetramethyl-4-piperidyl) dodecanedioate; Benzophenone derivatives, such as, for example, 2,4-dihydroxy-, 2-hydroxy-4-methoxy-, 2-hydroxy-4-octoxy-, 2-hydroxy-4-dodecyloxy- or 2,2'-dihydroxy-4-dodecyloxy-benzophenone ; Benzotriazole derivatives such as 2-
  • UV stabilizer derivatives such as, for example, 4-methoxy-benzylidene-malonic acid dimethyl ester, 4-methoxy-benzylidene-malonic acid diethyl ester, 4-butoxy-benzylidene-malonic acid dimethyl ester.
  • These preferred UV stabilizers can be used either individually or in any combination with one another.
  • one or more of the exemplified UV stabilizers of the coating compositions according to the invention are preferably used in amounts of 0.001 to 3.0% by weight, particularly preferably 0.01 to 2% by weight, calculated as the total amount of UV stabilizers used, based on the total amount of polyisocyanate component A added.
  • Combinations of UV absorbers and radical scavengers are preferred, in particular those radical scavengers which belong to the group of sterically hindered light stabilizers (“HALS”).
  • HALS sterically hindered light stabilizers
  • Suitable antioxidants are preferably sterically hindered phenols, which can preferably be selected from the group consisting of 2,6-di-tert-butyl-4-methylphenol (ionol), pentaerythritol tetrakis (3- (3,5-di-tert butyl-4-hydroxyphenyl) propionate), octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, triethylene glycol bis (3-tert-butyl-4-hydroxy -5-methylphenyl) propionate, 2,2'-thio-bis (4-methyl-6-tert-butylphenol) and 2,2'-thiodiethyl-bis [3- (3,5-di-tert-butyl-4 hydroxyphenyl) propionate]. If required, these can be used individually or in any combination with one another.
  • antioxidants are preferably used in amounts of 0.01 to 3.0% by weight, particularly preferably 0.02 to 2.0% by weight, calculated as the total amount of antioxidants used based on the total amount of polyol component A.
  • water scavengers for example orthoformic acid esters, such as. B. triethyl orthoformate, or vinylsilanes, such as. B. vinyltrimethoxysilane.
  • orthoformic acid esters such as. B. triethyl orthoformate
  • vinylsilanes such as. B. vinyltrimethoxysilane
  • the reaction mixtures according to the invention can optionally contain suitable leveling agents, for example organically modified siloxanes, such as. B. polyether-modified siloxanes, polyacrylates and / or fluorosurfactants contain.
  • suitable leveling agents for example organically modified siloxanes, such as. B. polyether-modified siloxanes, polyacrylates and / or fluorosurfactants contain.
  • These leveling agents come, if at all, in amounts from 0.01% by weight to 3% by weight, preferably from 0.01% by weight to 2% by weight, particularly preferably from 0.05 to 1% by weight , 5% by weight, based on the total amount of the reaction mixture used.
  • the reaction mixture can contain rheology additives, for example colloidal silicas, very finely divided bentonites, microcrystalline polyethylene waxes, polyamide dispersions and / or crystalline ureas.
  • rheology additives for example colloidal silicas, very finely divided bentonites, microcrystalline polyethylene waxes, polyamide dispersions and / or crystalline ureas.
  • the slip additives, defoamers, fillers and / or pigments also optionally contained in the coating compositions according to the invention as further auxiliaries and additives are the Known to those skilled in the art and, if at all, are used in the amounts customary in paint technology. A detailed overview of such suitable auxiliaries and additives can be found, for example, in Bodo Müller, "Additive Kompakt", Vincentz Network GmbH & Co KG (2009).
  • the components of the reaction mixture according to the invention are mixed immediately before the cavity is filled in the Reaction Injection Molding (RIM) process using automated metering and mixing devices. It is preferred that the reaction mixture is provided in two or three components in suitable storage vessels and is dosed automatically from the storage vessels.
  • the individual components are preferably temperature-controlled differently or all in the same way in such a way that the desired injection temperature of the mixture can be easily achieved. Depending on the desired injection method, the components can already be made available in the storage vessels under increased pressure.
  • polyisocyanate mixture A and trimerization catalyst B are then preferably provided in different storage vessels.
  • the additive component D and, if present, the optional isocyanate-reactive compound C are preferably also added to component B.
  • the reaction mixture only arises while the components are being injected into the shaping tool.
  • polyisocyanate mixture A and trimerization catalyst B are preferably provided in different storage vessels.
  • At least part of the additive component D and optionally part of the optional isocyanate-reactive compound C is provided as a third component in further storage vessels.
  • the third component can then be present in different forms, for example colors and / or effects, in different storage vessels, which can be processed with a 3K RIM system known per se in a rapid change in color and / or effect.
  • Parts of components D and C can also be added to the component which contains the trimerization catalyst B.
  • the third component contains a coloring and / or effect pigment paste which contains at least one polyester or polyether polyol (mentioned under C) and at least one dispersing aid (named under D).
  • the production of the individual components takes place according to the usual methods of coating technology for two- or multi-component polyurethane paints, for example Mixing in stirring vessels or, if solids such as pigments are present, in dispersing systems such as dissolvers or grinding units such as bead mills.
  • the workpiece which serves as a carrier for the coating to be built up, is introduced into a shaping tool which at least partially encloses the workpiece. It is preferred that the shaping tool can be heated, because in this way the curing of the reaction mixture can be brought about by simply heating the tool.
  • the inside of the shaping tool which faces the workpiece and comes into contact with the reaction mixture, can be structured in order to create a structure on the surface of the coating to be built up.
  • the workpiece contains at least one material selected from the group consisting of plastics, composites such as fiber-reinforced plastics, electronic components, wood, natural stone and metal. It preferably consists of at least 90% by weight of one or more of the aforementioned materials.
  • Preferred plastics are selected from the group consisting of ABS, AMMA, ASA, CA, CAB, COC, EP, UF, CF, MF, MP, PF, PAN, PA, PBS, PC, PE, PE-HD, PE-LD , PE-LLD, PE-UHMW, PPS, PET, PEEK, PLA, PMMA, PP, PS, PPS, SB, PUR, PVC, SAN, PBT, PPE, POM, PP / EDP, UP (abbreviations according to DIN EN ISO 1043-1: 2016), polyoxazolidinones, thermoplastic polyurethane, melamine-phenol-formaldehyde, and mixtures thereof.
  • the workpiece to be coated consists of at least 90% by weight of a thermoplastic polymer.
  • the workpiece can optionally be pretreated. Examples of pretreated workpieces are workpieces provided with adhesion promoters, metallized workpieces, printed workpieces, workpieces coated with decorative foils, labeled workpieces, stained, colored and / or wooden workpieces treated with primers.
  • a workpiece to be coated does not necessarily consist of a single component.
  • This further component is preferably selected from the group consisting of sensors, lighting elements and actuators.
  • the workpiece to be coated contains cutouts of any geometry. This is shown schematically in Figure 1.
  • the workpiece (hatched diagonally) contains a recess (gray).
  • a coating is created that covers the recess (black) and covers at least part of the workpiece.
  • a further component (hatched horizontally) can then be inserted into the recess and, together with the workpiece, is covered by a uniform and undamaged coating.
  • Preferred components are selected from the group consisting of sensors, lighting elements and actuators.
  • a cavity remains between the inside of the shaping tool and the surface of the workpiece enclosed by the shaping tool.
  • the reaction mixture is then introduced into the cavity.
  • the complete mixing of all components of the reaction mixture can take place before the introduction, but it can also take place e.g. by means of suitable mixing units during the introduction.
  • RIM systems such as those commercially available from Isotherm AG, Uetendorf, CH, for example under the name PSM 90 or PSM 3000, from the KraussMaffei Group, DE under the process / technology name ColorForm and from Hennecke GmbH, Sankt Augustin, DE under the process / technology name ClearRIM.
  • the KrausMaffei Group, DE also offers optional color modules for the ColorForm system that can work with three components and thus allow, for example, a quick color change.
  • the distance between the inside of the shaping tool and the surface of the workpiece to be coated is preferably between 50 ⁇ m and 5 mm. This distance is preferably determined along the normal to the surface of the workpiece.
  • the coating preferably has an extension of at least 10 mm along at least one axis of a two-dimensional Cartesian coordinate system.
  • the cavity is preferably filled with the reaction mixture under a pressure that is higher than the ambient pressure. During the curing process, the pressure in the cavity preferably also remains higher than the ambient pressure.
  • the inside of the shaping tool preferably has a temperature between 60 ° C and 300 ° C.
  • the coated workpiece can then be removed from the shaping tool.
  • the above-mentioned upper limit of the temperature during curing is of course dependent on the nature of the workpiece to be coated. If this is damaged at a given temperature, the temperature during curing must be below this value.
  • the upper limit is preferably 130 ° C, more preferably 100 ° C. In order to ensure sufficiently rapid curing, a preferred lower temperature limit is 80 ° C.
  • the invention it is thus possible to build up a coating using an automated method. Since the curing of the reaction mixture takes place through the reaction of isocyanate groups with one another, the isocyanate groups according to the invention being in significant excess, and not primarily through the reaction of two different functional groups, the reaction mixture is less prone to mixing errors than two-component systems. A mechanical or chemical pretreatment of the tool to be coated is usually unnecessary. Even workpieces with more complex geometry, where a coating can only be applied with difficulty using conventional methods, can be coated in this way. Since the coating composition is cured, inter alia, through the formation of isocyanurate groups, the coatings obtained in this way have high mechanical and chemical resistance. If the polyisocyanate composition A contains only small amounts or no proportions of aromatic isocyanates, coatings that are very weather-resistant can be obtained.
  • the present invention relates to a method for coating a workpiece comprising the steps of a) introducing a workpiece into a shaping tool which encloses at least part of the workpiece and which is dimensioned such that the distance between the surface of the workpiece and the The inside of the forming tool corresponds to the thickness of the coating; b) Filling in at least one reaction mixture with a molar ratio of isocyanate groups to isocyanate-reactive groups of at least 3: 1
  • the workpiece can be introduced into the shaping tool in any manner known to a person skilled in the art of reaction injection molding.
  • a cavity is located at at least one point between the surface of the workpiece to be coated and the inside of the shaping tool. This serves to take up the reaction mixture in process step b).
  • Its thickness i.e. the distance between the surface of the workpiece and the inside of the forming tool, determines the layer thickness of the resulting coating.
  • the structure of the surface of the resulting coating can be determined by the design of the inside of the shaping tool.
  • the shaping tool encloses at least part of the workpiece in such a way that the cavity is sealed off from the outside and the reaction mixture filled in by valves or other suitable devices cannot run out of the cavity.
  • reaction mixture is poured into the cavity. This can be done in any of the ways known to a person skilled in the art in the field of reaction injection molding. Depending on the reactivity of the reaction mixture used, the reaction mixture can be pre-mixed in a storage container. This is preferred for reaction mixtures which have a low reactivity at room temperature.
  • the polyisocyanate A and the trimerization catalyst B are, however, preferably stored in separate containers and only mixed during the filling. Suitable valves, nozzles and mixing heads are well known to the person skilled in the art in the field of two-component polyurethane systems.
  • the process according to the invention is less prone to mixing errors: Variations in the stoichiometry of catalyst and isocyanate influence the rate of curing, but not the properties of the finished coating. In contrast, variations in the stoichiometric ratio of NCO groups and OFI groups in the known polyurethane systems inevitably lead to materials with changed properties.
  • the temperature of the reaction mixture is raised to at least 60 ° C. in process step.
  • the selection of the suitable temperature depends on the one hand on the sensitivity of the workpiece to be coated. The hardening temperature must not reach a level that would damage the workpiece. Within this range, however, the choice of higher temperatures is generally preferred in order to achieve rapid curing and the associated short cycle times.
  • An absolute upper limit for the curing temperature in the process according to the invention the material formed from the reaction mixture itself sets: Polyisocyanurate plastics decompose at temperatures above 300 ° C, so that this value is only exceeded for a maximum of 5 seconds, but preferably not at all, during process step c). Particularly suitable temperature ranges are disclosed further above in this application.
  • Process step c) is carried out until the coated workpiece can be removed from the mold.
  • the term "demouldable” denotes a state of the workpiece in which it can be removed from the shaping tool without residues of the reaction mixture sticking to the inside of the shaping tool. In this case, it is not necessary that all of the isocyanate groups have already reacted it is preferred that at the end of process step c) between 15 and 85%, more preferably between 30 and 75% and particularly preferably 40 to 75% of the isocyanate groups present at the beginning of process step c) have reacted. mirror image between 5 and 85%, more preferably between 25 and 70% and particularly preferably 25 to 60% of the isocyanate groups originally present.
  • At least 40 mol%, preferably at least 50 mol% and most preferably at least 50 mol% of the free isocyanate groups present at the beginning of process step c) are converted to isocyanurate groups.
  • the result is a coating, the crosslinking of which is largely mediated via isocyanurate groups.
  • Such coatings are distinguished by their superior resistance to chemical and physical influences.
  • the process according to the invention contains a process step following process step c), in which the free isocyanate groups still present at the end of process step c) at a temperature between 10 and 120 ° C, preferably between 10 and 40 ° C, are further networked outside of the shaping tool.
  • This process step is preferably carried out until at least 95% of the isocyanate groups present at the beginning of process step c) have reacted.
  • Process step c) is preferably carried out for 10 seconds to 900 seconds, more preferably for 10 seconds to 180 seconds and even more preferably for 10 seconds to 90 seconds. “Implementation” in this context means that the reaction mixture as a whole is in contact with the inside of the shaping tool for this period and said inside has a temperature between 60 ° C and 300 ° C.
  • the coating preferably has a Tg of 40 ° C to 300 ° C, more preferably 60 ° C to 180 ° C.
  • the workpiece consists of at least 90% by weight of a thermoplastic synthetic material and process step a) is preceded by a process step of manufacturing said workpiece by injection molding.
  • process step a) is preceded by a process step of manufacturing said workpiece by injection molding.
  • the present invention relates to a coating obtained or obtainable by the above-defined process according to the invention.
  • This coating according to the invention is particularly preferred in infrared spectrometric analysis due to a ratio of the absolute peak heights of the CH2 band and the NH-d band of at least 0.85: 1 with a simultaneous ratio of the absolute peak heights of the isocyanurate band and the NH-d band of marked at least 5.5: 1.
  • the greatest absolute intensity was determined for each band.
  • the measurements were between 2900 and 3000 cm 1 , for NH-d between 1480 and 1600 cm 1 and for isocyanurate between 1590 and 1700 cm 1 .
  • the Tg of the coating is 40 ° C. to 300 ° C., preferably 60 ° C. to 180 ° C.
  • the coating is free of pigments and has a Hazen color number of at most 50, preferably at most 30.
  • Hazen color numbers are preferably determined using a micro-haze plus device from Byk-Gardner GmbH, Geretsried, Germany, at an angle of 20 °.
  • the coating preferably has a density of at least 0.95 g / cm 3 .
  • the present invention relates to a workpiece coated with the coating defined above.
  • FIG. 1A shows a workpiece (hatched diagonally) with a recess (gray) in plan view.
  • Figure 1B shows a cross-section of the workpiece with the recess.
  • Figure IC shows the cross-section of the workpiece after coating. The workpiece and recess are now covered by the coating (black).
  • Figure ID shows a coated workpiece in which a component (hatched horizontally) was inserted into the original recess.
  • the tests were carried out on a Battenfeld HM 370/1330 injection molding machine, combined with a laboratory piston dosing system for 2 components.
  • the tool used was a DIN-A5 plate tool, which was coated with a mass of approx. 41 g of paint, which corresponds to a paint layer thickness of 280 ⁇ m to 390 ⁇ m.
  • Desmophen XP 2488 branched polyester polyol, available from Covestro Deutschland AG, with the following properties:
  • Desmophen C1100 linear, aliphatic polycarbonate polyester, available from Covestro Deutschland AG, with the following properties:
  • the HDI polyisocyanate B1 containing isocyanurate groups was prepared according to EP-A 330 966, Example 11, using 2-ethylhexanol instead of 2-ethyl-1,3-hexanediol as the catalyst solvent. After the excess monomeric HDI had been separated off by means of thin-layer distillation, an HDI polyisocyanate with an NCO content of 22.9%, a viscosity of 1200 mPas at 23 ° C. and an average NCO functionality of 3.1 (calculated from the NCO content and number average molecular weight, determined by GPC measurement). Makrolon 2405/901510, black polycarbonate
  • the catalyst was prepared according to EP 333 7836, Example 1a.
  • the polyols Desmophen C1100 and Desmophen XP 2488 were used in a mass ratio of 70:30.
  • the amount of catalyst used corresponds to a concentration of 2.91% by weight based on the total mass (component A + component B), calculated for degree of crosslinking 3.
  • Component B polyisocyanate B1, for amount see table 1.
  • Both components were heated to approx. 90 ° C before the experiment.
  • the surface temperature of the tool was 117 ° C.
  • the thermoplastic was melted in the extruder at 290 ° C and injected into the tool at a mold temperature set at 120 ° C.
  • the experimental release agent L9500021 from Votteler was applied manually to the plate tool, with any external release agent generally being suitable for polyurethane systems.
  • Degree of crosslinking 1 ratio of NCO groups to OH groups of 1: 1
  • Degree of crosslinking 3 ratio of NCO groups to OH groups of 3: 1
  • Table 1 Overview of the mixing ratios of polyol (A) to isocyanate (B) used and the degrees of crosslinking achieved with them, as well as the parameters set
  • the residual NCO content of at least one component was determined by means of IR after the following times.
  • an unreacted mixture of components A and B, mixed at room temperature was measured according to the degree of crosslinking and the peak contained therein for the NCO group at approx. 2200 cm 1 was normalized to 100%.
  • the measurements were made on the infrared spectrometer, Bruker Tensor II, using a Platinum ATR unit. The spectrometer was controlled with the device software OPUS Version 7.5, which was also used for the evaluation. After baseline correction (rubber band method) and normalization to CH 2 / CH 3 (min. -Max. Normalization in the range 2800-3000 cm 1 ), a straight line between 2380 cm 1 and 2170 cm 1 was calculated for the area integration and the area above it was calculated.
  • Table 2 Overview of the percentage content of residual NCO in the components with different degrees of crosslinking, measured after different time intervals. If the average value was below 5%, the development was not followed up.
  • Hazen color numbers were determined with a micro-haze plus device from Byk-Gardner GmbHFI, Geretsried, Germany, at an angle of 20 °.
  • the gloss of the coatings obtained was measured reflectometrically in accordance with DIN EN ISO 2813: 2014 at a 20 ° angle.
  • TG Glass transition temperature
  • DSC differential scanning calorimetry
  • a small amount of the appropriate solvent (xylene, 1-methoxy-2-propyl acetate (MPA), ethyl acetate or acetone) was placed in a test tube, which was fitted with a cotton swab at the opening so that a solvent-saturated atmosphere inside the test tube originated.
  • the test tubes were then placed on the paint surface with the cotton ball and remained there for 5 minutes. After wiping off the solvent, the film was tested for destruction / softening / loss of adhesion and assessed visually from 0 (no change) to 5 (paint surface destroyed).
  • Pendulum damping was measured in accordance with DIN EN ISO 1522 (edition 2007-04-01) according to Koenig, the sample plates being described in accordance with DIN 1514.
  • Table 4 Overview of the test results on direct coating components with various degrees of crosslinking. The tests were carried out in accordance with the descriptions above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Polyisocyanatzusammensetzungen und Trimerisierungskatalysatoren zur Herstellung von Beschichtungen durch Reaction Injection Moulding, die durch diese Verwendung erhaltenen Beschichtungen sowie entsprechend beschichtete Werkstücke.

Description

BESCHICHTUNGEN AUS POLYISOCYANURATBESCHICHTUNGEN (RIM) UND DEREN ANWENDUNG IN SPRITZGIESSPROZESSEN
Die vorliegende Erfindung betrifft die Verwendung von Polyisocyanatzusammensetzungen und Trimerisierungskatalysatoren zur Herstellung von Beschichtungen durch Reaction Injection Moulding, die durch diese Verwendung erhaltenen Beschichtungen sowie entsprechend beschichtete Werkstücke.
Die Vernetzung von Polyisocyanaten zu Polyisocyanuratkunststoffen ist beispielsweise in WO 2016/170058 oder WO 2016/170059 beschrieben. WO 2018/073303 beschreibt die Herstellung von Beschichtungen aus Reaktionsgemischen mit hohem Überschuss von Isocyanatgruppen gegenüber isocyanatreaktiven Gruppen.
Ein bekanntes Verfahren zum Aufbau von Beschichtungen ist das Reaction Injection Moulding. Hierbei wird ein zu beschichtendes Werkstück in eine Form eingebracht, die so dimensioniert ist, dass zwischen der Innenseite der Form und der Oberfläche des Werkstücks eine Kavität vorliegt, deren Breite der Schichtdicke der zu erzeugenden Beschichtung entspricht. Diesen Verfahren bietet bei der Herstellung von Werkstücken produktionstechnische Vorteile, da das Einspritzen des Beschichtungsmittels in eine Form einfacher und schneller erfolgen kann als der Aufbau einer Beschichtung durch Sprühen, Tauchen oder Streichen. Dies gilt insbesondere dann, wenn das zu beschichtende Werkstück eine komplexere dreidimensionale Form hat. Besonders vorteilhaft kann Reaction Injection Moulding mit der Herstellung eines zu beschichtenden Kunststoffbauteils kombiniert werden, indem das Kunststoffbauteil in einer ersten Form hergestellt wird und dann direkt in eine weitere Form überführt wird, in der die Beschichtung aufgetragen wird. Es ist auch möglich, die Geometrie der ersten Form, beispielsweise durch Verschieben eines Teils der Form, so zu verändern, dass zwischen Werkstück und Innenseite der Form eine Kavität für das Beschichtungsmittel entsteht. Industriell werden bisher vor allem zwei Verfahren für das Reaction Injection Moulding eingesetzt:
In dem einen Verfahren werden Polyurethanbeschichtungen durch Einspritzen eines Gemisches aus einem Polyol, einem Polyisocyanat und einem Urethanisierungskatalysator in den Spalt erzeugt. Um hinreichend kurze Taktzeiten zu erreichen, sind Systeme erforderlich, die schnell aushärten. Dies erfordert, insbesondere bei Verwendung von aliphatischen Isocyanat-und Hydroxylverbindungen, den Einsatz von Katalysatoren hoher Aktivität in sehr großen Einsatzmengen. Diese großen Mengen hochaktiver Katalysatoren können die Lebensdauer der Beschichtung verringern, da sie im Produkt verbleiben und häufig auch Hydrolyse- oder andere Abbauprozesse katalysieren, die langfristig die Beschichtung zerstören. Außerdem ist die gleichmäßige Mischung eines mehrkomponentigen und schnellhärtenden Systems in einem schmalen Spalt technisch schwer zu realisieren, umso mehr, wenn schlecht miteinander verträgliche Komponenten wie Trimerisate des Hexamethylendiisocyanats und verzweigte Polyesterpolyole eingesetzt werden sollen. Wird zudem das korrekte Mischungsverhältnis der Reaktanden nicht eingehalten, so verschlechtern sich die Materialeigenschaften, zum Beispiel durch nicht vollständig abreagierte Reaktanden, welche dazu führen, dass die Entformung nicht ohne Rückstände am Werkzeug möglich ist.
Das andere Verfahren beruht auf der Ausbildung von Polyharnstoffen. Hier lassen sich die geforderten hohen Reaktionsgeschwindigkeiten recht einfach aufgrund der hohen Reaktivität von Isocyanaten gegenüber Aminen erreichen. Allerdings sind die derart hergestellten Beschichtungen weniger kratzfest als vergleichbare Polyurethanbeschichtungen und deswegen für etliche Anwendungen ungeeignet.
Somit besteht ein Bedarf nach einem Beschichtungssystem für das Reaction Injection Moulding, das durch schnelle Aushärtung ohne große Mengen an Katalysatoren kurze Taktzeiten ermöglicht, unempfindlich gegen Mischfehler ist und dabei die Herstellung von Beschichtungen mit überlegenen anwendungstechnischen Eigenschaften ermöglicht.
Diese Aufgabe wird durch die in den Patentansprüchen und den weiter unten in dieser Beschreibung offenbarten Ausführungsformen gelöst.
In einer ersten Ausführungsform betrifft die vorliegende Erfindung die Verwendung eines Reaktionsgemisches mit einem molaren Verhältnis von Isocyanatgruppen zu isocyanatreaktiven Gruppen von wenigstens 3 : 1 zur Beschichtung von Werkstücken durch Reaction Injection Moulding, wobei das Reaktionsgemisch a) wenigstens eine Polyisocyanatzusammensetzung A, und b) wenigstens einen Trimerisierungskatalysator B enthält und wenigstens 30 Mol-% der im Reaktionsgemisch vorliegenden freien Isocyanatgruppen zu Isocyanuratgruppen umgesetzt werden.
Reaktionsgemisch
Das erfindungsgemäße Reaktionsgemisch enthält die oben definierten Bestandteile in einem Mischungsverhältnis, das eine Aushärtung des Polyisocyanats A zu einem Polyisocyanuratkunststoff ermöglicht. Die Komponenten liegen vermischt vor und sind bei der weiter unten in dieser Anmeldung definierten Temperaturerhöhung reaktionsfähig.
Das molare Verhältnis von Isocyanatgruppen zu isocyanatreaktiven Gruppen im Reaktionsgemisch liegt wenigstens bei 3 : 1, bevorzugt wenigstens bei 5 : 1. Unter dem Begriff „isocyanatreaktive Gruppen" werden in der vorliegenden Anmeldung Epoxid-, Hydroxyl-, Carboxyl-, Amino- und Thiolgruppen verstanden. Die der vorliegenden Erfindung zugrundeliegende Studie hat gezeigt, dass Reaktionsgemische mit einem stöchiometrischen Verhältnis von Isocyanatgruppen zu isocyanatreaktiven Gruppen von wenigstens 3 : 1 spürbar bessere anwendungstechnische Eigenschaften haben als Reaktionsgemische, die diesen Wert nicht erreichen.
Diese Eigenschaften werden durch die entstehenden Isocyanuratgruppen vermittelt. Deswegen werden in einer bevorzugten Ausführungsform der vorliegenden Erfindung werden wenigstens 40 Mol-%, bevorzugt wenigstens 50 Mol-% und am stärksten bevorzugt wenigstens 60 Mol-% der im Reaktionsgemisch vorliegenden freien Isocyanatgruppen zu Isocyanuratgruppen umgesetzt.
Wenn die Viskosität des Reaktionsgemisches für die Verwendung zu hoch ist, können Lösungsmittel zur Einstellung der Viskosität zugegeben werden. Ein Lösungsmittel ist dadurch gekennzeichnet, dass es keine dem Isocyanat gegenüber reaktiven Gruppen hat. Ein Lösungsmittel kann aus der Beschichtung entweichen, kann aber auch im Film verbleiben und dort als Weichmacher fungieren. Geeignete Lösungsmittel sind die zur Verdünnung von Polyisocyanaten dem Fachmann bekannten Lösungsmittel, bevorzugt aliphatische Acetate, aromatische Kohlenwasserstoffe, Ester, Ether und Polyether, Glykolether und Wasser. Besonders bevorzugt sind Wasser, Butylacetat, Ethylacetat, 1- Methoxy-2-Propylacetat, Butanon, Solvent Naphtha, Xylol und Toluol. Da organische Lösungsmittel, die weder Isocyanatgruppen noch isocyanatreaktive Gruppen enthalten, aber aus der Beschichtung freigesetzt werden, wird der Gehalt des Reaktionsgemisches an organischen Lösungsmitteln vorzugsweise begrenzt. Deswegen enthält das erfindungsgemäße Reaktionsgemisch höchsten 10 Gew.-%, bevorzugt höchstens 5 Gew.-% und stärker bevorzugt höchstens 2 Gew.-% an organischem Lösungsmittel, die weder Isocyanatgruppen, noch isocyanatreaktive Gruppen enthalten.
Die Viskosität des Reaktionsgemisches im Anwendungsfall liegt bevorzugt bei höchstens 10.000 mPas, bevorzugt höchstens 5.000 mPas, noch stärker bevorzugt höchstens 2.500 mPas und am stärksten bevorzugt 1.000 mPas bei Injektionstemperatur bestimmt gemäß DIN EN ISO 3219/B (Ausgabe vom 1. Oktober 1994) bei einem Schergefälle von 100 s 1. Typische Injektionstemperaturen sind 20-140°C, bevorzugt 30-100°C und besonders bevorzugt 40-90°C, und ganz besonders bevorzugt 50-60°C. Enthält das Reaktionsgemisch oligomere Polyisocyanate wie unten in dieser Anmeldung definiert, kann seine Viskosität über den vorgenannten Werten liegen. In diesen Fällen kann die Viskosität durch den Einsatz monomerer Polyisocyanate als Reaktivverdünner herabgesetzt werden.
Polyisocyanatzusammensetzung A
Der Begriff „Polyisocyanatzusammensetzung A" bezeichnet die Gesamtheit aller im Reaktionsgemisch enthaltenen Verbindungen, die wenigstens eine Isocyanatgruppe pro Molekül enthalten. Da die Aushärtung des Reaktionsgemisches auf der Vernetzung von Isocyanatgruppen untereinander basiert, ist es erfindungswesentlich, dass die Polyisocyanatzusammensetzung A einen hinreichend großen Anteil an Verbindungen mit durchschnittlich wenigstens zwei Isocyanatgruppen pro Molekül aufweist, um eine Vernetzung des Reaktionsgemisches zu bewirken. Soweit dieses Kriterium eingehalten wird, ist die Anwesenheit von Verbindungen mit durchschnittlich einer Isocyanatgruppe pro Molekül aber unschädlich.
Der Begriff „Polyisocyanat", wie hier verwendet, ist eine Sammelbezeichnung für Verbindungen, die im Molekül zwei oder mehrere Isocyanat-Gruppen (hierunter versteht der Fachmann freie Isocyanat- Gruppen der allgemeinen Struktur -N=C=0) enthalten. Einfachste und wichtigste Vertreter dieser Polyisocyanate sind die Diisocyanate. Diese haben die allgemeinen Struktur 0=C=N-R-N=C=0, wobei R üblicherweise für aliphatische, alicyclische, araliphatische und/oder aromatische Reste steht. In dieser Anmeldung steht der Begriff „Polyisocyanat A" für die Gesamtheit aller im Reaktionsgemisch enthaltenen Verbindungen mit durchschnittlich wenigstens zwei Isocyanatgruppen pro Molekül. Das Polyisocyanat A kann somit aus einem einzelnen Polyisocyanat bestehen. Es kann aber auch ein Gemisch aus mehreren unterschiedlichen Polyisocyanaten sein. Das Polyisocyanat A kann im Rahmen der unten definierten Ausführungsformen auch Beimengungen von Isocyanaten mit einer durchschnittlichen Funktionalität von weniger als zwei enthalten.
Aus Polyisocyanaten werden eine Vielzahl von Polymeren (z.B. Polyurethane, Polyharnstoffe und Polyisocyanurate) und niedermolekularen Verbindungen (z.B. solche mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur) hergestellt.
Der Begriff „Polyisocyanate" bezeichnet in dieser Anmeldung monomere und/oder oligomere Polyisocyanate gleichermaßen. Zum Verständnis vieler Aspekte der Erfindung ist es jedoch wichtig, zwischen monomeren Diisocyanaten und oligomeren Polyisocyanaten zu unterscheiden. Wenn in dieser Anmeldung von „oligomeren Polyisocyanaten" die Rede ist, dann sind damit Polyisocyanate gemeint, die aus mindestens zwei monomeren Diisocyanatmolekülen aufgebaut sind, d.h. es sind Verbindungen, die ein Reaktionsprodukt aus mindestens zwei monomeren Diisocyanatmolekülen darstellen oder enthalten.
Die Fierstellung oligomerer Polyisocyanate aus monomeren Diisocyanaten wird hier auch als Modifizierung monomerer Diisocyanate bezeichnet. Diese „Modifizierung", wie hier verwendet, bedeutet dabei die Reaktion monomerer Diisocyanate gegebenenfalls weiterer isocyantreaktiver Moleküle zu oligomeren Polyisocyanaten mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur.
So ist z.B. Flexamethylen-l,6-diisocyanat (HDI) ein „monomeres Diisocyanat", da es zwei Isocyanatgruppen enthält und kein Reaktionsprodukt aus mindestens zwei Polyisocyanatmolekülen darstellt: HDI
Reaktionsprodukte aus mindestens zwei HDI-Molekülen, die immer noch über mindestens zwei Isocyanatgruppen verfügen, sind demgegenüber „oligomere Polyisocyanate" im Sinne der Erfindung. Vertreter solcher „oligomerer Polyisocyanate" sind ausgehend von dem monomeren HDI z.B. das HDI- Isocyanurat und das HDI-Biuret, die jeweils aus drei monomeren HDI Molekülen aufgebaut sind:
Figure imgf000006_0001
HDI-Isocyanurat HDI-Biuret
(idealisierte Strukturformeln)
Vorzugsweise beträgt der Gewichtsanteil an Isocyanatgruppen bezogen auf die Gesamtmenge der Polyisocyanatzusammensetzung A wenigstens 5 Gew.-%. Stärker bevorzugt wenigstens 10 Gew.-%.
Grundsätzlich sind monomere und oligomere Polyisocyanate zur Verwendung im erfindungsgemäßen Reaktionsgemisch gleichermaßen geeignet. Folglich kann die Polyisocyanatzusammensetzung A im Wesentlichen aus monomeren Polyisocyanaten oder im Wesentlichen aus oligomeren Polyisocyanaten bestehen. Es kann aber auch oligomere und monomere Polyisocyanate in beliebigen Mischungsverhältnissen enthalten.
In einer bevorzugten Ausführungsform der Erfindung ist die als Edukt eingesetzte Polyisocyanatzusammensetzung A monomerarm (d.h. arm an monomeren Diisocyanaten) und enthält bereits oligomere Polyisocyanate. Die Begriffe „monomerarm" und „arm an monomeren Diisocyanaten" werden hier in Bezug auf die Polyisocyanatzusammensetzung A synonym verwendet.
Besonders praxisgerechte Ergebnisse stellen sich ein, wenn die Polyisocyanatzusammensetzung A einen Anteil an monomeren Diisocyanaten von höchstens 20 Gew.-%, insbesondere höchstens 15 Gew.-% oder höchstens 10 Gew.-%, jeweils bezogen auf das Gewicht der Polyisocyanatzusammensetzung A, aufweist. Vorzugsweise weist die Polyisocyanatzusammensetzung A einen Gehalt an monomeren Diisocyanaten von höchstens 5 Gew.-%, vorzugsweise höchstens 2,0 Gew.-%, besonders bevorzugt höchstens 1,0 Gew.-%, jeweils bezogen auf das Gewicht der Polyisocyanatzusammensetzung A, auf. Besonders einfache und sichere Verarbeitung ist dann gewährleistet, wenn die Polyisocyanatzusammensetzung A im Wesentlichen frei von monomeren Diisocyanaten ist. Im Wesentlichen frei bedeutet dabei, dass der Gehalt an monomeren Diisocyanaten höchstens 0,5 Gew.-%, besonders bevorzugt sogar unter 0,10% bezogen auf das Gewicht der Polyisocyanatzusammensetzung A, beträgt.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung besteht die Polyisocyanatzusammensetzung A vollständig oder zu mindestens 80, 85, 90, 95, 98, 99 oder 99,5 Gew.-%, jeweils bezogen auf das Gewicht der Polyisocyanatzusammensetzung A, aus oligomeren Polyisocyanaten. Hierbei ist ein Gehalt an oligomeren Polyisocyanaten von wenigstens 99 Gew.-% bevorzugt. Dieser Gehalt an oligomeren Polyisocyanaten bezieht sich auf die Polyisocyanatzusammensetzung A, wie sie bereitgestellt wird. D.h. die oligomeren Polyisocyanate werden nicht während des erfindungsgemäßen Verfahrens als Zwischenprodukt gebildet, sondern liegen bereits zu Beginn der Reaktion in der als Edukt eingesetzten Polyisocyanatzusammensetzung A vor.
Polyisocyanatzusammensetzungen, die monomerarm oder im Wesentlichen frei von monomeren Isocyanaten sind, lassen sich erhalten, indem nach der eigentlichen Modifizierungsreaktion in jedem Fall mindestens ein weiterer Verfahrensschritt zur Abtrennung der nicht umgesetzten überschüssigen monomeren Diisocyanate durchgeführt wird. Diese Monomerenabtrennung kann besonders praxisgerecht nach an sich bekannten Verfahren, vorzugsweise durch Dünnschichtdestillation im Hochvakuum oder durch Extraktion mit geeigneten gegenüber Isocyanatgruppen inerten Lösungsmitteln, beispielsweise aliphatischen oder cycloaliphatischen Kohlenwasserstoffen wie Pentan, Hexan, Heptan, Cyclopentan oder Cyclohexan, erfolgen.
Gemäß einer bevorzugten Ausführungsform der Erfindung wird das Polyisocyanat A durch Modifizierung monomerer Diisocyanate mit anschließender Abtrennung nicht umgesetzter Monomere erhalten.
Gemäß einer besonderen Ausführungsform der Erfindung enthält eine monomerarmes Polyisocyanatzusammensetzung A jedoch ein monomeres Fremddiisocyanat. Hierbei bedeutet „monomeres Fremddiisocyanat", dass es sich von den monomeren Diisocyanaten, die zur Herstellung der in der Polyisocyanatzusammensetzung A enthaltenen oligomeren Polyisocyanaten verwendet wurden, unterscheidet.
Eine Zugabe von monomerem Fremddiisocyanat kann zur Erzielung spezieller technischer Effekte, wie z.B. einer besonderen Härte vorteilhaft sein. Besonders praxisgerechte Ergebnisse stellen sich ein, wenn das Isocyanat A einen Anteil an monomeren Fremddiisocyanat von höchstens 50 Gew.-%, insbesondere höchstens 30 Gew.-% oder höchstens 15 Gew.-%, jeweils bezogen auf das Gewicht der Polyisocyanatzusammensetzung A, aufweist. Vorzugsweise weist die Polyisocyanatzusammensetzung A einen Gehalt an monomeren Fremddiisocyanat von höchstens 10 Gew.-%, vorzugsweise höchstens 2,0 Gew.-%, besonders bevorzugt höchstens 1,0 Gew.-%, jeweils bezogen auf das Gewicht der Polyisocyanatzusammensetzung A, auf.
Gemäß einer weiteren besonderen Ausführungsform des erfindungsgemäßen Verfahrens enthält die Polyisocyanatzusammensetzung A monomere Isocyanate mit einer Isocyanatfunktionalität größer zwei, d.h. mit mehr als zwei Isocyanatgruppen pro Molekül. Die Zugabe monomeren Isocyanaten mit einer Isocyanatfunktionalität größer zwei hat sich als vorteilhaft erwiesen, um die Netzwerkdichte der Beschichtung zu beeinflussen. Besonders praxisgerechte Ergebnisse stellen sich ein, wenn die Polyisocyanatzusammensetzung A einen Anteil an monomeren Isocyanaten mit einer Isocyanatfunktionalität größer zwei in der Polyisocyanatzusammensetzung A von höchstens 20 Gew.- %, insbesondere höchstens 15 Gew.-% oder höchstens 10 Gew.-%, jeweils bezogen auf das Gewicht der Polyisocyanatzusammensetzung A, aufweist. Vorzugsweise weist die Polyisocyanatzusammensetzung A einen Gehalt an monomeren Monoisocyanaten oder monomeren Isocyanaten mit einer Isocyanatfunktionalität größer zwei von höchstens 5 Gew.-%, vorzugsweise höchstens 2,0 Gew.-%, besonders bevorzugt höchstens 1,0 Gew.-%, jeweils bezogen auf das Gewicht der Polyisocyanatzusammensetzung A, auf. Vorzugsweise wird bei der erfindungsgemäßen Trimerisierungsreaktion kein monomeres Monoisocyanat oder monomeres Isocyanat mit einer Isocyanatfunktionalität größer zwei mitverwendet. Monomere Isocyanate mit einer Isocyanatfunktionalität > 2 sind zum Beispiel Triisocyanatononan und PMDI.
Die oligomeren Polyisocyanate können erfindungsgemäß insbesondere Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur aufweisen. Gemäß einer Ausführungsform der Erfindung weisen die oligomeren Polyisocyanate mindestens eine der folgenden oligomeren Strukturtypen oder deren Gemische auf:
Figure imgf000008_0001
Uretdion Isocyanurat Allophanat Biuret Iminooxadiazindion Oxadiazintrion
Gemäß einer bevorzugten Ausführungsform der Erfindung wird eine Polyisocyanatzusammensetzung A eingesetzt, deren Isocyanuratstrukturanteil mindestens 50 mol-%, vorzugsweise mindestens 60 mol- %, stärker bevorzugt mindestens 70 mol-%, noch stärker bevorzugt mindestens 80 mol-%, noch stärker bevorzugt mindestens 90 mol-% und besonders bevorzugt mindestens 95 mol-% bezogen auf die Summe der vorliegenden oligomeren Strukturen aus der Gruppe, bestehend aus Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und Oxadiazintrionstruktur in der Polyisocyanatzusammensetzung A, beträgt.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung wird im erfindungsgemäßen Verfahren eine Polyisocyanatzusammensetzung A, die neben der Isocyanuratstruktur mindestens ein weiteres Oligomeres Polyisocyanat mit Uretdion-, Biuret-, Allophanat-, Iminooxadiazindion- und Oxadiazintrionstruktur und Mischungen davon enthält, eingesetzt.
Die Anteile an Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur in der Polyisocyanatzusammensetzung A können z.B. durch NMR- Spektroskopie bestimmt werden. Bevorzugt lässt sich hierbei die 13C-NMR-Spektroskopie, vorzugsweise protonenentkoppelt, einsetzen, da die genannten oligomeren Strukturen charakteristische Signale liefern.
Unabhängig vom der zugrunde liegenden oligomeren Struktur (Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur) weist eine beim erfindungsgemäßen Verfahren einzusetzendes Oligomeres Polyisocyanatzusammensetzung A vorzugsweise eine (mittlere) NCO-Funktionalität von 2,0 bis 5,0, vorzugsweise von 2,3 bis 4,5 auf.
Besonders praxisgerechte Ergebnisse stellen sich ein, wenn die erfindungsgemäß einzusetzende Polyisocyanatzusammensetzung A einen Gehalt an Isocyanatgruppen von 8,0 bis 28,0 Gew.-%, vorzugsweise von 14,0 bis 25,0 Gew.-%, jeweils bezogen auf das Gewicht der Polyisocyanatzusammensetzung A, aufweist.
Herstellverfahren für die in der Polyisocyanatzusammensetzung A erfindungsgemäß einzusetzenden oligomeren Polyisocyanate mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur sind beispielsweise in J. Prakt. Chem. 336 (1994) 185 - 200, in DE-A 1 670666, DE-A 1954093, DE-A 2414413, DE-A 2452532, DE-A 2641380, DE-A 3700209, DE-A 3900 053 und DE-A 3 928 503 oder in EP-A 0336 205, EP A 0339396 und EP-A 0798 299 beschrieben.
Gemäß einer zusätzlichen oder alternativen Ausführungsform der Erfindung ist die Polyisocyanatzusammensetzung A dadurch definiert, dass sie oligomere Polyisocyanate enthält, die aus monomeren Diisocyanaten unabhängig von der Art der verwendeten Modifizierungsreaktion unter Einhaltung eines Oligomerisierungsgrades von 5 bis 45 %, vorzugsweise 10 bis 40 %, besonders bevorzugt 15 bis 30 %, erhalten wurden. Unter "Oligomerisierungsgrad" ist dabei der Prozentsatz der in der Ausgangsmischung ursprünglich vorhandenen Isocyanatgruppen zu verstehen, der während des Herstellprozesses unter Bildung von Urethan-, Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstrukturen verbraucht wird.
Geeignete Polyisocyanate zur Herstellung der erfindungsgemäß einzusetzenden Polyisocyanatzusammensetzung A und der darin enthaltenen monomeren und/oder oligomeren Polyisocyanate sind beliebige, auf verschiedene Weise, beispielsweise durch Phosgenierung in der Flüssig- oder Gasphase oder auf phosgenfreien Weg, wie z.B. durch thermische Urethanspaltung, zugängliche Polyisocyanate. Besonders gute Ergebnisse stellen sich ein, wenn es sich bei den Polyisocyanaten um monomere Diisocyanate handelt. Bevorzugte monomere Diisocyanate sind solche, die ein Molekulargewicht im Bereich von 140 bis 400 g/mol aufweisen, mit aliphatisch, cycloaliphatisch, araliphatisch und/oder aromatisch gebundenen Isocyanatgruppen, wie z. B. 1,4- Diisocyanatobutan (BDI), 1,5-Diisocyanatopentan (PDI), 1,6-Diisocyanatohexan (HDI), 2-Methyl-l,5- diisocyanatopentan, l,5-Diisocyanato-2,2-dimethylpentan, 2,2,4- bzw. 2,4,4-Trimethyl-l,6- diisocyanatohexan, 1,10-Diisocyanatodecan, 1,3- und 1,4-Diisocyanatocyclohexan, 1,4-Diisocyanato- 3,3,5-trimethylcyclohexan, l,3-Diisocyanato-2-methylcyclohexan, l,3-Diisocyanato-4- methylcyclohexan, l-lsocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan
(Isophorondiisocyanat; IPDI), l-lsocyanato-l-methyl-4(3)-isocyanatomethylcyclohexan, 2,4'- und 4,4'- Diisocyanatodicyclohexylmethan (H12MDI), 1,3-und l,4-Bis(isocyanatomethyl)cyclohexan, Bis-
(isocyanatomethyl)-norbornan (NBDI), 4,4'-Diisocyanato-3,3'-dimethyldicyclohexylmethan, 4,4'- Diisocyanato-3,3',5,5'-tetramethyl-dicyclohexylmethan, 4,4'-Diisocyanato-l,l'-bi(cyclohexyl), 4,4'- Diisocyanato-3,3'-dimethyl-l,l'-bi(cyclohexyl), 4,4'-Diisocyanato-2,2',5,5'-tetra-methyl-l,l'- bi(cyclohexyl), 1,8-Diisocyanato-p-menthan, 1,3-Diisocyanato-adamantan, l,3-Dimethyl-5,7- diisocyanatoadamantan, 1,3- und l,4-Bis-(iso-cyanatomethyl)benzol (Xylylendiisocyanat; XDI), 1,3- und l,4-Bis(l-isocyanato-l-methyhethyl)-benzol (TMXDI) und Bis(4-(l-isocyanato-l- methylethyl)phenyl)-carbonat, 2,4- und 2,6-Diisocyanatotoluol (TDI), 2,4'- und 4,4'- Diisocyanatodiphenylmethan (MDI), 1,5-Diisocyanatonaphthalin sowie beliebige Gemische solcher Diisocyanate. Weitere ebenfalls geeignete Diisocyanate finden sich darüber hinaus beispielsweise in Justus Liebigs Annalen der Chemie Band 562 (1949) S. 75 - 136.
Geeignete monomere Monoisocyanate, die in der Polyisocyanatzusammensetzung A gegebenenfalls eingesetzt werden können, sind beispielsweise n-Butylisocyanat, n-Amylisocyanat, n-Hexylisocyanat, n-Heptylisocyanat, n-Octylisocyanat, Undecylisocyanat, Dodecylisocyanat, Tetradecylisocyanat, Cetylisocyanat, Stearylisocyanat, Cyclopentylisocyanat, Cyclohexylisocyanat, 3- bzw. 4- Methylcyclohexylisocyanat oder beliebige Gemische solcher Monoisocyanate. Als monomeres Isocyanat mit einer Isocyanatfunktionalität größer zwei, das der Isocyanatkomponente A gegebenenfalls zugesetzt werden kann, sei beispielhaft 4-lsocyanatomethyl-l,8-octandiisocyanat (Triisocyanatononan; TIN) genannt. Gemäß einer Ausführungsform der Erfindung enthält die Polyisocyanatzusammensetzung A höchstens 30 Gew.-%, insbesondere höchstens 20 Gew.-%, höchstens 15 Gew.-%, höchstens 10 Gew.-%, höchstens 5 Gew.-% oder höchstens 1 Gew.-%, jeweils bezogen auf das Gewicht der Polyisocyanatzusammensetzung A, an aromatischen Polyisocyanaten. Wie hier verwendet, bedeutet „aromatisches Polyisocyanat" ein Polyisocyanat, welches mindestens eine aromatisch gebundene Isocyanatgruppe aufweist.
Unter aromatisch gebundenen Isocyanatgruppen werden Isocyanatgruppen verstanden, die an einen aromatischen Kohlenwasserstoffrest gebunden sind.
Gemäß einer weiteren Ausführungsform der Erfindung besteht die Polyisocyanatzusammensetzung A zu mindestens 70, 80, 85, 90, 95, 98 oder 99 Gew.-%, jeweils bezogen auf das Gewicht der Polyisocyanatzusammensetzung A, aus Polyisocyanaten, die ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanatgruppen aufweisen. Praktische Versuche haben gezeigt, dass sich besonders gute Ergebnisse mit Polyisocyanatzusammensetzungen A erzielen lassen, bei denen die darin enthaltenen Isocyanate ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanatgruppen aufweisen.
Unter aliphatisch bzw. cycloaliphatisch gebundenen Isocyanatgruppen werden Isocyanatgruppen verstanden, die an einen aliphatischen bzw. cycloaliphatischen Kohlenwasserstoffrest gebunden sind. Gemäß einer anderen bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein Polyisocyanat A eingesetzt, das aus einem oder mehreren oligomeren Polyisocyanaten besteht oder diese enthält, wobei die ein oder mehreren oligomeren Polyisocyanate ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanatgruppen aufweisen.
Gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine Polyisocyanatzusammensetzung A eingesetzt, die aus einem oder mehreren oligomeren Polyisocyanaten besteht oder diese enthält, wobei die ein oder mehreren oligomeren Polyisocyanate auf Basis von 1,4-Diisocyanatobutan (BDI), 1,5-Diisocyanatopentan (PDI), 1,6-Diisocyanatohexan (HDI), Isophorondiisocyanat (IPDI) oder 4,4'-Diisocyanatodicyclohexylmethan (H12MDI) oder deren Mischungen aufgebaut sind.
Blockierte Polyisocyanate
In einer Ausführungsform der vorliegenden Erfindung ist wenigstens ein Teil der in der Polyisocyanatzusammensetzung A enthaltenen Polyisocyanate blockiert. „Blockierung" bedeutet, dass die Isocyanatgruppen eines Polyisocyanats mit einer weiteren Verbindung, dem Blockierungsmittel, umgesetzt wurden, so dass die blockierten Isocyanatgruppen nicht mehr die für freie Isocyanatgruppen typische Reaktivität zeigen. Erst eine thermische Aktivierung des blockierten Isocyanats führt zu einer Erhöhung der Reaktivität gegenüber isocyanatreaktiven Gruppen oder freien Isocyanatgruppen, so dass eine Polymerisierung ablaufen kann. Geeignete Blockierungsmittel sind dem Fachmann allgemein bekannt.
Erfindungsgemäß wird wenigstens eine Verbindung ausgewählt aus der Gruppe bestehend aus Alkoholen, Phenolen, Pyridinoien, Thiophenolen, Chinolinoien, Mercaptopyridinen, Chinolinoien, Amiden, Imiden, Imidazolen, Imidazolinen, Lactamen, Oximen, Pyrazolen, Triazolen, Malonsäureestern, Acetessigsäureestern, Acetylketonen und Cyclopentanon-2-Alkylestern, als Blockierungsmittel verwendet. Stärker bevorzugt erfolgt die Blockierung mit einer Verbindung ausgewählt aus der Gruppe bestehend aus Mercaptopyridinen, Chinolinoien, Amiden, Imiden, Imidazolen, Imidazolinen, Lactamen, Oximen, Pyrazolen, Triazolen, Malonsäureestern, Acetessigsäureestern, Acetylketonen und Cyclopentanon-2-Alkylestern. Ganz besonders bevorzugt wird wenigstens ein Cyclopentanon-2-Alkylester verwendet.
Bevorzugte Lactame, Amide und Imide sind ausgewählt aus der Gruppe bestehend aus N- Methylacetamid, Acetanilid, g-Butyrolactam, x-Enantholactam d-Valerolactam, Laurinlactam, e- Caprolactam, 5-Methyl-2-piperidon, 3,6-Dialkyl-2,5-piperazidinone oder Phthalimide. Ein besonders bevorzugtes Lactam ist e-Caprolactam.
Bevorzugte Oxime sind ausgewählt aus der Gruppe bestehend aus 2-Butanonoxim, 3-Methyl-2- Butanonoxim, 3,3-Dimethyl-2-Butanonoxim, 4-Methyl-2-pentanonoxim, 5-Methyl-2-hexanonoxim, 2- Heptanonoxim, 4,6-Dimethyl-2-heptanonoxim, 3-Ethyl-2-nonoxim, 2,4-Dimethyl-3-pentanonoxim, 2,6-Dimethyl-4-heptanonoxim, Formaldoxim, Acetophenonoxim, Diethlglyoxim, Pentanonoxim, Flexanonoxim, Cyclohexanonoxim, 2,2,6,6-Tetramethylcyclohexanonoxim, 2, 2,4,4-
Tetramethylcyclobutan-l,3-dione-l-oxim und Flydroxamsäure. Ein besonders bevorzugtes Oxim ist 2- Butanonoxim.
Als Phenole, Chinoline und Pyridinoie eignen sich unter anderem die Ester der 2-Hydroxybenzoesäure und der 4-Hydroxybenzoesäure, wie 2-Hydroxybenzoesäuremethylester, 2- Hydroxybenzoesäureethylester, 2-Ethylhexyl-2-hydroxybenzoat, 4-Hydroxybenzoesäuremethylester, 4-Hydroxybenzoesäureethylester, Benzyl-4-hydroxybenzoat oder 2-Ethylhexyl-4-hydroxybenzoat, 2- [(Dimethylamino)methyl]phenol, 2-[(Dimethylamino)methyl]-4-nonylphenol, Phenol, 2,3,5- Trimethylphenol, 2,3,6-Trimethylphenol, 2,4,6-Trimethylphenol, o-Kresol, m-Kresol, p-Kresol, 2-tert- Butylphenol, 4-tert-Butylphenol, 2-Hydroxymethylacrylat, 2-Hydroxyethylacrylat, 2- Hydroxymethylmethacrylat, 2-Hydroxyethylmethacrylat, 2-Hydroxychinolin, 8-Hydroxychinolin, 2- Hydroxypyridin, 3-Hydroxypyridin, 2-Hydroxymethylpyridin, 3-Hydroxymethylpyridin, 2-Chlor-3- hydroxypyridin sowie para-Kresol-Formaldehydharze und phenolische Terpenharze und phenolische Terpenharze. Bevorzugte Phenole sind ausgewählt aus der Gruppe bestehend aus Phenol, 2,3,5-Trimethylphenol, 2,3,6-Trimethylphenol, 2,4,6-Trimethylphenol, o-Kresol, m-Kresol, p-Kresol, 2-tert-Butylphenol und 4- tert-Butylphenol.
Geeignete Alkohole umfassen beispielsweise lineare und verzweigte aliphatische Alkohole wie Isopropanol, n-Butanol, sec-Butanol, tert-Butanol, n-Pentanol, 2,2-Dimethyl-l-propanol, n-Hexanol, 2- Ethylhexanol, 1-Octanol oder 2-0ctanol, Cyclohexanol, Furfurylalkohol, Monoether von Ethylenglycol, wie 2-Methoxyethanol, 2-Ethoxyethanol, 2-Propoxyethanol, 2-Butoxyethanol, Diethylenglycolmonomethylether, Diethylenglycolmonoethylether, Diethylenglycolmonopropylether, Diethylenglycolmonobutylether oder 2-(2-Ethylhexyloxy)ethanol, N,N-Dibutylglycolamid, N- Hydroxysuccinimid, 2-Morpholinoethanol, 2,2-Dimethyl-4-hydroxymethyl-l,3-dioxolan, 12- Hydroxystearinsäure oder 3-0xazolidinethanol.
Geeignete Imidazole, Imidazoline, Pyrazole und Triazole sind beispielsweise 2-Methylimidazol, 2- Ethylimidazol, 2-lsopropylimidazol, 2-Ethyl-4-methylimidazol, 2,4-Dimethylimidazolin, 4- Methylimidazolin, 2-Phenylimidazolin, 4-Methyl-2-phenylimidazolin, 3-Methylpyrazol, 3,5- Diemthylpyrazol, 1,2,4-Triazol oder Benzotriazol. Bevorzugtes Pyrazol ist 3,5-Dimethylpyrazol. Malonsäureester, Acetessigsäureester und Acetylketona umfassen beispielsweise Dimethylmalonat, Diethylmalonat, Diisopropylmalonat, tert-Butylmethylmalonat, Di-tert-Butylmalonat, Isopropylidenmalonat, Methylacetoacetat, Ethlyaetoacetat, isoprpylacetoacetat, tert- Butylacetoacetonat, 2-Acetoacetoxyethlymethacrylat, 2,4-Pentandion (Acetylaceton) oder Ethylcyanoacetat. Bevorzugte Malonate sind Diethylmalonat und Diemethylmalonat.
Bevorzugte sekundäre Amine sind ausgewählt aus der Gruppe bestehend aus Diisopropylamin, Dibutylamin, Di-tert-Butylamin, N-methyl-tert-butylamin, Tert-butylbenzylamin, 2,2,4- Trimethylhexamethylenamin, 2,2,5-Trimethylhexamethylenamin, N-Methylhexylamin, N- Isopropylcyclohexylamin, Dicyclohexylamin, bis(3,3,5-Trimethylcyclohexyl)-amin, 3-Tert- butylaminomethylpropionat, Piperidin, 2,6-Dimethylpiperidin, 2,2,6,6-Tetramethylpiperidin, 4- (Dimethylamino)-2,2,6,6-tetramethylpiperidin, 2,2,6,6-Tetramethyl-4-piperidon-bis(2,2,6,6-
Tetramethylpieridinyl)amin, N-Methylanilin, Diphenylamin oder N-Phenylnaphthalin.
Besonders bevorzugt sind Diisopropylamin, Tetramethylpiperidin und N-methyl-tert-butylamin, Tert- butylbenzylamin, n-Dibutylamin und 3-Tert-butylaminomethylpropionat.
Als Cyclopentanon-2-Alkylester werden Cyclopentanon-2-Methylester, Cyclopentanon-2-Ethylester, Cyclopentanon-2-Propylester, Cyclopentanon-2-Butylester und Cyclopentanon-2-pentylylester bevorzugt. Besonders bevorzugt ist Cyclopentanon-2-Methylester. Es ist erfindungsgemäß möglich, eine Mischung von zwei, drei oder mehr der vorgenannten Verbindungen als Blockierungsmittel einzusetzen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist der überwiegende Teil der in der Polyisocyanatzusammensetzung A vorliegenden Isocyanatgruppen blockiert. Besonders bevorzugt sind wenigstens 90 Gew.-%, noch stärker bevorzugt wenigstens 95 Gew.-% und am stärksten bevorzugt 98 Gew.-% der in der Polyisocyanatzusammensetzung A vorliegenden Isocyanatgruppen blockiert. Ganz besonders bevorzugt enthält die Polyisocyanatzusammensetzung A keine nachweisbaren freien Isocyanatgruppen. Freie Isocyanatgruppen können mittels IR-Spektroskopie bestimmt werden. Die NCO-Bande wird bei 2700 cm 1 beobachtet.
Silanmodifizierte Polyisocyanate
Silanmodifizierungen werden in Beschichtungen eingesetzt, um zum Beispiel die Härte und / oder die Kratzfestigkeit der Beschichtung zu erhöhen. Werden silanmodifizierte Isocyanate verwendet, so liegen in einem Molekül sowohl silanfunktionelle Gruppen als auch Isocyanatgruppen vor. Die Vernetzung der Silangruppen untereinander kann katalysiert werden, kann aber auch durch eine Nachhärtung, z.B. über Luftfeuchtigkeit erfolgen. Erfindungsgemäß werden Formulierungen mit silanfunktionellen Isocyanate allerdings so gestaltet, dass man nach dem ersten Härtungsschritt bereits eine Beschichtung enthält, die entformbar ist und dann durch die Nachvernetzung ihre endgültige Härte erreicht.
In einer bevorzugten Ausführungsform enthält die Polyisocyanatzusammensetzung A wenigstens ein silanfunktionelles Polyisocyanat, besonders bevorzugt wenigstens ein silanfunktionelles Oligomeres Polyisocyanat. Hierbei handelt es sich um Verbindungen wenigstens eine Silangruppe und wenigstens 1 Isocyanatgruppen enthalten.
Silanfunktionelle oligomere Polyisocyanate werden üblicherweise durch Oligomerisierung einfacher aliphatischer, cycloaliphatischer, araliphatischer und/oder aromatischer, monomerer Diisocyanate, wie sie vorstehend als Ausgangsdiisocyanate für die Herstellung der oligomeren Polyisocyanate beschrieben sind, im Gemisch mit Silicium-modifizierten Diisocyanaten und/oder Isocyanatoalkysilanen oder durch partielle Umsetzung oligomerer Polyisocyanate mit gegenüber Isocyanatgruppen reaktiven Silicium-haltigen Verbindungen erhalten. Die Begriffe „partielle Umsetzung mit Silicium-haltigen Verbindungen" oder „Silicium-modifiziert" werden im Sinne der Erfindung austauschbar verwendet und bedeuten insbesondere, dass 1 bis 99,9 mol-%, vorzugsweise 5 bis 80 mol%, besonders bevorzugt 10 bis 50 mol%, ganz besonders bevorzugt 15 bis 40 mol% der im oligomeren Polyisocyanat oder im Diisocyanat ursprünglich vorhandenen Isocyanatgruppen mit Silicium-haltigen Verbindungen umgesetzt wurden. Anders ausgedrückt weisen die durch partielle Umsetzung von oligomeren Polyisocyanaten mit Silicium-haltigen Verbindungen hergestellten oligomeren, silanfunktionellen Polyisocyanate einen Isocyanatgehalt von 99,0 bis 0,1 mol-%, vorzugsweise 95 bis 20 mol%, besonders bevorzugt 90 bis 50 mol%, ganz besonders bevorzugt 85 bis 60 mol%. bezogen auf die ursprünglich vorhandenen Isocyanatgruppen der oligomeren Polyisocyanate auf.
Herstellverfahren für die in der monomerarmen Zusammensetzung A) erfindungsgemäß einzusetzenden durch Umsetzung oligomerer Polyisocyanate mit gegenüber Isocyanatgruppen reaktiven Silicium-haltigen Verbindungen erhältlichen oligomeren, silanfunktionellen Polyisocyanate mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur sind beispielsweise in EP-A 1 273 640, WO-A 2008/074490, WO-A 2008/074489, WO-A 2014/086530, WO-A 2010/149236, WO-A 2009/156148 beschrieben.
Weitere oligomere, silanfunktionelle Polyisocyanate sind beispielsweise auch die in der EP-A 2014692 und EP-A 2 305 691 beschriebenen, durch Umsetzung von Silangruppen enthaltenden Hydroxyurethanen bzw. Hydroxyamiden mit überschüssigen Mengen monomerer Diisocyanate erhältlichen Allophanat- und Silangruppen enthaltenden Polyisocyanate.
Weiterhin bevorzugt ist die Verwendung der in WO 2015/189164 beschriebenen Thioallophanate in der Polyisocyanatzusammensetzung A, da diese bei hohem Gehalt an Silangruppen weiterhin auch eine hohe durchschnittliche Isocyanatfunktionalität aufweisen. Dies sind Verbindungen, die durch die allgemeine Formel (I) charakterisiert sind,
Figure imgf000015_0001
in welcher R1, R2 und R3 für gleiche oder verschiedene Reste stehen und jeweils einen gesättigten oder ungesättigten, linearen oder verzweigten, aliphatischen oder cycloaliphatischen oder einen gegebenenfalls substituierten aromatischen oder araliphatischen Rest mit bis zu 18 Kohlenstoffatomen bedeuten, der gegebenenfalls bis zu 3 Heteroatome aus der Reihe Sauerstoff, Schwefel, Stickstoff enthalten kann,
X für einen linearen oder verzweigten organischen Rest mit mindestens 2 Kohlen stoffatomen steht, Y einen linearen oder verzweigten, aliphatischen oder cycloaliphatischen, einen araliphatischen oder aromatischen Rest mit bis zu 18 Kohlenstoffatomen bedeutet und n für eine ganze Zahl von 1 bis 20 steht.
Weiterhin bevorzugt ist die Verwendung von silanfunktionellen Polyisocyanaten, die durch Umsetzung der weiter oben in dieser Anmeldung als Bestandteile der Polyisocyanatzusammensetzung genannten Polyisocyanate mit silanfunktionellen Verbindungen, bevorzugt silanfunktionellen Aminen, Aspartate, Amide und Thiole, erhalten werden. Bevorzugte silanfunktionelle Amine sind ausgewählt aus der Gruppe bestehend aus Verbindungen gemäß Formel (II), (III) und (IV).
Figure imgf000016_0001
in welcher R5, R6 und R7 für gleiche oder verschiedene Reste stehen und jeweils einen gesättigten oder ungesättigten, linearen oder verzweigten, aliphatischen oder cycloaliphatischen oder einen gegebenenfalls substituierten aromatischen oder araliphatischen Rest mit bis zu 18 Kohlenstoffatomen bedeuten, der gegebenenfalls bis zu 3 Hetero atome aus der Reihe Sauerstoff, Schwefel, Stickstoff enthalten kann,
X für einen linearen oder verzweigten organischen Rest mit mindestens 2 Kohlenstoffatomen steht, der gegebenenfalls bis zu 2 Iminogruppen (-NH-) ent halten kann, und
R8 für Wasserstoff, einen gesättigten oder ungesättigten, linearen oder verzweigten, aliphatischen oder cycloaliphatischen oder einen gegebenenfalls substituierten aromatischen oder araliphatischen Rest mit bis zu 18 Kohlenstoffatomen oder einen Rest der Formel
Figure imgf000016_0002
steht, in welchem R5, R6, R7 und X die vorstehend angegebene Bedeutung haben. Geeignete Aminosilane der allgemeinen Formel (II) sind beispielsweise 3-Aminopropyltrimethoxysilan, 3-Aminopropyltriethoxysilan, 3-Aminopropylmethyldimethoxysilan, 3-Aminopropylmethyl- diethoxysilan, 3-Aminopropylethyldiethoxysilan, 3-Aminopropyldimethylethoxysilan, 3- Aminopropyldiisopropylethoxysilan, 3-Aminopropyltripropoxysilan, 3-Aminopropyltributoxysilan, 3- Aminopropylphenyldiethoxysilan, 3-Aminopropylphenyldimethoxysilan, 3-Aminopropyl- tris(methoxyethoxyethoxy)silan, 2-Aminoisopropyltrimethoxysilan, 4-Aminobutyltrimethoxysilan, 4- Aminobutyltriethoxysilan, 4-Aminobutylmethyldimethoxysilan, 4-Aminobutylmethyldiethoxysilan, 4- Aminobutylethyldimethoxysilan, 4-Aminobutylethyldiethoxysilan, 4-
Aminobutyldimethylmethoxysilan, 4-Aminobutylphenyldimethoxysilan, 4-Aminobu- tylphenyldiethoxysilan, 4-Amino(3-methylbutyl)methyldimethoxysilan, 4-Amino(3-me- thylbutyl)methyldiethoxysilan, 4-Amino(3-methylbutyl)trimethoxysilan, 3-Aminopropylphenylmethyl- n-propoxysilan, 3-Aminopropylmethyldibutoxysilan, 3-Aminopropyldiethylmethylsilan, 3-Aminopro- pylmethylbis(trimethylsiloxy)silan, 11-Aminoundecyltrimethoxysilan, N-Methyl-3- aminopropyltrimethoxysilan, N-Methyl-3-aminopropyltriethoxysilan, N-(n-Butyl)-3-amino- propyltrimethoxysilan, N-(n-Butyl)-3-aminopropyltriethoxysilan, N-(2-Aminoethyl)-3- aminopropyltrimethoxysilan, N-(2-Aminoethyl)-3-aminoisobutylmethyldimethoxysilan, N-(2- Aminoethyl)-3-aminopropylmethyldimethoxysilan, N-(2-Aminoethyl)-3-aminopropyltris(2- ethylhexoxy)silan, N-(6-Aminohexyl)-3-aminopropyltrimethoxysilan, N-Benzyl-N-(2-aminoethyl)-3- aminopropyltrimethoxysilan, Bis(3-trimethoxysilylpropyl)amin, Bis(3-triethoxysilylpropyl)amin, (Aminoethylaminomethyl)-phenethyltrimethoxysilan, N-Vinylbenzyl-N-(2-aminoethyl)-3- aminopropylpolysiloxan, N-Vinylbenzyl-N(2-aminoethyl)-3-aminopro-pylpolysiloxan, 3-Ureidopropyl- triethoxysilan, 3-(m-Aminophenoxy)-propyltrimethoxysilan, m- und/oder p-Aminophenyltri- methoxysilan, 3-(3-Aminopropoxy)-3,3-dimethyl-l-propenyltrimethoxysilan, 3-
Aminopropylmethylbis(trimethylsiloxy)-silan, 3-Aminopropyltris(trimethyl-siloxy)-silan, 3- Aminopropylpentamethyldisiloxan oder beliebige Gemisch solcher Aminosilane.
Figure imgf000017_0001
in welcher R5, Rsund R7 die für Formel (II) genannte Bedeutung haben,
X für einen linearen oder verzweigten organischen Rest mit mindestens 2
Kohlenstoffatomen steht und R9 und R10 unabhängig voneinander gesättigte oder ungesättigte, lineare oder verzweigte, aliphatische oder cycloaliphatische oder aromatische organische Reste mit 1 bis 18 Kohlenstoffatomen sind, die substituiert oder unsubstituiert sind und/oder Heteroatome in der Kette aufweisen.
Figure imgf000018_0001
in welcher R5, Rsund R7 die für Formel (II) genannte Bedeutung haben,
X für einen linearen oder verzweigten organischen Rest mit mindestens 2
Kohlenstoffatomen und
R11 für einen gesättigten linearen oder verzweigten, aliphatischen oder cycloaliphatischen organischen Rest mit 1 bis 8 Kohlenstoffatomen steht.
Bei diesen Aminosilanen der allgemeinen Formel (IV) handelt es sich um die bekannten silanfunktionellen Alkylamide, wie sie sich beispielsweise nach den in US 4788310 und US 4826915 offenbarten Verfahren durch Umsetzung von primäre Aminogruppen tragenden Aminosilanen mit Alkylcarbonsäurealkylestern unter Alkoholabspaltung erhalten lassen.
Geeignete Herstellungsverfahren für die o.g. aminofunktionellen Silane sind dem Fachmann bekannt und z.B. in der Europäischen Patentanmeldung mit der Anmeldenummer 19184068 beschrieben.
Trimerisierungskatalysator B
Der Trimerisierungskatalysator B enthält mindestens einen Katalysator, der die Trimerisierung von Isocyanatgruppen zu Isocyanuraten und/oder zu Iminooxadiazindionen bewirkt.
Geeignete Katalysatoren für das erfindungsgemäße Verfahren sind beispielsweise einfache tertiäre Amine, wie z.B. Triethylamin, Tributylamin, N,N-Dimethylanilin, N-Ethylpiperidin oder N,N'- Dimethylpiperazin. Geeignete Katalysatoren sind auch die in der GB 2221465 beschriebenen tertiären Hydroxyalkylamine, wie z.B. Triethanolamin, N-Methyl-diethanolamin, Dimethylethanolamin, N- Isopropyldiethanolamin und l-(2-Hydroxyethyl)pyrrolidin, oder die aus der GB 2 222 161 bekannten, aus Gemischen tertiärer bicyclischer Amine, wie z.B. DBU, mit einfachen niedermolekularen aliphatischen Alkoholen bestehenden Katalysatorsysteme. Als Trimerisierungskatalysatoren für das erfindungsgemäße Verfahren ebenfalls geeignet ist eine Vielzahl unterschiedlicher Metallverbindungen. Geeignet sind beispielsweise die in der DE-A 3240613 als Katalysatoren beschriebenen Oktoate und Naphthenate von Mangan, Eisen, Cobalt, Nickel, Kupfer, Zink, Zirkonium, Cer oder Blei oder deren Gemische mit Acetaten von Lithium, Natrium, Kalium, Calcium oder Barium, die aus DE-A 3 219608 bekannten Natrium- und Kalium-Salze von linearen oder verzweigten Alkancarbonsäuren mit bis zu 10 C-Atomen, wie z.B. von Propionsäure, Buttersäure, Valeriansäure, Capronsäure, Heptansäure, Caprylsäure, Pelargonsäure, Caprinsäure und Undecylsäure, die aus der EP-A 0 100 129 bekannten Alkali- oder Erdalkalimetallsalze von aliphatischen, cycloaliphatischen oder aromatischen Mono- und Polycarbonsäuren mit 2 bis 20 C- Atomen, wie z.B. Natrium- oder Kaliumbenzoat, die aus der GB-PS 1 391 066 und GB-PS 1 386 399 bekannten Alkaliphenolate, wie z.B. Natrium- oder Kaliumphenolat, die aus der GB 809809 bekannten Alkali- und Erdalkalioxide, -hydroxide, -carbonate, -alkoholate und -phenolate, Alkalimetallsalze von enolisierbaren Verbindungen sowie Metallsalze schwacher aliphatischer bzw. cycloaliphatischer Carbonsäuren, wie z.B. Natriummethoxid, Natriumacetat, Kaliumacetat, Natriumacetoessigester, Blei- 2-ethylhexanoat und Bleinaphthenat, die aus der EP-A 0056 158 und EP-A 0 056 159 bekannten, mit Kronenethern oder Polyetheralkoholen komplexierten basischen Alkalimetallverbindungen, wie z.B. komplexierte Natrium- oder Kaliumcarboxylate, das aus der EP-A 0 033 581 bekannte Pyrrolidinon- Kaliumsalz, die aus der Anmeldung EP 13196508.9 bekannten ein- oder mehrkernigen Komplexverbindung von Titan, Zirkonium und/oder Hafnium, wie z.B. Zirkoniumtetra-n-butylat, Zirkoniumtetra-2-ethylhexanoat und Zirkoniumtetra-2-ethylhexylat, sowie Zinnverbindungen der in European Polymer Journal, Vol. 16, 147 - 148 (1979) beschriebenen Art, wie z.B. Dibutylzinndichlorid, Diphenylzinndichlorid, Triphenylstannanol, Tributylzinnacetat, Tributylzinnoxid, Zinndioktoat, Dibutyl(dimethoxy)stannan und Tributylzinnimidazolat.
Weitere für das erfindungsgemäße Verfahren geeignete Trimerisierungskatalysatoren sind beispielsweise die aus der DE-A 1667309, EP-A 0013880 und EP-A 0047452 bekannten quaternären Ammoniumhydroxyde, wie z.B. Tetraethylammoniumhydroxid, Trimethylbenzylammoniumhydroxid, N,N-Dimethyl-N-dodecyl-N-(2-hydroxyethyl)ammonium-hydroxid, N-(2-Hydroxyethyl)-N,N- dimethylN-(2,2'-dihydroxymethylbutyl)-ammoniumhydroxid und l-(2-Hydroxyethyl)-l,4-diazabicyclo- [2.2.2]-octanhydroxid (Monoaddukt von Ethylenoxid und Wasser an l,4-Diazabicyclo-[2.2.2]-octan), die aus EP-A 37 65 oder EP-A 10 589 bekannten quaternären Hydroxyalkylammoniumhydroxide, wie z.B. N,N,N-Trimethyl-N-(2-hydroxyethyl)-ammonium-hydroxid, die aus DE-A 2631733, EP-A 0671426, EP-A 1 599 526 und US 4,789,705 bekannten Trialkylhydroxylalkylammoniumcarboxylate, wie z.B. N,N,N-Trimethyl-N-2-hydroxypropylammonium-p-tert.-butylbenzoat und N,N,N-Trimethyl-N-2- hydroxypropylammonium-2-ethylhexanoat, die aus der EP-A 1 229 016 bekannten quartären Benzylammoniumcarboxylate, wie z.B. N-Benzyl-N,N-dimethyl-N-ethylammoniumpivalat, N-Benzyl- N,N-dimethyl-N-ethylammonium-2-ethylhexanoat, N-Benzyl-N,N,N-tributylammonium-2- ethylhexanoat, N,N-Dimethyl-N-ethyl-N-(4-methoxy-benzyl)ammonium-2-ethylhexanoat oder N,N,N- Tributyl-N-(4-methoxybenzyl)ammonium-pivalat, die aus der WO 2005/087828 bekannten tetrasubstituierten Ammonium-a-hydroxycarboxylate, wie z.B. Tetramethylammonium-Iactat, die aus der EP-A 0 339 396, EP-A 0 379 914 und EP-A 0 443 167 bekannten quartären Ammonium- oder Phosphoniumfluoride, wie z.B. N-Methyl-N,N,N-trialkylammoniumfluoride mit C8-C10-Alkylresten, N,N,N,N-Tetra-n-butylammoniumfluorid, N,N,N-Trimethyl-N-benzylammonium-fluorid,
Tetramethylphosphonium-fluorid, Tetraethylphosphoniumfluorid oder Tetra-n- butylphosphoniumfluorid, die aus der EP-A 0798 299, EP-A 0896009 und EP-A 0962455 bekannten quaternären Ammonium- und Phosphoniumpolyfluoride, wie z.B. Benzyl- trimethylammoniumhydrogenpolyfluorid, die aus der EP-A 0 668 271 bekannten
Tetraalkylammoniumalkylcarbonate, die durch Umsetzung tertiärer Amine mit Dialkylcarbonaten erhältlich sind, oder betainstrukturierte Quartär-Ammonioalkylcarbonate, die aus der WO 1999/023128 bekannten quaternären Ammoniumhydrogencarbonate, wie z.B. Cholin-bicarbonat, die aus der EP 0 102482 bekannten, aus tertiären Aminen und alkylierend wirkenden Estern von Säuren des Phosphors erhältlichen quartären Ammoniumsalze, wie z.B. Umsetzungsprodukte von Triethylamin, DABCO oder N-Methylmorpholin mit Methanphosphonsäuredimethylester, oder die aus WO 2013/167404 bekannten tetrasubstituierten Ammoniumsalze von Lactamen, wie z.B. Trioctylammoniumcaprolactamat oder Dodecyltrimethylammoniumcaprolactamat.
Weitere erfindungsgemäß geeignete Trimerisierungskatalysatoren B finden sich beispielsweise in J. H. Saunders und K. C. Frisch, Polyurethanes Chemistry and Technology, S. 94 ff (1962) und der dort zitierten Literatur.
Besonders bevorzugt sind Carboxylate und Phenolate mit Metall- oder Ammoniumionen als Gegenion. Geeignete Carboxylate sind die Anionen aller aliphatischen oder cycloaliphatischen Carbonsäuren, bevorzugt solcher mit Mono- oder Polycarbonsäuren mit 1 bis 20 C-Atomen. Geeignete Metallionen sind abgeleitet von Alkali- oder Erdalkalimetallen, Mangan, Eisen, Cobalt, Nickel, Kupfer, Zink, Zirkonium, Cer, Zinn, Titan, Hafnium oder Blei. Bevorzugte Alkalimetalle sind Lithium, Natrium und Kalium, besonders bevorzugt Natrium und Kalium. Bevorzugte Erdalkalimetalle sind Magnesium, Calcium, Strontium und Barium.
Ganz besonders bevorzugt sind die in der DE-A 3 240 613 als Katalysatoren beschriebenen Oktoate und Naphthenate von Mangan, Eisen, Cobalt, Nickel, Kupfer, Zink, Zirkonium, Cer oder Blei oder deren Gemische mit Acetaten von Lithium, Natrium, Kalium, Calcium oder Barium.
Ebenfalls ganz besonders bevorzugt sind Natrium- oder Kaliumbenzoat, die aus der GB-PS 1 391 066 und GB-PS 1 386 399 bekannten Alkaliphenolate, wie z. B. Natrium- oder Kaliumphenolat, sowie die aus der GB 809 809 bekannten Alkali- und Erdalkalioxide, -hydroxide, -carbonate, -alkoholate und - phenolate. Ist der Trimerisierungskatalysator B in der Polyisocyanatzusammensetzung A schlecht oder nicht löslich, kann seine Wirkung durch Zusatz eines Lösungsvermittlers ermöglicht oder verstärkt werden. Trimerisierungskatalysatoren B auf Basis von Alkali- und Erdalkalioxiden, -hydroxiden, -carbonaten oder -alkoholaten enthalten vorzugsweise einen Polyether. Dies ist insbesondere bevorzugt, wenn der Katalysator Metallionen enthält. Bevorzugte Polyether sind ausgewählt aus der Gruppe bestehend aus Kronenether, Diethylenglykol, Polyethylen- und Polypropylenglykolen. Als besonders praxisgerecht hat es sich im erfindungsgemäßen Verfahren erwiesen einen Trimerisierungskatalysator B einzusetzen, der als Polyether ein Polyethylenglykol oder einen Kronenether, besonders bevorzugt 18-Krone-6 oder 15- Krone-5, enthält. Bevorzugt enthält der Trimerisierungskatalysator B ein Polyethylenglykol mit einem zahlenmittleren Molekulargewicht von 100 bis 1000 g/mol, bevorzugt 300 g/mol bis 500 g/mol und insbesondere 350 g/mol bis 450 g/mol.
Ganz besonders bevorzugt ist die Kombination aus den oben beschriebenen Carboxylaten und Phenolaten von Alkali- oder Erdalkalimetallen mit einem Polyether.
Weiterhin sind die in EP 3 337 836 und WO2015/124504 beschriebenen Trimerisierungskatalysatoren für die erfindungsgemäße Verwendung besonders gut geeignet.
Isocyanatreaktive Verbindung C
In einer bevorzugten Ausführungsform enthält das Reaktionsgemisch wenigstens eine isocyanatreaktive Verbindung C. Eine „isocyanatreaktive Verbindung" ist eine Verbindung, die wenigstens eine isocyanatreaktive Gruppe wie weiter oben in dieser Anmeldung definiert trägt. Die wenigstens eine isocyanatreaktive Verbindung C liegt in einem solchen Mengenverhältnis zur Polyisocyanatzusammensetzung A vor, dass im Reaktionsgemisch das anspruchsgemäße stöchiometrische Verhältnis von Isocyanatgruppen zu isocyanatreaktiven Gruppen eingehalten wird. Bevorzugt dienen isocyanatreaktive Verbindungen C als Lösungsmittel für den Trimerisierungskatalysator B und / oder als flexibilisierende Komponente. Eine „flexibilisierende Komponente" senkt den Tg einer Beschichtung im Vergleich zu einer Beschichtung, die aus demselben Reaktionsgemisch ohne Zugabe der flexibilisierende Komponente erhalten wird.
Grundsätzlich sind ein- oder mehrwertige Alkohole, Aminoalkohole, Amine und Thiole als isocyanatreaktive Verbindung C geeignet. Die vorgenannten Verbindungen weisen pro Molekül vorzugsweise eine durchschnittliche Funktionalität von wenigstens 2 isocyanatreaktiven Gruppen auf.
Bevorzugte Amine sind organische Di- oder Polyamine vorzugsweise ausgewählt aus der Gruppe bestehend aus 1,2-Ethylendiamin, 1,2- und 1,3-Diaminopropan, 1,4-Diaminobutan, 1,6-Diaminohexan, Isophorondiamin, dem Isomerengemisch von 2,2,4- und 2,4,4-Trimethylhexamethylendiamin, 2- Methylpentamethylendiamin, Di-ethylentriamin, 4,4-Diaminodicyclo-hexyhmethan, Hydrazinhydrat, Dimethylethylendiamin, mit Anminoendgruppen modifizierte Polyether und Verbindungen gemäß Formel (V) eingesetzt. Die vorgenannten Verbindungen werden vorzugsweise als flexibilisierende Komponente eingesetzt.
Figure imgf000022_0001
Hierbei steht
X für einen n-wertigen, gegenüber Isocyanatgruppen inerten Rest, wie er durch
Entfernen der primären Aminogruppen aus einem organischen Amin des Molekulargewichtsbereiches 60 bis 6000 mit n primären aliphatisch und/oder cycloaliphatisch gebundenen Aminogruppen erhalten wird, der gegebenenfalls ein oder mehrere Heteroatome und/oder weitere, gegenüber Isocyanatgruppen reaktive und/oder bei Temperaturen bis 100°C inerte funktionelle Gruppen enthält,
R1 und R2 für gleiche oder verschiedene organische Reste mit 1 bis 18 Kohlenstoffatomen und n für eine ganze Zahl > 1.
Gleichfalls sind Amine bevorzugt, die wenigstens eine Aminogruppe und wenigstens eine Hydroxylgruppe enthalten (Aminoalkohole). Solche Verbindungen sind vorzugsweise ausgewählt aus der Gruppe bestehend aus Diethanolamin, 3-Amino-l-methylaminopropan, 3-Amino-l- ethylaminopropan, 3-Amino-l-cyclohexyl-aminopropan, 3-Amino-l-methylaminobutan,
Alkanolamine wie N-Aminoethyl-ethanolamin, Ethanolamin, 3-Aminopropanol und Neopentanolamin. Die vorgenannten Verbindungen werden vorzugsweise als flexibilisierende Komponente eingesetzt.
Grundsätzlich können alle bekannten monomeren und polymeren Polyole einzeln oder als Abmischung als flexibilisierende Komponente verwendet werden. Dies sind insbesondere die üblichen aus der Polyurethanchemie bekannten Polyesterpolyole, Polyetherpolyole, Polyacrylatpolyole und Polycarbonatpolyole.
Geeignete Polyesterpolyole sind vorzugsweise solche eines mittleren, aus Funktionalität und Hydroxylzahl berechenbaren Molekulargewichtes von 200 g/mol bis 3000 g/mol, vorzugsweise von 250 bis 2500, mit einem Hydroxylgruppen-Gehalt von 1 bis 21 Gew.-%, vorzugsweise 2 bis 18 Gew.-%, wie sie sich in an sich bekannter Art und Weise durch Umsetzung von mehrwertigen Alkoholen mit unterschüssigen Mengen an mehrwertigen Carbonsäuren, entsprechenden Carbonsäureanhydriden, entsprechenden Polycarbonsäureestern von niederen Alkoholen oder Lactonen hersteilen lassen. Geeignete Polyetherpolyole sind vorzugsweise solche eines mittleren, aus Funktionalität und Hydroxylzahl berechenbaren Molekulargewichtes von 200 g/mol bis 6000 g/mol, vorzugsweise 250 g/mol bis 4000, g/mol mit einem Hydroxylgruppen-Gehalt von 0,6 bis 34 Gew.-%, vorzugsweise 1 bis 27 Gew.-%, wie sie in an sich bekannter Weise durch Alkoxylierung geeigneter Startermoleküle zugänglich sind. Zur Herstellung dieser Polyetherpolyole können beliebige mehrwertige Alkohole, beispielsweise solche des Molekulargewichtsbereichs 62 g/mol bis 400 g/mol, eingesetzt werden.
Geeignete Polyacrylatpoylole sind beispielsweise solche eines mittleren aus Funktionalität und Hydroxylzahl berechenbaren oder durch Gelpermeationschromatografie (GPC) bestimmbaren Molekulargewichtes von 800 bis 50000, vorzugsweise von 1000 bis 20000, mit einem Hydroxylgruppengehalt von 0,1 bis 12 Gew.-%, vorzugsweise 1 bis 10, wie sie sich in an sich bekannter Weise durch Copolymerisation Hydroxylgruppen aufweisender olefinisch ungesättigter Monomerer mit hydroxylgruppenfreien olefinischen Monomeren hersteilen lassen.
Beispiele für geeignete Monomere zur Herstellung der Polyacrylatpolyole sind Vinyl- bzw. Vinylidenmonomere wie z.B. Styrol, a-Methylstyrol, o- bzw. p-Chlorstyrol, o-, m- oder p-Methylstyrol, p-tert.-Butylstyrol, Acrylsäure, Acrylnitril, Methacrylnitril, Acryl- und Methacrylsäureester von Alkoholen mit bis zu 18 Kohlenstoffatomen, wie z. B. Methylacrylat, Ethylacrylat, n-Propylacrylat, Isopropylacrylat, n-Butylacrylat, Isobutylacrylat, tert-Butylacrylat, Amylacrylat, Hexylacrylat, 2- Ethylhexylacrylat, Isooctylacrylat, 3,3,5-Trimethylhexylacrylat, Stearylacrylat, Laurylacrylat, Cyclopentylacrylat, Cyclohexylacrylat, 4-tert.-Butycyclohexylacrylat, Isobornylacrylat, Methylmethacrylat, Ethylmethacrylat, n-Propylmethacrylat, Isopropylmethacrylat, Butylmethacrylat, Isobutylmethacrylat, tert-Butylmethacrylat, Amylmethacrylat, Hexylmethacrylat, 2- Ethylhexylmethacrylat, Isooctylmethacrylat, 3,3,5-Trimethylhexylmethacrylat, Stearylmethacrylat, Laurylmethacrylat, Cyclopentylmethacrylat, Cyclohexylmethacrylat, 4-tert.-Butycyclohexylmeth- acrylat, Norbornylmethacrylat oder Isobornylmethacrylat, Diester der Fumarsäure, Itaconsäure oder Maleinsäure mit 4 bis 8 Kohlenstoffatome aufweisenden Alkoholen, Acrylsäureamid, Methacrylsäureamid, Vinylester von Alkanmonocarbonsäuren mit 2 bis 5 Kohlenstoffatomen, wie z. B. Vinylacetat oder Vinylpropionat, Hydroxyalkylester der Acrylsäure oder Methacrylsäure mit 2 bis 5 Kohlenstoffatomen im Hydroxyalkylrest, wie z. B. 2-Hydroxyethyl-, 2-Hydroxypropyl-, 3- Hydroxypropyl-, 3-Hydroxybutyl-, 4-Hydroxybutyl-, Trimethylolpropanmono- oder Pentaerythritmonoacrylat oder -methacrylat, sowie beliebige Gemische solcher beispielhaft genannter Monomere. Insbesondere sind auch die oben als Lösungsmittel für den Trimerisierungskatalysator B genannten Verbindungen für den Einsatz als flexibilisierende Komponente geeignet. Diese Verbindungen können somit eine Doppelfunktion erfüllen.
Als isocyanatreaktive Verbindung sind insbesondere solche Verbindungen bevorzugt, die nicht zu einer wesentlichen Erhöhung der Viskosität des Reaktionsgemischs wie oben definiert beitragen, sondern erlauben, dass das Reaktionsgemisch bei der Injektionstemperatur in den oben definierten Grenzen der Viskosität verarbeitet werden kann.
Additiv D
Bevorzugt enthält das Reaktionsgemisch wenigstens ein Additiv D ausgewählt aus der Gruppe bestehend aus Stabilisatoren auch gegen UV-Licht, Antioxidantien, Wasserfängern, Verlaufsmitteln, Rheologieadditiven, Slipadditiven, Entschäumern, Netz- und Dispergiermitteln, Haftvermittlern, Korrosionsinhibitoren, Flammschutzmitteln, Nanopartikeln, Füllstoffen auch in Form von anorganischen oder organischen Fasern, Farbstoffen und Pigmenten.
Geeignete UV-Stabilisatoren können vorzugsweise ausgewählt werden aus der Gruppe bestehend aus Piperidinderivaten, wie z.B. 4-Benzoyloxy-2,2,6,6-tetramethylpiperidin, 4-Benzoyloxy-l,2,2,6,6- pentamethylpiperidin, Bis-(2,2,6,6-tetra-methyl-4-piperidyl)-sebacat, Bis(l, 2,2,6, 6-pentamethyl-l-4- piperidinyl)-sebacat, Bis-(2,2,6,6-tetramethyl-4-piperidyl)-suberat, Bis-(2,2,6,6-tetramethyl-4- piperidyl)-dodecandioat; Benzophenonderivaten, wie z.B. 2,4-Dihydroxy-, 2-Hydroxy-4-methoxy-, 2- Hydroxy-4-octoxy-, 2-Hydroxy-4-dodecyloxy- oder 2,2'-Dihydroxy-4-dodecyloxy-benzophenon; Benztriazolderivaten, wie z.B. 2-(2H-Benzotriazol-2-yl)-4,6-di-tert-pentylphenol, 2-(2H-Benzotriazol-2- yl)-6-dodecyl-4-methylphenol, 2-(2H-Benzotriazol-2-yl)-4,6-bis(l-methyl-l-phenylethyl)phenol, 2-(5- Chlor-2H-benzotriazol-2-yl)-6-(l,l-dimethylethyl)-4-methylphenol, 2-(2H-benzotriazol-2-yl)-4-
(l,l,3,3-tetramethylbutyl)phenol, 2-(2H-Benzotriazol-2-yl)-6-(l-methyl-l-phenylethyl)-4-(l, 1,3,3- tetramethylbutyl)phenol, lsooctyl-3-(3-(2H-benzotriazol-2-yl)-5-(l,l-dimethylethyl)-4- hydroxyphenylpropionat), 2-(2H-Benzotriazol-2-yl)-4,6-bis(l,l-dimethylethyl)phenol, 2-(2H- Benzotriazol-2-yl)-4,6-bis(l-methyl-l-phenylethyl)phenol, 2-(5-Chlor-2H-benzotriazol-2-yl)-4,6- bis(l,l-dimethylethyl)phenol; Oxalaniliden, wie z.B. 2-Ethyl-2'-ethoxy- oder 4-Methyl-4'- methoxyoxalanilid; Salicylsäureestern, wie z.B. Salicylsäurephenylester, Salicylsäure-4-tert- butylphenylester, Salicylsäure-4-tert-octylphenylester; Zimtsäureesterderivaten, wie z.B. a-Cyano-ß- methyl-4-methoxyzimtsäuremethylester, a-Cyano-ß-methyl-4-methoxyzimtsäurebutyl-ester, a- Cyano-ß-phenylzimtsäureethylester, a-Cyano-ß-phenylzimtsäureisooctylester; und
Malonesterderivaten, wie z.B. 4-Methoxy-benzylidenmalonsäuredimethylester, 4- Methoxybenzylidenmalonsäurediethylester, 4-Butoxy-benzylidenmalonsäuredimethylester. Diese bevorzugten UV-Stabilisatoren können sowohl einzeln als auch in beliebigen Kombinationen untereinander zum Einsatz kommen. Gegebenenfalls werden ein oder mehrere der beispielhaft genannten UV-Stabilisatoren der erfindungsgemäßen Beschichtungsmittel vorzugsweise in Mengen von 0,001 bis 3,0 Gew.-%, besonders bevorzugt 0,01 bis 2 Gew.-%, berechnet als Gesamtmenge an eingesetzten UV- Stabilisatoren bezogen auf die Gesamtmenge der Polyisocyanatkomponente A zugesetzt. Bevorzugt werden Kombinationen aus UV-Absorbern und Radikalfängern, insbesondere solche Radikalfänger die zur Gruppe der sterisch gehinderten Lichtstabilisatoren gehören ("HALS").
Geeignete Antioxidantien sind vorzugsweise sterisch gehinderten Phenole, welche vorzugsweise ausgewählt werden können aus der Gruppe, bestehend aus 2,6-Di-tert-butyl-4-methylphenol (lonol), Pentaerythrit-tetrakis(3-(3,5-di-tert-butyl-4-hydroxy-phenyl)-propionat), Octadecyl-3-(3,5-di-tert- butyl-4-hydroxyphenyl)-propionat, Triethylen-glykol-bis(3-tert-butyl-4-hydroxy-5- methylphenyl)propionat, 2,2'-Thio-bis(4-methyl-6-tert-butylphenol) und 2,2'-Thiodiethyl-bis[3-(3,5-di- tert-butyl-4-hydroxyphenyl)propionat]. Diese können bei Bedarf sowohl einzeln als auch in beliebigen Kombinationen untereinander eingesetzt werden.
Diese Antioxidantien werden vorzugsweise in Mengen von 0,01 bis 3,0 Gew.-%, besonders bevorzugt 0,02 bis 2,0 Gew.-%, berechnet als Gesamtmenge an eingesetzten Antioxidantien bezogen auf die Gesamtmenge der Polyolkomponente A eingesetzt.
Um eine vorzeitige Vernetzung der Alkoxysilylgruppen bei Einsatz von alkoxysilylgruppenhaltigen Polyisocyanaten zu unterbinden, kann der Zusatz von Wasserfängern, beispielsweise Orthoameisensäureestern, wie z. B. Triethylorthoformiat, oder Vinylsilanen, wie z. B. Vinyltrimethoxysilan, vorteilhaft sein. Diese Wasserfänger kommen, falls überhaupt, in Mengen von 0,01 Gew.-% bis zu 5 Gew.-%, vorzugsweise von 0,01 Gew.-% bis zu 2 Gew.-%, bezogen auf die auf die Gesamtmenge der Polyisocyanatkomponente A zum Einsatz.
Zur Verbesserung der Substratbenetzung können die erfindungsgemäßen Reaktionsgemische gegebenenfalls geeignete Verlaufsmittel, beispielsweise organisch modifizierte Siloxane, wie z. B. Polyethermodifizierte Siloxane, Polyacrylate und/oder Fluortenside, enthalten. Diese Verlaufsmittel kommen, falls überhaupt, in Mengen von 0,01 Gew.-% bis zu 3 Gew.-%, vorzugsweise von 0,01 Gew.- % bis zu 2 Gew.-%, besonders bevorzugt von 0,05 bis 1,5 Gew.-%, bezogen auf die auf die Gesamtmenge des Reaktionsgemischs zum Einsatz.
Zur Optimierung des Fließverhaltens kann das Reaktionsgemisch Rheologieadditive, beispielsweise kolloidale Kieselsäuren, sehr feinteilige Bentonite, mikrokristalline Polyethylen-Wachse, Polyamid- Dispersionen und/oder kristalline Harnstoffe, enthalten.
Die in den erfindungsgemäßen Beschichtungsmitteln ebenfalls als weitere Hilfs- und Zusatzstoffe gegebenenfalls enthaltenen Slipadditive, Entschäumer, Füllstoffe und/oder Pigmente sind dem Fachmann bekannt und kommen falls überhaupt in den in der Lacktechnologie üblichen Mengen zum Einsatz. Eine ausführliche Übersicht über derartige geeignete Hilfs- und Zusatzstoffe findet sich beispielsweise in Bodo Müller, „Additive kompakt", Vincentz Network GmbH & Co KG (2009).
Herstellung des erfindungsgemäßen Reaktionsgemischs
Die Komponenten des erfindungsgemäßen Reaktionsgemischs werden unmittelbar vor Befüllen der Kavität im Reaction Injection Moulding (RIM) Verfahren durch automatisierte Dosier- und Mischapparate vermischt. Es ist bevorzugt, dass das Reaktionsgemisch dabei in zwei oder drei Komponenten in geeigneten Vorratsgefäßen bereitgestellt wird und aus den Vorratsgefäßen maschinell dosiert wird. Die einzelnen Komponenten werden dabei bevorzugt unterschiedlich oder alle gleichartig bereits derart temperiert, dass die gewünschte Injektionstemperatur des Gemischs einfach erreicht werden kann. Je nach gewünschtem Injektionsverfahren können die Komponenten in den Vorratsgefäßen bereits unter erhöhtem Druck bereitgestellt werden.
Sollen im RIM-Verfahren in einem Apparat immer gleichartige Beschichtungen hergestellt werden, ist ein zweikomponentiges Bereitstellen bevorzugt. Es werden dann bevorzugt Polyisocyanatgemisch A und Trimerisierungskatalysator B in unterschiedlichen Vorratsgefäßen bereitgestellt. Der Komponente B werden in diesem Fall bevorzugt auch die Additivkomponente D sowie, wenn vorhanden, die optionale Isocyanatreaktive Verbindung C zugefügt. In dieser Ausführungsform entsteht das Reaktionsgemisch erst während Einspritzens der Komponenten in das formgebende Werkzeug.
Sollen hingegen im RIM-Verfahren häufig wechselnde Beschichtungen, beispielsweise Beschichtungen mit unterschiedlichen Farben oder Effekten hergestellt werden, ist ein dreikomponentiges Bereitstellen bevorzugt. Es werden wiederum bevorzugt Polyisocyanatgemisch A und Trimerisierungskatalysator B in unterschiedlichen Vorratsgefäßen bereitgestellt. Als dritte Komponente wird in weiteren Vorratsgefäßen jeweils mindestens ein Teil der Additivkomponente D sowie gegebenenfalls ein Teil der optionalen isocyanatreaktiven Verbindung C bereitgestellt. Die dritte Komponente kann dann in verschiedenen Ausprägungen beispielsweise Farben und/oder Effekten in verschiedenen Vorratsgefäßen vorhanden sein, die mit einer an sich bekannten 3K-RIM-Anlage in einem raschen Färb- und/oder Effektwechsel verarbeitet werden können. Der Komponente, die den Trimerisierungskatalysator B enthält, können auch Teile der Komponente D und C zugegeben werden.
In einer besonders bevorzugten Ausführungsform enthält die dritte Komponente eine Färb- und/oder Effektpigmentpaste, die mindestens ein Polyester- oder Polyetherpolyol (unter C ausgeführt) und mindestens ein Dispergierhilfsmittel (unter D benannt) enthält.
Die Herstellung der einzelnen Komponenten erfolgt nach üblichen Methoden der Beschichtungstechnologie für zwei- oder mehrkomponentige Polyurethanlacke beispielsweise durch Vermischen in Rührgefäßen oder bei Vorhandensein von Feststoffen wie Pigmenten in Dispergieranlagen wie Dissolvern oder Anreibeaggregaten wie Perlmühlen.
Beschichtung von Werkstücken durch Reaction Injection Moulding
Bei der Verwendung des Reaktionsgemisches zur Beschichtung von Werkstücken durch Reaction Injection Moulding wird das Werkstück, das als Träger für die aufzubauende Beschichtung dient, in ein formgebenden Werkzeug eingebracht, welches das Werkstück wenigstens teilweise umschließt. Es ist bevorzugt, dass das formgebende Werkzeug beheizbar ist, weil so durch einfaches Aufheizen des Werkzeugs die Aushärtung des Reaktionsgemisches bewirkt werden kann. Die Innenseite des formgebenden Werkzeugs, die dem Werkstück zugewandt ist und mit dem Reaktionsgemisch in Kontakt kommt, kann strukturiert sein, um so auf der Oberfläche der aufzubauenden Beschichtung eine Struktur zu erzeugen.
Das Werkstück enthält wenigstens ein Material ausgewählt aus der Gruppe bestehend aus Kunststoffen, Kompositen wie beispielsweise faserverstärkten Kunststoffen, elektronischen Bauteilen, Holz, Naturstein und Metall. Bevorzugt besteht es zu wenigstens 90 Gew.-% aus einem oder mehreren der vorgenannten Materialien. Bevorzugte Kunststoffe sind ausgewählt aus der Gruppe bestehend aus ABS, AMMA, ASA, CA, CAB, COC, EP, UF, CF, MF, MP, PF, PAN, PA, PBS, PC, PE, PE-HD, PE-LD, PE-LLD, PE-UHMW, PPS, PET, PEEK, PLA, PMMA, PP, PS, PPS, SB, PUR, PVC, SAN, PBT, PPE, POM, PP/EDP, UP (Kurzbezeichnungen nach DIN EN ISO 1043-1:2016), Polyoxazolidinonen, thermoplastischem Polyurethan, Melamin-Phenol-Formaldehyd, und Mischungen davon. Dabei geeignet sind sowohl Homo- als auch Copolymere der oben genannten Kunststoffe bzw. deren Mischungen. Bevorzugte Mischungen sind PC+ABS, PC+PBT und PC+PET. Es ist besonders bevorzugt, dass das zu beschichtende Werkstück zu wenigstens 90 Gew.-% aus einem thermoplastischen Polymer besteht. Das Werkstück kann gegebenenfalls vorbehandelt sein. Beispiele für vorbehandelte Werkstücke sind mit Haftvermittlern versehene Werkstücke, metallisierte, Werkstücke, bedruckte Werkstücke, mit Dekorfolien überzogene Werkstücke, etikettierte Werkstücke, gebeizte, eingefärbte und/oder mit Einlassgrundierungen behandelte Werkstücke aus Holz.
Ein zu beschichtendes Werkstück besteht nicht zwingend aus einer einzigen Komponente. In einer bevorzugten Ausführungsform der vorliegenden Erfindung befindet sich auf der Oberfläche des zu beschichtenden Bauteils wenigstens eine weitere Komponente, die dann ebenfalls wenigstens teilweise von dem formgebenden Werkzeug umschlossen wird. Diese weitere Komponente ist vorzugsweise ausgewählt aus der Gruppe bestehend aus Sensoren, Leuchtelementen und Aktuatoren.
Es ist weiterhin bevorzugt, dass das zu beschichtende Werkstück Aussparungen von beliebiger Geometrie enthält. Dies ist schematisch in Abbildung 1 dargestellt. Das Werkstück (diagonal schraffiert) enthält eine Aussparung (grau). Wenn eine solche Aussparung zusammen mit den sie umgebenden Teilen des zu beschichtenden Werkstücks vom formgebenden Werkzeug umschlossen und beschichtet werden, entsteht eine Beschichtung, die die Aussparung abdeckt (schwarz) und wenigstens einen Teil des Werkstücks bedeckt. Nach der Beschichtung kann dann ein weiteres Bauteil (waagerecht schraffiert) in die Aussparung eingefügt werden und ist zusammen mit dem Werkstück von einer einheitlichen und unbeschädigten Beschichtung bedeckt. Bevorzugte Bauteile sind ausgewählt aus der Gruppe bestehend aus Sensoren, Leuchtelementen und Aktuatoren.
Zwischen der Innenseite des formgebenden Werkzeugs und der vom formgebenden Werkzeug umschlossenen Oberfläche des Werkstücks verbleibt dabei eine Kavität. Das Reaktionsgemisch wird dann in die Kavität eingebracht. Das vollständige Vermischen aller Komponenten des Reaktionsgemisches kann vor dem Einbringen geschehen, es kann aber z.B. auch durch geeignete Mischaggregate während des Einbringens erfolgen. Bevorzugt werden zum Vermischen und Einbringen des Reaktionsgemischs RIM-Anlagen verwendet, wie sie beispielsweise kommerziell von Isotherm AG, Uetendorf, CH beispielsweise unter der Bezeichnung PSM 90 oder PSM 3000, von der KraussMaffei-Gruppe, DE unter der Verfahrens-/Technologiebezeichnung ColorForm und von Hennecke GmbH, Sankt Augustin, DE unter der Verfahrens-/Technologiebezeichnung ClearRIM angeboten werden. Die KrausMaffei-Gruppe, DE, bietet zum ColorForm System optinonal auch Farbmodule an, die mit drei Komponenten arbeiten können und damit zum Beispiel einen schnellen Farbwechsel erlauben.
Der Abstand zwischen der Innenseite des formgebenden Werkzeugs und der Oberfläche des zu beschichtenden Werkstücks beträgt vorzugsweise zwischen 50 pm und 5 mm. Dieser Abstand wird vorzugsweise entlang der Flächennormalen der Oberfläche des Werkstücks bestimmt.
Vorzugsweise hat die Beschichtung entlang wenigstens einer Achse eines zweidimensionalen kartesischen Koordinatensystems eine Ausdehnung von wenigsten 10 mm.
Bevorzugt erfolgt das Befüllen der Kavität mit dem Reaktionsgemisch unter gegenüber dem Umgebungsdruck erhöhtem Druck. Während des Aushärtevorgangs bleibt der Druck in der Kavität gegenüber dem Umgebungsdruck bevorzugt ebenfalls erhöht.
Wenn die Kavität vollständig mit dem Reaktionsgemisch gefüllt ist, wird dieses durch die dort anliegende erhöhte Temperatur ausgehärtet bis das beschichtete Werkstück entformbar ist. Dabei hat die Innenseite des formgebenden Werkzeugs vorzugsweise eine Temperatur zwischen 60 °C und 300 °C. Anschließend kann das beschichtete Werkstück aus dem formgebenden Werkzeug entnommen werden. Die vorgenannte Obergrenze der Temperatur bei der Aushärtung ist natürlich von der Beschaffenheit des zu beschichtenden Werkstücks abhängig. Wenn dieses bei einer gegebenen Temperatur beschädigt wird, so muss die Temperatur während der Aushärtung unter diesem Wert liegen. Für Werkstücke, die aus thermoplastischen Polymeren bestehen oder solche enthalten, liegt die Obergrenze vorzugsweise bei 130 °C, stärker bevorzugt bei 100 °C. Um eine hinreichend schnelle Aushärtung zu gewährleisten liegt eine bevorzugte Untergrenze der Temperatur bei 80 °C.
Erfindungsgemäß ist so der Aufbau einer Beschichtung durch ein automatisiertes Verfahren möglich. Da die Aushärtung des Reaktionsgemisches durch die Reaktion von Isocyanatgruppen untereinander erfolgt, wobei die Isocyanatgruppen erfindungsgemäß im deutlichen Überschuss vorliegen, und nicht vorwiegend durch die Reaktion zweier unterschiedlicher funktioneller Gruppen, ist das Reaktionsgemisch weniger anfällig für Mischfehler als Zweikomponentensysteme. Eine mechanische oder chemische Vorbehandlung des zu beschichtenden Werkzeugs ist im Regelfall entbehrlich. Auch Werkstücke mit komplexerer Geometrie, bei denen eine Beschichtung mit konventionellen Verfahren nur schwer aufgetragen werden kann, lassen sich so einfach beschichten. Da die Aushärtung der Beschichtungszusammensetzung unter anderem durch Ausbildung von Isocyanuratgruppen erfolgt, weisen die so erhaltenen Beschichtungen eine hohe mechanische und chemische Beständigkeit auf. Wenn die Polyisocyanatzusammensetzung A nur geringe oder gar keine Anteile an aromatischen Isocyanaten enthält, können sehr bewitterungsbeständige Beschichtungen erhalten werden.
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung ein Verfahren zur Beschichtung eines Werkstückes enthaltend die Schritte a) Einbringen eines Werkstücks in ein formgebendes Werkzeug, das wenigstens einen Teil des Werkstücks umschließt und das so bemessen ist, dass der Abstand zwischen der Oberfläche des Werkstückes und der Innenseite des formgebenden Werkzeugs der Dicke der Beschichtung entspricht; b) Einfüllen wenigstens eines Reaktionsgemisches mit einem molaren Verhältnis von Isocyanatgruppen zu isocyanatreaktiven Gruppen von wenigstens 3 : 1 enthaltend
(i) wenigstens eine Polyisocyanatzusammensetzung A, und
(ii) wenigstens einen Trimerisierungskatalysator B in die Kavität zwischen Werkstück und formgebendem Werkzeug; und c) Aushärtung des in Verfahrensschritt b) eingefüllten Reaktionsgemisches bei einer Temperatur zwischen 60 °C und 300 °C , wobei wenigstens 30 Mol-% der zu Beginn des Verfahrensschritts c) vorliegenden freien Isocyanatgruppen zu Isocyanuratgruppen umgesetzt werden. Alle weiter oben gegebenen Definitionen für das Reaktionsgemisch und seine Komponenten sowie die Verwendung gelten auch für diese Ausführungsform.
Das Einbringen des Werkstücks in das formgebende Werkzeug kann auf jede dem Fachmann im Bereich des Reaction Injection Molding bekannte Weise geschehen. Zwischen der Oberfläche des zu beschichtenden Werkstücks und der Innenseite des formgebenden Werkzeugs befindet sich an wenigstens einer Stelle eine Kavität. Diese dient der Aufnahme des Reaktionsgemisches in Verfahrensschritt b). Ihre Dicke, d.h. der Abstand der Oberfläche des Werkstücks und der Innenseite des formgebenden Werkzeugs bestimmt die Schichtdicke der entstehenden Beschichtung. Durch die Ausgestaltung der Innenseite des formgebenden Werkzeugs kann die Struktur der Oberfläche der entstehenden Beschichtung bestimmt werden. Das formgebende Werkzeug umschließt wenigstens einen Teil des Werkstücks so, dass die Kavität nach außen abgedichtet ist und das durch Ventile oder andere geeignete Vorrichtungen eingefüllte Reaktionsgemisch nicht aus der Kavität herauslaufen kann.
In Verfahrensschritt b) wird wenigstens ein Reaktionsgemisch in die Kavität eingefüllt. Dies kann auf alle dem Fachmann im Bereich des Reaction Injection Molding bekannte Weisen erfolgen. Abhängig von der Reaktivität des eingesetzten Reaktionsgemisches kann das Reaktionsgemisch vorgemischt in einem Vorratsbehälter vorliegen. Dies ist bei Reaktionsgemischen bevorzugt, die bei Zimmertemperatur eine geringe Reaktivität aufweisen.
Ist die Reaktivität bei Zimmertemperatur zu hoch, werden das Polyisocyanat A und der Trimerisierungskatalysator B aber bevorzugt in getrennten Behältern gelagert und erst während des Einfüllens gemischt. Geeignete Ventile, Düsen und Mischköpfe sind dem Fachmann aus dem Bereich der zweikomponentigen Polyurethansysteme gut bekannt.
Im Vergleich zu den vorgenannten zweikomponentigen Polyurethansystem ist das erfindungsgemäße Verfahren weniger anfällig für Mischfehler: Variationen der Stöchiometrie von Katalysator und Isocyanat beeinflussen die Geschwindigkeit der Aushärtung, nicht aber die Eigenschaften der fertigen Beschichtung. Variationen des stöchiometrischen Verhältnisses von NCO-Gruppen und OFI-Gruppen bei den bekannten Polyurethansystemen hingegen führen zwangsläufig zu Materialien mit veränderten Eigenschaften.
Wenn die Kavität in Verfahrensschritt b) vollständig befüllt wurde, wird die Temperatur des Reaktionsgemisches in Verfahrensschritt auf wenigstens 60 °C angehoben. Die Auswahl der geeigneten Temperatur hängt einerseits von der Empfindlichkeit des zu beschichtenden Werkstücks ab. Die Flärtungstemperatur darf keine Höhe erreichen, die zu einer Beschädigung des Werkstücks führt. Innerhalb dieses Bereichs ist aber grundsätzlich die Wahl höherer Temperaturen bevorzugt, um eine schnelle Aushärtung und damit verbunden kurze Zykluszeiten zu erreichen. Eine absolute Obergrenze für die Härtungstemperatur beim erfindungsgemäßen Verfahren setzt der aus dem Reaktionsgemisch entstehende Werkstoff selbst: Polyisocyanuratkunststoffe zersetzen sich bei Temperaturen über 300 °C, so dass dieser Wert während des Verfahrensschritts c) nur für maximal 5 Sekunden, vorzugsweise aber überhaupt nicht überschritten wird. Besonders geeignete Temperaturbereiche sind weiter oben in dieser Anmeldung offenbart.
Der Verfahrensschritt c) wird solange durchgeführt, bis das beschichtete Werkstück entformbar ist. Der Begriff „entformbar" bezeichnet einen Zustand des Werkstücks, in dem dieses aus dem formgebenden Werkzeug herausgenommen werden kann, ohne dass Rückstände des Reaktionsgemisches an der Innenseite des formgebenden Werkzeugs kleben bleiben. Hierbei ist es nicht erforderlich, dass bereits alle Isocyanatgruppen abreagiert sind. Es ist bevorzugt, dass am Ende des Verfahrensschritts c) zwischen 15 und 85%, stärker bevorzugt zwischen 30 und 75% und besonders bevorzugt 40 bis 75 % der zu Beginn des Verfahrensschritts c) vorliegenden Isocyanatgruppen abreagiert sind. Somit liegen am Ende des Verfahrensschritts c) spiegelbildlich zwischen 5 und 85 %, stärker bevorzugt zwischen 25 und 70% und besonders bevorzugt 25 bis 60% der ursprünglich vorhandenen Isocyanatgruppen vor.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden wenigstens 40 Mol-%, bevorzugt wenigstens 50 Mol-% und am stärksten bevorzugt wenigstens 50 Mol-% der zu Beginn des Verfahrensschritts c) vorliegenden freien Isocyanatgruppen zu Isocyanuratgruppen umgesetzt. Es entsteht somit eine Beschichtung, deren Vernetzung zu großen Teilen über Isocyanuratgruppen vermittelt wird. Derartige Beschichtungen zeichnen sich durch überlegene Beständigkeit gegenüber chemischen und physikalischen Einflüssen aus.
Die Vernetzung der nach Ende des Verfahrensschritts c) noch vorliegenden freien Isocyanatgruppen erfolgt außerhalb des formgebenden Werkzeugs und vorzugsweise bei Temperaturen zwischen 10 und 120 °C. Deswegen enthält das erfindungsgemäße Verfahren in einer bevorzugten Ausführungsform der vorliegenden Erfindung einen auf den Verfahrensschritt c) folgenden Verfahrensschritt, in dem die am Ende des Verfahrensschritts c) noch vorliegenden freien Isocyanatgruppen bei einer Temperatur zwischen 10 und 120 °C, bevorzugt zwischen 10 und 40°C, außerhalb des formgebenden Werkzeugs weiter vernetzt werden. Dieser Verfahrensschritt wird bevorzugt durchgeführt, bis wenigstens 95 % der zu Beginn des Verfahrensschritts c) vorliegenden Isocyanatgruppen abreagiert haben.
Der Verfahrensschritt c) wird bevorzugt für 10 Sekunden bis 900 Sekunden, stärker bevorzugt für 10 Sekunden bis 180 Sekunden und noch stärker bevorzugt für 10 Sekunden bis 90 Sekunden durchgeführt. „Durchführung" bedeutet in diesem Kontext, dass das Reaktionsgemisch insgesamt für diesen Zeitraum mit der Innenseite des formgebenden Werkzeugs Kontakt hat und besagte Innenseite eine Temperatur zwischen 60 °C bis 300 °C hat. Am Ende des Verfahrensschritts c) weist die Beschichtung bevorzugt einen Tg von 40 °C bis 300 °C, stärker bevorzugt 60 °C bis 180 °C auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung besteht das Werkstück zu wenigstens 90 Gew.-% aus einem thermoplastischen Kunststoff und es ist dem Verfahrensschritt a) ein Verfahrensschritt der Herstellung des besagten Werkstücks durch Spritzguss vorgeschaltet. Zwischen dem Verfahrensschritt der Herstellung des aus einem thermoplastischen Polymer bestehenden Werkstücks durch Spritzguss und dem Beginn des Verfahrensschritts a) vergehen vorzugsweise höchstens 5 Minuten, bevorzugt höchstens 30 Sekunden.
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung eine Beschichtung erhalten oder erhältlich nach dem oben definierten erfindungsgemäßen Verfahren.
Diese erfindungsgemäße Beschichtung ist bei infrarotspektrometrischer Analyse besonders bevorzugt durch ein Verhältnis der absoluten Peakhöhen der CH2-Bande und der NH-d-Bande von wenigstens 0,85 : 1 bei einem gleichzeitigen Verhältnis der absoluten Peakhöhen der Isocyanuratbande und der NH-d-Bande von wenigstens 5,5 : 1 gekennzeichnet. Bestimmt wurde für jede Bande jeweils die größte absolute Intensität. Für CH2 wurde zwischen 2900 und 3000 cm 1 gemessen, für NH-d zwischen 1480 und 1600 cm 1 und für Isocyanurat zwischen 1590 und 1700 cm 1. Diese Eigenschaften liegend dann vor, wenn wenigstens 95 % der im Reaktionsgemisch zu Beginn des Verfahrensschritts c) ursprünglich vorliegenden Isocyanatgruppen abreagiert haben. Dieser Zeitpunkt bereits unmittelbar nach dem Verfahrensschritt c) erreicht sein, insbesondere dann, wenn er bei hohen Temperaturen lange durchgeführt wird. Im Regelfall wird der vorgenannte Umsetzungsgrad aber durch eine Kombination der Aushärtung in Verfahrensschritt und eine Nachhärtung außerhalb des formgebenden Werkzeugs bei der weiter in dieser Anmeldung hierfür definierten erreicht. Unter Einhaltung der vorgenannten Bedingungen beträgt die Tg der Beschichtung 40 °C bis 300 °C, bevorzugt 60 °C bis 180 °C.
In einer bevorzugten Ausführungsform ist die Beschichtung frei von Pigmenten und weist eine Hazen- Farbzahl von höchstens 50, bevorzugt höchstens 30 auf. Hazen-Farbzahlen werden vorzugsweise mit einem Gerät micro-haze plus der Firma Byk-Gardner GmbH, Geretsried, Deutschland, bei einem Winkel von 20° bestimmt.
Die Beschichtung weist vorzugsweise eine Dichte von wenigstens 0,95 g/cm3 auf.
In noch einer weiteren Ausführungsform betrifft die vorliegende Erfindung ein Werkstück, das mit der oben definierten Beschichtung beschichtet ist.
Solche Werkstücke sind bevorzugt elektrische Geräte, Möbel, Spielzeuge oder Holz- oder Kunststoffbauteile für Automobile oder Flugzeuge. Abbildung 1A zeigt ein Werkstück (diagonal schraffiert) mit einer Aussparung (grau) in Aufsicht. Abbildung 1B zeigt einen Querschnitt des Werkstücks mit Aussparung.
Abbildung IC zeigt den Querschnitt des Werkstücks nach Beschichtung. Werkstück und Aussparung sind nun von der Beschichtung (schwarz) bedeckt.
Abbildung ID zeigt ein beschichtetes Werkstück, bei dem ein Bauteil (waagerecht schraffiert) in die ursprünglich vorhandene Aussparung eingesetzt wurde.
Die nachfolgenden Ausführungsbeispiele dienen nur dazu, die Erfindung zu illustrieren. Sie sollen den Schutzbereich der Patentansprüche in keiner Weise beschränken.
Ausführungsbeispiele
Die Versuche wurden durchgeführt auf einer Battenfeld HM 370/1330 Spritzgussmaschine, kombiniert mit einer Laborkolbendosieranlage für 2 Komponenten. Das verwendete Werkzeug war ein DIN-A5 Plattenwerkzeug, welches mit einer Masse von ca. 41g Lack beschichtet wurde, das entspricht einer Lackschichtdicke von 280 pm bis 390 pm.
Folgende Materialien wurden verwendet:
Desmophen XP 2488, verzweigtes Polyesterpolyol, erhältlich von Covestro Deutschland AG, mit folgenden Eigenschaften:
Figure imgf000034_0001
Desmophen C1100, linearer, aliphatischer Polycarbonat-Polyester, erhältlich von Covestro Deutschland AG, mit folgenden Eigenschaften:
Figure imgf000034_0002
Polyisocyanat B1
Das Isocyanuratgruppen-aufweisende HDI-Polyisocyanat B1 wurde gemäß EP-A 330 966, Beispiel 11 hergestellt, wobei 2-Ethylhexanol statt 2-Etyl-1 ,3-hexandiol als Katalysator- Lösungsmittel eingesetzt wurde. Nach Abtrennung des überschüssigen monomeren HDIs mittels Dünnschichtdestillation wurde ein HDI-Polyisocyanat mit einem NCO-Gehalt von 22,9%, einer Viskosität von 1200 mPas bei 23°C und einer mittleren NCO-Funktionalität von 3,1 (berechnet aus NCO-Gehalt und zahlenmittlerem Molekulargewicht, bestimmt über GPC- Messung) erhalten. Makrolon 2405/901510, schwarzes Polycarbonat
Der Katalysator wurde hergestellt nach EP 333 7836, Beispiel 1 a.
Folgende Materialien wurden für den Lack eingesetzt:
Komponente A
Desmophen C1100 20,6 g
Desmophen XP 2488 8,8 g
Katalysator 3,0 g
Die Polyole Desmophen C1100 und Desmophen XP 2488 wurden im Massenverhältnis 70:30 eingesetzt. Die eingesetzte Menge des Katalysators entspricht einer Konzentration von 2,91 Gew-% auf Gesamtmasse (Komponente A + Komponente B), berechnet für Vernetzungsgrad 3.
Komponente B: Polyisocyanat B1 , Menge siehe Tabelle 1 .
Beide Komponenten wurden vor dem Versuch auf ca. 90°C erwärmt. Die Oberflächentemperatur des Werkzeugs betrug 117°C. Der Thermoplast wurde bei 290°C im Extruder geschmolzen und bei 120°C eingestellter Formtemperatur in das Werkzeug eingespritzt. Das experimentelle Trennmittel L9500021 von der Firma Votteler wurde manuell auf das Plattenwerkzeug aufgetragen, wobei jedes externe Trennmittel für Polyurethansysteme grundsätzlich geeignet ist.
Für die Beschichtung der Versuchsplatten wurden verschiedene Vernetzungsgrade verwendet. Der Vernetzungsgrad wurde basierend auf den theoretischen Isocyanat- und OH-Gehalten berechnet:
Vernetzungsgrad 1 = Verhältnis NCO-Gruppen zu OH-Gruppen von 1 :1 Vernetzungsgrad 3 = Verhältnis NCO-Gruppen zu OH-Gruppen von 3:1
Für die Beschichtungsversuche wurden folgende Parameter wurden verwendet:
Tabelle 1: Übersicht über die eingesetzten Mischungsverhältnisse Polyol (A) zu Isocyanat (B) und die damit erreichten Vernetzungsgrade, sowie die eingestellten Parameter
Figure imgf000035_0001
Figure imgf000036_0001
Von jedem Vernetzungsgrad wurden mindestens 6 Teile hergestellt.
Von jedem Vernetzungsgrad wurde bei mindestens einem Bauteil nach folgenden Zeiten der Rest- NCO-Gehalt mittels IR bestimmt. Dazu wurde zunächst eine unreagierte, bei Raumtemperatur gemischte Mischung der Komponenten A und B entsprechend des Vernetzungsrades gemessen und der darin enthaltene Peak für die NCO Gruppe bei ca 2200 cm 1 wurde auf 100% normiert. Die Messungen wurden am Infrarotspektrometer, Bruker Tensor II gemessen, unter Verwendung einer Platinum ATR Einheit. Die Steuerung des Spektrometers erfolgte mit der Gerätesoftware OPUS Version 7.5, mit der auch die Auswertung durchgeführt wurde. Nach Grundlinienkorrektur (Gummibandmethode) und Normierung auf CH2/CH3 (Min. -Max. Normierung im Bereich 2800-3000 cm 1) wurde für die Flächenintegration eine Gerade angelegt zwischen 2380 cm 1 und 2170 cm 1 und der Bereich darüber berechnet.
Tabelle 2: Übersicht über den prozentualen Gehalt an Rest-NCO in den Bauteilen mit verschiedenen Vernetzungsgraden, gemessen nach unterschiedlichen Zeitabständen. Lag der durchschnittliche Wert unterhalb von 5% wurde die Entwicklung nicht weiter verfolgt.
Figure imgf000036_0002
Darüber hinaus wurden die Verhältnisse der absoluten Peakhöhen von verschiedenen Signalen vergleichen, wobei jeweils die größte absolute Intensität der Bande bestimmt wurde. Dabei wurde für CH2 zwischen 2900 und 3000 cm 1, für NH-d zwischen 1480 und 1600 cm 1 und für Isocyanurat zwischen 1590 und 1700 cm 1 gemessen. Die Peakhöhen wurden entsprechend mit dem anderen Signal ins Verhältnis gesetzt wurde. Für diese Untersuchung wurden ausschließlich vollständig ausgehärtete Bauteile verwendet, d.h. die Messungen fanden ca. 6 Monate nach Fierstellung statt. Eine Übersicht zeigt Tabelle 3. Tabelle 3: Übersicht über die Verhältnisse der Peakhöhen von CH2 zu NH-d und Isocyanurat zu NH-d für verschiedene Vernetzungsgrade.
Figure imgf000037_0001
Folgende lacktechnische Prüfungen wurden an den Lacken durchgeführt:
Hazen-Farbzahlen wurden mit einem Gerät micro-haze plus der Firma Byk-Gardner GmbFI, Geretsried, Deutschland, bei einem Winkel von 20° bestimmt.
Der Glanz der erhaltenen Beschichtungen wurde reflektometrisch nach DIN EN ISO 2813:2014 im 20° Winkel gemessen.
Glasübergangstemperatur (TG) mittels Differential Scanning Calorimetrie (DSC) Die Messungen wurden mit einem Kalorimeter DSC 8500 der Firma Perkin Eimer durchgeführt. Die Kalibrierung der Temperatur erfolgte auf Indium und Blei (Schmelz-Onset), die der Wärmetönung auf Indium (Schmelzflächen-Integral). Es wurden drei Aufheizungen von -65 °C bis +150 °C mit Fleizrate 20 K/min durchgeführt. Zwischen den Aufheizungen wurde mit einer Kühlrate von 320 K/min abgekühlt. Die Messungen wurden unter Stickstoff durchgeführt, es wurde ein geschlossener Aluminiumtiegel für Feststoffe als Probenbehälter verwendet.
Lösungsmittelbeständigkeit
Eine kleine Menge des entsprechenden Lösungsmittels (Xylol, l-Methoxy-2-propylacetat (MPA), Ethylacetat oder Aceton) wurde in ein Reagenzglas gegeben, welches mit einem Wattebausch an der Öffnung versehen wurde, so dass eine mit Lösungsmittel gesättigte Atmosphäre innerhalb des Reagenzglases entstand. Die Reagenzgläser wurden anschließend mit dem Wattebausch auf die Lackoberfläche gebracht und verblieben dort für 5 Minuten. Nach Abwischen des Lösungsmittels wurde der Film auf Zerstörung/Erweichung/Haftverlust geprüft und visuell von 0 (keine Veränderung) bis 5 (Lackoberfläche zerstört) beurteilt.
Pendeldämpfung wurde nach DIN EN ISO 1522 (Ausgabe 2007-04-01) nach König gemessen, wobei die Probenplatten nach DIN 1514 beschrieben sind.
Gitterschnitt-Haftungsprüfungen wurden nach DIN EN ISO 2409 (Ausgabe 2019-09-01) durchgeführt, mit einem Abstand der Gitterlinien von 3 mm. Sonnencremebeständigkeit wurde in Anlehnung an die Ford-Prüfung / USA PV 3964 (Engineering Material Specification / Soiling and Cleanability FLTM BN 112-08, ISO 105-A02/AATCC) bestimmt. Die Sonnencreme wurde auf die zu prüfenden Lackoberfläche aufgetragen und danach für 4 Stunden bei 70°C gelagert. Die Prüfflächen wurden direkt nach der Beanspruchung mit einem Kosmetiktuch abgewischt. Nach Abwischen der Sonnencreme wurde der Film auf Zerstörung/Erweichung/Flaftverlust geprüft und visuell von 0 (keine Veränderung) bis 5 (Lackoberfläche zerstört) beurteilt.
Tabelle 4: Übersicht über die Prüfergebnisse an Direct Coating Bauteilen mit verschiedenen Vernetzungsgraden. Die Prüfungen wurden entsprechend der obenstehenden Beschreibungen durchgeführt.
Figure imgf000038_0001
Die Auswertung der in Tabelle 4 aufgeführten Daten zeigt, dass ein höherer Vernetzungsgrad mit einer höheren Glasübergangstemperatur TG und einer höheren Pendeldämpfung korreliert ist. Außerdem zeigt sich, dass die Eigenschaften der Lackoberflächen hinsichtlich Beständigkeiten gegen Sonnencreme und Lösungsmittel mit zunehmendem Vernetzungsgrad besser werden. Der Sprung in den Eigenschaften zeigt sich besonders ab einem Vernetzungsgrad von 3.

Claims

Patentansprüche
1. Verwendung eines Reaktionsgemisches mit einem molaren Verhältnis von Isocyanatgruppen zu isocyanatreaktiven Gruppen von wenigstens 3 : 1 zur Beschichtung von Werkstücken durch Reaction Injection Moulding, wobei das Reaktionsgemisch a) wenigstens eine Polyisocyanatzusammensetzung A, und b) wenigstens einen Trimerisierungskatalysator B enthält und wenigstens 30 Mol-% der im Reaktionsgemisch vorliegenden freien Isocyanatgruppen zu Isocyanuratgruppen umgesetzt werden.
2. Die Verwendung des Reaktionsgemisches nach Anspruch 1, wobei das Reaktionsgemisch zusätzlich wenigstens eine isocyanatreaktive Verbindung ausgewählt aus der Gruppe bestehend aus ein- oder mehrwertigen Alkoholen, Aminen, Aminoalkoholen und Thiolen enthält.
3. Die Verwendung nach Anspruch 1 oder 2, wobei die Polyisocyanatzusammensetzung A zu wenigstens 70 Gew.-% bezogen auf ihr Gesamtgewicht aus Polyisocyanaten besteht, die ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanatgruppen aufweisen.
4. Die Verwendung nach einem der Ansprüche 1 bis 3, wobei die Polyisocyanatzusammensetzung A wenigstens ein blockiertes Polyisocyanat enthält, dessen Blockierungsmittel ausgewählt ist aus der Gruppe bestehend aus Lactamen, Oximen, Cyclopentanon-2-Alkylestern und Phenolen.
5. Die Verwendung nach einem der Ansprüche 1 bis 4, wobei das Werkstück aus wenigstens einem Material ausgewählt aus der Gruppe bestehend aus thermoplastischen Polymeren, duroplastischen Polymeren, Holz und Metall besteht.
6. Verfahren zur Beschichtung eines Werkstückes enthaltend die Schritte a) Einbringen eines Werkstücks in eine Form, die wenigstens einen Teil des Werkstücks umschließt und die so bemessen ist, dass der Abstand zwischen der Oberfläche des Werkstückes und der Innenseite der Form der Dicke der Beschichtung entspricht; b) Einfüllen wenigstens eines Reaktionsgemisches wie in einem der Ansprüche 1 bis 4 definiert; und c) Aushärtung des in Verfahrensschritt b) eingefüllten Reaktionsgemisches bei einer Temperatur zwischen 60 °C und 300 °C, wobei wenigstens 30 Mol-% der zu Beginn des Verfahrensschritts c) vorliegenden freien Isocyanatgruppen zu Isocyanuratgruppen umgesetzt werden.
7. Das Verfahren nach Anspruch 6, wobei der Verfahrensschritt c) bei einer Temperatur zwischen 80 °C und 130 °C durchgeführt wird.
8. Das Verfahren nach Anspruch 6 oder 7, wobei der Verfahrensschritt c) für 10 Sekunden bis 900 Sekunden durchgeführt wird und das beschichtete Werkstück entformbar ist.
9. Das Verfahren nach einem der Ansprüche 6 bis 8, wobei das zu beschichtende Werkstück zu wenigstens 90 Gew.-% aus einem thermoplastischen Kunststoff besteht und besagtes Werkstück höchstens 5 Minuten vor Beginn des Verfahrensschritts a) durch Spritzguss hergestellt wurde.
10. Das Verfahren nach einem der Ansprüche 6 bis 9, wobei der Abstand zwischen der Oberfläche des Werkstücks und der Innenseite der Form 50 pm bis 5 mm beträgt.
11. Das Verfahren nach einem der Ansprüche 6 bis 9, wobei die Polyisocyanatzusammensetzung A wenigstens ein silanfunktionelles Polyisocyanat enthält.
12. Beschichtung erhalten oder erhältlich nach dem Verfahren gemäß eines der Ansprüche 6 bis 11.
13. Die Beschichtung nach Anspruch 12, dadurch gekennzeichnet, dass das Verhältnis der absoluten Peakhöhen der CFh-Bande und der NH-d-Bande bei wenigstens 0,85 : 1 liegt und das Verhältnis absoluten Peakhöhen der Isocyanuratbande und der NH-d-Bande wenigstens bei 5,5 : 1 liegt und die Beschichtung eine Tg von 40 °C bis 300 °C aufweist.
14. Die Beschichtung nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass sie eine Dichte von wenigstens 0,95 g/cm3 aufweist.
15. Werkstück beschichtet mit der Beschichtung nach einem der Ansprüche 12 bis 14.
PCT/EP2021/067488 2020-07-02 2021-06-25 Beschichtungen aus polyisocyanuratbeschichtungen (rim) und deren anwendung in spritzgiessprozessen WO2022002787A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180047196.8A CN115768616A (zh) 2020-07-02 2021-06-25 聚异氰脲酸酯涂料(rim)及其在注射成型过程中的用途
KR1020227046034A KR20230033654A (ko) 2020-07-02 2021-06-25 폴리이소시아누레이트 코팅 (rim)으로부터의 코팅물 및 사출 성형 공정에서의 그의 용도
EP21735950.4A EP4175820A1 (de) 2020-07-02 2021-06-25 Beschichtungen aus polyisocyanuratbeschichtungen (rim) und deren anwendung in spritzgiessprozessen
US18/001,083 US20230211530A1 (en) 2020-07-02 2021-06-25 Coatings from polyisocyanurate coatings (rim) and their use in injection molding processes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20183622 2020-07-02
EP20183622.8 2020-07-02

Publications (1)

Publication Number Publication Date
WO2022002787A1 true WO2022002787A1 (de) 2022-01-06

Family

ID=71452103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/067488 WO2022002787A1 (de) 2020-07-02 2021-06-25 Beschichtungen aus polyisocyanuratbeschichtungen (rim) und deren anwendung in spritzgiessprozessen

Country Status (5)

Country Link
US (1) US20230211530A1 (de)
EP (1) EP4175820A1 (de)
KR (1) KR20230033654A (de)
CN (1) CN115768616A (de)
WO (1) WO2022002787A1 (de)

Citations (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809809A (en) 1956-11-16 1959-03-04 Ici Ltd Polymeric isocyanates and their manufacture
DE1954093A1 (de) 1968-11-15 1970-06-18 Mobay Chemical Corp Verfahren zur Herstellung von polymeren organischen Isocyanaten
DE1670666A1 (de) 1966-02-02 1971-07-01 Bayer Ag Verfahren zur Herstellung von Oxadiazinonen mit NCO-Gruppen
DE1667309A1 (de) 1967-01-19 1972-09-21 Takeda Chemical Industries Ltd Stoffgemische und ihre Verwendung als Katalysatoren zur Herstellung von Isocyanattrimeren
GB1386399A (en) 1971-07-16 1975-03-05 Ici Ltd Isocyanurate polymers
GB1391066A (en) 1971-07-16 1975-04-16 Ici Ltd Urethane oils
DE2414413A1 (de) 1974-03-26 1975-10-02 Bayer Ag Verfahren zur herstellung von loesungen von polyisocyanaten
DE2452532A1 (de) 1974-11-06 1976-05-13 Bayer Ag Verfahren zur herstellung von polyisocyanaten mit isocyanurat-struktur
DE2631733A1 (de) 1975-07-29 1977-02-10 Air Prod & Chem Verfahren zur foerderung von kondensations- und/oder polymerisationsreaktionen von organischen isocyanaten
DE2641380A1 (de) 1976-09-15 1978-03-16 Bayer Ag Verfahren zur herstellung von polyisocyanaten mit isocyanuratstruktur sowie ihre verwendung
US4081578A (en) * 1974-06-27 1978-03-28 The General Tire & Rubber Company In-mold coating composition and method of applying same
EP0010589A1 (de) 1978-09-08 1980-05-14 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung als Isocyanatkomponente in Polyurethanlacken
EP0013880A1 (de) 1979-01-16 1980-08-06 Bayer Ag Neue Isocyanato-isocyanurate, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung als Isocyanatkomponente in Polyurethan-Lacken
EP0033581A1 (de) 1980-01-28 1981-08-12 Uniroyal Ltd. Katalysatoren und Verfahren zur Herstellung von Isocyanuratprodukten, diese Produkte enthaltende Zusammensetzungen und Urethanpräpolymere und Polyurethane aus diesen Produkten
US4299924A (en) * 1979-08-10 1981-11-10 Toyota Jidosha Kogyo Kabushiki Kaisha Polyisocyanurate resin and process for making the same
EP0047452A1 (de) 1980-09-09 1982-03-17 Bayer Ag Verfahren zur Herstellung von Isocyanatgruppen aufweisenden Isocyanuraten die nach diesem Verfahren erhaltenen Verbindungen sowie ihre Verwendung als Isocyanatkomponente in Polyurethanlacken
EP0056158A1 (de) 1981-01-08 1982-07-21 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten, als Katalysator-Komponente für dieses Verfahren geeignete Lösungen, sowie die Verwendung der Verfahrensprodukte als Isocyanat-Komponente bei der Herstellung von Polyurethanen
EP0056159A1 (de) 1981-01-08 1982-07-21 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung bei der Herstellung von Polyurethanen
DE3219608A1 (de) 1982-03-19 1983-09-29 Nippon Polyurethane Industry Corp., Tokyo Isocyanuriertes hexamethylendiisocyanat, verfahren zu seiner herstellung und diese verbindung enthaltende massen
EP0100129A1 (de) 1982-07-29 1984-02-08 Dsm Resins B.V. Verfahren zur Herstellung eines Diisocyanat-Oligomers
EP0102482A2 (de) 1982-07-23 1984-03-14 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung als Isocyanatkomponente zur Herstellung von Polyurethanen
DE3240613A1 (de) 1982-10-29 1984-05-03 Angelina Arkad'evna Blagonravova Arylaliphatische polyisozyanurate und verfahren zu ihrer herstellung
DE3700209A1 (de) 1987-01-07 1988-07-21 Bayer Ag Verfahren zur herstellung von polyisocyanaten mit biuretstruktur
US4788310A (en) 1987-07-13 1988-11-29 General Electric Company N-Silylalkylamides and their use as adhesion promoters in room temperature vulcanizable polydiorganosiloxane compositions
US4789705A (en) 1986-03-10 1988-12-06 Dainippon Ink And Chemicals, Inc. Resin composition comprising an isocyanate having an isocyanurate ring in a nonpolar petroleum hydrocarbon solvent
EP0304273A1 (de) * 1987-08-17 1989-02-22 Arco Chemical Technology, Inc. Laminierter Verbundwerkstoff aus einem steifen Substrat aus Polyisocyanurat und Metall, Kunststoff, Zellulose, Glas, Keramik oder Kombinationen davon
US4826915A (en) 1987-07-13 1989-05-02 General Electric Company N-silylalkylamides and their use as adhesion promoters in room temperature vulcanizable polydiorganosiloxane compositions
EP0330966A2 (de) 1988-02-27 1989-09-06 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten
EP0336205A2 (de) 1988-04-02 1989-10-11 Bayer Ag Verfahren zur Herstellung von Isocyanuratpolyisocyanaten, die nach diesem Verfahren erhaltenen Verbindungen und ihre Verwendung
EP0339396A1 (de) 1988-04-27 1989-11-02 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten
GB2221465A (en) 1988-08-05 1990-02-07 Mobay Corp Production of polyisocyanates containing isocyanurate groups
GB2222161A (en) 1988-08-24 1990-02-28 Mobay Corp Production of polyisocyanates which contain isocyanurate groups
DE3900053A1 (de) 1989-01-03 1990-07-12 Bayer Ag Verfahren zur herstellung von uretdion- und isocyanuratgruppen aufweisenden polyisocyanaten, die nach diesem verfahren erhaeltlichen polyisocyanate und ihre verwendung in zweikomponenten-polyurethanlacken
EP0379914A2 (de) 1989-01-25 1990-08-01 Bayer Ag Verfahren zur Herstellung von modifizierten, Isocyanuratgruppen ausweisenden Polyisocyanaten und ihre Verwendung
DE3928503A1 (de) 1989-08-29 1991-03-07 Bayer Ag Verfahren zur herstellung von loesungen von isocyanuratgruppen aufweisenden polyisocyanaten in lackloesungsmitteln und ihre verwendung
EP0443167A1 (de) 1990-02-23 1991-08-28 Bayer Ag Trimerisierungskatalysatoren, ein Verfahren zu ihrer Herstellung und ihre Verwendung bei der Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten
EP0668271A1 (de) 1994-02-17 1995-08-23 BASF Aktiengesellschaft Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten
EP0671426A1 (de) 1994-02-17 1995-09-13 Basf Aktiengesellschaft Modifizierte (cyclo)aliphatische Polyisocyanatmischungen, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0798299A1 (de) 1996-03-26 1997-10-01 Bayer Ag Isocyanattrimerisate und Isocyanattrimerisatmischungen, deren Herstellung und Verwendung
EP0896009A1 (de) 1997-08-06 1999-02-10 Bayer Ag Verfahren zur Herstellung von Polyisocyanaten, damit hergestellte Polyisocyanate und deren Verwendung
WO1999023128A1 (fr) 1997-11-04 1999-05-14 Rhodia Chimie Catalyseur et procede de trimerisation d'isocyanates
EP0962455A1 (de) 1998-06-02 1999-12-08 Bayer Aktiengesellschaft Verfahren zur Herstellung Iminooxadiazindiongruppen enthaltender Polyisocyanate
EP1229016A2 (de) 2000-12-23 2002-08-07 Degussa AG Katalysator und Verfahren zur Herstellung von niedrigviskosen und farbreduzierten isocyanatgruppenhaltigen Polyisocyanaten
EP1273640A2 (de) 2001-07-06 2003-01-08 Degussa AG Nichtwässriges, wärmehärtendes Zweikomponenten-Beschichtungsmittel
US6762243B2 (en) * 2000-07-31 2004-07-13 Bayer Aktiengesellschaft Multilayer coating systems containing a gel-like base layer and a polyurethane topcoat, and their production and use
WO2005087828A1 (de) 2004-03-12 2005-09-22 Basf Aktiengesellschaft Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten und ihre verwendung
EP1599526A1 (de) 2003-02-28 2005-11-30 Dow Global Technologies Inc. Herstellung von isocyanuratgruppenhaltigen polyisocyanatmischungen
US20060113703A1 (en) * 2001-08-03 2006-06-01 Krauss-Maffei Kunststofftechnik Gmbh Mold closing device for an injection molding machine
WO2008074490A1 (de) 2006-12-19 2008-06-26 Basf Coatings Ag Beschichtungsmittel mit hoher kratzbeständigkeit und witterungsstabilität
EP2014692A2 (de) 2007-07-13 2009-01-14 Bayer MaterialScience AG Allophanat- und Silangruppen enthaltende Polyisocyanate
WO2009156148A1 (de) 2008-06-25 2009-12-30 Basf Coatings Ag Verwendung teilsilanisierter verbindungen auf polyisocyanatbasis als vernetzungsmittel in beschichtungszusammensetzungen und beschichtungszusammensetzung enthaltend die verbindungen
WO2010149236A1 (de) 2009-06-24 2010-12-29 Basf Coatings Gmbh Beschichtungsmittel und daraus hergestellte beschichtungen mit hoher kratzfestigkeit bei gleichzeitig guten ergebnissen in der prüfung der erichsentiefung und guten steinschlagschutzeigenschaften
EP2305691A1 (de) 2009-10-01 2011-04-06 Bayer MaterialScience AG Hochfunktionelle Allophanat- und Silangruppen enthaltende Polyisocyanate
EP2438103A1 (de) * 2009-04-29 2012-04-11 E. I. du Pont de Nemours and Company Zweikomponenten-beschichtungszusammensetzungen
EP2591029A1 (de) * 2010-07-08 2013-05-15 Huntsman International LLC Auf polyisocyanat basierende antikorrosionsbeschichtung
WO2013167404A1 (en) 2012-05-08 2013-11-14 Basf Se Preparation of polyisocyanates having isocyanurate groups and their use
WO2014086530A1 (de) 2012-12-03 2014-06-12 Basf Coatings Gmbh Beschichtungsmittelzusammensetzungen und daraus hergestellte beschichtungen mit hoher kratzfestigkeit bei gleichzeitig guter polierbarkeit und guten optischen eigenschaften sowie deren verwendung
WO2015124504A1 (de) 2014-02-18 2015-08-27 Bayer Materialscience Ag Verfahren zur isocyanatmodifizierung unter verwendung von spirocyclischen ammoniumsalzen als katalysator
WO2015189164A1 (de) 2014-06-13 2015-12-17 Covestro Deutschland Ag Silangruppen enthaltende thioallophanatpolyisocyanate
WO2016170059A1 (en) 2015-04-21 2016-10-27 Covestro Deutschland Ag Polyisocyanurate polymers and process for the production of polyisocyanurate polymers
WO2016170058A1 (en) 2015-04-21 2016-10-27 Covestro Deutschland Ag Process for producing polyisocyanurate plastics
US20170274564A1 (en) * 2014-08-22 2017-09-28 Covestro Llc Processes for in-mold coating using a multi-cavity mold and substrates coated thereby
WO2018073303A1 (de) 2016-10-18 2018-04-26 Covestro Deutschland Ag Harte beschichtungen mit hoher chemischer und mechanischer beständigkeit
EP3337836A1 (de) 2015-08-17 2018-06-27 Covestro Deutschland AG Verfahren zur modifizierung von isocyanaten unter verwendung von cyclischen ammoniumsalzen als katalysator
WO2019204241A1 (en) * 2018-04-18 2019-10-24 Covestro Llc Processes for in-mold coating systems for molding, and products formed therefrom

Patent Citations (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809809A (en) 1956-11-16 1959-03-04 Ici Ltd Polymeric isocyanates and their manufacture
DE1670666A1 (de) 1966-02-02 1971-07-01 Bayer Ag Verfahren zur Herstellung von Oxadiazinonen mit NCO-Gruppen
DE1667309A1 (de) 1967-01-19 1972-09-21 Takeda Chemical Industries Ltd Stoffgemische und ihre Verwendung als Katalysatoren zur Herstellung von Isocyanattrimeren
DE1954093A1 (de) 1968-11-15 1970-06-18 Mobay Chemical Corp Verfahren zur Herstellung von polymeren organischen Isocyanaten
GB1386399A (en) 1971-07-16 1975-03-05 Ici Ltd Isocyanurate polymers
GB1391066A (en) 1971-07-16 1975-04-16 Ici Ltd Urethane oils
DE2414413A1 (de) 1974-03-26 1975-10-02 Bayer Ag Verfahren zur herstellung von loesungen von polyisocyanaten
US4081578A (en) * 1974-06-27 1978-03-28 The General Tire & Rubber Company In-mold coating composition and method of applying same
DE2452532A1 (de) 1974-11-06 1976-05-13 Bayer Ag Verfahren zur herstellung von polyisocyanaten mit isocyanurat-struktur
DE2631733A1 (de) 1975-07-29 1977-02-10 Air Prod & Chem Verfahren zur foerderung von kondensations- und/oder polymerisationsreaktionen von organischen isocyanaten
DE2641380A1 (de) 1976-09-15 1978-03-16 Bayer Ag Verfahren zur herstellung von polyisocyanaten mit isocyanuratstruktur sowie ihre verwendung
EP0010589A1 (de) 1978-09-08 1980-05-14 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung als Isocyanatkomponente in Polyurethanlacken
EP0013880A1 (de) 1979-01-16 1980-08-06 Bayer Ag Neue Isocyanato-isocyanurate, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung als Isocyanatkomponente in Polyurethan-Lacken
US4299924A (en) * 1979-08-10 1981-11-10 Toyota Jidosha Kogyo Kabushiki Kaisha Polyisocyanurate resin and process for making the same
EP0033581A1 (de) 1980-01-28 1981-08-12 Uniroyal Ltd. Katalysatoren und Verfahren zur Herstellung von Isocyanuratprodukten, diese Produkte enthaltende Zusammensetzungen und Urethanpräpolymere und Polyurethane aus diesen Produkten
EP0047452A1 (de) 1980-09-09 1982-03-17 Bayer Ag Verfahren zur Herstellung von Isocyanatgruppen aufweisenden Isocyanuraten die nach diesem Verfahren erhaltenen Verbindungen sowie ihre Verwendung als Isocyanatkomponente in Polyurethanlacken
EP0056158A1 (de) 1981-01-08 1982-07-21 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten, als Katalysator-Komponente für dieses Verfahren geeignete Lösungen, sowie die Verwendung der Verfahrensprodukte als Isocyanat-Komponente bei der Herstellung von Polyurethanen
EP0056159A1 (de) 1981-01-08 1982-07-21 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung bei der Herstellung von Polyurethanen
DE3219608A1 (de) 1982-03-19 1983-09-29 Nippon Polyurethane Industry Corp., Tokyo Isocyanuriertes hexamethylendiisocyanat, verfahren zu seiner herstellung und diese verbindung enthaltende massen
EP0102482A2 (de) 1982-07-23 1984-03-14 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung als Isocyanatkomponente zur Herstellung von Polyurethanen
EP0100129A1 (de) 1982-07-29 1984-02-08 Dsm Resins B.V. Verfahren zur Herstellung eines Diisocyanat-Oligomers
DE3240613A1 (de) 1982-10-29 1984-05-03 Angelina Arkad'evna Blagonravova Arylaliphatische polyisozyanurate und verfahren zu ihrer herstellung
US4789705A (en) 1986-03-10 1988-12-06 Dainippon Ink And Chemicals, Inc. Resin composition comprising an isocyanate having an isocyanurate ring in a nonpolar petroleum hydrocarbon solvent
DE3700209A1 (de) 1987-01-07 1988-07-21 Bayer Ag Verfahren zur herstellung von polyisocyanaten mit biuretstruktur
US4788310A (en) 1987-07-13 1988-11-29 General Electric Company N-Silylalkylamides and their use as adhesion promoters in room temperature vulcanizable polydiorganosiloxane compositions
US4826915A (en) 1987-07-13 1989-05-02 General Electric Company N-silylalkylamides and their use as adhesion promoters in room temperature vulcanizable polydiorganosiloxane compositions
EP0304273A1 (de) * 1987-08-17 1989-02-22 Arco Chemical Technology, Inc. Laminierter Verbundwerkstoff aus einem steifen Substrat aus Polyisocyanurat und Metall, Kunststoff, Zellulose, Glas, Keramik oder Kombinationen davon
EP0330966A2 (de) 1988-02-27 1989-09-06 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten
EP0336205A2 (de) 1988-04-02 1989-10-11 Bayer Ag Verfahren zur Herstellung von Isocyanuratpolyisocyanaten, die nach diesem Verfahren erhaltenen Verbindungen und ihre Verwendung
EP0339396A1 (de) 1988-04-27 1989-11-02 Bayer Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten
GB2221465A (en) 1988-08-05 1990-02-07 Mobay Corp Production of polyisocyanates containing isocyanurate groups
GB2222161A (en) 1988-08-24 1990-02-28 Mobay Corp Production of polyisocyanates which contain isocyanurate groups
DE3900053A1 (de) 1989-01-03 1990-07-12 Bayer Ag Verfahren zur herstellung von uretdion- und isocyanuratgruppen aufweisenden polyisocyanaten, die nach diesem verfahren erhaeltlichen polyisocyanate und ihre verwendung in zweikomponenten-polyurethanlacken
EP0379914A2 (de) 1989-01-25 1990-08-01 Bayer Ag Verfahren zur Herstellung von modifizierten, Isocyanuratgruppen ausweisenden Polyisocyanaten und ihre Verwendung
DE3928503A1 (de) 1989-08-29 1991-03-07 Bayer Ag Verfahren zur herstellung von loesungen von isocyanuratgruppen aufweisenden polyisocyanaten in lackloesungsmitteln und ihre verwendung
EP0443167A1 (de) 1990-02-23 1991-08-28 Bayer Ag Trimerisierungskatalysatoren, ein Verfahren zu ihrer Herstellung und ihre Verwendung bei der Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten
EP0668271A1 (de) 1994-02-17 1995-08-23 BASF Aktiengesellschaft Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten
EP0671426A1 (de) 1994-02-17 1995-09-13 Basf Aktiengesellschaft Modifizierte (cyclo)aliphatische Polyisocyanatmischungen, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0798299A1 (de) 1996-03-26 1997-10-01 Bayer Ag Isocyanattrimerisate und Isocyanattrimerisatmischungen, deren Herstellung und Verwendung
EP0896009A1 (de) 1997-08-06 1999-02-10 Bayer Ag Verfahren zur Herstellung von Polyisocyanaten, damit hergestellte Polyisocyanate und deren Verwendung
WO1999023128A1 (fr) 1997-11-04 1999-05-14 Rhodia Chimie Catalyseur et procede de trimerisation d'isocyanates
EP0962455A1 (de) 1998-06-02 1999-12-08 Bayer Aktiengesellschaft Verfahren zur Herstellung Iminooxadiazindiongruppen enthaltender Polyisocyanate
US6762243B2 (en) * 2000-07-31 2004-07-13 Bayer Aktiengesellschaft Multilayer coating systems containing a gel-like base layer and a polyurethane topcoat, and their production and use
EP1229016A2 (de) 2000-12-23 2002-08-07 Degussa AG Katalysator und Verfahren zur Herstellung von niedrigviskosen und farbreduzierten isocyanatgruppenhaltigen Polyisocyanaten
EP1273640A2 (de) 2001-07-06 2003-01-08 Degussa AG Nichtwässriges, wärmehärtendes Zweikomponenten-Beschichtungsmittel
US20060113703A1 (en) * 2001-08-03 2006-06-01 Krauss-Maffei Kunststofftechnik Gmbh Mold closing device for an injection molding machine
EP1599526A1 (de) 2003-02-28 2005-11-30 Dow Global Technologies Inc. Herstellung von isocyanuratgruppenhaltigen polyisocyanatmischungen
WO2005087828A1 (de) 2004-03-12 2005-09-22 Basf Aktiengesellschaft Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten und ihre verwendung
WO2008074489A1 (de) 2006-12-19 2008-06-26 Basf Coatings Ag Beschichtungsmittel mit hoher kratzbeständigkeit und witterungsstabilität
WO2008074490A1 (de) 2006-12-19 2008-06-26 Basf Coatings Ag Beschichtungsmittel mit hoher kratzbeständigkeit und witterungsstabilität
EP2014692A2 (de) 2007-07-13 2009-01-14 Bayer MaterialScience AG Allophanat- und Silangruppen enthaltende Polyisocyanate
WO2009156148A1 (de) 2008-06-25 2009-12-30 Basf Coatings Ag Verwendung teilsilanisierter verbindungen auf polyisocyanatbasis als vernetzungsmittel in beschichtungszusammensetzungen und beschichtungszusammensetzung enthaltend die verbindungen
EP2438103A1 (de) * 2009-04-29 2012-04-11 E. I. du Pont de Nemours and Company Zweikomponenten-beschichtungszusammensetzungen
WO2010149236A1 (de) 2009-06-24 2010-12-29 Basf Coatings Gmbh Beschichtungsmittel und daraus hergestellte beschichtungen mit hoher kratzfestigkeit bei gleichzeitig guten ergebnissen in der prüfung der erichsentiefung und guten steinschlagschutzeigenschaften
EP2305691A1 (de) 2009-10-01 2011-04-06 Bayer MaterialScience AG Hochfunktionelle Allophanat- und Silangruppen enthaltende Polyisocyanate
US20150125704A1 (en) * 2010-07-08 2015-05-07 Huntsman International Llc Polyisocyanate-Based Anti-Corrosion Coating
EP2591029A1 (de) * 2010-07-08 2013-05-15 Huntsman International LLC Auf polyisocyanat basierende antikorrosionsbeschichtung
WO2013167404A1 (en) 2012-05-08 2013-11-14 Basf Se Preparation of polyisocyanates having isocyanurate groups and their use
WO2014086530A1 (de) 2012-12-03 2014-06-12 Basf Coatings Gmbh Beschichtungsmittelzusammensetzungen und daraus hergestellte beschichtungen mit hoher kratzfestigkeit bei gleichzeitig guter polierbarkeit und guten optischen eigenschaften sowie deren verwendung
WO2015124504A1 (de) 2014-02-18 2015-08-27 Bayer Materialscience Ag Verfahren zur isocyanatmodifizierung unter verwendung von spirocyclischen ammoniumsalzen als katalysator
WO2015189164A1 (de) 2014-06-13 2015-12-17 Covestro Deutschland Ag Silangruppen enthaltende thioallophanatpolyisocyanate
US20170274564A1 (en) * 2014-08-22 2017-09-28 Covestro Llc Processes for in-mold coating using a multi-cavity mold and substrates coated thereby
WO2016170059A1 (en) 2015-04-21 2016-10-27 Covestro Deutschland Ag Polyisocyanurate polymers and process for the production of polyisocyanurate polymers
WO2016170058A1 (en) 2015-04-21 2016-10-27 Covestro Deutschland Ag Process for producing polyisocyanurate plastics
EP3337836A1 (de) 2015-08-17 2018-06-27 Covestro Deutschland AG Verfahren zur modifizierung von isocyanaten unter verwendung von cyclischen ammoniumsalzen als katalysator
WO2018073303A1 (de) 2016-10-18 2018-04-26 Covestro Deutschland Ag Harte beschichtungen mit hoher chemischer und mechanischer beständigkeit
WO2019204241A1 (en) * 2018-04-18 2019-10-24 Covestro Llc Processes for in-mold coating systems for molding, and products formed therefrom

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EUROPEAN POLYMER JOURNAL, vol. 16, 1979, pages 147 - 148
J. H. SAUNDERSK. C. FRISCH, POLYURETHANES CHEMISTRY AND TECHNOLOGY, 1962, pages 94 ff
J. PRAKT. CHEM., vol. 336, 1994, pages 185 - 200
JUSTUS LIEBIGS ANNALEN DER CHEMIE, vol. 562, 1949, pages 75 - 136

Also Published As

Publication number Publication date
EP4175820A1 (de) 2023-05-10
KR20230033654A (ko) 2023-03-08
CN115768616A (zh) 2023-03-07
US20230211530A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
EP3085718B1 (de) Polyisocyanuratkunststoff enthaltend siloxangruppen und verfahren zu dessen herstellung
EP3452529B1 (de) Verfahren zur herstellung eines polyisocyanurat-kompositwerkstoffs
EP2877515B1 (de) Polyurethan-beschichtungsmittelzusammensetzung, mehrstufige beschichtungsverfahren
EP3271411B1 (de) Silangruppen enthaltende polyisocyanate auf basis von 1,5-diisocyanatopentan
EP3155035B1 (de) Silangruppen enthaltende thioallophanatpolyisocyanate
KR102018471B1 (ko) 블록 폴리이소시아네이트 조성물, 1액형 코팅 조성물, 도막 및 도장 물품
EP2771376B1 (de) Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
EP2686360B1 (de) Polyurethan-beschichtungsmittelzusammensetzung, mehrstufige beschichtungsverfahren unter verwendung dieser beschichtungsmittelzusammensetzungen sowie die verwendung der beschichtungsmittelzusammensetzung als klarlack und pigmentierter lack bzw. anwendung des beschichtungsverfahrens für die automobilreparaturlackierung und/oder für die beschichtung von kunststoffsubstraten und/oder nutzfahrzeugen
EP2561001B1 (de) Beschichtungsmittel mit hohem festkörpergehalt und gutem verlauf sowie daraus hergestellte mehrschichtlackierungen und deren verwendung
EP3538586A1 (de) Beschichtungszusammensetzungen mit dualer härtung
WO2017191216A1 (de) Verfahren zur herstellung eines polyisocyanurat-kompositwerkstoffs
EP2686362B1 (de) Zink-imidazol-carboxylat-komplex katalysierte beschichtungsmittelzusammensetzung
EP2877512B1 (de) Polyurethan-beschichtungsmittelzusammensetzung und ihre verwendung, mehrstufige beschichtungsverfahren
EP3732223B1 (de) Alkoxysilanmodifizierte polyharnstoffverbindungen auf basis einer mischung von dialkoxy- und trialkoxysilanen
EP3529326B1 (de) Harte beschichtungen mit hoher chemischer und mechanischer beständigkeit
EP3794049B1 (de) Verfahren zur herstellung eines polyisocyanatpolymers und eines polyisocyanuratkunststoffs
EP3931185A1 (de) Polyisocyanuratwerkstoffe als elektrovergussmassen
EP4175820A1 (de) Beschichtungen aus polyisocyanuratbeschichtungen (rim) und deren anwendung in spritzgiessprozessen
DE19526920A1 (de) Verfahren zur Herstellung von Isocyanuratgruppen enthaltenden Polyisocyanaten aus aliphatischen und aromatischen Isocyanatverbindungen
EP3523387B1 (de) Verfahren zur herstellung von in lösungsmitteln flockulationsstabilen polyisocyanaten von (cyclo)aliphatischen diisocyanaten.
EP3440122B1 (de) Gefärbte kunststoffe basierend auf vernetzten polyisocyanaten
EP3049455B1 (de) Neue vernetzer für beschichtungsmassen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21735950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021735950

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021735950

Country of ref document: EP

Effective date: 20230202

NENP Non-entry into the national phase

Ref country code: DE