WO2022002446A1 - Vorrichtung zur sedimentation und oxydation von feinstäuben und aerosolen und organischen belastungen wie viren in einem gerät und der elektrostatischen sowie elektrochemischen oder photochemischen aufbereitung der aus dem gerät einem raum zugeführten luft für analoge prozesse im raum - Google Patents

Vorrichtung zur sedimentation und oxydation von feinstäuben und aerosolen und organischen belastungen wie viren in einem gerät und der elektrostatischen sowie elektrochemischen oder photochemischen aufbereitung der aus dem gerät einem raum zugeführten luft für analoge prozesse im raum Download PDF

Info

Publication number
WO2022002446A1
WO2022002446A1 PCT/EP2021/054795 EP2021054795W WO2022002446A1 WO 2022002446 A1 WO2022002446 A1 WO 2022002446A1 EP 2021054795 W EP2021054795 W EP 2021054795W WO 2022002446 A1 WO2022002446 A1 WO 2022002446A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
ozone
room
light
wavelength
Prior art date
Application number
PCT/EP2021/054795
Other languages
English (en)
French (fr)
Inventor
Jörg Lehmann
Original Assignee
Proactiveair Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proactiveair Gmbh filed Critical Proactiveair Gmbh
Priority to EP21710410.8A priority Critical patent/EP3999129A1/de
Priority to US18/014,338 priority patent/US20230270908A1/en
Publication of WO2022002446A1 publication Critical patent/WO2022002446A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/014Deodorant compositions containing sorbent material, e.g. activated carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/046Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating with the help of a non-organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/016Pretreatment of the gases prior to electrostatic precipitation by acoustic or electromagnetic energy, e.g. ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/32Transportable units, e.g. for cleaning room air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/167Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using catalytic reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/40Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ozonisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/11Apparatus for controlling air treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/12Lighting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/14Filtering means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/16Connections to a HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/104Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/323Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components

Definitions

  • the invention relates to a device for air pollution control according to claim 1 and a corresponding method according to claim 9.
  • Circulating air and room air devices which clean the air via ionization and ozone formation in individual devices, have been known for more than 50 years.
  • Room air devices are also state of the art, which emit and bring ions and ozone into the room in order to reduce and oxidize particles, odors and germs on site. They are so-called stand-alone devices, which are characterized by the fact that they are transportable, have their own fan and suck in the room air, treat it and return it to the room to improve the room air quality in use. These now have treatment combinations such as B.
  • a prefilter, formaldehyde filter, pressure loss-prone ozone filter, Ti02 filter which should reduce germs and organic pollution in connection with downstream UV-LED'S and a suction-side fan.
  • the loads are reduced in sequence in the individual treatment stages.
  • the maximum ozone load should not be over 50 pg / m 3 over the long term. This means that these devices are very limited in their use. Since the ozone generating elements either produce a stable amount of ozone in g / h in the device or regulated ozone elements are used which, due to the half-life of ozone, cannot control the ozone in the room, these devices and systems can only be used to a limited extent. With regard to the killing of germs and the breakdown of organic constituents in the form of oxidation, there are limits to such systems.
  • a more than 90% degradation of germs in a short time only takes place if the generated ozone load is well above the health-threatening 50 pg / m 3 .
  • the germs and bacteria must be deposited on surfaces, since even with the high ozone loads above 50 pg / m 3 there is not a sufficient ozone concentration for oxidative processes in the air.
  • UV-C ultraviolet-C
  • UV-C light with a wavelength of 253.7 nm
  • UV-C light cannot be regulated via discharge lamps and several in cascade connections UV-C lamps with the shutdown of some lamps, in addition to reducing ozone, the desired UV-C disinfection performance at 253.7 nm is no longer given due to the lower radiation density.
  • the object of the invention is to provide an air cleaning component for primarily stand-alone devices, i.e. portable devices that are operated in recirculation mode in the room, which safely and reliably kills and removes organic pollutants, in particular viruses, bacteria and other germs, in the device this enables constant loading of the room air with ozone and ions.
  • the object is achieved by a device and a method according to claims 1 and 9. It is preferably provided that in the air flow in the air direction first the air flow is irradiated by means of UV-C radiation, preferably with a wavelength> 230 nm, primarily 253.7 nm, so that the radiation in addition to the air flow and the organic Contaminants such as viruses are also recorded in the area by a downstream collector of an electrical separation unit. At the same time, ozone can be added to the air flow or formed from the air flow, the amount of ozone preferably being set so that bacteria, viruses or other germs and odor pollution can be oxidized.
  • the UV-C generator unit and the ozone unit preferably in the direction of the air flow, there is an electrostatic precipitator consisting of spray electrodes and a collector, on which the charged particles and aerosols, preferably primarily ⁇ 2.5 ⁇ m, are deposited.
  • an electrostatic precipitator consisting of spray electrodes and a collector, on which the charged particles and aerosols, preferably primarily ⁇ 2.5 ⁇ m, are deposited.
  • germs and viruses are inactivated by the UV-C light, preferably with a wavelength of> 230 nm, the irradiation of which, measured in J / m 2 , can be adjusted to the maximum amount of air.
  • the ozone in the air flow and generated in the device means that primarily the germs deposited on the collector surfaces are mainly oxidized to CO2 and H2O and the collector surfaces are therefore almost completely free of organic pollution.
  • the residual ozone can be destroyed by common catalysts such as activated carbon or zeolites, but also by UV light, for example with a wavelength of> 230 nm, which is known to break down ozone.
  • the aerosol-free and fine-dust-free air is ionized and, if necessary, an amount of ozone defined for the room size is added again so that a minimum amount of small ions of 500 / cm 3 and a maximum amount of ozone of 100 pg / m 3 can be measured directly at the device outlet and thus can have a deodorizing effect in the room.
  • the generation can take place via an adjusting mechanism so that either only ions, and negative or positive ions, only ozone or separately adjustable or controllable ions and ozone are generated and released into the room air either by manual control or by measuring sensors and a control circuit.
  • the concentration of the sucked in ozone can preferably be measured and the amount of total ozone supplied to the room can be adjusted accordingly via a control circuit.
  • the advantage of the invention consists in the safe killing of all germs, viruses and bacteria in the device itself and their (almost) residue-free oxidation to CO2 and H2O in the device, so that no endo- or mycotoxins or other organic residues as a basis for growth for other germs and bacteria available during the downtime of the device.
  • the air cleaning component which can also be referred to as an air cleaning device, has the following structure:
  • a device is preferably provided which is designed to decompose ozone which is in the air of the room.
  • a source of UV radiation in particular a defined wavelength, preferably the Wavelength> 230nm must be provided.
  • the radiation intensity of the radiation source can be adapted to destroy at least the amount of ozone that the device emits to the room air at its outlet opening. This can relate in particular to the concentration of ozone or the absolute amount of ozone.
  • the concentration of the ozone can be dependent on the size of the room in which the device is provided or the constantly circulated volume of air in an enclosed space.
  • the radiation intensity of the radiation source can particularly preferably be adaptable to a measured amount of ozone in the area of the inlet opening for air into the device. This enables a particularly energy-efficient treatment of the room air.
  • an electrostatic precipitator is provided in the air cleaning device. This is preferably arranged opposite the radiation source in the air inlet opening in such a way that a deposition surface of the electrostatic precipitator is irradiated by the radiation source. In this way, a hygienic separation of dirt particles, viruses and bacteria and their passivation or decomposition into carbon dioxide and water can be brought about in a particularly simple manner.
  • the air flowing through the device is preferably provided with low ozone content, particularly preferably free of ozone.
  • air is particularly considered ozone-free when the ozone concentration in the measured air volume is less than 10 pg / m 3 , 1 pg / m 3 , 0.1 pg / m 3 or 0.01 pg / m 3 .
  • This cleaned and ozone-free air is passed through a further filter, for example, which is particularly suitable for removing VOC (Volatile Organic Compound - volatile hydrocarbons) from the room air.
  • a device for generating ozone and / or a device for generating negatively charged ions can be provided in front of or in a region of the outlet opening for purified air from the device according to the invention.
  • the combination of ozone destruction in or behind the air inlet opening in the device according to the invention and the generation of ozone in the cleaned air before it emerges from the device always creates a constant ozone concentration in the room air. This prevents ozone from accumulating in the volume of room air to be cleaned, without the need for special measuring devices to record the ozone concentration in the room.
  • FIG. 1 shows the basic structure according to the invention of an air treatment unit for breaking down viruses, bacteria or other germs in the air supplied,
  • FIG. 2 shows the structure of the air treatment unit according to the invention with a special destruction of residual ozone without pressure loss
  • FIG 3 shows the structure according to the invention of the air treatment unit in a single room air cleaner in the form of a circulating air device
  • 4 shows the structure according to the invention of the air treatment unit in a single room air cleaner in the form of a circulating air device.
  • the air flow is initially via a first UV-C unit 1 for UV-C light emission with at least a first wavelength (e.g.> 230 nm wavelength) for germ inactivation / ozone depletion and via a second UV-C Unit 2 for UV-C light emission with at least one second wavelength (z. B. ⁇ 230 nm wavelength) for ozone generation.
  • the first unit preferably has a higher emission wavelength than the second unit, at least at its emission maximum.
  • the second UV-C unit is optional.
  • the first UV-C unit 1 can preferably be arranged to irradiate air flowing into the device.
  • the electrodeposition unit 13 is preferably arranged, preferably having spray electrodes for electrodeposition 3 for electrostatic charging of the air and / or a collector 4 of the electrodeposition unit for separating charged particles, in particular fine dust and aerosols, as well as germs, bacteria and viruses inactivated in UV-C light with a longer wavelength (preferably> 230 nm wavelength).
  • the UV-C unit 1 for UV-C light emission of longer wavelengths (> 230 nm) for germ inactivation and / or the second UV-C unit 2 is / are attached and installed (in the vicinity of the collector) in such a way that the Light radiation irradiates the plate surfaces of the collector 4 of the electrodeposition unit 13, that is to say is preferably facing them.
  • the ozone, formed from the UV-C unit 1, oxidizes the separated organic residues primarily to CO2 and H2O. Excess ozone can be broken down in a subsequent ozone filter 5 which is preferably provided.
  • the air stream, which is now free of germs, viruses and bacteria and / or fine dust, can preferably be discharged from the device via an ionization unit.
  • the air can be enriched with ozone by means of an ozone generator 7.
  • the ozone generator 7, which is arranged opposite the electrostatic precipitator and / or the UV-C unit 1 downstream of the air flow, can also be designed to generate a constant amount of ozone in a random manner. As a result, a constant amount of ozone is released into the room air in a particularly preferred manner. If, moreover, only the first UV-C unit 1 and the ozone generator 7 are provided, i.e.
  • Fig. 2 shows the structure of the air treatment unit according to the invention with a special pressure loss-free residual ozone destruction.
  • the air flow is initially via an inlet filter 10 via a UV-C unit 1 for UV-C light emission of longer wavelengths (preferably> 230 nm wavelength) for germ inactivation and / or via a UV-C unit 2 for UV-C Light emission with shorter wavelengths (preferably ⁇ 230 nm wavelength) for ozone generation.
  • a UV-C unit 1 for UV-C light emission of longer wavelengths preferably> 230 nm wavelength
  • a UV-C unit 2 for UV-C Light emission with shorter wavelengths (preferably ⁇ 230 nm wavelength) for ozone generation.
  • an electrodeposition unit 13 having spray electrodes for electrodeposition 3 for electrostatic charging of the air and a collector of the electrodeposition unit 4 for separating out charged particles, in particular fine dust and aerosols as well as those in the UV-C- Longer wavelength light (preferably> 230 nm wavelength) inactivated germs, bacteria and viruses.
  • the UV-C unit 1 for UV-C light emission with a longer wavelength (preferably> 230 nm) for germ inactivation is attached and installed in such a way that the light radiation hits the plate surfaces of the collector 4 of the electrodeposition unit 13 is irradiated.
  • the ozone that is preferably carried along, formed from the UV-C unit 2 for UV-C light emission with a shorter wavelength (preferably ⁇ 230 nm) for ozone generation, can primarily oxidize the separated organic residues to CO2 and H2O. This can be followed by a privacy screen 8 with little pressure loss, which can prevent the optical radiation of UV-C light from escaping from the collector 4 in the direction of the air.
  • each UV-C radiator or radiation unit can be provided with a glare shield 9 in the direction of the air outlet.
  • An additional T1O2 catalyst for the breakdown of germs 12, which also oxidizes chemical compounds, can complete the structure.
  • the air flow which is now free of germs, viruses and bacteria as well as fine dust, can be ionized negatively or optionally positively via an ionization unit 6 before being discharged from the device.
  • Fig. 3 shows the structure according to the invention of the air treatment unit in a single room air cleaner in the form of a circulating air device.
  • the sucked in air flow can be cleaned of coarse dirt via an inlet filter 10.
  • a fan 18 can then follow, which is preferably equipped in terms of its output so that it can be regulated.
  • the air flow can then be via a UV-C unit 1 for UV-C light emission with a longer wavelength (preferably> 230 nm wavelength) for germ inactivation and / or via a UV-C unit 2 for UV-C light emission with a shorter wavelength (preferably ⁇ 230 nm wavelength) for ozone generation.
  • the electrodeposition unit 13 can follow, which spray electrodes for electrodeposition 3 for electrostatic charging of the air and / or the collector of the electrodeposition unit 13 for separating charged particles, in particular fine dust and aerosols and / or which can have germs, bacteria and viruses inactivated in UV-C light with a wavelength of> 230 nm.
  • the UV-C unit for UV-C light emission 1 with a longer wavelength (preferably> 230 nm) for germ inactivation can be attached and built in such that the light radiation irradiates the plate surfaces of the collector 4 of the electrodeposition unit 13, i.e. aligned in their direction is.
  • the ozone carried along from it can primarily oxidize the separated organic residues to CO2 and H2O. Otherwise, the first UV-C unit can at least pass the viruses and bacteria collected on the electronic unit. Excess ozone from the second UV-C unit, which is preferably provided, can be broken down in the ozone filter 5, which is preferably downstream. The air flow, which is now free of germs, viruses and bacteria as well as fine dusts (through the electrodeposition unit), can be ionized negatively or optionally positively via an ionization unit 6 before being discharged from the device.
  • the air can be enriched with ozone by means of an ozone generator 7, which can be switched on separately and / or as a function of different control variables such as the amount of air or the ozone concentration of the supplied air or odor pollution.
  • an output grille 14 can be installed as a visual protection against the UV-C radiation and / or as a protection against contact for the ozone generator 7 and the ionization unit 6.
  • the individual parameters of the air output, the rate of germ reduction and the air prepared for the room via the ionization unit 6 and the ozone generator 7 with ozone and ions can be regulated or controlled accordingly by means of a control and / or regulation 16.
  • All built-in units are preferably designed to be exchangeable for cleaning, repair and maintenance purposes.
  • 4 shows a preferred construction of the air treatment unit in a single room air cleaner in the form of a circulating air device, preferably with a mains connection 17 and / or preferably a reduction in the ozone formed in the device with little pressure loss.
  • the air flow in a single device 15 for the room after an input filter 10 and / or fan 18 can initially be via a UV-C unit 1 for UV-C light emission with a longer wavelength (preferably> 230 nm wavelength) for germ inactivation and / or via a UV-C unit 2 for UV-C light emission ( ⁇ 230 nm wavelength) for ozone generation.
  • the electrodeposition unit 13 preferably having spray electrodes for electrodeposition 3 for electrostatic charging of the air and / or the collector 4 of the electrodeposition unit for separating charged particles, in particular fine dust and aerosols as well as those in the UV C light with a longer wavelength (preferably> 230 nm wavelength) inactivated germs, bacteria and viruses.
  • the UV-C unit 1 for UV-C light emission with a longer wavelength (preferably> 230 nm) for germ inactivation can be attached and installed in such a way that the light radiation irradiates the collector 4 or its plate surfaces of the electrodeposition unit, i.e. aligned with it is.
  • each UV-C radiator or the radiation units can be provided with a glare shield 9 in the direction of the air outlet.
  • An additional TiO2 catalyst for the breakdown of germs 12, which also oxidizes chemical compounds, can complete the structure.
  • the air flow which is now free of germs, viruses and bacteria as well as fine dust, can be ionized negatively or optionally positively via an ionization unit 6 before being discharged from the device.
  • the individual air parameters such as air quantity, ozone concentration or ion concentration can each be regulated or adjusted by means of sensors and a regulation or control 16.
  • All assemblies are preferably designed in a modular manner and can be removed or replaced individually from the device.
  • devices from the above-mentioned embodiments can be supplemented and / or substituted in a simple manner. Their combinations are hereby part of the disclosure of the application. According to the present invention, devices from one embodiment can also be provided in another embodiment or in any (sub) combinations. This applies in particular to additional filters, catalytic converters and ventilation systems.
  • UV-C unit for UV-C light emission with longer wavelengths preferably>
  • UV-C unit for UV-C light emission with shorter wavelengths preferably ⁇

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Vorrichtung zur Raumluftreinhaltung sowie ein entsprechendes Verfahren.

Description

Vorrichtung zur Sedimentation und Oxydation von Feinstäuben und Aerosolen und organischen Belastungen wie Viren in einem Gerät und der elektrostatischen sowie elektrochemischen oder photochemischen Aufbereitung der aus dem Gerät einem Raum zugeführten Luft für analoge Prozesse im Raum
Die Erfindung betrifft eine Vorrichtung zur Luftreinhaltung gemäß Anspruch 1 sowie ein entsprechendes Verfahren nach Anspruch 9.
Umluft- und Raumluftgeräte, welche über Ionisation und Ozonbildung in Einzelgräten die Luft reinigen, sind seit mehr als 50 Jahren bekannt. Ebenso sind Raumluftgeräte Stand der Technik, welche Ionen und Ozon in den Raum emittieren und einbringen, um dort vor Ort Partikel, Gerüche und Keime zu reduzieren und zu oxydieren. Sie sind sogenannte stand-alone-Geräte, welche dadurch gekennzeichnet sind, dass sie transportabel sind, einen eigenen Lüfter besitzen und die Raumluft ansaugen, behandeln und dem Raum wieder zuführen, zur Verbesserung der Raumluftqualität im Einsatz. Diese besitzen mittlerweile Behandlungskombinationen wie z. B. in Luftrichtung gesehen einen Vorfilter, Formaldehydfilter, druckverlustbehaftete Ozonfilter, Ti02-Filter, welche in Verbindung mit nachgeschalteten UV-LED’S Keime und organische Belastungen reduzieren sollen und einen saugseitigen Lüfter. Dabei werden in den einzelnen Behandlungsstufen die Belastungen in Reihenfolge reduziert.
Andere Systeme erzeugen in Verbindung mit UV-C-Entladungslampen und nachgeschalteten lonisationseinheiten sowie einem Staubkollektor Ozon sowie negative Kleinionen für den Raum.
Nachteilig an allen bisher genutzten und bekannten Systemen ist, dass kein rückstandsfreier Abbau von Keimen und Bakterien, den meisten VOC (Volatile Organic Compound - flüchtige Kohlenwasserstoffe) sowie organischen Bestandteilen im Lüftungssystem selbst stattfindet. In der Regel werden diese Stoffe sowie unvollständige Spaltprodukte auf Flächen, welche regelmäßig gereinigt werden müssen, oder in Ad- sorbtions- bzw. Absorbtionsspeichern wie z. B. Aktivkohle, die gleichzeitig als Ozonrestvernichter dienen und welche regelmäßig ersetzt werden müssen, abgeschieden. Zudem sind die Erzeugung und Einbringung von Ozon in den Raum zur Behandlung des Raumes als Emissions- und Hauptansteckungsquelle mit Viren und Bakterien nicht bedarfsgerecht abgesichert. Meist wird ein Raumvolumen angegeben, für welches die Geräte einsetzbar sind. Dies geschieht hauptsächlich, um eine zu hohe Ozoneinbringung in den Raum aus gesundheitlichen Gründen, die max. Ozonlast sollte dauerhaft nicht über 50 pg/m3 liegen, zu verhindern. Somit sind diese Geräte in ihrem Einsatz stark eingeschränkt. Da die Ozonerzeugungselemente entweder eine stabile Menge Ozon in g/h im Gerät produzieren oder geregelte Ozonelemente Einsatz finden, welche aufgrund der Halbwertszeit von Ozon das im Raum befindliche Ozon nicht beherrschbar verstärken, sind diese Geräte und Anlagen nur bedingt einsetzbar. Bezugnehmend auf die Keimtötung und den Abbau der organischen Be- standteile in Form von Oxydation sind derartigen Anlagen Grenzen gesetzt. Ein über 90%iger Abbau von Keimen in kurzer Zeit findet nur statt, wenn die erzeugte Ozonlast deutlich über die gesundheitlich bedenklichen 50pg/m3 liegt. Zudem müssen die Keime und Bakterien auf Flächen abgelegt sein, da auch bei den hohen Ozonlasten über 50pg/m3 keine ausreichende Ozonkonzentration für oxydative Prozesse in der Luft vorliegt.
Auch Kombinationen von Ozon aus UV-C der Wellenlänge 180 nm und UV-C-Licht der Wellenlänge 253,7 nm bringen nicht die gewünschten gesundheitlich unbedenklichen Parameter für den Raum, da UV-C-Licht über Entladungslampen nicht regelbar ist und bei Kaskadenschaltungen mehrerer UV-C-Lampen mit der Abschaltung einiger Lampen neben der Reduzierung von Ozon auch die gewünschte UV-C- Desinfektionsleistung bei 253,7 nm aufgrund der geringeren Strahlungsdichte nicht mehr gegeben ist.
Somit ist bei den vorhandenen Luftreinigungssystemen die Desinfektionsleistung insbesondere bei viralen und bakteriellen Belastungen sowie deren Restprodukten nicht vollständig gesichert und stellt bei hochansteckenden Keimen wie z. B. Viren ein weiterhin erhebliches Risiko dar.
Aufgabe der Erfindung ist es, eine Luftreinigungskomponente für vorrangig stand- alone-Geräte, also portable Geräte, welche im Umluftbetrieb im Raum betrieben werden, bereitzustellen, welche angesaugte organische Belastungen, insbesondere Viren und Bakterien sowie andere Keime, sicher und zuverlässig im Gerät abtötet und dabei eine konstante Beladung der Raumluft mit Ozon und Ionen ermöglicht.
Erfindungsgemäß wird die Aufgabe durch eine Vorrichtung sowie ein Verfahren nach den Ansprüchen 1 und 9 gelöst. Bevorzugt ist es vorgesehen, dass in der Luftführung in Luftrichtung zunächst der Luftstrom mittels einer UV-C-Strahlung, vorzugsweise der Wellenlänge >230 nm, vorrangig 253,7 nm, so bestrahlt wird, dass die Strahlung neben dem Luftstrom und der darin enthaltenen organischen Verunreinigungen wie Viren auch einen nachge- ordneten Kollektor einer Elektroabscheideeinheit in der Fläche erfasst. Gleichzeitig kann dem Luftstrom Ozon zugeführt oder aus dem Luftstrom gebildet werden, wobei die Ozonmenge vorzugsweise so eingestellt ist, dass Bakterien, Viren oder andere Keime sowie Geruchsbelastungen oxidiert werden können. Nach der UV-C- Erzeugereinheit und der Ozoneinheit befindet sich, bevorzugt in Luftstromrichtung, ein Elektroabscheider, bestehend aus Sprühelektroden und einem Kollektor, an welchem sich die geladenen Partikel und Aerosole, vorzugsweise vorrangig <2,5 pm, abscheiden. Auf der Oberfläche des Kollektors sowie im Luftstrom werden durch das UV-C-Licht, vorzugsweise der Wellenlänge >230 nm, dessen Bestrahlung, gemessen in J/m2, auf die max. Luftmenge eingestellt werden kann, Keime und Viren inaktiviert. Das im Luftstrom befindliche und im Gerät erzeugte Ozon führt dazu, dass vorrangig die auf den Flächen des Kollektors abgelegten Keime hauptsächlich zu CO2 und H2O oxidiert werden und die Kollektorflächen damit von organischen Belastungen nahezu rückstandsfrei sind. Die nunmehr von Aerosolen, Feinstäuben und Partikeln sowie Viren, Bakterien, Keimen, Pilzen und anderen organischen Belastungen gereinigte, aber immer noch mit Restozon aus der eigenen Ozonerzeugung oder aus Fremdquellen über die angesaugte Luft eingetragenem Ozon belastete Luft kann über einen Restozonvernichter so behandelt werden, dass nur noch Ozonmengen unter der gesundheitlich bedenklichen Grenze von 100 pg/m3 vorhanden sind. Die Restozonvernichtung kann durch gängige Katalysatoren wie Aktivkohle oder Zeolithe aber auch durch UV-Licht, beispielsweise der Wellenlänge >230 nm, welches ja bekanntlich Ozon abbaut, erfolgen. Ausgangsseitig wird die aerosolfreie und feinstaubfreie Luft ionisiert und bei Bedarf wahlweise erneut mit einer für die Raumgröße definierten Menge Ozon so versetzt, dass eine Mindestmenge an Kleinionen von 500/cm3 und eine Maximalmenge Ozon von 100 pg/m3 unmittelbar am Geräteausgang messbarsind und damit im Raum deodorierend wirken können. Die Erzeugung kann über einen Stellmechanismus so erfolgen, dass wahlweise per Handregelung oder über Messsensoren und einen Regelkreis entweder nur Ionen, und hierbei negative oder positive Ionen, nur Ozon oder getrennt einstell- oder regelbar Ionen und Ozon erzeugt und in die Raumluft gegeben werden. Vorzugsweise kann die Konzentration des angesaugten Ozons gemessen werden und über einen Regelkreis die dem Raum zugeführte Menge Gesamtozon entsprechend eingestellt werden.
Der Vorteil der Erfindung besteht in der sicheren Abtötung aller Keime, Viren und Bakterien im Gerät selbst und deren (nahezu) rückstandsfreien Oxidation zu CO2 und H2O im Gerät, so dass keine Endo- oder Mykotoxine oder andere organische Reste als Wachstumsgrundlagen für andere Keime und Bakterien während der Stillstandzeit des Gerätes vorliegen.
Zudem wird der nachstehende Raum, in welchen die ionisierte und ozonisierte Luft aus dem Gerät verbracht wird und der das eigentliche Feld der Keimverbreitung durch Lebewesen über Aerosole aus der Atmung darstellt, zu über 90% von keimtragenden Feinaerosolen durch deren Sedimentation gereinigt. Die sedimentierten Aerosole und Keime wie Viren und Bakterien werden auf den Flächen und zu einem geringen Teil in der Luft mittels des Ozons naturadäquat zu CO2 und H2O nahezu rückstandsfrei oxidiert. Nach einer bevorzugten Ausführungsform der vorliegenden Erfindung weist die Luftreinigungskomponente, welche auch als Luftreinigungsvorrichtung bezeichnet werden kann, folgenden Aufbau auf:
Die Vorrichtung wird von Luft durchströmt, welche durch eine Öffnung angesaugt und nach deren Behandlung durch eine andere Öffnung der Vorrichtung ausgestoßen wird. Dabei strömt Luft in definierter Richtung durch die Vorrichtung zwischen der Eintrittsöffnung und der Austrittsöffnung. Im Bereich der Eintrittsöffnung ist dabei vorzugsweise eine Einrichtung vorgesehen, welche ausgebildet ist, Ozon, welcher sich in der angesagten Raumluft befindet, zu zersetzen. Hierfür kann beispielsweise eine Quelle von UV-Strahlung, insbesondere definierter Wellenlänge, vorzugsweise der Wellenlänge >230nm vorgesehen sein. Dabei kann die Strahlungsintensität der Strahlungsquelle angepasst sein, mindestens die Menge an Ozon zu zerstören, die die Vorrichtung an ihrer Austrittsöffnung an die Raumluft abgibt. Dies kann sich insbesondere auf die Konzentration des Ozons oder die absolute Menge an Ozon beziehen. Die Konzentration des Ozons kann abhängig sein von der Größe des Raums, in dem die Vorrichtung vorgesehen ist, beziehungsweise des ständig zirkulierten Volumens an Luft in einem abgeschlossenen Raum.
Besonders bevorzugt kann die Strahlungsintensität der Strahlungsquelle an eine gemessene Menge an Ozon im Bereich der Eintrittsöffnung für Luft in die Vorrichtung anpassbar sein. Hierdurch lässt sich eine besonders energieeffiziente Behandlung der Raumluft bewirken.
Nach einer bevorzugten Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass in der Luft-Reinigungsvorrichtung ein Elektro-Abscheider vorgesehen ist. Dieser ist bevorzugt gegenüber der Strahlungsquelle in der Eintrittsöffnung der Luft so angeordnet, dass eine Abscheidungsoberfläche des Elektro-Abscheider durch die Strahlungsquelle bestrahlt wird. Hierdurch lässt sich in besonders einfacher Weise eine hygienische Abscheidung von Schmutzpartikeln, Viren und Bakterien sowie deren Passivierung beziehungsweise Zersetzung zu Kohlendioxid und Wasser bewirken.
Durch die Einrichtung, welche im Bereich der Eintrittsöffnung für Luft in die erfindungsgemäße Vorrichtung sorgt, ist die durch die Vorrichtung strömende Luft bevorzugt ozonarm, besonders bevorzugt ozonfrei, bereitgestellt. Luft gilt nach der vorliegenden Erfindung besonders dann als ozonfrei, wenn die Ozonkonzentration in dem gemessenen Luftvolumen geringer ist als 10 pg/m3, 1 pg/m3, 0,1 pg/m3 oder 0,01 pg/m3. Diese gereinigte und ozonfreie Luft wird beispielsweise durch einen weiteren Filter geleitet, welcher besonders geeignet ist, VOC (Volatile Organic Compound - flüchtige Kohlenwasserstoffe) aus der Raumluft zu entfernen. Vor oder in einem Bereich der Austrittsöffnung für gereinigte Luft aus der erfindungsgemäßen Vorrichtung kann eine Einrichtung zur Erzeugung von Ozon und/oder eine Einrichtung zur Erzeugung von negativ geladenen Ionen vorgesehen sein.
Durch die Kombination der Ozonzerstörung in oder hinter der Lufteintrittsöffnung in die erfindungsgemäße Vorrichtung und der Ozonerzeugung in der gereinigten Luft, bevor diese aus der Vorrichtung austritt, wird stets eine konstant bleibende Ozonkonzentration in der Raumluft erzeugt. Eine Akkumulation von Ozon in dem zu reinigenden Raumluftvolumen ist dadurch verhindert, ohne dass es dazu besonderer Messeinrichtungen zur Erfassung der Ozonkonzentration im Raum bedarf.
Zur Veranschaulichung einer Ausführungsform der Vorrichtung zur Luftreinhaltung gegen Ultrafeinstäube und Aerosole im Raum wird diese nachstehend dargestellt. Dabei zeigen
Fig.1 den erfindungsgemäßen prinzipiellen Aufbau einer Luftbehandlungseinheit zum Abbau von Viren, Bakterien oder anderen Keimen in der zugeführten Luft,
Fig.2 den erfindungsgemäßen Aufbau der Luftbehandlungseinheit mit einer speziellen druckverlustfreien Restozonvernichtung,
Fig.3 den erfindungsgemäßen Aufbau der Luftbehandlungseinheit in einem einzelnstehenden Raumluftreiniger in Form eines Umluftgerätes und Fig.4 den erfindungsgemäßen Aufbau der Luftbehandlungseinheit in einem einzelnstehenden Raumluftreiniger in Form eines Umluftgerätes.
Gemäß Fig. 1 wird der Luftstrom zunächst über eine erste UV-C-Einheit 1 für UV-C- Lichtemission mit zumindest einer ersten Wellenlänge (z. B. > 230 nm Wellenlänge) für Keiminaktivierung/Ozonabbau und über eine zweite UV-C-Einheit 2 für UV-C- Lichtemission mit zumindest einer zweiten Wellenlänge (z. B.< 230 nm Wellenlänge) für Ozonerzeugung geführt. Die erste Einheit weist dabei bevorzugt gegenüber der zweiten Einheit eine höhere Emissionswellenlänge, zumindest in deren Emissions- maxium auf. Die zweite UV-C-Einheit ist optional. Die erste UV-C-Einheit 1 kann bevorzugt angeordnet sein, in die Vorrichtung einströmende Luft zu bestrahlen.
In Strömungsrichtung der Luft durch die erfindungsgemäße Vorrichtung (Pfeil) ist nach der UV-C-Einheit 1 oder zwischen den UV-C-Einheiten 1 , 2 bevorzugt die Elekt- roabscheideeinheit 13 angeordnet, bevorzugt aufweisend Sprühelektroden für Elektroabscheidung 3 zur elektrostatischen Aufladung der Luft und/oder ein Kollektor 4 der Elektroabscheideeinheit zum Abscheiden geladener Partikel, insbesondere von Feinstäuben und Aerosolen sowie der im UV-C-Licht mit längerer Wellenlänge (vorzugsweise von >230 nm Wellenlänge) inaktivierten Keime, Bakterien und Viren.
Die UV-C-Einheit 1 für UV-C-Lichtemission längerer Wellenlänge (> 230 nm) für Keiminaktivierung und/oder die zweite UV-C-Einheit 2 ist/sind dabei so (im Nahbereich des Kollektors) angebracht und eingebaut, dass die Lichtstrahlung die Plattenflächen des Kollektors 4 der Elektroabscheideeinheit 13 bestrahlt, also diesen bevorzugt zugewandt ist. Das Ozon, gebildet aus der UV-C-Einheit 1 oxidiert die abgeschiedenen organischen Reststoffe vorrangig zu CO2 und H2O. Überschüssiges Ozon kann in einem bevorzugt vorgesehenen nachfolgenden Ozonfilter 5 abgebaut werden. Der nunmehr von Keimen, Viren und Bakterien und/oder Feinstäuben freie Luftstrom kann bevorzugt vor Ausbringung aus dem Gerät über eine lonisationsein- heit 6 negativ oder wahlweise positiv ionisiert werden. Vorzugsweise getrennt davon zuschaltbar und/oder in Abhängigkeit unterschiedlicher Regelgrößen wie Luftmenge oder Ozonkonzentration der zugeführten Luft oder Geruchsbelastung regelbar, kann die Luft mittels eines Ozonerzeugers 7 mit Ozon angereichert werden. Der Ozonerzeuger 7, welcher gegenüber dem Elektroabscheider und/oder der UV-C-Einheit 1 stromabwärts des Luftstroms angeordnet ist, kann auch ausgebildet sein, regellos eine konstante Menge an Ozon zu erzeugen. Dadurch wird in besonders bevorzugter Weise eine konstante Menge an Ozon an die Raumluft abgegeben. Wenn im Übrigen nur die erste UV-C-Einheit 1 und der Ozonerzeuger 7 vorgesehen sind, also nicht die zweite UV-C-Einheit 2, wird folglich zunächst alles Ozon aus der angesagten Luft zerstört und, bevor die Luft die Finsternisvorrichtung verlässt, wieder mit Ozon einer definierten Menge angereichert. Dadurch lässt sich die Konzentration an Ozon in der Raumluft regellos konstant halten, ohne dass es hierbei zu einer Akkumulation von Ozon in der Raumluft kommt.
Fig. 2 zeigt den erfindungsgemäßen Aufbau der Luftbehandlungseinheit mit einer speziellen druckverlustfreien Restozonvernichtung.
Dabei wird der Luftstrom über einen Eingangsfilter 10 zunächst über eine UV-C- Einheit 1 für UV-C-Lichtemission längerer Wellenlänge (vorzugsweise > 230 nm Wellenlänge) für Keiminaktivierung und/oder über eine UV-C-Einheit 2 für UV-C- Lichtemission mit kürzerer Wellenlänge (vorzugsweise < 230 nm Wellenlänge) für Ozonerzeugung geführt. Nach den UV-C-Einheiten 1, 2 folgt bevorzugt eine Elektro- abscheideeinheit 13, aufweisend Sprühelektroden für Elektroabscheidung 3 zur elektrostatischen Aufladung der Luft und einen Kollektor der Elektroabscheideeinheit 4 zum Abscheiden geladener Partikel, insbesondere Feinstäube und Aerosole sowie der im UV-C-Licht mit längerer Wellenlänge (bevorzugt von >230 nm Wellenlänge) inaktivierten Keime, Bakterien und Viren. Die UV-C-Einheit 1 für UV-C-Lichtemission mit längerer Wellenlänge (bevorzugt > 230 nm) für Keiminaktivierung ist dabei so angebracht und eingebaut, dass die Lichtstrahlung die Plattenflächen des Kollektors 4 der Elektroabscheideeinheit 13 bestrahlt. Das bevorzugt mitgeführte Ozon, gebildet aus der UV-C-Einheit 2 für UV-C-Lichtemission mit kürzerer Wellenlänge (bevorzugt < 230 nm) für Ozonerzeugung kann die abgeschiedenen organischen Reststoffe vorrangig zu CO2 und H2O oxidieren. Im Anschluss kann ein druckverlustarmer Sichtschutz 8 folgen, welcher den optischen Strahlenaustritt von UV-C-Licht aus dem Kollektor 4 in Luftrichtung verhindern kann. Soweit die zweite UV-C-Einheit vorgesehen ist, kann überschüssiges Ozon durch UV-Licht aus einer UV-Einheit 11 für UV- Lichtemission mit längerer Wellenlänge (bevorzugt >230 nm) zum Ozonabbau durch Bestrahlung abgebaut werden. Um ein Durchschlagen des UV-C-Lichtes aus dem Gerät zu verhindern, kann jeder UV-C-Strahler oder Strahlungseinheiten mit einem Blendschutz 9 in Richtung Luftauslass versehen sein. Ein zusätzlicher T1O2- Katalysator zum Keimabbau 12, welcher auch chemische Verbindungen aboxidiert, kann den Aufbau kompettieren.
Der nunmehr von Keimen, Viren und Bakterien sowie Feinstäuben freie Luftstrom kann vor Ausbringung aus dem Gerät über eine lonisationseinheit 6 negativ oder wahlweise positiv ionisiert werden. Getrennt davon zuschaltbar und in Abhängigkeit unterschiedlicher Regelgrößen wie Luftmenge oder Ozonkonzentration der zugeführten Luft oder Geruchsbelastung regelbar, kann die Luft mittels eines regel- und/oder steuerbaren(-losen) Ozonerzeugers 7 mit Ozon angereichert werden.
Fig. 3 zeigt den erfindungsgemäßen Aufbau der Luftbehandlungseinheit in einem einzelnstehenden Raumluftreiniger in Form eines Umluftgerätes.
Eingangsseitig kann der angesaugte Luftstrom über einen Eingangsfilter 10 von grobem Schmutz gereinigt werden. Anschließend kann ein Lüfter 18 folgen, welcher vorzugsweise in seiner Leistung regelbar ausgerüstet ist. Danach kann der Luftstrom über eine UV-C-Einheit 1 für UV-C-Lichtemission mit längerer Wellenlänge (bevorzugt > 230 nm Wellenlänge) für Keiminaktivierung und/oder über eine UV-C-Einheit 2 für UV-C-Lichtemission mit kürzerer Wellenlänge (bevorzugt < 230 nm Wellenlänge) für Ozonerzeugung geführt werden. Nach den UV-C-Einheiten 1, 2 kann die Elektro- abscheideeinheit 13 folgen, welche Sprühelektroden für Elektroabscheidung 3 zur elektrostatischen Aufladung der Luft und/oder des Kollektors der Elektroabscheide- einheit 13 zum Abscheiden geladener Partikel, insbesondere Feinstäube und Aerosole und/oder der im UV-C-Licht von >230 nm Wellenlänge inaktivierten Keime, Bakterien und Viren, aufweisen kann. Die UV-C-Einheit für UV-C-Lichtemission 1 mit längerer Wellenlänge (bevorzugt > 230 nm) für Keiminaktivierung kann dabei so angebracht und eingebaut sein, dass die Lichtstrahlung die Plattenflächen des Kollektors 4 der Elektroabscheideeinheit 13 bestrahlt, also in deren Richtung ausgerichtet ist. Sofern die zweite UV-10-Einheit vorgesehen ist, kann das daraus mitgeführte Ozon die abgeschiedenen organischen Reststoffe vorrangig zu CO2 und H2O oxidieren. Ansonsten kann die erste UV-C-Einheit zumindest die auf der elektronischen Einheit gesammelten Viren und Bakterien passieren. Überschüssiges Ozon aus der bevorzugt vorgesehenen zweiten UV-C-Einheit kann im bevorzugt nachfolgenden Ozonfilter 5 abgebaut werden. Der nunmehr (durch die Elektroabscheideeinheit) von Keimen, Viren und Bakterien sowie Feinstäuben freie Luftstrom kann vor Ausbringung aus dem Gerät über eine lonisationseinheit 6 negativ oder wahlweise positiv ionisiert werden. Getrennt davon zuschaltbar und/oder in Abhängigkeit unterschiedlicher Regelgrößen wie Luftmenge oder Ozonkonzentration der zugeführten Luft oder Geruchsbelastung regelbar kann die Luft mittels eines Ozonerzeugers 7 mit Ozon angereichert werden. Abschließend kann ein Ausgangsgitter 14 als Sichtschutz gegen die UV-C-Strahlung und/oder als Berührungsschutz für den Ozonerzeuger 7 und die lonisationseinheit 6 eingebaut sein. Die Luftleistung, Keimabbauleistung und die für den Raum über die lonisationseinheit 6 und den Ozonerzeuger 7 mit Ozon und Ionen aufbereitete Luft kann in ihren Einzelparametern mittels einer Steuerung und/oder Regelung 16 entsprechend geregelt oder gesteuert werden.
Alle verbauten Einheiten sind bevorzugt wechselbar für Reinigungs-, Reparatur- und Wartungszwecke ausgeführt. Fig. 4 zeigt einen bevorzugten Aufbau der Luftbehandlungseinheit in einem einzelnstehenden Raumluftreiniger in Form eines Umluftgerätes bevorzugt mit Netzanschluss 17 und/oder bevorzugt einer druckverlustarmen Reduzierung des im Gerät gebildeten Ozons. Dabei kann der Luftstrom in einem Einzelgerät 15 für den Raum nach einen Eingangsfilter 10 und/oder Lüfter 18 zunächst über eine UV-C-Einheit 1 für UV-C-Lichtemission mit längerer Wellenlänge (bevorzugt > 230 nm Wellenlänge) für Keiminaktivierung und/oder über eine UV-C-Einheit 2 für UV-C-Lichtemission (< 230 nm Wellenlänge) für Ozonerzeugung geführt werden. Nach den UV-C-Einheiten 1, 2 folgt bevorzugt die Elektroabscheideeinheit 13, vorzugsweise aufweisend Sprühelektroden für Elektroabscheidung 3 zur elektrostatischen Aufladung der Luft und/oder des Kollektors 4 der Elektroabscheideeinheit zum Abscheiden geladener Partikel, insbesondere von Feinstäuben und Aerosolen sowie der im UV-C-Licht von längerer Wellenlänge (bevorzugt >230 nm Wellenlänge) inaktivierten Keime, Bakterien und Viren. Die UV-C-Einheit 1 für UV-C-Lichtemission mit längerer Wellenlänge (bevorzugt > 230 nm) für Keiminaktivierung kann dabei so angebracht und eingebaut sein, dass die Lichtstrahlung den Kollektor 4 bzw. dessen Plattenflächen der Elektroabscheideeinheit bestrahlt, also auf diese ausgerichtet ist. Das mitgeführte Ozon, gebildet aus der UV-C-Einheit 2 für UV-C-Lichtemission mit kürzerer Wellenlänge (bevorzugt < 230 nm) zur Ozonerzeugung oxidiert die abgeschiedenen organischen Reststoffe vorrangig zu CO2 und H2O. Im Anschluss kann ein druckverlustarmer Sichtschutz 8 folgen, welcher den optischen Strahlenaustritt von UV-C-Licht aus dem Kollektor 4 in Luftrichtung verhindern kann. Überschüssiges Ozon kann durch UV- Licht aus einer UV-Einheit für UV-Lichtemission mit längerer Wellenlänge (bevorzugt >230 nm) zum Ozonabbau 11 durch Bestrahlung abgebaut werden. Um ein Durchschlagen des UV-C-Lichtes aus dem Gerät zu verhindern, kann jeder UV-C-Strahler oder können die Strahlungseinheiten mit einem Blendschutz 9 in Richtung Luftauslass versehen sein. Ein zusätzlicher Ti02-Katalysator zum Keimabbau 12, welcher auch chemische Verbindungen aboxidiert, kann den Aufbau komplettieren. Der nunmehr von Keimen, Viren und Bakterien sowie Feinstäuben freie Luftstrom kann vor Ausbringung aus dem Gerät über eine lonisationseinheit 6 negativ oder wahlweise positiv ionisiert werden. Getrennt davon zuschaltbar und/oder in Abhängigkeit unterschiedlicher Regelgrößen wie Luftmenge oder Ozonkonzentration der zugeführten Luft oder Geruchsbelastung regelbar kann die Luft mittels eines regelund/oder steuerbaren Ozonerzeugers 7 mit Ozon angereichert werden. Die einzelnen Luftparameter wie Luftmenge, Ozonkonzentration oder lonenkonzentration können mittels Sensoren und einer Regelung oder Steuerung 16 jeweils geregelt oder eingestellt werden.
Alle Baugruppen sind vorzugsweise modular ausgeführt und können einzeln aus dem Gerät entfernt oder gewechselt werden.
Die einzelnen Einrichtungen aus den voranstehend genannten Ausführungsformen sind, in einfacher Weise ergänzbar und/oder substituierbar. Deren Kombinationen sind hiermit teil der Offenbarung der Anmeldung. Nach der vorliegenden Erfindung können Einrichtungen aus einer Ausführungsform auch in einer anderen Ausführungsform oder in beliebigen (Unter-)Kombinationen vorgesehen werden. Dies betrifft insbesondere zusätzliche Filter, Katalysatoren sowie Lüftungseinrichtungen.
Bezugszeichenliste
1 UV-C-Einheit für UV-C-Lichtemission mit längerer Wellenlänge (bevorzugt >
230 nm) für Keiminaktivierung
2 UV-C-Einheit für UV-C-Lichtemission mit kürzerer Wellenlänge (bevorzugt <
230 nm) für Ozonerzeugung
3 Sprühelektroden für Elektroabscheidung
4 Kollektor der Elektroabscheideeinheit
5 Ozonfilter
6 lonisationseinheit / Emitter
7 Ozonerzeuger
8 Sichtschutz
9 Blendschutz
10 Eingangsfilter
11 UV-Einheit für UV-Lichtemission >230 nm zum Ozonabbau
12 Ti02-Katalysator zum Keimabbau
13 Elektroabscheideeinheit
14 Ausgangsgitter
15 Stand-alone-Gerät
16 Steuerungs-Regelungs-Gerät
17 Netzanschluss
18 Lüfter
19 Luftrichtung

Claims

A n s p r ü c h e
1 . Antibakterielle Luftfiltervorrichtung insbesondere zur Entfernung von ultrafeinen Aerosolen und Partikeln <2,5 pm sowie vorzugsweise zur Inaktivierung darin enthaltener organisch lebender Teile mit mindestens einer UV-Lichteinrichtung (1 ), einem Elektroabscheider (13), mindestens einer ozongenerierenden UV-Lichteinrichtung (7) und einem Ionisator, dadurch gekennzeichnet, dass durch die Vorrichtung ein zu reinigender Luftstrom führbar ist, wobei in Strömungsrichtung zwischen einem Eingang und einem Ausgang für den Luftstrom in dessen Strömungsrichtung in der Vorrichtung zunächst die mindestens eine UV-Lichteinrichtung (1 ) angeordnet ist, welche mit mindestens einer O3- zerstörenden mit oder ohne antibakteriell wirkender Wellenlänge bereitgestellt ist, dass stromabwärts von der UV-Lichteinrichtung (1 ) der Elektroabscheider (13) angeordnet ist, welcher ausgebildet ist, die Aerosole, die Partikel und/oder die organischen Teile in dem ozonfreien Luftstrom zu laden und an dem Elektroabscheider abzuscheiden, und dass stromabwärts von dem Elektroabscheider (13) die ozongenerierende UV- Lichteinrichtung (7) bereitgestellt ist, welche ausgebildet ist, eine konstante Menge an Ozon an die gereinigte Luft abzugeben.
2. Antibakterielle Luftfiltervorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass ein Katalysator zum Abbau von chemischen Substanzen vorgesehen ist.
3. Antibakterielle Luftfiltervorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die UV-Lichteinrichtung (1) und ein Kollektor des Elektroabscheiders einander zugewandt sind, so dass der Kollektor mittels der UV-Lichteinrichtung bestrahlbar ist.
4. Antibakterielle Luftfiltervorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die UV-Lichteinrichtung eine UV-C-Strahlung mit >230 nm abstrahlt, die insbesondere aus Entladungsrohren oder Dioden oder mittels Laserlicht gebildet wird.
5. Antibakterielle Luftfiltervorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zur Bildung von Ozon in der Luftführung ein Niedertemperaturplasma, dielektrisch behinderte Entladung, UV-C-Licht der Wellenlänge <230 nm oder Laser vorgesehen sind.
6. Antibakterielle Luftfiltervorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zum Ozonabbau in der Luftführung Katalysatoren zusätzlich oder statt der UV-Strahlungsquelle der Wellenlänge >230 nm vorgesehen sind.
7. Antibakterielle Luftfiltervorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die aus der Luftführung austretende und dem Raum zugeführte Luft durch Niedertemperaturplasma, dielektrisch behinderte Entladung, UV-C-Licht der Wellenlänge <230 nm oder Laser erzeugtes Ozon bedarfsgerecht anreicherbar ist.
8. Vorrichtung zur Sedimentation von ultrafeinen Aerosolen und Partikeln <2,5 pm aus der Raumluft nach Anspruch 1 - 10, dadurch gekennzeichnet, dass alle verwendeten Einheiten wechselbar in einem Gehäuse verbaut sind und/oder ein Ionisator vorgesehen ist, welcher dem Elektroabscheider nachgeordnet und bereitgestellt ist, aus der gereinigten Luft einen Anteil an Ionen zu erzeugen.
9. Verfahren zur Luftreinigung, insbesondere mit einer Vorrichtung nach einem der Ansprüche 1 bis 7, bei welchem
Luft in einen Behandlungsraum angesaugt wird, aus der angesaugten Luft Ozon mittels UV-Strahlung oder Katalysatoren und Partikel mittels eines Elektroabscheiders entfernt werden und bevor die gereinigte Luft den Behandlungsraum verlässt, ein Anteil von Ozon und/oder ionisiertem Gas aus der gereinigten Luft erzeugt wird.
10. Verfahren zur Luftreinigung nach Anspruch 9, dadurch gekennzeichnet, dass der Ozonanteil, welcher dem Raum zugeführt wird, zu- und abschaltbar sowie in seiner Menge Steuer- oder regelbar ist.
11. Verfahren zur Luftreinigung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Ionisation unabhängig von der Ozonerzeugung erfolgt.
12. Verfahren zur Luftreinigung nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass ein lonenerzeuger für die lonenerzeugung aus der gereinigten Luft gleichzeitig regel- oder steuerbar Ozonmengen erzeugen kann.
13. Verfahren zur Luftreinigung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass wahlweise negative oder positive Ionen aus der gereinigten Luft erzeugt werden.
PCT/EP2021/054795 2020-07-03 2021-02-26 Vorrichtung zur sedimentation und oxydation von feinstäuben und aerosolen und organischen belastungen wie viren in einem gerät und der elektrostatischen sowie elektrochemischen oder photochemischen aufbereitung der aus dem gerät einem raum zugeführten luft für analoge prozesse im raum WO2022002446A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21710410.8A EP3999129A1 (de) 2020-07-03 2021-02-26 Vorrichtung zur sedimentation und oxydation von feinstäuben und aerosolen und organischen belastungen wie viren in einem gerät und der elektrostatischen sowie elektrochemischen oder photochemischen aufbereitung der aus dem gerät einem raum zugeführten luft für analoge prozesse im raum
US18/014,338 US20230270908A1 (en) 2020-07-03 2021-02-26 Apparatus for sedimentation and oxidation of fine dust and aerosols and organic loads such as viruses in a device, and for electrostatic and electrochemical or photochemical processesing of the air supplied by the device to a room for analog processes in the room

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202020002865.7U DE202020002865U1 (de) 2020-07-03 2020-07-03 Vorrichtung zur Sedimentation und Oxydation von Feinstäuben und Aerosolen undorganischen Belastungen wie Viren in einem Gerät und der elektrostatischen sowieelektrochemischen oder photochemischen Aufbereitung der aus dem Gerät einemRaum zugeführten Luft für analoge Prozesse im Raum.
DE202020002865.7 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022002446A1 true WO2022002446A1 (de) 2022-01-06

Family

ID=73265119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/054795 WO2022002446A1 (de) 2020-07-03 2021-02-26 Vorrichtung zur sedimentation und oxydation von feinstäuben und aerosolen und organischen belastungen wie viren in einem gerät und der elektrostatischen sowie elektrochemischen oder photochemischen aufbereitung der aus dem gerät einem raum zugeführten luft für analoge prozesse im raum

Country Status (4)

Country Link
US (1) US20230270908A1 (de)
EP (1) EP3999129A1 (de)
DE (1) DE202020002865U1 (de)
WO (1) WO2022002446A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10355834A1 (de) * 2003-11-26 2005-07-07 Steinicke, Eckhard Verfahren zum Abbau von VOC- und Keimlasten sowie zur Reduzierung von lungengängigen Feinststäuben in Räumen und Anordnung von dazu benötigten Systembauteilen in einer mobilen Luftbehandlungsanlage
DE102004040858A1 (de) * 2004-08-23 2006-03-02 Lehmann, Pia Verfahren zur Anordnung von dazugehörigen Systembaugruppen zur Verhinderung des Anwachsens der Ozonkonzentration in Räumen bei ozonerzeugenden Anlagen und Baugruppen im Umluftbetrieb oder Zuluftbetrieb mittels ozonreduzierender Katalysatoren
US20130183214A1 (en) * 2007-01-22 2013-07-18 Karen Metteer Modular ductwork decontamination assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10355834A1 (de) * 2003-11-26 2005-07-07 Steinicke, Eckhard Verfahren zum Abbau von VOC- und Keimlasten sowie zur Reduzierung von lungengängigen Feinststäuben in Räumen und Anordnung von dazu benötigten Systembauteilen in einer mobilen Luftbehandlungsanlage
DE102004040858A1 (de) * 2004-08-23 2006-03-02 Lehmann, Pia Verfahren zur Anordnung von dazugehörigen Systembaugruppen zur Verhinderung des Anwachsens der Ozonkonzentration in Räumen bei ozonerzeugenden Anlagen und Baugruppen im Umluftbetrieb oder Zuluftbetrieb mittels ozonreduzierender Katalysatoren
US20130183214A1 (en) * 2007-01-22 2013-07-18 Karen Metteer Modular ductwork decontamination assembly

Also Published As

Publication number Publication date
DE202020002865U1 (de) 2020-10-22
EP3999129A1 (de) 2022-05-25
US20230270908A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
EP2025351B1 (de) Luftreinigungsvorrichtung mit O3-Neutralisierer und Luftreinigungsverfahren
DE102005003923A1 (de) Vorrichtung und Verfahren zum Entkeimen von Raumluft
DE3905842A1 (de) Sterilisier-/deodorisiergeraet
DE10133831C1 (de) Verfahren und Vorrichtung zum selektiven Entfernen gasförmiger Schadstoffe aus der Raumluft
DE202006020800U1 (de) Luftdesinfektionsvorrichtung
EP2668964A1 (de) Reinigungseinrichtung und Verfahren zum Reinigen von Fahrzeuginnenräumen
DE102020120046A1 (de) Vorrichtung zur Desinfektion von Luft
EP2455678A2 (de) Vorrichtung und Verfahren zur Entkeimung strömender Luft
DE102018125596A1 (de) Vorrichtung und Verfahren zur Entkeimung eines Gases oder Gasgemisches mit UVC-Strahlung
DE69922665T2 (de) Luftreinigungsgerät
DE19919623A1 (de) Luftaufbereitungssystem zum wirksamen Abbau von luftgetragenen Gerüchen, Keimen und Schadstoffen
DE19513943A1 (de) Verfahren und Vorrichtung zur Verbesserung der Raumluftqualität
EP3999129A1 (de) Vorrichtung zur sedimentation und oxydation von feinstäuben und aerosolen und organischen belastungen wie viren in einem gerät und der elektrostatischen sowie elektrochemischen oder photochemischen aufbereitung der aus dem gerät einem raum zugeführten luft für analoge prozesse im raum
DE102020109727A1 (de) Beatmungsgerät
EP4255610A1 (de) Luftreinigungseinrichtung und luftreinigungssystem sowie verfahren zur reinigung einer luftreinigungseinrichtung und eines luftreinigungssystems
DE10355834A1 (de) Verfahren zum Abbau von VOC- und Keimlasten sowie zur Reduzierung von lungengängigen Feinststäuben in Räumen und Anordnung von dazu benötigten Systembauteilen in einer mobilen Luftbehandlungsanlage
KR20210028878A (ko) 공기 청정 시스템 및 청정 방법
EP1327110A1 (de) Vorrichtung zur regeneration von raumluft
DE102022107257A1 (de) Vorrichtung zur Behandlung von Abluft, welche fett- oder ölbelastete Aerosole enthält
WO2022074090A1 (de) Raumluftreinigungseinrichtung mit plasmafilter
WO2014082829A1 (de) Vorrichtung zum inhalieren von sauerstoffangereicherter luft und verfahren zur aufbereitung von atemluft für eine inhalationsvorrichtung
DE102020109949B4 (de) Raumluftreiniger
DE102020007907A1 (de) Filtersystem
DE102020204403A1 (de) Vorrichtung zur Desinfektion von Luft und in/an Atemschutzmaske oder Beatmungsgerät
DE4414598A1 (de) Hydroion-Luftwäscher

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21710410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021710410

Country of ref document: EP

Effective date: 20220218

NENP Non-entry into the national phase

Ref country code: DE