WO2022002303A1 - Rotor einer elektrischen rotationsmaschine, verfahren zur herstellung des rotors und elektrische rotationsmaschine - Google Patents

Rotor einer elektrischen rotationsmaschine, verfahren zur herstellung des rotors und elektrische rotationsmaschine Download PDF

Info

Publication number
WO2022002303A1
WO2022002303A1 PCT/DE2021/100504 DE2021100504W WO2022002303A1 WO 2022002303 A1 WO2022002303 A1 WO 2022002303A1 DE 2021100504 W DE2021100504 W DE 2021100504W WO 2022002303 A1 WO2022002303 A1 WO 2022002303A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft
position sensor
sensor device
axial
Prior art date
Application number
PCT/DE2021/100504
Other languages
English (en)
French (fr)
Inventor
Alexandre Fischer
Thomas Fritz
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2022002303A1 publication Critical patent/WO2022002303A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/108Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
    • F16D1/116Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling the interengaging parts including a continuous or interrupted circumferential groove in the surface of one of the coupling parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature

Definitions

  • the invention relates to a rotor of an electric rotary machine, a method for manufacturing the rotor and an electric rotary machine with the rotor.
  • Such a machine comprises a stator and a rotor which can be rotated in relation to it.
  • the rotor usually comprises a rotor shaft, balancing plates, laminated rotor stacks and magnets.
  • the magnets are generally fixed in the laminated rotor stacks.
  • Rotors of rotor position sensors require a firm fixation in relation to the rotor in order to be able to detect the respective angular position of the rotor or individual components of the rotor with high accuracy. It is customary to fix the rotor of the rotor position sensor to or on the shaft that is firmly connected to the rotor body.
  • the rotor of the rotor position sensor can be attached to or on the rotor shaft in a simple, time-saving and cost-efficient manner.
  • the axially available installation space is very limited. Accordingly, there is a requirement for an axially very short design.
  • the requirement must be met that the rotor of the rotor position sensor is also arranged in a manner that is safe for transport.
  • the rotor of the rotor position sensor is connected to the rotor shaft via a shaft-hub connection and is fixed at least on one side in the axial direction by means of a shoulder of the rotor shaft.
  • the fastening concept can be used for different axial positions of the rotor of the rotor position sensor and also for different interfaces between the rotor shaft and a unit to be driven, such as a motor vehicle transmission, whereby a modular solution is preferred overall.
  • the aforementioned restrictions often mean that the rotor of the electric rotary machine can only be manufactured with relatively high costs and installation effort, although with some fastening methods it cannot be ruled out that undesired deformation of the rotor of the rotor position sensor and / or tensions can be introduced.
  • the present invention is based on the object of providing a rotor of an electrical rotating machine, a method for producing the rotor and the electrical rotating machine comprising the rotor, which allow simple, flexible, cost-effective and space-compact assembly and axial securing of all Ensure rotor components.
  • the invention relates to a rotor of an electric rotary machine, comprising a rotor shaft and connected to the rotor shaft at least one rotor body, which has at least one laminated core, and a rotor arranged on one axial side of the rotor body on the rotor shaft by means of a positively acting shaft-hub connection
  • Rotor position sensor device and a plate spring which, for the purpose of positioning the rotor of the rotor position sensor device, permanently exerts an axially acting force on the rotor of the rotor position sensor device.
  • the rotor of the rotor position sensor device is supported against the axially acting force caused by the disk spring via a support element axially opposite the disk spring on the rotor shaft.
  • the force exerted by the plate spring and the opposing support of the rotor of the rotor position sensor device essentially block the translational degree of freedom of the rotor of the rotor position sensor device along the axis of rotation of the rotor, so that the rotor of the rotor position sensor device is fastened with essentially no axial play .
  • the support element is a securing element which is fixedly connected to the rotor shaft in a positive and / or non-positive manner at least in the axial direction and which is seated in a groove running in the circumferential direction in the rotor shaft.
  • the securing element is designed as a securing ring which is suitable for remaining secured in the groove against the effects of centrifugal force even at high speeds.
  • the locking ring is a self-locking locking ring.
  • the securing element or support element is pressed into the groove. Accordingly, the support element is fixed positively and non-positively on the rotor shaft. This realizes a fixing effect of the support element in the axial direction as well as in the circumferential direction. This construction accordingly does not require an extra shoulder in the rotor shaft for the arrangement of an axially blocking element.
  • the plate spring is supported axially on an axial contact element arranged between the laminated core and the rotor of the rotor position sensor device.
  • This axial contact element is also referred to as a locking plate.
  • the axial contact element is designed to secure the axial position of the entire laminated core coupled to it.
  • the axial contact element can have a crank on its radially outer edge area to the radially outer surroundings of the disc spring, the disc spring being seated with its radially outer side in the crank. Particularly at high speeds and the associated high centrifugal forces, the offset ensures an exact positioning of the disc spring on the shaft and in relation to the rotor of the rotor position sensor device.
  • the disk spring rests with its radially inner side on the shaft on the rotor of the rotor position sensor device.
  • the axial contact element can extend at least in regions on the radially inner side of at least one laminated core, the axial contact element being caulked with the rotor shaft.
  • the axial contact element can be fixed on the shaft in a technologically simple manner and, accordingly, the laminated core or several laminated cores can also be mounted on the shaft by means of the axial contact element.
  • the shaft-hub connection can be implemented by means of at least one axial groove running in the axial direction in the rotor shaft and at least one nose on the rotor of the rotor position sensor device that engages radially in the axial groove.
  • the nose on the rotor of the rotor position sensor device can also be referred to as a spring, which is designed as an integral part of the body of the rotor of the rotor position sensor device.
  • the hub of the shaft-hub connection is thus the rotor of the rotor position sensor device itself.
  • This shaft-hub connection allows a slight displacement over the spring travel of the disc spring on the rotor shaft, so that tolerances, especially during assembly, are easy can also be compensated in the axial direction during operation of the rotor or an electric rotary machine equipped with it.
  • An alternative embodiment of this shaft-hub connection would be a spline connection.
  • a further aspect is a method for setting the rotor of the electric rotating machine, in which a rotor shaft and elements of a rotor body to be connected to the rotor shaft, comprising at least one laminated core, are provided, the elements of the rotor body are arranged on the rotor shaft in a rotor body, and a rotor of a rotor position sensor device is arranged on an axial side of the rotor body on the rotor shaft by means of a shaft-hub connection that acts in a form-fitting manner.
  • a plate spring is arranged on the same axial side of the rotor body in such a way that the plate spring permanently exerts an axially acting force on the rotor of the rotor position sensor device for the purpose of positioning the rotor of the rotor position sensor device.
  • a support element is arranged on the side of the rotor of the rotor position sensor device axially opposite the disk spring for the purpose of supporting the rotor of the rotor position sensor device on the rotor shaft against the axially acting force caused by the disk spring.
  • the disk spring can be positioned axially between the rotor body and the rotor of the rotor position sensor device, so that the force of the disk spring pushes the rotor of the rotor position sensor device away from the rotor body in the direction of the support element.
  • the assembly can be done in such a way that the rotor of the rotor position sensor device is moved against the force of the plate spring on the rotor shaft until the support element can be firmly connected to the rotor shaft at a defined position, so that the rotor of the rotor position sensor device is clamped between the plate spring and the support element in the axial direction.
  • an electric rotary machine is made available which has a stator and a rotor described above.
  • a stator of the rotor position sensor device can likewise be arranged or formed on the stator of the electric rotating machine.
  • the electric rotary machine can be designed as an electric axle for the direct drive of a wheel of a motor vehicle.
  • Figure 1 the rotor in a partially sectioned view
  • FIG. 2 an enlarged partial area of the illustration shown in FIG. 1,
  • FIG. 3 the rotor in an exploded view
  • FIG. 4 the rotor in a perspective view.
  • the rotor 1 comprises several windings 2, which are arranged rotationally symmetrically to a rotor shaft 10 of the rotor 1.
  • the windings 2 are energized, magnetic fields arise which, in cooperation with magnets on a stator (not shown here) of a rotary machine electrical to the rotor 1, set the rotor shaft 10 to rotate about the axis of rotation 11.
  • the windings 2 form the rotor body 20 of the rotor 1 together with two laminated cores 21 shown here as well as the balancing disks 22 resting laterally on the laminated cores 21 in this embodiment, these elements of the rotor body 20 all being arranged on the rotary shaft 10.
  • the rotor shaft 10 itself is supported via rotary bearings 5 in a housing 4 of an electric rotary machine comprising the rotor 1.
  • the rotor of a rotor position sensor device 40 is located axially laterally next to the rotor body 20. This is fastened to the rotor shaft 10 with a shaft-hub connection 30.
  • the shaft-hub connection 30 is formed in particular by an axially running groove (not shown here) in the rotor shaft 10 and a correspondingly complementary, radially inward-pointing nose on the rotor of the rotor position sensor device 40 that engages in this groove.
  • Such a shaft-hub connection 30 allows the rotor of the rotor position sensor device 40 to be axially displaceable to a certain extent.
  • An axial contact element 70 which is also referred to as a locking plate, is located radially within a space radially delimited by winding heads 3 of the windings 2 and connected to the rotor shaft 10 by means of a caulking 72.
  • This axial contact element 70 serves to support an essentially annular disk spring 50 arranged on the rotary shaft 10.
  • the radially outer edge of the disk spring 50 rests against the axial contact element 70.
  • the radially inner edge of the disc spring 50 rests axially on the rotor of the rotor position sensor device 40 and thereby causes the rotor of the rotor position sensor device 40 to be supported on this side.
  • a support element 60 in the form of a securing ring is arranged on the side of the rotor of the rotor position sensor device 40 opposite the axial contact element 70, this support element 60 being seated in a groove 12 running radially around the rotor shaft 10.
  • the Support element 60 is pressed into this groove 12, so that the support element 60 is secured against centrifugal forces.
  • FIG. 2 shows the elements which serve to support the rotor of the rotor position sensor device 40 in an enlarged view.
  • an axially acting force 51 is exerted on the rotor of the rotor position sensor device 40 by the plate spring 50 due to its prestress.
  • This axially acting force 51 causes the rotor of the rotor position sensor device 40 to be pushed along the direction of this axially acting force 51 until the rotor of the rotor position sensor device 40 comes to rest on the support element 60.
  • a counterforce 61 is applied by the support element 60 against the axially acting force 51 on the rotor of the rotor position sensor device 40, so that this is axially in static equilibrium.
  • the embodiment shown here provides that the axial contact element 70 has a crank 71 on its radially outer edge, which radially outwards the radially outer edge of the disc spring 50 surrounds. This prevents the disc spring 50 from becoming detached from the rotor shaft 10.
  • the caulking 72 can clearly be seen here, by means of which the axial contact element 70 is firmly connected to the rotor shaft 10 in the axial direction as well as in the circumferential direction.
  • the elements of the rotor body 20 can first be arranged on the rotor shaft 10 one after the other, as can the axial contact element 70. Thereafter, the disk spring 50 can be placed against the axial contact element 70, and the rotor of the rotor position sensor device 40 can be pushed onto the rotor shaft 10. The support element 60 can then be pushed onto the rotor shaft 10 until it reaches an axial position in which it can engage in the groove 12 in the rotor shaft 10.
  • a counterforce 61 on the rotor of the rotor position sensor device 40 can be implemented against the axially acting force 51 applied by the disk spring 50, so that the disk spring 50 moves axially Direction is deformed until the engagement of the support element 60 in the groove 12 in the rotor shaft 10 can take place.
  • FIG. 3 shows the elements of the rotor 1 once again in an exploded view. It can be seen here that the plate spring 50 has spring tongues pointing radially inward.
  • Figure 4 shows the rotor 1 in perspective.
  • the rotor proposed here the method for producing the rotor and the electric rotating machine comprising the rotor allow simple, flexible, cost-efficient and space-compact assembly and ensure that all rotor components are axially secured.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

Die Erfindung betrifft einen Rotor einer elektrischen Rotationsmaschine, ein Verfahren zur Herstellung des Rotors sowie eine elektrische Rotationsmaschine mit dem Rotor. Der Rotor (1 ) umfasst eine Rotorwelle (10) und mit der Rotorwelle (10) verbunden wenigstens einen Rotorkörper (20), der wenigstens ein Blechpaket (21 ) aufweist, und einen an einer axialen Seite des Rotorkörpers (20) auf der Rotorwelle (10) mittels einer formschlüssig wirkenden Welle-Nabe-Verbindung (30) angeordneten Rotor einer Rotorlagesensor-Einrichtung (40) sowie eine Tellerfeder (50) aufweist, die zwecks Positionierung des Rotors der Rotorlagesensor-Einrichtung (40) dauerhaft eine axial wirkende Kraft (51 ) auf den Rotor der Rotorlagesensor-Einrichtung (40) ausübt, wobei sich der Rotor der Rotorlagesensor-Einrichtung (40) gegen die von der Tellerfeder (50) bewirkte axial wirkende Kraft (51 ) über ein der Tellerfeder (50) axial gegenüberliegendes Stützelement (60) an der Rotorwelle (10) abstützt. Der hier vorgeschlagene Rotor, das Verfahren zur Herstellung des Rotors sowie die den Rotor umfassende elektrische Rotationsmaschine erlauben eine einfache, flexible, kosteneffiziente und Bauraum-kompakte Montage und gewährleisten eine axiale Sicherung aller Rotorkomponenten.

Description

Rotor einer elektrischen Rotationsmaschine. Verfahren zur Herstellung des
Rotors und elektrische Rotationsmaschine
Die Erfindung betrifft einen Rotor einer elektrischen Rotationsmaschine, ein Verfahren zur Herstellung des Rotors sowie eine elektrische Rotationsmaschine mit dem Rotor.
Aus dem Stand der Technik sind in vielen industriellen Anwendungen elektrische Antriebsmaschinen bekannt, die auch zunehmend in der Automobilindustrie ihren Einsatz finden. Eine solche Maschine umfasst einen Stator und einen diesbezüglich drehbaren Rotor. Der Rotor umfasst üblicherweise eine Rotorwelle, Wuchtbleche, Rotorblechpakete und Magnete. Die Magnete sind im Allgemeinen in den Rotorblechpaketen fixiert.
Rotoren von Rotorlagesensoren benötigen eine feste Fixierung in Bezug zum Rotor, um mit hoher Genauigkeit die jeweilige Winkelposition des Rotors bzw. einzelner Bestandteile des Rotors detektieren zu können. Üblich ist es dabei, den Rotor des Rotorlagesensors an bzw. auf der mit dem Rotorkörper fest verbundenen Welle zu fixieren.
Insbesondere bei höheren Stückzahlen muss zur Wahrung der Wettbewerbsfähigkeit dafür gesorgt werden, dass der Rotor des Rotorlagesensors in einfacher, zeitsparender sowie kosteneffizienter Weise an bzw. auf der Rotorwelle befestigt werden kann. Allerdings ist gerade bei der Anwendung elektrischer Rotationsmaschinen in Kraftfahrzeug-Hybridmodulen oder auch in elektrischen Achsen der axial zur Verfügung stehende Bauraum sehr stark begrenzt. Entsprechend besteht die Forderung nach einem axial sehr kurz bauenden Design. Des Weiteren muss insbesondere in der Zulieferindustrie die Forderung erfüllt werden, dass die Anordnung des Rotors des Rotorlagesensors auch transportsicher erfolgt.
In einer herkömmlichen Ausführungsform ist der Rotor des Rotorlagesensors über eine Welle-Nabe-Verbindung mit der Rotorwelle verbunden und in axialer Richtung mittels eines Absatzes der Rotorwelle zumindest einseitig fixiert.
Alternative Befestigungsweisen des Rotors des Rotorlagesensors sehen vor, dass dieser auf der Rotorwelle aufgeschrumpft, geklebt oder geschweißt ist. Diese mechanischen Befestigungen müssen jedoch unterschiedlichen Belastungen standhalten, wie zum Beispiel sehr hohen Fliehkräften aufgrund hoher Drehzahl der mit dem Rotor ausgestatteten elektrischen Rotationsmaschine, gegebenenfalls bei hoher Betriebstemperatur.
Zudem ist es erforderlich, dass das Befestigungskonzept für unterschiedliche axiale Positionen des Rotors des Rotorlagesensors angewendet werden kann sowie auch für unterschiedliche Schnittstellen der Rotorwelle an ein anzutreibendes Aggregat, wie zum Beispiel ein Kraftfahrzeug-Getriebe, wobei insgesamt eine Baukasten-Lösung bevorzugt wird.
Die genannten Restriktionen führen in herkömmlichen Ausführungsformen oftmals dazu, dass der Rotor der elektrischen Rotationsmaschine nur mit einem relativ hohen Kosten- und Montageaufwand gefertigt werden kann, wobei bei einigen Befestigungsmethoden nicht ausgeschlossen werden kann, dass es zu einer ungewollten Verformung des Rotors des Rotorlagesensors und/oder zur Einbringung von Spannungen kommen kann.
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen Rotor einer elektrischen Rotationsmaschine, ein Verfahren zur Herstellung des Rotors sowie die den Rotor umfassende elektrische Rotationsmaschine zur Verfügung zu stellen, die eine einfache, flexible, kosteneffiziente und Bauraum-kompakte Montage und axiale Sicherung aller Rotorkomponenten gewährleisten.
Diese Aufgabe wird gelöst durch den Rotor gemäß Anspruch 1 sowie durch das Verfahren zur Herstellung eines Rotors gemäß Anspruch 8. Vorteilhafte Ausgestaltungen des Rotors sind in den Unteransprüchen 2 bis 7 angegeben. Ergänzend wird eine elektrische Rotationsmaschine mit dem Rotor gemäß Anspruch 9 zur Verfügung gestellt, wobei im Unteranspruch 10 eine vorteilhafte Ausgestaltung der elektrischen Rotationsmaschine angegeben ist.
Die Merkmale der Ansprüche können in jeglicher technisch sinnvollen Art und Weise kombiniert werden, wobei hierzu auch die Erläuterungen aus der nachfolgenden Beschreibung sowie Merkmale aus den Figuren hinzugezogen werden können, die ergänzende Ausgestaltungen der Erfindung umfassen.
Die Begriffe axial , radial und in Umfangsrichtung beziehen sich im Rahmen der vorliegenden Erfindung immer auf die Rotationsachse des Rotors.
Die Erfindung betrifft einen Rotor einer elektrischen Rotationsmaschine, umfassend eine Rotorwelle und mit der Rotorwelle verbunden wenigstens einen Rotorkörper, der wenigstens ein Blechpaket aufweist, und einen an einer axialen Seite des Rotorkörpers auf der Rotorwelle mittels einer formschlüssig wirkenden Welle-Nabe- Verbindung angeordneten Rotor einer Rotorlagesensor-Einrichtung sowie eine Tellerfeder, die zwecks Positionierung des Rotors der Rotorlagesensor-Einrichtung dauerhaft eine axial wirkende Kraft auf den Rotor der Rotorlagesensor-Einrichtung ausübt. Der Rotor der Rotorlagesensor-Einrichtung stützt sich gegen die von der Tellerfeder bewirkte axial wirkende Kraft über ein der Tellerfeder axial gegenüberliegendes Stützelement an der Rotorwelle ab.
Durch die von der Tellerfeder bewirkte Kraft und die gegenüberliegende Abstützung des Rotors der Rotorlagesensor-Einrichtung wird im Wesentlichen der translatorische Freiheitsgrad des Rotors der Rotorlagesensor-Einrichtung entlang der Rotationsachse des Rotors blockiert, so dass der Rotor der Rotorlagesensor-Einrichtung im Wesentlichen axial spielfrei befestigt ist.
Dabei wird gleichzeitig eine axiale Beweglichkeit des Rotorkörpers über den Federweg der Tellerfeder zugelassen, wobei trotz Schwankungen von Abmaßen einzelner Segmente oder Elemente des Rotorkörpers im Betrieb bzw. trotz fertigungsbedingter Toleranzen in axialer Richtung in technologisch einfacher Weise der Rotor des Rotorlagesensor-Einrichtung an einer definierten axialen Position positioniert und fixiert werden kann. in einer vorteilhaften Ausführungsform ist vorgesehen, dass das Stützelement ein zumindest in axialer Richtung form- und/ oder kraftschlüssig mit der Rotorwelle fest verbundenes Sicherungselement ist, das in einer in Umfangsrichtung in der Rotorwelle verlaufenden Nut sitzt. Insbesondere ist das Sicherungselement als ein Sicherungsring ausgestaltet, der dazu geeignet ist, auch bei hohen Drehzahlen gegen die Einwirkung von Fliehkraft gesichert in der Nut zu verbleiben. In vorteilhafter Ausführungsform ist der Sicherungsring ein selbstsichernder Sicherungsring.
Insbesondere ist das Sicherungselement bzw. Stützelement in die Nut gepresst. Entsprechend ist dadurch das Stützelement form- und kraftschlüssig auf der Rotorwelle fixiert. Dies realisiert eine Fixierungswirkung des Stützelements in axialer Richtung als auch in Umfangsrichtung. Diese Konstruktion benötigt entsprechend keinen extra Absatz in der Rotorwelle zur Anordnung eines axial blockierenden Elements.
In weiterer vorteilhafter Ausgestaltung ist vorgesehen, dass sich die Tellerfeder axial an einem zwischen dem Blechpaket und dem Rotor der Rotorlagesensor-Einrichtung angeordneten Axial-Anlageelement abstützt.
Dieses Axial-Anlageelement wird auch als Sicherungsblech bezeichnet. In einer vorteilhaften Ausführungsform ist das Axial-Anlageelement dazu ausgestaltet, die axiale Position des gesamten damit gekoppelten Blechpakets zu sichern.
Das Axial-Anlageelement kann an seinem radial äußeren Randbereich zur radial äußeren Umgebung der Tellerfeder eine Kröpfung aufweisen, wobei die Tellerfeder mit ihrer radial äußeren Seite in der Kröpfung sitzt. Die Kröpfung sichert insbesondere bei hohen Drehzahlen und damit verbundenen hohen Fliehkräften eine exakte Positionierung der Tellerfeder auf der Welle und in Bezug zum Rotor der Rotorlagesensor-Einrichtung.
Dieser Ausrichtung der Tellerfeder entsprechend liegt die Tellerfeder mit ihrer radial inneren Seite auf der Welle an dem Rotor der Rotorlagesensor-Einrichtung an.
Zwecks Minderung des benötigten Bauraums kann sich das Axial-Anlageelement zumindest bereichsweise an der radial inneren Seite wenigstens eines Blechpakets erstrecken, wobei das Axial-Anlageelement mit der Rotorwelle verstemmt ist. Derart kann in technologisch einfacher Weise das Axial-Anlageelement auf der Welle fixiert werden und dementsprechend auch das Blechpaket oder mehrere Blechpakete mittels des Axial-Anlageelements auf der Welle montiert werden. Die Welle-Nabe-Verbindung kann mittels wenigstens einer in Axial-Richtung verlaufenden Axialnut in der Rotorwelle sowie wenigstens einer radial in die Axialnut eingreifenden Nase am Rotor der Rotorlagesensor-Einrichtung realisiert sein.
Die Nase am Rotor der Rotorlagesensor-Einrichtung kann auch als Feder bezeichnet werden, die als integraler Bestandteil des Körpers des Rotors der Rotorlagesensor- Einrichtung ausgeführt ist. Die Nabe der Welle-Nabe-Verbindung ist damit der Rotor der Rotorlagesensor-Einrichtung selbst. Durch diese Welle-Nabe-Verbindung wird eine leichte Verschiebung über den Federweg der Tellerfeder auf der Rotorwelle zugelassen, sodass in einfacherWeise Toleranzen, insbesondere bei der Montage, aber auch beim Betrieb des Rotors bzw. einer damit ausgestatteten elektrischen Rotationsmaschine in axialer Richtung ausgeglichen werden können. Eine alternative Ausgestaltung dieser Welle-Nabe-Verbindung wäre eine Keilwellenverbindung.
Ein weiterer Aspekt ist ein Verfahren zur Fierstellung des Rotors der elektrischen Rotationsmaschine, bei dem eine Rotorwelle und mit der Rotorwelle zu verbindende Elemente eines Rotorkörpers, umfassend wenigstens ein Blechpaket, bereitgestellt werden, die Elemente des Rotorkörpers auf der Rotorwelle in einem Rotorkörper angeordnet werden, und an einer axialen Seite des Rotorkörpers auf der Rotorwelle mittels einer formschlüssig wirkenden Welle-Nabe-Verbindung ein Rotor einer Rotorlagesensor-Einrichtung angeordnet wird. Des Weiteren wird an derselben axialen Seite des Rotorkörpers eine Tellerfeder derart angeordnet, dass die Tellerfeder zwecks Positionierung des Rotors der Rotorlagesensor-Einrichtung dauerhaft eine axial wirkende Kraft auf den Rotor der Rotorlagesensor-Einrichtung ausübt. An der der Tellerfeder axial gegenüberliegenden Seite des Rotors der Rotorlagesensor-Einrichtung wird ein Stützelement angeordnet, zwecks Abstützung des Rotors der Rotorlagesensor-Einrichtung an der Rotorwelle gegen die von der Tellerfeder bewirkte axial wirkende Kraft.
Insbesondere kann dabei die Tellerfeder axial zwischen dem Rotorkörper und dem Rotor der Rotorlagesensor-Einrichtung positioniert sein, so dass die Kraft der Tellerfeder den Rotor der Rotorlagesensor-Einrichtung vom Rotorkörper weg in Richtung auf das Stützelement drückt. Die Montage kann dabei derart erfolgen, dass der Rotor der Rotorlagesensor- Einrichtung gegen die Kraft der Tellerfeder so weit auf der Rotorwelle verschoben wird, bis das Stützelement an einer definierten Position fest mit der Rotorwelle verbunden werden kann, so dass der Rotor der Rotorlagesensor-Einrichtung zwischen der Tellerfeder und dem Stützelement in axialer Richtung eingespannt ist. Dies ermöglicht auch nach der Montage eine geringfügige axiale Verlagerung des Rotors der Rotorlagesensor-Einrichtung gegen die Kraftwirkung der Tellerfeder in Richtung auf den Rotorkörper. Entsprechend wird allerdings auch eine Ausdehnung oder geringfügige axiale Bewegung des Rotorkörpers bzw. einzelner Segmente oder Elemente des Rotorkörpers in axialer Richtung auf den Rotor der Rotorlagesensor- Einrichtung ermöglicht, wodurch sich betriebsbedingte Maßänderungen und/oder Fertigungstoleranzen in einfacher Weise durch die Tellerfeder ausgleichen lassen. Zudem wird eine elektrische Rotationsmaschine zur Verfügung gestellt, welche einen Stator sowie einen oben beschriebenen Rotor aufweist. Am Stator der elektrischen Rotationsmaschine kann ebenfalls ein Stator der Rotorlagesensor-Einrichtung angeordnet oder ausgebildet sein.
Die elektrische Rotationsmaschine kann dabei als elektrische Achse zum unmittelbaren Antrieb eines Rades eines Kraftfahrzeuges ausgestaltet sein.
Die oben beschriebene Erfindung wird nachfolgend vor dem betreffenden technischen Hintergrund unter Bezugnahme auf die zugehörigen Zeichnungen, welche bevorzugte Ausgestaltungen zeigen, detailliert erläutert. Die Erfindung wird durch die rein schematischen Zeichnungen in keiner Weise beschränkt, wobei anzumerken ist, dass die in den Zeichnungen gezeigten Ausführungsbeispiele nicht auf die dargestellten Maße eingeschränkt sind. Es ist dargestellt in
Figur 1: der Rotor in teilweise geschnittener Ansicht,
Figur 2: ein vergrößerter Teilbereich der in Figur 1 gezeigten Darstellung,
Figur 3: der Rotor in Explosions-Darstellung, und Figur 4: der Rotor in perspektivischer Ansicht. Zunächst wird der allgemeine Aufbau des Rotors 1 anhand Figur 1 erläutert. Der Rotor 1 umfasst mehrere Wicklungen 2, die rotationssymmetrisch zu einer Rotorwelle 10 des Rotors 1 angeordnet sind. Bei Bestromung der Wicklungen 2 entstehen Magnetfelder, die in Zusammenwirkung mit Magneten an einem hier nicht dargestellten Stator einer den Rotor 1 elektrischen Rotationsmaschine die Rotorwelle 10 um die Rotationsachse 11 in Drehung versetzen.
Die Wicklungen 2 bilden zusammen mit zwei hier dargestellten Blechpaketen 21 sowie den in dieser Ausführungsform seitlich an den Blechpaketen 21 anliegenden Wuchtscheiben 22 den Rotorkörper 20 des Rotors 1 aus, wobei diese Elemente des Rotorkörpers 20 alle auf der Rotationswelle 10 angeordnet sind.
Die Rotorwelle 10 selbst ist über Rotationslager 5 in einem Gehäuse 4 einer den Rotor 1 umfassenden elektrischen Rotationsmaschine gelagert.
Axial seitlich neben dem Rotorkörper 20 befindet sich der Rotor einer Rotorlagesensor-Einrichtung 40. Dieser ist mit einer Welle-Nabe-Verbindung 30 auf der Rotorwelle 10 befestigt. Die Welle-Nabe-Verbindung 30 ist insbesondere durch eine hier nicht extra dargestellte, axial verlaufende Nut in der Rotorwelle 10 sowie eine entsprechend komplementär ausgestaltete, nach radial innen zeigende Nase am Rotor der Rotorlagesensor-Einrichtung 40, die in diese Nut eingreift, ausgebildet.
Eine derartige Welle-Nabe-Verbindung 30 erlaubt eine gewisse axiale Verschiebbarkeit des Rotors der Rotorlagesensor-Einrichtung 40.
Radial innerhalb eines von Wicklungsköpfen 3 der Wicklungen 2 radial begrenzten Raums und mit der Rotorwelle 10 mittels einer Verstemmung 72 verbunden befindet sich ein Axial-Anlageelement 70, welches auch als Sicherungsblech bezeichnet wird. Dieses Axial-Anlageelement 70 dient zur Abstützung einer auf der Rotationswelle 10 angeordneten, im Wesentlichen ringförmigen Tellerfeder 50. Dabei liegt der radial äußere Rand der Tellerfeder 50 an dem Axial-Anlageelement 70 an. Der radial innere Rand der Tellerfeder 50 liegt axial am Rotor der Rotorlagesensor-Einrichtung 40 an und bewirkt dadurch eine Abstützung des Rotors der Rotorlagesensor-Einrichtung 40 an dieser Seite. An der dem Axial-Anlageelement 70 gegenüberliegenden Seite des Rotors der Rotorlagesensor-Einrichtung 40 ist ein Stützelement 60 in Form eines Sicherungsrings angeordnet, wobei dieses Stützelement 60 in einer in der Rotorwelle 10 radial umlaufenden Nut 12 sitzt. Insbesondere ist vorgesehen, dass das Stützelement 60 in diese Nut 12 gepresst ist, sodass das Stützelement 60 fliehkraftgesichert ist.
Figur 2 zeigt die Elemente, die zur Abstützung des Rotors der Rotorlagesensor- Einrichtung 40 dienen, in vergrößerter Ansicht. Hier ist erkennbar, dass durch die Tellerfeder 50 durch deren Vorspannung eine axial wirkende Kraft 51 auf den Rotor der Rotorlagesensor-Einrichtung 40 ausgeübt wird. Diese axial wirkende Kraft 51 bewirkt, dass der Rotor der Rotorlagesensor-Einrichtung 40 so weit entlang der Richtung dieser axial wirkenden Kraft 51 geschoben wird, bis der Rotor der Rotorlagesensor-Einrichtung 40 an dem Stützelement 60 zur Anlage gelangt. Entsprechend wird von dem Stützelement 60 eine Gegenkraft 61 entgegen der axial wirkenden Kraft 51 auf den Rotor der Rotorlagesensor-Einrichtung 40 aufgebracht, sodass sich dieses axial im statischen Gleichgewicht befindet.
Um auch bei hohen Drehzahlen des Rotors 1 die volle Funktionsfähigkeit der Tellerfeder 50 zu gewährleisten, ist in der hier dargestellten Ausführungsform vorgesehen, dass das Axial-Anlageelement 70 an seinem radial äußeren Rand eine Kröpfung 71 aufweist, die radial außen den radial äußeren Rand der Tellerfeder 50 umgibt. Dadurch wird Ablösungserscheinungen der Tellerfeder 50 von der Rotorwelle 10 vorgebeugt.
Des Weiteren ist hier deutlich die Verstemmung 72 erkennbar, mittels derer das Axial- Anlageelement 70 in axialer Richtung als auch in Umfangsrichtung fest mit der Rotorwelle 10 verbunden ist.
Bei einer Montage des Rotors 1 können zunächst die Elemente des Rotorkörpers 20 auf der Rotorwelle 10 nacheinander sowie das Axial-Anlageelement 70 angeordnet werden. Danach kann die Tellerfeder 50 an dem Axial-Anlageelement 70 angelegt werden, und der Rotor der Rotorlagesensor-Einrichtung 40 kann auf die Rotorwelle 10 aufgeschoben werden. Danach kann das Stützelement 60 auf die Rotorwelle 10 aufgeschoben werden, bis es eine axiale Position erreicht, in der es in die Nut 12 in der Rotorwelle 10 eingreifen kann. Bei entsprechender Dimensionierung der genannten Bauelemente kann dabei eine Gegenkraft 61 auf den Rotor der Rotorlagesensor-Einrichtung 40 entgegen der von der Tellerfeder 50 aufgebrachten axial wirkenden Kraft 51 realisiert werden, sodass die Tellerfeder 50 in axialer Richtung verformt wird, bis der Eingriff des Stützelements 60 in die Nut 12 in der Rotorwelle 10 erfolgen kann.
Daraus ist ersichtlich, dass axiale Bauteiltoleranzen der genannten Bauelemente in einfacher Weise durch mehr oder weniger starke Verformung der Tellerfeder 50 ausgeglichen werden können. Figur 3 zeigt in Explosions-Darstellung noch einmal die genannten Elemente des Rotors 1. Hier ist ersichtlich, dass die Tellerfeder 50 nach radial innen weisende Federzungen aufweist.
Des Weiteren sind einzelne Verstemmpunkte 73 für die Verstemmung 72 am Axial- Anlageelement 70 erkennbar. Figur 4 zeigt den Rotor 1 in perspektivischer Darstellung.
Der hier vorgeschlagene Rotor, das Verfahren zur Herstellung des Rotors sowie die den Rotor umfassende elektrische Rotationsmaschine erlauben eine einfache, flexible, kosteneffiziente und Bauraum-kompakte Montage und gewährleisten eine axiale Sicherung aller Rotorkomponenten.
Bezuqszeichenliste
Rotor
Wicklung
Wicklungskopf
Gehäuse
Rotationslager
Rotorwelle
Rotationsachse
Nut
Rotorkörper
Blechpaket
Wuchtscheibe
Welle-Nabe-Verbindung
Rotor der Rotorlagesensor-Einrichtung
Tellerfeder axial wirkende Kraft
Stützelement
Gegenkraft
Axial-Anlageelement
Kröpfung
Verstemmung
Verstemmpunkt

Claims

Patentansprüche
1. Rotor (1) einer elektrischen Rotationsmaschine, umfassend eine Rotorwelle (10) und mit der Rotorwelle (10) verbunden wenigstens einen Rotorkörper (20), der wenigstens ein Blechpaket (21) aufweist, und einen an einer axialen Seite des Rotorkörpers (20) auf der Rotorwelle (10) mittels einer formschlüssig wirkenden Welle-Nabe-Verbindung (30) angeordneten Rotor einer Rotorlagesensor- Einrichtung (40) sowie eine Tellerfeder (50), die zwecks Positionierung des Rotors der Rotorlagesensor-Einrichtung (40) dauerhaft eine axial wirkende Kraft (51) auf den Rotor der Rotorlagesensor-Einrichtung (40) ausübt, wobei sich der Rotor der Rotorlagesensor-Einrichtung (40) gegen die von der Tellerfeder (50) bewirkte axial wirkende Kraft (51) über ein der Tellerfeder (50) axial gegenüberliegendes Stützelement (60) an der Rotorwelle (10) abstützt.
2. Rotor nach Anspruch 1 , dadurch gekennzeichnet, dass das Stützelement (60) ein zumindest in axialer Richtung form- und/ oder kraftschlüssig mit der Rotorwelle (10) fest verbundenes Sicherungselement ist, das in einer in Umfangsrichtung in der Rotorwelle (10) verlaufenden Nut (12) sitzt.
3. Rotor nach Anspruch 2, dadurch gekennzeichnet, dass das Stützelement (60) in die Nut (12) gepresst ist.
4. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Tellerfeder (50) axial an einem zwischen dem Blechpaket (21) und dem Rotor der Rotorlagesensor-Einrichtung (40) angeordneten Axial-Anlageelement (70) abstützt.
5. Rotor nach Anspruch 4, dadurch gekennzeichnet, dass das Axial-Anlageelement (70) an seinem radial äußeren Randbereich zur radial äußeren Umgebung der Tellerfeder (50) eine Kröpfung (71) aufweist, wobei die Tellerfeder (50) mit ihrer radial äußeren Seite in der Kröpfung (71) sitzt.
6. Rotor nach einem der Ansprüche 4 und 5, dadurch gekennzeichnet, dass sich das Axial-Anlageelement (70) zumindest bereichsweise an der radial inneren Seite wenigstens eines Blechpakets (21) erstreckt, wobei das Axial-Anlageelement (70) mit der Rotorwelle (10) verstemmt ist.
7. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Welle-Nabe-Verbindung (30) mittels wenigstens einer in Axial-Richtung verlaufenden Axialnut in der Rotorwelle (10) sowie wenigstens einer radial in die Axialnut eingreifenden Nase am Rotor der Rotorlagesensor-Einrichtung (40) realisiert ist.
8. Verfahren zur Herstellung eines Rotors (1 ) einer elektrischen Rotationsmaschine gemäß einem der Ansprüche 1 bis 7, bei dem
-eine Rotorwelle (10) und mit der Rotorwelle (10) zu verbindende Elemente eines Rotorkörpers (20), umfassend wenigstens ein Blechpaket (21), bereitgestellt werden,
- die Elemente des Rotorkörpers (20) auf der Rotorwelle (10) in einem Rotorkörper (20) angeordnet werden,
- an einer axialen Seite des Rotorkörpers (20) auf der Rotorwelle (10) mittels einer formschlüssig wirkenden Welle-Nabe-Verbindung (30) ein Rotor einer Rotorlagesensor-Einrichtung (40) angeordnet wird,
- an derselben axialen Seite des Rotorkörpers (20) eine Tellerfeder (50) derart angeordnet wird, dass die Tellerfeder (50) zwecks Positionierung des Rotors der Rotorlagesensor-Einrichtung (40) dauerhaft axial eine axial wirkende Kraft (51) auf den Rotor der Rotorlagesensor-Einrichtung (40) ausübt,
- und an der der Tellerfeder (50) axial gegenüberliegenden Seite des Rotors der Rotorlagesensor-Einrichtung (40) ein Stützelement (60) angeordnet wird, zwecks Abstützung des Rotors der Rotorlagesensor-Einrichtung (40) an der Rotorwelle (10) gegen die von der Tellerfeder (50) bewirkte axial wirkende Kraft (51).
9. Elektrische Rotationsmaschine, umfassend einen Stator sowie einen Rotor (1) gemäß einem der Ansprüche 1 bis 7.
10. Elektrische Rotationsmaschine nach Anspruch 9, dadurch gekennzeichnet, dass die elektrische Rotationsmaschine als elektrische Achse zum unmittelbaren Antrieb eines Rades eines Kraftfahrzeuges ausgestaltet ist.
PCT/DE2021/100504 2020-07-02 2021-06-14 Rotor einer elektrischen rotationsmaschine, verfahren zur herstellung des rotors und elektrische rotationsmaschine WO2022002303A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020117453.5 2020-07-02
DE102020117453.5A DE102020117453A1 (de) 2020-07-02 2020-07-02 Rotor einer elektrischen Rotationsmaschine, Verfahren zur Herstellung des Rotors und elektrische Rotationsmaschine

Publications (1)

Publication Number Publication Date
WO2022002303A1 true WO2022002303A1 (de) 2022-01-06

Family

ID=76744570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2021/100504 WO2022002303A1 (de) 2020-07-02 2021-06-14 Rotor einer elektrischen rotationsmaschine, verfahren zur herstellung des rotors und elektrische rotationsmaschine

Country Status (2)

Country Link
DE (1) DE102020117453A1 (de)
WO (1) WO2022002303A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116191786A (zh) * 2022-11-08 2023-05-30 佳木斯大学 一种电机组装装置及组装方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933636A (en) * 1989-02-24 1990-06-12 Cipher Data Products, Inc. Self-aligning tachometer and method of manufacturing same
US5155401A (en) * 1990-06-07 1992-10-13 Canon Kabushiki Kaisha Recorder motor with attached encoder and cover
US20030042408A1 (en) * 2001-08-31 2003-03-06 Robert Setbacken Attachment of an encoder hub to a motor shaft
WO2005099065A1 (de) * 2004-04-10 2005-10-20 Robert Bosch Gmbh Rotor einer elektrischen maschine
US20070096018A1 (en) * 2005-10-31 2007-05-03 Hiroshi Yoshioka Rotary encoder, belt conveyance apparatus, and image forming apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693024A (en) 1971-05-17 1972-09-19 Litton Systems Inc Rotational shaft encoder having a bearing tube having a slot therein
GB1476405A (en) 1974-06-07 1977-06-16 Vactoric Control Equip Optical encoder
DE3419101C1 (de) 1984-05-23 1985-07-11 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Winkelmeßeinrichtung
JP2002295500A (ja) 2001-03-29 2002-10-09 Aisin Aw Co Ltd 回り止め装置
JP2016119806A (ja) 2014-12-22 2016-06-30 日本精工株式会社 センサマグネット固定構造及びその固定構造を備えたモータ並びにそれを搭載した電動パワーステアリング装置及び車両
DE102018106275A1 (de) 2018-03-19 2019-09-19 Schaeffler Technologies AG & Co. KG Axialsicherung rotierender Bauteile und Montageverfahren einer Welle-Nabe-Verbindung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933636A (en) * 1989-02-24 1990-06-12 Cipher Data Products, Inc. Self-aligning tachometer and method of manufacturing same
US5155401A (en) * 1990-06-07 1992-10-13 Canon Kabushiki Kaisha Recorder motor with attached encoder and cover
US20030042408A1 (en) * 2001-08-31 2003-03-06 Robert Setbacken Attachment of an encoder hub to a motor shaft
WO2005099065A1 (de) * 2004-04-10 2005-10-20 Robert Bosch Gmbh Rotor einer elektrischen maschine
US20070096018A1 (en) * 2005-10-31 2007-05-03 Hiroshi Yoshioka Rotary encoder, belt conveyance apparatus, and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116191786A (zh) * 2022-11-08 2023-05-30 佳木斯大学 一种电机组装装置及组装方法
CN116191786B (zh) * 2022-11-08 2023-11-28 佳木斯大学 一种电机组装装置及组装方法

Also Published As

Publication number Publication date
DE102020117453A1 (de) 2022-01-05

Similar Documents

Publication Publication Date Title
EP2923436B1 (de) Stator mit einer umspritzung und elektrische maschine mit dem stator
WO2015044034A2 (de) Elektrische maschine und verbindungseinheit für elektrische maschine
DE102020104857A1 (de) Antriebsanordnung für eine elektrische Antriebsachse
WO2011079982A2 (de) Elektrischer antrieb mit schneckengetriebe
WO2004086591A1 (de) Elektrische maschine mit in den stator integrierter rotorlagerung
WO2022002303A1 (de) Rotor einer elektrischen rotationsmaschine, verfahren zur herstellung des rotors und elektrische rotationsmaschine
DE102022103482A1 (de) Drehantriebsvorrichtung
DE102012205024A1 (de) Resolverhalter für eine dynamoelektrische Maschine
WO2019122074A1 (de) Rotor für einen elektromotor und elektromotor
EP3537573B1 (de) Fixierelement zur fixierung der rotorwelle einer elektrischen maschine an dessen stator, sowie elektrische maschine mit einem solchen fixierelement
EP3261224B1 (de) Elektrische maschine mit einem rotor und herstellungsverfahren für die elektrische maschine
DE102008051613A1 (de) Fräskopf
DE102015207492A1 (de) Elektrische Maschine und Zentrierring
EP4244959A1 (de) Elektromotor für ein kraftfahrzeug
WO2022179659A1 (de) Elektrische axialflussmaschine
WO2021043355A1 (de) Rotorelement einer rotorlagesensorvorrichtung, rotorlagesensorvorrichtung und elektrische rotationsmaschine
WO2021098907A1 (de) Rotor, elektrische rotationsmaschine und antriebsanordnung
DE102020205880A1 (de) Elektrische Maschine und Antriebsanordnung für ein Fahrzeug mit einer elektrischen Maschine
WO2022022767A1 (de) Elektrische rotationsmaschine, verfahren zur herstellung einer elektrischen rotationsmaschine und mit der elektrischen rotationsmaschine ausgestattetes antriebssystem
DE102021132523A1 (de) Elektromotor
EP3740393A1 (de) Vorrichtung zur drehmomentübertragung zwischen einem rad und einer im rad integrierten elektrischen maschine
DE102021121909B3 (de) Rotoreinheit einer elektrischen Axialflussmaschine und Elektrische Axialflussmaschine
EP3802185B1 (de) Hybridmodul und antriebsanordnung für ein kraftfahrzeug sowie verfahren zur herstellung eines solchen hybridmoduls
DE102013017447B4 (de) Rollenprüfstand
WO2023072693A1 (de) Vorrichtung mit wenigstens einer lagereinrichtung für eine drehbare welle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21736964

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21736964

Country of ref document: EP

Kind code of ref document: A1