DE102020117453A1 - Rotor einer elektrischen Rotationsmaschine, Verfahren zur Herstellung des Rotors und elektrische Rotationsmaschine - Google Patents

Rotor einer elektrischen Rotationsmaschine, Verfahren zur Herstellung des Rotors und elektrische Rotationsmaschine Download PDF

Info

Publication number
DE102020117453A1
DE102020117453A1 DE102020117453.5A DE102020117453A DE102020117453A1 DE 102020117453 A1 DE102020117453 A1 DE 102020117453A1 DE 102020117453 A DE102020117453 A DE 102020117453A DE 102020117453 A1 DE102020117453 A1 DE 102020117453A1
Authority
DE
Germany
Prior art keywords
rotor
shaft
position sensor
sensor device
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102020117453.5A
Other languages
English (en)
Inventor
Alexandre Fischer
Thomas Fritz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Priority to DE102020117453.5A priority Critical patent/DE102020117453A1/de
Priority to PCT/DE2021/100504 priority patent/WO2022002303A1/de
Publication of DE102020117453A1 publication Critical patent/DE102020117453A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/108Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
    • F16D1/116Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling the interengaging parts including a continuous or interrupted circumferential groove in the surface of one of the coupling parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature

Abstract

Die Erfindung betrifft einen Rotor einer elektrischen Rotationsmaschine, ein Verfahren zur Herstellung des Rotors sowie eine elektrische Rotationsmaschine mit dem Rotor. Der Rotor (1) umfasst eine Rotorwelle (10) und mit der Rotorwelle (10) verbunden wenigstens einen Rotorkörper (20), der wenigstens ein Blechpaket (21) aufweist, und einen an einer axialen Seite des Rotorkörpers (20) auf der Rotorwelle (10) mittels einer formschlüssig wirkenden Welle-Nabe-Verbindung (30) angeordneten Rotor einer Rotorlagesensor-Einrichtung (40) sowie eine Tellerfeder (50) aufweist, die zwecks Positionierung des Rotors der Rotorlagesensor-Einrichtung (40) dauerhaft eine axial wirkende Kraft (51) auf den Rotor der Rotorlagesensor-Einrichtung (40) ausübt, wobei sich der Rotor der Rotorlagesensor-Einrichtung (40) gegen die von der Tellerfeder (50) bewirkte axial wirkende Kraft (51) über ein der Tellerfeder (50) axial gegenüberliegendes Stützelement (60) an der Rotorwelle (10) abstützt.Der hier vorgeschlagene Rotor, das Verfahren zur Herstellung des Rotors sowie die den Rotor umfassende elektrische Rotationsmaschine erlauben eine einfache, flexible, kosteneffiziente und Bauraum-kompakte Montage und gewährleisten eine axiale Sicherung aller Rotorkomponenten.

Description

  • Die Erfindung betrifft einen Rotor einer elektrischen Rotationsmaschine, ein Verfahren zur Herstellung des Rotors sowie eine elektrische Rotationsmaschine mit dem Rotor.
  • Aus dem Stand der Technik sind in vielen industriellen Anwendungen elektrische Antriebsmaschinen bekannt, die auch zunehmend in der Automobilindustrie ihren Einsatz finden. Eine solche Maschine umfasst einen Stator und einen diesbezüglich drehbaren Rotor. Der Rotor umfasst üblicherweise eine Rotorwelle, Wuchtbleche, Rotorblechpakete und Magnete. Die Magnete sind im Allgemeinen in den Rotorblechpaketen fixiert.
  • Rotoren von Rotorlagesensoren benötigen eine feste Fixierung in Bezug zum Rotor, um mit hoher Genauigkeit die jeweilige Winkelposition des Rotors bzw. einzelner Bestandteile des Rotors detektieren zu können. Üblich ist es dabei, den Rotor des Rotorlagesensors an bzw. auf der mit dem Rotorkörper fest verbundenen Welle zu fixieren.
  • Insbesondere bei höheren Stückzahlen muss zur Wahrung der Wettbewerbsfähigkeit dafür gesorgt werden, dass der Rotor des Rotorlagesensors in einfacher, zeitsparender sowie kosteneffizienter Weise an bzw. auf der Rotorwelle befestigt werden kann. Allerdings ist gerade bei der Anwendung elektrischer Rotationsmaschinen in Kraftfahrzeug-Hybridmodulen oder auch in elektrischen Achsen der axial zur Verfügung stehende Bauraum sehr stark begrenzt. Entsprechend besteht die Forderung nach einem axial sehr kurz bauenden Design. Des Weiteren muss insbesondere in der Zulieferindustrie die Forderung erfüllt werden, dass die Anordnung des Rotors des Rotorlagesensors auch transportsicher erfolgt.
  • In einer herkömmlichen Ausführungsform ist der Rotor des Rotorlagesensors über eine Welle-Nabe-Verbindung mit der Rotorwelle verbunden und in axialer Richtung mittels eines Absatzes der Rotorwelle zumindest einseitig fixiert.
  • Alternative Befestigungsweisen des Rotors des Rotorlagesensors sehen vor, dass dieser auf der Rotorwelle aufgeschrumpft, geklebt oder geschweißt ist.
  • Diese mechanischen Befestigungen müssen jedoch unterschiedlichen Belastungen standhalten, wie zum Beispiel sehr hohen Fliehkräften aufgrund hoher Drehzahl der mit dem Rotor ausgestatteten elektrischen Rotationsmaschine, gegebenenfalls bei hoher Betriebstemperatur.
  • Zudem ist es erforderlich, dass das Befestigungskonzept für unterschiedliche axiale Positionen des Rotors des Rotorlagesensors angewendet werden kann sowie auch für unterschiedliche Schnittstellen der Rotorwelle an ein anzutreibendes Aggregat, wie zum Beispiel ein Kraftfahrzeug-Getriebe, wobei insgesamt eine Baukasten-Lösung bevorzugt wird.
  • Die genannten Restriktionen führen in herkömmlichen Ausführungsformen oftmals dazu, dass der Rotor der elektrischen Rotationsmaschine nur mit einem relativ hohen Kosten- und Montageaufwand gefertigt werden kann, wobei bei einigen Befestigungsmethoden nicht ausgeschlossen werden kann, dass es zu einer ungewollten Verformung des Rotors des Rotorlagesensors und/oder zur Einbringung von Spannungen kommen kann.
  • Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen Rotor einer elektrischen Rotationsmaschine, ein Verfahren zur Herstellung des Rotors sowie die den Rotor umfassende elektrische Rotationsmaschine zur Verfügung zu stellen, die eine einfache, flexible, kosteneffiziente und Bauraum-kompakte Montage und axiale Sicherung aller Rotorkomponenten gewährleisten.
  • Diese Aufgabe wird gelöst durch den Rotor gemäß Anspruch 1 sowie durch das Verfahren zur Herstellung eines Rotors gemäß Anspruch 8. Vorteilhafte Ausgestaltungen des Rotors sind in den Unteransprüchen 2 bis 7 angegeben. Ergänzend wird eine elektrische Rotationsmaschine mit dem Rotor gemäß Anspruch 9 zur Verfügung gestellt, wobei im Unteranspruch 10 eine vorteilhafte Ausgestaltung der elektrischen Rotationsmaschine angegeben ist.
  • Die Merkmale der Ansprüche können in jeglicher technisch sinnvollen Art und Weise kombiniert werden, wobei hierzu auch die Erläuterungen aus der nachfolgenden Beschreibung sowie Merkmale aus den Figuren hinzugezogen werden können, die ergänzende Ausgestaltungen der Erfindung umfassen.
    Die Begriffe „axial“, „radial“ und „in Umfangsrichtung“ beziehen sich im Rahmen der vorliegenden Erfindung immer auf die Rotationsachse des Rotors.
  • Die Erfindung betrifft einen Rotor einer elektrischen Rotationsmaschine, umfassend eine Rotorwelle und mit der Rotorwelle verbunden wenigstens einen Rotorkörper, der wenigstens ein Blechpaket aufweist, und einen an einer axialen Seite des Rotorkörpers auf der Rotorwelle mittels einer formschlüssig wirkenden Welle-Nabe-Verbindung angeordneten Rotor einer Rotorlagesensor-Einrichtung sowie eine Tellerfeder, die zwecks Positionierung des Rotors der Rotorlagesensor-Einrichtung dauerhaft eine axial wirkende Kraft auf den Rotor der Rotorlagesensor-Einrichtung ausübt. Der Rotor der Rotorlagesensor-Einrichtung stützt sich gegen die von der Tellerfeder bewirkte axial wirkende Kraft über ein der Tellerfeder axial gegenüberliegendes Stützelement an der Rotorwelle ab.
  • Durch die von der Tellerfeder bewirkte Kraft und die gegenüberliegende Abstützung des Rotors der Rotorlagesensor-Einrichtung wird im Wesentlichen der translatorische Freiheitsgrad des Rotors der Rotorlagesensor-Einrichtung entlang der Rotationsachse des Rotors blockiert, so dass der Rotor der Rotorlagesensor-Einrichtung im Wesentlichen axial spielfrei befestigt ist.
  • Dabei wird gleichzeitig eine axiale Beweglichkeit des Rotorkörpers über den Federweg der Tellerfeder zugelassen, wobei trotz Schwankungen von Abmaßen einzelner Segmente oder Elemente des Rotorkörpers im Betrieb bzw. trotz fertigungsbedingter Toleranzen in axialer Richtung in technologisch einfacher Weise der Rotor des Rotorlagesensor-Einrichtung an einer definierten axialen Position positioniert und fixiert werden kann.
    in einer vorteilhaften Ausführungsform ist vorgesehen, dass das Stützelement ein zumindest in axialer Richtung form- und/ oder kraftschlüssig mit der Rotorwelle fest verbundenes Sicherungselement ist, das in einer in Umfangsrichtung in der Rotorwelle verlaufenden Nut sitzt.
  • Insbesondere ist das Sicherungselement als ein Sicherungsring ausgestaltet, der dazu geeignet ist, auch bei hohen Drehzahlen gegen die Einwirkung von Fliehkraft gesichert in der Nut zu verbleiben. In vorteilhafter Ausführungsform ist der Sicherungsring ein selbstsichernder Sicherungsring.
  • Insbesondere ist das Sicherungselement bzw. Stützelement in die Nut gepresst. Entsprechend ist dadurch das Stützelement form- und kraftschlüssig auf der Rotorwelle fixiert. Dies realisiert eine Fixierungswirkung des Stützelements in axialer Richtung als auch in Umfangsrichtung. Diese Konstruktion benötigt entsprechend keinen extra Absatz in der Rotorwelle zur Anordnung eines axial blockierenden Elements.
  • In weiterer vorteilhafter Ausgestaltung ist vorgesehen, dass sich die Tellerfeder axial an einem zwischen dem Blechpaket und dem Rotor der Rotorlagesensor-Einrichtung angeordneten Axial-Anlageelement abstützt.
    Dieses Axial-Anlageelement wird auch als Sicherungsblech bezeichnet. In einer vorteilhaften Ausführungsform ist das Axial-Anlageelement dazu ausgestaltet, die axiale Position des gesamten damit gekoppelten Blechpakets zu sichern.
  • Das Axial-Anlageelement kann an seinem radial äußeren Randbereich zur radial äußeren Umgebung der Tellerfeder eine Kröpfung aufweisen, wobei die Tellerfeder mit ihrer radial äußeren Seite in der Kröpfung sitzt. Die Kröpfung sichert insbesondere bei hohen Drehzahlen und damit verbundenen hohen Fliehkräften eine exakte Positionierung der Tellerfeder auf der Welle und in Bezug zum Rotor der Rotorlagesensor-Einrichtung.
    Dieser Ausrichtung der Tellerfeder entsprechend liegt die Tellerfeder mit ihrer radial inneren Seite auf der Welle an dem Rotor der Rotorlagesensor-Einrichtung an.
  • Zwecks Minderung des benötigten Bauraums kann sich das Axial-Anlageelement zumindest bereichsweise an der radial inneren Seite wenigstens eines Blechpakets erstrecken, wobei das Axial-Anlageelement mit der Rotorwelle verstemmt ist. Derart kann in technologisch einfacher Weise das Axial-Anlageelement auf der Welle fixiert werden und dementsprechend auch das Blechpaket oder mehrere Blechpakete mittels des Axial-Anlageelements auf der Welle montiert werden.
  • Die Welle-Nabe-Verbindung kann mittels wenigstens einer in Axial-Richtung verlaufenden Axialnut in der Rotorwelle sowie wenigstens einer radial in die Axialnut eingreifenden Nase am Rotor der Rotorlagesensor-Einrichtung realisiert sein.
    Die Nase am Rotor der Rotorlagesensor-Einrichtung kann auch als Feder bezeichnet werden, die als integraler Bestandteil des Körpers des Rotors der Rotorlagesensor-Einrichtung ausgeführt ist. Die Nabe der Welle-Nabe-Verbindung ist damit der Rotor der Rotorlagesensor-Einrichtung selbst. Durch diese Welle-Nabe-Verbindung wird eine leichte Verschiebung über den Federweg der Tellerfeder auf der Rotorwelle zugelassen, sodass in einfacher Weise Toleranzen, insbesondere bei der Montage, aber auch beim Betrieb des Rotors bzw. einer damit ausgestatteten elektrischen Rotationsmaschine in axialer Richtung ausgeglichen werden können. Eine alternative Ausgestaltung dieser Welle-Nabe-Verbindung wäre eine Keilwellenverbindung.
  • Ein weiterer Aspekt ist ein Verfahren zur Herstellung des Rotors der elektrischen Rotationsmaschine, bei dem eine Rotorwelle und mit der Rotorwelle zu verbindende Elemente eines Rotorkörpers, umfassend wenigstens ein Blechpaket, bereitgestellt werden, die Elemente des Rotorkörpers auf der Rotorwelle in einem Rotorkörper angeordnet werden, und an einer axialen Seite des Rotorkörpers auf der Rotorwelle mittels einer formschlüssig wirkenden Welle-Nabe-Verbindung ein Rotor einer Rotorlagesensor-Einrichtung angeordnet wird. Des Weiteren wird an derselben axialen Seite des Rotorkörpers eine Tellerfeder derart angeordnet, dass die Tellerfeder zwecks Positionierung des Rotors der Rotorlagesensor-Einrichtung dauerhaft eine axial wirkende Kraft auf den Rotor der Rotorlagesensor-Einrichtung ausübt. An der der Tellerfeder axial gegenüberliegenden Seite des Rotors der Rotorlagesensor-Einrichtung wird ein Stützelement angeordnet, zwecks Abstützung des Rotors der Rotorlagesensor-Einrichtung an der Rotorwelle gegen die von der Tellerfeder bewirkte axial wirkende Kraft.
    Insbesondere kann dabei die Tellerfeder axial zwischen dem Rotorkörper und dem Rotor der Rotorlagesensor-Einrichtung positioniert sein, so dass die Kraft der Tellerfeder den Rotor der Rotorlagesensor-Einrichtung vom Rotorkörper weg in Richtung auf das Stützelement drückt.
  • Die Montage kann dabei derart erfolgen, dass der Rotor der Rotorlagesensor-Einrichtung gegen die Kraft der Tellerfeder so weit auf der Rotorwelle verschoben wird, bis das Stützelement an einer definierten Position fest mit der Rotorwelle verbunden werden kann, so dass der Rotor der Rotorlagesensor-Einrichtung zwischen der Tellerfeder und dem Stützelement in axialer Richtung eingespannt ist. Dies ermöglicht auch nach der Montage eine geringfügige axiale Verlagerung des Rotors der Rotorlagesensor-Einrichtung gegen die Kraftwirkung der Tellerfeder in Richtung auf den Rotorkörper. Entsprechend wird allerdings auch eine Ausdehnung oder geringfügige axiale Bewegung des Rotorkörpers bzw. einzelner Segmente oder Elemente des Rotorkörpers in axialer Richtung auf den Rotor der Rotorlagesensor-Einrichtung ermöglicht, wodurch sich betriebsbedingte Maßänderungen und/oder Fertigungstoleranzen in einfacher Weise durch die Tellerfeder ausgleichen lassen. Zudem wird eine elektrische Rotationsmaschine zur Verfügung gestellt, welche einen Stator sowie einen oben beschriebenen Rotor aufweist. Am Stator der elektrischen Rotationsmaschine kann ebenfalls ein Stator der Rotorlagesensor-Einrichtung angeordnet oder ausgebildet sein.
    Die elektrische Rotationsmaschine kann dabei als elektrische Achse zum unmittelbaren Antrieb eines Rades eines Kraftfahrzeuges ausgestaltet sein.
  • Die oben beschriebene Erfindung wird nachfolgend vor dem betreffenden technischen Hintergrund unter Bezugnahme auf die zugehörigen Zeichnungen, welche bevorzugte Ausgestaltungen zeigen, detailliert erläutert. Die Erfindung wird durch die rein schematischen Zeichnungen in keiner Weise beschränkt, wobei anzumerken ist, dass die in den Zeichnungen gezeigten Ausführungsbeispiele nicht auf die dargestellten Maße eingeschränkt sind. Es ist dargestellt in
    • 1: der Rotor in teilweise geschnittener Ansicht,
    • 2: ein vergrößerter Teilbereich der in 1 gezeigten Darstellung,
    • 3: der Rotor in Explosions-Darstellung, und
    • 4: der Rotor in perspektivischer Ansicht.
  • Zunächst wird der allgemeine Aufbau des Rotors 1 anhand 1 erläutert. Der Rotor 1 umfasst mehrere Wicklungen 2, die rotationssymmetrisch zu einer Rotorwelle 10 des Rotors 1 angeordnet sind. Bei Bestromung der Wicklungen 2 entstehen Magnetfelder, die in Zusammenwirkung mit Magneten an einem hier nicht dargestellten Stator einer den Rotor 1 elektrischen Rotationsmaschine die Rotorwelle 10 um die Rotationsachse 11 in Drehung versetzen.
  • Die Wicklungen 2 bilden zusammen mit zwei hier dargestellten Blechpaketen 21 sowie den in dieser Ausführungsform seitlich an den Blechpaketen 21 anliegenden Wuchtscheiben 22 den Rotorkörper 20 des Rotors 1 aus, wobei diese Elemente des Rotorkörpers 20 alle auf der Rotationswelle 10 angeordnet sind.
  • Die Rotorwelle 10 selbst ist über Rotationslager 5 in einem Gehäuse 4 einer den Rotor 1 umfassenden elektrischen Rotationsmaschine gelagert.
  • Axial seitlich neben dem Rotorkörper 20 befindet sich der Rotor einer Rotorlagesensor-Einrichtung 40. Dieser ist mit einer Welle-Nabe-Verbindung 30 auf der Rotorwelle 10 befestigt. Die Welle-Nabe-Verbindung 30 ist insbesondere durch eine hier nicht extra dargestellte, axial verlaufende Nut in der Rotorwelle 10 sowie eine entsprechend komplementär ausgestaltete, nach radial innen zeigende Nase am Rotor der Rotorlagesensor-Einrichtung 40, die in diese Nut eingreift, ausgebildet. Eine derartige Welle-Nabe-Verbindung 30 erlaubt eine gewisse axiale Verschiebbarkeit des Rotors der Rotorlagesensor-Einrichtung 40.
  • Radial innerhalb eines von Wicklungsköpfen 3 der Wicklungen 2 radial begrenzten Raums und mit der Rotorwelle 10 mittels einer Verstemmung 72 verbunden befindet sich ein Axial-Anlageelement 70, welches auch als Sicherungsblech bezeichnet wird. Dieses Axial-Anlageelement 70 dient zur Abstützung einer auf der Rotationswelle 10 angeordneten, im Wesentlichen ringförmigen Tellerfeder 50. Dabei liegt der radial äußere Rand der Tellerfeder 50 an dem Axial-Anlageelement 70 an. Der radial innere Rand der Tellerfeder 50 liegt axial am Rotor der Rotorlagesensor-Einrichtung 40 an und bewirkt dadurch eine Abstützung des Rotors der Rotorlagesensor-Einrichtung 40 an dieser Seite. An der dem Axial-Anlageelement 70 gegenüberliegenden Seite des Rotors der Rotorlagesensor-Einrichtung 40 ist ein Stützelement 60 in Form eines Sicherungsrings angeordnet, wobei dieses Stützelement 60 in einer in der Rotorwelle 10 radial umlaufenden Nut 12 sitzt. Insbesondere ist vorgesehen, dass das Stützelement 60 in diese Nut 12 gepresst ist, sodass das Stützelement 60 fliehkraftgesichert ist.
  • 2 zeigt die Elemente, die zur Abstützung des Rotors der Rotorlagesensor-Einrichtung 40 dienen, in vergrößerter Ansicht. Hier ist erkennbar, dass durch die Tellerfeder 50 durch deren Vorspannung eine axial wirkende Kraft 51 auf den Rotor der Rotorlagesensor-Einrichtung 40 ausgeübt wird. Diese axial wirkende Kraft 51 bewirkt, dass der Rotor der Rotorlagesensor-Einrichtung 40 so weit entlang der Richtung dieser axial wirkenden Kraft 51 geschoben wird, bis der Rotor der Rotorlagesensor-Einrichtung 40 an dem Stützelement 60 zur Anlage gelangt. Entsprechend wird von dem Stützelement 60 eine Gegenkraft 61 entgegen der axial wirkenden Kraft 51 auf den Rotor der Rotorlagesensor-Einrichtung 40 aufgebracht, sodass sich dieses axial im statischen Gleichgewicht befindet.
  • Um auch bei hohen Drehzahlen des Rotors 1 die volle Funktionsfähigkeit der Tellerfeder 50 zu gewährleisten, ist in der hier dargestellten Ausführungsform vorgesehen, dass das Axial-Anlageelement 70 an seinem radial äußeren Rand eine Kröpfung 71 aufweist, die radial außen den radial äußeren Rand der Tellerfeder 50 umgibt. Dadurch wird Ablösungserscheinungen der Tellerfeder 50 von der Rotorwelle 10 vorgebeugt.
  • Des Weiteren ist hier deutlich die Verstemmung 72 erkennbar, mittels derer das Axial-Anlageelement 70 in axialer Richtung als auch in Umfangsrichtung fest mit der Rotorwelle 10 verbunden ist.
  • Bei einer Montage des Rotors 1 können zunächst die Elemente des Rotorkörpers 20 auf der Rotorwelle 10 nacheinander sowie das Axial-Anlageelement 70 angeordnet werden. Danach kann die Tellerfeder 50 an dem Axial-Anlageelement 70 angelegt werden, und der Rotor der Rotorlagesensor-Einrichtung 40 kann auf die Rotorwelle 10 aufgeschoben werden. Danach kann das Stützelement 60 auf die Rotorwelle 10 aufgeschoben werden, bis es eine axiale Position erreicht, in der es in die Nut 12 in der Rotorwelle 10 eingreifen kann. Bei entsprechender Dimensionierung der genannten Bauelemente kann dabei eine Gegenkraft 61 auf den Rotor der Rotorlagesensor-Einrichtung 40 entgegen der von der Tellerfeder 50 aufgebrachten axial wirkenden Kraft 51 realisiert werden, sodass die Tellerfeder 50 in axialer Richtung verformt wird, bis der Eingriff des Stützelements 60 in die Nut 12 in der Rotorwelle 10 erfolgen kann.
  • Daraus ist ersichtlich, dass axiale Bauteiltoleranzen der genannten Bauelemente in einfacher Weise durch mehr oder weniger starke Verformung der Tellerfeder 50 ausgeglichen werden können. 3 zeigt in Explosions-Darstellung noch einmal die genannten Elemente des Rotors 1. Hier ist ersichtlich, dass die Tellerfeder 50 nach radial innen weisende Federzungen aufweist.
    Des Weiteren sind einzelne Verstemmpunkte 73 für die Verstemmung 72 am Axial-Anlageelement 70 erkennbar.
    4 zeigt den Rotor 1 in perspektivischer Darstellung.
  • Der hier vorgeschlagene Rotor, das Verfahren zur Herstellung des Rotors sowie die den Rotor umfassende elektrische Rotationsmaschine erlauben eine einfache, flexible, kosteneffiziente und Bauraum-kompakte Montage und gewährleisten eine axiale Sicherung aller Rotorkomponenten.
  • Bezugszeichenliste
  • 1
    Rotor
    2
    Wicklung
    3
    Wicklungskopf
    4
    Gehäuse
    5
    Rotationslager
    10
    Rotorwelle
    11
    Rotationsachse
    12
    Nut
    20
    Rotorkörper
    21
    Blechpaket
    22
    Wuchtscheibe
    30
    Welle-Nabe-Verbindung
    40
    Rotor der Rotorlagesensor-Einrichtung
    50
    Tellerfeder
    51
    axial wirkende Kraft
    60
    Stützelement
    61
    Gegenkraft
    70
    Axial-Anlageelement
    71
    Kröpfung
    72
    Verstemmung
    73
    Verstemmpunkt

Claims (10)

  1. Rotor (1) einer elektrischen Rotationsmaschine, umfassend eine Rotorwelle (10) und mit der Rotorwelle (10) verbunden wenigstens einen Rotorkörper (20), der wenigstens ein Blechpaket (21) aufweist, und einen an einer axialen Seite des Rotorkörpers (20) auf der Rotorwelle (10) mittels einer formschlüssig wirkenden Welle-Nabe-Verbindung (30) angeordneten Rotor einer Rotorlagesensor-Einrichtung (40) sowie eine Tellerfeder (50), die zwecks Positionierung des Rotors der Rotorlagesensor-Einrichtung (40) dauerhaft eine axial wirkende Kraft (51) auf den Rotor der Rotorlagesensor-Einrichtung (40) ausübt, wobei sich der Rotor der Rotorlagesensor-Einrichtung (40) gegen die von der Tellerfeder (50) bewirkte axial wirkende Kraft (51) über ein der Tellerfeder (50) axial gegenüberliegendes Stützelement (60) an der Rotorwelle (10) abstützt.
  2. Rotor nach Anspruch 1, dadurch gekennzeichnet, dass das Stützelement (60) ein zumindest in axialer Richtung form- und/ oder kraftschlüssig mit der Rotorwelle (10) fest verbundenes Sicherungselement ist, das in einer in Umfangsrichtung in der Rotorwelle (10) verlaufenden Nut (12) sitzt.
  3. Rotor nach Anspruch 2, dadurch gekennzeichnet, dass das Stützelement (60) in die Nut (12) gepresst ist.
  4. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Tellerfeder (50) axial an einem zwischen dem Blechpaket (21) und dem Rotor der Rotorlagesensor-Einrichtung (40) angeordneten Axial-Anlageelement (70) abstützt.
  5. Rotor nach Anspruch 4, dadurch gekennzeichnet, dass das Axial-Anlageelement (70) an seinem radial äußeren Randbereich zur radial äußeren Umgebung der Tellerfeder (50) eine Kröpfung (71) aufweist, wobei die Tellerfeder (50) mit ihrer radial äußeren Seite in der Kröpfung (71) sitzt.
  6. Rotor nach einem der Ansprüche 4 und 5, dadurch gekennzeichnet, dass sich das Axial-Anlageelement (70) zumindest bereichsweise an der radial inneren Seite wenigstens eines Blechpakets (21) erstreckt, wobei das Axial-Anlageelement (70) mit der Rotorwelle (10) verstemmt ist.
  7. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Welle-Nabe-Verbindung (30) mittels wenigstens einer in Axial-Richtung verlaufenden Axialnut in der Rotorwelle (10) sowie wenigstens einer radial in die Axialnut eingreifenden Nase am Rotor der Rotorlagesensor-Einrichtung (40) realisiert ist.
  8. Verfahren zur Herstellung eines Rotors (1) einer elektrischen Rotationsmaschine gemäß einem der Ansprüche 1 bis 7, bei dem -eine Rotorwelle (10) und mit der Rotorwelle (10) zu verbindende Elemente eines Rotorkörpers (20), umfassend wenigstens ein Blechpaket (21), bereitgestellt werden, - die Elemente des Rotorkörpers (20) auf der Rotorwelle (10) in einem Rotorkörper (20) angeordnet werden, - an einer axialen Seite des Rotorkörpers (20) auf der Rotorwelle (10) mittels einer formschlüssig wirkenden Welle-Nabe-Verbindung (30) ein Rotor einer Rotorlagesensor-Einrichtung (40) angeordnet wird, - an derselben axialen Seite des Rotorkörpers (20) eine Tellerfeder (50) derart angeordnet wird, dass die Tellerfeder (50) zwecks Positionierung des Rotors der Rotorlagesensor-Einrichtung (40) dauerhaft axial eine axial wirkende Kraft (51) auf den Rotor der Rotorlagesensor-Einrichtung (40) ausübt, - und an der der Tellerfeder (50) axial gegenüberliegenden Seite des Rotors der Rotorlagesensor-Einrichtung (40) ein Stützelement (60) angeordnet wird, zwecks Abstützung des Rotors der Rotorlagesensor-Einrichtung (40) an der Rotorwelle (10) gegen die von der Tellerfeder (50) bewirkte axial wirkende Kraft (51).
  9. Elektrische Rotationsmaschine, umfassend einen Stator sowie einen Rotor (1) gemäß einem der Ansprüche 1 bis 7.
  10. Elektrische Rotationsmaschine nach Anspruch 9, dadurch gekennzeichnet, dass die elektrische Rotationsmaschine als elektrische Achse zum unmittelbaren Antrieb eines Rades eines Kraftfahrzeuges ausgestaltet ist.
DE102020117453.5A 2020-07-02 2020-07-02 Rotor einer elektrischen Rotationsmaschine, Verfahren zur Herstellung des Rotors und elektrische Rotationsmaschine Ceased DE102020117453A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102020117453.5A DE102020117453A1 (de) 2020-07-02 2020-07-02 Rotor einer elektrischen Rotationsmaschine, Verfahren zur Herstellung des Rotors und elektrische Rotationsmaschine
PCT/DE2021/100504 WO2022002303A1 (de) 2020-07-02 2021-06-14 Rotor einer elektrischen rotationsmaschine, verfahren zur herstellung des rotors und elektrische rotationsmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020117453.5A DE102020117453A1 (de) 2020-07-02 2020-07-02 Rotor einer elektrischen Rotationsmaschine, Verfahren zur Herstellung des Rotors und elektrische Rotationsmaschine

Publications (1)

Publication Number Publication Date
DE102020117453A1 true DE102020117453A1 (de) 2022-01-05

Family

ID=76744570

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102020117453.5A Ceased DE102020117453A1 (de) 2020-07-02 2020-07-02 Rotor einer elektrischen Rotationsmaschine, Verfahren zur Herstellung des Rotors und elektrische Rotationsmaschine

Country Status (2)

Country Link
DE (1) DE102020117453A1 (de)
WO (1) WO2022002303A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116191786B (zh) * 2022-11-08 2023-11-28 佳木斯大学 一种电机组装装置及组装方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693024A (en) 1971-05-17 1972-09-19 Litton Systems Inc Rotational shaft encoder having a bearing tube having a slot therein
DE2525314A1 (de) 1974-06-07 1975-12-18 Vactoric Control Equip Optischer kodierer
DE3419101C1 (de) 1984-05-23 1985-07-11 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Winkelmeßeinrichtung
JP2002295500A (ja) 2001-03-29 2002-10-09 Aisin Aw Co Ltd 回り止め装置
EP1288611A2 (de) 2001-08-31 2003-03-05 Dr. Johannes Heidenhain GmbH Winkelmesssystem
JP2016119806A (ja) 2014-12-22 2016-06-30 日本精工株式会社 センサマグネット固定構造及びその固定構造を備えたモータ並びにそれを搭載した電動パワーステアリング装置及び車両
DE102018106275A1 (de) 2018-03-19 2019-09-19 Schaeffler Technologies AG & Co. KG Axialsicherung rotierender Bauteile und Montageverfahren einer Welle-Nabe-Verbindung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933636A (en) * 1989-02-24 1990-06-12 Cipher Data Products, Inc. Self-aligning tachometer and method of manufacturing same
US5155401A (en) * 1990-06-07 1992-10-13 Canon Kabushiki Kaisha Recorder motor with attached encoder and cover
DE102004017716A1 (de) * 2004-04-10 2005-10-20 Bosch Gmbh Robert Rotor einer elektrischen Maschine
JP4496154B2 (ja) * 2005-10-31 2010-07-07 株式会社リコー ロータリーエンコーダ、ローラ部材、ベルト搬送装置、画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693024A (en) 1971-05-17 1972-09-19 Litton Systems Inc Rotational shaft encoder having a bearing tube having a slot therein
DE2525314A1 (de) 1974-06-07 1975-12-18 Vactoric Control Equip Optischer kodierer
DE3419101C1 (de) 1984-05-23 1985-07-11 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Winkelmeßeinrichtung
JP2002295500A (ja) 2001-03-29 2002-10-09 Aisin Aw Co Ltd 回り止め装置
EP1288611A2 (de) 2001-08-31 2003-03-05 Dr. Johannes Heidenhain GmbH Winkelmesssystem
JP2016119806A (ja) 2014-12-22 2016-06-30 日本精工株式会社 センサマグネット固定構造及びその固定構造を備えたモータ並びにそれを搭載した電動パワーステアリング装置及び車両
DE102018106275A1 (de) 2018-03-19 2019-09-19 Schaeffler Technologies AG & Co. KG Axialsicherung rotierender Bauteile und Montageverfahren einer Welle-Nabe-Verbindung

Also Published As

Publication number Publication date
WO2022002303A1 (de) 2022-01-06

Similar Documents

Publication Publication Date Title
EP2923436B1 (de) Stator mit einer umspritzung und elektrische maschine mit dem stator
WO2015044034A2 (de) Elektrische maschine und verbindungseinheit für elektrische maschine
EP3659240B1 (de) Rotor einer elektrischen maschine
WO2004086591A1 (de) Elektrische maschine mit in den stator integrierter rotorlagerung
WO2011079982A2 (de) Elektrischer antrieb mit schneckengetriebe
DE102012011002A1 (de) Rotorwelle für ein elektrisches Aggregat und Verfahren zur Herstellung einer solchen Rotorwelle
WO2022002303A1 (de) Rotor einer elektrischen rotationsmaschine, verfahren zur herstellung des rotors und elektrische rotationsmaschine
DE102022103482A1 (de) Drehantriebsvorrichtung
WO2019122074A1 (de) Rotor für einen elektromotor und elektromotor
EP3261224B1 (de) Elektrische maschine mit einem rotor und herstellungsverfahren für die elektrische maschine
DE102008051613A1 (de) Fräskopf
WO2022122086A1 (de) Elektromotor für ein kraftfahrzeug
EP3537573B1 (de) Fixierelement zur fixierung der rotorwelle einer elektrischen maschine an dessen stator, sowie elektrische maschine mit einem solchen fixierelement
DE102021104669A1 (de) Elektrische Axialflussmaschine
WO2021043355A1 (de) Rotorelement einer rotorlagesensorvorrichtung, rotorlagesensorvorrichtung und elektrische rotationsmaschine
DE102020205880A1 (de) Elektrische Maschine und Antriebsanordnung für ein Fahrzeug mit einer elektrischen Maschine
DE102021132523A1 (de) Elektromotor
WO2022022767A1 (de) Elektrische rotationsmaschine, verfahren zur herstellung einer elektrischen rotationsmaschine und mit der elektrischen rotationsmaschine ausgestattetes antriebssystem
DE102021121909B3 (de) Rotoreinheit einer elektrischen Axialflussmaschine und Elektrische Axialflussmaschine
DE102013017447B4 (de) Rollenprüfstand
DE102018100994A1 (de) Vorrichtung zur Drehmomentübertragung zwischen einem Rad und einer im Rad integrierten elektrischen Maschine
DE102021105499B4 (de) Rotor für eine Axialflussmaschine
DE102022105768A1 (de) Elektrische Axialflussmaschine, elektrisches Antriebssystem und Getriebemotoreinheit
WO2023072693A1 (de) Vorrichtung mit wenigstens einer lagereinrichtung für eine drehbare welle
DE102018128369A1 (de) Rotor für einen bürstenlosen Gleichstrommotor

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final