WO2022002187A1 - 电磁感应发热体和电磁感应发热体组件 - Google Patents

电磁感应发热体和电磁感应发热体组件 Download PDF

Info

Publication number
WO2022002187A1
WO2022002187A1 PCT/CN2021/103948 CN2021103948W WO2022002187A1 WO 2022002187 A1 WO2022002187 A1 WO 2022002187A1 CN 2021103948 W CN2021103948 W CN 2021103948W WO 2022002187 A1 WO2022002187 A1 WO 2022002187A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic induction
induction heating
heating element
insulating layer
parts
Prior art date
Application number
PCT/CN2021/103948
Other languages
English (en)
French (fr)
Inventor
周宏明
肖俊杰
刘滔文
蒋路生
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP21833684.0A priority Critical patent/EP4176742A1/en
Publication of WO2022002187A1 publication Critical patent/WO2022002187A1/zh
Priority to US18/091,811 priority patent/US20230135881A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/143Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/10Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the present application relates to the technical field of electronic atomizers, and in particular, to an electromagnetic induction heating element and an electromagnetic induction heating element assembly.
  • the traditional atomization medium generates aerosols by burning, and a large amount of harmful substances will be volatilized under the high temperature of over 800°C.
  • the heat-not-burn aerosol forming device electronic atomizer device
  • the heat-not-burn electronic atomizer device is mainly to bake the atomizing medium at a low temperature under the conditions of 200 °C to 400 °C, so that it produces aerosol, but does not produce a large amount of harmful substances.
  • the current heat-not-burn electronic atomizer device heats the atomizing medium through the heating element, and the heating element mainly generates heat through the resistance circuit.
  • the heat source of this heating method is concentrated on the resistance circuit of the heating element, so that the temperature distribution on the surface of the heating element is not uniform. Uniformity, it is easy to make the uniformity of the baking atomization medium insufficient, resulting in poor taste.
  • an electromagnetic induction heating body and an electromagnetic induction heating body assembly are provided.
  • An electromagnetic induction heating body includes a base body, an insulating layer on the base body, and a temperature sensing layer on the insulating layer.
  • the material of the base body is a metal element or an alloy
  • the temperature sensing layer includes a temperature measurement circuit formed by sintering a resistance paste.
  • the above-mentioned electromagnetic induction heating body includes a base body, an insulating layer and a temperature sensing layer.
  • the insulating layer is located on the base body, and the temperature measuring layer is located on the insulating layer.
  • the base body induces a magnetic field under the action of the coil to generate eddy current heating.
  • the insulating layer is isolated, and the temperature measurement circuit and the heating current are independent of each other.
  • the traditional heating element generates heat by resistance, and it is necessary to supply a large current to the heating circuit, and to detect the feedback current at the same time, and the error is large.
  • the circuit for measuring temperature and the circuit for heating of the electromagnetic induction heating element are set independently of each other to avoid mutual interference, and the temperature measuring circuit only needs a small current to form a current loop, that is, Yes, the temperature on the heating element can be accurately and timely reflected.
  • the sintering temperature of the temperature measuring circuit is 700°C to 900°C.
  • the square resistance of the temperature measurement circuit is 1 ⁇ /sq to 5 ⁇ /sq, and the temperature coefficient of resistance of the temperature measurement circuit is 300ppm/°C to 3500ppm/°C.
  • the material of the base body is stainless steel.
  • the insulating layer is a glass glaze layer with an expansion coefficient of 9 ⁇ 10 -6 (1/K) to 13 ⁇ 10 -6 (1/K).
  • the electromagnetic induction heating body further includes a protective layer on the temperature sensing layer.
  • the base body has a first surface and a second surface opposite to the first surface
  • the insulating layer includes a first insulating layer and a second insulating layer
  • the protective layer includes a first protection layer layer and a second protective layer
  • the first insulating layer, the temperature sensitive layer and the first protective layer are sequentially stacked on the first surface
  • the second insulating layer and the second protective layer are The second surfaces are stacked in sequence.
  • the thickness of the base body is 0.1 mm to 1 mm.
  • the thickness of the insulating layer is 10 ⁇ m to 300 ⁇ m.
  • the thickness of the temperature sensitive layer is 10 ⁇ m to 300 ⁇ m.
  • the base body is in the shape of a sheet, a strip, a tube, a column or a cone.
  • the resistive paste comprises 10 to 20 parts of an organic vehicle, 30 to 45 parts of an inorganic binder and 30 to 50 parts of a conductive agent, the The inorganic binder includes glass frit, and the conductive agent is selected from at least one of silver and palladium.
  • the conductive agent is a mixture of silver and palladium, wherein the mass ratio of silver to palladium is (0.1-1):(99.9-99).
  • the inorganic binder includes glass frit with a melting point of 700° C. to 780° C.; in terms of mass percentage, the glass frit includes 20% to 35% SiO 2 , 1% to 10% % of Al 2 O 3, 5% to 15% CaO, 10% to 20% BaO, 1% to 15% ZnO, 25% to 40% B 2 O 3 and 1% to 10% TiO 2 .
  • the organic carrier is selected from at least one of terpineol, ethyl cellulose, butyl carbitol, polyvinyl butyral, tributyl citrate and polyamide wax.
  • the parts of the organic vehicle are 15 to 20 parts
  • the parts of the inorganic binder are 35 to 45 parts
  • the parts of the conductive agent are 40 to 50 servings.
  • An electromagnetic induction heating element assembly includes the above electromagnetic induction heating element and a coil surrounding the electromagnetic induction heating body for generating a magnetic field, and the base of the electromagnetic induction heating element is used for inducing the magnetic field and generating electric current.
  • a method for preparing an electromagnetic induction heating body comprising:
  • the insulating layer paste, the resistance paste and the protective layer paste are sequentially printed on the substrate to prepare the green embryo of the electromagnetic induction heating element;
  • the green embryo of the electromagnetic induction heating element is sintered to prepare the electromagnetic induction heating element.
  • FIG. 1 is an electromagnetic induction heating element according to an embodiment.
  • FIG. 2 is a cross-sectional view of the electromagnetic induction heating element shown in FIG. 1 .
  • FIG. 3 is an exploded view of the electromagnetic induction heating element shown in FIG. 1 .
  • FIG. 4 is a cross-sectional view of an electromagnetic induction heating element according to another embodiment.
  • FIG. 5 is a flow chart of a method for manufacturing an electromagnetic induction heating element according to an embodiment.
  • FIG. 6 is a cross-sectional view of an electromagnetic induction heating element assembly including the electromagnetic induction heating element shown in FIG. 1 .
  • FIG. 7 is a time temperature curve of Example 1.
  • an embodiment of the present application provides an electromagnetic induction heating body 10 , the electromagnetic induction heating body 10 uses electromagnetic induction to generate heat, and includes a substrate 110 , an insulating layer 120 and a temperature sensing layer 130 .
  • the base body 110 is used to carry the insulating layer 120 and the temperature sensing layer 130 .
  • the material of the base body 110 is a metal or an alloy. Through the action of the metal base 110 and the coil, the base 110 induces the magnetic field generated by the energized coil to generate eddy current and generate heat.
  • the material of the base body 110 is stainless steel.
  • the material of the base body 110 is 430 stainless steel.
  • the material of the base body 110 is not limited to stainless steel, and may also be other materials that can generate heat by electromagnetic induction. For example, aluminum, nickel, cobalt, and the like.
  • the shape of the base body 110 is a sheet shape, a strip shape, a tube shape, a column shape or a cone shape.
  • the shape of the base body 110 is not limited to the above, and may also be other shapes.
  • the base body 110 has a body and a tip portion connected to the body, and the width of the tip portion gradually decreases from an end close to the body to an end away from the body, so as to facilitate the removal and insertion of the atomized medium.
  • the shape of the base body 110 is a sheet
  • the orthographic projection of the body on the horizontal plane is a rectangle
  • the orthographic projection of the tip on the horizontal plane is an isosceles triangle, wherein the base of the isosceles triangle is the width of the rectangle.
  • the shape of the electromagnetic induction heating element 10 is also substantially in the shape of a sheet.
  • the atomizing medium is inserted into the electromagnetic induction heating body 10
  • the coil surrounds the outside of the atomizing medium, and the atomizing medium is located between the electromagnetic induction heating body 10 and the coil.
  • the shape of the base body 210 is tubular, the insulating layer 220 is laminated on the outer surface of the tubular base body 210 , and the temperature sensing layer 230 is laminated on the surface of the insulating layer 220 away from the base body 210 .
  • the shape of the electromagnetic induction heating body 10 is also substantially tubular. In use, the atomizing medium is placed in the base body 210, the coil is surrounded by the outside of the electromagnetic induction heating body 10, and the electromagnetic induction heating body 10 is located between the atomizing medium and the coil.
  • the thickness and material of the base body 210 may have the same selection range as the base body 110
  • the thickness and material of the insulating layer 220 may have the same selection range as the insulating layer 120
  • the thickness and material of the temperature measuring layer 230 and the temperature measuring layer 130 may also have the same selection range. can have the same selection range.
  • the thickness of the base body 110 is 0.1 mm to 1 mm.
  • the thickness of the base body 110 is not limited to the above, and can also be adjusted according to actual needs.
  • the insulating layer 120 is located on the base body 110 and has the functions of insulation and heat conduction.
  • the material of the insulating layer 120 is a glass glaze layer with an expansion coefficient of 9 ⁇ 10 -6 (1/K) to 13 ⁇ 10 -6 (1/K).
  • the material of the insulating layer 120 is not limited to a glass glaze layer with a thermal expansion coefficient of 9 ⁇ 10 -6 (1/K) to 13 ⁇ 10 -6 (1/K).
  • the material of the insulating layer 120 It can also be other materials with insulating and thermal conductivity.
  • the insulating layer 120 is in a sheet shape.
  • the shape of the insulating layer 120 is the same as the shape of the base body 110 .
  • the base body 110 has a first surface 111 and a second surface 112 opposite to the first surface 111
  • the insulating layer 120 includes a first insulating layer 121 and a second insulating layer 122 , the first insulating layer 121 is located on the first surface 111 , and the second insulating layer 121 is located on the first surface 111 .
  • the insulating layer 122 is on the second side 112 .
  • the thickness of the insulating layer 120 is 10 ⁇ m to 300 ⁇ m. In other embodiments, the thickness of the insulating layer 120 is 30 ⁇ m to 200 ⁇ m. It can be understood that, in other embodiments, the thickness of the insulating layer 120 is not limited to the above, and can also be adjusted according to actual needs.
  • the temperature sensing layer 130 is located on the insulating layer 120 and is used for detecting the temperature of the electromagnetic induction heating body 10 .
  • the temperature sensing layer 130 includes a temperature measurement circuit 131 and a connection circuit 132 electrically connected to the temperature measurement circuit 131 .
  • the temperature measuring circuit 131 is used to detect the temperature of the electromagnetic induction heating element 10 , and is formed by sintering resistance paste.
  • the connection line 132 is used to connect the temperature measurement circuit 131 and the power supply, and supply power to the temperature measurement circuit 131 .
  • the temperature sensing layer 130 is disposed on the insulating layer 120 in a region corresponding to the coil, and the region without magnetic field distribution has no temperature measuring circuit 131 . That is, the heating area of the electromagnetic induction heating body 10 is correspondingly provided with the temperature measuring circuit 131 and the non-heating area does not need to be provided with the temperature measuring circuit 131 to save materials.
  • the temperature measurement line 131 is located on a part of the surface of the first insulating layer 121 .
  • the temperature measuring circuit 131 is substantially U-shaped.
  • the shape of the temperature measurement circuit 131 is not limited to the above, and may also be other shapes, such as a Z shape.
  • the square resistance of the temperature measurement circuit 131 is 1 ⁇ /sq to 5 ⁇ /sq, and the temperature coefficient of resistance of the temperature measurement circuit 131 is 300ppm/°C to 3500ppm/°C. In other embodiments, the square resistance of the temperature measurement circuit 131 is 2 ⁇ /sq to 4 ⁇ /sq, and the temperature coefficient of resistance of the temperature measurement circuit 131 is 700ppm/°C to 2000ppm/°C.
  • the resistance paste for preparing the temperature measurement line 131 includes an organic vehicle, an inorganic binder and a conductive agent.
  • the resistive paste includes 10 to 20 parts of an organic vehicle, 30 to 45 parts of an inorganic binder, and 30 to 50 parts of a conductive agent.
  • the inorganic binder includes glass frit, and the conductive agent is at least one selected from silver and palladium.
  • the square resistance of the temperature measurement circuit 131 prepared according to the resistance paste is 1 ⁇ /sq to 5 ⁇ /sq, and the resistance temperature coefficient is 300ppm/°C to 3500ppm/°C, which can more accurately and timely reflect the temperature on the electromagnetically heated heating element.
  • the organic carrier is selected from at least one of terpineol, ethyl cellulose, butyl carbitol, polyvinyl butyral, tributyl citrate and polyamide wax.
  • the organic carrier consists of terpineol, ethyl cellulose, butyl carbitol, polyvinyl butyral, tributyl citrate, and polyamide wax.
  • the inorganic binder and the conductive agent can be uniformly mixed .
  • the organic carrier comprises 50% to 70% of terpineol, 2% to 10% of ethyl cellulose, 10% to 30% of butyl carbitol, 1 % to 5% polyvinyl butyral, 4% to 10% tributyl citrate and 0.1% to 1% polyamide wax.
  • the organic carrier comprises 60% to 70% of terpineol, 3% to 7% of ethyl cellulose, 15% to 25% of butyl carbitol, 1% to 4% polyvinyl butyral, 4% to 8% tributyl citrate and 0.1% to 0.5% polyamide wax.
  • the parts by mass of the organic vehicle are 15 parts to 20 parts. Further, the number of parts of the organic vehicle is 15 to 18 parts.
  • the inorganic binder includes glass frit having a melting point of 700°C to 780°C.
  • the glass frit with a melting point of 700° C. to 780° C. includes 20% to 35% of SiO 2 , 1% to 10% of Al 2 O 3 , 5% to 15% of CaO, 10% to 20% BaO, 1% to 15% ZnO, 25% to 40% B 2 O 3 and 1% to 10% TiO 2.
  • the glass frit having a melting point of 700°C to 780°C includes 20% to 35% SiO 2 , 1% to 10% Al 2 O 3 , 5% to 15% CaO, 10% to 20% % of BaO, 1% to 15% ZnO, 25% to 40% B 2 O 3 and 1% to 10% TiO 2.
  • the inorganic binder is glass frit with a melting point of 700°C to 780°C.
  • the temperature measurement circuit can be formed by sintering at a lower temperature, which is close to the sintering temperature of the insulating layer.
  • the inorganic binder is glass frit with a melting point of 720°C to 780°C.
  • the inorganic binder is not limited to glass frit, but can also be other materials.
  • the proportion of the inorganic binder in parts by mass, is 35 to 45 parts. In another embodiment, the parts by mass of the inorganic binder are 35 parts to 40 parts.
  • the conductive agent is a mixture of silver and palladium, wherein the mass ratio of silver to palladium is (0.1-1):(99.9-99). In another embodiment, the mass ratio of silver to palladium is (0.5-0.8):(99.5-99.2).
  • the conductive agent is powder.
  • the proportion of the conductive agent is 40 to 50 parts by mass. In another embodiment, the parts by mass of the conductive agent are 45 parts to 50 parts.
  • the resistance paste is composed of an organic vehicle, an inorganic binder and a conductive agent, and the parts by mass of the organic vehicle are 10 to 20 parts, and the parts of the inorganic binder are 30 parts. parts to 45 parts, and the parts of the conductive agent are 30 parts to 50 parts.
  • the parts of the organic vehicle are 15 to 18 parts, the parts of the inorganic binder are 35 to 40 parts, and the parts of the conductive agent are 45 to 50 parts.
  • the resistance paste includes an organic vehicle, an inorganic binder and a conductive agent, and the parts by mass of the organic vehicle are 15 to 20 parts, and the parts of the inorganic binder are 35 parts. to 45 parts, and the number of parts of the conductive agent is 40 to 50 parts.
  • the parts of the organic vehicle are 15 to 18 parts, the parts of the inorganic binder are 35 to 40 parts, and the parts of the conductive agent are 45 to 50 parts.
  • the mass ratio of the inorganic binder and the conductive agent is (5-9):(6-10).
  • the sintering temperature of the temperature measuring circuit is 700°C to 900°C. In another embodiment, the sintering temperature is 800°C to 900°C.
  • the thickness of the temperature measuring circuit 131 is 10 ⁇ m to 300 ⁇ m.
  • the temperature measurement circuit 131 is not limited to the above, and can also be adjusted according to actual needs.
  • connection line 132 is not particularly limited, as long as it can conduct electricity.
  • the thickness of the connection line 132 is 50 ⁇ m to 500 ⁇ m.
  • the connection line 132 is not limited to the above, and can also be adjusted according to actual needs.
  • the electromagnetic induction heating body 10 further includes a protective layer 140, and the protective layer 140 has an insulating function.
  • the material of the protective layer 140 is glass.
  • the protective layer 140 also has anti-stick properties for reducing the adhesion of the atomizing medium.
  • the thickness of the protective layer 140 is 10 ⁇ m to 200 ⁇ m.
  • the thickness of the protective layer 140 is not limited to the above, and can also be adjusted according to actual needs.
  • the protective layer 140 includes a first protective layer 141 and a second protective layer 142 .
  • the first protective layer 141 is located on the temperature sensing layer 130
  • the second protective layer 142 is located on the second insulating layer 122 .
  • the temperature-sensitive layer 130 may also be provided on the second insulating layer 122 , and in this case, the protective layer 140 is provided on the temperature-sensitive layer 130 .
  • the above electromagnetic induction heating body 10 includes a base body 110 , an insulating layer 120 located on the base body 110 , and a temperature sensing layer 130 located on the insulating layer 120 .
  • the material of the base body 110 is metal
  • the temperature sensing layer 130 includes a temperature measurement circuit 131 sintered from a resistance paste.
  • the square resistance of the temperature measurement circuit 131 is 1 ⁇ /sq to 5 ⁇ /sq, and the temperature coefficient of resistance is 300ppm/°C to 3500ppm/°C, which can accurately and timely reflect the temperature on the electromagnetic induction heating element 10 heated by electromagnetic heating.
  • the traditional heating element generates heat by resistance, and it is necessary to supply a large current to the heating circuit and to detect the feedback current at the same time, and the error is large.
  • the circuit for testing temperature and the circuit for heating of the electromagnetic induction heating element 10 are set independently of each other to avoid mutual interference, and the temperature measurement circuit 131 only needs a small current to form a current. Just loop.
  • An embodiment of the present application also provides a method for preparing the above electromagnetic induction heating element, the preparation method comprising:
  • step S100 the paste for the insulating layer, the paste for the resistive layer, and the paste for the protective layer are sequentially printed on the substrate to prepare a green embryo of the electromagnetic induction heating element.
  • the insulating layer paste is printed on the substrate, dried and formed to obtain a first embryo; then the resistive paste is printed on the first embryo, dried and formed to produce a second embryo; then the protection The layer is printed on the second embryo with the paste, and dried to obtain the green embryo of the electromagnetic induction heating element.
  • the paste for the insulating layer, the paste for the resistive layer and the paste for the protective layer can also be printed on the substrate in sequence, and then dried to prepare the green embryo of the electromagnetic induction heating element.
  • the resistive paste is as described above and will not be repeated here; the paste for the insulating layer and the paste for the protective layer can be selected according to the materials of the above-mentioned insulating layer and the above-mentioned protective layer prepared as required.
  • Step S200 sintering the green embryo of the electromagnetic induction heating element to prepare the electromagnetic induction heating element.
  • the sintering temperature is 700°C to 900°C. In another embodiment, the sintering temperature is 800°C to 900°C.
  • the green embryo of the electromagnetic induction heating body is sintered according to the above sintering temperature, and the sintering temperature is relatively low, which can reduce the generation of harmful substances during the sintering of the electromagnetic induction heating body.
  • an embodiment of the present application further provides a heating device, which uses electromagnetic induction to heat.
  • the heating device includes an electromagnetic induction heating body assembly 30, a base and a control module, and the electromagnetic induction heating body assembly 30 includes the above-mentioned electromagnetic induction heating body 10 and a coil 20 for generating a magnetic field around the electromagnetic induction heating body,
  • the electromagnetic induction heating body 10 is installed on the base, the regulating module is used to adjust the heating temperature, and the base of the electromagnetic induction heating body 10 is used to induce the magnetic field generated by the coil 20 and generate current.
  • the electromagnetic induction heating body 10 is in a sheet shape, and one end of the electromagnetic induction heating body 10 is mounted on the base.
  • the atomizing medium When the heating device is used, the atomizing medium is brought into contact with the electromagnetic induction heating element 10, so that the electromagnetic induction heating element 10 heats the atomizing medium.
  • the electromagnetic induction heating body 10 when the electromagnetic induction heating body 10 is in the shape of a sheet, the atomizing medium is inserted into the electromagnetic induction heating body 10, and the coil 20 is located outside the atomizing medium, and then the coil is induced by the electromagnetic induction heating body 10.
  • the magnetic field generated by 20 generates heat to heat the atomizing medium inserted in the electromagnetic induction heating body 10 .
  • the electromagnetic induction heating body 10 when the electromagnetic induction heating body 10 is tubular, the atomizing medium is placed inside the tubular base of the electromagnetic induction heating body 10, and the coil 20 is located outside the electromagnetic induction heating body 10, and then the electric The magnetic induction heating body 10 induces the magnetic field generated by the coil 20 to generate heat to heat the atomized medium inside the electromagnetic induction heating body 10 .
  • the above-mentioned heating device has an electromagnetic induction heating body 10 that can accurately and timely respond to the temperature of the electromagnetic induction heating body, so that the heating device can adjust the heating temperature in time according to the temperature of the temperature-sensitive layer reaction, so that the heating device can be heated more uniformly and the heating regulation can be more timely. It is also more accurate and improves the user experience.
  • the structure of the electromagnetic induction heating element of Example 1 is shown in Figure 1.
  • the electromagnetic induction heating element of Example 1 consists of a substrate, a first insulating layer, a second insulating layer, a temperature sensing layer, a first protective layer and a second protective layer. composition.
  • the base body is sheet-like, and has a first surface and a second surface opposite to the first surface, the first insulating layer is located on the first surface, the second insulating layer is located on the first surface, and the temperature sensitive layer is located on the first insulating layer,
  • the first protective layer is located on the temperature sensitive layer, and the second protective layer is located on the second insulating layer.
  • the thickness of the substrate is 0.5 mm
  • the thickness of the first insulating layer is 200 ⁇ m
  • the thickness of the second insulating layer is 200 ⁇ m
  • the thickness of the temperature sensitive layer is 150 ⁇ m
  • the thickness of the first protective layer is 100 ⁇ m
  • the thickness of the second protective layer is 100 ⁇ m .
  • the material of the base body is 430 stainless steel; the materials of the first insulating layer and the second insulating layer are glass glaze layers with an expansion coefficient of 9 ⁇ 10 -6 (1/K), and the first insulating layer and the second insulating layer are made of insulating layer. Sintered with slurry, the sintering temperature is 800 °C.
  • the square resistance of the temperature measurement circuit of the temperature sensing layer is 1.2 ⁇ 0.1 ⁇ /sq, the resistance value is greater than 20 ⁇ , and the resistance temperature coefficient of the temperature measurement circuit is 3300 ⁇ 50ppm/°C; the temperature measurement circuit is sintered by the resistance paste at 800°C
  • the resistance paste is composed of 16 parts of organic carrier, 36 parts of inorganic binder and 48 parts of conductive agent, wherein: in terms of mass percentage, the organic carrier is composed of 64% terpineol, 4.8% ethyl acetate Base fiber, 24% butyl carbitol, 2% polyvinyl butyral, 5% tributyl citrate and 0.2% polyamide wax;
  • the glass frit is composed of 30% SiO 2 , 5% Al 2 O 3 , 8% CaO, 16% BaO, 5% ZnO, 32% B 2 O 3 and 4% TiO 2 in terms of content , the melting point of the inorganic binder is 710 ° C; the conductive agent is composed of silver
  • the materials of the first protective layer and the second protective layer are glass glaze layers with an expansion coefficient of 9 ⁇ 10 -6 (1/K); the protective layers are sintered with slurry, and the firing temperature is 800°C.
  • the structure of the electromagnetic induction heating element of Example 2 is shown in Figure 1.
  • the electromagnetic induction heating element of Example 2 consists of a substrate, a first insulating layer, a second insulating layer, a temperature sensing layer, a first protective layer and a second protective layer. composition.
  • the base body is sheet-like, and has a first surface and a second surface opposite to the first surface, the first insulating layer is located on the first surface, the second insulating layer is located on the first surface, and the temperature sensitive layer is located on the first insulating layer,
  • the first protective layer is located on the temperature sensitive layer, and the second protective layer is located on the second insulating layer.
  • the thickness of the substrate is 0.5 mm
  • the thickness of the first insulating layer is 200 ⁇ m
  • the thickness of the second insulating layer is 200 ⁇ m
  • the thickness of the temperature sensitive layer is 150 ⁇ m
  • the thickness of the first protective layer is 100 ⁇ m
  • the thickness of the second protective layer is 100 ⁇ m .
  • the material of the base body is 430 stainless steel; the materials of the first insulating layer and the second insulating layer are glass glaze layers with an expansion coefficient of 9 ⁇ 10 -6 (1/K), and the first insulating layer and the second insulating layer are made of insulating layer. Sintered with slurry, the sintering temperature is 800 °C.
  • the square resistance of the temperature measurement circuit of the temperature sensing layer is 2.5 ⁇ 0.3 ⁇ /sq, and the resistance temperature coefficient of the temperature measurement circuit is 3200 ⁇ 50ppm/°C;
  • the material is composed of 16 parts of organic carrier, 40 parts of inorganic binder and 44 parts of conductive agent, wherein: in terms of mass percentage, the organic carrier is composed of 70% terpineol, 4.2% ethyl fiber, 20% It is composed of butyl carbitol, 1.6% polyvinyl butyral, 4% tributyl citrate and 0.2% polyamide wax;
  • the inorganic binder is glass powder, in terms of mass percentage, the glass Powder consists of 28% SiO 2 , 8% Al 2 O 3 , 8% CaO, 14% BaO, 7% ZnO, 30% B 2 O 3 and 5% TiO 2 , inorganic binder
  • the melting point is 730°C; the conductive agent is composed of silver powder and palladium powder, and the mass ratio of silver powder and palladium
  • the materials of the first protective layer and the second protective layer are glass glaze layers with an expansion coefficient of 9 ⁇ 10 -6 (1/K); the protective layers are sintered with slurry, and the firing temperature is 800°C.
  • the structure of the electromagnetic induction heating element of Example 3 is shown in Figure 1.
  • the electromagnetic induction heating element of Example 3 consists of a substrate, a first insulating layer, a second insulating layer, a temperature sensing layer, a first protective layer and a second protective layer. composition.
  • the base body is sheet-like, and has a first surface and a second surface opposite to the first surface, the first insulating layer is located on the first surface, the second insulating layer is located on the first surface, and the temperature sensitive layer is located on the first insulating layer,
  • the first protective layer is located on the temperature sensitive layer, and the second protective layer is located on the second insulating layer.
  • the thickness of the substrate is 0.5 mm
  • the thickness of the first insulating layer is 200 ⁇ m
  • the thickness of the second insulating layer is 200 ⁇ m
  • the thickness of the temperature sensitive layer is 150 ⁇ m
  • the thickness of the first protective layer is 100 ⁇ m
  • the thickness of the second protective layer is 100 ⁇ m .
  • the material of the base body is 430 stainless steel; the materials of the first insulating layer and the second insulating layer are glass glaze layers with an expansion coefficient of 9 ⁇ 10 -6 (1/K), and the first insulating layer and the second insulating layer are made of insulating layer.
  • the sintering temperature is 800 °C.
  • the square resistance of the temperature measurement circuit of the temperature sensing layer is 1.2 ⁇ 0.1 ⁇ /sq, and the resistance temperature coefficient of the temperature measurement circuit is 3300 ⁇ 50ppm/°C; the temperature measurement circuit is sintered by the resistance paste at 800°C.
  • the material is composed of 10 parts of organic carrier, 45 parts of inorganic binder and 45 parts of conductive agent, wherein: in terms of mass percentage, the organic carrier is composed of 64% terpineol, 4.8% ethyl fiber, 24% It is composed of butyl carbitol, 2% polyvinyl butyral, 5% tributyl citrate and 0.2% polyamide wax; the inorganic binder is glass powder.
  • Powder consists of 30% SiO 2 , 5% Al 2 O 3 , 8% CaO, 16% BaO, 5% ZnO, 32% B 2 O 3 and 4% TiO 2 , inorganic binder
  • the melting point is 710°C; the conductive agent is composed of silver powder and palladium powder, and the mass ratio of silver powder and palladium powder is 99.2:0.8.
  • the materials of the first protective layer and the second protective layer are glass glaze layers with an expansion coefficient of 9 ⁇ 10 -6 (1/K); the protective layers are sintered with slurry, and the firing temperature is 800°C.
  • the structure of the electromagnetic induction heating element of Example 4 is shown in FIG. 1 .
  • the electromagnetic induction heating element of Example 4 consists of a substrate, a first insulating layer, a second insulating layer, a temperature sensing layer, a first protective layer and a second protective layer. composition.
  • the base body is sheet-like, and has a first surface and a second surface opposite to the first surface, the first insulating layer is located on the first surface, the second insulating layer is located on the first surface, and the temperature sensitive layer is located on the first insulating layer,
  • the first protective layer is located on the temperature sensitive layer, and the second protective layer is located on the second insulating layer.
  • the thickness of the substrate is 0.5 mm
  • the thickness of the first insulating layer is 200 ⁇ m
  • the thickness of the second insulating layer is 200 ⁇ m
  • the thickness of the temperature sensitive layer is 150 ⁇ m
  • the thickness of the first protective layer is 100 ⁇ m
  • the thickness of the second protective layer is 100 ⁇ m .
  • the material of the base body is 430 stainless steel; the materials of the first insulating layer and the second insulating layer are glass glaze layers with an expansion coefficient of 9 ⁇ 10 -6 (1/K), and the first insulating layer and the second insulating layer are made of insulating layer.
  • the sintering temperature is 800 °C.
  • the square resistance of the temperature measurement circuit of the temperature sensing layer is 1.2 ⁇ 0.1 ⁇ /sq, and the resistance temperature coefficient of the temperature measurement circuit is 3300 ⁇ 50ppm/°C; the temperature measurement circuit is sintered by the resistance paste at 800°C.
  • the material is composed of 20 parts of organic carrier, 30 parts of inorganic binder and 50 parts of conductive agent, wherein: in terms of mass percentage, the organic carrier is composed of 64% terpineol, 4.8% ethyl fiber, 24% It is composed of butyl carbitol, 2% polyvinyl butyral, 5% tributyl citrate and 0.2% polyamide wax; the inorganic binder is glass powder.
  • Powder consists of 30% SiO 2 , 5% Al 2 O 3 , 8% CaO, 16% BaO, 5% ZnO, 32% B 2 O 3 and 4% TiO 2 , inorganic binder
  • the melting point is 710°C; the conductive agent is composed of silver powder and palladium powder, and the mass ratio of silver powder and palladium powder is 99.2:0.8.
  • the materials of the first protective layer and the second protective layer are glass glaze layers with an expansion coefficient of 9 ⁇ 10 -6 (1/K); the protective layers are sintered with slurry, and the firing temperature is 800°C.
  • the structure of the electromagnetic induction heating element of Example 5 is shown in Figure 1.
  • the electromagnetic induction heating element of Example 5 consists of a substrate, a first insulating layer, a second insulating layer, a temperature sensing layer, a first protective layer and a second protective layer. composition.
  • the base body is sheet-like, and has a first surface and a second surface opposite to the first surface, the first insulating layer is located on the first surface, the second insulating layer is located on the first surface, and the temperature sensitive layer is located on the first insulating layer,
  • the first protective layer is located on the temperature sensitive layer, and the second protective layer is located on the second insulating layer.
  • the thickness of the substrate is 0.5 mm
  • the thickness of the first insulating layer is 200 ⁇ m
  • the thickness of the second insulating layer is 200 ⁇ m
  • the thickness of the temperature sensitive layer is 150 ⁇ m
  • the thickness of the first protective layer is 100 ⁇ m
  • the thickness of the second protective layer is 100 ⁇ m .
  • the material of the base body is 430 stainless steel; the materials of the first insulating layer and the second insulating layer are glass glaze layers with an expansion coefficient of 9 ⁇ 10 -6 (1/K), and the first insulating layer and the second insulating layer are made of insulating layer.
  • the sintering temperature is 800 °C.
  • the square resistance of the temperature measurement circuit of the temperature sensing layer is 1.2 ⁇ 0.1 ⁇ /sq, and the resistance temperature coefficient of the temperature measurement circuit is 3300 ⁇ 50ppm/°C; the temperature measurement circuit is sintered by the resistance paste at 800°C.
  • the material is composed of 16 parts of organic carrier, 36 parts of inorganic binder and 48 parts of conductive agent, wherein: in terms of mass percentage, the organic carrier is composed of 64% terpineol, 4.8% ethyl fiber, 24% It is composed of butyl carbitol, 2% polyvinyl butyral, 5% tributyl citrate and 0.2% polyamide wax; the inorganic binder is glass powder.
  • Powder consists of 30% SiO 2 , 5% Al 2 O 3 , 8% CaO, 16% BaO, 5% ZnO, 32% B 2 O 3 and 4% TiO 2 , inorganic binder
  • the melting point is 710°C; the conductive agent is composed of silver powder and palladium powder, and the mass ratio of silver powder and palladium powder is 99.9:0.1.
  • the materials of the first protective layer and the second protective layer are glass glaze layers with an expansion coefficient of 9 ⁇ 10 -6 (1/K); the protective layers are sintered with slurry, and the firing temperature is 800°C.
  • the electromagnetic induction heating elements of each embodiment and the comparative example were placed in the coil magnetic field connected with alternating current, and the current of the temperature measurement circuit was connected to conduct the test.
  • the electromagnetic induction heating element of each embodiment heats up with time, and the resistivity of the temperature measuring line changes with the temperature (the resistivity of the temperature measuring line is calculated according to the voltage and current).
  • the time-temperature curve of Example 1 is shown in FIG. 7 .
  • the temperature of the electromagnetic induction heating element prepared according to Example 1 is controlled by TCR, and the temperature fluctuation accuracy is less than 2°C.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Fixing For Electrophotography (AREA)

Abstract

一种电磁感应发热体(10)和电磁感应发热体组件。该电磁感应发热体(10)包括基体(110)、位于该基体(110)上的绝缘层(120)、和位于该绝缘层(120)上的温感层(130)。基体(110)的材料为金属单质或合金,温感层(130)包括由电阻浆料烧结而成的测温线路(131)。以及一种制备电磁感应发热体的方法。

Description

电磁感应发热体和电磁感应发热体组件
相关申请的交叉引用
本申请要求于2020年7月3日提交中国专利局、申请号为2020106295543、发明名称为“电磁感应发热体和电磁感应发热体组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子雾化器技术领域,特别是涉及一种电磁感应发热体和电磁感应发热体组件。
技术背景
传统雾化介质通过燃烧的方式产生气溶胶,在超过800℃的高温炙烤下会挥发大量的有害物质。为了满足人们对尼古丁的需求,同时降低雾化介质燃烧带来的危害,加热不燃烧气雾形成装置(电子雾化器器具)应运而生。加热不燃烧电子雾化器器具主要是在200℃至400℃的条件下低温烘烤雾化介质,使之产生气溶胶,但又不会产生的大量有害物质。
目前的加热不燃烧电子雾化器器具通过发热体加热雾化介质,发热体主要通过电阻线路发热,然而这种发热方式的热源集中于发热体的电阻线路上,使得发热体表面的温度分布不均匀,容易使得烘烤雾化介质均匀性不够,造成口感不佳。
为解决发热体表面温度不均匀的问题,出现了采用电磁感应发热的发热体,然而,采用电磁感应发热的发热体在感应线圈通电时,很难及时准确地检测发热体上温度。
发明内容
根据本申请的各种实施例,提供一种电磁感应发热体和电磁感应发热体 组件。
一种电磁感应发热体,包括基体、位于所述基体上的绝缘层、和位于所述绝缘层上的温感层。所述基体的材料为金属单质或合金,所述温感层包括由电阻浆料烧结而成的测温线路。
上述电磁感应发热体包括基体、绝缘层和温感层,绝缘层位于基体上,测温层位于绝缘层上,基体在线圈的作用下感应磁场而产生涡旋电流发热,测温线路与基体由绝缘层隔离,测温电路与发热电流相互独立。传统的发热体以电阻发热,需要将大电流供给发热电路,并且同时检测反馈电流,误差大。与传统的发热体相比,上述电磁感应发热体的用于测试温度的电路和用于发热的电路相互独立设置,避免两者相互干扰,且测温线路只需要小电流使其形成电流回路即可,能够准确及时地反应的发热体上的温度。
在其中一个实施例中,所述测温线路的烧结温度为700℃至900℃。
在其中一个实施例中,所述测温线路的方阻为1Ω/sq至5Ω/sq,所述测温线路的电阻温度系数为300ppm/℃至3500ppm/℃。
在其中一个实施例中,所述基体的材料为不锈钢。
在其中一个实施例中,所述绝缘层为膨胀系数为9×10 -6(1/K)至13×10 -6(1/K)的玻璃釉层。
在其中一个实施例中,所述电磁感应发热体还包括位于所述温感层上的保护层。
在其中一个实施例中,所述基体具有第一面和与所述第一面相对的第二面,所述绝缘层包括第一绝缘层和第二绝缘层,所述保护层包括第一保护层和第二保护层,所述第一绝缘层、所述温感层和所述第一保护层在所述第一面上依次层叠,所述第二绝缘层和所述第二保护层在所述第二面上依次层叠。
在其中一个实施例中,所述基体的厚度为0.1mm至1mm。
在其中一个实施例中,所述绝缘层的厚度为10μm至300μm。
在其中一个实施例中,所述温感层的厚度为10μm至300μm。
在其中一个实施例中,所述基体为片状、条状、管状、柱状或圆锥状。
在其中一个实施例中,以质量份数计,所述电阻浆料包括10份至20份的有机载体、30份至45份的无机粘结剂和30份至50份的导电剂,所述无机粘结剂包括玻璃粉,所述导电剂选自银和钯中的至少一种。
在其中一个实施例中,所述导电剂为银和钯的混合物,其中,银与钯的质量之比为(0.1~1):(99.9~99)。
在其中一个实施例中,所述无机粘结剂包括熔点为700℃至780℃的玻璃粉;以质量百分含量计,所述玻璃粉包括20%至35%的SiO 2、1%至10%的Al 2O 3、5%至15%的CaO、10%至20%的BaO、1%至15%的ZnO、25%至40%的B 2O 3和1%至10%的TiO 2
在其中一个实施例中,所述有机载体选自松油醇、乙基纤维素、丁基卡必醇、聚乙烯醇缩丁醛、柠檬酸三丁酯和聚酰胺蜡中的至少一种。
在其中一个实施例中,以质量份数计,所述有机载体的份数为15份至20份,所述无机粘结剂的份数为35份至45份,所述导电剂的份数为40份至50份。
一种电磁感应发热体组件,包括上述电磁感应发热体及围绕于所述电磁感应发热体外用于产生磁场的线圈,所述电磁感应发热体的基体用于感应磁场并产生电流。
一种制备电磁感应发热体的方法,包括:
将绝缘层用浆料、电阻浆料及保护层用浆料依次印刷在基体上,制备电磁感应发热体的生胚;及
将电磁感应发热体的生胚进行烧结,制备电磁感应发热体。
附图说明
通过附图中所示的本申请的优选实施例的更具体说明,本申请的上述及其它目的、特征和优势将变得更加清晰。在全部附图中相同的附图标记指示相同的部分,且并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本申请的主旨。
图1为一实施例的电磁感应发热体。
图2为图1所示的电磁感应发热体的截面图。
图3为图1所示的电磁感应发热体的分解图。
图4为另一实施例的电磁感应发热体的截面图。
图5为一实施例制备电磁感应发热体的方法的流程图。
图6为包括图1所示的电磁感应发热体的电磁感应发热体组件的截面图。
图7为实施例1的时间温度曲线。
具体实施方式
为了便于理解本申请,下面将对本申请进行更全面的描述。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请公开内容更加透彻全面。
需要说明的是,当使用术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”、“内”、“外”、“底部”等指示方位或位置关系时,是为基于附图所示的方位或位置关系,仅为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
参阅图1至图3,本申请一实施方式提供了一种电磁感应发热体10,该电磁感应发热体10利用电磁感应发热,包括基体110、绝缘层120和温感层130。
基体110用于承载绝缘层120和温感层130。在一个实施例中,基体110的材料为金属或合金。通过金属基体110与线圈的作用,使得基体110感应通电线圈产生的磁场而产生涡流而发热。在本实施方式中,基体110的材料 为不锈钢。具体地,基体110的材料为430不锈钢。当然,在其他实施方式中,基体110的材料不限于不锈钢,还可以是其他能够利用电磁感应发热的材料。例如,铝、镍、钴等。
在其中一个实施例中,基体110的形状为片状、条状、管状、柱状或圆锥状。当然,在其他实施例中,基体110的形状不限于上述,还可以是其他形状。在一些实施例中,基体110具有本体和与本体连接的尖部,尖部的宽度从靠近主体的一端向远离主体的一端逐渐减少,以便于雾化介质的拔插。
在图1所示的实施例中,基体110的形状为片状,本体在水平面的正投影为矩形,尖部在水平面的正投影为等腰三角形,其中等腰三角形的底为矩形的宽。当基体110为片状时,电磁感应发热体10的形状也大致呈片状。在使用时,将雾化介质插到电磁感应发热体10上,线圈围绕于雾化介质外部,雾化介质位于电磁感应发热体10和线圈之间。
参阅图4,在另一个实施例中,基体210的形状为管状,绝缘层220层叠于管状的基体210的外表面上,温感层230层叠于绝缘层220远离基体210一侧的表面上。当基体210为管状时,电磁感应发热体10的形状也大致呈管状。在使用时,将雾化介质置于基体210内,线圈围绕于电磁感应发热体10的外部,电磁感应发热体10位于雾化介质和线圈之间。当然,基体210的厚度和材料与基体110可以具有相同的选择范围,绝缘层220的厚度和材料与绝缘层120可以具有相同的选择范围,测温层230的厚度和材料与测温层130也可以具有相同的选择范围。
在其中一个实施例中,基体110的厚度为0.1mm至1mm。当然,在其他一些实施例中,基体110的厚度不限于上述,还可以根据实际需求进行调整。
参阅图1和图3,绝缘层120位于基体110上,具有绝缘和导热功能。在一个实施例中,绝缘层120的材料为膨胀系数为9×10 -6(1/K)至13×10 -6(1/K)的玻璃釉层。当然,绝缘层120的材料不限于热膨胀系数为9×10 -6(1/K)至13×10 -6(1/K)的玻璃釉层,在其他一些实施例中,绝缘层120的材料还可以是其他具有绝缘和导热功能的材料。
在其中一个实施例中,绝缘层120为片状。在图示的实施方式中,绝缘层120的形状与基体110的形状相同。基体110具有第一面111和与第一面111相对的第二面112,绝缘层120包括第一绝缘层121和第二绝缘层122,第一绝缘层121位于第一面111上,第二绝缘层122位于第二面112上。
在其中一个实施例中,绝缘层120的厚度为10μm至300μm。在其他实施例中,绝缘层120的厚度为30μm至200μm。可以理解的是,在其他实施例中,绝缘层120的厚度不限于上述,还可以根据实际需求进行调整。
温感层130位于绝缘层120上,用于检测电磁感应发热体10的温度。温感层130包括测温线路131和与测温线路131电连接的连接线路132。测温线路131用于检测电磁感应发热体10的温度,由电阻浆料烧结而成。连接线路132用于连接测温线路131和电源,为测温线路131供电。
在其中一个实施例中,温感层130设于绝缘层120上与线圈对应的区域,无磁场分布的区域无测温线路131。也即是,电磁感应发热体10的发热区域对应设有测温线路131而不发热区域不必设置测温线路131,以节省材料。在一些实施例中,测温线路131位于第一绝缘层121的部分表面。在图示的实施方式中,测温线路131大致呈U形。当然,在其他实施方式中,测温线路131的形状不限于上述,还可以是其他形状,例如Z形。
在其中一个实施例中,测温线路131的方阻为1Ω/sq至5Ω/sq,测温线路131的电阻温度系数为300ppm/℃至3500ppm/℃。在其他实施例中,测温线路131的方阻为2Ω/sq至4Ω/sq,测温线路131的电阻温度系数为700ppm/℃至2000ppm/℃。
在一个实施例中,制备测温线路131的电阻浆料包括有机载体、无机粘结剂和导电剂。以质量份数计,电阻浆料包括10份至20份的有机载体、30份至45份的无机粘结剂和30份至50份的导电剂。无机粘结剂包括玻璃粉,导电剂选自银和钯中的至少一种。按照电阻浆料制得的测温线路131的方阻为1Ω/sq至5Ω/sq,电阻温度系数为300ppm/℃至3500ppm/℃,更能够准确及时地反应电磁加热的发热体上的温度。
在其中一个实施例中,有机载体选自松油醇、乙基纤维素、丁基卡必醇、聚乙烯醇缩丁醛、柠檬酸三丁酯和聚酰胺蜡中的至少一种。
在其中一个实施例中,有机载体由松油醇、乙基纤维素、丁基卡必醇、聚乙烯醇缩丁醛、柠檬酸三丁酯和聚酰胺蜡组成。将由松油醇、乙基纤维素、丁基卡必醇、聚乙烯醇缩丁醛、柠檬酸三丁酯和聚酰胺蜡组成的混合物作为有机载体,能够使得无机粘结剂与导电剂均匀混合。在一个实施例中,以质量百分含量计,有机载体包括50%至70%的松油醇、2%至10%的乙基纤维素、10%至30%的丁基卡必醇、1%至5%的聚乙烯醇缩丁醛、4%至10%的柠檬酸三丁酯和0.1%至1%的聚酰胺蜡。在另一个实施例中,以质量百分含量计,有机载体包括60%至70%的松油醇、3%至7%的乙基纤维素、15%至25%的丁基卡必醇、1%至4%的聚乙烯醇缩丁醛、4%至8%的柠檬酸三丁酯和0.1%至0.5%的聚酰胺蜡。
在其中一个实施例中,以质量份数计,有机载体的份数为15份至20份。进一步地,有机载体的份数为15份至18份。
在其中一个实施例中,无机粘结剂包括熔点为700℃至780℃的玻璃粉。在一个实施例中,以质量百分含量计,熔点为700℃至780℃的玻璃粉包括20%至35%的SiO 2、1%至10%的Al 2O 3、5%至15%的CaO、10%至20%的BaO、1%至15%的ZnO、25%至40%的B 2O 3和1%至10%的TiO 2。在另一个实施例中,熔点为700℃至780℃的玻璃粉包括20%至35%的SiO 2、1%至10%的Al 2O 3、5%至15%的CaO、10%至20%的BaO、1%至15%的ZnO、25%至40%的B 2O 3和1%至10%的TiO 2
在其中一个实施例中,无机粘结剂为熔点为700℃至780℃的玻璃粉。无机粘结剂为熔点为700℃至780℃的玻璃粉时,能够使得测温线路在较低温度下烧结形成,且与绝缘层的烧结温度相近。在另一个实施例中,无机粘结剂为熔点为720℃至780℃的玻璃粉。当然,在其他实施例中,无机粘结剂不限于玻璃粉,还可以是其他材料。
在其中一个实施例中,以质量份数计,无机粘结剂的份数为35份至45 份。在另一个实施例中,以质量份数计,无机粘结剂的份数为35份至40份。
在其中一个实施例中,导电剂为银和钯的混合物,其中,银与钯的质量之比为(0.1~1):(99.9~99)。在另一个实施例中,银与钯的质量之比为(0.5~0.8):(99.5~99.2)。
在本实施方式中,导电剂为粉体。
在其中一个实施例中,以质量份数计,导电剂的份数为40份至50份。在另一个实施例中,以质量份数计,导电剂的份数为45份至50份。
在其中一个实施例中,电阻浆料由有机载体、无机粘结剂和导电剂组成,以质量份数计,有机载体的份数为10份至20份,无机粘结剂的份数为30份至45份,导电剂的份数为30份至50份。在另一个实施例中,有机载体的份数为15份至18份,无机粘结剂的份数为35份至40份,导电剂的份数为45份至50份。
在其中一个实施例中,电阻浆料包括有机载体、无机粘结剂和导电剂,以质量份数计,有机载体的份数为15份至20份,无机粘结剂的份数为35份至45份,导电剂的份数为40份至50份。在另一个实施例中,有机载体的份数为15份至18份,无机粘结剂的份数为35份至40份,导电剂的份数为45份至50份。
在其中一个实施例中,无机粘结剂和导电剂的质量之比为(5~9):(6~10)。将电阻浆料中的有机载体、无机粘结剂和导电剂按照上述比例设置,能够使得测温线路具更好的电阻温度系数(TCR)特性。
在其中一个实施例中,测温线路的烧结温度为700℃至900℃。在另一个实施例中,烧结的温度为800℃至900℃。
在其中一个实施例中,测温线路131的厚度为10μm至300μm。当然,在其他一些实施例中,测温线路131不限于上述,还可以根据实际需求进行调整。
当然,连接线路132的材料没有特别限定,能导电即可。连接线路132的厚度为50μm至500μm。当然,在其他一些实施例中,连接线路132不限 于上述,还可以根据实际需求进行调整。
在其中一个实施例中,电磁感应发热体10还包括保护层140,保护层140具有绝缘功能。在一个实施例中,保护层140的材料为玻璃。在一些实施例中,保护层140还具有抗粘性,用于减少雾化介质粘附。
在其中一个实施例中,保护层140的厚度为10μm至200μm。当然,在其他一些实施例中,保护层140的厚度不限于上述,还可以根据实际需求进行调整。
在图示的实施方式中,保护层140包括第一保护层141和第二保护层142。第一保护层141位于温感层130上,第二保护层142位于第二绝缘层122上。当然,在其他一些实施方式中,在第二绝缘层122上也可以设置温感层130,此时,保护层140则设于温感层130上。
上述电磁感应发热体10包括基体110、位于基体110上的绝缘层120和位于绝缘层120上的温感层130。基体110的材料为金属,温感层130包括由电阻浆料烧结而成的测温线路131,该测温线路131的方阻为1Ω/sq至5Ω/sq,电阻温度系数为300ppm/℃至3500ppm/℃,能够准确及时地反应电磁加热的电磁感应发热体10上的温度。此外,传统的发热体以电阻发热,需要将大电流供给发热电路,并且同时检测反馈电流,误差大。与传统的发热体相比,上述电磁感应发热体10的用于测试温度的电路和用于发热的电路相互独立设置,避免两者相互干扰,且测温线路131只需要小电流使其形成电流回路即可。
本申请一实施方式还提供一种制备上述电磁感应发热体的方法,该制备方法包括:
步骤S100,将绝缘层用浆料、电阻浆料及保护层用浆料依次印刷在基体上,制备电磁感应发热体的生胚。
具体地,将绝缘层用浆料印刷在基体上,干燥成型,制得第一胚体;接着将电阻浆料印刷在第一胚体上,干燥成型,制得第二胚体;接着将保护层用浆料印刷在第二胚体上,干燥,得到电磁感应发热体的生胚。
当然,在其他一些实施例中,也可以将绝缘层用浆料、电阻浆料及保护层用浆料依次印刷在基体上之后,干燥,制备电磁感应发热体的生胚。需要说明的是,电阻浆料如上文描述,此处不再赘述;绝缘层用浆料和保护层用浆料可以根据需要制备的上述绝缘层和上述保护层的材质进行对应选择。
步骤S200,将电磁感应发热体的生胚进行烧结,制备电磁感应发热体。
在其中一个实施例中,烧结的温度为700℃至900℃。在另一个实施例中,烧结的温度为800℃至900℃。按照上述烧结温度对电磁感应发热体的生胚进行烧结,烧结温度较低,可以使得电磁感应发热体烧结中减少有害物质产生。
参阅图6,本申请一实施方式还提供一种加热装置,该加热装置利用电磁感应加热。在本实施例中,加热装置包括电磁感应发热体组件30、底座和调控模块,电磁感应发热体组件30包括上述电磁感应发热体10和围绕于该电磁感应发热体外用于产生磁场的线圈20,电磁感应发热体10安装于底座上,调控模块用于调整加热温度,电磁感应发热体10的基体用于感应线圈20产生的磁场并产生电流。
在一个实施例中,电磁感应发热体10为片状,电磁感应发热体10的一端安装于底座上。
使用加热装置时,将雾化介质与电磁感应发热体10接触,使电磁感应发热体10加热雾化介质。在一个实施例中,当电磁感应发热体10为片状时,将雾化介质插到电磁感应发热体10上,并使20线圈位于雾化介质的外部,进而通过电磁感应发热体10感应线圈20产生的磁场而发热以加热插在电磁感应发热体10的雾化介质。在另一个实施例中,当电磁感应发热体10为管状时,将雾化介质置于电磁感应发热体10的管状基体的内部,并使线圈20位于电磁感应发热体10的外部,进而通过电磁感应发热体10感应线圈20产生的磁场而发热以加热电磁感应发热体10内部的雾化介质。
上述加热装置具有能够准确及时反应电磁感应发热体温度的电磁感应发热体10,使得该加热装置能够根据温感层反应的温度及时调整加热温度,从而使得该加热装置加热更均匀,加热调控更及时也更准确,提高用户体验。
具体实施例
以下结合具体实施例进行详细说明。实施例中采用药物和仪器如非特别说明,均为本领域常规选择。实施例中未注明具体条件的实验方法,按照常规条件,例如文献、书本中所述的条件或者生产厂家推荐的方法实现。以下实施例中的份数均为质量份数。
实施例1
实施例1的电磁感应发热体的结构如图1所示,实施例1的电磁感应发热体由基体、第一绝缘层、第二绝缘层、温感层、第一保护层和第二保护层组成。基体为片状,具有第一面和与第一面相对的第二面,第一绝缘层位于第一面上,第二绝缘层位于第一面上,温感层位于第一绝缘层上,第一保护层位于温感层上,第二保护层位于第二绝缘层上。基体的厚度为0.5mm,第一绝缘层的厚度为200μm,第二绝缘层的厚度为200μm、温感层的厚度为150μm、第一保护层的厚度为100μm,第二保护层的厚度为100μm。
基体的材料为430不锈钢;第一绝缘层和第二绝缘层的材料均是膨胀系数为9×10 -6(1/K)的玻璃釉层,第一绝缘层和第二绝缘层由绝缘层用浆料烧结而成,烧结温度为800℃。温感层的测温线路的方阻为1.2±0.1Ω/sq,阻值大于20Ω,测温线路的电阻温度系数为3300±50ppm/℃;测温线路由电阻浆料在800℃条件下烧结而成,电阻浆料由16份的有机载体、36份无机粘结剂和48份的导电剂组成,其中:以质量百分含量计,有机载体由64%的松油醇、4.8%的乙基纤维、24%的丁基卡必醇、2%的聚乙烯醇缩丁醛、5%的柠檬酸三丁酯和0.2%的聚酰胺蜡组成;无机粘结剂为玻璃粉,以质量百分含量计,玻璃粉由30%的SiO 2、5%的Al 2O 3、8%的CaO、16%的BaO、5%的ZnO、32%的B 2O 3和4%的TiO 2组成,无机粘结剂的熔点710℃;导电剂由银粉和钯粉组成,银粉与钯粉的质量之比为99.2:0.8。
第一保护层和第二保护层的材料均是膨胀系数为9×10 -6(1/K)的玻璃釉层;由保护层用浆料烧结而成,烧结温度为800℃。
实施例2
实施例2的电磁感应发热体的结构如图1所示,实施例2的电磁感应发热体由基体、第一绝缘层、第二绝缘层、温感层、第一保护层和第二保护层组成。基体为片状,具有第一面和与第一面相对的第二面,第一绝缘层位于第一面上,第二绝缘层位于第一面上,温感层位于第一绝缘层上,第一保护层位于温感层上,第二保护层位于第二绝缘层上。基体的厚度为0.5mm,第一绝缘层的厚度为200μm,第二绝缘层的厚度为200μm、温感层的厚度为150μm、第一保护层的厚度为100μm,第二保护层的厚度为100μm。
基体的材料为430不锈钢;第一绝缘层和第二绝缘层的材料均是膨胀系数为9×10 -6(1/K)的玻璃釉层,第一绝缘层和第二绝缘层由绝缘层用浆料烧结而成,烧结温度为800℃。温感层的测温线路的方阻为2.5±0.3Ω/sq,测温线路的电阻温度系数为3200±50ppm/℃;测温线路由电阻浆料在800℃条件下烧结而成,电阻浆料由16份的有机载体、40份无机粘结剂和44份的导电剂组成,其中:以质量百分含量计,有机载体由70%的松油醇、4.2%的乙基纤维、20%的丁基卡必醇、1.6%的聚乙烯醇缩丁醛、4%的柠檬酸三丁酯和0.2%的聚酰胺蜡组成;无机粘结剂为玻璃粉,以质量百分含量计,玻璃粉由28%的SiO 2、8%的Al 2O 3、8%的CaO、14%的BaO、7%的ZnO、30%的B 2O 3和5%的TiO 2组成,无机粘结剂的熔点730℃;导电剂由银粉和钯粉组成,银粉与钯粉的质量之比为99:1。
第一保护层和第二保护层的材料均是膨胀系数为9×10 -6(1/K)的玻璃釉层;由保护层用浆料烧结而成,烧结温度为800℃。
实施例3
实施例3的电磁感应发热体的结构如图1所示,实施例3的电磁感应发热体由基体、第一绝缘层、第二绝缘层、温感层、第一保护层和第二保护层组成。基体为片状,具有第一面和与第一面相对的第二面,第一绝缘层位于 第一面上,第二绝缘层位于第一面上,温感层位于第一绝缘层上,第一保护层位于温感层上,第二保护层位于第二绝缘层上。基体的厚度为0.5mm,第一绝缘层的厚度为200μm,第二绝缘层的厚度为200μm、温感层的厚度为150μm、第一保护层的厚度为100μm,第二保护层的厚度为100μm。
基体的材料为430不锈钢;第一绝缘层和第二绝缘层的材料均是膨胀系数为9×10 -6(1/K)的玻璃釉层,第一绝缘层和第二绝缘层由绝缘层用浆料烧结而成,烧结温度为800℃。温感层的测温线路的方阻为1.2±0.1Ω/sq,测温线路的电阻温度系数为3300±50ppm/℃;测温线路由电阻浆料在800℃条件下烧结而成,电阻浆料由10份的有机载体、45份无机粘结剂和45份的导电剂组成,其中:以质量百分含量计,有机载体由64%的松油醇、4.8%的乙基纤维、24%的丁基卡必醇、2%的聚乙烯醇缩丁醛、5%的柠檬酸三丁酯和0.2%的聚酰胺蜡组成;无机粘结剂为玻璃粉,以质量百分含量计,玻璃粉由30%的SiO 2、5%的Al 2O 3、8%的CaO、16%的BaO、5%的ZnO、32%的B 2O 3和4%的TiO 2组成,无机粘结剂的熔点710℃;导电剂由银粉和钯粉组成,银粉与钯粉的质量之比为99.2:0.8。
第一保护层和第二保护层的材料均是膨胀系数为9×10 -6(1/K)的玻璃釉层;由保护层用浆料烧结而成,烧结温度为800℃。
实施例4
实施例4的电磁感应发热体的结构如图1所示,实施例4的电磁感应发热体由基体、第一绝缘层、第二绝缘层、温感层、第一保护层和第二保护层组成。基体为片状,具有第一面和与第一面相对的第二面,第一绝缘层位于第一面上,第二绝缘层位于第一面上,温感层位于第一绝缘层上,第一保护层位于温感层上,第二保护层位于第二绝缘层上。基体的厚度为0.5mm,第一绝缘层的厚度为200μm,第二绝缘层的厚度为200μm、温感层的厚度为150μm、第一保护层的厚度为100μm,第二保护层的厚度为100μm。
基体的材料为430不锈钢;第一绝缘层和第二绝缘层的材料均是膨胀系 数为9×10 -6(1/K)的玻璃釉层,第一绝缘层和第二绝缘层由绝缘层用浆料烧结而成,烧结温度为800℃。温感层的测温线路的方阻为1.2±0.1Ω/sq,测温线路的电阻温度系数为3300±50ppm/℃;测温线路由电阻浆料在800℃条件下烧结而成,电阻浆料由20份的有机载体、30份无机粘结剂和50份的导电剂组成,其中:以质量百分含量计,有机载体由64%的松油醇、4.8%的乙基纤维、24%的丁基卡必醇、2%的聚乙烯醇缩丁醛、5%的柠檬酸三丁酯和0.2%的聚酰胺蜡组成;无机粘结剂为玻璃粉,以质量百分含量计,玻璃粉由30%的SiO 2、5%的Al 2O 3、8%的CaO、16%的BaO、5%的ZnO、32%的B 2O 3和4%的TiO 2组成,无机粘结剂的熔点710℃;导电剂由银粉和钯粉组成,银粉与钯粉的质量之比为99.2:0.8。
第一保护层和第二保护层的材料均是膨胀系数为9×10 -6(1/K)的玻璃釉层;由保护层用浆料烧结而成,烧结温度为800℃。
实施例5
实施例5的电磁感应发热体的结构如图1所示,实施例5的电磁感应发热体由基体、第一绝缘层、第二绝缘层、温感层、第一保护层和第二保护层组成。基体为片状,具有第一面和与第一面相对的第二面,第一绝缘层位于第一面上,第二绝缘层位于第一面上,温感层位于第一绝缘层上,第一保护层位于温感层上,第二保护层位于第二绝缘层上。基体的厚度为0.5mm,第一绝缘层的厚度为200μm,第二绝缘层的厚度为200μm、温感层的厚度为150μm、第一保护层的厚度为100μm,第二保护层的厚度为100μm。
基体的材料为430不锈钢;第一绝缘层和第二绝缘层的材料均是膨胀系数为9×10 -6(1/K)的玻璃釉层,第一绝缘层和第二绝缘层由绝缘层用浆料烧结而成,烧结温度为800℃。温感层的测温线路的方阻为1.2±0.1Ω/sq,测温线路的电阻温度系数为3300±50ppm/℃;测温线路由电阻浆料在800℃条件下烧结而成,电阻浆料由16份的有机载体、36份无机粘结剂和48份的导电剂组成,其中:以质量百分含量计,有机载体由64%的松油醇、4.8%的乙 基纤维、24%的丁基卡必醇、2%的聚乙烯醇缩丁醛、5%的柠檬酸三丁酯和0.2%的聚酰胺蜡组成;无机粘结剂为玻璃粉,以质量百分含量计,玻璃粉由30%的SiO 2、5%的Al 2O 3、8%的CaO、16%的BaO、5%的ZnO、32%的B 2O 3和4%的TiO 2组成,无机粘结剂的熔点710℃;导电剂由银粉和钯粉组成,银粉与钯粉的质量之比为99.9:0.1。
第一保护层和第二保护层的材料均是膨胀系数为9×10 -6(1/K)的玻璃釉层;由保护层用浆料烧结而成,烧结温度为800℃。
测试
将各实施例和对比例的电磁感应发热体分别置于接通交流电的线圈磁场中,并接通测温线路电流进行测试。各实施例的电磁感应发热体随时间升温,测温线路电阻率随温度变化(测温线路电阻率根据电压及电流计算得出)。其中,实施例1的时间温度曲线如图7所示。
由图7可以看出,按照实施例1制得的电磁感应发热体通过TCR控温,达到温度波动小于2℃的精度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种电磁感应发热体,包括基体、位于所述基体上的绝缘层、和位于所述绝缘层上的温感层,所述基体的材料为金属单质或合金,所述温感层包括由电阻浆料烧结而成的测温线路。
  2. 根据权利要求1所述的电磁感应发热体,其中,所述测温线路的烧结温度为700℃至900℃。
  3. 根据权利要求1所述的电磁感应发热体,其中,所述测温线路的方阻为1Ω/sq至5Ω/sq,所述测温线路的电阻温度系数为300ppm/℃至3500ppm/℃。
  4. 根据权利要求1所述的电磁感应发热体,其中,所述基体的材料为不锈钢。
  5. 根据权利要求1所述的电磁感应发热体,其中,所述绝缘层为膨胀系数为9×10 -6(1/K)至13×10 -6(1/K)的玻璃釉层。
  6. 根据权利要求1至5任一项所述的电磁感应发热体,其中,所述电磁感应发热体还包括位于所述温感层上的保护层。
  7. 根据权利要求6所述的电磁感应发热体,其中,所述基体具有第一面和与所述第一面相对的第二面,所述绝缘层包括第一绝缘层和第二绝缘层,所述保护层包括第一保护层和第二保护层,所述第一绝缘层、所述温感层和所述第一保护层在所述第一面上依次层叠,所述第二绝缘层和所述第二保护层在所述第二面上依次层叠。
  8. 根据权利要求1所述的电磁感应发热体,其中,所述基体的厚度为0.1mm至1mm。
  9. 根据权利要求1所述的电磁感应发热体,其中,所述绝缘层的厚度为10μm至300μm。
  10. 根据权利要求1所述的电磁感应发热体,其中,所述温感层的厚度为10μm至300μm。
  11. 根据权利要求1所述的电磁感应发热体,其中,所述基体为片状、 条状、管状、柱状或圆锥状。
  12. 根据权利要求1所述的电磁感应发热体,其中,以质量份数计,所述电阻浆料包括10份至20份的有机载体、30份至45份的无机粘结剂和30份至50份的导电剂,所述无机粘结剂包括玻璃粉,所述导电剂选自银和钯中的至少一种。
  13. 根据权利要求12所述的电磁感应发热体,其中,所述导电剂为银和钯的混合物,其中,银与钯的质量之比为(0.1~1):(99.9~99)。
  14. 根据权利要求12所述的电磁感应发热体,其中,所述无机粘结剂包括熔点为700℃至780℃的玻璃粉;以质量百分含量计,所述玻璃粉包括20%至35%的SiO 2、1%至10%的Al 2O 3、5%至15%的CaO、10%至20%的BaO、1%至15%的ZnO、25%至40%的B 2O 3和1%至10%的TiO 2
  15. 根据权利要求12所述的电磁感应发热体,其中,所述有机载体选自松油醇、乙基纤维素、丁基卡必醇、聚乙烯醇缩丁醛、柠檬酸三丁酯和聚酰胺蜡中的至少一种。
  16. 根据权利要求12至15任一项所述的电磁感应发热体,其中,以质量份数计,所述有机载体的份数为15份至20份,所述无机粘结剂的份数为35份至45份,所述导电剂的份数为40份至50份。
  17. 一种电磁感应发热体组件,包括权利要求1至16任一项所述电磁感应发热体及围绕于所述电磁感应发热体外用于产生磁场的线圈,所述电磁感应发热体的基体用于感应磁场并产生电流。
  18. 一种制备电磁感应发热体的方法,包括:
    将绝缘层用浆料、电阻浆料及保护层用浆料依次印刷在基体上,制备电磁感应发热体的生胚;及
    将电磁感应发热体的生胚进行烧结,制备电磁感应发热体。
PCT/CN2021/103948 2020-07-03 2021-07-01 电磁感应发热体和电磁感应发热体组件 WO2022002187A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21833684.0A EP4176742A1 (en) 2020-07-03 2021-07-01 Electromagnetic induction heating element and electromagnetic induction heating element assembly
US18/091,811 US20230135881A1 (en) 2020-07-03 2022-12-30 Electromagnetic induction heating element and electromagnetic induction heating element assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010629554.3A CN111972720A (zh) 2020-07-03 2020-07-03 电磁感应发热体和电磁感应发热体组件
CN202010629554.3 2020-07-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/091,811 Continuation US20230135881A1 (en) 2020-07-03 2022-12-30 Electromagnetic induction heating element and electromagnetic induction heating element assembly

Publications (1)

Publication Number Publication Date
WO2022002187A1 true WO2022002187A1 (zh) 2022-01-06

Family

ID=73438938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103948 WO2022002187A1 (zh) 2020-07-03 2021-07-01 电磁感应发热体和电磁感应发热体组件

Country Status (4)

Country Link
US (1) US20230135881A1 (zh)
EP (1) EP4176742A1 (zh)
CN (1) CN111972720A (zh)
WO (1) WO2022002187A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111972720A (zh) * 2020-07-03 2020-11-24 深圳麦克韦尔科技有限公司 电磁感应发热体和电磁感应发热体组件
CN112773000A (zh) * 2021-02-07 2021-05-11 深圳市吉迩科技有限公司 一种涡流加热的发热组件及气溶胶生成装置
CN112826151A (zh) * 2021-02-26 2021-05-25 深圳市吉迩科技有限公司 一种涡流发热体和气溶胶发生装置
CN113197358A (zh) * 2021-03-22 2021-08-03 深圳市基克纳科技有限公司 一种片式烤烟金属陶瓷加热芯
CN113197368B (zh) * 2021-05-07 2024-01-26 深圳市吉迩科技有限公司 一种可测温的气溶胶发生装置及温度测量方法
CN113455712A (zh) * 2021-06-21 2021-10-01 深圳麦时科技有限公司 发热体组件和气溶胶产生装置
CN215958282U (zh) * 2021-09-02 2022-03-08 汉桦生物科技(海南洋浦)有限公司 可两用加热式气溶胶发生芯条、基材及装置
CN113951576A (zh) * 2021-09-29 2022-01-21 广东中烟工业有限责任公司 一种电磁加热针及具有其的加热卷烟器具
CN115363270A (zh) * 2022-07-29 2022-11-22 深圳麦克韦尔科技有限公司 发热体及电子雾化装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812673A (zh) * 2006-02-20 2006-08-02 张敬胜 电磁发热器及带有电磁发热器的电磁炉
CN101005719A (zh) * 2006-01-17 2007-07-25 宁波市塞纳电热电器有限公司 金属基板印刷电路加热体及其制备技术
CN101539289A (zh) * 2009-04-29 2009-09-23 中冶京诚工程技术有限公司 电磁感应式蒸汽过热系统
CN205017608U (zh) * 2015-09-30 2016-02-03 山西长生伟业热能科技有限公司 一种功能膜陶瓷电阻电加热元件
CN209788480U (zh) * 2019-01-26 2019-12-17 深圳市合元科技有限公司 烟支加热组件及电加热吸烟装置
CN111165875A (zh) * 2020-03-09 2020-05-19 深圳易佳特科技有限公司 一种温控高频加热一体水烟
WO2020130752A1 (ko) * 2018-12-21 2020-06-25 주식회사 이엠텍 유도가열히터를 갖는 미세입자발생장치
CN111743205A (zh) * 2020-05-27 2020-10-09 深圳麦克韦尔科技有限公司 发热体和加热装置
CN111972720A (zh) * 2020-07-03 2020-11-24 深圳麦克韦尔科技有限公司 电磁感应发热体和电磁感应发热体组件

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI349946B (en) * 2007-12-26 2011-10-01 Ind Tech Res Inst Method for fabricating negative temperature coefficient thermistor
CN102568650B (zh) * 2012-01-10 2014-03-12 华东微电子技术研究所合肥圣达实业公司 一种ntc热敏电阻专用银电极浆料及其制备方法
US20170119049A1 (en) * 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Article for Use with Apparatus for Heating Smokable Material
CN106098140A (zh) * 2016-05-23 2016-11-09 东莞珂洛赫慕电子材料科技有限公司 一种基于不锈钢基材的ptc热敏电阻浆料及其制备方法
CN114009837A (zh) * 2016-10-19 2022-02-08 尼科创业贸易有限公司 气溶胶供应装置
EP3409467B1 (de) * 2017-05-30 2019-07-03 Heraeus Nexensos GmbH Heizer mit einem co-gesinterten mehrschichtenaufbau
CN109892700B (zh) * 2017-12-11 2024-01-23 湖南中烟工业有限责任公司 基于电磁加热的低温烟具模组及低温烟具
CN109619702A (zh) * 2018-02-12 2019-04-16 广东天物新材料科技有限公司 一种电子烟的发热体
CN109619703A (zh) * 2018-02-12 2019-04-16 广东天物新材料科技有限公司 一种电子烟发热体
CN210445692U (zh) * 2018-02-12 2020-05-05 广东天物新材料科技有限公司 一种感应发热的电子烟发热体
CN209047462U (zh) * 2018-08-02 2019-07-02 中新国际电子有限公司 一种电子烟
CN109053158B (zh) * 2018-08-28 2021-11-05 深圳市汇北川电子技术有限公司 热敏陶瓷粉体、ntc热敏芯片、温度传感器及制备方法
WO2020086617A1 (en) * 2018-10-22 2020-04-30 Juul Labs, Inc. Vaporizer heater and temperature sensing element
CN109741894B (zh) * 2019-01-14 2021-06-25 深圳顺络电子股份有限公司 一种片式负温度系数热敏电阻的制造方法
CN111084425A (zh) * 2020-01-21 2020-05-01 深圳御烟实业有限公司 电加热元件和气溶胶生成装置及制备方法和控制加热方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005719A (zh) * 2006-01-17 2007-07-25 宁波市塞纳电热电器有限公司 金属基板印刷电路加热体及其制备技术
CN1812673A (zh) * 2006-02-20 2006-08-02 张敬胜 电磁发热器及带有电磁发热器的电磁炉
CN101539289A (zh) * 2009-04-29 2009-09-23 中冶京诚工程技术有限公司 电磁感应式蒸汽过热系统
CN205017608U (zh) * 2015-09-30 2016-02-03 山西长生伟业热能科技有限公司 一种功能膜陶瓷电阻电加热元件
WO2020130752A1 (ko) * 2018-12-21 2020-06-25 주식회사 이엠텍 유도가열히터를 갖는 미세입자발생장치
CN209788480U (zh) * 2019-01-26 2019-12-17 深圳市合元科技有限公司 烟支加热组件及电加热吸烟装置
CN111165875A (zh) * 2020-03-09 2020-05-19 深圳易佳特科技有限公司 一种温控高频加热一体水烟
CN111743205A (zh) * 2020-05-27 2020-10-09 深圳麦克韦尔科技有限公司 发热体和加热装置
CN111972720A (zh) * 2020-07-03 2020-11-24 深圳麦克韦尔科技有限公司 电磁感应发热体和电磁感应发热体组件

Also Published As

Publication number Publication date
US20230135881A1 (en) 2023-05-04
CN111972720A (zh) 2020-11-24
EP4176742A1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2022002187A1 (zh) 电磁感应发热体和电磁感应发热体组件
WO2021228153A1 (zh) 发热组件及加热雾化装置
EP4023090B1 (en) Heating apparatus for an electronic cigarette and electronic cigarette having same
WO2022068231A1 (zh) 发热体、发热组件和加热装置
CN104754780B (zh) 一种陶瓷电热组件及其制备方法
CN109068417A (zh) 一种加热装置及其制备方法、气溶胶产生装置
CN105979614A (zh) 一种电加热器及电子烟
JP7443574B2 (ja) 発熱アセンブリ及び加熱装置
WO2023093535A1 (zh) 加热组件及气溶胶生成装置
WO2021104472A1 (zh) 加热器以及包括该加热器的烟具
WO2023216701A1 (zh) 加热组件及气溶胶产生装置
WO2023124519A1 (zh) 加热元件及电子雾化装置
WO2023083016A1 (zh) 发热组件、发热组件的制备方法及电子雾化装置
US20220408814A1 (en) Heater and cigarette device having same
CN217218203U (zh) 加热组件及气溶胶生成装置
CN209573237U (zh) 一种电子烟的加热体
CN205812414U (zh) 一种电加热器及电子烟
WO2020244682A1 (zh) 一种加热元件及雾化设备
WO2022142928A1 (zh) 发热管及其制造方法和气溶胶产生装置
CN212911679U (zh) 发热组件及加热雾化装置
CN115736369A (zh) 气溶胶产生装置及其发热结构
JPH0745357A (ja) セラミックヒーター
CN220274930U (zh) 一种针式加热体及气溶胶产生装置
CN220274931U (zh) 一种针式加热体及气溶胶产生装置
JP7516570B2 (ja) 発熱体、発熱アセンブリ及び加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 21833684

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833684

Country of ref document: EP

Effective date: 20230203