WO2022002169A1 - 热电堆传感器及其制作方法、电子设备 - Google Patents

热电堆传感器及其制作方法、电子设备 Download PDF

Info

Publication number
WO2022002169A1
WO2022002169A1 PCT/CN2021/103821 CN2021103821W WO2022002169A1 WO 2022002169 A1 WO2022002169 A1 WO 2022002169A1 CN 2021103821 W CN2021103821 W CN 2021103821W WO 2022002169 A1 WO2022002169 A1 WO 2022002169A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermopile
plate
heat radiation
substrate
layer
Prior art date
Application number
PCT/CN2021/103821
Other languages
English (en)
French (fr)
Inventor
黄河
Original Assignee
中芯集成电路(宁波)有限公司上海分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010617243.5A external-priority patent/CN112117370B/zh
Priority claimed from CN202010615286.XA external-priority patent/CN112117366B/zh
Priority claimed from CN202010617274.0A external-priority patent/CN112117363B/zh
Priority claimed from CN202010615288.9A external-priority patent/CN112117367B/zh
Priority claimed from CN202010615291.0A external-priority patent/CN112117368B/zh
Priority claimed from CN202010617271.7A external-priority patent/CN112117373B/zh
Priority claimed from CN202010617265.1A external-priority patent/CN112117372B/zh
Priority claimed from CN202010615313.3A external-priority patent/CN112117369B/zh
Priority claimed from CN202010617264.7A external-priority patent/CN112117371B/zh
Priority claimed from CN202010615259.2A external-priority patent/CN112117361B/zh
Priority claimed from CN202010615301.0A external-priority patent/CN112117362B/zh
Priority claimed from CN202010615245.0A external-priority patent/CN112117364B/zh
Priority claimed from CN202010622625.7A external-priority patent/CN112038475B/zh
Priority claimed from CN202010615278.5A external-priority patent/CN112117365A/zh
Priority claimed from CN202010617292.9A external-priority patent/CN112117374A/zh
Priority claimed from CN202010622619.1A external-priority patent/CN112038476B/zh
Application filed by 中芯集成电路(宁波)有限公司上海分公司 filed Critical 中芯集成电路(宁波)有限公司上海分公司
Publication of WO2022002169A1 publication Critical patent/WO2022002169A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the invention relates to the technical field of sensor manufacturing, in particular to a thermopile sensor, a manufacturing method thereof, and an electronic device.
  • thermopile is a component that can convert temperature difference and electrical energy into each other. It consists of two or more thermocouples connected in series. The thermoelectric potentials output by each thermocouple are superimposed on each other. When there is a temperature difference, an electric current is generated.
  • Thermopile sensors can be configured with various lenses and filters to achieve temperature measurement (forehead thermometer, ear thermometer, food temperature detection, etc.), qualitative/quantitative analysis of gas components, smart home appliances, lamp switches, medical equipment, etc. applications in various application scenarios.
  • temperature measurement forehead thermometer, ear thermometer, food temperature detection, etc.
  • qualitative/quantitative analysis of gas components smart home appliances, lamp switches, medical equipment, etc. applications in various application scenarios.
  • thermopile sensors need to be improved.
  • the purpose of the present invention is to provide a thermopile sensor, a manufacturing method thereof, and an electronic device, which can improve measurement accuracy and facilitate miniaturization.
  • thermopile sensor comprising: a thermopile structure plate arranged in sequence along the incident radiation direction, the thermopile structure plate has a thermal radiation induction area, and a thermoelectric sensor is formed in the thermal radiation induction area stack structure; support layer; substrate, a first cavity is surrounded between the substrate, the thermopile structure plate, and the support layer, and the thermopile structure is arranged above the first cavity .
  • the substrate is a circuit substrate.
  • the present invention also provides a method for manufacturing a thermopile sensor, including the following steps: the method includes: providing a thermopile structure plate, the thermopile structure plate has a thermal radiation sensing area, and a thermoelectric sensing area is formed in the thermal radiation sensing area stack structure; provide a substrate; form a support layer on the thermopile structure plate or on the substrate, the support layer is provided with a first groove; bond the substrate and the thermopile structure through the support layer In combination, the first groove is sandwiched between the thermopile structure plate and the substrate to form a first cavity, and the first cavity exposes at least the heat radiation induction area.
  • a thermal function board is formed on the substrate, the thermal function board includes a heat radiation reflection plate and/or a heat radiation isolation plate, and the thermal function board is located below the thermopile structure.
  • the present invention also provides a method for manufacturing a thermopile sensor, comprising the following steps: providing a thermopile structure plate, the thermopile structure plate having a thermal radiation sensing area, and a thermopile structure is formed in the thermal radiation sensing area; providing a substrate ; forming a patterned sacrificial structure on the thermopile structure plate and a support layer flush with the top surface of the sacrificial structure; or, forming a patterned sacrificial structure on the substrate and the top surface of the sacrificial structure a flush support layer; bonding the base plate to the thermopile structure plate so that the sacrificial structure is sandwiched between the thermopile structure plate and the base plate, the sacrificial structure being in the thermopile structure
  • the projection of the structural plate covers at least the heat radiation induction area; the sacrificial structure is removed to form a first cavity surrounded by a support layer between the thermopile structural plate and the circuit substrate.
  • the present invention also provides an electronic device comprising the thermopile sensor of the present invention.
  • the embodiment of the present invention adopts an etching process or a sacrificial layer release process, when the substrate and the thermopile structure plate are bonded to the substrate, the support layer and the substrate are bonded.
  • the opposite part of the thermal radiation induction area forms a first cavity, which not only has a simple process, but also can be thermally insulated by the first cavity to prevent the heat received by the thermopile structure from being conducted to the substrate below the first cavity and avoid opening
  • the inductive information corresponding to the first groove is lost, and the measurement accuracy of the sensor is improved.
  • the thermal function plate on the substrate is located under the first cavity, which can reflect or isolate heat and improve the measurement accuracy of the sensor.
  • the substrate is a circuit substrate. Since the circuit substrate is directly bonded under the thermopile structure plate, the vertical system integration of the CMOS readout circuit can be realized without increasing the area, which is beneficial to shorten the sensing signal to The interconnection length, signal loss and noise of the readout circuit are beneficial to the miniaturization of the thermopile sensor, and it is also beneficial to further extend to the 3D system integration of the active thermal imaging sensor array and the CMOS readout pixel array and peripheral circuits; further Ground, by forming a heat radiation isolation plate under the heat radiation reflection plate, the heat radiation reflection plate can further avoid the loss of corresponding environmental information by reflecting the residual radiation that penetrates the thermopile structure plate back to the thermopile structure plate, and the heat radiation isolation plate The heat generated by the circuit substrate can be isolated, the heat of the circuit substrate can be prevented from being transferred to the thermopile structure plate, and the measurement accuracy of the thermopile sensor can be improved.
  • thermopile sensor 1A-1G are schematic structural diagrams of a thermopile sensor provided by an embodiment of the present invention.
  • thermopile sensor 2A-2J are schematic structural diagrams corresponding to each step in the manufacturing method of the thermopile sensor provided by the embodiment of the present invention.
  • 2K-2M are schematic structural diagrams corresponding to each step in a method for manufacturing a thermopile sensor according to another embodiment of the present invention.
  • 2N-2P are schematic structural diagrams corresponding to each step in a method for manufacturing a thermopile sensor provided by another embodiment of the present invention.
  • thermopile sensor 3A , 4A and 5A are schematic structural diagrams corresponding to the steps of forming a cavity in a method for manufacturing a thermopile sensor provided by other embodiments of the present invention.
  • thermopile sensor It can be known from the background art that the device size and device precision of the existing thermopile sensor need to be improved.
  • thermopile sensor After analysis, the traditional thermopile sensor makes a thermocouple pair by depositing polysilicon/metal on the dielectric film to sense temperature information, and then forms a thermal insulation cavity under the dielectric film by anisotropic wet etching of silicon on the backside. The thermal resistance is increased, and the thermocouple pair is electrically connected to the circuit structure formed by the side of the thermocouple pair, so as to realize the transmission of the induction signal.
  • there is no substrate structure under the device formed by this method and the heat in the thermal insulation cavity will still be lost in a certain form, so that the measurement accuracy of the thermopile sensor is not high.
  • thermopile sensor a thermopile sensor
  • thermopile sensor provided by an embodiment of the present invention includes a thermopile structure plate 20 , a support layer 601 and a substrate 10 arranged in sequence along the incident radiation direction (ie, the direction from top to bottom in FIG. 1A ).
  • the thermopile structure plate 20 has a heat radiation induction area 20A, and a thermopile structure is formed in the heat radiation induction area 20A; a first cavity 602 is enclosed between the substrate 10 , the thermopile structure plate 20 , and the support layer 601 , and the thermoelectric The stack structure is disposed above the first cavity 602 .
  • thermopile sensor provided by the embodiment of the present invention has a small device size and realizes miniaturization.
  • the thermal radiation can be received from the side of the thermopile structure plate 20 facing away from the substrate 10 to avoid direct absorption of the thermal radiation by the substrate 10, and thermal insulation can be performed through the first cavity 602 to prevent the heat received by the thermopile structure from being transferred to the first cavity 602. Conduction in the substrate 10 below a cavity 602 .
  • a thermal function board is disposed at the bottom of the first cavity 602 .
  • the thermal function board includes a heat radiation reflection plate 702 and a heat radiation isolation plate 701 .
  • the heat radiation reflection plate 702 is located above the heat radiation isolation plate 701 .
  • the thermal function plate is a heat radiation reflection plate 702 or a heat radiation isolation plate 701 .
  • the thermal radiation isolation plate 701 can isolate the heat generated by the substrate.
  • the substrate 10 is a circuit substrate, and the thermal radiation isolation plate 70 prevents the heat of the circuit substrate from being transferred to the thermopile structural plate, thereby improving the measurement accuracy of the thermopile sensor;
  • the radiation reflector 702 is used to reflect the infrared radiation transmitted into the first cavity 602 back into the thermopile structural plate when the device is in operation, so as to improve the accuracy of the thermopile sensor.
  • the material of the heat radiation reflecting plate 702 is a conductive material and/or a photonic crystal material
  • the conductive material is one or more of a metal material, a metal silicide material, and a semiconductor material
  • the metal silicide can be titanium silicide (TiSi) , tungsten silicide (WSi) or aluminum silicide (AlSi), etc.
  • the doped semiconductor is, for example, a polysilicon layer or an amorphous silicon layer or a silicon germanium layer doped with a P-type or N-type dopant.
  • the material of the heat radiation insulating plate 701 is a metal material.
  • a first passivation layer 720a may be formed between the heat radiation isolation plate 701 and the heat radiation reflection plate 702, so as to realize the isolation of the heat radiation isolation plate 701 and the heat radiation reflection plate 702 .
  • a third passivation layer covering at least the heat radiation reflecting plate 702 may be formed on the heat radiation reflecting plate 702, and the upper surface of the heat radiation reflecting plate 702 is protected by the third passivation layer. In other embodiments, the upper surface of the heat radiation reflection plate 702 may be exposed by the third passivation layer.
  • the heat radiation reflecting plate 702 and the heat radiation isolating plate 701 cover at least the heat radiation sensing area 20A, that is, the heat radiation reflecting plate 702 and the heat radiation isolating plate 701 may only cover the heat radiation sensing area 20A, or may cover both the heat radiation sensing area 20A and the heat radiation sensing area 20A.
  • the radiation sensing area 20A also covers the periphery of the thermal radiation sensing area 20A.
  • the heat radiation reflecting plate 702 and the heat radiation isolating plate 701 do not completely cover the periphery of the heat radiation sensing area 20A, the heat radiation reflecting plate and the heat radiation isolating plate are surrounded by the second passivation layer, the first The second passivation layer provides a planar bonding basis for bonding with the support layer 601 .
  • the vertical distance between the thermal radiation reflection plate 702 and the thermopile structures such as the first thermally sensitive microstructure 203a, the second thermally sensitive microstructure 203b is an odd multiple of 1/4 of the wavelength ⁇ of the incident radiation , for example, ⁇ /4, 3 ⁇ /4, 5 ⁇ /4, etc., so that the maximum reflecting ability of the thermal radiation reflecting plate 702 to the residual radiation penetrating the thermopile structural plate 20 can be achieved.
  • thermopile sensor provided by the embodiment of the present invention can not only receive thermal radiation from the side of the thermopile structural plate 20 facing away from the substrate 10 to avoid direct absorption of thermal radiation by the substrate 10, but also can conduct thermal radiation through the first cavity 602.
  • the insulation prevents the heat received by the thermopile structure from being conducted into the substrate 10 below the first cavity 602 .
  • the thermal radiation reflection plate 702 is located under the first cavity 602, and can reflect the residual radiation penetrating the thermopile structural plate back to the thermopile structural plate, which can further avoid the loss of corresponding environmental information and improve the measurement accuracy of the sensor;
  • the radiation isolating plate 701 is located below the thermal radiation reflecting plate 702.
  • the thermal radiation isolating plate 701 can isolate the heat generated by the substrate, prevent the heat from the substrate from being transferred to the thermopile structural plate, and improve the measurement accuracy of the thermopile sensor.
  • the thermopile structure plate 20 can be selected from any suitable material known to those skilled in the art, such as silicon, silicon-on-insulator, germanium, silicon germanium, gallium arsenide, indium phosphide and other semiconductor substrate materials.
  • the thermopile structure in the thermopile structure plate 20 includes at least one thermally sensitive microstructure, and the thermally sensitive microstructure can be formed of any suitable thermally conductive material, for example, the material of the thermally sensitive microstructure includes metal, undoped semiconductor, doped At least one of a doped semiconductor and a metal silicide, wherein the material of the undoped semiconductor or the doped semiconductor includes at least one of silicon, germanium, gallium arsenide or indium phosphide, and the doped semiconductor
  • the dopants include N-type (eg, arsenic, germanium, etc.) or P-type (eg, boron, boron fluoride, phosphorus, etc.) dopants.
  • thermopile structure plate 20 a semiconductor substrate is selected for the thermopile structure plate 20, and the thermally sensitive microstructures in the thermopile structure include N-type and/or P-type doped regions formed in the semiconductor substrate, so that the thermopile structure can be
  • the fabrication is compatible with the CMOS process, thereby simplifying the process and reducing the cost.
  • the thermopile structure board 20 includes a first substrate 200 , a dielectric layer 201 and a semiconductor layer 202 that are sequentially stacked from bottom to top, and the thermopile structure is formed in the semiconductor layer 202 .
  • the first substrate 200 may be any suitable substrate material known to those skilled in the art, such as bulk semiconductor substrate materials such as silicon, germanium, silicon germanium, gallium arsenide, indium phosphide, and the like.
  • a semiconductor layer 202 and a dielectric layer 201 are formed on the first substrate 200, the semiconductor layer 202 is used to form a thermopile structure, and the material of the semiconductor layer 202 may be an undoped semiconductor layer (such as polysilicon or single crystal silicon, etc.), Or an N-type doped or P-type doped semiconductor layer, the semiconductor layer 202 may be formed by an epitaxy process or an ion implantation process.
  • the dielectric layer 201 is used to isolate the thermopile structure from the first substrate, and the material of the dielectric layer 201 includes at least one of silicon oxide, silicon nitride, and silicon oxynitride.
  • the first substrate 200 , the dielectric layer 201 and the semiconductor layer 202 are formed by a silicon-on-insulator substrate, the first substrate 200 is the bottom layer of single crystal silicon of the silicon-on-insulator substrate, and the dielectric layer 201 is a silicon-on-insulator substrate
  • the silicon dioxide in the semiconductor layer 202 is monocrystalline silicon on the top layer of a silicon-on-insulator substrate.
  • At least one thermally induced microstructure is formed as a thermopile structure by performing N-type and/or P-type ion doping implantation on a portion of the semiconductor layer 202 .
  • the thermopile structure includes a first thermally sensitive microstructure 203a and a second thermally sensitive microstructure 203b with different materials, the first thermally sensitive microstructure 203a is N-type doped single crystal silicon, and the second thermally sensitive microstructure 203b is P-type doped single crystal silicon.
  • the first thermally sensitive microstructures 203a and the second thermally sensitive microstructures 203b may have approximately symmetrical structures, thereby generating approximately symmetrical thermally induced effects between the first thermally sensitive microstructures 203a and the second thermally sensitive microstructures 203b, improving Measurement accuracy of thermopile sensors.
  • first thermally sensitive microstructure 203a and the second thermally sensitive microstructure 203b are both single-layer structures, but the technical solution of the present invention is not limited to this, and in other embodiments of the present invention Among them, the first thermally sensitive microstructures 203a and the second thermally sensitive microstructures 203b may also be laminated structures, respectively.
  • thermopile sensor when used to make a thermal imager, at least one thermally sensitive microstructure in the thermopile structure is arranged in an array type, or it can be said that this thermally sensitive microstructure is in an array type.
  • thermopile structure plate 20 includes a dielectric layer 201 and a semiconductor layer 202, the material of the dielectric layer 201 includes at least one of silicon dioxide, silicon nitride, etc., and the semiconductor layer 202 can be single crystal silicon or polycrystalline silicon,
  • the thermopile structure includes at least one thermally inductive microstructure formed in the semiconductor layer 202 .
  • a support layer 601 is formed on the thermopile structural plate.
  • the depth of the first trench 600 of the support layer 601 may be less than or equal to the thickness of the support layer 601 .
  • the support layer 601 is used to provide a basis for the subsequent formation of the first cavity 602 .
  • the support layer 601 may also cover the thermopile structure to avoid contamination or oxidation of the corresponding structure.
  • the material of the support layer 601 may be one or more of silicon dioxide, silicon nitride, silicon oxynitride and other materials.
  • the first cavity 602 formed by the support layer 601 may be provided in the support layer of the thermopile structure plate, obtained by forming a sacrificial layer in the support layer of the thermopile structure plate and then released, or by etching the support layer of the thermopile structure plate to form an opening ( Figure 1D).
  • the first cavity 602 formed by the support layer 601 may also be provided in the substrate support layer, obtained by forming a sacrificial layer in the substrate support layer and then released (as shown in FIG. 1F ), or by etching the substrate support layer to form an opening.
  • the cross-sectional area of the first cavity 602 includes a trapezoid, an inverted trapezoid, an irregular pattern, and the like.
  • a first isolation layer 301 may also be formed between the support layer 601 and the thermopile structure.
  • the first isolation layer is used to protect the thermopile structure and prevent damage to the first isolation layer during the etching of the support layer 601 .
  • a thermally sensitive microstructure 203a and a second thermally sensitive microstructure 203b are thermopile structures.
  • the material of the first isolation layer may or may not be the same as that of the support layer.
  • a first conductive interconnect structure is formed under the thermopile structure, the first conductive interconnect structure is electrically connected to the thermopile structure, and a support can be formed directly on the first conductive interconnect structure layer 601 , the depth of the first trench 600 of the support layer 601 is smaller than the thickness of the support layer 601 , so as to avoid affecting the thermopile structure during the process of etching to form the first trench 600 .
  • Substrate 10 may comprise any suitable semiconductor substrate material known to those skilled in the art, such as silicon, silicon-on-insulator, germanium, silicon germanium, gallium arsenide, indium phosphide, and the like.
  • the substrate 10 is a circuit substrate, and the circuit substrate 10 may include a second substrate 100, a device structure, and readout interconnect structures 104a, 104b electrically connected to the device structure, wherein the device structure is formed in the second substrate, The readout interconnect structures 104a , 104b are formed on the second substrate 100 .
  • the second substrate 100 may be any suitable semiconductor substrate material known to those skilled in the art, such as silicon, silicon-on-insulator, germanium, silicon germanium, gallium arsenide, indium phosphide, and the like.
  • Corresponding device structures and device isolation structures between adjacent device structures have been formed in the second substrate 100 through a CMOS manufacturing process, and the device structures may include at least one of MOS transistors, resistors, diodes, capacitors, memories, and the like .
  • the MOS transistor 102 may include a gate electrode 102a and a source electrode 102b and a drain electrode 102c located on both sides of the gate electrode 102a.
  • the device isolation structure 101 may be formed by a local field oxidation process or a shallow trench isolation (STI) process.
  • the readout interconnect structures 104a, 104b may be electrically connected through bottom contact plugs in direct electrical contact with respective terminals of the device structure and a multi-layer metal interconnect structure in electrical connection with the bottom contact plugs, thereby realizing the readout interconnection The electrical connection of the structure to the device structure.
  • an interlayer dielectric material layer 103 is further formed on the second substrate 100 to isolate adjacent metal interconnect layers.
  • the interlayer dielectric material 103 may include at least one of silicon dioxide, silicon nitride, low-K dielectrics with K lower than silicon dioxide, high-K dielectrics with K higher than silicon dioxide, metal nitrides, and the like.
  • thermopile sensor further includes a second conductive interconnection structure arranged on the periphery of the heat radiation sensing area 20A, and the readout circuit is connected to the thermopile through the second conductive interconnection structure. Structural electrical connection.
  • a first conductive interconnection structure is formed on the thermopile structure board.
  • the first conductive interconnect structure is located above the thermopile structure and is electrically connected to the thermopile structure, so that the second conductive structure can be electrically connected to the first conductive structure subsequently to realize the readout interconnection of the circuit substrate Electrical connections between the structure and the thermopile structural plates.
  • the first conductive interconnect structure is located above the thermopile structure, which means that after the circuit substrate and the thermopile structure board are bonded, the first conductive interconnect structure is located above the thermopile structure.
  • thermopile structure board a first conductive interconnect structure electrically connected to the thermopile structure is formed on the thermopile structure board.
  • first interconnect structure is used for subsequent electrical connection with the readout interconnect structure.
  • the material of the first conductive interconnect structure may include metals such as copper, titanium, aluminum, and tungsten, and/or metal silicide, and the like.
  • the first conductive interconnection structure includes a first conductive interconnection line 300a and a second conductive interconnection line 300b, the first conductive interconnection line 300a is electrically connected to the first thermal sensing microstructure 203a, and the second conductive interconnection line 300b is electrically connected The second thermally sensitive microstructure 203b is connected.
  • the first conductive interconnect structure is a single-layer structure to reduce the integrated thickness of the thermopile sensor.
  • the first conductive interconnection line 300a and the second conductive interconnection line 300b are both one-layer metal wires.
  • One end of the first conductive interconnection line 300a is electrically connected to the first thermal sensing microstructure 203a, and the other end is connected to the second conductive interconnection line 203a.
  • the connecting structure 40a is electrically connected to the readout interconnection structure 104a in the readout circuit of the circuit substrate 10, one end of the second conductive interconnection line 300b is electrically connected to the second thermal sensing microstructure 203b, and the other end is connected to the second conductive interconnection structure 203b.
  • the first conductive interconnect structure may also be a multi-layer metal interconnect structure.
  • the second conductive interconnect structures 40a and 40b are redistribution structures formed by the same redistribution process, and are located at the periphery of the heat radiation sensing area 20A, so that the readout circuit in the circuit substrate 10 and the thermopile structure board 20 can be realized.
  • the direct absorption of heat radiation by the second conductive interconnect structure can also be avoided, and the overall vertical thickness of the thermopile sensor can be reduced, which is beneficial to the miniaturization of the thermopile sensor, as well as improving the device performance reliability.
  • the second conductive interconnect structure includes a first plug located in the thermopile structure plate, the first plug is connected to the first conductive interconnect structure; the second plug penetrates through the thermopile structure plate and is electrically connected with the readout circuit; And, plug interconnect lines on the thermopile structure board, the plug interconnect lines connect the first plug and the second plug.
  • the second conductive interconnect structure 40a includes a second plug 401a, a first plug 403a, and an interconnection line 402a
  • the second conductive interconnect structure 40b includes a second plug 401b, a first plug 403b, and a plug
  • the interconnection line 402b, the plug interconnection lines 402a, 402b are formed on the side of the thermopile structure board 20 facing away from the first cavity 602, the second plugs 401a, 401b are arranged in the thermopile structure board 20, the second plug
  • the bottom end of the plug 401a is electrically connected to the first conductive interconnection line 300a
  • the top end is electrically connected to the interconnection line 402a
  • the bottom end of the second plug 401b is electrically connected to the second conductive interconnection line 300b
  • the top end is electrically connected to the interconnection line 300b.
  • connection line 402b is electrically connected, the first plugs 403a, 403b penetrate through the thermopile structure board 20 and the first interconnection layer 30, the top end of the first plug 403a is electrically connected with the interconnection line 402a, and the bottom end is connected with the circuit substrate 10
  • the top end of the first plug 403b is electrically connected to the interconnection line 402b, and the bottom end is electrically connected to the readout interconnect structure 104b in the circuit substrate 10.
  • thermopile structure board 20 is formed based on a semiconductor substrate, in order to avoid the contact between the second plugs 401a, 401b and the first plugs 403a, 403b and the thermopile structure board 20 Leakage occurs between the second plugs 401a, 401b and the conductive materials in the first plugs 403a, 403b are also surrounded by an insulating dielectric layer on the sidewalls, and the material of the insulating dielectric layer includes silicon oxide, silicon nitride, silicon oxynitride , at least one of metal nitrides, high-K dielectrics, and low-K dielectrics.
  • thermopile structural plate 20 when the thermopile structural plate 20 is formed based on a sheet of non-conductive material, the conductive material on the sidewalls of the second plugs 401a, 401b and the first plugs 403a, 403b may be omitted Surrounded by an insulating dielectric layer.
  • the second conductive interconnection structure may include: first plugs 403a, 403b, the first plugs 403a, 403b penetrate the thermopile structure plate, the support layer, and the bottom The terminals are electrically connected to the readout circuit; the second sub-plugs 404a and 404b of the circuit substrate are electrically connected to the readout circuit; the second sub-plugs 406a and 406b of the thermopile are electrically connected to the second sub-plugs 404a and 404b of the circuit substrate. is electrically connected and electrically connected with the thermopile structure.
  • thermopile second sub-plugs 406a, 406b may be electrically connected to the first conductive interconnect structure for the convenience of connection.
  • the second conductive interconnect structure may further include: first sub-plugs 405a and 405b on the circuit substrate, which are electrically connected to the readout circuit; and second sub-plugs on the circuit substrate.
  • the plugs 404a, 404b are electrically connected to the readout circuit; the first sub-plugs 407a, 407b of the thermopile, the first plug of the thermopile penetrates the thermopile structural plate and the support layer; the second sub-plugs 406a, 406b of the thermopile, The second sub-plugs 404a and 404b of the circuit substrate are electrically connected, and the second sub-plugs 406a and 406b of the thermopile are electrically connected to the thermopile structure.
  • thermopile second sub-plugs 406a, 406b may be electrically connected to the first conductive interconnect structure for the convenience of connection.
  • each plug may also be surrounded by an insulating dielectric layer to prevent leakage.
  • an insulating dielectric layer to prevent leakage.
  • the first conductive structure in the thermopile sensor structure is located below the thermopile structure to avoid direct absorption of thermal radiation by the first conductive structure.
  • the first conductive structure may also be located below the thermopile structure and be electrically connected to the thermopile structure.
  • the first conductive structure may be formed on the thermopile structure plate 20 through a metal interconnection process.
  • the material of the first conductive structure material G is not described in detail in the above embodiment.
  • a first passivation layer may also be formed on the surface of the first conductive structure away from the thermopile structure, and the material of the first passivation layer may include at least one of silicon dioxide, silicon nitride and low-K dielectrics.
  • the first conductive interconnection structure includes a first conductive interconnection line 300a and a second conductive interconnection line 300b, the first conductive interconnection line 300a is electrically connected to the first thermal sensing microstructure 203a, and the second conductive interconnection line 300b is electrically connected The second thermally sensitive microstructure 203b is connected.
  • the first conductive interconnect structure enables the first thermal induction structure 20a and the second thermal induction structure 203b to be electrically connected in parallel or in series.
  • the first passivation layer 301 connects the first thermally sensitive microstructure 203a, the second thermally sensitive microstructure 203b, the first conductive interconnection 300a and the second conductive interconnection from the bottom direction of the thermopile structure plate 20.
  • the wirings 300b are buried inside to protect the first thermally sensitive microstructure 203a and the second thermally sensitive microstructure 203b, and to achieve necessary insulation isolation between adjacent conductive interconnects in adjacent first conductive interconnect structures .
  • the first passivation layer 301 may only cover part of the first conductive interconnection lines 300a and part of the second conductive interconnection lines 300b from the direction of the bottom of the thermopile structure plate 20 .
  • the first passivation layer 301 is usually a structure formed by stacking multiple layers of dielectric materials, for example, including a first part and a second part, the first part is formed after the thermopile structure is formed and before the first conductive interconnect structure is formed In order to protect the thermopile structures such as the first thermally sensitive microstructure 203a and the second thermally sensitive microstructure 203b, and avoid adverse effects on the thermopile structure caused by the formation process of the first conductive interconnection structure, the second part is in the first conductive interconnection structure.
  • first conductive interconnect structure It is formed during the formation of the first conductive interconnect structure and after the formation of the first conductive interconnect structure, thereby providing a forming platform for the first conductive interconnect structure, and realizes the insulation isolation between adjacent structures in the first conductive interconnect structure and realizes the first conductive interconnect structure. Burial of a conductive interconnect structure.
  • the first conductive interconnection structure is a single-layer structure.
  • the first conductive interconnection line 300a and the second conductive interconnection line 300b are both a layer of metal lines, and one end of the first conductive interconnection line 300a is electrically
  • the first thermal sensing microstructure 203a is connected, the other end is electrically connected to the readout interconnection structure 104a in the readout circuit of the substrate 10 through the second conductive interconnection structure 40a, and one end of the second conductive interconnection line 300b is electrically connected to the second
  • the other end of the thermally sensitive microstructure 203b is electrically connected to the readout interconnection structure 104b in the readout circuit of the substrate 10 through the second conductive interconnection structure 40b. Therefore, it is beneficial to reduce the integrated thickness of the thermopile sensor and to miniaturize the device.
  • the first conductive interconnect structure may also be a multi-layer metal interconnect structure.
  • thermopile structure plate, a first conductive interconnection structure and a substrate are arranged in sequence along the incident radiation direction, and a first cavity is sandwiched between the substrate and the first conductive interconnection structure, and the structure is simple, It can not only receive thermal radiation from the side of the thermopile structure plate facing away from the substrate to avoid direct absorption of thermal radiation by the substrate and the first conductive interconnect structure, but also conduct thermal insulation through the first cavity to prevent the thermopile structure from receiving thermal radiation. The heat is conducted to the substrate below the first cavity, so that the measurement accuracy of the thermopile sensor can be improved.
  • the thermal function plate is formed on the bottom surface of the first cavity, or buried between the bottom surface of the first cavity and the substrate.
  • the thermopile sensor of this embodiment further includes a cover 50 .
  • the cover 50 is disposed on the side of the thermopile structure board 20 facing away from the circuit substrate 10 .
  • the cover 50 is provided with a protection groove 503 .
  • the protection groove 503 covers the thermal radiation induction area 20A of the thermopile structure plate 20, and a radiation penetration window (not shown in the figure) is also provided on the cover of the side of the protection groove 503 facing away from the thermopile structure plate 20, The radiation penetration window is at least vertically aligned with the thermopile structure.
  • Radiation penetration windows are used to transmit infrared rays.
  • an infrared anti-reflection film may also be arranged above the radiation penetration window.
  • the material of the radiation transmission window includes one or both of semiconductors (eg, silicon, germanium, or silicon-on-insulator, etc.) and organic filter materials (eg, polyethylene, polypropylene, etc.).
  • semiconductors eg, silicon, germanium, or silicon-on-insulator, etc.
  • organic filter materials eg, polyethylene, polypropylene, etc.
  • the shape of the radiation penetration window can be a regular shape such as a rectangle, a square or a circle, and can also be other irregular shapes.
  • the arrangement of the second cavity 502 can minimize the direct absorption of the incident thermal radiation by the superstructure, and at the same time store the incident thermal radiation to a certain extent, so that the thermopile structure can receive the incident radiant heat to the greatest extent, so that it can be Improve thermopile sensor performance.
  • the cover 50 may include a third base 500 and a cavity wall 501 formed on the side of the third base 500 facing the thermopile structural plate 20 , and the cavity wall 501 and the dielectric layer 201 enclose a second void.
  • the material of the third substrate 500 may be any suitable material known to those skilled in the art, such as glass, plastic, semiconductor, and the like.
  • the material of the cavity wall 501 may be the same as that of the third substrate 500 , or may be different from the material of the third substrate 500 .
  • a radiation penetration window (not shown) is also provided on the cover 50 on the side of the second cavity 502 facing away from the thermopile structure plate 20 .
  • the radiation penetration window is at least vertically aligned with the thermopile structure.
  • Materials include semiconductors (eg, silicon, germanium, or silicon-on-insulator, etc.) and/or organic filter materials (eg, polyethylene, polypropylene, etc.).
  • the substrate and the thermopile structure board are bonded and connected through the support layer, and at least one of the substrate or the thermopile structure is connected with the support layer through a bonding interface; the cover and the thermopile structure board are bonded and connected, and the cover or the thermopile structure
  • the structural plates are connected by a bonding interface.
  • thermopile structure board a thermopile structure board, a support layer and a circuit substrate are sequentially arranged along the incident radiation direction, and a first cavity is sandwiched between the circuit board and the thermopile structure board, and the first cavity
  • a heat radiation reflection plate and a heat radiation isolation plate are added at the bottom, and the structure is simple.
  • the first cavity can be used for thermal insulation to prevent the heat received by the thermopile structure from being conducted to the circuit substrate below the first cavity, and can also be reflected by heat radiation.
  • the plate reflects the residual radiation penetrating the thermopile structural plate back to the thermopile structural plate, thereby improving the measurement accuracy of the thermopile sensor.
  • the heat radiation isolation plate can isolate the heat generated by the circuit substrate, prevent the heat of the circuit substrate from being transferred to the thermopile structure plate, and improve the measurement accuracy of the thermopile sensor. Further, since the circuit substrate is directly bonded under the thermopile structure plate, the vertical system integration of the CMOS readout circuit can be realized without increasing the area, which is beneficial to shorten the interaction between the sensing signal and the readout circuit. It is beneficial to the miniaturization of thermopile sensors, and it is also beneficial to further extend to 3D system integration of active thermal imaging sensor arrays and CMOS readout pixel arrays and peripheral circuits.
  • thermopile sensor of the present invention is not limited to the specific structural examples in the above embodiments. In other embodiments of the present invention, under the premise of achieving the same function, the thermopile sensor of the above embodiments The corresponding structures in the above are deformed and omitted, and the thermopile sensor obtained therefrom also belongs to the protection scope of the technical solution of the present invention.
  • An embodiment of the present invention also provides an electronic device having the thermopile sensor of the present invention, the performance of which is improved.
  • the electronic device also has components such as at least one lens and filter and an associated electronic processor.
  • Electronic equipment can be temperature measurement equipment such as forehead thermometers, ear thermometers, food temperature detection instruments, etc., or qualitative/quantitative analysis instruments for gas components, smart home appliances, light switches or medical equipment;
  • a mobile terminal with a thermopile sensor such as a mobile phone, a computer, a tablet, etc., has a temperature measurement function; in one embodiment, the electronic device is a thermal imager, and the thermopile structure of the thermal imager is arranged in an array, so as to realize the detection of objects. thermal imaging.
  • thermopile sensor and a manufacturing method thereof.
  • FIG. 2A to FIG. 2J are schematic structural diagrams corresponding to each step in the manufacturing method of the sensor provided by the embodiment of the present invention.
  • thermopile structure plate 20 As shown in FIG. 2A , a thermopile structure plate 20 is provided, and the thermopile structure plate 20 has a heat radiation induction area 20A in which a thermopile structure is formed.
  • the provided thermopile structure plate 20 may include a first substrate 200 on which the thermopile structure is formed.
  • the first substrate 200 may be any suitable substrate material known to those skilled in the art, such as bulk semiconductor substrate materials such as silicon, germanium, silicon germanium, gallium arsenide, indium phosphide, and the like.
  • the step of providing the thermopile structure plate includes: providing a first substrate 200 with a semiconductor layer 202 formed on the surface of the first substrate 200; and doping a part of the semiconductor layer 202 with N-type and/or P-type ions doping to form an N-type doped region and/or a P-type doped region as a thermopile structure.
  • a semiconductor layer 202 and a dielectric layer 201 are formed on the first substrate 200 , the semiconductor layer 202 is used to form a thermopile structure, and the material of the semiconductor layer 202 may be an undoped semiconductor layer (eg, polycrystalline silicon or single crystal silicon, etc.) , or an N-type doped or P-type doped semiconductor layer, the semiconductor layer 202 may be formed by an epitaxy process or an ion implantation process.
  • the dielectric layer 201 is used to isolate the thermopile structure from the first substrate, and the material of the dielectric layer 201 includes at least one of silicon oxide, silicon nitride, and silicon oxynitride.
  • the first substrate 200 , the dielectric layer 201 and the semiconductor layer 202 are formed by a silicon-on-insulator substrate, the first substrate 200 is the bottom layer of single crystal silicon of the silicon-on-insulator substrate, and the dielectric layer 201 is a silicon-on-insulator substrate
  • the silicon dioxide in the semiconductor layer 202 is monocrystalline silicon on the top layer of a silicon-on-insulator substrate.
  • At least one thermally induced microstructure is formed as a thermopile structure by performing N-type and/or P-type ion doping implantation on a portion of the semiconductor layer 202 .
  • thermopile structure is used as the heat radiation induction area 20A, and the area around the heat radiation induction area 20A is used for the subsequent fabrication of the second conductive interconnect structure.
  • the thermopile structure includes a first thermally sensitive microstructure 203a and a second thermally sensitive microstructure 203b with different materials, and the materials of the thermally sensitive microstructure include metals, undoped semiconductors, doped semiconductors, and metal silicides At least one of; the undoped semiconductor or the material of the doped semiconductor includes at least one of silicon, germanium, gallium arsenide or indium phosphide, and the dopant of the doped semiconductor includes N-type or P type dopant.
  • the first thermally sensitive microstructure 203a is N-type doped single crystal silicon
  • the second thermally sensitive microstructure 203b is P-type doped single crystal silicon.
  • the first thermally sensitive microstructures 203a and the second thermally sensitive microstructures 203b can be respectively linear (eg, straight lines, curves, or broken lines), arrays, or combs.
  • the first thermally sensitive microstructures 203a and the second thermally sensitive microstructures 203b may have approximately symmetrical structures, thereby generating approximately symmetrical thermally induced effects between the first thermally sensitive microstructures 203a and the second thermally sensitive microstructures 203b, improving Measurement accuracy of thermopile sensors.
  • the overall distribution area of the first thermal induction microstructure 203a and the overall distribution area of the second thermal induction microstructure 203b may be completely side-by-side without overlapping in the plane of the thermopile structure plate 20, or may have partial areas nested, so as to At least partially overlapping, optionally, the overall distribution area of the first thermal sensing microstructure 203a and the overall distribution area of the second thermal sensing microstructure 203b partially overlap in the plane of the thermopile structure plate 20, for example, the first thermal sensing Both the microstructures 203a and the second thermally sensitive microstructures 203b are comb-shaped structures, and a part of the comb teeth of the first thermally sensitive microstructure 203a is inserted into the corresponding comb-tooth gap of the second thermally sensitive microstructure 203b, so that the While the surface area of the thermopile sensor can be further improved, the performance of the thermopile sensor can be further improved.
  • first thermally sensitive microstructure and the second thermally sensitive microstructure have the same or different structures, and the first thermally sensitive microstructure and the second thermally sensitive microstructure are respectively linear, arrayed or comb-shaped.
  • the thermal induction structure and the second thermal induction structure are electrically connected in parallel or in series.
  • the first thermally sensitive microstructure 203a and the second thermally sensitive microstructure 203b are both single-layer structures, but the technical solution of the present invention is not limited to this.
  • the first thermal The induction microstructure 203a and the second thermal induction microstructure 203b can also be respectively laminated structures. In this case, they can be formed by performing multiple ion implantations into the semiconductor layer 202.
  • the materials of the first thermally sensitive microstructures 203a and the second thermally sensitive microstructures 203b are not limited to doped semiconductors. At least one process of patterned etching of layers, metal silicidation of semiconductor layers, etc. is used to form corresponding thermally sensitive microstructures on the first substrate 200, so that the materials of thermally sensitive microstructures can also be metal, undoped At least one of doped semiconductors, metal silicides, and the like.
  • thermopile structure in order to facilitate the subsequent electrical connection of the second conductive interconnect structure to the thermopile structure and prevent damage to the thermopile structure during the electrical connection process, in a specific embodiment, the thermopile structure is A first conductive interconnection structure is formed on the structural board 20, and the first conductive interconnection structure is electrically connected to the thermopile structure, so that the second conductive structure can be electrically connected to the first conductive structure subsequently to realize the readout of the circuit substrate Electrical connections between interconnect structures and thermopile structural plates.
  • thermopile structure electrically connected to the thermopile structure is formed in the heat radiation sensing region 20A, and the first conductive interconnect structure is electrically connected to the thermopile structure.
  • first interconnect structure is used for subsequent electrical connection with the readout interconnect structure of the circuit substrate.
  • the first conductive interconnect structure is located above the thermopile structure (as shown in FIG. 2E).
  • the first conductive interconnect structure is used to realize the electrical connection of the thermopile structure to the external circuit
  • the substrate may be a carrier wafer, not configured as a circuit substrate.
  • the first conductive interconnect structure can be formed through a series of processes such as metal layer deposition, photolithography, etching, or a metal lift-off (liff-off) process, and the first conductive interconnect structure can be a single-layer metal layer to reduce the thermopile The integrated thickness of the sensor.
  • the first conductive interconnect structure may include a first conductive interconnect line 300a electrically connected to the first thermally sensitive microstructure 203a, and a second conductive interconnection line 300b electrically connected to the second thermally sensitive microstructure 203b.
  • the material of the first conductive interconnect structure may be one or more of metals such as copper, titanium, aluminum, and tungsten and/or metal silicide materials.
  • the circuit substrate and the support layer can also be bonded to form a first conductive interconnection structure electrically connected to the thermopile structure, wherein the first conductive interconnection structure is located in the thermopile structure above.
  • a support layer 601 is formed on the thermopile structure board.
  • the support layer 601 is provided with a first trench 600 , and the first trench 600 exposes at least the thermal radiation sensing region 20A.
  • the depth of the first trench 600 of the support layer 601 is less than or equal to the thickness of the support layer 601 .
  • the steps of forming the support layer 601 include: forming a support material layer (not shown), the support material layer covering the thermopile structure plate; etching the support material layer, and forming a first groove in the portion opposite to the heat radiation sensing area 20A groove, and the remaining supporting material layer is used as the supporting layer 601 .
  • a deposition process can be used to form a support material layer (not shown in the figure), the support material layer covers the thermopile structure plate, and the support material layer is patterned by a photolithography and etching process to form the first trench 600, and the remaining A layer of support material forms the support layer 601 .
  • the support layer 601 is used to provide a basis for the subsequent formation of the first cavity.
  • the material of the support layer 601 may be one or more of silicon dioxide, silicon nitride, silicon oxynitride and other materials.
  • the first isolation layer 301 can also be formed above the thermopile structure.
  • the first isolation layer 301 is used to protect the thermopile structure and prevent damage to the first isolation layer 601 during the etching of the support layer 601 .
  • the thermally induced microstructure 203a and the second thermally induced microstructure 203b are thermopile structures.
  • a deposition process may be used to form the first isolation material layer 301
  • a chemical mechanical polishing (CMP) process may be used to planarize the top surface of the first isolation material layer to form the first isolation layer 301 .
  • CMP chemical mechanical polishing
  • the material of the first isolation layer 301 may be one or more of silicon dioxide, silicon nitride, silicon oxynitride and other materials.
  • the material of the first isolation layer may or may not be the same as that of the support layer.
  • the material of the first isolation layer is different from that of the support layer 601 .
  • the support layer 601 may be formed directly on the first conductive interconnect structure, and the depth of the first trench 600 in the support layer 601 is smaller than the thickness of the support layer 601, so that the formation of the support layer 601 during etching can also be avoided.
  • the process of the first trench 600 affects the thermopile structure.
  • the first trench 600 is formed on the portion of the support layer 601 opposite to the heat radiation sensing area 20A by an etching process, and after the support layer 601 is subsequently bonded to the circuit substrate, the The first groove 600 is sandwiched between the thermopile structure plate and the circuit substrate to form a first cavity 602. Not only is the process simple, but also thermal insulation can be performed through the first cavity 602 to prevent the thermopile structure from receiving heat. The heat is conducted to the circuit substrate below the first cavity 602, so as to avoid the loss of sensing information corresponding to the open first groove 600, and improve the measurement accuracy of the sensor.
  • a substrate 10 is provided, and the substrate 10 is used for bonding with the thermopile structure board 20 .
  • thermopile structural plate 20 is subsequently bonded on the substrate 10, and a first cavity is formed between the thermopile structural plate 20 and the substrate 10, and the substrate 10 seals the bottom of the first cavity, thereby reducing the size of the first cavity.
  • the loss of heat in the cavity is beneficial to improve the measurement accuracy of the thermopile sensor.
  • the substrate 10 may be a carrier wafer or a circuit substrate.
  • the substrate 10 is a circuit substrate.
  • the circuit substrate 10 includes a heat radiation corresponding area 20B, and the heat radiation corresponding area corresponds to the heat radiation sensing area.
  • the projection of the thermal radiation corresponding area 20B on the circuit substrate 10 is the same as the projection of the thermal radiation sensing area 20A on the thermopile structure board 10 , on the circuit substrate 10 .
  • a heat radiation reflecting plate 702 and a heat radiation isolating plate 701 are formed, the heat radiation reflecting plate 702 being located above the heat radiation isolating plate 701 .
  • the provided circuit substrate 10 may be a CMOS substrate for completing FEOL (front end of line, front-end process) and BEOL (back end of line, back-end process) processes and wafer needle testing, and a circuit structure is formed in the circuit substrate to The electrical signals of the thermopile structure are processed.
  • the FEOL process and the BEOL process are both conventional manufacturing processes of CMOS integrated circuits in the art, and the wafer needle test is a conventional test solution for testing the performance of CMOS integrated circuits in the art, and will not be described in detail here.
  • the heat radiation corresponding area 20B may be an area corresponding to the distribution of the device structure, and the projection of the heat radiation corresponding area 20B on the circuit substrate is the same as the projection of the heat radiation sensing area 20A on the thermopile structure board. , which is used to make the heat radiation induction area 20A coincide with the heat radiation corresponding area 20B in the subsequent bonding process, so as to realize the alignment of the thermopile substrate and the circuit substrate.
  • the circuit substrate 10 may include a second substrate 100, a device structure, and readout interconnect structures 104a, 104b electrically connected to the device structure, wherein the device structure is formed in the second substrate 100, the readout interconnection The structures 104a, 104b are formed on the second substrate 100 .
  • the second substrate 100 may be any suitable semiconductor substrate material known to those skilled in the art, such as silicon, silicon-on-insulator, germanium, silicon germanium, gallium arsenide, indium phosphide, and the like.
  • Corresponding device structures and device isolation structures between adjacent device structures have been formed in the second substrate 100 through a CMOS manufacturing process, and the device structures may include at least one of MOS transistors, resistors, diodes, capacitors, memories, and the like .
  • the MOS transistor 102 may include a gate electrode 102a and a source electrode 102b and a drain electrode 102c located on both sides of the gate electrode 102a.
  • the device isolation structure 101 may be formed by a local field oxidation process or a shallow trench isolation (STI) process.
  • the readout interconnect structures 104a, 104b may be electrically connected through bottom contact plugs in direct electrical contact with respective terminals of the device structure and a multi-layer metal interconnect structure in electrical connection with the bottom contact plugs, thereby realizing the readout interconnection Electrical connection of structures 104a, 104b to device structures.
  • an interlayer dielectric material layer 103 is further formed on the second substrate 100 to isolate adjacent metal interconnect layers.
  • the interlayer dielectric material layer 103 of the circuit substrate 10 also exposes the openings on the partial surfaces of the readout interconnect structures 104a and 104b respectively, so as to form the first probe point 108a and the second probe point for wafer probe inspection Point 108b.
  • the material of the interlayer dielectric material layer 103 may include at least one of silicon dioxide, silicon nitride, low-K dielectrics with K lower than silicon dioxide, high-K dielectrics with K higher than silicon dioxide, metal nitrides, and the like. A sort of.
  • a heat radiation reflection plate 702 and a heat radiation isolation plate 701 are formed on the circuit substrate 10 , and the heat radiation reflection plate 702 is located above the heat radiation isolation plate 701 .
  • the thermal radiation reflector 702 is used to reflect the infrared radiation transmitted into the first cavity 602 (shown in FIG. 2G ) back into the thermopile structural plate 20 when the device is in operation, thereby improving the accuracy of the thermopile sensor.
  • the material of the heat radiation reflecting plate 702 is a conductive material and/or a photonic crystal material
  • the conductive material is one or more of a metal material, a metal silicide material, and a semiconductor material
  • the metal silicide can be titanium silicide (TiSi) , tungsten silicide (WSi) or aluminum silicide (AlSi), etc.
  • the doped semiconductor is, for example, a polysilicon layer or an amorphous silicon layer or a silicon germanium layer doped with a P-type or N-type dopant.
  • the material of the heat radiation insulating plate 701 is a metal material.
  • a series of processes such as metal deposition, photolithography, etching, or a metal lift-off (liff-off) process can be used to form the heat radiation reflection plate 702 and the heat radiation isolation plate 701 on the surface of the interlayer dielectric material layer 103 .
  • the bottom surface of the heat radiation reflection plate and the top surface of the heat radiation isolation plate may be in contact, and a first passivation layer may also be formed between the bottom surface of the heat radiation reflection plate and the top surface of the heat radiation isolation plate.
  • the circuit substrate 10 includes a heat radiation corresponding area 20B, and the heat radiation corresponding area corresponds to the heat radiation induction area.
  • the process of forming the heat radiation isolation plate 701 and the heat radiation reflection plate 702 may include: forming isolation A material layer (not shown), the isolation material layer covers the circuit substrate; a reflective material layer (not shown) is formed, and the reflective material layer covers the isolation material layer; the reflective material layer and the isolation material layer outside the heat radiation corresponding area 20B are removed to The remaining reflective material layer is the heat radiation reflecting plate 702 , and the remaining insulating material layer is the heat radiation insulating plate 701 .
  • the isolating material layer and the reflecting material layer may be respectively formed by a deposition process.
  • the forming step of the isolation material layer includes: forming a silicon layer first, and then performing metal silicidation on the silicon layer; similarly, the reflective material layer can also pass through this formed in one way.
  • the forming step of the isolation material layer includes: forming a semiconductor layer first, and then performing N-type and/or P-type doping on the semiconductor layer; similarly, A layer of reflective material can also be formed in this way.
  • a first passivation layer is further formed between the heat radiation isolation plate 701 and the heat radiation reflection plate 702 , so as to realize the isolation of the heat radiation isolation plate 701 and the heat radiation reflection plate 702 .
  • the first passivation material layer that completely covers the isolation material layer may be formed after the isolation material layer covering the side of the circuit substrate provided with the readout interconnect structure is formed and before the reflective material layer covering the isolation material layer is formed.
  • the first passivation material layer may be formed using a deposition process.
  • the step of removing the reflective material layer and the isolation material layer outside the heat radiation corresponding region 20B further includes: removing the first passivation material layer outside the heat radiation corresponding region 20B to form a first passivation layer.
  • the steps further include: A second passivation layer is formed, and the second passivation layer covers the exposed circuit substrate of the heat radiation reflection plate 702 .
  • the second passivation layer provides a planar basis for the subsequent bonding of the support layer to the circuit substrate.
  • the thickness of the second passivation layer is not limited.
  • the surface of the second passivation layer can be the same as the surface of the heat radiation reflecting plate 702 or the second passivation layer can also cover the heat radiation reflecting plate 702, as long as the thickness of the second passivation layer is guaranteed.
  • the surface can be flat.
  • the material of the second passivation layer includes at least one of silicon oxide, silicon nitride, silicon oxynitride, low-K dielectric, high-K dielectric, and metal nitride.
  • the heat radiation reflecting plate 702 and the heat radiation isolating plate 701 cover at least the heat radiation corresponding area 20B of the circuit substrate, which means that the heat radiation reflecting plate 702 and the heat radiation isolating plate 701 cover at least the heat radiation corresponding area of the circuit substrate.
  • the peripheral area of the heat radiation corresponding area 20B may also be covered. Therefore, in another optional example, to form the isolation material layer covering the circuit substrate and the reflective material layer covering the isolation material layer, the steps of etching the isolation material layer and the reflective material layer can be omitted, and the heat radiation isolation plate can be directly formed 701 and heat radiation reflector 702.
  • a heat radiation isolation plate 701 is formed on the circuit substrate, and the heat radiation isolation plate 701 covers at least the heat radiation corresponding area 20B of the circuit substrate; a heat radiation reflection plate 702 is formed on the heat radiation isolation plate 701, and the heat radiation reflection plate 702 at least The heat radiation corresponding area 20B of the circuit substrate is covered.
  • the process of forming the heat radiation isolation plate and the heat radiation reflection plate may include: forming a dielectric layer (not shown) on the circuit substrate, the dielectric layer has an opening, and the opening exposes at least the heat radiation corresponding area Fill the opening to form a heat radiation isolation plate; form a heat radiation reflection plate on the heat radiation isolation plate, and the heat radiation reflection plate at least covers the heat radiation isolation plate.
  • the heat radiation insulating plate may completely fill or even cover the opening, so that the heat radiation reflecting plate is located above the opening instead of filling the opening.
  • the heat radiation insulating plate can also partially fill the opening, so that the heat radiation reflecting plate is partially or completely located within the opening.
  • the process of forming the heat radiation isolation plate and the heat radiation reflection plate may include: forming a dielectric material layer (not shown) covering the circuit substrate; removing the dielectric material layer in the heat radiation corresponding area, Forming an opening (not shown), using the remaining dielectric material layer as the dielectric layer; forming an isolation material layer and a reflective material layer conformally covering the dielectric layer and the opening in turn, the reflective material layer is located above the isolation material layer; removing the isolation outside the opening For the material layer and the reflective material layer, the remaining insulating material layer is used as a heat radiation isolation plate, and the remaining reflective material layer is used as a heat radiation reflecting plate.
  • the opening may be an opening only for forming the heat radiation isolation plate and the heat radiation reflection plate, and the corresponding opening depth is only compatible with the sum of the thicknesses of the heat radiation isolation plate and the heat radiation reflection plate, and may also be smaller than the thickness of the heat radiation isolation plate and the heat radiation reflection plate. It is used to form the sum of the thicknesses of the heat radiation insulating plate and the heat radiation reflecting plate. It should be noted that, when removing the isolation material layer and the reflective material layer outside the opening, a chemical mechanical polishing (CMP) process may be used to remove them.
  • CMP chemical mechanical polishing
  • the process of forming the heat radiation isolation plate 701 and the heat radiation reflection plate 702 may include: forming a first dielectric layer (not shown) on the circuit substrate, the first dielectric layer having a first opening , the first opening exposes at least the heat radiation corresponding area 20B; the first opening is filled to form a heat radiation isolation plate 701, and the surface of the heat radiation isolation plate 701 is flush with the surface of the first dielectric layer; a second dielectric layer is formed, the second dielectric layer Cover the first dielectric layer and the heat radiation isolation plate 701; pattern the second dielectric layer to form a second opening, the second opening exposes at least the heat radiation corresponding region 20B, and the depth of the second opening is less than or equal to the thickness of the second dielectric layer; The second opening is filled to form a heat radiation reflecting plate 702 .
  • a first dielectric layer may be deposited on the surface of the circuit substrate, and the first dielectric layer also fills the first pin point 108a and the second pin point 108b;
  • the dielectric layer forms the first opening;
  • the heat radiation isolation material is deposited to fill the first opening, the excess heat radiation isolation material is removed by etching, and the remaining heat radiation isolation material is formed into a heat radiation isolation plate 701; on the heat radiation isolation plate 701
  • a second dielectric layer is formed, the second dielectric layer covers the first dielectric layer and the heat radiation isolation plate 701, and the second dielectric layer is lithography and etched to form a second opening in the second dielectric layer.
  • the depth of the second opening may be less than or equal to the thickness of the second dielectric layer.
  • the lower surface of the heat radiation reflecting plate 702 formed by filling the second opening subsequently is isolated from heat radiation
  • the upper surface of the plate 701 is in contact; when the depth of the second opening is less than the thickness of the second dielectric layer, the second dielectric layer can also play the role of isolating the heat radiation reflection plate 702 and the heat radiation isolation plate 701, that is, the heat radiation reflection plate
  • the role of the second dielectric layer between 702 and the heat radiation isolation plate 701 is equivalent to the role of the first passivation layer in other embodiments.
  • a third passivation layer with a flat surface is further formed on the heat radiation reflection plate 702, the third passivation layer at least covers the heat radiation reflection plate 702, and the third passivation layer is used to protect the heat radiation Reflector 702 .
  • the third passivation layer may not be formed.
  • the material of the third passivation layer includes at least one of silicon oxide, silicon nitride, silicon oxynitride, low-K dielectric, high-K dielectric, and metal nitride.
  • a third passivation layer covering the heat radiation reflection plate 702 may be formed.
  • a deposition process may be used to form a third passivation material layer (not shown in the figure), and a chemical mechanical polishing (CMP) process may be used to planarize the top surface of the third passivation material layer to form a surface of Flat third passivation layer.
  • CMP chemical mechanical polishing
  • the top surface of the heat radiation reflector 702 may not be covered with the third passivation layer, but it needs to ensure that the surfaces of the dielectric layers on both sides of the heat radiation reflector 702 are the same as the surface of the heat radiation reflector 702 or higher than the heat radiation reflection plate 702 to ensure the subsequent bonding process.
  • the first passivation layer, the second passivation layer and the third passivation layer may constitute the passivation layer 720 .
  • the circuit substrate is bonded with the support layer, so that the first groove is sandwiched between the thermopile structure plate and the circuit substrate to form a first cavity, and the heat radiation induction area 20A and the heat radiation corresponding area 20B are located on the circuit substrate.
  • the projections on the surface are coincident, and both the heat radiation reflection plate and the heat radiation isolation plate are located under the thermopile structure.
  • the circuit substrate and the support layer 601 are bonded by a suitable bonding process. After the support layer 601 and the circuit substrate are bonded, the heat radiation reflection plate 702 and the heat radiation isolation plate 701 are both located in the thermopile structure below.
  • the step of bonding the circuit substrate and the support layer 601 is specifically: inverting and fixing the thermopile structure plate on the side of the circuit substrate having the readout interconnect structures 104a and 104b.
  • the vertical distance between the thermal radiation reflection plate 702 and the thermopile structure is an odd multiple of 1/4 of the wavelength of infrared radiation.
  • the vertical distance between the thermal radiation reflecting plate 702 and the thermopile structure may be an odd multiple of 1/4 of the wavelength of the infrared radiation.
  • the vertical distance between the thermal radiation reflector 702 and the top surface of the thermopile structure can be adjusted by controlling the bonding process, so that the radiation reflector can maximize the reflection ability of the residual radiation penetrating the thermopile structure plate.
  • the vertical distance between the thermal radiation reflecting plate 702 and the thermopile structures 203a/203b is about an odd multiple of 1/4 of the wavelength ⁇ of the incident radiation, for example, about ⁇ /4, 3 ⁇ /4, 5 ⁇ /4, etc. Wait. Thereby, the maximum reflectivity of the thermal radiation reflector 702 for residual radiation penetrating the thermopile structural plates can be achieved.
  • the first cavity 602 is formed on the circuit substrate 10 , and then the thermopile structure board 20 is bonded.
  • a thermal function board is formed on the circuit substrate, and a support layer is formed thereon, wherein a first groove is opened on the support layer.
  • a circuit substrate 10 is provided, a heat radiation reflecting plate 702 is formed on the circuit substrate, and a first groove 600 is formed on the support layer covering the circuit substrate, and the heat radiation reflecting plate is located on the side of the first groove. below.
  • the step may further include: forming a heat radiation isolation plate 701 (not shown) on the circuit substrate 10 , the heat radiation reflection plate 702 is located above the heat radiation isolation plate 701 .
  • the circuit substrate 10 includes a heat radiation corresponding area 20B (shown in FIG. 4A ), and the heat radiation corresponding area corresponds to the heat radiation sensing area.
  • the support layer covers the heat radiation reflection plate, and a first groove is formed in the opposite part of the heat radiation corresponding area 20B.
  • a thinning process is further performed on the side of the thermopile structure board away from the circuit substrate, and the first substrate 200 is removed.
  • the integration thickness can be reduced, and the manufacturing difficulty of the subsequent second conductive interconnect structure can be reduced.
  • a suitable removal process eg, chemical mechanical polishing, etching or stripping, etc.
  • a suitable removal process eg, chemical mechanical polishing, etching or stripping, etc.
  • the method for fabricating the thermopile sensor in this embodiment further includes: forming second conductive interconnect structures 40a and 40b, and the second conductive interconnect structures 40a and 40b electrically connect the readout circuit and the thermopile structure.
  • the second conductive interconnect structures 40a, 40b are used to output electrical signals from the thermopile structure and the readout interconnect structures 104a, 104b.
  • the second conductive interconnect structures 40a and 40b are formed on the thermopile structure plate 20 around the heat radiation sensing area 20A.
  • the second conductive interconnect structure includes a first plug located in the thermopile structure plate, the first plug is connected to the thermopile structure; a second plug; and a plug interconnection on the thermopile structural board, the plug interconnection connecting the first plug and the second plug.
  • the step of forming the second conductive interconnect structures 40a, 40b may include: forming first interconnect via holes (not shown) and second interconnect via holes (not shown) on the side of the thermopile structure board facing away from the circuit substrate out), the first interconnect via exposes the thermopile structure plate, and the second interconnect via exposes the readout interconnect structure in the circuit substrate; on the sidewalls of the first interconnect via and the second interconnect via forming an insulating medium layer; forming a first plug in the first interconnection through hole, forming a second plug in the second interconnection through hole; forming a plug interconnection line on the surface of the thermopile structure board, and the plug interconnection A wire connects the first plug and the second plug.
  • the second conductive interconnect structures 40a, 40b are formed by a redistribution process, which specifically includes a process of forming the second plugs 401a, 401b, a process of forming the first plugs 403a, 403b, and forming a plug interconnection Process of lines 402a, 402b.
  • the execution order of the process of forming the second plugs 401a and 401b and the process of forming the first plugs 403a and 403b is not limited.
  • the second plug 401a, the first plug 403a, and the plug interconnection line 402a form the second conductive interconnect structure 40a
  • the second plug 401b, the first plug 403b, and the plug interconnection line 402b form the second conductive interconnection structure 40a.
  • Connecting structure 40b
  • the first passivation layer, the second passivation layer and the third passivation layer form the passivation layer 720 .
  • the process of forming the first plugs 403a, 403b specifically includes: first, etching the thermopile structure plate 20, the first isolation layer 301, the support layer 601, the passivation layer 720 and part of the interlayer dielectric material around the heat radiation sensing area 20A layer 103 to form second contact holes (not shown) exposing parts of the top surfaces of the readout interconnect structures 104a and 104b respectively; then, covering the sidewalls of the second contact holes with an insulating dielectric layer, the insulating dielectric layer
  • the material of the insulating dielectric layer may include at least one of silicon oxide, silicon nitride, silicon oxynitride, metal nitride, high-K dielectric, low-K dielectric, and the like.
  • the bottom of the insulating dielectric layer exposes part of the top surfaces of the corresponding readout interconnect structures 104a and 104b; then, the second contact holes are filled with conductive materials such as metal (such as tungsten, copper), and chemical mechanical polishing is performed.
  • the excess conductive material covering the surface of the dielectric layer 201 is removed by such processes to form the first plugs 403 a and 403 b whose top surfaces are flush with the top surface of the dielectric layer 201 .
  • the bottom end of the first plug 403a is electrically connected to the readout interconnect structure 104a.
  • the bottom end of the first plug 403b is electrically connected to the readout interconnect structure 104b.
  • the process of forming the second plugs 401a and 401b specifically includes: first, etching the thermopile structure plate 20 around the heat radiation sensing area 20A to form a first contact hole (not shown) exposing a part of the surface of the thermopile structure Then, an insulating medium layer is covered on the sidewall of the first contact hole, and the insulating medium layer is used to insulate and isolate the conductive material to be subsequently filled from the thermopile structural plate 20, and the material of the insulating medium layer may include silicon oxide, silicon nitride , at least one of silicon oxynitride, metal nitride, high-K dielectric, low-K dielectric, etc., the bottom of the insulating dielectric layer exposes the surface of the corresponding thermopile structure; then, the first contact hole is filled with metal (for example, tungsten, copper) and other conductive materials, and the excess conductive material covering the surface of the dielectric layer 201 is removed by chemical mechanical polishing and other processes to form second plug
  • the bottom end of the second plug 401a is electrically connected to the first conductive interconnection line 300a.
  • the bottom end of the second plug 401b is electrically connected to the second conductive interconnection line 300b.
  • the process of forming the plug interconnect lines 402a, 402b specifically includes: depositing a metal layer on the surfaces of the first plugs 403a, 403b, the second plugs 401a, 401b and the dielectric layer 201; performing photolithography and etching on the metal layer , to remove the metal layer in the heat radiation sensing region 20A, the remaining metal layer forms plug interconnect lines 402a, 402b, the plug interconnect line 402a covers the top of the first plug 403a and the top of the second plug 401a and The top of the first plug 403a and the top of the second plug 401a are electrically connected, and the plug interconnection wire 402b covers the top of the first plug 403b and the top of the second plug 401b and connects the top of the first plug 403b The top end is electrically connected to the top end of the second plug 401b.
  • thermopile structure plate 20 when the thermopile structure plate 20 is formed based on a non-conductive material plate, the insulating medium layer may be omitted on the sidewalls of the conductive material in the second plugs 401a, 401b and the first plugs 403a, 403b.
  • the second conductive interconnection structure may include: a first plug, the first plug penetrates the thermopile structure plate and the support layer, and the bottom end is connected to the readout The output circuit is electrically connected; the second sub-plug of the circuit substrate is electrically connected to the readout circuit; the second sub-plug of the thermopile is electrically connected to the thermopile structure. After the circuit substrate and the support layer are bonded, the thermopile The second sub-plug is electrically connected to the second sub-plug of the circuit substrate.
  • the forming process of the second conductive interconnection structure may also be: before bonding the thermopile structure board and the circuit substrate, firstly forming the second thermopile sub-plugs 406a and 406b on the thermopile structure board to be electrically connected to the thermopile structure ; And the second sub-plugs 404a, 404b of the circuit substrate are formed on the circuit substrate to be electrically connected to the readout circuit; after the circuit substrate is bonded with the support layer, the second sub-plugs 406a, 406b of the thermopile are connected to the first sub-plugs of the circuit substrate.
  • the two sub-plugs 404a and 404b are electrically connected through conductive bonding material.
  • first plugs 403a and 403b are formed which penetrate through the thermopile structure board and the support layer and are electrically connected with the readout circuit.
  • the first plugs 403a and 403b are used as output terminals. Lead out the corresponding electrical signal.
  • thermopile second sub-plugs 406a, 406b may be electrically connected to the first conductive interconnect structure for the convenience of connection.
  • the second conductive interconnect structure may further include: a first sub-plug of the circuit substrate, electrically connected to the readout circuit; a second sub-plug of the circuit substrate
  • the plug is electrically connected with the readout circuit; the first sub-plug of the thermopile, the first plug of the thermopile penetrates the thermopile structural plate and the support layer; the second sub-plug of the thermopile, the second sub-plug of the thermopile is connected to the thermopile structure plate and the supporting layer;
  • the stack structure is electrically connected; after the circuit substrate and the support layer are bonded, the second sub-plug of the thermopile is electrically connected to the second sub-plug of the circuit substrate, and the first sub-plug of the thermopile is electrically connected to the first sub-plug of the circuit substrate Electrical connection.
  • first thermopile first sub-plugs 407a, 407b and thermopile second sub-plugs 406a, 406b may be formed on the thermopile structure board.
  • a sub-plug 407a, 407b penetrates the thermopile structure board and the support layer, the second sub-plug 406a, 406b of the thermopile is electrically connected to the thermopile structure; and a circuit substrate electrically connected to the readout circuit is formed on the circuit substrate
  • the first sub-plugs 407a and 407b of the thermopile and the first sub-plugs 405a and 405b of the circuit substrate are electrically
  • thermopile second sub-plugs 406a, 406b may be electrically connected to the first conductive interconnect structure for the convenience of connection.
  • thermopile sensor is further disposed on the thermopile sensor to protect the thermal radiation sensing area 20A of the thermopile sensor.
  • a cover 50 with a protective groove 503 is provided, and a radiation penetration window (not shown in the figure) is also provided on the cover on the side of the protective groove 503 facing away from the thermopile structural plate, and the radiation penetration window is at least the same as that of the thermopile structural plate.
  • the thermopile structure is vertically aligned; the radiation penetration window is used to transmit infrared.
  • the material of the radiation transmission window includes one or both of semiconductors (eg, silicon, germanium, or silicon-on-insulator, etc.) and organic filter materials (eg, polyethylene, polypropylene, etc.).
  • semiconductors eg, silicon, germanium, or silicon-on-insulator, etc.
  • organic filter materials eg, polyethylene, polypropylene, etc.
  • the shape of the radiation penetration window can be a regular shape such as a rectangle, a square or a circle, and can also be other irregular shapes.
  • the manufacturing method may further include: disposing an infrared antireflection film above the radiation penetration window.
  • the cover 50 is bonded to the thermopile structure plate, and the protection groove 503 is sandwiched between the cover 50 and the thermopile structure plate to form a second cavity 502 , and the second cavity 502 and the first cavity 602 and, trimming the cover 50 to expose at least a portion of the surface of the second conductive interconnect structure.
  • the material of the cover 50 can be glass, plastic, semiconductor, etc., by bonding the cover 50 to the surface of the thermopile structure plate away from the circuit substrate, to cover the heat radiation induction area 20A of the thermopile structure plate, and, based on The setting of the protection groove makes the cavity structure above the heat radiation induction area 20A of the thermopile structure plate, which avoids the contact of related materials to the heat radiation induction area 20A of the thermopile structure plate, thereby avoiding the heat radiation to the thermopile structure plate. Sensing area 20A has an impact.
  • the steps of providing the cover 50 with the protective groove 503 are: providing a third substrate 500 , then depositing a cavity material layer on the third substrate 500 , and etching the cavity material layer until the third substrate 500 is exposed to form the second cavity 502 in the cavity material layer, and the remaining cavity material constitutes the cavity wall 501; as another example, the third substrate 500 is provided first, and then a partial thickness of the third substrate is etched 500, to form a second cavity 502 in the third substrate 500, at this time, the material of the cavity wall 501 is the same as the material of the third substrate 500; then, the cover 50 is bonded to the dielectric layer 201, and the groove is protected 503 is sandwiched between the cover 50 and the thermopile structural plate 20 to form a second cavity, and is aligned with the first cavity 602; the setting of the second cavity 502 can minimize the impact of the superstructure on the incident thermal radiation. Direct absorption, while storing the incident thermal radiation to a certain extent, enables the thermopile structure to receive the
  • the edge of the third substrate 500 is trimmed through a process such as laser cutting to expose the surfaces of the interconnect lines 402a and 402b, thereby making the interconnect lines 402a and 402b the corresponding external contacts of the thermopile sensor. pad.
  • thermopile sensor In the manufacturing method of the thermopile sensor provided by the embodiment of the present invention, an etching process is used to form a first groove on the part of the support layer opposite to the heat radiation sensing area 20A, and then the support layer and the circuit substrate are subsequently bonded to make
  • the first groove is sandwiched between the thermopile structure plate and the circuit substrate to form a first cavity, which is not only simple in process, but also can be thermally insulated through the first cavity to prevent the heat received by the thermopile structure from going below the first cavity It is conducted in the circuit substrate of the thermopile, avoiding the loss of inductive information corresponding to the open first groove, and improving the measurement accuracy of the sensor.
  • the circuit substrate is directly bonded under the thermopile structural plate, it can be used without increasing the area.
  • the vertical system integration of the CMOS readout circuit is beneficial to shorten the interconnection length, signal loss and noise from the sensing signal to the readout circuit, and is conducive to the miniaturization of the thermopile sensor, and is also conducive to further extension to the manufacturing process.
  • the active thermal imaging sensor array is integrated with the 3D system of the CMOS readout pixel array and the peripheral circuit; and, after the support layer is subsequently bonded to the circuit substrate, the thermal radiation reflection plate formed on the circuit substrate is located under the first cavity, and the heat
  • the radiation reflector can further avoid the loss of corresponding environmental information and improve the measurement accuracy of the sensor; further, by forming thermal radiation isolation under the thermal radiation reflector
  • the heat radiation isolation plate can isolate the heat generated by the circuit substrate, prevent the heat of the circuit substrate from being transferred to the thermopile structure plate, and improve the measurement accuracy of the thermopile sensor.
  • the embodiments of the present invention further provide another method for fabricating a thermopile sensor.
  • a patterned sacrificial structure 410 is formed on the side of the thermopile structure plate 20 having the thermopile structure, and the projection of the sacrificial structure 410 on the thermopile structure plate at least covers the heat radiation sensing area 20A.
  • the sacrificial structure 410 is used to occupy space for the first cavity, so that the first cavity can be formed by removing the sacrificial structure in the subsequent process.
  • the material of the sacrificial structure 410 is at least one of germanium and amorphous carbon, and may also include at least one of metal, semiconductor and dielectric materials.
  • it is a material that can react with a vapor-phase etchant to form a gas, or a material that can be converted into a gas after being irradiated or heated, thereby reducing the difficulty of subsequent removal of the sacrificial structure and ensuring the performance of the first cavity formed.
  • the sacrificial structure may be formed on the side of the thermopile structure plate with the first interconnection structure through a series of processes such as sacrificial material deposition, photolithography, and etching.
  • the sacrificial structure covers at least the heat radiation sensing area, so that the subsequently formed first cavity is opposite to the heat radiation sensing area.
  • the process of forming the patterned sacrificial structure 410 may include: forming a sacrificial material layer that completely covers the thermopile structure plate with the side of the thermopile structure;
  • the sacrificial material layer is a sacrificial structure.
  • the sacrificial material layer can be formed by processes such as deposition and growth.
  • dry etching or wet etching process can be used to remove the sacrificial material layer outside the heat radiation sensing area, and the remaining sacrificial material layer is used as a sacrificial structure.
  • the specific etching process can be controlled by controlling the etching time, as long as the sacrificial layer outside the thermal radiation sensing area is completely removed.
  • the specific etching step is not specifically limited in this embodiment of the present invention.
  • the cross section of the sacrificial structure can be a trapezoid or an inverted trapezoid.
  • the smallest dimension of the formed sacrificial structure can be at least covered. Thermal radiation induction area.
  • the method may further include: forming a fourth passivation layer on the thermopile structure plate that is flush with the top surface of the sacrificial structure, so that the fourth passivation layer is flush with the top surface of the sacrificial structure.
  • the passivation layer is supported on the side of the sacrificial structure.
  • a sufficiently thick fourth passivation material layer may be deposited first, and a chemical mechanical polishing (CMP) process is used to planarize the top surface of the fourth passivation material layer, and the fourth passivation material layer after the top surface is planarized
  • CMP chemical mechanical polishing
  • the fourth passivation layer may bury the first and second conductive interconnects 300a and 300b and the thermopile structure.
  • the material of the fourth passivation layer refer to the material of the first passivation layer, which will not be repeated here.
  • the formation of the patterned sacrificial structure can also be achieved through the following processes: forming a fourth passivation material layer that completely covers the thermopile structure plate with the thermopile structure side; Four passivation material layers are formed to form a sacrificial trench, and the remaining part of the fourth passivation material layer is used as the fourth passivation layer; a sacrificial structure filled in the sacrificial trench is formed.
  • the filling refers to that the sacrificial structure formed in the sacrificial trench is flush with the fourth passivation layer.
  • a sacrificial material that fills the sacrificial trench and is higher than the sacrificial passivation layer can be formed by deposition, growth and other processes, and further uses a chemical mechanical polishing (CMP) process to planarize the top surface of the sacrificial material until the sacrificial material is The layer is flush with the fourth passivation layer and has a sacrificial structure filled with sacrificial material in the sacrificial trenches.
  • CMP chemical mechanical polishing
  • a heat radiation isolation plate 701 is formed on a thermopile structure plate or a circuit substrate.
  • the heat radiation isolation plate 701 is used to connect between the thermopile structural plate 20 and the circuit substrate.
  • the heat radiation isolation plate 701 is used to thermally insulate the subsequently formed first cavity, so as to prevent the heat of the circuit substrate from being conducted to the thermopile structure plate above the first cavity, thereby affecting the precision of the device.
  • the heat radiation isolation plate 701 may completely cover the thermopile structure plate, or may only cover the heat radiation induction area 20A.
  • the heat radiation isolation plate may be formed on the surface of the thermopile structure on the side with the sacrificial structure, or may be formed on the circuit substrate.
  • the step of forming the heat radiation isolation plate may specifically include: forming an isolation material layer conformally covering the side of the thermopile structure plate with the sacrificial structure; removing part of the isolation material layer to make The projection of the remaining insulating material layer on the thermopile structural plate at least covers the projection of the sacrificial structure on the thermopile structural plate, wherein the remaining insulating material layer is used as a heat radiation insulating plate.
  • forming the heat radiation isolation plate covering only the heat radiation induction area can also be achieved by the following processes: forming a fourth passivation material layer covering the thermopile structure plate with the sacrificial structure side; removing the sacrificial structure The fourth passivation material layer on the top forms an isolation trench, and the remaining fourth passivation material layer is used as the fourth passivation layer; an isolation material layer that conformally covers the fourth passivation layer and the isolation trench is formed; the isolation is removed For the isolation material layer outside the trench, the remaining isolation material layer is used as a heat radiation isolation plate.
  • the depth of the isolation trench is adapted to the thickness of the layer structure formed in the isolation trench, and the trench used to form the heat radiation isolation plate in the isolation trench, the corresponding trench depth is the same as the thickness of the heat radiation isolation plate. thickness to suit.
  • CMP chemical mechanical polishing
  • the heat radiation isolation plate completely covers the surface of the thermopile structural plate on the side with the sacrificial structure, which may be an isolating material layer conformally covering the side of the thermopile structural plate with the sacrificial structure,
  • the insulation material layer is used as the heat radiation insulation board.
  • the isolation material layers may be respectively formed through a deposition process.
  • the step of forming the isolation material layer includes: firstly forming a silicon layer, and then performing metal silicide treatment on the silicon layer.
  • the step of forming the isolation material layer includes: forming a semiconductor layer first, and then performing N-type and/or P-type doping on the semiconductor layer.
  • the heat radiation isolation plate is attached to the sacrificial structure; in other optional embodiments, a spacer passivation layer is further formed between the heat radiation isolation plate and the sacrificial structure.
  • the spacer passivation layer is a layer of passivation material conformally covering the sacrificial structure or the sacrificial structure and the fourth passivation layer, and the material of the spacer passivation layer can be silicon oxide, silicon nitride, silicon carbide, carbon One or more of silicon nitride, silicon oxycarbonitride, silicon oxynitride, boron nitride and boron carbonitride.
  • the heat radiation isolation plate may also be formed on the circuit substrate.
  • the radiation isolation plate When the heat radiation isolation plate is formed on the circuit substrate, and the radiation isolation plate only covers the surface of the circuit substrate corresponding to the heat radiation induction area.
  • the sacrificial layer and the support layer are formed on the circuit substrate. After the circuit substrate is bonded to the thermopile structure board, the sacrificial layer is released through the release hole 50 (refer to FIG. 1F ) to form a first cavity 602 .
  • a support structure is formed on the circuit substrate.
  • the support structure includes a heat radiation isolation plate 701 and a sacrificial structure 400 vertically stacked from bottom to top.
  • the heat radiation isolation plate and the sacrificial structure cover at least the heat radiation isolation area.
  • the heat radiation isolation plate may be formed first, and then the sacrificial structure may be formed.
  • the support structure further includes a support medium layer surrounding the heat radiation isolation plate and the sacrificial structure, and the surface of the support medium layer is flat to provide support for the subsequently formed first cavity and for subsequent bonding The process provides a flat surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供一种热电堆传感器及其制作方法、电子设备,热电堆传感器包括沿入射辐射方向依次设置的:热电堆结构板,所述热电堆结构板具有热辐射感应区,所述热辐射感应区中形成有热电堆结构;支撑层;基板,所述基板、所述热电堆结构板、和所述支撑层之间围成有第一空腔,且所述热电堆结构设置在所述第一空腔的上方,有利于热电堆传感器的微型化,从而能提高热电堆传感器的测量精度。

Description

热电堆传感器及其制作方法、电子设备 技术领域
本发明涉及传感器制造技术领域,尤其涉及一种热电堆传感器及其制作方法、电子设备。
背景技术
热电堆(thermal-pile)是一种能将温差和电能相互转化的元件,其由两个或多个热电偶串接组成,各热电偶输出的热电势是互相叠加的,当热电堆的两边出现温差时,会产生电流。
热电堆传感器可配置各种透镜和滤波器,从而实现在温度测量(额温枪、耳温枪、食品温度检测等)、气体成份的定性/定量分析、智能家电、灯具开关、医疗设备等多种应用场景中的应用。
然而,现有的热电堆传感器的器件尺寸、器件精度有待提高。
技术问题
本发明的目的在于提供一种热电堆传感器及其制作方法、电子设备,能够提高测量精度,并有利于微型化。
技术解决方案
为了实现上述目的,本发明提供一种热电堆传感器,包括沿入射辐射方向依次设置的:热电堆结构板,所述热电堆结构板具有热辐射感应区,所述热辐射感应区中形成有热电堆结构;支撑层;基板,所述基板、所述热电堆结构板、和所述支撑层之间围成有第一空腔,且所述热电堆结构设置在所述第一空腔的上方。
可选的,基板为电路基板。
本发明还提供一种热电堆传感器的制作方法,包括以下步骤:所述方法包括:提供热电堆结构板,所述热电堆结构板具有热辐射感应区,所述热辐射感应区中形成有热电堆结构;提供基板;在所述热电堆结构板上或者所述基板上形成支撑层,所述支撑层开设有第一沟槽;将所述基板与所述热电堆结构通过所述支撑层键合,使所述第一沟槽夹设在所述热电堆结构板和所述基板之间,以形成第一空腔,所述第一空腔至少露出所述热辐射感应区。
可选的,在所述基板上形成热学功能板,所述热学功能板包括热辐射反射板和/或热辐射隔离板,且使所述热学功能板位于所述热电堆结构的下方。
本发明还提供一种热电堆传感器的制作方法,包括以下步骤:提供热电堆结构板,所述热电堆结构板具有热辐射感应区,所述热辐射感应区中形成有热电堆结构;提供基板;在所述热电堆结构板上形成图形化的牺牲结构及与所述牺牲结构顶面齐平的支撑层;或,在所述基板上形成图形化的牺牲结构及与所述牺牲结构顶面齐平的支撑层;将所述基板与所述热电堆结构板键合,使所述牺牲结构夹设在所述热电堆结构板和所述基板之间,所述牺牲结构在所述热电堆结构板的投影至少覆盖所述热辐射感应区;去除所述牺牲结构,在所述热电堆结构板和电路基板之间形成由支撑层围成的第一空腔。
本发明还提供一种电子设备,包括本发明所述的热电堆传感器。
有益效果
与现有技术相比,本发明的技术方案具有以下有益效果:本发明实施例采用刻蚀的工艺或牺牲层释放工艺,于基板与热电堆结构板与基板键合时,在支撑层的与所述热辐射感应区相对的部分形成第一空腔,不但工艺简单,还可以通过第一空腔进行热绝缘,防止热电堆结构接收的热量向第一空腔下方的基板中传导,避免开放的第一沟槽对应的感应信息流失,提高传感器的测量精度。进一步地,后续支撑层将热电堆结构板与基板键合后,位于基板上的热学功能板位于第一空腔下方,可以反射或者隔离热量,提高传感器的测量精度。
进一步地,基板为电路基板,由于电路基板直接键合在热电堆结构板的下方,因此,能够在不增加面积的条件下,实现CMOS读出电路的垂直系统集成,有利于缩短传感信号到读出电路的互连长度、信号损失和噪声,且有利于热电堆传感器的微型化,还有利于进一步延展到制作主动热成像传感器阵列与CMOS读出像素阵列及外围电路的3D系统集成;进一步地,通过在热辐射反射板下方形成热辐射隔离板,热辐射反射板通过将穿透热电堆结构板的残余辐射反射回热电堆结构板,能够进一步避免对应环境信息的流失,热辐射隔离板能够隔绝电路基板产生的热量,避免电路基板的热量传递给热电堆结构板,提高热电堆传感器的测量精度。
附图说明
图1A-图1G是本发明实施例所提供的热电堆传感器的结构示意图。
图2A-图2J是本发明实施例所提供的热电堆传感器的制造方法中各步骤对应的结构示意图。
图2K-图2M是本发明另一实施例所提供的一种热电堆传感器的制造方法中各步骤对应的结构示意图。
图2N-图2P是本发明又一实施例所提供的一种热电堆传感器的制造方法中各步骤对应的结构示意图。
图3A,图4A,5A是本发明其他实施例所提供的热电堆传感器的制造方法中空腔形成步骤对应的结构示意图。
本发明的实施方式
由背景技术可知,现有的热电堆传感器的器件尺寸、器件精度有待提高。
经分析,传统的热电堆传感器,通过在介质薄膜上淀积多晶硅/金属制作热偶对以感应温度信息,然后通过背面硅各向异性湿法腐蚀的方法在介质薄膜下方形成隔热空腔以增加热阻,并将热偶对电连接至热偶对侧边形成的电路结构上,从而实现感应信号的传输。但该方法形成的器件下方没有衬底结构,隔热空腔中的热量仍会以一定的形式流失,从而使得热电堆传感器的测量精度不高。
为解决上述问题,本发明实施例提供一种热电堆传感器。
如图1A所示,本发明一实施例提供的热电堆传感器,包括沿入射辐射方向(即图1A中从上至下的方向)依次设置的热电堆结构板20,支撑层601以及基板10。热电堆结构板20具有热辐射感应区20A,热辐射感应区20A中形成有热电堆结构;基板10、热电堆结构板20、和支撑层601之间围成有第一空腔602,且热电堆结构设置在第一空腔602的上方。
本发明实施例所提供的热电堆传感器,器件尺寸小,实现微型化。既可以从热电堆结构板20背向基板10的一侧接收热辐射,避免基板10对热辐射的直接吸收,又可以通过第一空腔602进行热绝缘,防止热电堆结构接收的热量向第一空腔602下方的基板10中传导。
如图1B所示,第一空腔602的底部配置有热学功能板,热学功能板包括热辐射反射板702和热辐射隔离板701,热辐射反射板702位于热辐射隔离板701的上方。其他实施例中,热学功能板为热辐射反射板702或者热辐射隔离板701。
热辐射隔离板701能够隔绝基板产生的热量,在一实施例中,基板10为电路基板,热辐射隔离板70避免电路基板的热量传递给热电堆结构板,提高热电堆传感器的测量精度;热辐射反射板702用于在器件工作时,将传输至第一空腔602内的红外辐射反射回热电堆结构板中,从而提高热电堆传感器的精度。
其中,热辐射反射板702的材料为导电材料和/或光子晶体材料,导电材料为金属材料、金属硅化物材料、半导体材料中的一种或多种,金属硅化物可以是硅化钛 (TiSi),硅化钨(WSi)或硅化铝(AlSi)等,掺杂的半导体例如是掺杂有P型或N型掺杂剂的多晶硅层或非晶硅层或硅锗层等。
热辐射隔离板701的材料是金属材料。
如图1C所示,本发明实施例中,热辐射隔离板701和热辐射反射板702之间可以形成有第一钝化层720a,从而实现热辐射隔离板701和热辐射反射板702的隔离。
本发明实施例中,热辐射反射板702上可以形成有至少覆盖热辐射反射板702的第三钝化层,利用第三钝化层对热辐射反射板702的上表面进行保护。在其他实施例中,热辐射反射板702上表面可以被第三钝化层暴露出来。
需要说明的是,热辐射反射板702和热辐射隔离板701至少覆盖热辐射感应区20A,即热辐射反射板702和热辐射隔离板701可以仅覆盖热辐射感应区20A,也可以既覆盖热辐射感应区20A还覆盖热辐射感应区20A的外围。因此,在一种实施例中,当热辐射反射板702和热辐射隔离板701未完全覆盖热辐射感应区20A外围时,通过第二钝化层环绕热辐射反射板和热辐射隔离板,第二钝化层提供与支撑层601键合的平面键合基础。
在一种具体实施例中,热辐射反射板702与第一热感应微结构203a、第二热感应微结构203b等热电堆结构的垂直距离为入射的辐射的波长λ的1/4的奇数倍,例如为λ/4、3λ/4、 5λ/4等等,由此能够实现热辐射反射板702对穿透热电堆结构板20的残余辐射的最大反射能力。
本发明实施例所提供的热电堆传感器,既可以从热电堆结构板20背向基板10的一侧接收热辐射,避免基板10对热辐射的直接吸收,又可以通过第一空腔602进行热绝缘,防止热电堆结构接收的热量向第一空腔602下方的基板10中传导。热辐射反射板702位于第一空腔602下方,能够将穿透热电堆结构板的残余辐射反射回热电堆结构板,能够进一步避免对应环境信息的流失,提高传感器的测量精度;进一步地,热辐射隔离板701位于热辐射反射板702下方,热辐射隔离板701能够隔绝基板产生的热量,避免基板的热量传递给热电堆结构板,提高热电堆传感器的测量精度。
热电堆结构板20可以选用本领域技术人员所熟知的任意合适的材料,例如硅、绝缘体上硅、锗、硅锗、砷化镓、磷化铟等半导体衬底材料。热电堆结构板20中的热电堆结构包括至少一种热感应微结构,热感应微结构可以是由任意合适的热传导材料形成,例如热感应微结构的材料包括金属、未掺杂的半导体、掺杂的半导体和金属硅化物中的至少一种,其中,未掺杂的半导体或掺杂的半导体的材料均包括硅、锗、砷化镓或磷化铟中的至少一种,掺杂的半导体的掺杂剂包含N型(例如砷、锗等)或P型(例如硼、氟化硼、磷等)掺杂剂。可选地,热电堆结构板20选用半导体衬底,热电堆结构中的热感应微结构包括形成在半导体衬底中的N型和/或P型掺杂区,由此能够使得热电堆结构的制作与CMOS工艺相兼容,进而简化工艺,降低成本。
热电堆结构板20包括由下而上依次堆叠的第一基底200、介质层201和半导体层202,热电堆结构形成于半导体层202中。第一基底200可以是本领域技术人员熟知的任意合适的衬底材料,例如硅、锗、硅锗、砷化镓、磷化铟等体半导体衬底材料。
其中,第一基底200上形成有半导体层202和介质层201,半导体层202用于形成热电堆结构,半导体层202的材料可以是未掺杂的半导体层(例如多晶硅或单晶硅等),或者N型掺杂或P型掺杂的半导体层,半导体层202可以通过外延工艺或者离子注入工艺形成。介质层201用于隔离热电堆结构和第一基底,介质层201的材料包括氧化硅、氮化硅、氮氧化硅中的至少一种。
本实施例中,第一基底200、介质层201和半导体层202由绝缘体上硅衬底形成,第一基底200为绝缘体上硅衬底的底层单晶硅,介质层201为绝缘体上硅衬底中的二氧化硅,半导体层202为绝缘体上硅衬底的顶层单晶硅。通过对半导体层202中的部分区域进行N型和/或P型离子掺杂注入,以形成至少一种热感应微结构作为热电堆结构。
本实施例中热电堆结构包括材料不同的第一热感应微结构203a和第二热感应微结构203b,第一热感应微结构203a为N型掺杂的单晶硅,第二热感应微结构203b为P型掺杂的单晶硅。第一热感应微结构203a和第二热感应微结构203b可以具有大致对称的结构,从而在第一热感应微结构203a和第二热感应微结构203b之间产生大致对称的热感应效果,提高热电堆传感器的测量精度。
需要说明的是,本实施例中第一热感应微结构203a和第二热感应微结构203b均为单层结构,但是本发明的技术方案并不仅仅限定于此,在本发明的其他实施例中,第一热感应微结构203a和第二热感应微结构203b也可以分别为叠层结构。
可选地,当热电堆传感器用于制作热成像仪时,热电堆结构中至少有一种热感应微结构呈阵列型排布,也可以说是,这种热感应微结构呈阵列型。
作为一种示例,热电堆结构板20包括介质层201和半导体层202,介质层201的材料包括二氧化硅、氮化硅等中的至少一种,半导体层202可以是单晶硅或多晶硅,热电堆结构包括至少一种形成在半导体层202中的热感应微结构。
本实施例中,在热电堆结构板上形成有支撑层601。支撑层601的第一沟槽600的深度可以小于或者等于支撑层601的厚度。支撑层601用于为后续形成第一空腔602提供基础。另一方面,支撑层601还可以覆盖热电堆结构,以避免对应结构被污染或氧化。
支撑层601的材料可以为二氧化硅、氮化硅、氮氧化硅等材料中的一种或多种。支撑层601形成的第一空腔602可以是设在热电堆结构板支撑层,通过在热电堆结构板支撑层中形成牺牲层后释放得到,或者通过热电堆结构板支撑层刻蚀形成开口(如图1D)。支撑层601形成的第一空腔602也可以是设在基板支撑层,通过在基板支撑层中形成牺牲层后释放得到(如图1F),或者通过基板支撑层刻蚀形成开口。第一空腔602横截面积包括梯形、倒梯形、不规则图形等。
在一种具体实施例中,支撑层601和热电堆结构之间还可以形成有第一隔离层301,第一隔离层用于保护热电堆结构,防止在刻蚀支撑层601的过程中损伤第一热感应微结构203a、第二热感应微结构203b热电堆结构。
第一隔离层的材料可以与支撑层的材料相同,也可以不相同。
当然,在另一实施例中,在热电堆结构的下方形成有第一导电互连结构,第一导电互连结构与热电堆结构电性连接,可以直接在第一导电互连结构上形成支撑层601,支撑层601的第一沟槽600的深度小于支撑层601的厚度,从而也能够避免在刻蚀形成第一沟槽600的过程中对热电堆结构造成影响。
基板10可以包括本领域技术人员熟知的任意合适的半导体衬底材料,例如硅、绝缘体上硅、锗、硅锗、砷化镓、磷化铟等。或者如图X3,基板10为电路基板,电路基板10可以包括第二基底100、器件结构和与器件结构电连接的读出互连结构104a、104b,其中,器件结构形成在第二基底中,读出互连结构104a、104b形成在第二基底100上。
其中,第二基底100可以为本领域技术人员熟知的任意合适的半导体衬底材料,例如硅、绝缘体上硅、锗、硅锗、砷化镓、磷化铟等。第二基底100中已通过CMOS制造工艺形成了相应的器件结构以及位于相邻的器件结构之间的器件隔离结构,器件结构可以包括MOS晶体管、电阻、二极管、电容、存储器等中的至少一种。
在本发明实施例中,以器件结构为MOS晶体管为例,其中,MOS晶体管102可以包括栅极102a以及位于栅极102a两侧的源极102b和漏极102c。器件隔离结构101可以是通过局部场氧化工艺或者浅沟槽隔离(STI)工艺形成。读出互连结构104a、104b可以通过与器件结构的相应端子直接电性接触的底部接触插塞以及与底部接触插塞电性连接的多层金属互连结构电连接,从而实现读出互连结构与器件结构的电性连接。其中,第二基底100上还形成有层间介质材料层103,从而将相邻金属互连层隔离开。层间介质材料103可以包括二氧化硅、氮化硅、介电常数K低于二氧化硅的低K介质、K高于二氧化硅的高K介质、金属氮化物等中的至少一种。
本实施例中,电路基板中配置有读出电路,的热电堆传感器还包括布设在热辐射感应区20A的外围的第二导电互连结构,读出电路通过第二导电互连结构与热电堆结构电性连接。
为了便于将第二导电互连结构与热电堆结构电性连接,防止在电性连接过程中对热电堆结构造成伤害,在一种具体实施例中,热电堆结构板上形成有第一导电互连结构,第一导电互连结构位于热电堆结构的上方,且与热电堆结构电性连接,从而,后续可以通过第二导电结构电性连接第一导电结构,实现电路基板的读出互连结构和热电堆结构板的电性连接。
需要说明的是,第一导电互连结构位于热电堆结构的上方,指的是电路基板和热电堆结构板键合后,第一导电互连结构位于热电堆结构的上方。
具体的,热电堆结构板上形成有与热电堆结构电连接的第一导电互连结构。其中,第一互连结构用于在后续与读出互连结构电连接。
第一导电互连结构的材料可以包括铜、钛、铝、钨等金属和/或金属硅化物等。第一导电互连结构包括第一导电互连线300a和第二导电互连线300b,第一导电互连线300a电性连接第一热感应微结构203a,第二导电互连线300b电性连接第二热感应微结构203b。
本实施例中,第一导电互连结构是单层结构,以降低热电堆传感器的集成厚度。此时第一导电互连线300a和第二导电互连线300b均为一层金属线,第一导电互连线300a一端电性连接第一热感应微结构203a,另一端通过第二导电互连结构40a电性连接电路基板10的读出电路中的读出互连结构104a,第二导电互连线300b一端电性连接第二热感应微结构203b,另一端通过第二导电互连结构40b电性连接电路基板10的读出电路中的读出互连结构104b。由此有利于降低热电堆传感器的集成厚度,有利于器件微型化。在本发明的其他实施例中,第一导电互连结构也可以是多层金属互连结构。
第二导电互连结构40a、40b为采用同一道重布线工艺形成的重布线结构,并位于热辐射感应区20A外围,由此,可以在实现电路基板10中的读出电路与热电堆结构板20中的热电堆结构的电连接的同时,还可以避免第二导电互连结构对热辐射的直接吸收,又可以降低热电堆传感器的整体垂直厚度,有利于热电堆传感器的微型化,以及,提高器件性能可靠性。
第二导电互连结构包括位于热电堆结构板内的第一插塞,第一插塞连接第一导电互连结构;贯穿热电堆结构板且与读出电路电性连接的第二插塞;以及,位于热电堆结构板上的插塞互连线,插塞互连线连接第一插塞和第二插塞。
具体地,第二导电互连结构40a包括第二插塞401a、第一插塞403a以及互连线402a,第二导电互连结构40b包括第二插塞401b、第一插塞403b以及插塞互连线402b,插塞互连线402a、402b形成在热电堆结构板20背向第一空腔602的一面上,第二插塞401a、401b设置在热电堆结构板20中,第二插塞401a的底端与第一导电互连线300a电性连接,顶端与互连线402a电性连接,第二插塞401b的底端与第二导电互连线300b电性连接,顶端与互连线402b电性连接,第一插塞403a、403b贯穿热电堆结构板20和第一互连层30,第一插塞403a的顶端与互连线402a电性连接,底端与电路基板10中的读出互连结构104a电性连接;第一插塞403b的顶端与互连线402b电性连接,底端与电路基板10中的读出互连结构104b电性连接。
此外,需要说明的是,本实施例中由于热电堆结构板20是基于半导体衬底形成的,因此为了避免第二插塞401a、401b和第一插塞403a、403b与热电堆结构板20之间产生漏电,第二插塞401a、401b和第一插塞403a、403b中的导电材料的侧壁上还包围有绝缘介质层,绝缘介质层的材料包括氧化硅、氮化硅、氮氧化硅、金属氮化物、高K介质和低K介质中的至少一种。在本发明的其他实施例中,当热电堆结构板20是基于非导电的材料板形成时,第二插塞401a、401b和第一插塞403a、403b中的导电材料的侧壁上可以省略绝缘介质层的包围。
在本发明另一实施例中,如图1D所示,第二导电互连结构可以包括:第一插塞403a、403b,第一插塞403a、403b贯穿热电堆结构板、支撑层,且底端与读出电路电性连接;电路基板第二子插塞404a、404b,与读出电路电性连接;热电堆第二子插塞406a、406b,与电路基板第二子插塞404a、404b电性连接且与热电堆结构电性连接。
在一种具体实施例中,为了便于连接,热电堆第二子插塞406a、406b可以与第一导电互连结构电性连接。
在本发明又一实施例中,如图1E所示,第二导电互连结构还可以包括:电路基板第一子插塞405a、405b,与读出电路电性连接;电路基板第二子插塞404a、404b,与读出电路电性连接;热电堆第一子插塞407a、407b,热电堆第一插塞贯穿热电堆结构板和支撑层;热电堆第二子插塞406a、406b,与电路基板第二子插塞404a、404b电性连接,且热电堆第二子插塞406a、406b与热电堆结构电性连接。
在一种具体实施例中,为了便于连接,热电堆第二子插塞406a、406b可以与第一导电互连结构电性连接。
当然,各个插塞的侧壁也可以包围有绝缘介质层,以防止漏电。具体请参照前文,在此不再赘述。
在其他实施例中,热电堆传感器结构中的第一导电结构位于热电堆结构的下方,避免第一导电结构对热辐射的直接吸收。
参考图1F,第一导电结构,还可以位于热电堆结构的下方,且与热电堆结构电性连接。具体实施例,第一导电结构可以通过金属互连工艺形成在热电堆结构板20上。第一导电结构材G料如上实施例不再赘述。第一导电结构远离热电堆结构的表面上还可以形成有第一钝化层,第一钝化层的材料可以包括二氧化硅、氮化硅和低K介质中的至少一种。第一导电互连结构包括第一导电互连线300a和第二导电互连线300b,第一导电互连线300a电性连接第一热感应微结构203a,第二导电互连线300b电性连接第二热感应微结构203b。第一导电互连结构能使得第一热感应结构20a和第二热感应结构203b并联或串联电连接。本实施例中,第一钝化层301从热电堆结构板20的底部方向,将第一热感应微结构203a、第二热感应微结构203b、第一导电互连线300a和第二导电互连线300b均掩埋在内,以保护第一热感应微结构203a、第二热感应微结构203b,并实现相邻第一导电互连结构中的相邻导电互连线之间必要的绝缘隔离。在本发明的其他实施例中,第一钝化层301从热电堆结构板20的底部方向,也可以仅覆盖部分第一导电互连线300a和部分第二导电互连线300b。此外,第一钝化层301通常为多层介电材料层叠而成的结构,例如包括第一部分和第二部分,第一部分是在热电堆结构形成之后且在第一导电互连结构形成之前形成的,以保护第一热感应微结构203a、第二热感应微结构203b等热电堆结构,避免第一导电互连结构形成工艺对热电堆结构造成不良影响,第二部分是在第一导电互连结构形成过程中以及形成第一导电互连结构之后形成的,由此给第一导电互连结构提供成型平台,并实现第一导电互连结构中相邻结构之间的绝缘隔离以及实现第一导电互连结构的掩埋。
本实施例中,第一导电互连结构是单层结构,此时第一导电互连线300a和第二导电互连线300b均为一层金属线,第一导电互连线300a一端电性连接第一热感应微结构203a,另一端通过第二导电互连结构40a电性连接基板10的读出电路中的读出互连结构104a,第二导电互连线300b一端电性连接第二热感应微结构203b,另一端通过第二导电互连结构40b电性连接基板10的读出电路中的读出互连结构104b。由此有利于降低热电堆传感器的集成厚度,有利于器件微型化。在本发明的其他实施例中,第一导电互连结构也可以是多层金属互连结构。
本实施例的热电堆传感器,沿入射辐射方向依次设置热电堆结构板、第一导电互连结构以及基板,并在基板和第一导电互连结构之间夹设第一空腔,结构简单,既可以从热电堆结构板背向基板的一侧接收热辐射,避免基板和第一导电互连结构对热辐射的直接吸收,又可以通过第一空腔进行热绝缘,防止热电堆结构接收的热量向第一空腔下方的基板中传导,从而能提高热电堆传感器的测量精度。
热学功能板形成在第一空腔的底面上,或者,被掩埋在第一空腔的底面与基板之间。
参考图1G,本实施例的热电堆传感器还包括封盖50,封盖50配置在热电堆结构板20背向电路基板10的一侧上,封盖50设有保护槽503,封盖50的保护槽503覆盖在热电堆结构板20的热辐射感应区20A上,保护槽503背向热电堆结构板20的一侧的封盖上还设有辐射穿透窗口(图中未示出),辐射穿透窗口至少与热电堆结构垂直对齐。
辐射穿透窗口用于透射红外线。在一种具体实施例中,辐射穿透窗口上方还可以设置红外增透膜。
辐射穿透窗口的材料包括半导体(例如硅、锗或绝缘体上硅等)和有机滤光材料(例如聚乙烯、聚丙烯等材料)中的一种或两种。
辐射穿透窗口的形状可以为矩形、正方形或圆形等规则形状,也可以为其他不规则形状。
第二空腔502的设置,能尽量减少上层结构对入射的热辐射的直接吸收,同时对入射的热辐射进行一定程度地储存,使得热电堆结构最大程度地接收入射的辐射热量,由此可以提高热电堆传感器的性能。
可选实施例中,封盖50可以包括第三基底500以及形成在第三基底500面向热电堆结构板20的一面上的腔体壁501,腔体壁501和介质层201围成第二空腔502。第三基底500的材料可以是本领域技术人员熟知的任意合适的材料,例如玻璃、塑料、半导体等。腔体壁501的材料可以和第三基底500相同,也可以与第三基底500的材料不同。第二空腔502背向热电堆结构板20的一侧的封盖50上还设有辐射穿透窗口(未图示),辐射穿透窗口至少与热电堆结构垂直对齐,辐射穿透窗口的材料包括半导体(例如硅、锗或绝缘体上硅等)和/或有机滤光材料(例如聚乙烯、聚丙烯等材料)。
本实施例的基板和热电堆结构板通过支撑层键合连接,基板或热电堆结构至少其一与支撑层通过键合界面连接;封盖和热电堆结构板键合连接,封盖或热电堆结构板通过键合界面连接。
本实施例的热电堆传感器,沿入射辐射方向依次设置热电堆结构板、支撑层以及电路基板,并在电路基板和热电堆结构板之间夹设第一空腔,且在第一空腔的底部增加热辐射反射板和热辐射隔离板,结构简单,可以通过第一空腔进行热绝缘,防止热电堆结构接收的热量向第一空腔下方的电路基板中传导,还可以通过热辐射反射板将穿透热电堆结构板的残余辐射反射回热电堆结构板,从而能提高热电堆传感器的测量精度。通过在热辐射反射板下方形成热辐射隔离板,热辐射隔离板能够隔绝电路基板产生的热量,避免电路基板的热量传递给热电堆结构板,提高热电堆传感器的测量精度。进一步地,由于电路基板直接键合在热电堆结构板的下方,因此,能够在不增加面积的条件下,实现CMOS读出电路的垂直系统集成,有利于缩短传感信号到读出电路的互连长度、信号损失和噪声,且有利于热电堆传感器的微型化,还有利于进一步延展到制作主动热成像传感器阵列与CMOS读出像素阵列及外围电路的3D系统集成。
需要说明的是,本发明的热电堆传感器并不仅仅限定于上述实施例中的具体结构举例,在本发明的其他实施例中,在实现相同功能的前提下,对上述实施例的热电堆传感器中的相应结构进行变形和省略,由此得到的热电堆传感器同样属于本发明的技术方案的保护范围。
本发明一实施例还提供一种电子设备,该电子设备具有本发明的热电堆传感器,其性能得到改善。电子设备还具有至少一种透镜和滤波器以及相关的电子处理器等部件。电子设备可以是额温枪、耳温枪、食品温度检测仪器等温度测量设备,也可以是气体成份的定性/定量分析仪器,还可以是智能家电设备、灯具开关或医疗设备;还可以是带有热电堆传感器的移动终端,如手机,电脑,平板等,具备测温功能;在一实施例中,电子设备为热成像仪,热成像仪的热电堆结构成阵列排布,以便实现对物体的热成像。
为了解决技术问题,本发明实施例提供了一种热电堆传感器及其制作方法。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
请参考图2A-图2J是本发明实施例所提供的传感器的制造方法中各步骤对应的结构示意图。
如图2A所示,提供热电堆结构板20,热电堆结构板20具有热辐射感应区20A,热辐射感应区20A中形成有热电堆结构。
提供的热电堆结构板20可以包括第一基底200,热电堆结构形成在第一基底200上。第一基底200可以是本领域技术人员熟知的任意合适的衬底材料,例如硅、锗、硅锗、砷化镓、磷化铟等体半导体衬底材料。
本实施例中,提供热电堆结构板的步骤包括:提供第一基底200,第一基底200的表面上形成有半导体层202;对半导体层202的部分区域进行N型和/或P型离子掺杂,以形成N型掺杂区和/或P型掺杂区,作为热电堆结构。
具体地,第一基底200上形成有半导体层202和介质层201,半导体层202用于形成热电堆结构,半导体层202的材料可以是未掺杂的半导体层(例如多晶硅或单晶硅等),或者N型掺杂或P型掺杂的半导体层,半导体层202可以通过外延工艺或者离子注入工艺形成。介质层201用于隔离热电堆结构和第一基底,介质层201的材料包括氧化硅、氮化硅、氮氧化硅中的至少一种。
本实施例中,第一基底200、介质层201和半导体层202由绝缘体上硅衬底形成,第一基底200为绝缘体上硅衬底的底层单晶硅,介质层201为绝缘体上硅衬底中的二氧化硅,半导体层202为绝缘体上硅衬底的顶层单晶硅。通过对半导体层202中的部分区域进行N型和/或P型离子掺杂注入,以形成至少一种热感应微结构作为热电堆结构。
其中,热电堆结构的分布区域作为热辐射感应区20A,热辐射感应区20A外围的区域用于后续制作第二导电互连结构。
本实施例中热电堆结构包括材料不同的第一热感应微结构203a和第二热感应微结构203b,热感应微结构的材料包括金属、未掺杂的半导体、掺杂的半导体和金属硅化物中的至少一种;未掺杂的半导体或掺杂的半导体的材料包括硅、锗、砷化镓或磷化铟中的至少一种,且掺杂的半导体的掺杂剂包含N型或P型掺杂剂。本实施例中第一热感应微结构203a为N型掺杂的单晶硅,第二热感应微结构203b为P型掺杂的单晶硅。第一热感应微结构203a和第二热感应微结构203b 可以分别呈线型(例如直线或曲线或者折线等),也可以呈阵列型,还可以呈梳子型。第一热感应微结构203a和第二热感应微结构203b可以具有大致对称的结构,从而在第一热感应微结构203a和第二热感应微结构203b之间产生大致对称的热感应效果,提高热电堆传感器的测量精度。
此外,第一热感应微结构203a的整体分布区域和第二热感应微结构203b的整体分布区域在热电堆结构板20的平面内可以完全并排且没有重叠,也可以有部分区域嵌套,以至少有部分重叠,可选地,第一热感应微结构203a的整体分布区域和第二热感应微结构203b的整体分布区域在热电堆结构板20的平面内有部分重叠,例如第一热感应微结构203a和第二热感应微结构203b均为梳子型结构,第一热感应微结构203a的一部分梳齿插在第二热感应微结构203b的相应的梳齿缝隙中,由此在不增加热电堆传感器的表面积的同时,可以进一步提高热电堆传感器性能。
需要说明的是,第一热感应微结构和第二热感应微结构,结构相同或者不同,第一热感应微结构和第二热感应微结构分别呈线型、阵列型或者梳子型,第一热感应结构和第二热感应结构并联或串联电连接。本实施例中第一热感应微结构203a和第二热感应微结构203b均为单层结构,但是本发明的技术方案并不仅仅限定于此,在本发明的其他实施例中,第一热感应微结构203a和第二热感应微结构203b也可以分别为叠层结构,此时,可以通过向半导体层202中进行多次离子注入来形成,相邻两次离子注入的浓度或者能量或者掺杂类型不同。此外,第一热感应微结构203a和第二热感应微结构203b的材料也不仅仅限定于掺杂的半导体,在本发明的其他实施例中,还可以通过金属层的图案化刻蚀、半导体层的图案化刻蚀、半导体层的金属硅化等中的至少一种工艺来在第一基底200上形成相应的热感应微结构,由此使得热感应微结构的材料还可以是金属、未掺杂的半导体、金属硅化物等中的至少一种。
在一种具体实施例中,为了便于后续将第二导电互连结构与热电堆结构电性连接,防止在电性连接过程中对热电堆结构造成伤害,在一种具体实施例中,热电堆结构板20上形成有第一导电互连结构,第一导电互连结构与热电堆结构电性连接,从而,后续可以通过第二导电结构电性连接第一导电结构,实现电路基板的读出互连结构和热电堆结构板的电性连接。
具体的,热辐射感应区20A中形成有与热电堆结构电连接的第一导电互连结构,第一导电互连结构与热电堆结构电性连接。其中,第一互连结构用于在后续与电路基板的读出互连结构电连接。
将电路基板10与支撑层601键合后,第一导电互连结构位于热电堆结构的上方(如图2E所示)。
在其他实施例中,第一导电互连结构用于实现热电堆结构于外部电路的电连接,而基板可以为承载基板(carrier wafer),不配置为电路基板。
可以通过金属层沉积、光刻、刻蚀等一系列工艺或者金属剥离(liff-off)工艺,形成第一导电互连结构,第一导电互连结构可以是单层金属层,以降低热电堆传感器的集成厚度。
第一导电互连结构可以包括与第一热感应微结构203a电性连接的第一导电互连线300a,以及,与第二热感应微结构203b电性连接的第二导电互连线300b。
在本发明实施例中,第一导电互连结构的材料可以为铜、钛、铝、钨等金属和/或金属硅化物材料的一种或多种。
当然,在其他实施例中,还可以是将电路基板与支撑层键合后,再形成与热电堆结构电性连接的第一导电互连结构,其中,第一导电互连结构位于热电堆结构的上方。
请参考图2B,在热电堆结构板上形成支撑层601,支撑层601开设有第一沟槽600,第一沟槽600至少露出热辐射感应区20A。支撑层601的第一沟槽600的深度小于或等于支撑层601的厚度。
具体的,形成支撑层601的步骤包括:形成支撑材料层(未示出),支撑材料层覆盖热电堆结构板;刻蚀支撑材料层,在与热辐射感应区20A相对的部分形成第一沟槽,以剩余的支撑材料层作为支撑层601。可以采用沉积工艺形成支撑材料层(图中未示出),支撑材料层覆盖热电堆结构板,采用光刻和刻蚀工艺对支撑材料层进行图形化处理,形成第一沟槽600,剩余的支撑材料层形成所述支撑层601。所述支撑层601用于为后续形成第一空腔提供基础。
所述支撑层601的材料可以为二氧化硅、氮化硅、氮氧化硅等材料中的一种或多种。
当然,在形成支撑层之601前,还可以先在热电堆结构上方形成第一隔离层301,第一隔离层301用于保护热电堆结构,防止在刻蚀支撑层601的过程中损伤第一热感应微结构203a、第二热感应微结构203b热电堆结构。
具体的,可以采用沉积工艺形成所述第一隔离材料层301,并采用化学机械抛光(CMP)工艺对第一隔离材料层进行顶面平坦化,形成所述第一隔离层301。
所述第一隔离层301的材料可以为二氧化硅、氮化硅、氮氧化硅等材料中的一种或多种。第一隔离层的材料可以与支撑层的材料相同,也可以不相同。当将第一隔离层301作为支撑层601的刻蚀停止层时,所述第一隔离层的材料与所述支撑层601的材料不同。
当然,在另一实施例中,可以直接在第一导电互连结构上形成支撑层601,支撑层601的第一沟槽600的深度小于支撑层601的厚度,从而也能够避免在刻蚀形成第一沟槽600的过程中对热电堆结构造成影响。
本发明实施例中,通过采用刻蚀的工艺在支撑层601的与所述热辐射感应区20A相对的部分形成第一沟槽600,后续将支撑层601与电路基板键合后,使所述第一沟槽600夹设在所述热电堆结构板和所述电路基板之间形成第一空腔602,不但工艺简单,还可以通过第一空腔602进行热绝缘,防止热电堆结构接收的热量向第一空腔602下方的电路基板中传导,避免开放的第一沟槽600对应的感应信息流失,提高传感器的测量精度。
请参考图2C,提供基板10,基板10用于实现与热电堆结构板20的键合。
具体地,后续将热电堆结构板20键合在基板10上,并在热电堆结构板20和基板10之间形成第一空腔,基板10密封第一空腔的底部,从而减小第一空腔中的热量的流失,进而有利于提高热电堆传感器的测量精度。
基板10可以为承载基板(carrier wafer)或电路基板,作为一种示例,基板10为电路基板。
所述电路基板10包括热辐射对应区20B,所述热辐射对应区与所述热辐射感应区相对应。在一种具体实施例中,所述热辐射对应区20B在所述电路基板10的投影与所述热辐射感应区20A在所述热电堆结构板10的投影相同,在所述电路基板10上形成热辐射反射板702和热辐射隔离板701,所述热辐射反射板702位于所述热辐射隔离板701的上方。
提供的电路基板10可以为完成FEOL(front end of line,前道制程)和BEOL(back end of line,后道制程)工艺以及晶圆针测的CMOS基板,电路基板中形成有电路结构,以处理所述热电堆结构的电信号。其中FEOL工艺和BEOL工艺均为本领域中CMOS集成电路制造的常规制程工艺,所述晶圆针测为本领域的测试CMOS集成电路性能的常规测试方案,在此均不再详细描述。
需要说明的是,在本发明实施例中,热辐射对应区20B可以为对应器件结构分布的区域,热辐射对应区20B在电路基板的投影与热辐射感应区20A在热电堆结构板的投影相同,用于在后续键合工艺中,使热辐射感应区20A与热辐射对应区20B重合,从而实现热电堆基板和电路基板的对位。
如图2C所示,电路基板10可以包括第二基底100、器件结构和与器件结构电连接的读出互连结构104a、104b,其中,器件结构形成在第二基底100中,读出互连结构104a、104b形成在第二基底100上。
其中,第二基底100可以为本领域技术人员熟知的任意合适的半导体衬底材料,例如硅、绝缘体上硅、锗、硅锗、砷化镓、磷化铟等。第二基底100中已通过CMOS制造工艺形成了相应的器件结构以及位于相邻的器件结构之间的器件隔离结构,器件结构可以包括MOS晶体管、电阻、二极管、电容、存储器等中的至少一种。
在本发明实施例中,以器件结构为MOS晶体管为例,其中,MOS晶体管102可以包括栅极102a以及位于栅极102a两侧的源极102b和漏极102c。器件隔离结构101可以是通过局部场氧化工艺或者浅沟槽隔离(STI)工艺形成。读出互连结构104a、104b可以通过与器件结构的相应端子直接电性接触的底部接触插塞以及与底部接触插塞电性连接的多层金属互连结构电连接,从而实现读出互连结构104a、104b与器件结构的电性连接。
其中,第二基底100上还形成有层间介质材料层103,从而将相邻金属互连层隔离开。其中,电路基板10的层间介质材料层103还分别暴露出读出互连结构104a、104b的部分表面的开口,以形成用于晶圆针测的第一针测点108a和第二针测点108b。层间介质材料层103的材料可以包括二氧化硅、氮化硅、介电常数K低于二氧化硅的低K介质、K高于二氧化硅的高K介质、金属氮化物等中的至少一种。
接着,请参考图2D,在电路基板10上形成热辐射反射板702和热辐射隔离板701,热辐射反射板702位于热辐射隔离板701的上方。
热辐射反射板702用于在器件工作时,将传输至第一空腔602(示于图2G中)内的红外辐射反射回热电堆结构板20中,从而提高热电堆传感器的精度。
其中,热辐射反射板702的材料为导电材料和/或光子晶体材料,导电材料为金属材料、金属硅化物材料、半导体材料中的一种或多种,金属硅化物可以是硅化钛 (TiSi),硅化钨(WSi)或硅化铝(AlSi)等,掺杂的半导体例如是掺杂有P型或N型掺杂剂的多晶硅层或非晶硅层或硅锗层等。热辐射隔离板701的材料为金属材料。
具体的,可以通过金属沉积、光刻、刻蚀等一系列工艺或者金属剥离(liff-off)工艺,在层间介质材料层103的表面上形成热辐射反射板702和热辐射隔离板701。
热辐射反射板的底面与热辐射隔离板的顶面可以相接触,热辐射反射板的底面与热辐射隔离板的顶面之间也可以形成有第一钝化层。
在一种可选的示例中,电路基板10包括热辐射对应区20B,热辐射对应区与热辐射感应区相对应,形成热辐射隔离板701和热辐射反射板702的过程可以包括:形成隔离材料层(未示出),隔离材料层覆盖电路基板;形成反射材料层(未示出),反射材料层覆盖隔离材料层;去除热辐射对应区20B外的反射材料层和隔离材料层,以剩余的反射材料层为热辐射反射板702,以剩余的隔离材料层为热辐射隔离板701。
其中,当热辐射隔离板701和热辐射反射板702为金属材料时,可以通过沉积工艺分别形成隔离材料层和反射材料层。当热辐射隔离板701和热辐射反射板702为金属硅化物时,隔离材料层的形成步骤包括:先形成硅层,后对硅层进行金属硅化处理;同样的,反射材料层也可以通过这一方式形成。当热辐射隔离板701和热辐射反射板702为掺杂的半导体时,隔离材料层的形成步骤包括:先形成半导体层,后对半导体层进行N型和/或P型掺杂;同样的,反射材料层也可以通过这一方式形成。
在本发明实施例中,还在热辐射隔离板701和热辐射反射板702之间进一步形成第一钝化层,从而实现热辐射隔离板701和热辐射反射板702的隔离。具体的,可以在形成覆盖电路基板设有读出互连结构一侧的隔离材料层之后,形成覆盖隔离材料层的反射材料层之前,形成完全覆盖隔离材料层的第一钝化材料层。可以采用沉积工艺形成第一钝化材料层。当然,在去除热辐射对应区20B外的反射材料层和隔离材料层的步骤中还包括:去除热辐射对应区20B外的第一钝化材料层,形成第一钝化层。
当然,为了后续便于将电路基板和支撑层601键合,在一种实施例中,形成热辐射反射板702和热辐射隔离板701之后,将电路基板与支撑层601键合之前,还包括:形成第二钝化层,第二钝化层覆盖热辐射反射板702露出的电路基板。
第二钝化层为后续将支撑层与电路基板键合提供平面基础。第二钝化层的厚度不做限定,第二钝化层的表面可以与热辐射反射板702的表面持平或者第二钝化层还覆盖热辐射反射板702,只要保证第二钝化层的表面为平面即可。
其中,第二钝化层的材料包括氧化硅、氮化硅、氮氧化硅、低K介质、高K 介质、金属氮化物中的至少一种。
需要说明的是,热辐射反射板702和热辐射隔离板701至少覆盖电路基板的热辐射对应区20B,指的是热辐射反射板702和热辐射隔离板701除了覆盖电路基板的热辐射对应区20B外,还可以覆盖热辐射对应区20B的外围区域。因此,在另一种可选的示例中,形成覆盖电路基板的隔离材料层和覆盖隔离材料层的反射材料层,可以省略刻蚀隔离材料层和反射材料层的步骤,直接形成热辐射隔离板701和热辐射反射板702。具体地,在电路基板上形成热辐射隔离板701,热辐射隔离板701至少覆盖电路基板的热辐射对应区20B;在热辐射隔离板701上形成热辐射反射板702,热辐射反射板702至少覆盖电路基板的热辐射对应区20B。
在另一种可选的示例中,形成热辐射隔离板和热辐射反射板的过程可以包括:在电路基板上形成介质层(未示出),介质层具有开口,开口至少露出热辐射对应区;填充开口,形成热辐射隔离板;在热辐射隔离板上形成热辐射反射板,热辐射反射板至少覆盖热辐射隔离板。具体地,填充开口形成热辐射隔离板的步骤中,热辐射隔离板可以完全填满甚至覆盖开口,这样热辐射反射板位于开口的上方,而非填充至开口内,在另一实施例中,热辐射隔离板也可以部分填充开口,这样,热辐射反射板部分或者全部位于开口内。
在另一种可选的示例中,形成热辐射隔离板和热辐射反射板的过程可以包括:形成覆盖电路基板的介质材料层(未示出);去除热辐射对应区内的介质材料层,形成开口(未示出),以剩余的介质材料层作为介质层;依次形成保形覆盖介质层和开口的隔离材料层和反射材料层,反射材料层位于隔离材料层上方;去除开口外的隔离材料层和反射材料层,以剩余的隔离材料层为热辐射隔离板,以剩余的反射材料层为热辐射反射板。其中,本步骤中,开口可以为仅用于形成热辐射隔离板和热辐射反射板的开口,对应的开口深度仅与热辐射隔离板和热辐射反射板的厚度的和相适应,也可以小于用于形成热辐射隔离板和热辐射反射板的厚度之和。需要说明的是,在去除开口外的隔离材料层和反射材料层时,可以采用化学机械抛光(CMP)工艺去除。
在另一种可选的示例中,形成热辐射隔离板701和热辐射反射板702的过程可以包括:在电路基板上形成第一介质层(未示出),第一介质层具有第一开口,第一开口至少露出热辐射对应区20B;填充第一开口,形成热辐射隔离板701,热辐射隔离板701的表面与第一介质层的表面持平;形成第二介质层,第二介质层覆盖第一介质层和热辐射隔离板701;图形化第二介质层,形成第二开口,第二开口至少露出热辐射对应区20B,第二开口的深度小于或者等于第二介质层的厚度;填充第二开口,形成热辐射反射板702。
具体的,可以在电路基板表面上沉积第一介质层,第一介质层还填满第一针测点108a和第二针测点108b;光刻和刻蚀第一介质层,以在第一介质层形成第一开口;沉积热辐射隔离材料以填满第一开口,刻蚀去除多余的热辐射隔离材料,剩余的热辐射隔离材料形成为热辐射隔离板701;在热辐射隔离板701上形成第二介质层,第二介质层覆盖第一介质层和热辐射隔离板701,光刻和刻蚀第二介质层,以在第二介质层形成第二开口。第二开口的深度可以小于或者等于第二介质层的厚度,当第二开口的深度等于第二介质层的厚度时,后续填充第二开口形成的热辐射反射板702的下表面与热辐射隔离板701的上表面接触;当第二开口的深度小于第二介质层的厚度时,第二介质层还可以起到隔离热辐射反射板702和热辐射隔离板701的作用,即热辐射反射板702和热辐射隔离板701之间的第二介质层的作用相当于其他实施例中的第一钝化层的作用。
在本发明实施例中,还进一步在热辐射反射板702上形成表面为平面的第三钝化层,第三钝化层至少覆盖热辐射反射板702,第三钝化层用于保护热辐射反射板702。在其他实施例中,也可以不形成第三钝化层。
其中,第三钝化层的材料包括氧化硅、氮化硅、氮氧化硅、低K介质、高K 介质、金属氮化物中的至少一种。
具体的,可以在形成热辐射隔离板701和热辐射反射板702之后,形成覆盖热辐射反射板702的第三钝化层。可选的,可以采用沉积工艺沉积形成第三钝化材料层(图中未示出),并采用化学机械抛光(CMP)工艺对第三钝化材料层进行顶面平坦化,以形成表面为平面的第三钝化层。当然,在其他实施例中,热辐射反射板702顶面也可以不覆盖第三钝化层,但需要保证热辐射反射板702两侧的介质层的表面与热辐射反射板702的表面持平或者高于热辐射反射板702,以保证后续键合工艺的进行。
在本实施例中,第一钝化层,第二钝化层和第三钝化层可以组成钝化层720。
将电路基板与支撑层键合,使第一沟槽夹设在热电堆结构板和电路基板之间,以形成第一空腔,并使热辐射感应区20A与热辐射对应区20B在电路基板上的投影重合,且使热辐射反射板和热辐射隔离板均位于热电堆结构的下方。
请参考图2E,首先,通过合适的键合工艺将电路基板与支撑层601键合,将支撑层601与电路基板键合后,热辐射反射板702和热辐射隔离板701均位于热电堆结构的下方。
在本发明实施例中,将电路基板与支撑层601键合的步骤,具体为:将热电堆结构板倒置固定在电路基板具有读出互连结构104a、104b的一侧。
在本发明实施例中,将热电堆结构板和支撑层601键合之后,热辐射反射板702与热电堆结构之间的垂直距离为红外辐射的波长的1/4的奇数倍。
在一种具体实施例中,可以是热辐射反射板702与热电堆结构的垂直距离为红外辐射的波长的1/4的奇数倍。具体的,可以通过控制键合工艺,调整热辐射反射板702与热电堆结构顶面的垂直距离,从而使辐射反射板对穿透热电堆结构板的残余辐射的发挥最大反射能力。
具体的,热辐射反射板702与热电堆结构203a/203b之间的垂直距离约为入射辐射的波长λ的1/4的奇数倍,例如约为λ/4、3λ/4、5λ/4等等。由此能够实现热辐射反射板702对穿透热电堆结构板的残余辐射的最大反射能力。
在其他实施例中,第一空腔602形成在电路基板10上,再键合热电堆结构板20。在电路基板上形成热学功能板,再在其上形成支撑层,其中支撑层上开设第一沟槽。
该实施例具体请参考图4A,提供电路基板10,在电路基板上形成热辐射反射板702,并形成第一沟槽600于覆盖电路基板的支撑层,热辐射反射板位于第一沟槽的下方。
在电路基板10上形成热辐射反射板702,并形成第一沟槽600于覆盖电路基板的支撑层的步骤之前,还可以包括:在电路基板10上形成热辐射隔离板701(未示出),热辐射反射板702位于热辐射隔离板701的上方。
电路基板10包括热辐射对应区20B(示于图4A),热辐射对应区与热辐射感应区相对应。
之后支撑层覆盖热辐射反射板,在热辐射对应区20B相对的部分形成第一沟槽。
参考图2F,本发明实施例进一步对热电堆结构板背离电路基板一侧进行减薄处理,去除第一基底200。由此可以降低集成厚度,以及,降低后续第二导电互连结构的制作难度。
具体地,可以根据第一基底200的材料,来选用合适的去除工艺(例如化学机械抛光、刻蚀或者剥离等),去除第一基底200。
参考图2G,本实施例的热电堆传感器的制作方法还包括:形成第二导电互连结构40a、40b,第二导电互连结构40a、40b电性连接读出电路和热电堆结构。第二导电互连结构40a、40b用于将热电堆结构和读出互连结构104a、104b的电信号输出。其中,第二导电互连结构40a、40b形成于热辐射感应区20A外围的热电堆结构板20上。
在一种具体实施例中,第二导电互连结构包括位于热电堆结构板内的第一插塞,第一插塞连接热电堆结构;贯穿热电堆结构板且与读出电路电性连接的第二插塞;以及,位于热电堆结构板上的插塞互连线,插塞互连线连接第一插塞和第二插塞。
具体的,形成第二导电互连结构40a、40b的步骤可以包括:在热电堆结构板背离电路基板一侧形成第一互连通孔(未示出)和第二互连通孔(未示出),第一互连通孔暴露热电堆结构板,第二互连通孔暴露电路基板中的读出互连结构;在第一互连通孔和第二互连通孔的侧壁上形成绝缘介质层;在第一互连通孔中形成第一插塞,在第二互连通孔中形成第二插塞;在热电堆结构板表面形成插塞互连线,插塞互连线连接第一插塞和第二插塞。
作为一种示例,第二导电互连结构40a、40b通过重布线工艺形成,其具体包括形成第二插塞401a、401b的工艺、形成第一插塞403a、403b的工艺以及形成插塞互连线402a、402b的工艺。其中,形成第二插塞401a、401b的工艺与形成第一插塞403a、403b的工艺的执行顺序不限定。第二插塞401a、第一插塞403a以及插塞互连线402a组成第二导电互连结构40a,第二插塞401b、第一插塞403b以及插塞互连线402b组成第二导电互连结构40b。
本实施例中,第一钝化层,第二钝化层和三钝化层形成钝化层720。
形成第一插塞403a、403b的工艺具体包括:首先,刻蚀热辐射感应区20A外围的热电堆结构板20、第一隔离层301、支撑层601、钝化层720以及部分层间介质材料层103,以形成分别暴露出读出互连结构104a、104b的部分顶面的第二接触孔(未图示);然后,在第二接触孔的侧壁上覆盖绝缘介质层,绝缘介质层用于使得后续填充的导电材料与热电堆结构板20绝缘隔离,绝缘介质层的材料可以包括氧化硅、氮化硅、氮氧化硅、金属氮化物、高K介质、低K介质等中的至少一种,绝缘介质层的底部暴露出相应的读出互连结构104a、104b的部分顶面;接着,在第二接触孔中填充金属(例如钨、铜)等导电材料,并通过化学机械抛光等工艺去除覆盖在介质层201表面上的多余导电材料,以形成顶面与介质层201顶面齐平的第一插塞403a、403b。本实施例中,第一插塞403a的底端与读出互连结构104a电性连接。第一插塞403b的底端与读出互连结构104b电性连接。
形成第二插塞401a、401b的工艺具体包括:首先,刻蚀热辐射感应区20A外围的热电堆结构板20,以形成暴露出热电堆结构的部分表面的第一接触孔(未图示);然后,在第一接触孔的侧壁上覆盖绝缘介质层,绝缘介质层用于使得后续填充的导电材料与热电堆结构板20绝缘隔离,绝缘介质层的材料可以包括氧化硅、氮化硅、氮氧化硅、金属氮化物、高K介质、低K介质等中的至少一种,绝缘介质层的底部暴露出相应的热电堆结构的表面;接着,在第一接触孔中填充金属(例如钨、铜)等导电材料,并通过化学机械抛光等工艺去除覆盖在介质层201表面上的多余导电材料,以形成顶面与介质层201顶面齐平的第二插塞401a、401b。
本实施例中,第二插塞401a的底端与第一导电互连线300a电性连接。第二插塞401b的底端与第二导电互连线300b电性连接。
形成插塞互连线402a、402b的工艺具体包括:在第一插塞403a、403b、第二插塞401a、401b以及介质层201的表面上沉积金属层;对金属层进行光刻和刻蚀,以去除热辐射感应区20A中的金属层,剩余的金属层形成插塞互连线402a、402b,插塞互连线402a覆盖第一插塞403a的顶端和第二插塞401a的顶端且将第一插塞403a的顶端和第二插塞401a的顶端电性连接,插塞互连线402b覆盖第一插塞403b的顶端和第二插塞401b的顶端且将第一插塞403b的顶端和第二插塞401b的顶端电性连接。
需要说明的是,当热电堆结构板20是基于非导电的材料板形成时,第二插塞401a、401b和第一插塞403a、403b中的导电材料的侧壁上可以省略绝缘介质层。
请参考图2K-图2M,在本发明的另一实施例中,第二导电互连结构可以包括:第一插塞,第一插塞贯穿热电堆结构板、支撑层,且底端与读出电路电性连接;电路基板第二子插塞,与读出电路电性连接;热电堆第二子插塞,与热电堆结构电性连接,待电路基板与支撑层键合之后,热电堆第二子插塞与电路基板第二子插塞电性连接。第二导电互连结构的形成工艺还可以为:在键合热电堆结构板和电路基板之前,首先在热电堆结构板形成热电堆第二子插塞406a、406b,与热电堆结构电性连接;且在电路基板上形成电路基板第二子插塞404a、404b,与读出电路电性连接;待电路基板与支撑层键合之后,热电堆第二子插塞406a、406b与电路基板第二子插塞404a、404b通过导电键合材料电性连接。并进一步在热电堆结构板和电路基板键合后,形成贯穿热电堆结构板、支撑层且与读出电路电性连接的第一插塞403a、403b,第一插塞403a、403b作为输出端子引出相应的电信号。
在一种具体实施例中,为了便于连接,热电堆第二子插塞406a、406b可以与第一导电互连结构电性连接。
请参考图2N-图2P,在本发明的又一实施例中,第二导电互连结构还可以包括:电路基板第一子插塞,与读出电路电性连接;电路基板第二子插塞,与读出电路电性连接;热电堆第一子插塞,热电堆第一插塞贯穿热电堆结构板和支撑层;热电堆第二子插塞,热电堆第二子插塞与热电堆结构电性连接;待电路基板与支撑层键合之后,热电堆第二子插塞与电路基板第二子插塞电性连接,热电堆第一子插塞与电路基板第一子插塞电性连接。
具体地,还可以进一步在键合热电堆结构板和电路基板之前,首先在热电堆结构板形成热电堆第一子插塞407a、407b和热电堆第二子插塞406a、406b,热电堆第一子插塞407a、407b贯穿热电堆结构板和支撑层,热电堆第二子插塞406a、406b与热电堆结构电性连接;且在电路基板上形成与读出电路电性连接的电路基板第一子插塞405a、405b和电路基板第二子插塞404a、404b;待电路基板与支撑层键合之后,将热电堆第二子插塞406a、406b与电路基板第二子插塞404a、404b通过导电键合材料电性连接,热电堆第一子插塞407a、407b与电路基板第一子插塞405a、405b通过导电键合材料电性连接。
在一种具体实施例中,为了便于连接,热电堆第二子插塞406a、406b可以与第一导电互连结构电性连接。
请继续参考图2H-图2J,在形成第二导电互连结构40a、40b之后,还进一步在热电堆传感器上设置封盖50,以保护热电堆传感器的热辐射感应区20A。
具体的,提供具有保护槽503的封盖50,保护槽503背向热电堆结构板的一侧的封盖上还设有辐射穿透窗口(图中未示出),辐射穿透窗口至少与热电堆结构垂直对齐;辐射穿透窗口用于透射红外线。
辐射穿透窗口的材料包括半导体(例如硅、锗或绝缘体上硅等)和有机滤光材料(例如聚乙烯、聚丙烯等材料)中的一种或两种。
辐射穿透窗口的形状可以为矩形、正方形或圆形等规则形状,也可以为其他不规则形状。
需要说明的是,制作方法还可以包括:在辐射穿透窗口上方设置红外增透膜。
接着,将封盖50键合到热电堆结构板,且保护槽503夹设在封盖50和热电堆结构板之间形成第二空腔502,且第二空腔502与第一空腔602对准;以及,对封盖50进行切边,以至少暴露出第二导电互连结构的部分表面。
其中,封盖50的材料可以为玻璃、塑料、半导体等,通过将封盖50键合到热电堆结构板背离电路基板的表面,以覆盖热电堆结构板的热辐射感应区20A,并且,基于保护槽的设置,使热电堆结构板的热辐射感应区20A上方为腔体结构,避免了相关材料对热电堆结构板的热辐射感应区20A的接触,从而避免对热电堆结构板的热辐射感应区20A造成影响。
作为一种示例,提供具有保护槽503的封盖50的步骤为:提供第三基底500,然后在第三基底500上沉积腔体材料层,刻蚀腔体材料层至暴露出第三基底500的表面,以形成在腔体材料层中第二空腔502,剩余的腔体材料构成腔体壁501;作为另一种示例,先提供第三基底500,然后刻蚀部分厚度的第三基底500,以形成第三基底500中形成第二空腔502,此时腔体壁501的材料和第三基底500的材料相同;然后,将封盖50键合到介质层201上,且保护槽503夹设在封盖50和热电堆结构板20之间形成第二空腔,并与第一空腔602对准;第二空腔502的设置,能尽量减少上层结构对入射的热辐射的直接吸收,同时对入射的热辐射进行一定程度地储存,使得热电堆结构最大程度地接收入射的辐射热量,由此可以提高热电堆传感器的性能。
接着,通过激光切割等工艺,对第三基底500的边缘进行切边,以暴露出互连线402a、402b的表面,由此使得互连线402a、402b成为热电堆传感器的相应的外接的接触垫。
本发明实施例所提供的热电堆传感器的制作方法,采用刻蚀的工艺在支撑层的与热辐射感应区20A相对的部分形成第一沟槽,后续将支撑层与电路基板键合后,使第一沟槽夹设在热电堆结构板和电路基板之间形成第一空腔,不但工艺简单,还可以通过第一空腔进行热绝缘,防止热电堆结构接收的热量向第一空腔下方的电路基板中传导,避免开放的第一沟槽对应的感应信息流失,提高传感器的测量精度,进一步地,由于电路基板直接键合在热电堆结构板的下方,因此,能够在不增加面积的条件下,实现CMOS读出电路的垂直系统集成,有利于缩短传感信号到读出电路的互连长度、信号损失和噪声,且有利于热电堆传感器的微型化,还有利于进一步延展到制作主动热成像传感器阵列与CMOS读出像素阵列及外围电路的3D系统集成;而且,后续将支撑层与电路基板键合后,形成于电路基板上的热辐射反射板位于第一空腔下方,热辐射反射板通过将穿透热电堆结构板的残余辐射反射回热电堆结构板,能够进一步避免对应环境信息的流失,提高传感器的测量精度;进一步地,通过在热辐射反射板下方形成热辐射隔离板,热辐射隔离板能够隔绝电路基板产生的热量,避免电路基板的热量传递给热电堆结构板,提高热电堆传感器的测量精度。
为解决上述问题,本发明实施例还提供另一种热电堆传感器的制作方法。
参见图3A,在热电堆结构板20具有热电堆结构一侧形成图形化的牺牲结构410,牺牲结构410在热电堆结构板的投影至少覆盖热辐射感应区20A。
其中,牺牲结构410用于为第一空腔占据空间,使得后续工艺中可以通过去除牺牲结构,形成第一空腔。
牺牲结构410的材料为锗和无定型碳中的至少一种,还可以包括金属、半导体和介电材料中的至少一种。例如为能够与气相刻蚀剂反应形成气体的材料,或者能够在光照或者加热后转换为气体的材料,由此能够降低后续去除牺牲结构的难度,并保证形成的第一空腔的性能。
在本发明实施例中,可以通过牺牲材料沉积、光刻、刻蚀等一系列工艺,在热电堆结构板具有第一互连结构一侧形成牺牲结构。牺牲结构至少覆盖热辐射感应区,用于使后续形成的第一空腔与热辐射感应区相对。
具体在本实施例中,形成图形化的牺牲结构410的流程可以包括:形成完全覆盖热电堆结构板具有热电堆结构一侧的牺牲材料层;去除热辐射感应区外的牺牲材料层,以剩余的牺牲材料层为牺牲结构。其中,牺牲材料层可以通过沉积、生长等工艺形成。去除热辐射感应区外的牺牲材料层,可以采用干法刻蚀或湿法刻蚀工艺,去除热辐射感应区外的牺牲材料层,以剩余的牺牲材料层为牺牲结构。在去除预设区域外的牺牲材料层的过程中,可以通过控制刻蚀时间,控制具体的刻蚀过程,只要将热辐射感应区外的牺牲层完全去除即可。可选的,具体的刻蚀步骤,本发明实施例在此不做具体的限定。
需要说明的是,基于刻蚀工艺的特点,牺牲结构的横截面可以为梯形或倒梯形,在形成的牺牲结构为不完全规则形状的流程中,可以使形成的牺牲结构的最小尺寸处至少覆盖热辐射感应区。
需要进一步说明的是,在基于形成去除热辐射感应区外的牺牲材料层之后,还可以包括:在热电堆结构板上形成与牺牲结构顶面齐平的第四钝化层,从而使得第四钝化层支撑在牺牲结构的侧面,在去除牺牲结构后,可以形成预设的空腔结构,并为后续的工艺提供平整的表面。
在可选实现中,首先可以沉积足够厚的第四钝化材料层,并采用化学机械抛光(CMP)工艺对第四钝化材料层进行顶面平坦化,顶面平坦化后的第四钝化层位于热电堆结构板上,直至第四钝化层与牺牲结构410顶面齐平。
第四钝化层可以将第一导电互连线300a和第二导电互连线300b以及热电堆结构均掩埋在内。第四钝化层的材料参见第一钝化层的材料,这里不再赘述。
在本发明的其他实施例中,形成图形化的牺牲结构还可以通过以下流程实现:形成完全覆盖热电堆结构板具有热电堆结构一侧的第四钝化材料层;去除热辐射感应区的第四钝化材料层,形成牺牲沟槽,以剩余部分的第四钝化材料层作为第四钝化层;形成填充在牺牲沟槽内的牺牲结构。
其中,填充指的是形成在牺牲沟槽内的牺牲结构与第四钝化层齐平。具体的,可以通过沉积、生长等工艺形成填充牺牲沟槽且高出牺牲钝化层的牺牲材料,并进一步采用化学机械抛光(CMP)工艺对该牺牲材料进行顶面平坦化,直至该牺牲材料层与第四钝化层齐平,并以填充在牺牲沟槽中的牺牲材料作为牺牲结构。
参见图3A,在热电堆结构板或电路基板上形成热辐射隔离板701。
热辐射隔离板701用于连接在热电堆结构板20和电路基板之间。
热辐射隔离板701用于对后续形成的第一空腔进行热绝缘,防止电路基板的热量向第一空腔上方的热电堆结构板传导,从而影响器件的精度。
热辐射隔离板701可以完全覆盖热电堆结构板,也可以仅覆盖热辐射感应区20A。
具体的,热辐射隔离板可以形成在热电堆结构具有牺牲结构一侧的表面,也可以形成在电路基板上。
进一步的,可以通过金属沉积、光刻、刻蚀等一系列工艺或者金属剥离(liff-off)工艺,在牺牲结构上形成热辐射隔离板,且热辐射隔离板仅覆盖热辐射感应区。在本发明实施例的一种可选实现中,形成热辐射隔离板的步骤可以具体包括:形成保形覆盖在热电堆结构板具有牺牲结构一侧的隔离材料层;去除部分隔离材料层,使剩余的隔离材料层在热电堆结构板的投影至少覆盖牺牲结构在热电堆结构板的投影,其中,以剩余的隔离材料层为热辐射隔离板。
在本发明的其他实施例中,形成仅覆盖热辐射感应区的热辐射隔离板还可以通过如下流程实现:形成覆盖热电堆结构板具有牺牲结构一侧的第四钝化材料层;去除牺牲结构顶部的第四钝化材料层,形成隔离沟槽,以剩余的第四钝化材料层作为第四钝化层;形成保形覆盖第四钝化层和隔离沟槽的隔离材料层;去除隔离沟槽外的隔离材料层,以剩余的隔离材料层为热辐射隔离板。其中,隔离沟槽的深度与用于形成在隔离沟槽内的层结构的厚度相适应,在隔离沟槽用于形成热辐射隔离板的沟槽,对应的沟槽深度与热辐射隔离板的厚度相适应。在去除隔离沟槽外的隔离材料层时,可以采用化学机械抛光(CMP)工艺去除。
在本发明其他可选的实施例中,热辐射隔离板完全覆盖热电堆结构板具有牺牲结构一侧的表面,可以是形成保形覆盖在热电堆结构板具有牺牲结构一侧的隔离材料层,以隔离材料层为热辐射隔离板。
其中,当热辐射隔离板为金属材料时,可以通过沉积工艺分别形成隔离材料层。当热辐射隔离板为金属硅化物时,隔离材料层的形成步骤包括:先形成硅层,后对硅层进行金属硅化处理。当热辐射隔离板为掺杂的半导体时,隔离材料层的形成步骤包括:先形成半导体层,后对半导体层进行N型和/或P型掺杂。
在本实施例中,热辐射隔离板贴合牺牲结构;在其他可选的实施例中,热辐射隔离板和牺牲结构之间还形成有间隔钝化层。其中,间隔钝化层为保形覆盖在牺牲结构上或牺牲结构和第四钝化层上的一层钝化材料,间隔钝化层的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。
在本发明进一步的可选实施例中,热辐射隔离板还可以形成在电路基板上。
当热辐射隔离板形成在电路基板上,且辐射隔离板仅覆盖电路基板与热辐射感应区相对应的表面。
其他实施例,在电路基板上形成牺牲层和支撑层。电路基板与热电堆结构板键合后,通过释放孔50释放牺牲层(参考图1F),形成第一空腔602。
参考图5A,在电路基板上形成支撑结构,支撑结构包括下而上纵向堆叠的热辐射隔离板701和牺牲结构400,热辐射隔离板和牺牲结构至少覆盖热辐射隔离区。
其中,在支撑结构的形成步骤中,可以先形成热辐射隔离板,再形成牺牲结构。
在本实施例中,支撑结构还包括包围在热辐射隔离板和牺牲结构周围的支撑介质层,支撑介质层的表面为平面,以为后续形成的第一空腔提供支撑,并为后续的键合工艺提供平整的表面。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种热电堆传感器,其特征在于,包括沿入射辐射方向依次设置的:
    热电堆结构板,所述热电堆结构板具有热辐射感应区,所述热辐射感应区中形成有热电堆结构;
    支撑层;
    基板,所述基板、所述热电堆结构板、和所述支撑层之间围成有第一空腔,且所述热电堆结构设置在所述第一空腔的上方。
  2. 如权利要求1所述的热电堆传感器,其特征在于,所述第一空腔的底部配置有热学功能板,所述热学功能板包括热辐射反射板和/或热辐射隔离板。
  3. 如权利要求1所述的热电堆传感器,其特征在于,还包括:
    第一导电互连结构,位于所述热电堆结构的下方,且与所述热电堆结构电性连接。
  4. 如权利要求1所述的热电堆传感器,其特征在于,还包括:第一导电互连结构,位于所述热电堆结构的上方,且与所述热电堆结构电性连接。
  5. 如权利要求1所述的热电堆传感器,其特征在于,所述热电堆结构板包括由下而上依次堆叠的第一基底、介质层和半导体层,所述热电堆结构形成于所述半导体层中。
  6. 根据权利要求2所述的热电堆传感器,其特征在于,所述热学功能板形成在所述第一空腔的底面上,或者,被掩埋在所述第一空腔的底面与所述基板之间。
  7. 根据权利要求2所述的热电堆传感器,其特征在于,所述热学功能板包括热辐射反射板和热辐射隔离板,所述热辐射反射板位于所述热辐射隔离板的上方,还包括:
    第一钝化层,位于所述热辐射隔离板和热辐射反射板之间。
  8. 根据权利要求3所述的热电堆传感器,其特征在于,所述基板中配置有读出电路,所述热电堆传感器还包括布设在所述热辐射感应区的外围的第二导电互连结构,所述读出电路通过所述第二导电互连结构与所述第一导电结构电性连接。
  9. 如权利要求3所述的热电堆传感器,其特征在于,所述热电堆结构包括材料不同和/或结构不同的第一热感应微结构和第二热感应微结构。
  10. 如权利要求9所述的热电堆传感器,其特征在于,所述第一热感应微结构和第二热感应微结构分别呈线型、阵列型或者梳子型,所述第一热感应结构和所述第二热感应结构并联或串联电连接。
  11. 如权利要求9所述的热电堆传感器,其特征在于,所述第一导电互连结构包括第一导电互连线和第二导电互连线,所述第一导电互连线电性连接所述第一热感应微结构,所述第二导电互连线电性连接所述第二热感应微结构。
  12. 如权利要求11所述的热电堆传感器,其特征在于,所述第一导电互连结构上还包括钝化层,所述钝化层邻近所述第一空腔且至少覆盖部分所述第一导电互连线和所述第二导电互连线。
  13. 根据权利要求1所述的热电堆传感器,其特征在于,还包括封盖,所述封盖配置在所述热电堆结构板背向所述基板的一侧上,所述封盖设有保护槽,所述封盖的保护槽覆盖在所述热电堆结构板的热辐射感应区上,所述保护槽背向所述热电堆结构板的一侧的封盖上还设有辐射穿透窗口,所述辐射穿透窗口至少与所述热电堆结构垂直对齐。
  14. 根据权利要求2所述的热电堆传感器,其特征在于,所述第一空腔的底部配置有热辐射反射板,所述热辐射反射板与所述热电堆结构之间的垂直距离为所述辐射的波长的1/4的奇数倍。
  15. 根据权利要求2所述的热电堆传感器,其特征在于,所述第一空腔的底部配置有热辐射反射板,所述热辐射反射板的材料包括导电材料和/或光子晶体材料,所述导电材料包括金属、金属硅化物、未掺杂的半导体和掺杂的半导体中的至少一种。
  16. 根据权利要求2所述的热电堆传感器,其特征在于,所述第一空腔的底部配置有热辐射隔离板,所述热辐射隔离板的材料包括金属材料。
  17. 权利要求13所述的热电堆传感器,其特征在于,所述基板和所述热电堆结构板通过支撑层键合连接,所述封盖和所述热电堆结构板键合连接。
  18. 一种热电堆传感器的制作方法,其特征在于,包括:
    提供热电堆结构板,所述热电堆结构板具有热辐射感应区,所述热辐射感应区中形成有热电堆结构;
    提供基板;在所述基板上形成热学功能板,所述热学功能板包括热辐射反射板和/或热辐射隔离板;
    在所述热电堆结构板上或者所述基板上形成支撑层,所述支撑层开设有第一沟槽;
    将所述基板与所述热电堆结构通过所述支撑层键合,使所述第一沟槽夹设在所述热电堆结构板和所述基板之间,以形成第一空腔,所述第一空腔至少露出所述热辐射感应区,且使所述热学功能板位于所述热电堆结构的下方。
  19. 一种热电堆传感器的制作方法,其特征在于,包括:
    提供热电堆结构板,所述热电堆结构板具有热辐射感应区,所述热辐射感应区中形成有热电堆结构;
    提供基板;
    在所述热电堆结构板上形成图形化的牺牲结构及与所述牺牲结构顶面齐平的支撑层,在所述牺牲层结构上形成热学功能板,所述热学功能板包括热辐射反射板和/或热辐射隔离板,或,在所述基板上形成热学功能板,所述热学功能板包括热辐射反射板和/或热辐射隔离板,在其上形成图形化的牺牲结构及与所述牺牲结构顶面齐平的支撑层;
    将所述基板与所述热电堆结构板键合,使所述牺牲结构夹设在所述热电堆结构板和所述基板之间,所述牺牲结构在所述热电堆结构板的投影至少覆盖所述热辐射感应区,且使所述热辐射反射板和/或所述热辐射隔离板均位于所述热电堆结构的下方;
    去除所述牺牲结构,在所述热电堆结构板和基板之间形成由支撑层围成的第一空腔。
  20. 一种电子设备,其特征在于,包括权利要求1-17中任一项所述的热电堆传感器。
PCT/CN2021/103821 2020-06-30 2021-06-30 热电堆传感器及其制作方法、电子设备 WO2022002169A1 (zh)

Applications Claiming Priority (32)

Application Number Priority Date Filing Date Title
CN202010617274.0 2020-06-30
CN202010615313.3 2020-06-30
CN202010622619.1 2020-06-30
CN202010615286.XA CN112117366B (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法
CN202010615259.2 2020-06-30
CN202010615291.0 2020-06-30
CN202010617265.1 2020-06-30
CN202010617264.7 2020-06-30
CN202010615245.0 2020-06-30
CN202010615301.0A CN112117362B (zh) 2020-06-30 2020-06-30 热电堆传感器及其制作方法、电子设备
CN202010615286.X 2020-06-30
CN202010615288.9 2020-06-30
CN202010615291.0A CN112117368B (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法
CN202010615278.5 2020-06-30
CN202010617271.7A CN112117373B (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法
CN202010617265.1A CN112117372B (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法
CN202010615313.3A CN112117369B (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法
CN202010617243.5A CN112117370B (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法
CN202010617274.0A CN112117363B (zh) 2020-06-30 2020-06-30 热电堆传感器及其制作方法、电子设备
CN202010615288.9A CN112117367B (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法
CN202010617243.5 2020-06-30
CN202010615245.0A CN112117364B (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法
CN202010622625.7A CN112038475B (zh) 2020-06-30 2020-06-30 热电堆传感器及其制作方法、电子设备
CN202010615278.5A CN112117365A (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法
CN202010617292.9A CN112117374A (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法
CN202010617292.9 2020-06-30
CN202010622619.1A CN112038476B (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法
CN202010617271.7 2020-06-30
CN202010615259.2A CN112117361B (zh) 2020-06-30 2020-06-30 热电堆传感器及其制作方法、电子设备
CN202010622625.7 2020-06-30
CN202010615301.0 2020-06-30
CN202010617264.7A CN112117371B (zh) 2020-06-30 2020-06-30 热电堆传感器的制作方法

Publications (1)

Publication Number Publication Date
WO2022002169A1 true WO2022002169A1 (zh) 2022-01-06

Family

ID=79315095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103821 WO2022002169A1 (zh) 2020-06-30 2021-06-30 热电堆传感器及其制作方法、电子设备

Country Status (1)

Country Link
WO (1) WO2022002169A1 (zh)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060186339A1 (en) * 2005-02-18 2006-08-24 Nec Corporation Thermal-type infrared detection element
CN101024481A (zh) * 2005-10-17 2007-08-29 株式会社半导体能源研究所 微型机电系统、半导体装置、以及它们的制造方法
CN102141444A (zh) * 2009-12-28 2011-08-03 欧姆龙株式会社 红外线传感器及红外线传感器模块
CN102583220A (zh) * 2012-03-29 2012-07-18 江苏物联网研究发展中心 一种晶圆级真空封装的红外探测器及其制作方法
CN110044494A (zh) * 2019-03-22 2019-07-23 清华大学 一种热辐射探测器阵列及其制造方法
CN112038475A (zh) * 2020-06-30 2020-12-04 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器及其制作方法、电子设备
CN112038476A (zh) * 2020-06-30 2020-12-04 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117363A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器及其制作方法、电子设备
CN112117373A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117366A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117369A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117364A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117370A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117372A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117362A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器及其制作方法、电子设备
CN112117365A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117361A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器及其制作方法、电子设备
CN112117368A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117374A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117367A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117371A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060186339A1 (en) * 2005-02-18 2006-08-24 Nec Corporation Thermal-type infrared detection element
CN101024481A (zh) * 2005-10-17 2007-08-29 株式会社半导体能源研究所 微型机电系统、半导体装置、以及它们的制造方法
CN102141444A (zh) * 2009-12-28 2011-08-03 欧姆龙株式会社 红外线传感器及红外线传感器模块
CN102583220A (zh) * 2012-03-29 2012-07-18 江苏物联网研究发展中心 一种晶圆级真空封装的红外探测器及其制作方法
CN110044494A (zh) * 2019-03-22 2019-07-23 清华大学 一种热辐射探测器阵列及其制造方法
CN112038475A (zh) * 2020-06-30 2020-12-04 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器及其制作方法、电子设备
CN112038476A (zh) * 2020-06-30 2020-12-04 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117363A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器及其制作方法、电子设备
CN112117373A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117366A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117369A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117364A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117370A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117372A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117362A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器及其制作方法、电子设备
CN112117365A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117361A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器及其制作方法、电子设备
CN112117368A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117374A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117367A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法
CN112117371A (zh) * 2020-06-30 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 热电堆传感器的制作方法

Similar Documents

Publication Publication Date Title
CN109052306B (zh) 可扩展的热电式红外探测器
CN112117373B (zh) 热电堆传感器的制作方法
CN112117369B (zh) 热电堆传感器的制作方法
CN104425531B (zh) 半导体器件及其制造方法
US9726547B2 (en) Microbolometer devices in CMOS and BiCMOS technologies
CN102637712B (zh) 半导体装置及其制造方法
TW201322434A (zh) 裝置及半導體影像感測元件與其形成方法
US20100032659A1 (en) Semiconductor device and method of fabricating the same
US20160315113A1 (en) Photosensitive imaging apparatus and method of forming same
CN112117361B (zh) 热电堆传感器及其制作方法、电子设备
CN112117370B (zh) 热电堆传感器的制作方法
CN112117366B (zh) 热电堆传感器的制作方法
CN112117368B (zh) 热电堆传感器的制作方法
CN112038475B (zh) 热电堆传感器及其制作方法、电子设备
CN112038476B (zh) 热电堆传感器的制作方法
CN112117362B (zh) 热电堆传感器及其制作方法、电子设备
CN112117364B (zh) 热电堆传感器的制作方法
CN112117372B (zh) 热电堆传感器的制作方法
CN112117371B (zh) 热电堆传感器的制作方法
CN112117367B (zh) 热电堆传感器的制作方法
CN112117363B (zh) 热电堆传感器及其制作方法、电子设备
CN112117374A (zh) 热电堆传感器的制作方法
WO2022002169A1 (zh) 热电堆传感器及其制作方法、电子设备
CN112117365A (zh) 热电堆传感器的制作方法
CN212539430U (zh) 异质整合的热红外线感测元件及热红外线感测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832539

Country of ref document: EP

Kind code of ref document: A1