WO2022002049A1 - 一种基于三维泊车的交互方法和车辆 - Google Patents

一种基于三维泊车的交互方法和车辆 Download PDF

Info

Publication number
WO2022002049A1
WO2022002049A1 PCT/CN2021/103107 CN2021103107W WO2022002049A1 WO 2022002049 A1 WO2022002049 A1 WO 2022002049A1 CN 2021103107 W CN2021103107 W CN 2021103107W WO 2022002049 A1 WO2022002049 A1 WO 2022002049A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking
parameter
preset
interface
dimensional parking
Prior art date
Application number
PCT/CN2021/103107
Other languages
English (en)
French (fr)
Inventor
闫祯杰
饶恒
戴观祺
Original Assignee
广州橙行智动汽车科技有限公司
广州小鹏汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州橙行智动汽车科技有限公司, 广州小鹏汽车科技有限公司 filed Critical 广州橙行智动汽车科技有限公司
Publication of WO2022002049A1 publication Critical patent/WO2022002049A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04845Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range for image manipulation, e.g. dragging, rotation, expansion or change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means

Definitions

  • the present invention relates to the technical field of smart cars, in particular to an interaction method and vehicle based on three-dimensional parking.
  • the 3D parking interface is usually displayed on the large central control screen, and the three-dimensional elements such as the occupancy model in the 3D parking interface have stronger interactive hints, but the existing 3D parking interface lacks interactivity , even if simple interaction is possible, it is difficult to deal with various abnormal parking scenarios and affect the safety of 3D parking.
  • An interactive method based on three-dimensional parking comprising:
  • the 3D parking interface is displayed;
  • the three-dimensional parking interface is adjusted.
  • adjusting the three-dimensional parking interface includes:
  • the first parameter and the second parameter are used to control the adjustment range of the three-dimensional parking interface.
  • the three-dimensional parking interface is adjusted according to the first parameter.
  • the method before adjusting the three-dimensional parking interface according to the second parameter, the method further includes:
  • the three-dimensional parking interface is adjusted according to the first parameter, and when the end of the interaction operation is detected, the The second parameter is used to adjust the three-dimensional parking interface.
  • the three-dimensional parking interface is adjusted according to the third parameter, and when the end of the interactive operation is detected, the adjustment of the three-dimensional parking interface according to the second parameter is performed.
  • the interaction operation is a rotation operation
  • the first parameter is a first rotation angle
  • the determining the first parameter corresponding to the interaction operation includes:
  • the rotation operation type is a drag operation, determining the drag operation distance, and combining the drag operation distance and preset pixel information, determining a first rotation angle for the three-dimensional parking interface;
  • a swipe operation speed is determined, and the swipe operation speed is used to determine a first rotation angle for the three-dimensional parking interface.
  • the first rotation angle includes a horizontal rotation angle and a vertical rotation angle
  • the vertical rotation angle is an angle offset from the vertical axis in the preset coordinate system
  • the horizontal rotation angle is offset from the preset coordinate system.
  • the horizontal axis and the vertical axis form an angle of the plane
  • the preset coordinate system is a coordinate system with the center of the display area as the coordinate origin, the vehicle's forward direction as the ordinate, and the direction perpendicular to the ground as the vertical axis.
  • the interactive operation is a scaling operation
  • the first parameter is a first scaling ratio
  • the determining the first parameter corresponding to the interactive operation includes:
  • a first zoom ratio for the three-dimensional parking interface is determined.
  • the three-dimensional parking interface is adjusted according to the preset parameters.
  • judging whether the interactive operation satisfies a preset condition includes:
  • the designated parking scene includes any one or more of the following:
  • a vehicle comprising:
  • the 3D parking interface display module is used to display the 3D parking interface when the vehicle starts 3D parking;
  • a preset condition judgment module configured to judge whether the interactive operation satisfies a preset condition according to the current parking scene when an interactive operation for the three-dimensional parking interface is detected; when it is judged that the interactive operation satisfies the preset condition When , call the 3D parking interface adjustment module;
  • the three-dimensional parking interface adjustment module is used to adjust the three-dimensional parking interface.
  • a vehicle comprising a processor, a memory, and a computer program stored on the memory and capable of running on the processor, the computer program being executed by the processor to implement the above-mentioned three-dimensional parking-based interactive method.
  • a computer-readable storage medium stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements the above-mentioned three-dimensional parking-based interaction method.
  • the 3D parking interface by displaying the 3D parking interface when the vehicle starts 3D parking, when an interactive operation for the 3D parking interface is detected, it is determined whether the interactive operation satisfies the preset conditions according to the current parking scene When it is determined that the interactive operation meets the preset conditions, the 3D parking interface is adjusted to realize manual interaction in 3D parking, improve the interactivity of 3D parking, and ensure the safety of 3D parking.
  • FIG. 1 is a flowchart of steps of an interactive method based on 3D parking provided by an embodiment of the present invention
  • FIG. 2 is a flowchart of steps of another three-dimensional parking-based interaction method provided by an embodiment of the present invention
  • FIG. 3 is a flowchart of steps of another three-dimensional parking-based interaction method provided by an embodiment of the present invention.
  • FIG. 4a is a flowchart of steps of another three-dimensional parking-based interaction method provided by an embodiment of the present invention.
  • 4b is a schematic diagram of a rotation operation provided by an embodiment of the present invention.
  • 4c is a schematic diagram of another rotation operation provided by an embodiment of the present invention.
  • Fig. 5a is a flow chart of steps of another three-dimensional parking-based interaction method provided by an embodiment of the present invention.
  • FIG. 5b is a schematic diagram of another scaling operation provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a vehicle according to an embodiment of the present invention.
  • FIG. 1 a flowchart of steps of a three-dimensional parking-based interaction method provided by an embodiment of the present invention is shown, which may specifically include the following steps:
  • Step 101 when the vehicle starts 3D parking, display a 3D parking interface
  • the 3D parking function can be activated in response to the user's operation, and the vehicle can automatically trigger the 3D parking function. Turn on the 3D parking function.
  • the 3D parking interface can be displayed through a display in the vehicle, for example, the 3D parking interface can be displayed through a large central control screen.
  • Step 102 when an interactive operation for the three-dimensional parking interface is detected, according to the current parking scene, determine whether the interactive operation satisfies a preset condition
  • the three-dimensional elements in the 3D parking interface have stronger interactive hints.
  • users are allowed to adjust the 3D parking interface through interactive operations, such as rotation operations and zooming operations.
  • step 102 may include the following steps:
  • the designated parking scene may include any one or more of the following:
  • the designated parking scene can be preset.
  • the vehicle driving has certain risks, and safety should still be the highest priority.
  • the driver needs to guide the vehicle driving through the displayed three-dimensional parking interface. , manual interaction is not supported.
  • the current parking scene is a designated parking scene, and when it is detected that the current parking scene is a designated parking scene, it can be determined that the interactive operation does not meet the preset conditions, thereby preventing the response to the interactive operation.
  • the interaction operation satisfies the preset condition, and then a subsequent response to the interaction operation is performed.
  • Step 103 when it is determined that the interactive operation satisfies a preset condition, adjust the three-dimensional parking interface.
  • the three-dimensional parking interface can be adjusted in response to the interactive operation, such as rotating and zooming the three-dimensional parking interface. Responses to interactive operations, no adjustments are made to the 3D parking interface.
  • the 3D parking interface by displaying the 3D parking interface when the vehicle starts 3D parking, when an interactive operation for the 3D parking interface is detected, it is determined whether the interactive operation satisfies the preset conditions according to the current parking scene When it is determined that the interactive operation meets the preset conditions, the 3D parking interface is adjusted to realize manual interaction in 3D parking, improve the interactivity of 3D parking, and ensure the safety of 3D parking.
  • FIG. 2 a flowchart of steps of another three-dimensional parking-based interaction method provided by an embodiment of the present invention is shown, which may specifically include the following steps:
  • Step 201 when the vehicle starts 3D parking, display a 3D parking interface
  • the 3D parking function can be activated in response to the user's operation, and the vehicle can automatically trigger the 3D parking function. Turn on the 3D parking function.
  • the 3D parking interface can be displayed through a display in the vehicle, for example, the 3D parking interface can be displayed through a large central control screen.
  • Step 202 when an interactive operation for the three-dimensional parking interface is detected, according to the current parking scene, determine whether the interactive operation satisfies a preset condition
  • the three-dimensional elements in the 3D parking interface have stronger interactive hints.
  • users are allowed to adjust the 3D parking interface through interactive operations, such as rotation operations and zooming operations.
  • Step 203 when it is determined that the interactive operation satisfies a preset condition, determine a first parameter corresponding to the interactive operation
  • the interactive operation When it is determined that the interactive operation satisfies the preset condition, the interactive operation can be responded to, and the first parameter corresponding to the interactive operation can be determined, and the first parameter can be a parameter generated based on the interactive operation.
  • the parameter may be the rotation angle corresponding to the rotation operation, which may be used to control the adjustment range of the three-dimensional parking interface.
  • Step 204 detecting whether the first parameter is within a preset parameter range
  • preset parameter ranges can be set in advance, such as Rotation angle, scaling range. After the first parameter is determined, it may be further determined whether the first parameter is within a preset range, so as to perform differential processing.
  • Step 205 when it is detected that the first parameter is not within the preset parameter range, determine a second parameter in the preset parameter range, and perform the three-dimensional parking interface according to the second parameter. adjust.
  • the second parameter may be a boundary value in a preset parameter range, such as a maximum parameter and a minimum parameter, which may be used to control the range of adjustment of the three-dimensional parking interface.
  • the first parameter When it is detected that the first parameter is not within the preset parameter range, it indicates that the adjustment of the 3D parking interface according to the first parameter will exceed the limited adjustment range, and the second parameter can be determined from the preset parameter range, and then the second parameter can be determined according to the preset parameter range.
  • the second parameter is to adjust the 3D parking interface.
  • the three-dimensional parking interface may be adjusted only according to the maximum angle.
  • the method may further include the following steps:
  • the three-dimensional parking interface is adjusted according to the first parameter.
  • the 3D parking interface When it is detected that the first parameter is within the preset parameter range, it means that if the 3D parking interface continues to be adjusted according to the first parameter, the 3D parking interface will remain within the limited adjustment range, and the 3D parking interface can be adjusted according to the first parameter.
  • the method may further include the following steps:
  • a preset parameter corresponding to the current parking scene may be determined, and the preset parameter may be a pre-set preferred parameter for the current parking scene, thereby transitioning the three-dimensional parking interface from the first parameter Adjust the preset parameters to ensure the normal display of the 3D parking interface.
  • different zoom ratios can be set in advance for the state of finding a parking space, the state of selecting a parking space, and the state of parking. After the non-interactive operation exceeds 4s, the three-dimensional parking interface can be transitioned to the zoom ratio corresponding to the current state.
  • the 3D parking interface by displaying the 3D parking interface when the vehicle starts 3D parking, when an interactive operation for the 3D parking interface is detected, it is determined whether the interactive operation satisfies the preset conditions according to the current parking scene condition, when it is determined that the interactive operation meets the preset condition, determine the first parameter corresponding to the interactive operation, detect whether the first parameter is within the preset parameter range, and when it is detected that the first parameter is not within the parameter range, determine the preset
  • the second parameter in the parameter range, and according to the second parameter, the 3D parking interface is adjusted, which realizes the limitation of manual interaction in 3D parking, avoids excessive adjustment of the 3D parking interface, and ensures the 3D parking. safety.
  • FIG. 3 a flowchart of steps of another three-dimensional parking-based interaction method provided by an embodiment of the present invention is shown, which may specifically include the following steps:
  • Step 301 when the vehicle starts 3D parking, display a 3D parking interface
  • the 3D parking function can be activated in response to the user's operation, and the vehicle can automatically trigger the 3D parking function. Turn on the 3D parking function.
  • the 3D parking interface can be displayed through a display in the vehicle, for example, the 3D parking interface can be displayed through a large central control screen.
  • Step 302 when an interactive operation for the three-dimensional parking interface is detected, according to the current parking scene, determine whether the interactive operation satisfies a preset condition
  • the three-dimensional elements in the 3D parking interface have stronger interactive hints.
  • users are allowed to adjust the 3D parking interface through interactive operations, such as rotation operations and zooming operations.
  • Step 303 when it is determined that the interactive operation satisfies a preset condition, determine a first parameter corresponding to the interactive operation
  • the interactive operation When it is determined that the interactive operation satisfies the preset condition, the interactive operation can be responded to, and the first parameter corresponding to the interactive operation can be determined, and the first parameter can be a parameter generated based on the interactive operation.
  • the parameter may be the rotation angle corresponding to the rotation operation, which may be used to control the adjustment range of the three-dimensional parking interface.
  • Step 304 detecting whether the first parameter is within a preset parameter range
  • preset parameter ranges can be set in advance, such as Rotation angle, scaling range. After the first parameter is determined, it may be further determined whether the first parameter is within a preset range, so as to perform differential processing.
  • Step 305 when it is detected that the first parameter is not within the preset parameter range, determine a second parameter within the preset parameter range;
  • the second parameter may be a boundary value in a preset parameter range, such as a maximum parameter and a minimum parameter, which may be used to control the range of adjustment of the three-dimensional parking interface.
  • the second parameter can be determined from the preset parameter range, if required to be adjusted. If the rotation angle is greater than the maximum angle in the preset rotation angle range, the maximum angle may be determined as the second parameter.
  • Step 306 determining the offset value of the first parameter and the second parameter
  • the second parameter may be a boundary value in the preset parameter range, after the first parameter and the second parameter are determined, the difference between the first parameter and the second parameter may be calculated to obtain the offset value.
  • Step 307 when the offset value is less than or equal to a preset offset value, adjust the three-dimensional parking interface according to the first parameter, and when detecting the end of the interactive operation, adjust the three-dimensional parking interface according to the first parameter.
  • the second parameter is used to adjust the three-dimensional parking interface.
  • a rebound effect can be set for the situation exceeding the boundary value, that is, the interactive operation is allowed to continue when the maximum and minimum values are exceeded, and the rebound is performed after the interactive operation.
  • the rebound effect also has certain limitations.
  • the 3D parking interface can be adjusted first according to the first parameter, and when the end of the interactive operation is detected, if the operating medium is far away from the screen, according to the second parameter, Adjust the 3D parking interface to achieve a rebound effect.
  • the rotation angle range is 0°-58°
  • the preset offset value is 5°
  • the adjustment is made according to the rotation angle corresponding to the rotation operation.
  • the user desires to control the 3D parking interface to rotate more than 58° and less than or 63° (58°+5°) through the rotation operation, it can be adjusted according to the rotation angle corresponding to the rotation operation, and then adjusted according to 58°.
  • it may also include the following:
  • a third parameter for the three-dimensional parking interface is determined according to the preset offset value and the second parameter; according to the third parameter, the The three-dimensional parking interface is adjusted, and when the end of the interactive operation is detected, the three-dimensional parking interface is adjusted according to the second parameter.
  • the second parameter can be offset according to the preset offset value to determine the third parameter for the 3D parking interface, and then the 3D parking interface can be determined according to the third parameter. Adjustment is performed, and when the end of the interactive operation is detected, if the operating medium is far away from the screen, the three-dimensional parking interface is adjusted according to the second parameter to achieve a rebound effect.
  • the rotation angle range is 0°-58°
  • the preset offset value is 5°
  • the adjustment is made according to the rotation angle corresponding to the rotation operation.
  • the user desires to control the three-dimensional parking interface to rotate more than 63° (58°+5°) through the rotation operation, it can be adjusted according to 63° first, and then adjusted according to 58°.
  • the 3D parking interface by displaying the 3D parking interface when the vehicle starts 3D parking, when an interactive operation for the 3D parking interface is detected, it is determined whether the interactive operation satisfies the preset conditions according to the current parking scene condition, when it is determined that the interactive operation meets the preset condition, determine the first parameter corresponding to the interactive operation, detect whether the first parameter is within the preset parameter range, and when it is detected that the first parameter is not within the preset parameter range, determine the preset
  • the second parameter in the parameter range determines the offset value between the first parameter and the second parameter, and when the offset value is less than or equal to the preset offset value, adjust the 3D parking interface according to the first parameter, and adjust the 3D parking interface according to the first parameter.
  • the 3D parking interface is adjusted according to the second parameter, so that the rebound effect of the manual interaction based on 3D parking is realized, and the interactivity of the 3D parking interface is improved.
  • FIG. 4a a flowchart of steps of another three-dimensional parking-based interaction method provided by an embodiment of the present invention is shown, which may specifically include the following steps:
  • Step 401 when the vehicle starts 3D parking, display a 3D parking interface
  • the 3D parking function can be activated in response to the user's operation, and the vehicle can automatically trigger the 3D parking function. Turn on the 3D parking function.
  • the 3D parking interface can be displayed through a display in the vehicle, for example, the 3D parking interface can be displayed through a large central control screen.
  • Step 402 when a rotation operation for the three-dimensional parking interface is detected, according to the current parking scene, determine whether the rotation operation satisfies a preset condition
  • the three-dimensional elements in the 3D parking interface have stronger interactive hints.
  • users are allowed to adjust the 3D parking interface through interactive operations, such as rotation operations and zooming operations.
  • Step 403 when determining that the rotation operation satisfies a preset condition, determine the rotation operation type of the rotation operation;
  • the rotation operation may have various types of rotation operations, such as a drag operation and a swipe operation, and the rotation operation type of the current rotation operation may be determined.
  • Step 404 when the rotation operation type is a drag operation, determine a drag operation distance, and combine the drag operation distance and preset pixel information to determine a first rotation angle for the three-dimensional parking interface;
  • the preset pixel information may be the ratio of the pixel to the rotation angle.
  • the drag operation distance corresponding to the drag operation can be determined , and then the first rotation angle can be determined by combining the drag operation distance and the preset pixel information.
  • the first rotation angle can be determined as BL.
  • Step 405 when the rotation operation type is a swipe operation, determine a swipe operation speed, and use the swipe operation speed to determine a first rotation angle for the three-dimensional parking interface;
  • the swipe operation is that the operating medium is shaken at a certain speed and then leaves the screen (the speed is not 0 when the operating medium leaves the screen), it is used for rough and fast viewing, and the swiping operation speed corresponding to the swiping operation can be determined, and then the swiping operation speed corresponding to the swiping operation can be determined.
  • the first rotation angle corresponding to the swipe operation speed is not 0 when the operating medium leaves the screen
  • the maximum angle change corresponding to the swipe operation is 180°.
  • the rotation angle change can be divided into three steps:
  • a preset coordinate system can be established, and the preset coordinate system can be the center of the display area as the coordinate origin, the forward direction of the vehicle as the ordinate, and the direction perpendicular to the ground.
  • a coordinate system whose direction is the vertical axis.
  • the first rotation angle may include a horizontal rotation angle and a vertical rotation angle
  • the vertical rotation angle may be an angle offset from the vertical axis in the preset coordinate system
  • the horizontal rotation angle may be offset from the horizontal axis and vertical axis in the preset coordinate system.
  • the axis forms the angle of the plane.
  • Step 406 detecting whether the first rotation angle is within a preset parameter range
  • the first rotation angle After the first rotation angle is determined, it may be detected whether the first rotation angle is within a preset parameter range, and the preset parameter range may be a rotation angle range.
  • the maximum variation relative to the z-axis can be calibrated to be 58°, and the minimum position is the top view (that is, relative to the z-axis).
  • the angle is 0°)
  • the rotation angle range is 0° ⁇ 58°
  • one rotation is allowed, that is, the horizontal rotation angle is 0° ⁇ 360°.
  • Step 407 when it is detected that the first rotation angle is not within the preset parameter range, determine a second rotation angle in the preset parameter range, and according to the second rotation angle, determine the three-dimensional rotation angle.
  • the car interface is adjusted.
  • the second rotation angle in the preset parameter range may be determined, for example, the second rotation angle may be a boundary value in the rotation angle range, such as 58°, and then the second rotation angle may be determined according to the The second rotation angle is used to adjust the three-dimensional parking interface.
  • the 3D parking interface is displayed, and when a rotation operation for the 3D parking interface is detected, it is judged whether the rotation operation satisfies the preset conditions according to the current parking scene Condition, when it is determined that the rotation operation satisfies the preset conditions, the rotation operation type of the rotation operation is determined, and when the rotation operation type is a drag operation, the drag operation distance is determined, and the drag operation distance and the preset pixel information are combined.
  • the first rotation angle of the 3D parking interface when the rotation operation type is a swipe operation, determine the swipe operation speed, and use the swipe operation speed to determine the first rotation angle for the 3D parking interface, and detect the first rotation angle Whether it is within the preset parameter range, when it is detected that the first rotation angle is not within the preset parameter range, determine the second rotation angle in the preset parameter range, and adjust the three-dimensional parking interface according to the second rotation angle,
  • the manual rotation control of the 3D parking interface is realized, the interactivity of 3D parking is improved, and the safety of 3D parking is guaranteed.
  • FIG. 5a a flowchart of steps of another three-dimensional parking-based interaction method provided by an embodiment of the present invention is shown, which may specifically include the following steps:
  • Step 501 when the vehicle starts 3D parking, display a 3D parking interface
  • the 3D parking function can be activated in response to the user's operation, and the vehicle can automatically trigger the 3D parking function. Turn on the 3D parking function.
  • the 3D parking interface can be displayed through a display in the vehicle, for example, the 3D parking interface can be displayed through a large central control screen.
  • Step 502 when a zooming operation for the three-dimensional parking interface is detected, according to the current parking scene, determine whether the zooming operation satisfies a preset condition
  • the three-dimensional elements in the 3D parking interface have stronger interactive hints.
  • users are allowed to adjust the 3D parking interface through interactive operations, such as rotation operations and zooming operations.
  • Step 503 when determining that the zoom operation satisfies a preset condition, determine the zoom operation distance corresponding to the zoom operation;
  • the zoom operation distance corresponding to the zoom operation can be determined according to the stroke of the expansion or pinch.
  • Step 504 using the zoom operation distance to determine a first zoom ratio for the three-dimensional parking interface
  • the corresponding relationship between the zoom operation distance and the zoom ratio may be predefined, and after the zoom operation distance is determined, the first zoom ratio corresponding to the zoom operation distance may be further determined.
  • Step 505 detecting whether the first scaling ratio is within a preset parameter range
  • the first scaling ratio After the first scaling ratio is determined, it may be detected whether the first scaling ratio is within a preset parameter range, and the preset parameter range may be a scaling ratio range.
  • the ego vehicle ratio A is the determined maximum value when reversing, and the zoom ratio range of manual scaling is scaled with A as a reference to ensure that the upper At the limit, some parking space frames can still be exposed on both sides. At the lower limit, the parking space still has a good click area, and the calibrated scaling ratio ⁇ range is 0.3A ⁇ 0.7A.
  • Step 506 when it is detected that the first scaling ratio is not within the preset parameter range, determine a second scaling ratio in the preset parameter range, and perform the three-dimensional zoom ratio according to the second scaling ratio.
  • the car interface is adjusted.
  • a second scaling ratio in the preset parameter range can be determined.
  • the second scaling ratio can be a boundary value in the rotation angle range, and then the second scaling ratio can be determined according to the second scaling ratio. to adjust the 3D parking interface.
  • the 3D parking interface is displayed, and when a zoom operation for the 3D parking interface is detected, it is determined whether the zoom operation satisfies the preset according to the current parking scene. condition, when it is determined that the zoom operation satisfies the preset condition, determine the zoom operation distance corresponding to the zoom operation, use the zoom operation distance to determine the first zoom ratio for the 3D parking interface, and detect whether the first zoom ratio is within the preset parameter range , when it is detected that the first zoom ratio is not within the preset parameter range, determine the second zoom ratio in the preset parameter range, and adjust the three-dimensional parking interface according to the second zoom ratio, so as to realize the three-dimensional parking interface
  • the manual zoom control improves the interactivity of 3D parking and ensures the safety of 3D parking.
  • FIG. 6 a schematic structural diagram of a vehicle provided by an embodiment of the present invention is shown, which may specifically include the following modules:
  • the 3D parking interface display module 601 is configured to display the 3D parking interface when the vehicle starts 3D parking;
  • the preset condition judgment module 602 is configured to judge whether the interactive operation satisfies a preset condition according to the current parking scene when an interactive operation for the three-dimensional parking interface is detected; when it is judged that the interactive operation satisfies the preset condition When conditions are met, call the 3D parking interface adjustment module;
  • the 3D parking interface adjustment module 603 is used to adjust the 3D parking interface
  • the three-dimensional parking interface adjustment module 603 includes:
  • a first parameter determination submodule configured to determine the first parameter corresponding to the interactive operation
  • a first parameter detection sub-module configured to detect whether the first parameter is within a preset parameter range
  • the adjustment sub-module according to the second parameter is configured to determine a second parameter in the preset parameter range when it is detected that the first parameter is not within the preset parameter range, and adjust the adjustment according to the second parameter. the three-dimensional parking interface is adjusted;
  • the first parameter and the second parameter are used to control the adjustment range of the three-dimensional parking interface.
  • it also includes:
  • the adjustment module according to the first parameter is configured to adjust the three-dimensional parking interface according to the first parameter when it is detected that the first parameter is within the preset parameter range.
  • it also includes:
  • an offset value determination module configured to determine an offset value between the first parameter and the second parameter; when the offset value is less than or equal to a preset offset value, call the adjustment module according to the first parameter , and when the end of the interactive operation is detected, the adjusting sub-module according to the second parameter is called.
  • it also includes:
  • a third parameter determination module configured to determine a third parameter for the three-dimensional parking interface according to the preset offset value and the second parameter when the offset value is greater than a preset offset value
  • the adjustment module according to the third parameter is used to adjust the three-dimensional parking interface according to the third parameter, and when the end of the interactive operation is detected, the adjustment according to the second parameter sub-module is called.
  • the interactive operation is a rotation operation
  • the first parameter is a first rotation angle
  • the first parameter determination submodule includes:
  • a rotation operation type determination unit configured to determine the rotation operation type of the rotation operation
  • a drag operation processing unit configured to determine a drag operation distance when the type of the rotation operation is a drag operation, and combine the drag operation distance and preset pixel information to determine the first step for the three-dimensional parking interface. a rotation angle;
  • a swipe operation processing unit configured to determine a swipe operation speed when the rotation operation type is a swipe operation, and use the swipe operation speed to determine a first rotation angle for the three-dimensional parking interface.
  • the first rotation angle includes a horizontal rotation angle and a vertical rotation angle
  • the vertical rotation angle is an angle offset from a vertical axis in a preset coordinate system
  • the horizontal rotation angle is an offset preset
  • the horizontal axis and the vertical axis in the coordinate system form the angle of the plane
  • the preset coordinate system is a coordinate system with the center of the display area as the coordinate origin, the forward direction of the vehicle as the ordinate, and the direction perpendicular to the ground as the vertical axis .
  • the interactive operation is a scaling operation
  • the first parameter is a first scaling ratio
  • the first parameter determination submodule includes:
  • a zooming operation distance determining unit configured to determine the zooming operation distance corresponding to the zooming operation
  • a first zoom ratio determination unit configured to use the zoom operation distance to determine a first zoom ratio for the three-dimensional parking interface.
  • it also includes:
  • the current duration determination module is used to determine the current duration of the last interactive operation
  • a preset parameter determination module configured to determine preset parameters corresponding to the current parking scene when the current duration is greater than the preset duration
  • the module for adjusting according to preset parameters is used to adjust the three-dimensional parking interface according to the preset parameters.
  • the preset condition determination module 602 includes:
  • the designated parking scene detection sub-module is used to detect whether the current parking scene is the designated parking scene
  • a non-satisfaction determination sub-module configured to determine that the interactive operation does not meet a preset condition when it is detected that the current parking scene is a designated parking scene;
  • Satisfaction determination sub-module configured to determine that the interactive operation satisfies a preset condition when it is detected that the current parking scene is a non-designated parking scene;
  • the designated parking scene includes any one or more of the following:
  • the 3D parking interface by displaying the 3D parking interface when the vehicle starts 3D parking, when an interactive operation for the 3D parking interface is detected, it is determined whether the interactive operation satisfies the preset conditions according to the current parking scene When it is determined that the interactive operation meets the preset conditions, the 3D parking interface is adjusted to realize manual interaction in 3D parking, improve the interactivity of 3D parking, and ensure the safety of 3D parking.
  • An embodiment of the present invention also provides a vehicle, which may include a processor, a memory, and a computer program stored in the memory and capable of running on the processor.
  • a vehicle which may include a processor, a memory, and a computer program stored in the memory and capable of running on the processor.
  • the computer program is executed by the processor, the above interaction method based on three-dimensional parking is implemented. A step of.
  • An embodiment of the present invention further provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the above three-dimensional parking-based interaction method are implemented.
  • embodiments of the present invention may be provided as a method, an apparatus, or a computer program product. Accordingly, embodiments of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present invention may take the form of a computer program product implemented on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, CD-ROM, optical storage, and the like.
  • Embodiments of the present invention are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the present invention. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal equipment to produce a machine that causes the instructions to be executed by the processor of the computer or other programmable data processing terminal equipment Means are created for implementing the functions specified in the flow or flows of the flowcharts and/or the blocks or blocks of the block diagrams.
  • These computer program instructions may also be stored in a computer readable memory capable of directing a computer or other programmable data processing terminal equipment to operate in a particular manner, such that the instructions stored in the computer readable memory result in an article of manufacture comprising instruction means, the The instruction means implement the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Transportation (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种基于三维泊车的交互方法、车辆以及计算机可读存储介质,该方法包括:在车辆启动三维泊车的情况下,显示三维泊车界面;在检测到针对三维泊车界面的交互操作时,根据当前泊车场景,判断交互操作是否满足预设条件;在判定交互操作满足预设条件时,对三维泊车界面进行调整。通过该技术方案,实现了三维泊车中的手动交互,提升了三维泊车的交互性,且保证了三维泊车的安全性。

Description

一种基于三维泊车的交互方法和车辆
交叉引用
本申请要求2020年6月29日递交的发明名称为“一种基于三维泊车的交互方法和车辆”的申请号为202010606975.4的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及智能汽车技术领域,特别是涉及一种基于三维泊车的交互方法和车辆。
背景技术
在三维泊车中,通常会在中控大屏显示三维泊车界面,三维泊车界面中的占位模型等立体元素具有更强的互动暗示,但现有的三维泊车界面缺乏可交互性,即使能够进行简单的交互,也难以应对各类异常泊车场景,影响三维泊车的安全性。
发明内容
鉴于上述问题,提出了以便提供克服上述问题或者至少部分地解决上述问题的一种基于三维泊车的交互方法和车辆,包括:
一种基于三维泊车的交互方法,所述方法包括:
在车辆启动三维泊车的情况下,显示三维泊车界面;
在检测到针对所述三维泊车界面的交互操作时,根据当前泊车场景,判断所述交互操作是否满足预设条件;
在判定所述交互操作满足预设条件时,对所述三维泊车界面进行调整。
可选地,所述在判定所述交互操作满足预设条件时,对所述三维泊车界面进行调整,包括:
确定所述交互操作对应的第一参数;
检测所述第一参数是否在预设参数范围内;
在检测到所述第一参数不在所述预设参数范围内时,确定所述预设参数范围中的第二参数,并按照所述第二参数,对所述三维泊车界面进行调整;
其中,所述第一参数和所述第二参数用于控制对所述三维泊车界面进行调整的幅度。
可选地,还包括:
在检测所述第一参数在所述预设参数范围内时,按照所述第一参数,对所述三维泊车界面进行调整。
可选地,在所述按照所述第二参数,对所述三维泊车界面进行调整之前,还包括:
确定所述第一参数与所述第二参数的偏移值;
在所述偏移值小于或等于预设偏移值时,按照所述第一参数,对所述三维泊车界面进行调整,并在检测到所述交互操作的结束时,执行所述按照所述第二参数,对所述三维泊车界面进行调整。
可选地,还包括:
在所述偏移值大于预设偏移值时,根据所述预设偏移值和所述第二参数,确定针对所述三维泊车界面的第三参数;
按照所述第三参数,对所述三维泊车界面进行调整,并在检测到所述交互操作的结束时,执行所述按照所述第二参数,对所述三维泊车界面进行调整。
可选地,所述交互操作为旋转操作,所述第一参数为第一旋转角度,所述确定所述交互操作对应的第一参数,包括:
确定所述旋转操作的旋转操作类型;
在所述旋转操作类型为拖拽操作时,确定拖拽操作距离,并结合所述拖拽操作距离和预设像素信息,确定针对所述三维泊车界面的第一旋转角度;
在所述旋转操作类型为轻扫操作时,确定轻扫操作速度,并采用所述轻扫操作速度,确定针对所述三维泊车界面的第一旋转角度。
可选地,所述第一旋转角度包括水平旋转角度和垂直旋转角度,所述垂直旋转角度为偏移预设坐标系中竖轴的角度,所述水平旋转角度为偏移预设坐标系中横轴和纵轴构成平面的角度,所述预设坐标系为以显示区域的中心为坐标原点、以车辆的前进方向为纵坐标、以垂直于地面方向为竖轴的坐标系。
可选地,所述交互操作为缩放操作,所述第一参数为第一缩放比例,所述确定所述交互操作对应的第一参数,包括:
确定所述缩放操作对应的缩放操作距离;
采用所述缩放操作距离,确定针对所述三维泊车界面的第一缩放比例。
可选地,还包括:
确定距离最近一次的交互操作的当前时长;
在所述当前时长大于预设时长时,确定当前泊车场景对应的预设参数;
按照所述预设参数,对所述三维泊车界面进行调整。
可选地,所述根据当前泊车场景,判断所述交互操作是否满足预设条件,包括:
检测当前泊车场景是否为指定泊车场景;
在检测到所述当前泊车场景为指定泊车场景时,判定所述交互操作不满足预设条件;
在检测到所述当前泊车场景为非指定泊车场景时,判定所述交互操作满足预设条件;
其中,所述指定泊车场景包括以下任一项或多项:
寻找车位异常场景、溜车预警场景、前向避障场景。
一种车辆,所述车辆包括:
三维泊车界面显示模块,用于在车辆启动三维泊车的情况下,显示三维泊车界面;
预设条件判断模块,用于在检测到针对所述三维泊车界面的交互操作时,根据当前泊车场景,判断所述交互操作是否满足预设条件;在判定所述交互操作满足预设条件时,调用三维泊车界面调整模块;
三维泊车界面调整模块,用于对所述三维泊车界面进行调整。
一种车辆,包括处理器、存储器及存储在所述存储器上并能够在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的基于三维泊车的交互方法。
一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上所述的基于三维泊车的交互方法。
本发明实施例具有以下优点:
在本发明实施例中,通过在车辆启动三维泊车的情况下,显示三维泊车界面,在检测到针对三维泊车界面的交互操作时,根据当前泊车场景,判断交互操作是否满足预设条件,在判定交互操作满足预设条件时,对三维泊车界面进行调整,实现了三维泊车中的手动交互,提升了三维泊车的交互性,且保证了三维泊车的安全性。
附图说明
为了更清楚地说明本发明的技术方案,下面将对本发明的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例提供的一种基于三维泊车的交互方法的步骤流程图;
图2是本发明一实施例提供的另一种基于三维泊车的交互方法的步骤流程图;
图3是本发明一实施例提供的另一种基于三维泊车的交互方法的步骤流程图;
图4a是本发明一实施例提供的另一种基于三维泊车的交互方法的步骤流程图;
图4b是本发明一实施例提供的一种旋转操作的示意图;
图4c是本发明一实施例提供的另一种旋转操作的示意图;
图5a是本发明一实施例提供的另一种基于三维泊车的交互方法的步骤 流程图;
图5b是本发明一实施例提供的另一种缩放操作的示意图;
图6是本发明一实施例提供的一种车辆的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照图1,示出了本发明一实施例提供的一种基于三维泊车的交互方法的步骤流程图,具体可以包括如下步骤:
步骤101,在车辆启动三维泊车的情况下,显示三维泊车界面;
在车辆进入泊车场景中,可以响应于用户操作启动三维泊车功能,车辆可以自动触发三维泊车功能,如检测到车辆驶入停车场,车辆可以自动触发三维泊车功能,向用户询问是否开启三维泊车功能。
在车辆启动三维泊车的情况下,可以通过车辆中的显示器来显示三维泊车界面,如通过中控大屏来显示三维泊车界面。
步骤102,在检测到针对所述三维泊车界面的交互操作时,根据当前泊车场景,判断所述交互操作是否满足预设条件;
由于在泊车场景3D化后,三维泊车界面中立体元素有更强的互动暗示,为了满足用户预期,允许用户通过交互操作对三维泊车界面进行调整,如旋转操作、缩放操作。
在检测到针对三维泊车界面的交互操作时,由于泊车中可能存在各种异常的场景,需要妥善应对,以避免影响泊车体验,则可以通过分析当前泊车场景,根据当前泊车场景,来判断交互操作是否满足预设条件。
在本发明一实施例中,步骤102可以包括如下步骤:
检测当前泊车场景是否为指定泊车场景;在检测到所述当前泊车场景为指定泊车场景时,判定所述交互操作不满足预设条件;在检测到所述当前泊车场景为非指定泊车场景时,判定所述交互操作满足预设条件。
作为一示例,指定泊车场景可以包括以下任一项或多项:
寻找车位异常场景、溜车预警场景、前向避障场景。
在实际应用中,可以预先设置指定泊车场景,在指定泊车场景下,车辆驾驶具有一定的风险,仍要以安全为最高优先级,驾驶员需要通过显示的三维泊车界面来指引车辆驾驶,不支持手动交互。
具体的,可以检测当前泊车场景是否为指定泊车场景,在检测到当前泊车场景为指定泊车场景时,则可以判定交互操作不满足预设条件,进而阻止 对交互操作的响应,在检测到当前泊车场景为非指定泊车场景时,则可以判定交互操作满足预设条件,进而进行后续对交互操作的响应。
步骤103,在判定所述交互操作满足预设条件时,对所述三维泊车界面进行调整。
在判定交互操作满足预设条件时,可以响应于交互操作,对三维泊车界面进行调整,如进行对三维泊车界面进行旋转、缩放,在判定交互操作不满足预设条件时,可以阻止对交互操作的响应,不对三维泊车界面进行调整。
在本发明实施例中,通过在车辆启动三维泊车的情况下,显示三维泊车界面,在检测到针对三维泊车界面的交互操作时,根据当前泊车场景,判断交互操作是否满足预设条件,在判定交互操作满足预设条件时,对三维泊车界面进行调整,实现了三维泊车中的手动交互,提升了三维泊车的交互性,且保证了三维泊车的安全性。
参照图2,示出了本发明一实施例提供的另一种基于三维泊车的交互方法的步骤流程图,具体可以包括如下步骤:
步骤201,在车辆启动三维泊车的情况下,显示三维泊车界面;
在车辆进入泊车场景中,可以响应于用户操作启动三维泊车功能,车辆可以自动触发三维泊车功能,如检测到车辆驶入停车场,车辆可以自动触发三维泊车功能,向用户询问是否开启三维泊车功能。
在车辆启动三维泊车的情况下,可以通过车辆中的显示器来显示三维泊车界面,如通过中控大屏来显示三维泊车界面。
步骤202,在检测到针对所述三维泊车界面的交互操作时,根据当前泊车场景,判断所述交互操作是否满足预设条件;
由于在泊车场景3D化后,三维泊车界面中立体元素有更强的互动暗示,为了满足用户预期,允许用户通过交互操作对三维泊车界面进行调整,如旋转操作、缩放操作。
在检测到针对三维泊车界面的交互操作时,由于泊车中可能存在各种异常的场景,需要妥善应对,以避免影响泊车体验,则可以通过分析当前泊车场景,根据当前泊车场景,来判断交互操作是否满足预设条件。
步骤203,在判定所述交互操作满足预设条件时,确定所述交互操作对应的第一参数;
在判定交互操作满足预设条件时,可以对交互操作进行响应,则可以确定交互操作对应的第一参数,第一参数可以为基于交互操作而生成的参数,如交互操作为旋转操作,第一参数可以为旋转操作对应的旋转角度,其可以用于控制对三维泊车界面进行调整的幅度。
步骤204,检测所述第一参数是否在预设参数范围内;
为了避免三维泊车界面被超限制调整而影响车辆的正常行驶,如将三维 泊车界面缩小至驾驶员难以清楚观测、将三维泊车界面中虚拟地面翻转,可以预先设置预设参数范围,如旋转角度、缩放比例的范围。在确定第一参数后,可以进一步判断第一参数是否在预设范围内,以进行区别性处理。
步骤205,在检测到所述第一参数不在所述预设参数范围内时,确定所述预设参数范围中的第二参数,并按照所述第二参数,对所述三维泊车界面进行调整。
其中,第二参数可以为预设参数范围中的边界值,如最大参数、最小参数,其可以用于控制对所述三维泊车界面进行调整的幅度。
在检测到第一参数不在预设参数范围内时,表征若继续按照第一参数调整三维泊车界面将超出限制调整范围,则可以从预设参数范围中,确定第二参数,进而可以并按照第二参数,对三维泊车界面进行调整。
例如,要求调整的旋转角度大于预设的旋转角度范围中的最大角度,则可以仅按照最大角度对三维泊车界面进行调整。
在本发明一实施例中,该方法还可以包括如下步骤:
在检测所述第一参数在所述预设参数范围内时,按照所述第一参数,对所述三维泊车界面进行调整。
在检测第一参数在预设参数范围内时,表征若继续按照第一参数调整三维泊车界面会保持在限制调整范围内,则可以按照第一参数,对三维泊车界面进行调整。
在本发明一实施例中,该方法还可以包括如下步骤:
确定距离最近一次的交互操作的当前时长;在所述当前时长大于预设时长时,确定当前泊车场景对应的预设参数;按照所述预设参数,对所述三维泊车界面进行调整。
为了兼容交互操作时的短暂停顿,保持手动交互的连续性,可以在操作介质离开屏幕后开始计时,确定距离最近一次的交互操作的当前时长,在当前时长小于或等于预设时长时,如4s,可以保持三维泊车界面的当前状态。
在当前时长大于预设时长时,则可以确定当前泊车场景对应的预设参数,该预设参数可以为预先针对当前泊车场景设置的优选参数,进而将三维泊车界面从第一参数过渡调整预设参数,保证三维泊车界面的正常显示。
例如,可以预先针对找车位状态、选车位状态、泊车中状态设置不同的缩放比例,在未交互操作的时长超过4s后,可以将三维泊车界面过渡至当前状态对应的缩放比例。
在本发明实施例中,通过在车辆启动三维泊车的情况下,显示三维泊车界面,在检测到针对三维泊车界面的交互操作时,根据当前泊车场景,判断交互操作是否满足预设条件,在判定交互操作满足预设条件时,确定交互操作对应的第一参数,检测第一参数是否在预设参数范围内,在检测到第一参数不在所述参数范围内时,确定预设参数范围中的第二参数,并按照第二参 数,对三维泊车界面进行调整,实现了对三维泊车中手动交互的限制,避免对三维泊车界面的过度调整,保证了三维泊车的安全性。
参照图3,示出了本发明一实施例提供的另一种基于三维泊车的交互方法的步骤流程图,具体可以包括如下步骤:
步骤301,在车辆启动三维泊车的情况下,显示三维泊车界面;
在车辆进入泊车场景中,可以响应于用户操作启动三维泊车功能,车辆可以自动触发三维泊车功能,如检测到车辆驶入停车场,车辆可以自动触发三维泊车功能,向用户询问是否开启三维泊车功能。
在车辆启动三维泊车的情况下,可以通过车辆中的显示器来显示三维泊车界面,如通过中控大屏来显示三维泊车界面。
步骤302,在检测到针对所述三维泊车界面的交互操作时,根据当前泊车场景,判断所述交互操作是否满足预设条件;
由于在泊车场景3D化后,三维泊车界面中立体元素有更强的互动暗示,为了满足用户预期,允许用户通过交互操作对三维泊车界面进行调整,如旋转操作、缩放操作。
在检测到针对三维泊车界面的交互操作时,由于泊车中可能存在各种异常的场景,需要妥善应对,以避免影响泊车体验,则可以通过分析当前泊车场景,根据当前泊车场景,来判断交互操作是否满足预设条件。
步骤303,在判定所述交互操作满足预设条件时,确定所述交互操作对应的第一参数;
在判定交互操作满足预设条件时,可以对交互操作进行响应,则可以确定交互操作对应的第一参数,第一参数可以为基于交互操作而生成的参数,如交互操作为旋转操作,第一参数可以为旋转操作对应的旋转角度,其可以用于控制对三维泊车界面进行调整的幅度。
步骤304,检测所述第一参数是否在预设参数范围内;
为了避免三维泊车界面被超限制调整而影响车辆的正常行驶,如将三维泊车界面缩小至驾驶员难以清楚观测、将三维泊车界面中虚拟地面翻转,可以预先设置预设参数范围,如旋转角度、缩放比例的范围。在确定第一参数后,可以进一步判断第一参数是否在预设范围内,以进行区别性处理。
步骤305,在检测到所述第一参数不在所述预设参数范围内时,确定所述预设参数范围中的第二参数;
其中,第二参数可以为预设参数范围中的边界值,如最大参数、最小参数,其可以用于控制对所述三维泊车界面进行调整的幅度。
在检测到第一参数不在预设参数范围内时,表征若继续按照第一参数调整三维泊车界面将超出限制调整范围,则可以从预设参数范围中,确定第二参数,如要求调整的旋转角度大于预设的旋转角度范围中的最大角度,则可 以确定最大角度为第二参数。
步骤306,确定所述第一参数与所述第二参数的偏移值;
由于第二参数可以为预设参数范围中的边界值,则在确定第一参数和第二参数后,可以计算第一参数与第二参数之间差值,得到偏移值。
步骤307,在所述偏移值小于或等于预设偏移值时,按照所述第一参数,对所述三维泊车界面进行调整,并在检测到所述交互操作的结束时,按照所述第二参数,对所述三维泊车界面进行调整。
为了让用户操作至边界值时不会疑惑,可以对超过边界值的情况,设置一回弹效果,即允许在超过最大值和最小值时继续进行交互操作,并在交互操作后进行回弹,但该回弹效果也具有一定的限制。
在偏移值小于或等于预设偏移值时,可以先按照第一参数,对三维泊车界面进行调整,并在检测到交互操作的结束时,如操作介质远离屏幕,按照第二参数,对三维泊车界面进行调整,实现回弹效果。
例如,旋转角度范围为0°-58°,预设偏移值为5°。
在用户通过旋转操作期望控制三维泊车界面旋转小于58°时,按照旋转操作对应的旋转角度进行调整。
在用户通过旋转操作期望控制三维泊车界面旋转大于58°且小于或63°(58°+5°)时,可以先按照旋转操作对应的旋转角度进行调整,然后按照58°进行调整。
在本发明一实施例中,还可以包括如下:
在所述偏移值大于预设偏移值时,根据所述预设偏移值和所述第二参数,确定针对所述三维泊车界面的第三参数;按照所述第三参数,对所述三维泊车界面进行调整,并在检测到所述交互操作的结束时,按照所述第二参数,对所述三维泊车界面进行调整。
在偏移值大于预设偏移值时,可以按照预设偏移值对第二参数偏移,确定针对三维泊车界面的第三参数,然后可以先按照第三参数,对三维泊车界面进行调整,并在检测到交互操作的结束时,如操作介质远离屏幕,按照第二参数,对三维泊车界面进行调整,实现回弹效果。
例如,旋转角度范围为0°-58°,预设偏移值为5°。
在用户通过旋转操作期望控制三维泊车界面旋转小于58°时,按照旋转操作对应的旋转角度进行调整。
在用户通过旋转操作期望控制三维泊车界面旋转大于63°(58°+5°)时,可以先按照63°进行调整,然后按照58°进行调整。
在本发明实施例中,通过在车辆启动三维泊车的情况下,显示三维泊车界面,在检测到针对三维泊车界面的交互操作时,根据当前泊车场景,判断交互操作是否满足预设条件,在判定交互操作满足预设条件时,确定交互操作对应的第一参数,检测第一参数是否在预设参数范围内,在检测到第一参 数不在预设参数范围内时,确定预设参数范围中的第二参数,确定第一参数与第二参数的偏移值,在偏移值小于或等于预设偏移值时,按照第一参数,对三维泊车界面进行调整,并在检测到交互操作的结束时,按照第二参数,对三维泊车界面进行调整,实现了基于三维泊车的手动交互的回弹效果,提升了三维泊车界面的可交互性。
参照图4a,示出了本发明一实施例提供的另一种基于三维泊车的交互方法的步骤流程图,具体可以包括如下步骤:
步骤401,在车辆启动三维泊车的情况下,显示三维泊车界面;
在车辆进入泊车场景中,可以响应于用户操作启动三维泊车功能,车辆可以自动触发三维泊车功能,如检测到车辆驶入停车场,车辆可以自动触发三维泊车功能,向用户询问是否开启三维泊车功能。
在车辆启动三维泊车的情况下,可以通过车辆中的显示器来显示三维泊车界面,如通过中控大屏来显示三维泊车界面。
步骤402,在检测到针对所述三维泊车界面的旋转操作时,根据当前泊车场景,判断所述旋转操作是否满足预设条件;
由于在泊车场景3D化后,三维泊车界面中立体元素有更强的互动暗示,为了满足用户预期,允许用户通过交互操作对三维泊车界面进行调整,如旋转操作、缩放操作。
在检测到针对三维泊车界面的旋转操作时,由于泊车中可能存在各种异常的场景,需要妥善应对,以避免影响泊车体验,则可以通过分析当前泊车场景,根据当前泊车场景,来判断旋转操作是否满足预设条件。
步骤403,在判定所述旋转操作满足预设条件时,确定所述旋转操作的旋转操作类型;
在实际应用中,旋转操作可以具有多种旋转操作类型,如拖拽操作、轻扫操作,则可以确定当前的旋转操作的旋转操作类型。
步骤404,在所述旋转操作类型为拖拽操作时,确定拖拽操作距离,并结合所述拖拽操作距离和预设像素信息,确定针对所述三维泊车界面的第一旋转角度;
其中,预设像素信息可以为像素与旋转角度的比值。
由于拖拽操作是通过操作介质与屏幕保持接触,在接触期间进行旋转(操作介质离开屏幕时速度为0),其可以用于精细、缓慢查看,则可以确定拖拽操作对应的拖拽操作距离,进而可以结合拖拽操作距离和预设像素信息,确定第一旋转角度。
例如,像素与旋转角度的比值为B,拖拽操作距离为L像素,则可以确定第一旋转角度为BL。
步骤405,在所述旋转操作类型为轻扫操作时,确定轻扫操作速度,并 采用所述轻扫操作速度,确定针对所述三维泊车界面的第一旋转角度;
由于轻扫操作是操作介质一定速度甩动后离开屏幕(操作介质离开屏幕时速度不为0),其用于粗略、快速查看,则可以确定轻扫操作对应的轻扫操作速度,进而可以确定轻扫操作速度对应的第一旋转角度。
例如,轻扫操作对应的角度变动量最大为180°,按速度V的大小,旋转角度变化可以分为3阶:
60°:0<V≤V1
120°:V1<V≤V2
180°:V>V2
在本发明一实施例中,如图4b和图4c,可以建立预设坐标系,预设坐标系可以为以显示区域的中心为坐标原点、以车辆的前进方向为纵坐标、以垂直于地面方向为竖轴的坐标系。
相应的,第一旋转角度可以包括水平旋转角度和垂直旋转角度,垂直旋转角度可以为偏移预设坐标系中竖轴的角度,水平旋转角度可以为偏移预设坐标系中横轴和纵轴构成平面的角度。
步骤406,检测所述第一旋转角度是否在预设参数范围内;
在确定第一旋转角度后,可以检测第一旋转角度是否在预设参数范围内,该预设参数范围可以为旋转角度范围。
例如,如图4b和图4c,为了防止车模和车位之间遮挡过多、畸变过大,则可标定出相对于z轴最大变动量为58°,最小位置则为俯视(即相对于z轴的角度为0°),则在垂面上,旋转角范围为0°≤α≤58°,在水平面上,允许旋转一周,即水平旋转角0°≤β≤360°。
步骤407,在检测到所述第一旋转角度不在所述预设参数范围内时,确定所述预设参数范围中的第二旋转角度,并按照所述第二旋转角度,对所述三维泊车界面进行调整。
在检测到第一旋转角度不在预设参数范围内时,可以确定预设参数范围中的第二旋转角度,如第二旋转角度可以为旋转角度范围中的边界值,如58°,进而可以按照第二旋转角度,对三维泊车界面进行调整。
在本发明实施例中,通过在车辆启动三维泊车的情况下,显示三维泊车界面,在检测到针对三维泊车界面的旋转操作时,根据当前泊车场景,判断旋转操作是否满足预设条件,在判定旋转操作满足预设条件时,确定旋转操作的旋转操作类型,在旋转操作类型为拖拽操作时,确定拖拽操作距离,并结合拖拽操作距离和预设像素信息,确定针对三维泊车界面的第一旋转角度,在旋转操作类型为轻扫操作时,确定轻扫操作速度,并采用轻扫操作速度,确定针对三维泊车界面的第一旋转角度,检测第一旋转角度是否在预设参数范围内,在检测到第一旋转角度不在预设参数范围内时,确定预设参数范围中的第二旋转角度,并按照第二旋转角度,对三维泊车界面进行调整, 实现了对三维泊车界面的手动旋转控制,提升了三维泊车的交互性,且保证了三维泊车的安全性。
参照图5a,示出了本发明一实施例提供的另一种基于三维泊车的交互方法的步骤流程图,具体可以包括如下步骤:
步骤501,在车辆启动三维泊车的情况下,显示三维泊车界面;
在车辆进入泊车场景中,可以响应于用户操作启动三维泊车功能,车辆可以自动触发三维泊车功能,如检测到车辆驶入停车场,车辆可以自动触发三维泊车功能,向用户询问是否开启三维泊车功能。
在车辆启动三维泊车的情况下,可以通过车辆中的显示器来显示三维泊车界面,如通过中控大屏来显示三维泊车界面。
步骤502,在检测到针对所述三维泊车界面的缩放操作时,根据当前泊车场景,判断所述缩放操作是否满足预设条件;
由于在泊车场景3D化后,三维泊车界面中立体元素有更强的互动暗示,为了满足用户预期,允许用户通过交互操作对三维泊车界面进行调整,如旋转操作、缩放操作。
在检测到针对三维泊车界面的交互操作时,由于泊车中可能存在各种异常的场景,需要妥善应对,以避免影响泊车体验,则可以通过分析当前泊车场景,根据当前泊车场景,来判断交互操作是否满足预设条件。
步骤503,在判定所述缩放操作满足预设条件时,确定所述缩放操作对应的缩放操作距离;
由于缩放操作是通过操作介质的相对扩张或捏合来控制,则可以根据扩张或捏合的行程来确定缩放操作对应的缩放操作距离。
步骤504,采用所述缩放操作距离,确定针对所述三维泊车界面的第一缩放比例;
在实际应用中,可以预先定义缩放操作距离与缩放比例的对应关系,在确定缩放操作距离后,可以进一步确定缩放操作距离对应的第一缩放比例。
步骤505,检测所述第一缩放比例是否在预设参数范围内;
在确定第一缩放比例后,可以检测第一缩放比例是否在预设参数范围内,该预设参数范围可以为缩放比例范围。
例如,如图5b,由于倒车时需要清晰查看雷达波纹,则在泊车场景内,倒车时自车比例A为已确定的最大值,手动缩放的缩放比例范围以A为参照进行缩放,确保上限值时两侧仍可露出部分车位框,下限值时车位仍具有良好的点击面积,经标定缩放比例φ范围为0.3A≤φ≤0.7A。
步骤506,在检测到所述第一缩放比例不在所述预设参数范围内时,确定所述预设参数范围中的第二缩放比例,并按照所述第二缩放比例,对所述三维泊车界面进行调整。
在检测到第一缩放比例不在预设参数范围内时,可以确定预设参数范围中的第二缩放比例,如第二缩放比例可以为旋转角度范围中的边界值,进而可以按照第二缩放比例,对三维泊车界面进行调整。
在本发明实施例中,通过在车辆启动三维泊车的情况下,显示三维泊车界面,在检测到针对三维泊车界面的缩放操作时,根据当前泊车场景,判断缩放操作是否满足预设条件,在判定缩放操作满足预设条件时,确定缩放操作对应的缩放操作距离,采用缩放操作距离,确定针对三维泊车界面的第一缩放比例,检测第一缩放比例是否在预设参数范围内,在检测到第一缩放比例不在预设参数范围内时,确定预设参数范围中的第二缩放比例,并按照第二缩放比例,对三维泊车界面进行调整,实现了对三维泊车界面的手动缩放控制,提升了三维泊车的交互性,且保证了三维泊车的安全性。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
参照图6,示出了本发明一实施例提供的一种车辆的结构示意图,具体可以包括如下模块:
三维泊车界面显示模块601,用于在车辆启动三维泊车的情况下,显示三维泊车界面;
预设条件判断模块602,用于在检测到针对所述三维泊车界面的交互操作时,根据当前泊车场景,判断所述交互操作是否满足预设条件;在判定所述交互操作满足预设条件时,调用三维泊车界面调整模块;
三维泊车界面调整模块603,用于对所述三维泊车界面进行调整
在本发明一实施例中,所述三维泊车界面调整模块603,包括:
第一参数确定子模块,用于确定所述交互操作对应的第一参数;
第一参数检测子模块,用于检测所述第一参数是否在预设参数范围内;
按第二参数调整子模块,用于在检测到所述第一参数不在所述预设参数范围内时,确定所述预设参数范围中的第二参数,并按照所述第二参数,对所述三维泊车界面进行调整;
其中,所述第一参数和所述第二参数用于控制对所述三维泊车界面进行调整的幅度。
在本发明一实施例中,还包括:
按第一参数调整模块,用于在检测所述第一参数在所述预设参数范围内时,按照所述第一参数,对所述三维泊车界面进行调整。
在本发明一实施例中,还包括:
偏移值确定模块,用于确定所述第一参数与所述第二参数的偏移值;在所述偏移值小于或等于预设偏移值时,调用所述按第一参数调整模块,并在检测到所述交互操作的结束时,调用所述按第二参数调整子模块。
在本发明一实施例中,还包括:
第三参数确定模块,用于在所述偏移值大于预设偏移值时,根据所述预设偏移值和所述第二参数,确定针对所述三维泊车界面的第三参数;
按第三参数调整模块,用于按照所述第三参数,对所述三维泊车界面进行调整,并在检测到所述交互操作的结束时,调用所述按第二参数调整子模块。
在本发明一实施例中,所述交互操作为旋转操作,所述第一参数为第一旋转角度,所述第一参数确定子模块,包括:
旋转操作类型确定单元,用于确定所述旋转操作的旋转操作类型;
拖拽操作处理单元,用于在所述旋转操作类型为拖拽操作时,确定拖拽操作距离,并结合所述拖拽操作距离和预设像素信息,确定针对所述三维泊车界面的第一旋转角度;
轻扫操作处理单元,用于在所述旋转操作类型为轻扫操作时,确定轻扫操作速度,并采用所述轻扫操作速度,确定针对所述三维泊车界面的第一旋转角度。
在本发明一实施例中,所述第一旋转角度包括水平旋转角度和垂直旋转角度,所述垂直旋转角度为偏移预设坐标系中竖轴的角度,所述水平旋转角度为偏移预设坐标系中横轴和纵轴构成平面的角度,所述预设坐标系为以显示区域的中心为坐标原点、以车辆的前进方向为纵坐标、以垂直于地面方向为竖轴的坐标系。
在本发明一实施例中,所述交互操作为缩放操作,所述第一参数为第一缩放比例,所述第一参数确定子模块,包括:
缩放操作距离确定单元,用于确定所述缩放操作对应的缩放操作距离;
第一缩放比例确定单元,用于采用所述缩放操作距离,确定针对所述三维泊车界面的第一缩放比例。
在本发明一实施例中,还包括:
当前时长确定模块,用于确定距离最近一次的交互操作的当前时长;
预设参数确定模块,用于在所述当前时长大于预设时长时,确定当前泊车场景对应的预设参数;
按预设参数调整模块,用于按照所述预设参数,对所述三维泊车界面进行调整。
在本发明一实施例中,所述预设条件判断模块602,包括:
指定泊车场景检测子模块,用于检测当前泊车场景是否为指定泊车场景;
不满足判定子模块,用于在检测到所述当前泊车场景为指定泊车场景时,判定所述交互操作不满足预设条件;
满足判定子模块,用于在检测到所述当前泊车场景为非指定泊车场景时,判定所述交互操作满足预设条件;
其中,所述指定泊车场景包括以下任一项或多项:
寻找车位异常场景、溜车预警场景、前向避障场景。
在本发明实施例中,通过在车辆启动三维泊车的情况下,显示三维泊车界面,在检测到针对三维泊车界面的交互操作时,根据当前泊车场景,判断交互操作是否满足预设条件,在判定交互操作满足预设条件时,对三维泊车界面进行调整,实现了三维泊车中的手动交互,提升了三维泊车的交互性,且保证了三维泊车的安全性。
本发明一实施例还提供了一种车辆,可以包括处理器、存储器及存储在存储器上并能够在处理器上运行的计算机程序,计算机程序被处理器执行时实现如上基于三维泊车的交互方法的步骤。
本发明一实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储计算机程序,计算机程序被处理器执行时实现如上基于三维泊车的交互方法的步骤。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本发明实施例可提供为方法、装置、或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明实施例是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的 指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对所提供的一种基于三维泊车的交互方法和车辆,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (13)

  1. 一种基于三维泊车的交互方法,其特征在于,所述方法包括:
    在车辆启动三维泊车的情况下,显示三维泊车界面;
    在检测到针对所述三维泊车界面的交互操作时,根据当前泊车场景,判断所述交互操作是否满足预设条件;
    在判定所述交互操作满足预设条件时,对所述三维泊车界面进行调整。
  2. 根据权利要求1所述的方法,其特征在于,所述在判定所述交互操作满足预设条件时,对所述三维泊车界面进行调整,包括:
    确定所述交互操作对应的第一参数;
    检测所述第一参数是否在预设参数范围内;
    在检测到所述第一参数不在所述预设参数范围内时,确定所述预设参数范围中的第二参数,并按照所述第二参数,对所述三维泊车界面进行调整;
    其中,所述第一参数和所述第二参数用于控制对所述三维泊车界面进行调整的幅度。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    在检测所述第一参数在所述预设参数范围内时,按照所述第一参数,对所述三维泊车界面进行调整。
  4. 根据权利要求2或3所述的方法,其特征在于,在所述按照所述第二参数,对所述三维泊车界面进行调整之前,还包括:
    确定所述第一参数与所述第二参数的偏移值;
    在所述偏移值小于或等于预设偏移值时,按照所述第一参数,对所述三维泊车界面进行调整,并在检测到所述交互操作的结束时,执行所述按照所述第二参数,对所述三维泊车界面进行调整。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    在所述偏移值大于预设偏移值时,根据所述预设偏移值和所述第二参数,确定针对所述三维泊车界面的第三参数;
    按照所述第三参数,对所述三维泊车界面进行调整,并在检测到所述交互操作的结束时,执行所述按照所述第二参数,对所述三维泊车界面进行调整。
  6. 根据权利要求2所述的方法,其特征在于,所述交互操作为旋转操作,所述第一参数为第一旋转角度,所述确定所述交互操作对应的第一参数,包括:
    确定所述旋转操作的旋转操作类型;
    在所述旋转操作类型为拖拽操作时,确定拖拽操作距离,并结合所述拖拽操作距离和预设像素信息,确定针对所述三维泊车界面的第一旋转角度;
    在所述旋转操作类型为轻扫操作时,确定轻扫操作速度,并采用所述轻扫操作速度,确定针对所述三维泊车界面的第一旋转角度。
  7. 根据权利要求6所述的方法,其特征在于,所述第一旋转角度包括 水平旋转角度和垂直旋转角度,所述垂直旋转角度为偏移预设坐标系中竖轴的角度,所述水平旋转角度为偏移预设坐标系中横轴和纵轴构成平面的角度,所述预设坐标系为以显示区域的中心为坐标原点、以车辆的前进方向为纵坐标、以垂直于地面方向为竖轴的坐标系。
  8. 根据权利要求2所述的方法,其特征在于,所述交互操作为缩放操作,所述第一参数为第一缩放比例,所述确定所述交互操作对应的第一参数,包括:
    确定所述缩放操作对应的缩放操作距离;
    采用所述缩放操作距离,确定针对所述三维泊车界面的第一缩放比例。
  9. 根据权利要求2所述的方法,其特征在于,还包括:
    确定距离最近一次的交互操作的当前时长;
    在所述当前时长大于预设时长时,确定当前泊车场景对应的预设参数;
    按照所述预设参数,对所述三维泊车界面进行调整。
  10. 根据权利要求1所述的方法,其特征在于,所述根据当前泊车场景,判断所述交互操作是否满足预设条件,包括:
    检测当前泊车场景是否为指定泊车场景;
    在检测到所述当前泊车场景为指定泊车场景时,判定所述交互操作不满足预设条件;
    在检测到所述当前泊车场景为非指定泊车场景时,判定所述交互操作满足预设条件;
    其中,所述指定泊车场景包括以下任一项或多项:
    寻找车位异常场景、溜车预警场景、前向避障场景。
  11. 一种车辆,其特征在于,所述车辆包括:
    三维泊车界面显示模块,用于在车辆启动三维泊车的情况下,显示三维泊车界面;
    预设条件判断模块,用于在检测到针对所述三维泊车界面的交互操作时,根据当前泊车场景,判断所述交互操作是否满足预设条件;在判定所述交互操作满足预设条件时,调用三维泊车界面调整模块;
    三维泊车界面调整模块,用于对所述三维泊车界面进行调整。
  12. 一种车辆,其特征在于,包括处理器、存储器及存储在所述存储器上并能够在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的基于三维泊车的交互方法。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的基于三维泊车的交互方法。
PCT/CN2021/103107 2020-06-29 2021-06-29 一种基于三维泊车的交互方法和车辆 WO2022002049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010606975.4 2020-06-29
CN202010606975.4A CN111746401B (zh) 2020-06-29 2020-06-29 一种基于三维泊车的交互方法和车辆

Publications (1)

Publication Number Publication Date
WO2022002049A1 true WO2022002049A1 (zh) 2022-01-06

Family

ID=72678076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103107 WO2022002049A1 (zh) 2020-06-29 2021-06-29 一种基于三维泊车的交互方法和车辆

Country Status (2)

Country Link
CN (1) CN111746401B (zh)
WO (1) WO2022002049A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111746401B (zh) * 2020-06-29 2022-03-11 广州橙行智动汽车科技有限公司 一种基于三维泊车的交互方法和车辆
CN112249005B (zh) * 2020-10-23 2021-10-12 广州小鹏汽车科技有限公司 一种车辆自动泊车的交互方法和装置
CN112339747A (zh) * 2020-10-30 2021-02-09 上海欧菲智能车联科技有限公司 自动泊车轨迹的生成方法、装置、电子设备及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110134025A (ko) * 2010-06-08 2011-12-14 현대모비스 주식회사 목표 주차 공간 설정을 위한 hmi를 개선한 주차 보조 시스템 및 방법
CN105774815A (zh) * 2016-03-07 2016-07-20 江苏大学 一种高适应性人机交互型智能泊车方法
CN106994936A (zh) * 2016-01-22 2017-08-01 广州求远电子科技有限公司 一种3d全景泊车辅助系统
CN107792179A (zh) * 2017-09-27 2018-03-13 浙江零跑科技有限公司 一种基于车载环视系统的泊车引导方法
CN109278744A (zh) * 2018-10-24 2019-01-29 广州小鹏汽车科技有限公司 一种自动泊车方法及车辆控制系统
CN110576852A (zh) * 2019-09-26 2019-12-17 华为技术有限公司 自动泊车方法、装置以及车辆
CN110794970A (zh) * 2019-11-07 2020-02-14 广州小鹏汽车科技有限公司 一种自动泊车界面的三维显示方法、系统及车辆
CN111016888A (zh) * 2019-12-27 2020-04-17 奇瑞汽车股份有限公司 汽车的泊车控制方法、装置及存储介质
CN111301168A (zh) * 2020-03-30 2020-06-19 广州小鹏汽车科技有限公司 一种车辆泊车方法和装置
CN111746401A (zh) * 2020-06-29 2020-10-09 广州小鹏车联网科技有限公司 一种基于三维泊车的交互方法和车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753839B1 (ko) * 2006-08-11 2007-08-31 한국전자통신연구원 적응형 차량 인터페이스 제공 장치 및 방법
DE112014000441T5 (de) * 2013-01-15 2015-10-15 David Holz Dynamische Benutzerinteraktionen für Displaysteuerung und Angepaßte Gesten Interpretation
CN110201387B (zh) * 2019-05-17 2021-06-25 腾讯科技(深圳)有限公司 对象控制方法和装置、存储介质及电子装置
CN110716776A (zh) * 2019-08-29 2020-01-21 华为终端有限公司 一种显示用户界面的方法及车载终端

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110134025A (ko) * 2010-06-08 2011-12-14 현대모비스 주식회사 목표 주차 공간 설정을 위한 hmi를 개선한 주차 보조 시스템 및 방법
CN106994936A (zh) * 2016-01-22 2017-08-01 广州求远电子科技有限公司 一种3d全景泊车辅助系统
CN105774815A (zh) * 2016-03-07 2016-07-20 江苏大学 一种高适应性人机交互型智能泊车方法
CN107792179A (zh) * 2017-09-27 2018-03-13 浙江零跑科技有限公司 一种基于车载环视系统的泊车引导方法
CN109278744A (zh) * 2018-10-24 2019-01-29 广州小鹏汽车科技有限公司 一种自动泊车方法及车辆控制系统
CN110576852A (zh) * 2019-09-26 2019-12-17 华为技术有限公司 自动泊车方法、装置以及车辆
CN110794970A (zh) * 2019-11-07 2020-02-14 广州小鹏汽车科技有限公司 一种自动泊车界面的三维显示方法、系统及车辆
CN111016888A (zh) * 2019-12-27 2020-04-17 奇瑞汽车股份有限公司 汽车的泊车控制方法、装置及存储介质
CN111301168A (zh) * 2020-03-30 2020-06-19 广州小鹏汽车科技有限公司 一种车辆泊车方法和装置
CN111746401A (zh) * 2020-06-29 2020-10-09 广州小鹏车联网科技有限公司 一种基于三维泊车的交互方法和车辆

Also Published As

Publication number Publication date
CN111746401A (zh) 2020-10-09
CN111746401B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2022002049A1 (zh) 一种基于三维泊车的交互方法和车辆
WO2022002055A1 (zh) 一种车位显示的处理方法和车辆
CN106878786B (zh) Vr视频中弹幕的显示方法和装置
US20170270704A1 (en) Depth of field for a camera in a media-editing application field of the invention
US9811874B2 (en) Frame times by dynamically adjusting frame buffer resolution
WO2021196716A1 (zh) 一种信息的显示控制方法、装置和车辆
US9983406B2 (en) Display apparatus and operating method of display apparatus
CN108319416B (zh) 一种显示控制方法、装置及电子设备
WO2022017139A1 (zh) 一种泊车显示方法和车辆
WO2017096854A1 (zh) 智能终端的图片预览方法及装置
CN109242944B (zh) 一种显示方法和装置
WO2021008427A1 (zh) 图像合成方法、装置、电子设备及存储介质
US11521296B2 (en) Image size triggered clarification to maintain image sharpness
CN105574817A (zh) 图像的抗锯齿方法和装置
CN106383577B (zh) 一种vr视频播放装置的场景控制实现方法及系统
US9118893B2 (en) Display control apparatus, display control method, and program
KR100723421B1 (ko) 포인트 보간에 의한 렌더링 방법, 포인트 보간에 의한 렌더링 장치 및 기록매체
WO2020100422A1 (ja) 表示装置、および表示制御方法、並びにプログラム
US20230186569A1 (en) Anchoring virtual content to physical surfaces
CN116828215B (zh) 一种降低本地算力负荷的视频渲染方法及系统
US20150103150A1 (en) Information processing method and electronic device
CN113596561A (zh) 视频流播放方法、装置、电子设备和计算机可读存储介质
CN112363787A (zh) 图像处理方法、装置和电子设备
WO2019153411A1 (zh) 裸眼3d图像的显示控制方法、装置、存储介质及终端
US9129160B2 (en) Vehicle periphery monitoring apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21834161

Country of ref document: EP

Kind code of ref document: A1