WO2022002028A1 - 用于高热量烹饪的烤箱器具和方法 - Google Patents

用于高热量烹饪的烤箱器具和方法 Download PDF

Info

Publication number
WO2022002028A1
WO2022002028A1 PCT/CN2021/103017 CN2021103017W WO2022002028A1 WO 2022002028 A1 WO2022002028 A1 WO 2022002028A1 CN 2021103017 W CN2021103017 W CN 2021103017W WO 2022002028 A1 WO2022002028 A1 WO 2022002028A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
cooking
activation
determining
threshold
Prior art date
Application number
PCT/CN2021/103017
Other languages
English (en)
French (fr)
Inventor
约翰逊埃里克·斯科特
帕勒汉斯·于尔根
Original Assignee
青岛海尔智慧厨房电器有限公司
海尔美国电器解决方案有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔智慧厨房电器有限公司, 海尔美国电器解决方案有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔智慧厨房电器有限公司
Publication of WO2022002028A1 publication Critical patent/WO2022002028A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • F24C7/082Arrangement or mounting of control or safety devices on ranges, e.g. control panels, illumination
    • F24C7/085Arrangement or mounting of control or safety devices on ranges, e.g. control panels, illumination on baking ovens
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B1/00Bakers' ovens
    • A21B1/02Bakers' ovens characterised by the heating arrangements
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B1/00Bakers' ovens
    • A21B1/40Bakers' ovens characterised by the means for regulating the temperature
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/10General methods of cooking foods, e.g. by roasting or frying
    • A23L5/15General methods of cooking foods, e.g. by roasting or frying using wave energy, irradiation, electrical means or magnetic fields, e.g. oven cooking or roasting using radiant dry heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • F24C7/087Arrangement or mounting of control or safety devices of electric circuits regulating heat
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/12Arrangement or mounting of control or safety devices
    • F24C3/126Arrangement or mounting of control or safety devices on ranges
    • F24C3/128Arrangement or mounting of control or safety devices on ranges in baking ovens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C5/00Stoves or ranges for liquid fuels
    • F24C5/02Stoves or ranges for liquid fuels with evaporation burners, e.g. dish type
    • F24C5/04Stoves or ranges for liquid fuels with evaporation burners, e.g. dish type wick type
    • F24C5/06Stoves or ranges for liquid fuels with evaporation burners, e.g. dish type wick type adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C5/00Stoves or ranges for liquid fuels
    • F24C5/16Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0025Monitoring the temperature of a part or of an element of the furnace structure

Definitions

  • the present subject matter relates generally to oven appliances, and more particularly, to methods of operating oven appliances for localized high heat cooking.
  • Traditional domestic and commercial oven appliances typically include a cabinet that includes a cooking chamber for receiving food items for cooking.
  • a plurality of gaseous or electrical heating elements are positioned within the cabinet for heating the cooking chamber to cook food items located therein.
  • the heating elements may include, for example, a roast heating assembly positioned at the bottom of the cooking chamber and a separate broiler heating assembly positioned at the top of the cooking chamber.
  • the wire rack is installed at least directly above the bake heating element to ensure that the bake heating element is not damaged or that the user does not accidentally touch the bake heating element.
  • the bake heating element is activated, the heat from the bake heating element is thus forced to rise through the air gap and any other intermediate elements between the bake heating element and the wire rack, after which the utensils on the wire rack can be heated .
  • the heat within the cooking chamber is relatively diffuse, and the temperature is generally consistent around one or more items on the rack.
  • attempting to heat an area or object to a relatively high temperature can create problems. For example, the rest of the oven chamber may become overheated. Opening the oven door, in particular, can quickly release too much heat, which can be uncomfortable for nearby users. In addition, some parts of the appliance may be damaged.
  • Cooking multiple items in succession relatively quickly can exacerbate certain problems. For example, if a user attempts to cook multiple items one after the other, the trapped heat may cause the later-cooked item to reach a particular internal temperature faster or at a different rate than the earlier-cooked item. This can result in inconsistent or inappropriate (eg, burnt) food items. As a result, typical cooking appliances require all heating elements to be completely deactivated while the cooking chamber is allowed to cool significantly (eg, to within 100 degrees Fahrenheit of ambient temperature).
  • a method of operating a cooking appliance may include initiating preheat activation of the bottom heating element and initiating preheat activation of the top heating element during preheat activation of the bottom heating element.
  • the method may further include receiving one or more temperature signals from a first temperature sensor at the cooking surface and a second temperature sensor mounted above the first temperature sensor, the receiving occurring at preheat activation of the bottom heating element and top heating During preheat activation of the element.
  • the method may further include determining whether a preheat threshold is satisfied based on the received one or more temperature signals.
  • the method may further include directing the bottom heating element and the top heating element according to the cooking cycle after determining that the preheat threshold is met.
  • a method of operating a cooking appliance may include activating a cooking activation of the bottom heating element and activating a high output activation of the top heating element during the cooking activation of the bottom heating element.
  • the method may further include determining the constraints after initiating high output activation of the top heating element.
  • the method may further include limiting the heat output of the top heating element during cooking activation of the bottom heating element in response to determining the limiting condition.
  • FIG. 1 provides a front view of an oven appliance according to an exemplary embodiment of the present disclosure.
  • FIG. 2 provides a perspective view of the upper cooking chamber of the exemplary oven appliance of FIG. 1 .
  • FIG. 3 provides a perspective view of the upper cooking chamber of the exemplary oven appliance of FIG. 1 with certain elements removed for clarity.
  • FIG. 4 provides a front perspective cross-sectional view of a portion of the exemplary oven appliance of FIG. 1 .
  • FIG. 5 provides a side cross-sectional view of the upper cooking chamber of the exemplary oven appliance of FIG. 1 .
  • FIG. 6 provides a front schematic front view of the upper cooking chamber of the exemplary oven appliance of FIG. 1 .
  • FIG. 7 provides a side schematic front view of the upper cooking chamber of the exemplary oven appliance of FIG. 1 .
  • FIG. 8 provides a bottom perspective view of the upper cooking chamber of the exemplary oven appliance of FIG. 1 with certain elements removed for clarity.
  • FIG. 9 provides a side perspective cross-sectional view of a portion of the exemplary oven appliance of FIG. 1 .
  • Figure 10 is a graph showing temperature versus time for two discrete temperature sensors within an oven appliance during a high heat cooking operation in accordance with an exemplary embodiment of the present disclosure.
  • FIG. 11 is a graph showing power output of two discrete heaters within an oven appliance over time during the exemplary high heat cooking operation of FIG. 10 .
  • FIG. 12 is a graph illustrating temperature versus time for two discrete temperature sensors within an oven appliance during a high heat cooking operation in accordance with an exemplary embodiment of the present disclosure.
  • FIG. 13 is a graph showing power output of two discrete heaters within the oven appliance over time during the exemplary high heat cooking operation of FIG. 12 .
  • FIG. 14 is a flowchart illustrating a method of operating an oven appliance according to an exemplary embodiment of the present disclosure.
  • 15 is a flowchart illustrating a method of operating an oven appliance according to an exemplary embodiment of the present disclosure.
  • upstream refers to relative flow directions with respect to fluid flow in a fluid path. For example, “upstream” refers to the direction of flow from which the fluid flows, while “downstream” refers to the direction of flow from which the fluid flows.
  • FIG. 1 an exemplary embodiment of a dual oven appliance 10 in accordance with the present disclosure is shown.
  • oven appliance 100 is provided by way of example only.
  • Other oven or cooktop appliances e.g., single ovens, electric range ovens, induction range ovens, etc.
  • oven appliance 100 is provided by way of example only.
  • Other oven or cooktop appliances e.g., single ovens, electric range ovens, induction range ovens, etc.
  • single ovens e.g., single ovens, electric range ovens, induction range ovens, etc.
  • different configurations, different appearances, or different features may also be used with this subject matter.
  • the oven appliance 100 has a cabinet 101 defining a vertical direction V, a longitudinal direction L and a transverse direction T.
  • the vertical, longitudinal and lateral directions are perpendicular to each other and form an orthogonal direction system.
  • the dual oven appliance 100 includes an upper oven 120 and a lower oven 140 located below the upper oven 120 in the vertical direction V.
  • Upper oven 120 and lower oven 140 include oven or cooking chambers 122 and 142, respectively, which are configured to accommodate one or more food items to be cooked.
  • the dual oven appliance 100 includes an upper door 124 and a lower door 144 to allow selective access to the cooking chambers 122 and 142, respectively.
  • Handles 102 are mounted on upper and lower doors 124 and 144 to assist a user in opening and closing doors 124 and 144 to gain access to cooking chambers 122 and 142 .
  • a user may pull the handle 102 mounted on the upper door 124 to open or close the upper door 124 and enter the cooking chamber 122 .
  • Glass windows 104 are provided for viewing the contents of cooking chambers 122 and 142 when doors 124, 144 are closed, and also help to insulate cooking chambers 122 and 142.
  • a seal or gasket (eg, gasket 114 in Figure 7) extends between each door 124, 144 and the cabinet 101 (eg, when the corresponding door 124 or 144 is in the closed position).
  • Gasket 114 may help retain heat and cooking fumes within respective cooking chamber 122 or 142 when door 124 or 144 is in the closed position.
  • heating elements eg, resistive heating elements, gas burners, microwave elements, etc.
  • the upper oven 120 and the lower oven 140 are located within the upper oven 120 and the lower oven 140 .
  • the control panel 106 of the dual oven appliance 100 provides options for user manipulation of the operation of the dual oven appliance 100 .
  • a user may touch the control panel 106 to trigger one of the user inputs 108 .
  • various components of dual oven appliance 100 may be operated.
  • the control panel 106 may also include a display 112 (eg, a digital display) operable to display various parameters of the dual oven appliance 100 (eg, temperature, time, cook cycle, etc.).
  • oven appliance 100 may include controller 110 in operative communication (eg, operatively connected via a wired or wireless channel) with control panel 106 .
  • the control panel 106 of the oven appliance 100 may communicate with the controller 110 via, for example, one or more signal lines or a shared communication bus, and in response to user input via the user input device 108, the signals generated in the controller 110 operate the oven appliance 100.
  • Input/output ("I/O") signals may be routed between the controller 110 and various operating components of the oven appliance 100 so that the operation of the oven appliance 100 may be regulated by the controller 110.
  • the controller 110 may also be in communication with one or more sensors, such as a first temperature sensor (TS1) 176A or a second temperature sensor (TS2) 176B (FIG. 5).
  • TS1 176A and TS2 176B may include, or be provided as a thermistor or thermocouple, which may be used to measure at locations close to the upper cooking chamber 122 temperature and provide such measurements to the controller 110.
  • TS1 176A is shown within enclosed area 160 near bottom heating element 150 and TS2 176B is shown on rear wall 126 between top heating element 152 and bottom heating element 150, it should be understood that according to alternative embodiments , other sensor types, locations and configurations can be used.
  • Controller 110 is a "processing device” or “controller” and may be implemented as described herein. Controller 110 may include memory and one or more microprocessors, microcontrollers, application specific integrated circuits (ASICS), CPUs, etc., such as operable to execute programmed instructions or microcontroller code associated with the operation of oven appliance 100 a general-purpose or special-purpose microprocessor, and the controller 110 is not necessarily limited to a single element. Memory may represent random access memory, such as DRAM, or read only memory, such as ROM, electrically erasable programmable read only memory (EEPROM), or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor, or may be included on-board within the processor.
  • controller 110 may be implemented without the use of a microprocessor (eg, using a combination of discrete analog or digital logic circuits; such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) Control functionality, rather than relying on software.
  • a microprocessor eg, using a combination of discrete analog or digital logic circuits; such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.
  • the upper cooking chamber 122 is generally defined by a rear wall 126, a top wall 128, and a bottom wall 130, which are connected in the vertical direction V by opposing side walls 132 (eg, first and second walls)
  • the top wall 128 is spaced apart.
  • opposing side walls 132 include knurled ribs 134 such that a roasting rack containing food items can be slidably received on knurled ribs 134 and moved in and out of upper cooking when door 124 is open Room 122.
  • such walls 126 , 128 , 130 , 132 may be included within the enclosure 146 of the cabinet 101 , as understood.
  • upper oven 120 includes one or more heating elements to heat upper cooking chamber 122 (eg, as directed by controller 110 as part of a cooking operation).
  • bottom heating element 150 may be mounted on a bottom portion of upper cooking chamber 122 (eg, above bottom wall 130).
  • top heating element 152 may be mounted on a top portion of upper cooking chamber 122 (eg, below top wall 128). Bottom heating element 150 and top heating element 152 may be used independently or simultaneously to heat upper cooking chamber 122, perform roasting or grilling operations, perform cleaning cycles, and the like.
  • the heating elements 150 , 152 may be configured as any suitable heater for generating heat within the upper cooking chamber 122 .
  • any heating element may comprise an electrical heating element (eg, a resistive wire element, a radiant heating element, a tubular electrical heater, or halogen heating elements, etc.). Additionally or alternatively, any heating element may comprise a gas burner.
  • the base plate 154 may be disposed within the upper cooking chamber 122 (eg, fixedly mounted or alternatively removably mounted). Within the upper cooking chamber 122 , the base plate 154 is generally disposed above the bottom wall 130 . In some embodiments, the base plate 154 extends laterally between the first end 156 and the second end 158 . As shown, the first end 156 may be attached to the bottom wall 130 at one lateral side (eg, near the first side wall 132 ), while the second end 158 is at the opposite lateral side (eg, Adjacent to the second side wall 132 ) is attached to the bottom wall 130 .
  • one lateral side eg, near the first side wall 132
  • Adjacent to the second side wall 132 Adjacent to the second side wall 132
  • the base plate 154 may be mounted on the bottom wall 130 , at least a portion of the base plate 154 is vertically spaced from the bottom wall 130 .
  • the enclosed area 160 is defined between the base plate 154 and the bottom wall 130 .
  • the enclosed area 160 may be defined as an air gap between the lower surface 170 of the substrate 154 and the upper surface of the substrate 154 .
  • the base plate 154 may comprise or be formed of any suitable material (eg, the first material) for withstanding the high heat environment of the upper cooking chamber 122, such as steel.
  • bottom wall 130 defines one or more cavity vents 162 .
  • Such cavity vents 162 may be upstream of the enclosed area 160 .
  • cavity vents 162 may be defined below base plate 154 such that air is allowed to flow through bottom wall 130 (eg, from the perimeter or ambient) to enclosed area 160 .
  • the cavity vents 162 may extend in a vertical direction.
  • one or more inlets are defined by or through doors upstream of cabinet 101 or cavity vent 162.
  • ambient air eg, the exterior of oven appliance 100
  • base plate 154 defines a receiving area 164 in which cooking plate 166 is disposed (eg, fixedly mounted or replaceably removably mounted).
  • cooking plate 166 may be held or embedded within a well or groove defining receiving area 164 .
  • one or more support sheets may be included within the receiving area 164 (eg, below the cooking plate 166 ) to retain the cooking plate 166 on the base plate 154 .
  • cooking plate 166 may provide an upper cooking surface 168 on which food items (eg, bread or pizza) may be received.
  • the cooking plate 166 may be provided as a solid impermeable member, or alternatively, define one or more holes through which air may pass.
  • cooking plate 166 includes or is formed from a heat-retaining material, such as clay, stone (eg, cordierite), ceramic, cast iron, or ceramic-coated carbon steel. In additional or alternative embodiments, cooking plate 166 includes a material (eg, a second material) separate from base plate 154 .
  • a heat-retaining material such as clay, stone (eg, cordierite), ceramic, cast iron, or ceramic-coated carbon steel.
  • cooking plate 166 includes a material (eg, a second material) separate from base plate 154 .
  • cooking plate 166 may be formed in any suitable shape upon which food items may be supported.
  • bottom heating element 150 may be enclosed or covered by base plate 154 .
  • Bottom heating element 150 may be disposed below lower surface 170 of substrate 154 .
  • An enclosed area 160 may thus be defined around the bottom heating element 150 .
  • heat generated at the bottom heating element 150 may be directed upward to the lower surface 170 of the base plate 154 or the cooking plate 166 .
  • bottom heating element 150 is vertically aligned with receiving area 164 or cooking plate 166 (eg, directly below it). The heat generated at the bottom heating element 150 may thus be directed primarily or primarily to the underside of the receiving area 164 or cooking plate 166 .
  • the base plate 154 may define one or more oven vents 172 .
  • Such oven vents 172 may extend through the base plate 154 (eg, from the upper surface to the lower surface 170). Specifically, oven vents 172 may extend to enclosed area 160 .
  • oven vent 172 When assembled, oven vent 172 may be in fluid communication with enclosed area 160 (eg, downstream thereof). Air can thus pass between the enclosed area 160 and the oven vent 172 .
  • air may be directed out of enclosed area 160 through oven vent 172 .
  • air may be directed to the perimeter of, upper portion of, or the ambient environment outside of upper cooking chamber 122 .
  • Oven vents 172 may be oriented away from receiving area 164 or cooking plate 166 (eg, radially or laterally outward toward side wall 132 or rear wall 126). Accordingly, air from oven vents 172 may be pushed (eg, by natural convection or fan-forced convection) from enclosed area 160 into the upper portion of upper cooking chamber 122 without flowing directly to the upper surface of cooking plate 166 and its any food items on it.
  • a plurality of oven vents 172 are defined by the base plate 154 and are spaced apart from each other (eg, along the lateral direction L). Two or more oven vents 172 may be defined on opposite sides of the cooking plate 166 .
  • a first oven vent 172 may be defined on a first side of the base plate 154 and a second oven vent 172 may be defined on a second side of the base plate 154 .
  • the first oven vent 172 may be oriented outward toward the first side wall 132 .
  • the second oven vent 172 may be oriented outward toward the second side wall 132 .
  • the heated air within the enclosed area 160 may thus be evenly distributed through the upper cooking chamber 122 without flowing directly to the receiving area 164 between the first and second oven vents 172 .
  • the bottom insulating plate 174 is disposed below the bottom wall 130 in a vertical direction. Specifically, at least a portion of the bottom insulating plate 174 is disposed below the bottom heating element 150 .
  • the bottom insulating plate 174 may be included in or part of a support pan in which the bottom heating element 150 is housed and supported (eg, within the enclosed area 160).
  • Bottom insulating plate 174 may surround bottom heating element 150 while defining a top opening to direct heat upwardly from bottom heating element 150 (eg, to receiving area 164 or cooking plate 166).
  • bottom insulating plate 174 may comprise a separate plate arranged vertically below bottom heating element 150 such that bottom heating element 150 is disposed between the upper surface of bottom insulating plate 174 and the lower surface 170 of bottom wall 130 between.
  • the bottom insulating plate 174 is disposed over the one or more cavity vents 162 .
  • bottom insulating plate 174 may be vertically aligned with and downstream of cavity vent 162 .
  • Bottom insulating plate 174 may be formed from or include any suitable low thermal conductivity material, such as a metal or ceramic (eg, ceramic fiber) insulator. Additionally or alternatively, bottom insulating plate 174 may be formed from or include any suitable reflector plate or heat shield material (eg, metal such as stainless steel, aluminized steel, etc.) such that Bottom insulating plate 174 acts as a thermal shield, redirecting heat upward from bottom insulating plate 174 . During use, the bottom insulating plate 174 may generally prevent heat transfer (eg, downward) from the bottom heating element 150 . Air (eg, ambient air) may flow from the cavity vents 162 within the enclosed area 160 to the bottom insulating panel 174 and across the bottom insulating panel. This air may provide further cooling to the bottom insulating plate 174 . Additionally, at least a portion of the cooling air may flow from the bottom insulating panel 174 , through the enclosed area 160 , and out of the one or more oven vents 172 .
  • Air e
  • the front inlet 180 may be defined to the upper cooking chamber 122 by the door 124 or the outer wall of the cabinet 101 .
  • front entry 180 may be defined as an air gap between door 124 or gasket 114 and the front of cabinet 101 .
  • the gasket 114 is located at the air gap or front inlet 180 .
  • the front inlet 180 may be upstream of the upper cooking chamber 122 .
  • the gasket 114 may generally extend across the air gap or front inlet 180 between the door 124 and the cabinet 101 such that air is allowed to pass from the surrounding environment through the front inlet 180 and to the upper cooking chamber 122 (e.g. due to push by natural or forced convection).
  • One or more temperature sensors may be disposed within the enclosed area 160, eg, to detect the temperature of the bottom heating element 150 or the cooking plate 166.
  • the TS1 176A can be mounted between the bottom heating element 150 and the cooking plate 166.
  • the TS1 176A is mounted on the cooking plate 166.
  • TS1 176A may be disposed on the bottom surface of cooking plate 166 (eg, via mechanical fasteners, clips, or hooks).
  • the TS1 176A may be retained within the grooves of the cooking plate 166.
  • the TS1 176A may be embedded within the cooking plate 166.
  • one or more temperature sensors may be disposed within cabinet 101 near cooking chamber 122 and above cooking surface 168, eg, to detect the difference between cooking plate 166 and below top heating element 152. temperature (eg, normal or diffuse) of the cooking chamber 122 in between.
  • TS2 176B may be mounted between top heating element 152 and cooking plate 166 (eg, above TS1 176A).
  • the TS2 176B is mounted on the chamber wall.
  • TS2 176B may be positioned laterally between side walls 132 or vertically between top wall 128 and bottom wall 130.
  • the TS2 176B may be disposed on the rear wall 126 (eg, via mechanical fasteners, clips, or hooks).
  • the TS2 176B may be retained within a groove in the rear wall 126.
  • the TS2 176B may be embedded within the rear wall 126.
  • the temperature sensors 176A, 176B may be operably coupled to the controller 110 . Additionally, the controller 110 may be configured to control the top heating element 152 or the bottom heating element 150 based on the temperature detected at the temperature sensors 176A, 176B (eg, as part of a cooking operation, such as a short cycle cooking operation). In some embodiments, a cooking operation initiated by controller 110 may thus include detecting one or more temperatures of TS1 176A and TS2 176B and directing heat from top heating element 152 or bottom heating element 150 based on the detected temperature Output (eg, heat setting).
  • the detected temperature Output eg, heat setting
  • FIGS. 10 and 11 graphs are provided to illustrate short cycle cooking operations directed by controller 110 (FIG. 1) in conjunction with heating elements 150, 152 (FIG. 6) and temperature sensors 176A, 176B (FIG. 6) is in operative communication.
  • Figure 10 provides a graph of temperature lines TL1, TL2 detected at TS1 176A and TS2 176B, respectively.
  • 11 provides graphs of output lines P1, P2 representing power output as a percentage of maximum output (eg, determined by duty cycle or TRIAC) at bottom heating element 150 and top heating element 152, respectively.
  • the cooking operation may include a preheat cycle CP in which the bottom heater output P1 is set at a relatively high output setting (eg, between 80% and 100%) and the top heater output P2 is limited (eg at 0%).
  • the temperature within the oven chamber eg, as measured along TL1 and TL2
  • the warm-up period CP may continue until a first sensor warm-up threshold HP1 is met or exceeded (eg, at TL1 ) or a second warm-up threshold HP2 is met or exceeded (eg, at TL2 ). Therefore, temperature sensors TS1 and TS2 may have separate preheat thresholds.
  • the cooking plate 166 or surface 168 within the cooking chamber 122 can reach relatively high temperatures without reaching excessive or undesired temperatures in the remainder of the cooking chamber 122 .
  • a first cooking cycle CC1 may be initiated with the bottom heater output P1 set at a cooking output setting (eg, a medium output setting between 40% and 80%) ), while the top heater output P2 is set at a relatively high output setting (eg, between 80% and 100%).
  • a cooking output setting eg, a medium output setting between 40% and 80%
  • the top heater output P2 is set at a relatively high output setting (eg, between 80% and 100%).
  • Cook cycle CC1 can continue until a limiting condition occurs.
  • the constraint may be to determine that the cooking threshold HC2 (eg, at TL2 ) is met or exceeded.
  • the limiting condition may be another expiry condition (eg, expiry of a predetermined high output period after the start of cooking cycle CC1).
  • a limit cycle CR may be initiated in which the bottom heater output P1 is set at a cooking output setting (eg, the same or a different setting than the first cooking cycle CC1 , For example, output settings between 10% and 80%), while the top heater output P2 is limited (eg, at 0%).
  • a cooking output setting eg, the same or a different setting than the first cooking cycle CC1 , For example, output settings between 10% and 80%
  • the top heater output P2 is limited (eg, at 0%).
  • the restricted period CR may continue until the license conditions.
  • the admission condition may be a determination that the lower limit HR2 (eg, at TL2) is met or exceeded (ie, TL2 has reached or has fallen below HR2).
  • the permission condition may be another expiration condition (eg, expiration of a predetermined cool-down period after the start of the restriction period CR).
  • the duration of the restriction period CR may be less than the duration of the warm-up period CR.
  • a second or additional cooking cycle CC2 may be initiated, similar to the first cooking cycle CC1. Subsequently, additional limiting cycles and cooking cycles may be performed as will be appreciated (eg, until the user deactivates the cooking appliance 100 or otherwise stops the cooking operation entirely).
  • FIGS. 12 and 13 graphs are provided to illustrate another short cycle cooking operation directed by controller 110 (FIG. 1), the controller and heating elements 150, 152 (FIG. 6) In operable communication with temperature sensors 176A, 176B (FIG. 6).
  • Figure 12 provides a graph of temperature lines TL1, TL2 detected at TS1 176A and TS2 176B, respectively.
  • 13 provides graphs of output lines P1, P2 representing power output as a percentage of maximum output (eg, determined by duty cycle or TRIAC) at bottom heating element 150 and top heating element 152, respectively.
  • a cooking operation may include a preheat cycle CP in which bottom heater output P1 is set at a relatively high output setting (eg, between 80% and 100%) and top heater output P2 is set at a relatively high output setting (eg, between 80% and 100%) Set at a relatively low output setting (eg, between 10% and 40%).
  • the temperature within the oven chamber eg, as measured along TL1 and TL2
  • the warm-up period CP may continue until a first sensor warm-up threshold HP1 is met or exceeded (eg, at TL1 ) or a second warm-up threshold HP2 is met or exceeded (eg, at TL2 ).
  • temperature sensors TS1 and TS2 may have separate preheat thresholds. Satisfaction of the preheat threshold HP1 or HP2 may then stop the preheat cycle CP.
  • the cooking plate 166 or surface 168 within the cooking chamber 122 can reach relatively high temperatures without reaching excessive or undesired temperatures in the remainder of the cooking chamber 122 .
  • a first cooking cycle CC1 may be initiated with the bottom heater output P1 set at a cooking output setting (eg, a medium output setting between 40% and 80%) ), while the top heater output P2 is set at a relatively high output setting (eg, between 80% and 100%).
  • a cooking output setting eg, a medium output setting between 40% and 80%
  • the top heater output P2 is set at a relatively high output setting (eg, between 80% and 100%).
  • Cook cycle CC1 can continue until a limiting condition occurs.
  • the constraint may be to determine that the cooking threshold HC2 (eg, at TL2 ) is met or exceeded.
  • the limiting condition may be another expiry condition (eg, expiry of a predetermined high output period after the start of cooking cycle CC1).
  • a limit cycle CR may be initiated in which the bottom heater output P1 is set at a cooking output setting (eg, the same or a different setting than the first cooking cycle CC1 , For example, between 10% and 80% output setting), while the top heater output P2 is set at a relatively low output setting (eg, between 10% and 40%).
  • a cooking output setting eg, the same or a different setting than the first cooking cycle CC1 , For example, between 10% and 80% output setting
  • the top heater output P2 is set at a relatively low output setting (eg, between 10% and 40%).
  • the restricted period CR may continue until the license conditions.
  • the permission condition may be a determination that a lower limit HR2 (e.g., at TL2) is met or exceeded (i.e., TL2 has reached or has fallen below HR2).
  • the permission condition may be another expiration condition (eg, expiration of a predetermined cool-down period after the start of the restriction period CR).
  • the duration of the restriction period CR may be less than the duration of the warm-up period CR.
  • a second or additional cooking cycle CC2 may be initiated, similar to the first cooking cycle CC1. Subsequently, additional limiting cycles and cooking cycles may be performed as will be appreciated (eg, until the user deactivates the cooking appliance 100 or otherwise stops the cooking operation entirely).
  • one or more exhaust openings 178 are defined by the chamber walls. Specifically, the exhaust opening 178 may be defined proximate the top wall 128 (ie, closer to the top wall 128 along the vertical direction V than the bottom wall 130). For example, at least one chamber wall (eg, top wall 128 or rear wall 126 ) may define exhaust opening 178 downstream of oven vent 172 . In some embodiments, the exhaust opening 178 is spaced from the top heating element 152 (eg, horizontally, such as along the lateral direction L or the transverse direction T).
  • Relatively hot air arranged between the heating elements 150, 152 may be drawn away from the area between the heating elements 150, 152, advantageously preventing or reducing heat concentration within the upper cooking chamber 122 (eg, even on the upper cooking surface).
  • 168 is heated to a relatively high temperature, such as above 250 or 315 degrees Celsius during operation).
  • exhaust opening 178 When assembled, exhaust opening 178 may communicate with the surrounding environment surrounding oven appliance 100 .
  • cabinet 101 defines exhaust passage 182 that extends from upstream exhaust opening 178 to downstream exhaust port 186 .
  • one or more interior guide walls 184 may define an exhaust passage 182 on the exterior of the upper cooking chamber 122 .
  • the exhaust port 186 is defined above the top wall 128 . Additionally or alternatively, the exhaust port 186 may be defined proximate the rear wall 126 or at the rear of the rear wall. By placing the exhaust port 186 in the top rear corner of the cabinet 101, hot air can be exhausted upward and away from the oven appliance 100 and its users. Alternatively, the exhaust port 186 may be defined in the rear exterior panel of the cabinet 101 so that it cannot be seen by the user, or may be located in any other suitable location. Additionally or alternatively, exhaust port 186 may be coupled to an exhaust duct that directs heated air out of the room in which oven appliance 100 is located.
  • air, gas, or fumes within upper cooking chamber 122 may exit upper cooking chamber 122 downstream through exhaust opening 178 , exhaust passage 182 , and exhaust port 186 .
  • air passing through exhaust opening 178 may be pushed by natural convection or forced convection from an included oven fan (not shown), such as mounted within exhaust passage 182 .
  • top heating element 152 may be mounted above the bottom heating element 150 to heat the upper cooking chamber 122 .
  • top insulating plate 188 is mounted within upper cooking chamber 122 between top heating element 152 and top wall 128 (eg, in a vertical direction). Specifically, at least a portion of top insulating plate 188 is disposed over top heating element 152 .
  • the top insulating plate 188 may be included in or part of a support pan (eg, an open support pan) in which the top heating element 152 is received and supported.
  • Top insulating plate 188 may surround top heating element 152 while defining a bottom opening to direct heat downward from top heating element 152 (eg, to upper cooking chamber 122 or in the general direction of cooking plate 166).
  • top insulating plate 188 may include a separate plate arranged vertically above top heating element 152 such that top heating element 152 is disposed between the bottom surface of top insulating plate 188 and upper cooking chamber 122 .
  • top insulating plate 188 may form an open cavity so that heat can flow from top heating element 152 directly down the lower portion of upper cooking chamber 122 .
  • Top insulating plate 188 may be formed from or include any suitable low thermal conductivity material, such as a ceramic (eg, ceramic fiber) insulator. Additionally or alternatively, top insulating plate 188 may be formed from or include any suitable reflector plate or heat shield material (eg, metal such as stainless steel, aluminized steel, etc.) such that Top insulating plate 188 acts as a thermal shield, redirecting heat downward from top heating element 152 . During use, the top insulating plate 188 generally prevents heat transfer (eg, upward) from the top heating element 152 . Air may flow from upper cooking chamber 122 to and across top insulating plate 188 and to exhaust opening 178.
  • any suitable low thermal conductivity material such as a ceramic (eg, ceramic fiber) insulator.
  • top insulating plate 188 may be formed from or include any suitable reflector plate or heat shield material (eg, metal such as stainless steel, aluminized steel, etc.) such that Top insulating plate 188 acts as a thermal shield
  • the present disclosure may further relate to a method (eg, method 400 or 500 ) of operating an oven appliance (such as appliance 100 ).
  • the controller 110 is operable to perform various steps of the method according to the present disclosure.
  • the method may occur as or as part of a cooking operation (eg, a short cycle cooking operation) of the oven appliance 100 .
  • the methods disclosed herein eg, 400 or 500
  • the methods disclosed herein can advantageously facilitate relatively high temperatures of cooking plates or surfaces within the cooking chamber without reaching excessive or undesired temperatures in the remainder of the cooking chamber.
  • the method may advantageously allow multiple cooking cycles to be performed in a relatively rapid sequence (eg, without deactivating all heating elements or significantly cooling the cooking chamber).
  • methods in the present disclosure may include either or both of methods 400 and 500 . Both methods can be employed or described as implementations in a common operation. Unless otherwise indicated, one or more steps in methods 400 or 500 below may be changed, rearranged, performed in a different order, or otherwise modified without departing from the scope of the present disclosure.
  • method 400 includes receiving a short period warm-up signal.
  • a short cycle preheat signal may indicate a planned (eg, by a user) short cycle or localized high heat cooking operation.
  • the short period warm-up signal may correspond to user input (eg, on a control panel).
  • a short-cycle button on the control panel or user engagement of an input can transmit a short-cycle warm-up signal to the controller.
  • method 400 includes initiating preheat activation of the bottom heating element (eg, in response to 410 ).
  • the preheat activation of the bottom heating element may be initiated as part of the preheat cycle of the oven appliance.
  • 420 includes turning on or otherwise increasing power or fuel to the bottom heating element (eg, from 0%).
  • the bottom heating element may be activated according to a predetermined preheat power or heat output (eg, a percentage of maximum output determined by duty cycle or TRIAC).
  • the predetermined preheat power output of the bottom heating element is a relatively high output setting (eg, greater than 50%).
  • the predetermined preheat power output of the bottom heating element may be greater than 75%.
  • the predetermined preheat power output of the bottom heating element may be between 80% and 100%.
  • the bottom heating element may remain in an activated state, wherein power or fuel is directed to the bottom heating element to generate heat for the duration of the preheat cycle.
  • the power or heat output of the bottom heating element may be maintained above 0% (eg, at a guided duty cycle or constant output).
  • method 400 includes initiating preheat activation of the top heating element during preheat activation of the bottom heating element.
  • the preheat activation of the top heating element may be initiated as part of the preheat cycle of the oven appliance.
  • 430 may occur after 420 (eg, according to a top heater delay in response to 410). Nonetheless, the bottom heating element and the top heating element may be activated simultaneously to generate heat during at least a portion of the preheat cycle.
  • 430 includes turning on or otherwise increasing the power or fuel of the top heating element (eg, from 0%).
  • the top heating element may be activated according to a predetermined preheat power or heat output (eg, a percentage of maximum output determined by duty cycle or TRIAC).
  • the predetermined preheat power output of the top heating element is a relatively low output setting (eg, less than 50%). Alternatively, the predetermined preheat power output of the top heating element may be less than 45%. Additionally or alternatively, the predetermined preheat power output of the top heating element may be between 10% and 40%.
  • the top heating element may remain in an activated state, wherein power or fuel is directed to the top heating element for at least a portion of the duration of the preheat cycle (eg, the remaining duration of the preheat cycle after 430 ) generate heat inside.
  • the power or heat output of the top heating element may be maintained above 0% (eg, at a guided duty cycle or constant output).
  • method 400 includes receiving one or more temperature signals from a first temperature sensor (eg, TS1 ) and a second temperature sensor (eg, TS2 ).
  • 440 includes receiving one or more (eg, first) temperature signals from a first temperature sensor, and receiving one or more (eg, second) temperature signals from a second temperature sensor (eg, with temperature signals from the first temperature sensor separately or simultaneously), as described above.
  • the temperature signal of 440 may be received during a warm-up period.
  • 440 occurs during preheat activation of the bottom heating element and the top heating element. Thus, during the preheat cycle, multiple measurements of the cooking chamber can be obtained.
  • method 400 includes determining whether a preheat threshold is satisfied based on the received one or more temperature signals. Determining that the preheat threshold is met may, for example, generally indicate completion of a preheat cycle or that a desired condition for cooking has generally been met. In some embodiments, the preheat threshold may be satisfied when the temperature signal from the first temperature sensor or the second temperature sensor is greater than the corresponding sensor threshold.
  • each temperature sensor may have a discrete temperature threshold (eg, sensor warm-up threshold).
  • a first temperature sensor may have a first sensor threshold and a second temperature sensor may have a second sensor threshold.
  • 450 may include comparing the first temperature signal (from TS1 ) to a first temperature threshold, and comparing the second temperature signal (from TS2 ) to a second temperature threshold.
  • the second temperature threshold may be smaller than the first threshold.
  • 450 may include determining that the first sensor temperature signal (from TS1 ) is greater than the first sensor threshold, while (eg, further determining) the second sensor temperature signal (from TS2 ) is less than or equal to the second sensor threshold.
  • 450 may include determining that the first sensor temperature signal (from TS1 ) is less than or equal to the first sensor threshold, while (eg, further determining) the second sensor temperature signal (from TS2 ) is greater than the second sensor threshold.
  • method 400 may include determining (eg, based on the above comparison) that the first sensor temperature signal exceeds the first sensor threshold and the second sensor temperature signal exceeds the first sensor temperature signal.
  • Two sensor thresholds for the first time point may thus be based on the determined first time that the first sensor temperature signal exceeds the first sensor threshold and the second sensor temperature signal exceeds the second sensor threshold. In other words, as long as either sensor threshold is determined to be exceeded, it can be determined that the warm-up threshold is met.
  • the preheat condition may be maintained within the cooking chamber (e.g., for a predetermined period of time after 450 according to the feedback loop) without any further instruction (e.g., initiating a cooking cycle).
  • method 400 includes directing the heating element according to the cooking cycle following (ie, subsequent to) 450 .
  • 460 may include guiding the bottom heating element and the top heating element, as described above.
  • 460 includes activating activation of the bottom heating element and activating high output activation of the top heating element (eg, as described above).
  • the bottom heating element may be activated at a cooking output setting (eg, a medium output setting between 40% and 80%), while the top heating element is activated at a relatively high output setting (eg, between 80% and 100%) time) is activated.
  • 460 may include determining a limit and limiting the heat output of the top heating element in response to determining the limit.
  • the top heating element can be restrained while maintaining the activation of the bottom heating element.
  • the constraints may include expiry (eg, between 2 minutes and 10 minutes, such as 4 minutes) of a high output time period from the start of the cooking cycle (eg, activating high output activation of the top heating element). Additionally or alternatively, as described above, the constraints may include meeting a cooking threshold (eg, at TS2).
  • method 500 includes receiving a short period selection signal (eg, after a warm-up period).
  • the short cycle selection signal may indicate (eg, by a user) that a short cycle or localized high heat cooking operation is desired.
  • the short period selection signal may correspond to user input (eg, on a control panel).
  • user engagement of a short cycle button or input on the control panel may transmit a short cycle selection signal to the controller.
  • method 500 includes initiating cooking activation of the bottom heating element (eg, in response to 510). Specifically, the cooking activation of the bottom heating element may be initiated as part of the cooking cycle of the oven appliance. In some embodiments, 520 includes continuing or adjusting power or fuel to the bottom heating element (eg, activation from preheat). For example, the bottom heating element may remain active after preheating, although the bottom heating element may be set to a predetermined cooking power or the heat output may be different from the preheating power or heat output (eg, determined by duty cycle or TRIAC) percentage of maximum output).
  • the bottom heating element may remain active after preheating, although the bottom heating element may be set to a predetermined cooking power or the heat output may be different from the preheating power or heat output (eg, determined by duty cycle or TRIAC) percentage of maximum output).
  • the predetermined cooking power output of the bottom heating element is a medium output setting (e.g., less than 80% or greater than 20%).
  • the predetermined cooking power output of the bottom heating element may be greater than 40%. Additionally or alternatively, the predetermined cooking power output may be less than 80%. Additionally, or alternatively, the predetermined cooking power output of the bottom heating element may be between 40% and 80%.
  • the bottom heating element may remain in an activated state, wherein power or fuel is directed to the bottom heating element to generate heat for the duration of the cooking cycle.
  • the power or heat output of the bottom heating element may be maintained above 0% (eg, at a guided duty cycle or constant output).
  • the bottom heating element may be adjusted according to the set point of the cooking cycle of TS1 (eg, a temperature feedback loop, in which, as will be appreciated, the adjustment is activated to maintain the temperature at TS1 at the set point) within the predetermined range).
  • the cook cycle set point is equal to the (eg, first sensor) preheat temperature threshold of TS1.
  • the bottom heating element can maintain the temperature measured at TS1 above the preheat threshold during the cooking cycle.
  • method 500 includes initiating high output activation of the top heating element during cooking activation of the bottom heating element.
  • high output activation of the top heating element can be initiated as part of a cooking cycle.
  • 530 may occur after 520 (eg, according to a top heater delay in response to 510).
  • 530 may occur concurrently with 520 (eg, in response to 510).
  • the bottom heating element and the top heating element can be activated simultaneously to generate heat during at least a portion of the cooking cycle.
  • 530 includes turning on or otherwise increasing power or fuel to the top heating element (eg, from a 0% or preheat output setting).
  • the top heating element may be activated according to a predetermined high output cooking power or heat output (eg, a percentage of maximum output determined by duty cycle or TRIAC).
  • the predetermined high output cooking power output of the top heating element is a relatively high output setting (eg, greater than 50%).
  • the predetermined high output cooking power output of the top heating element may be greater than 75%.
  • the predetermined high output cooking power output of the top heating element may be between 80% and 100%.
  • the top heating element may remain in an activated state, wherein power or fuel is directed to the top heating element to generate heat for at least a portion of the duration of the cooking cycle (eg, as described above, until 550).
  • the power or heat output of the top heating element may be maintained above 0% (eg, at a guided duty cycle or constant output).
  • method 500 includes determining constraints after (ie, subsequent to) 530 .
  • 540 may include determining the expiration of a high output period after the start of the cooking cycle (eg, demarcation or prompting at 510, 520, or 530).
  • the high output period may be a period between 2 minutes and 10 minutes. Additionally or alternatively, the high output period may be between 2 and 4 minutes.
  • 540 may include determining that the cooking threshold is met (eg, at TS2) as described above.
  • the cooking threshold may be a temperature threshold of TS2 that is greater than the preheat threshold of TS2.
  • method 500 includes limiting the heat output of the top heating element in response to determining the limiting condition at 540 .
  • the heat output of the top heating element is limited. Limiting heat output may require deactivating the top heating element (ie, directing heat output to 0%) or activating the top heating element according to a predetermined low output cooking power or heat output (eg, between 10% and 40%).
  • method 500 includes determining licensing conditions after (ie, subsequently) 550 .
  • permit conditions may indicate that increased heat from the top heating element may be appropriate.
  • 560 may include determining that a cooling or limiting time period (eg, measured in minutes) has ended after 550 begins.
  • 560 as described above may include determining that a lower limit (eg, at TS2) is satisfied.
  • the bottom heating element may remain in an activated state.
  • method 500 includes, in response to 560, allowing high output activation (eg, reactivation) of the top heating element.
  • 570 may allow a return to 530 so that activation of the heating element for subsequent cooking cycles and determination of the limited time period may be repeatedly activated, as will be understood (eg, until the cooking operation is finally stopped by the user or internal mechanism).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

如本文所提供的,用于操作烤箱器具的方法可以包括基于一个或更多个接收的温度信号,在限制加热元件之一的激活之前,激活顶部加热元件和底部加热元件(例如,在重叠时间)的各种步骤。

Description

用于高热量烹饪的烤箱器具和方法 技术领域
本主题总体上涉及烤箱器具,并且更具体地,涉及操作用于局部高热量烹饪的烤箱器具的方法。
背景技术
传统的家用和商用烤箱器具通常包括机柜,该机柜包括烹饪室,其用于接收烹饪用的食物物品。多个气体或电加热元件定位在机柜内,用于加热烹饪室以烹饪位于其中的食物物品。加热元件可以包括,例如,定位在烹饪室的底部的烘烤加热组件和定位在烹饪室的顶部的单独的炙烤器加热组件。
典型地,用于烹饪的食物或器皿被放置在烹饪室内的金属线架上并在烘烤加热组件的上方。在一些情况下,保护板或辐射板定位在烘烤加热组件上方,以保护烘烤加热组件或有助于在烹饪室的底部上均匀分布热量。通常,金属线架至少安装在烘烤加热组件的正上方,以确保烘烤加热组件不会被损坏或者用户不会意外接触到烘烤加热组件。当烘烤加热组件被激活时,来自烘烤加热组件的热量因此被迫通过烘烤加热组件和金属丝架之间的空气间隙和任何其他中间元件上升,然后金属丝架上的器皿可以被加热。烹饪室内的热量是相对扩散的,并且在架上的一个或更多个物品周围,温度通常是一致的。
虽然这些传统的构造对许多类型的食物都是有用的,但也有一些缺点。例如,某些食物物品,比如披萨或面包,可以在相对短的时间内受益于非常高的局部(即,非扩散的)热量。一些这样的烹饪操作通常被称为短周期烹饪操作。石头或特制的高热量锅经常被用来抵靠扁平的面包或披萨的底部来截留热量。这种锅可能难以预热或维持用户所期望的特定的温度。尽管将锅放置成靠近加热元件可以有助于更快地加热锅或将锅加热到更高的温度,但这可能导致锅或 截留的热量损坏烤箱器具的部分。此外,过多地截留或定位热量可能会导致食物物品的某些部分燃烧,而没有充分烹饪其余的部分。
附加地或替代地,试图将一个区域或物体加热到相对较高的温度可能会产生问题。例如,烤箱室的其余部分可能会变得过热。尤其是打开烤箱门,可能会迅速释放出过多的热量,这可能会让附近的用户感到不舒服。此外,可能会导致损坏器具的某些部分。
相对快速地连续烹饪多个物品可能会加剧某些问题。例如,如果用户试图一个接一个地烹饪多个物品,截留的热量可能导致后烹饪的物品比前烹饪的物品更快或以不同的速度达到特定的内部温度。这可能导致不一致或不合适(例如,烧焦)的食物物品。结果,典型的烹饪器具需要所有加热元件完全停用,同时烹饪室被允许显著冷却(例如,到环境温度的100华氏度以内)。
因此,提供一种烤箱器具或方法,用于在烤箱器具内的特定的烹饪表面上安全地产生高热量,而不会过度地截留热量或对烤箱器具或烹饪表面造成损坏将是有利的。附加地或替代地,提供一种烤箱器具或方法,用于以高热量且快速连续一致地烹饪单独的物品将是有利的(例如,不需要烤箱完全停用或返回到接近环境温度的温度)。
发明内容
本发明的方面和优点将在下面的描述中部分阐述,或者从描述中显而易见,或者可以通过本发明的实践来了解。
在本公开的一个示例性方面,提供了一种操作烹饪器具的方法。该方法可以包括启动底部加热元件的预热激活和在底部加热元件的预热激活期间启动顶部加热元件的预热激活。该方法可以进一步包括从烹饪表面处的第一温度传感器和安装在第一温度传感器上方的第二温度传感器接收一个或更多个温度信号,该接收发生在底部加热元件的预热激活和顶部加热元件的预热激活期间。该方法还可以进一步包括基于接收的一个或更多个温度信号确定预热阈值是否 被满足。该方法还可以进一步包括在确定预热阈值被满足之后,根据烹饪周期来引导底部加热元件和顶部加热元件。
在本公开的另一个示例性方面,提供了一种操作烹饪器具的方法。该方法可以包括启动底部加热元件的烹饪激活和在底部加热元件的烹饪激活期间启动顶部加热元件的高输出激活。该方法可以进一步包括在启动顶部加热元件的高输出激活之后确定限制条件。该方法还可以进一步包括响应于确定限制条件,在底部加热元件的烹饪激活期间限制顶部加热元件的热量输出。
参考以下描述和所附权利要求,本发明的这些和其他特征、方面和优点将变得更好理解。并入本说明书并构成本说明书的一部分的附图示出了本发明的实施例,并与描述一起用于解释本发明的原理。
附图说明
参考附图,在说明书中阐述了针对本领域普通技术人员来说本发明的完整且能够实现的公开,包括其最佳模式。
图1提供了根据本公开的示例性实施例的烤箱器具的正视图。
图2提供了图1的示例性烤箱器具的上烹饪室的透视图。
图3提供了图1的示例性烤箱器具的上烹饪室的透视图,其中为了清楚起见,某些元件已经被移除。
图4提供了图1的示例性烤箱器具的一部分的前透视截面视图。
图5提供了图1的示例性烤箱用具的上烹饪室的侧截面视图。
图6提供了图1的示例性烤箱器具的上烹饪室的前示意性正视图。
图7提供了图1的示例性烤箱器具的上烹饪室的侧示意性正视图。
图8提供了图1的示例性烤箱器具的上烹饪室的底部透视图,其中为了清楚起见,某些元件已经被移除。
图9提供了图1的示例性烤箱器具的一部分的侧透视截面图。
图10是示出根据本公开的示例性实施例在高热量烹饪操作期间,烤箱器具 内的两个分立的温度传感器的温度随时间变化的曲线图。
图11是示出在图10的示例性高热量烹饪操作期间,烤箱器具内的两个分立的加热器的功率输出随时间变化的曲线图。
图12是示出根据本公开的示例性实施例在高热量烹饪操作期间,烤箱器具内的两个分立的温度传感器的温度随时间变化的曲线图。
图13是示出在图12的示例性高热量烹饪操作期间,烤箱器具内的两个分立的加热器的功率输出随时间变化的曲线图。
图14是示出根据本公开的示例性实施例的操作烤箱器具的方法的流程图。
图15是示出根据本公开的示例性实施例的操作烤箱器具的方法的流程图。
具体实施方式
现在将详细参考本发明的实施例,其一个或更多个示例在附图中示出。每个示例是通过解释本发明的方式提供的,而不是对本发明的限制。事实上,对于本领域技术人员来说,在不脱离本发明的范围的情况下,可以对本发明进行各种修改和变化是显而易见的。例如,作为一个实施例的一部分示出或描述的特征可以与另一个实施例一起使用,以产生又一个实施例。因此,本发明旨在涵盖落入所附权利要求及其等同物的范围内的这种修改和变化。
如本文所使用的,术语“或”通常旨在是包含性的(即,“A或B”旨在指“A或B或两者”)。术语“第一”、“第二”和“第三”可以互换使用,以将一个部件与另一个部件区分开来,并且不旨在表示各个部件的位置或重要性。术语“上游”和“下游”是指相对于流体路径中的流体流动的相对的流动方向。例如,“上游”指流体流动来的流动方向,而“下游”指流体流动去的流动方向。
现在参考图1,其示出了根据本公开的双烤箱器具10的示例性实施例。
尽管本主题的各方面在本文中是在双烤箱器具100的背景下描述的,但是应当理解,烤箱器具100仅以示例的方式提供。具有不同构造、不同外观或不同特征的其他烤箱或灶台器具(例如,单个烤箱、电炉灶烤箱、感应炉灶烤箱 等)也可以与本主题一起使用。
通常,烤箱器具100具有限定竖直方向V、纵向方向L和横向方向T的机柜101。竖直方向、纵向方向和横向方向相互垂直并形成正交方向系统。双烤箱器具100包括上烤箱120和沿着竖直方向V位于上烤箱120下方的下烤箱140。上烤箱120和下烤箱140分别包括烤箱或烹饪室122和142,其被构造成用于容纳一个或更多个待烹饪的食物物品。双烤箱器具100包括上门124和下门144,以便分别允许选择性地进入烹饪室122和142。把手102安装在上门124和下144上,以帮助用户打开和关闭门124和144,从而进入烹饪室122和142。例如,用户可以拉动安装在上门124上的把手102来打开或关闭上门124并进入烹饪室122。当门124、144关闭时,提供玻璃窗104用于观察烹饪室122和142的内容物,并且还有助于使烹饪室122和142隔热。可选地,密封件或垫圈(例如,图7中的垫圈114)在每个门124、144和机柜101之间延伸(例如,当相应的门124或144处于关闭位置时)。当门124或144处于关闭位置时,垫圈114可以有助于将热量和烹饪烟雾保持在相应的烹饪室122或142内。进一步如图2和图3所示,加热元件(比如电阻加热元件、气体燃烧器、微波元件等)位于上烤箱120和下烤箱140内。
双烤箱器具100的控制面板106为双烤箱器具100的操作的用户操纵提供选择。例如,用户可以触摸控制面板106来触发用户输入108中的一个。响应于用户对用户输入108的操纵,可以操作双烤箱器具100的各种组件。控制面板106还可以包括显示器112(比如数字显示器),可操作以显示双烤箱器具100的各种参数(例如,温度、时间、烹饪周期等)。
通常,烤箱器具100可以包括与控制面板106可操作地通信(例如,经由有线或无线通道可操作地连接)的控制器110。烤箱器具100的控制面板106可以经由例如一条或更多条信号线或共享通信总线与控制器110通信,并且响应于经由用户输入设备108的用户输入,在控制器110中产生的信号操作烤箱器具100。输入/输出(“I/O”)信号可以在控制器110和烤箱器具100的各种操作 部件之间路由,使得烤箱器具100的操作可以由控制器110调节。此外,控制器110还可以与一个或更多个传感器通信,比如第一温度传感器(TS1)176A或第二温度传感器(TS2)176B(图5)。通常,TS1 176A和TS2 176B中的一个或两个可以包括热敏电阻或热电偶,或者作为热敏电阻或热电偶提供,热敏电阻或热电偶可以用于测量靠近上烹饪室122的位置处的温度,并将这样的测量值提供给控制器110。尽管TS1 176A被示出在靠近底部加热元件150的封闭区域160内,并且TS2 176B被示出在顶部加热元件152和底部加热元件150之间的后壁126上,但是应当理解,根据替代实施例,可以使用其他的传感器类型、位置和构造。
控制器110是“处理设备”或“控制器”,并且可以如本文所述来实施。控制器110可以包括存储器和一个或更多个微处理器、微控制器、专用集成电路(ASICS)、CPU等,比如可操作来执行与烤箱器具100的操作相关联的编程指令或微控制代码的通用或专用微处理器,并且控制器110不必局限于单个元件。存储器可以表示随机存取存储器,比如DRAM,或者只读存储器,比如ROM、电可擦除可编程只读存储器(EEPROM)或FLASH。在一个实施例中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分离的部件,或者可以包含在处理器内的板载上。替代地,可以在不使用微处理器的情况下(例如,使用分立模拟或数字逻辑电路的组合;比如开关、放大器、积分器、比较器、触发器、与门等)构建控制器110来执行控制功能,而不是依赖软件。
现在转向图2至图9,提供了各种视图,具体示出了上烤箱120的上烹饪室122。如图所示,上烹饪室122通常由后壁126、顶部壁128和底部壁130限定,底部壁通过相对的侧壁132(例如,第一壁和第二壁)沿着竖直方向V与顶部壁128隔开。在一些实施例中,相对的侧壁132包括压花肋134,使得包含食物物品的烘烤架可以可滑动地接收在压花肋134上,并且在门124打开时,可以移入和移出上烹饪室122。可选地,如所理解的,这种壁126、128、130、132可以包括在机柜101的外壳146内。
如图所示,上烤箱120包括一个或更多个加热元件来加热上烹饪室122(例如,作为烹饪操作的一部分,由控制器110指导)。例如,底部加热元件150可以安装在上烹饪室122的底部部分(例如,底部壁130的上方)。附加地或替代地,顶部加热元件152可以安装在上烹饪室122的顶部部分(例如,顶部壁128的下方)。底部加热元件150和顶部加热元件152可以独立或同时用于加热上烹饪室122、执行烘烤或烧烤操作、执行清洁周期等。
加热元件150、152可以被设置为用于在上烹饪室122内产生热量的任何合适的加热器。例如,任一加热元件可包括电加热元件(例如,电阻丝元件、辐射加热元件、管状电加热器或
Figure PCTCN2021103017-appb-000001
卤素加热元件等)。附加地或替代地,任一加热元件可以包括气体燃烧器。
如图所示,基板154可以设置在上烹饪室122内(例如,固定地安装或可替换可拆卸地安装)。在上烹饪室122内,基板154通常布置在底部壁130上方。在一些实施例中,基板154在第一端部156和第二端部158之间侧向延伸。如图所示,第一端部156可以在一个侧向侧处(例如,靠近第一侧壁132)附接到底部壁130,而第二端部158在相对的侧向侧处(例如,靠近第二侧壁132)附接到底部壁130。尽管基板154可以安装在底部壁130上,但是基板154的至少一部分与底部壁130竖直间隔开。在一些实施例中,封闭区域160被限定在基板154和底部壁130之间。例如,封闭区域160可以被限定为基板154的下表面170和基板154的上表面之间的空气间隙。基板154可以包括任何合适的材料(例如,第一材料)或者由任何合适的材料形成,用于承受上烹饪室122的高热量的环境,比如钢。
在某些实施例中,底部壁130限定了一个或更多个空腔通风口162。这种空腔通风口162可以在封闭区域160的上游。例如,空腔通风口162可被限定在基板154下方,使得空气被允许流动通过底部壁130(例如,从周边或周围环境)到封闭区域160。可选地,空腔通风口162可以沿着竖直方向延伸。附加地或替代地,一个或更多个入口由机柜101或空腔通风口162上游的门限定或穿过机 柜或空腔通风口上游的门。在使用期间,周围空气(例如,烤箱器具100的外部)可被允许通过入口并通过空腔通风口162进入封闭区域160。
在一些实施例中,基板154限定了接收区164,烹饪板166布置在该接收区内(例如,固定地安装或可替换可拆卸地安装)。例如,烹饪板166可以被保持或嵌入限定接收区164的坑或凹槽内。可选地,一个或更多个支撑片可以被包括在接收区164内(例如,在烹饪板166下方),以将烹饪板166保持在基板154上。通常,烹饪板166可以提供上烹饪表面168,在该上烹饪表面上可以接收食物物品(例如,面包或披萨)。烹饪板166可以被设置为固体不可渗透的构件,或者替代地,限定一个或更多个空气可以通过的孔。在一些实施例中,烹饪板166包括保持热量的材料或由保持热量的材料形成,比如粘土、石头(例如堇青石)、陶瓷、铸铁或陶瓷涂覆的碳钢。在附加或替代实施例中,烹饪板166包括与基板154分离的材料(例如,第二材料)。
虽然显示为限定的圆形的上表面,但是应当理解,烹饪板166可以形成为任何合适的形状,食物物品可以支撑在该烹饪板上。
在封闭区域160内(例如,在接收区164或烹饪板166下方),底部加热元件150可以被基板154封闭或覆盖。底部加热元件150可以布置在基板154的下表面170下方。封闭区域160因此可以被限定围绕底部加热元件150。在使用期间,在底部加热元件150处产生的热量可以被向上引导至基板154的下表面170或烹饪板166。在一些实施例中,底部加热元件150与接收区164或烹饪板166竖直对齐(例如,直接在其下方)。底部加热元件150处产生的热量因此可以主要或首先被引导到接收区164或烹饪板166的下侧。
与接收区164分隔开,基板154可以限定一个或更多个烤箱通风口172。这种烤箱通风口172可以延伸通过基板154(例如,从上表面到下表面170)。具体而言,烤箱通风口172可以延伸到封闭区域160。当组装时,烤箱通风口172可以与封闭区域160流体连通(例如,在其下游)。空气因此可以在封闭区域160和烤箱通风口172之间穿过。在某些操作期间,空气可以通过烤箱通风口172 被引导离开封闭区域160。例如,空气可以被引导到上烹饪室122的周围、上部分或上烹饪室122外部的周围环境。烤箱通风口172可以定向成远离接收区164或烹饪板166(例如,径向或侧向向外朝向侧壁132或后壁126)。因此,来自烤箱通风口172的空气可以被推动(例如,通过自然对流或风扇强制的对流)从封闭区域160进入上烹饪室122的上部分,而不直接流动到烹饪板166的上表面以及其上的任何食物物品。
在可选实施例中,多个烤箱通风口172由基板154限定,并且彼此隔开(例如,沿着侧向方向L)。两个或多个烤箱通风口172可以限定在烹饪板166的相对侧。例如,第一烤箱通风口172可以限定在基板154的第一侧,而第二烤箱通风口172限定在基板154的第二侧。第一烤箱通风口172可以被定向成向外朝向第一侧壁132。第二烤箱通风口172可以被定向成向外朝向第二侧壁132。在使用期间,封闭区域160内的加热的空气因此可以均匀地分布通过上烹饪室122,而不直接流动到第一和第二烤箱通风口172之间的接收区164。
在某些实施例中,底部绝缘板174沿着竖直方向设置在底部壁130下方。具体地,底部绝缘板174的至少一部分布置在底部加热元件150下方。作为示例,底部绝缘板174可以包括在支撑盘中或作为支撑盘的一部分,底部加热元件150容纳并支撑在支撑盘中(例如,在封闭区域160内)。底部绝缘板174可以环绕底部加热元件150,同时限定顶部开口以将热量从底部加热元件150向上引导(例如,引导至接收区164或烹饪板166)。作为附加或替代的示例,底部绝缘板174可以包括在底部加热元件150下方竖直排列的独立的板,使得底部加热元件150布置在底部绝缘板174的上表面和底部壁130的下表面170之间。在可选实施例中,底部绝缘板174布置在一个或更多个空腔通风口162上方。例如,底部绝缘板174可以与空腔通风口162竖直对齐并在其下游。
底部绝缘板174可以由任何合适的低热导率材料形成或包括任何合适的低热导率材料,比如金属或陶瓷(例如陶瓷纤维)绝缘体。附加地或替代地,底部绝缘板174可以由任何合适的反射体板或热屏蔽材料(例如,金属,例如不 锈钢、镀铝钢等)形成或包括任何合适的反射体板或热屏蔽材料,使得底部绝缘板174充当热屏蔽,将热量从底部绝缘板174向上重定向。在使用期间,底部绝缘板174通常可以阻止热量从底部加热元件150传递(例如,向下)。空气(例如,周围空气)可以从封闭区域160内的空腔通风口162流动到底部绝缘板174并跨过底部绝缘板。这种空气可以为底部绝缘板174提供进一步的冷却。此外,冷却空气的至少一部分可以从底部绝缘板174流动,通过封闭区域160,并从一个或更多个烤箱通风口172流出。
与通过封闭区域160的冷却空气分开或除了通过封闭区域的冷却空气之外,前入口180可以通过门124或机柜101的外壁限定到上烹饪室122。例如,前入口180可以被限定为门124或垫圈114和机柜101的正面之间的空气间隙。在某些实施例中,垫圈114位于空气间隙或前入口180处。在使用期间,前入口180可以在上烹饪室122的上游。因此,当门124处于关闭位置时,垫圈114通常可以延伸跨过门124和机柜101之间的空气间隙或前入口180,使得空气被允许从周围环境穿过前入口180,并到达上烹饪室122(例如,由于自然对流或强制对流的推动)。
一个或更多个温度传感器(例如,TS1 176A)可以布置在封闭区域160内,例如,以检测底部加热元件150或烹饪板166的温度。可选地,TS1 176A可以安装在底部加热元件150和烹饪板166之间。在一些实施例中,TS1 176A安装在烹饪板166上。例如,TS1 176A可以布置在烹饪板166的底部表面上(例如,经由机械紧固件、夹子或钩子)。作为附加的或替代的示例,TS1 176A可以保持在烹饪板166的凹槽内。作为附加的或替代的示例,TS1 176A可以嵌入烹饪板166内。
附加地或替代地,一个或更多个温度传感器(例如,TS2 176B)可以布置在机柜101内靠近烹饪室122并且在烹饪表面168上方,例如,以检测烹饪板166和顶部加热元件152下方之间的烹饪室122的温度(例如,一般的或扩散的)。可选地,TS2 176B可以安装在顶部加热元件152和烹饪板166之间(例如,在 TS1 176A上方)。在一些实施例中,TS2 176B安装在室壁上。具体地,TS2 176B可以侧向定位在侧壁132之间,或者竖直定位在顶部壁128和底部壁130之间。例如,TS2 176B可以布置在后壁126上(例如,经由机械紧固件、夹子或钩子)。作为附加的或替代的示例,TS2 176B可以保持在后壁126中的凹槽内。作为附加的或替代的示例,TS2 176B可以嵌入后壁126内。
当组装时,温度传感器176A、176B可以可操作地联接到控制器110。此外,控制器110可被配置成基于在温度传感器176A、176B处检测到的温度来控制顶部加热元件152或底部加热元件150(例如,作为烹饪操作的一部分,比如短周期烹饪操作)。在一些实施例中,由控制器110启动的烹饪操作因此可以包括检测TS1 176A和TS2 176B的一个或更多个温度,并基于检测到的温度指导来自顶部加热元件152或底部加热元件150的热量输出(例如,热量设定)。
作为示例,并简要转到图10和图11,提供曲线图来说明由控制器110(图1)指导的短周期烹饪操作,控制器与加热元件150、152(图6)和温度传感器176A、176B(图6)可操作地通信。具体地,图10提供了分别在TS1 176A和TS2 176B处检测到的温度线TL1、TL2的曲线图。图11提供了输出线P1、P2的曲线图,其表示分别在底部加热元件150和顶部加热元件152处的功率输出占最大输出的百分比(例如,由占空比或TRIAC决定)。如图所示,烹饪操作可以包括预热周期CP,其中底部加热器输出P1被设定在相对高的输出设置(例如,在80%和100%之间),而顶部加热器输出P2被限制(例如,在0%)。通常,在预热周期CP期间,烤箱室内的温度(例如,沿TL1和TL2测量的)增加,直到满足预热阈值。例如,预热周期CP可以继续,直到满足或超过第一传感器预热阈值HP1(例如,在TL1)或者满足或超过第二预热阈值HP2(例如,在TL2)。因此,温度传感器TS1和TS2可以具有分立的预热阈值。满足预热阈值HP1或HP2可以继而停止预热周期CP。有利的是,烹饪室122内的烹饪板166或表面168可以达到相对较高的温度,而不会在烹饪室122的其余部分达到过高或不希望的温度。
在预热周期CP之后(例如,紧接着其后),可以启动第一烹饪周期CC1,其中底部加热器输出P1被设定在烹饪输出设置(例如,40%和80%之间的中等输出设置),而顶部加热器输出P2被设定在相对高的输出设置(例如,80%和100%之间)。随着TL2处或沿TL2测量的温度快速上升,TL1处或沿TL1测量的温度可保持相对恒定。烹饪周期CC1可以继续,直到出现限制条件。可选地,限制条件可以是确定烹饪阈值HC2(例如,在TL2)被满足或超过。替代地,限制条件可以是另一个到期条件(例如,在烹饪周期CC1开始之后的预定的高输出时间段到期)。
在第一烹饪周期CC1之后(例如,紧接着其后),可以启动限制周期CR,其中底部加热器输出P1被设定在烹饪输出设置(例如,与第一烹饪周期CC1相同或不同的设置,比如,在10%和80%之间的输出设置),而顶部加热器输出P2被限制(例如,在0%)。随着TL2处或沿TL2测量的温度降低,TL1处或沿TL1测量的温度可保持相对恒定。限制周期CR可以继续,直至许可条件。可选地,许可条件可以是确定满足或超过限制下限HR2(例如,在TL2)(即,TL2已经达到或已经低于HR2)。替代地,许可条件可以是另一个到期条件(例如,在限制周期CR开始之后的预定的冷却时间段到期)。值得注意的是,在实践中,限制周期CR的持续时间可以小于预热周期CR的持续时间。有利的是,通常在保持烹饪板166或表面168处于相对较高的温度时,可以防止过多的热量积聚在烹饪室122内(例如,用于烹饪额外的或连续的食物物品)。
在限制周期CR之后(例如,紧接着其后),可以启动第二或额外的烹饪周期CC2,类似于第一烹饪周期CC1。随后,如将被理解的那样可以执行附加的限制周期和烹饪周期(例如,直到用户停用烹饪器具100或者否则完全停止烹饪操作)。
作为另一个示例,并简要转到图12和图13,提供了曲线图来说明由控制器110(图1)指导的另一个短周期烹饪操作,控制器与加热元件150、152(图6)和温度传感器176A、176B(图6)可操作地通信。具体地,图12提供了分别在 TS1 176A和TS2 176B处检测到的温度线TL1、TL2的曲线图。图13提供了输出线P1、P2的曲线图,其表示分别在底部加热元件150和顶部加热元件152处的功率输出占最大输出的百分比(例如,由占空比或TRIAC决定)。如图所示,烹饪操作可以包括预热周期CP,其中底部加热器输出P1被设定在相对高的输出设置(例如,在80%和100%之间),而顶部加热器输出P2被设定在相对低的输出设置(例如,在10%和40%之间)。通常,在预热周期CP期间,烤箱室内的温度(例如,沿TL1和TL2测量的)增加,直到满足预热阈值。例如,预热周期CP可以继续,直到满足或超过第一传感器预热阈值HP1(例如,在TL1)或者满足或超过第二预热阈值HP2(例如,在TL2)。因此,温度传感器TS1和TS2可以具有分立的预热阈值。满足预热阈值HP1或HP2可以继而停止预热周期CP。有利的是,烹饪室122内的烹饪板166或表面168可以达到相对较高的温度,而不会在烹饪室122的其余部分达到过高或不希望的温度。
在预热周期CP之后(例如,紧接着其后),可以启动第一烹饪周期CC1,其中底部加热器输出P1被设定在烹饪输出设置(例如,40%和80%之间的中等输出设置),而顶部加热器输出P2被设定在相对高的输出设置(例如,80%和100%之间)。随着TL2处或沿TL2测量的温度快速上升,TL1处或沿TL1测量的温度可保持相对恒定。烹饪周期CC1可以继续,直到出现限制条件。可选地,限制条件可以是确定烹饪阈值HC2(例如,在TL2)被满足或超过。替代地,限制条件可以是另一个到期条件(例如,在烹饪周期CC1开始之后的预定的高输出时间段到期)。
在第一烹饪周期CC1之后(例如,紧接着其后),可以启动限制周期CR,其中底部加热器输出P1被设定在烹饪输出设置(例如,与第一烹饪周期CC1相同或不同的设置,比如,在10%和80%之间的输出设置),而顶部加热器输出P2被设定在相对低的输出设置(例如,在10%和40%之间)。随着TL2处或沿TL2测量的温度降低,TL1处或沿TL1测量的温度可保持相对恒定。限制周期CR可以继续,直至许可条件。可选地,许可条件可以是确定满足或超过限制下 限HR2(例如,在TL2)(即,TL2已经达到或已经低于HR2)。替代地,许可条件可以是另一个到期条件(例如,在限制周期CR开始之后的预定的冷却时间段到期)。值得注意的是,在实践中,限制周期CR的持续时间可以小于预热周期CR的持续时间。有利的是,通常在保持烹饪板166或表面168处于相对较高的温度时,可以防止过多的热量积聚在烹饪室122内(例如,用于烹饪额外的或连续的食物物品)。
在限制周期CR之后(例如,紧接着其后),可以启动第二或额外的烹饪周期CC2,类似于第一烹饪周期CC1。随后,如将被理解的那样可以执行附加的限制周期和烹饪周期(例如,直到用户停用烹饪器具100或者否则完全停止烹饪操作)。
总体上回到图1至图9,在某些实施例中,一个或更多个排气开口178通过室壁限定。具体而言,排气开口178可被限定为靠近顶部壁128(即,沿着竖直方向V比底部壁130更靠近顶部壁128)。例如,至少一个室壁(例如,顶部壁128或后壁126)可以在烤箱通风口172的下游限定排气开口178。在一些实施例中,排气开口178与顶部加热元件152间隔开(例如,水平地,比如沿着侧向方向L或横向方向T)。排列在加热元件150、152之间的相对热的空气可以从加热元件150、152之间的区域被吸走,有利地防止或减少上烹饪室122内的热量集中(例如,即使在上烹饪表面168被加热到相对高的温度,比如高于250或315摄氏度的操作期间)。
当组装时,排气开口178可以与围绕烤箱器具100的周围环境连通。在一些这样的实施例中,机柜101限定了排气通道182,其从上游排气开口178延伸到下游排气端口186。如图所示,一个或更多个内部导向壁184可以在上烹饪室122的外部限定排气通道182。
在一些实施例中,排气端口186被限定在顶部壁128上方。附加地或替代地,排气端口186可被限定靠近后壁126或在后壁的后部。通过将排气端口186放置在机柜101的顶部后部拐角,热空气可以向上排出并远离烤箱器具100及 其用户。替代地,排气端口186可以限定在机柜101的后外面板中,使得用户看不见,或者可以定位在任何其他合适的位置。附加地或替代地,排气端口186可以联接到排气管,该排气管将加热的空气引导出烤箱器具100所在的房间。
在使用期间,上烹饪室122内的空气、气体或烟雾,包括来自封闭区域160的空气的至少一部分,可以通过排气开口178、排气通道182和排气端口186向下游离开上烹饪室122。如所理解的,通过排气开口178的空气可由自然对流或来自包括的烤箱风扇(未示出)的强制对流推动,该烤箱风扇例如安装在排气通道182内。
如上面提到的,顶部加热元件152可以安装在底部加热元件150的上方,以加热上烹饪室122。在某些实施例中,顶部绝缘板188安装在上烹饪室122内的顶部加热元件152和顶部壁128之间(例如,沿着竖直方向)。具体地,顶部绝缘板188的至少一部分布置在顶部加热元件152上方。作为示例,顶部绝缘板188可以被包括在支撑盘(例如,开放式支撑盘)中或者作为支撑盘的一部分,顶部加热元件152容纳并支撑在支撑盘中。顶部绝缘板188可以环绕顶部加热元件152,同时限定底部开口,以将热量从顶部加热元件152向下引导(例如,引导至上烹饪室122或沿着烹饪板166的大致方向)。作为附加或替代的示例,顶部绝缘板188可以包括在顶部加热元件152上方竖直排列的独立的板,使得顶部加热元件152布置在顶部绝缘板188的底部表面和上烹饪室122之间。可选地,顶部绝缘板188可以形成开放的空腔,使得热量可以从顶部加热元件152直接向下流动到上烹饪室122的下部分。
顶部绝缘板188可以由任何合适的低热导率材料形成或包括任何合适的低热导率材料,比如陶瓷(例如,陶瓷纤维)绝缘体。附加地或替代地,顶部绝缘板188可以由任何合适的反射体板或热屏蔽材料(例如,金属,例如不锈钢、镀铝钢等)形成或包括任何合适的反射体板或热屏蔽材料,使得顶部绝缘板188充当热屏蔽,将热量从顶部加热元件152向下重定向。在使用期间,顶部绝缘板188通常可以阻止热量从顶部加热元件152传递(例如向上)。空气可以从上 烹饪室122流动到并跨过顶部绝缘板188,并流向排气开口178。
现在参照图14和图15,本公开可以进一步涉及操作烤箱器具(比如器具100)的方法(例如,方法400或500)。在示例性实施例中,控制器110可以操作来执行根据本公开的方法的各种步骤。
方法(例如,400或500)可以作为烤箱器具100的烹饪操作(例如,短周期烹饪操作)或作为烤箱器具的烹饪操作的一部分发生。特别地,本文公开的方法(例如,400或500)可以有利地促进烹饪室内的烹饪板或表面达到相对较高的温度,而不会在烹饪室的其余部分达到过高或不期望的温度。附加地或替代地,该方法(例如,400或500)可以有利地允许以相对快速的顺序执行多个烹饪周期(例如,不需要停用所有加热元件或显著冷却烹饪室)。
注意,方法400和500内的步骤的顺序是为了说明的目的。此外,方法400和500都不是互斥的。换句话说,本公开中的方法可以包括方法400和500中的任一个或两个。这两种方法都可以在共同的操作中被采用或被描述为实现。除非另有说明,否则在不脱离本公开的范围的情况下,下面的方法400或500中的一个或更多个步骤可以被改变、重新排列、以不同的顺序执行或以其他方式修改。
特别地,转向图14,在410,方法400包括接收短周期预热信号。通常,短周期预热信号可以指示计划(例如,由用户)短周期的或局部高热量烹饪操作。例如,短周期预热信号可以对应于用户输入(例如,在控制面板上)。因此,控制面板上的短周期按钮或输入的用户接合可以将短周期预热信号传输到控制器。
在420,方法400包括启动底部加热元件的预热激活(例如,响应于410)。具体地,底部加热元件的预热激活可以作为烤箱器具的预热周期的一部分来启动。在一些实施例中,420包括开启或以其他方式增加底部加热元件的功率或燃料(例如,从0%)。例如,底部加热元件可以根据预定的预热功率或热量输出(例如,由占空比或TRIAC决定的最大输出的百分比)来激活。
在某些实施例中,底部加热元件的预定的预热功率输出是相对高的输出设置(例如,大于50%)。可选地,底部加热元件的预定的预热功率输出可以大于75%。附加地或替代地,底部加热元件的预定的预热功率输出可以在80%和100%之间。
通常,一旦被激活,底部加热元件可保持在激活状态,其中功率或燃料被引导至底部加热元件以在预热周期的持续时间内产生热量。例如,底部加热元件的功率或热量输出可以保持在0%以上(例如,在引导的占空比或恒定输出下)。
在430,方法400包括在底部加热元件的预热激活期间启动顶部加热元件的预热激活。具体地,顶部加热元件的预热激活可以作为烤箱器具的预热周期的一部分来启动。可选地,430可以在420之后发生(例如,根据响应于410的顶部加热器延迟)。尽管如此,底部加热元件和顶部加热元件可以在预热周期的至少一部分期间同时激活以产生热量。在一些实施例中,430包括开启或以其他方式增加顶部加热元件的功率或燃料(例如,从0%)。例如,顶部加热元件可以根据预定的预热功率或热量输出(例如,由占空比或TRIAC决定的最大输出的百分比)来激活。
在某些实施例中,顶部加热元件的预定的预热功率输出是相对低的输出设置(例如,小于50%)。可选地,顶部加热元件的预定的预热功率输出可以小于45%。附加地或替代地,顶部加热元件的预定的预热功率输出可以在10%和40%之间。
通常,一旦被激活,顶部加热元件可保持在激活状态,其中功率或燃料被引导至顶部加热元件以在预热周期的至少一部分持续时间(例如,在430之后的预热周期的剩余持续时间)内产生热量。例如,顶部加热元件的功率或热量输出可以保持在0%以上(例如,在引导的占空比或恒定输出下)。
在440,方法400包括从第一温度传感器(例如,TS1)和第二温度传感器(例如,TS2)接收一个或更多个温度信号。换句话说,440包括从第一温度传 感器接收一个或更多个(例如,第一)温度信号,并从第二温度传感器接收一个或更多个(例如,第二)温度信号(例如,与来自第一温度传感器的温度信号分开或同时),如上所述。440的温度信号可以在预热周期期间接收。在某些实施例中,440发生在底部加热元件和顶部加热元件的预热激活期间。因此,在预热周期期间,可以获得烹饪室的多个测量值。
在450,方法400包括基于接收的一个或更多个温度信号确定预热阈值是否满足。确定满足预热阈值可以例如通常指示预热周期的完成或者通常已经满足烹饪的期望条件。在一些实施例中,当来自第一温度传感器或第二温度传感器的温度信号大于相应的传感器阈值时,可以满足预热阈值。
如上所述,每个温度传感器可以具有分立的温度阈值(例如,传感器预热阈值)。例如,第一温度传感器可以具有第一传感器阈值,而第二温度传感器具有第二传感器阈值。因此,450可以包括将第一温度信号(来自TS1)与第一温度阈值进行比较,并将第二温度信号(来自TS2)与第二温度阈值进行比较。可选地,第二温度阈值可以小于第一阈值。
对于450可能会发生超过任一温度阈值。因此,450可以包括确定第一传感器温度信号(来自TS1)大于第一传感器阈值,同时(例如,进一步确定)第二传感器温度信号(来自TS2)小于或等于第二传感器阈值。或者,450可以包括确定第一传感器温度信号(来自TS1)小于或等于第一传感器阈值,同时(例如,进一步确定)第二传感器温度信号(来自TS2)大于第二传感器阈值。如果出现来自两个温度传感器的温度信号大于它们相应的预热阈值的情况,方法400可以包括确定(例如,基于上述比较)第一传感器温度信号超过第一传感器阈值和第二传感器温度信号超过第二传感器阈值的第一时间点。在一些这样的实施例中,450因此可以基于所确定的第一传感器温度信号超过第一传感器阈值和第二传感器温度信号超过第二传感器阈值的第一时间。换句话说,只要确定超过任一传感器阈值,就可以确定满足预热阈值。
可选地,在没有任何进一步的指令(例如,启动烹饪周期)的情况下,可 以在烹饪室内保持预热条件(例如,根据反馈回路在450之后的预定的时间段内)。
在460,方法400包括根据在450之后(即,随后)的烹饪周期来引导加热元件。特别地,460可以包括引导底部加热元件和顶部加热元件,如上所述。
在一些实施例中,460包括启动底部加热元件的激活和启动顶部加热元件的高输出激活(例如,如上所述)。例如,底部加热元件可以在烹饪输出设置(例如,在40%和80%之间的中等输出设置)下被激活,而顶部加热元件在相对高的输出设置(例如,在80%和100%之间)下被激活。在烹饪周期开始和顶部加热元件的高输出激活之后,460可以包括确定限制条件和响应于确定限制条件来限制顶部加热元件的热量输出。具体地,顶部加热元件可以被限制,同时保持底部加热元件的激活。可选地,限制条件可以包括从烹饪周期开始(例如,启动顶部加热元件的高输出激活)的高输出时间段到期(例如,在2分钟和10分钟之间,比如4分钟)。附加地或替代地,如上所述,限制条件可以包括满足烹饪阈值(例如,在TS2)。
特别转向图15,在510,方法500包括接收短周期选择信号(例如,在预热周期之后)。通常,短周期选择信号可以指示(例如,由用户)期望短周期或局部高热量烹饪操作。例如,短周期选择信号可以对应于用户输入(例如,在控制面板上)。因此,控制面板上的短周期按钮或输入的用户接合可以将短周期选择信号传输到控制器。
在520,方法500包括启动底部加热元件的烹饪激活(例如,响应于510)。具体地,底部加热元件的烹饪激活可以作为烤箱器具的烹饪周期的一部分来启动。在一些实施例中,520包括继续或调节底部加热元件的功率或燃料(例如,从预热激活)。例如,底部加热元件可以在预热之后保持在激活状态,尽管底部加热元件可以被设置为预定的烹饪功率或者热量输出可以不同于预热功率或者热量输出(例如,由占空比或TRIAC决定的最大输出的百分比)。
在某些实施例中,底部加热元件的预定的烹饪功率输出是中等输出设置(例 如,小于80%或大于20%)。可选地,底部加热元件的预定的烹饪功率输出可以大于40%。附加地或替代地,预定的烹饪功率输出可以小于80%。此外,附加地或替代地,底部加热元件的预定的烹饪功率输出可以在40%和80%之间。
通常,一旦被激活,底部加热元件可保持在激活状态,其中功率或燃料被引导至底部加热元件以在烹饪周期的持续时间内产生热量。例如,底部加热元件的功率或热量输出可以保持在0%以上(例如,在引导的占空比或恒定输出下)。可选地,底部加热元件可以根据TS1的烹饪周期的设定点来调节(例如,温度反馈回路,如将被理解的,在该回路中调节激活以将TS1处的温度保持在设定点的预定的范围内)。在一些这样的实施例中,烹饪周期设定点等于TS1的(例如,第一传感器)预热温度阈值。因此,在烹饪周期期间,底部加热元件可以将在TS1处测量的温度保持在预热阈值以上。
在530,方法500包括在底部加热元件的烹饪激活期间启动顶部加热元件的高输出激活。具体地,顶部加热元件的高输出激活可以作为烹饪周期的一部分来启动。可选地,530可以在520之后发生(例如,根据响应于510的顶部加热器延迟)。替代地,530可以与520同时发生(例如,响应于510)。通常,底部加热元件和顶部加热元件可以同时激活,以在烹饪周期的至少一部分期间产生热量。在一些实施例中,530包括开启或以其他方式增加顶部加热元件的功率或燃料(例如,从0%或预热输出设置)。例如,顶部加热元件可以根据预定的高输出烹饪功率或热量输出(例如,由占空比或TRIAC决定的最大输出的百分比)来激活。
在某些实施例中,顶部加热元件的预定的高输出烹饪功率输出是相对高的输出设置(例如,大于50%)。可选地,顶部加热元件的预定的高输出烹饪功率输出可以大于75%。附加地或替代地,顶部加热元件的预定的高输出烹饪功率输出可以在80%和100%之间。
通常,一旦被激活,顶部加热元件可保持在激活状态,其中功率或燃料被引导至顶部加热元件以在烹饪周期的至少一部分持续时间内产生热量(例如, 如上所述,直到550)。例如,顶部加热元件的功率或热量输出可以保持在0%以上(例如,在引导的占空比或恒定输出下)。
在540,方法500包括在530之后(即,随后)确定限制条件。作为示例,540可以包括确定烹饪周期开始之后的高输出时间段的到期(例如,在510、520或530处划界或提示)。可选地,高输出时间段可以是2分钟到10分钟之间的时间段。附加地或替代地,高输出时间段可以在2分钟和4分钟之间。作为附加或替代示例,540可以包括如上所述确定烹饪阈值被满足(例如,在TS2)。可选地,烹饪阈值可以是大于TS2的预热阈值的TS2的温度阈值。
在550,方法500包括响应于在540确定限制条件,限制顶部加热元件的热量输出。具体而言,当底部加热元件在烹饪周期中激活时(例如,在底部加热元件的烹饪激活期间),顶部加热元件的热量输出受到限制。限制热量输出可能需要停用顶部加热元件(即,将热量输出引导至0%)或根据预定的低输出烹饪功率或热量输出(例如,在10%和40%之间)激活顶部加热元件。
在560,方法500包括在550之后(即,随后)确定许可条件。一般而言,许可条件可能表示来自顶部加热元件的增加的热量可能是合适的。作为示例,560可以包括在550开始之后确定冷却或限制时间段(例如,以分钟为单位测量)已经结束。作为附加或替代示例,如上所述560可以包括确定限制下限(例如,在TS2)被满足。可选地,在560期间,底部加热元件可以保持在激活状态。
在570,方法500包括响应于560,允许顶部加热元件的高输出激活(例如,再激活)。例如,570可以允许返回530,使得可以重复启动激活加热元件用于后续烹饪周期和限制时间段的确定,如将被理解的那样(例如,直到烹饪操作最终被用户或内部机构停止)。
该书面描述使用示例来公开本发明,包括其最佳模式,并且还使本领域的任何技术人员能够实践本发明,包括制造和使用任何设备或系统以及执行任何结合的方法。本发明的专利范围由权利要求限定,并且可以包括本领域技术人员想到的其他示例。如果这样的其它示例包括与权利要求的字面语言没有不同 的结构元件,或者如果它们包括与权利要求的字面语言没有实质差异的等同结构元件,则这些其它示例旨在在权利要求的范围内。

Claims (18)

  1. 一种操作烤箱器具的方法,所述烤箱器具包括安装在机柜内并限定烤箱室的多个室壁、在所述烤箱室中限定在所述多个室壁的底部壁和顶部壁之间的烹饪表面、安装在所述底部壁上方以加热所述烹饪表面的底部加热元件以及安装在所述烹饪表面上方以加热所述烤箱室的顶部加热元件,所述方法包括:
    启动所述底部加热元件的预热激活;
    在所述底部加热元件的预热激活期间,启动所述顶部加热元件的预热激活;
    接收来自所述烹饪表面处的第一温度传感器和安装在所述第一温度传感器上方的第二温度传感器的一个或更多个温度信号,接收发生在所述底部加热元件的预热激活和所述顶部加热元件的预热激活期间;
    基于所接收的一个或更多个温度信号来确定预热阈值是否被满足;以及
    在确定所述预热阈值被满足之后,根据烹饪周期引导所述底部加热元件和顶部加热元件。
  2. 根据权利要求1所述的方法,其中,启动所述顶部加热元件的预热激活先于启动所述底部加热元件的预热激活。
  3. 根据权利要求1所述的方法,其中,确定所述预热阈值被满足包括:
    确定来自所述第一温度传感器的第一传感器温度信号大于第一传感器阈值,以及
    确定来自所述第二温度传感器的第二传感器温度信号小于或等于第二传感器阈值。
  4. 根据权利要求3所述的方法,其中,所述第二传感器阈值小于所述第一传感器阈值。
  5. 根据权利要求1所述的方法,其中,确定所述预热阈值被满足包括:
    确定来自所述第一温度传感器的第一传感器温度信号小于或等于第一传感器阈值,以及
    确定来自所述第二温度传感器的第二传感器温度信号大于第二传感器阈值。
  6. 根据权利要求5所述的方法,其中,所述第二传感器阈值小于所述第一传感器阈值。
  7. 根据权利要求1所述的方法,其中,所述烹饪表面由烹饪板限定,所述烹饪板设置在所述底部壁上方的接收区内的基板上,其中,所述第一温度传感器安装在所述烹饪板上,并且所述第二温度传感器安装在所述烹饪表面上方。
  8. 根据权利要求1所述的方法,其中,根据烹饪周期引导所述底部加热元件和顶部加热元件包括:
    启动所述底部加热元件的烹饪激活,
    启动所述顶部加热元件的高输出激活,
    在启动所述顶部加热元件的高输出激活之后确定限制条件,以及
    响应于确定限制条件,限制所述顶部加热元件处的热量输出,同时维持所述底部加热元件的激活。
  9. 根据权利要求8所述的方法,其中,确定限制条件包括确定高输出时间段的到期。
  10. 根据权利要求8所述的方法,其中,确定限制条件包括确定在所述第二温度传感器处烹饪阈值被满足。
  11. 一种操作烤箱器具的方法,所述烤箱器具包括安装在机柜内并限定烤箱室的多个室壁、在所述烤箱室中限定在所述多个室壁的底部壁和顶部壁之间的烹饪表面、安装在所述底部壁上方以加热所述烹饪表面的底部加热元件以及安装在所述烹饪表面上方以加热所述烤箱室的顶部加热元件,所述方法包括:
    启动所述底部加热元件的烹饪激活;
    在所述底部加热元件的烹饪激活期间,启动所述顶部加热元件的高输出激活;
    在启动所述顶部加热元件的高输出激活之后确定限制条件;以及
    响应于确定限制条件,在所述底部加热元件的烹饪激活期间限制所述顶部加热元件处的热量输出。
  12. 根据权利要求11所述的方法,其中,启动所述底部加热元件的激活和启动所述顶部加热元件的高输出激活是在引导预热周期之后,其中,引导预热周期包括:
    启动所述底部加热元件的预热激活;
    接收来自所述烹饪表面处的第一温度传感器和安装在所述第一温度传感器上方的第二温度传感器的一个或更多个温度信号,接收发生在所述底部加热元件的预热激活和所述顶部加热元件的预热激活期间;以及,
    基于所接收的一个或更多个温度信号来确定预热阈值是否满足。
  13. 根据权利要求11所述的方法,其中,确定限制条件包括确定高输出时间段的到期。
  14. 根据权利要求11所述的方法,其中,确定限制条件包括确定在所述第二温度传感器处烹饪阈值被满足。
  15. 根据权利要求11所述的方法,其中,限制所述顶部加热元件处的热量输出包括停止所述顶部加热元件的激活。
  16. 根据权利要求11所述的方法,其中,限制所述顶部加热元件处的热量输出包括启动所述顶部加热元件的低温激活。
  17. 根据权利要求11所述的方法,进一步包括:
    在限制热量输出之后,确定许可条件,所述许可条件包括一限制时间段的到期;以及
    响应于确定许可条件,允许所述顶部加热元件的高输出激活。
  18. 根据权利要求11所述的方法,进一步包括:
    在限制热量输出之后,确定许可条件,所述许可条件包括确定在所述第二温度传感器处限制下限被满足;以及
    响应于确定许可条件,允许所述顶部加热元件的高输出激活。
PCT/CN2021/103017 2020-06-29 2021-06-29 用于高热量烹饪的烤箱器具和方法 WO2022002028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/915,313 2020-06-29
US16/915,313 US11873997B2 (en) 2020-06-29 2020-06-29 Oven appliance and methods for high-heat cooking

Publications (1)

Publication Number Publication Date
WO2022002028A1 true WO2022002028A1 (zh) 2022-01-06

Family

ID=79031652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103017 WO2022002028A1 (zh) 2020-06-29 2021-06-29 用于高热量烹饪的烤箱器具和方法

Country Status (2)

Country Link
US (1) US11873997B2 (zh)
WO (1) WO2022002028A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510411B2 (en) * 2020-10-15 2022-11-29 Haier Us Appliance Solutions, Inc. Oven appliance and methods for high-heat cooking
US20230276985A1 (en) * 2022-03-04 2023-09-07 Nuwave, Llc Oven with Multiple Heat Sources
IT202200006305A1 (it) * 2022-03-30 2023-09-30 Effeuno S R L Forno per la cottura di prodotti alimentari e metodo per la cottura di prodotti alimentari con detto forno
IT202200006311A1 (it) 2022-03-30 2023-09-30 Effeuno S R L Forno per la cottura di alimenti

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734403B2 (en) * 2001-04-19 2004-05-11 Whirlpool Corporation Cooking oven incorporating accurate temperature control and method for doing the same
CN105573114A (zh) * 2015-12-30 2016-05-11 北京小焙科技有限公司 电烤箱及其双端智能控制方法
CN105919449A (zh) * 2016-06-15 2016-09-07 宁波方太厨具有限公司 一种烤箱及其工作方法
CN110209215A (zh) * 2018-09-25 2019-09-06 华帝股份有限公司 脆烤模式的控制方法
US20190327796A1 (en) * 2018-04-24 2019-10-24 Haier Us Appliance Solutions, Inc. Oven appliance and a method for operating an oven appliance for customized cooking outcome

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732476A (en) * 1956-01-24 Smith
US2035767A (en) * 1934-08-11 1936-03-31 Edison General Elec Appliance Electric oven
US2404139A (en) * 1938-09-30 1946-07-16 Gen Motors Corp Domestic appliance
US2385433A (en) * 1938-12-23 1945-09-25 American Thermometer Company Thermostat
US2434467A (en) * 1940-02-17 1948-01-13 Gen Motors Corp Electric heating system for ovens
US2385434A (en) * 1940-03-09 1945-09-25 American Thermometer Company Temperature regulating device for heating appliances
US2402787A (en) * 1940-11-20 1946-06-25 Gen Motors Corp Domestic appliance
US2483526A (en) * 1945-09-26 1949-10-04 Gen Motors Corp Domestic appliance
US2487037A (en) * 1946-07-23 1949-11-01 Moffats Ltd Apparatus for automatically controlling temperatures
US2745937A (en) * 1953-08-24 1956-05-15 Gen Electric Electric oven heating system
US3073938A (en) * 1957-04-30 1963-01-15 Proctor Silex Corp Apparatus for regulating oven temperatures
US3143638A (en) * 1962-09-27 1964-08-04 Gen Electric Convertible drawer oven
US3364338A (en) * 1965-01-15 1968-01-16 Westinghouse Electric Corp Oven temperature control
US3358122A (en) 1965-07-01 1967-12-12 Roper Corp Geo D Electrical thermostatic control system for electric ovens
JPS4881142A (zh) * 1972-01-31 1973-10-30
US4164643A (en) * 1978-03-06 1979-08-14 Dewitt David P Energy-efficient bi-radiant oven system
US4429829A (en) * 1981-11-20 1984-02-07 Mallinckrodt, Incorporated Interactive dual probe temperature control system
US4598691A (en) * 1985-04-01 1986-07-08 Raytheon Company Gas oven with recessed broil burner
US5296683A (en) * 1991-08-19 1994-03-22 Henny Penny Corporation Preheating method and apparatus for use in a food oven
US5352865A (en) * 1991-08-19 1994-10-04 Henny Penny Corporation Programmable load compensation method and apparatus for use in a food oven
US5317130A (en) * 1991-08-19 1994-05-31 Henny Penny Corporation Programmable load compensation method and apparatus for use in a food oven
US6080972A (en) * 1995-02-16 2000-06-27 May; Leonhard Remotely operated universal programmable oven controller
US5695668A (en) 1995-09-08 1997-12-09 Boddy; Victor R. Oven with selectively energized heating elements
JP2941727B2 (ja) * 1997-01-21 1999-08-30 敷島製パン株式会社 オーブン構造およびオーブン加熱室の加熱方法
US6777652B2 (en) * 1999-03-30 2004-08-17 Edward E. Stockley Programmable oven with broiler temperature interlock
US6307185B1 (en) * 2000-11-27 2001-10-23 Jerry Loveless Thermally efficient portable convective oven
US20020092842A1 (en) * 2000-11-27 2002-07-18 Jerry Loveless Thermally efficient portable convective oven
US6987252B2 (en) 2001-01-11 2006-01-17 General Electric Company Speedcooking oven including convection/bake mode and microwave heating
DE10104501B4 (de) 2001-01-31 2004-06-24 BSH Bosch und Siemens Hausgeräte GmbH Gargerät
US6570136B1 (en) * 2002-05-31 2003-05-27 Whirlpool Corporation Top-heat oven with selective browning
US7372000B2 (en) * 2004-04-13 2008-05-13 Stockley Enterprises, Llc Air control for a brick oven
US7759617B2 (en) * 2004-11-03 2010-07-20 General Electric Company Gas range and method for using the same
US7378617B1 (en) * 2006-12-11 2008-05-27 General Electric Company Heating systems and methods for a cooking appliance
US9404660B1 (en) * 2006-12-21 2016-08-02 Wood Stone Corporation Chambered flame oven
US8464701B2 (en) * 2006-12-21 2013-06-18 Wood Stone Corporation Chambered flame oven
US8049142B2 (en) * 2007-03-27 2011-11-01 Electrolux Home Products, Inc. Convection preheat system and method for radiant baking
JP2010112664A (ja) 2008-11-10 2010-05-20 Panasonic Corp 加熱調理器
DE102009003136A1 (de) 2009-05-15 2010-11-18 BSH Bosch und Siemens Hausgeräte GmbH Gargerät mit einer Muffel sowie Verfahren zum Betreiben eines Gargeräts
ITTO20090979A1 (it) * 2009-12-11 2011-06-12 Indesit Co Spa "apparato per la cottura di alimenti"
US8929724B1 (en) * 2011-02-07 2015-01-06 J.C. Penney Purchasing Corporation, Inc. High efficiency oven and method of use
KR20120119842A (ko) * 2011-04-22 2012-10-31 엘지전자 주식회사 조리기기
US20150104753A1 (en) * 2013-10-11 2015-04-16 General Electric Company Oven appliance and method for operating oven appliance
US9927128B2 (en) * 2014-06-19 2018-03-27 Haier Us Appliance Solutions, Inc. Method for operating an oven appliance and a control system for an oven appliance
US20160220057A1 (en) * 2015-01-31 2016-08-04 Spectrum Brands, Inc. Cooking appliance with different modes for cooking different types of food products
US10036555B2 (en) * 2015-05-27 2018-07-31 Haier Us Appliance Solutions, Inc. Method for controlling a gas cooking appliance
CN204795645U (zh) 2015-06-24 2015-11-18 广东恒基卓越电器科技有限公司 一种带有陶土炉盘的简易发热体
US10012392B2 (en) 2015-08-28 2018-07-03 Haier Us Appliance Solutions, Inc. Oven appliance
US10837651B2 (en) 2015-09-24 2020-11-17 Whirlpool Corporation Oven cavity connector for operating power accessory trays for cooking appliance
US20170130968A1 (en) 2015-11-10 2017-05-11 General Electric Company Method for Monitoring Cooking in an Oven Appliance
US10677472B2 (en) * 2016-03-24 2020-06-09 Haier Us Appliance Solutions, Inc. Control method for oven broiling
US10634362B2 (en) 2016-06-30 2020-04-28 Midea Group Co., Ltd. Oven bottom with cooking surface
US10215420B2 (en) * 2016-07-25 2019-02-26 Haier Us Appliance Solutions, Inc. Oven appliance
US10368395B1 (en) * 2017-11-30 2019-07-30 Palate Home Inc. Method of forming cooking plate with temperature sensing element
US10893776B1 (en) * 2016-09-05 2021-01-19 Desora Inc. Cooking plate with temperature sensing element
US11073287B2 (en) * 2018-08-24 2021-07-27 Haier Us Appliance Solutions, Inc. Cooking appliance and method for determining a fuel or electrical input into a cooking appliance
US11796187B2 (en) * 2018-12-10 2023-10-24 Midea Group Co., Ltd. Electronically controlled vent damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734403B2 (en) * 2001-04-19 2004-05-11 Whirlpool Corporation Cooking oven incorporating accurate temperature control and method for doing the same
CN105573114A (zh) * 2015-12-30 2016-05-11 北京小焙科技有限公司 电烤箱及其双端智能控制方法
CN105919449A (zh) * 2016-06-15 2016-09-07 宁波方太厨具有限公司 一种烤箱及其工作方法
US20190327796A1 (en) * 2018-04-24 2019-10-24 Haier Us Appliance Solutions, Inc. Oven appliance and a method for operating an oven appliance for customized cooking outcome
CN110209215A (zh) * 2018-09-25 2019-09-06 华帝股份有限公司 脆烤模式的控制方法

Also Published As

Publication number Publication date
US11873997B2 (en) 2024-01-16
US20210404745A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2022002028A1 (zh) 用于高热量烹饪的烤箱器具和方法
US11428418B2 (en) Oven appliance having a high-heat cooking surface
US20130156906A1 (en) Salamander Element for Closed System Oven
US20160123601A1 (en) Appliance side panel with air channel
WO2012131333A2 (en) Oven for baking bread products
JP4199228B2 (ja) グリル装置
US10302309B2 (en) Oven appliance having a broiler assembly
JP2010112664A (ja) 加熱調理器
US20230270284A1 (en) Oven appliance and methods for broiling or high-heat cooking
JP2008241219A (ja) 加熱調理器
US20210262674A1 (en) Oven appliance for high-heat cooking operations
WO2022078484A1 (zh) 用于高热烹饪的烤箱器具和方法
US20220030666A1 (en) Countertop cooking system
JPH09271447A (ja) オーブン
US20230272922A1 (en) Oven appliance and methods for high-heat cooking
JP3092399B2 (ja) オーブントースター
US20230137454A1 (en) Oven appliance and methods of state-contingent operation
US20230272920A1 (en) Oven appliance and methods for adaptive cooking
US11578873B2 (en) Oven appliance and method for preheating high-heat cooking surface
JP4207035B2 (ja) 加熱調理器
KR102067272B1 (ko) 조리기기
US20220128238A1 (en) Oven appliance and methods for high-heat cooking
JP2010276257A (ja) 加熱調理器
JP2010286206A (ja) 加熱調理器
JP7451817B1 (ja) コンベクションオーブン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834454

Country of ref document: EP

Kind code of ref document: A1