WO2022001661A1 - 通信方法、装置、系统及计算机可读存储介质 - Google Patents

通信方法、装置、系统及计算机可读存储介质 Download PDF

Info

Publication number
WO2022001661A1
WO2022001661A1 PCT/CN2021/100367 CN2021100367W WO2022001661A1 WO 2022001661 A1 WO2022001661 A1 WO 2022001661A1 CN 2021100367 W CN2021100367 W CN 2021100367W WO 2022001661 A1 WO2022001661 A1 WO 2022001661A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
reflectors
reflector
identifiers
channel
Prior art date
Application number
PCT/CN2021/100367
Other languages
English (en)
French (fr)
Inventor
孙欢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21832060.4A priority Critical patent/EP4156784A4/en
Publication of WO2022001661A1 publication Critical patent/WO2022001661A1/zh
Priority to US18/147,245 priority patent/US20230134172A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15507Relay station based processing for cell extension or control of coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/145Passive relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method, apparatus, system, and computer-readable storage medium.
  • a base station In the field of mobile communication, a base station is responsible for data transmission and reception of user equipment in a certain area, which is the area covered by the base station. At present, the coverage areas of multiple base stations may overlap, so for some user equipment, the user equipment may be located in the overlapping area between the coverage areas of the multiple base stations.
  • the first user equipment For the user equipment located in the overlapping area, it is referred to as the first user equipment for convenience of description, and in order to improve the communication capability of the first user equipment, the following three methods can be used to implement at present.
  • the three ways are:
  • the home base station of the first user equipment sends data to the first user equipment, and the neighbor base stations of the home base station also send data belonging to the first user equipment to the first user equipment, which can increase the signal received by the first user equipment strength to improve the communication capability of the first user equipment.
  • the home base station requests the neighbor base station to stop using the time-frequency resource occupied by the first user equipment, so that the neighbor base station stops sending data to the second user equipment belonging to itself on the time-frequency resource, reducing the neighbor base station's impact on the first user equipment. interference of the user equipment to improve the communication capability of the first user equipment.
  • the home base station requests the neighbor base station to change the transmission direction to stop sending data belonging to the second user equipment to the first user equipment, which can reduce the interference of the neighbor base station to the first user equipment and improve the first user equipment. communication capability.
  • the neighbor base station uses resources to send data to the first user equipment, so that the neighbor base station reduces the resources allocated for the second user equipment, thereby affecting the communication capability of the second user equipment.
  • the neighbor base station stops using the time-frequency resources occupied by the first user equipment or changes the transmission direction, which will also affect the communication capability of the second user equipment.
  • the present application provides a communication method, apparatus, system, and computer-readable storage medium to avoid affecting the communication capabilities of users of neighboring cells.
  • the technical solution is as follows:
  • the present application provides a communication method.
  • a first base station sends a cooperation request to a second base station, and the second base station is another base station other than the first base station.
  • the first base station receives a cooperation response, the cooperation response includes the identifiers of M first reflectors, M is an integer greater than 0, the M first reflectors belong to the second base station, and the cooperation response is that the second base station based on the cooperation Sent after requesting to release the control rights of the M first reflectors, the M first reflectors can cover the first user equipment UE, and the first UE belongs to the first base station.
  • the first base station acquires the control right of the M first reflectors, and communicates with the first UE through the M first reflectors.
  • the second base station Since the first base station only obtains the control rights of the M first reflectors from the second base station, and communicates with the first UE through the M first reflectors, in the communication process, the second base station will not be used. It does not require the second base station to stop using the time-frequency resources occupied by the first UE, nor does it require the second base station to change the transmission direction, so that the communication between the second base station and the second UE belonging to the second base station will not be affected, Therefore, the communication capability of the second UE is not affected, and the communication capability of the users of the neighbor cells is avoided.
  • the first base station and the second base station do not need to exchange data such as control signaling, and the The communication between the first base station and the first UE is directly implemented, thereby reducing the communication delay and improving the communication capability of the first UE.
  • the cooperation request includes identifiers of N first reflectors that can cover the first UE, and the N first reflectors belong to the second base station, and the cooperation request is used by the second base station from the Among the first reflectors corresponding to the identifiers of the N first reflectors, M first reflectors that can release the control right are determined, and N is an integer greater than or equal to M. In this way, the second base station can select the first reflector that can release the control right within the specified range.
  • the cooperation request includes location description information of the first UE, and the cooperation request is used by the second base station to determine, based on the location description information, M first reflectors capable of releasing control rights. In this way, the second base station autonomously determines the first reflector that can release the control right.
  • the first base station determines the N first reflectors that can cover the first UE. Since the determined N first reflectors can cover the first UE, and the M first reflectors are selected from the N first reflectors, it is guaranteed that the first base station can use the M first reflectors The reflector communicates with the first UE.
  • the first base station receives identifiers of N first reflectors sent by the first UE, where the N first reflectors are reflections of reflectors belonging to the second base station by the first UE by measuring signal obtained. Since the N first reflectors are measured by the first UE, and the M first reflectors are selected from the N first reflectors, it is guaranteed that the first base station can use the M first reflectors. A reflector communicates with the first UE.
  • the first base station determines, according to the location description information of the first UE, a neighbor cell that can cover the first UE.
  • the first base station selects N first reflectors from reflectors belonging to neighbor cells according to the location description information of the first UE. In this way, since the N first reflectors are selected based on the location description information of the first UE, it is guaranteed that the N first reflectors can cover the first UE.
  • the first base station measures channel quality information of an uplink equivalent channel between the first base station and the first UE, where the uplink equivalent channel includes M concatenated channels, and each concatenated channel includes A channel from a first UE to a first reflector and a channel from a first reflector to a first base station, where the one first reflector is one of the M first reflectors.
  • the first base station determines the power adjustment parameter of the first UE based on the channel quality information of the uplink equivalent channel, and sends the power adjustment parameter to the first UE, so that the first UE can adjust the transmit power of the first UE based on the power adjustment parameter to ensure that The first UE can communicate with the first base station.
  • the first base station measures delay information of an uplink equivalent channel between the first base station and the first UE, where the uplink equivalent channel includes M concatenated channels, each concatenated channel It includes a channel from the first UE to a first reflector and a channel from the one first reflector to a first base station, where the one first reflector is one of the M first reflectors.
  • the first base station sends the cyclic prefix CP length indication information to the first UE according to the delay information, so that the first UE can adjust the CP length of the first UE based on the CP length indication information, and ensures that the first UE and the first base station can communicate with each other. communication.
  • the first base station activates each second reflector, respectively, in a time slot corresponding to each second reflector in the at least one second reflector, and activates each second reflector separately in each second reflector.
  • the measurement signal is sent in the time slot corresponding to the reflector, at least one second reflector belongs to the first base station, and the measurement signal sent in the time slot corresponding to each second reflector is used by the first UE to select a second reflector
  • the access reflector for the first UE to access the first base station after the first UE accesses the first base station, the first base station refuses to release the access reflector when there is a third base station requesting the control right of the access reflector control right, the third base station is another base station except the first base station. Since the first base station refuses to release the control right of the access reflector, it is ensured that the communication between the first base station and the first UE will not be disconnected.
  • the first base station determines a second reflector capable of covering the first UE; and communicates with the first UE through the M first reflectors and the determined second reflector.
  • the reflector belonging to the first base station and the reflector belonging to the second base station are combined to realize the communication between the first base station and the first UE, which can greatly improve the communication capability of the first UE.
  • the present application provides a communication method, in which a second base station receives a cooperation request sent by a first base station, and the second base station is another base station except the first base station.
  • the second base station releases the control rights of the M first reflectors based on the cooperation request, the M first reflectors can cover the first user equipment UE, the first UE belongs to the first base station, and the M first reflectors belong to In the second base station, M is an integer greater than 0.
  • the second base station sends a cooperation response to the first base station, where the cooperation response includes the identifiers of the M first reflectors, and the cooperation response is used for the first base station to communicate with the first UE.
  • the first base station Since the second base station releases the control rights of the M first reflectors, the first base station only obtains the control rights of the M first reflectors from the second base station, and communicates with the first UE through the M first reflectors. Communication, the resources in the second base station will not be used during the communication process, the second base station does not need to stop using the time-frequency resources occupied by the first UE, and the second base station does not need to change the transmission direction, so that the second base station will not be affected. The communication with the second UE belonging to the second base station will not affect the communication capability of the second UE and avoid affecting the communication capability of the users of the neighbor cells.
  • the cooperation request includes identifiers of N first reflectors capable of covering the first UE, the N first reflectors belong to the second base station, and N is an integer greater than or equal to M.
  • the second base station selects M first reflectors from the first reflectors corresponding to the identifiers of the N first reflectors, and releases the control right of the M first reflectors. In this way, the second base station can select the first reflector that can release the control right within the specified range.
  • the cooperation request includes location description information of the first UE.
  • the second base station determines M first reflectors that can cover the first UE based on the location description information, and releases the control right of the M first reflectors. In this way, the second base station autonomously determines the first reflector that can release the control right.
  • the present application provides a communication method, in which the first user equipment UE obtains the N first reflectors by measuring the signals reflected by the N first reflectors belonging to the second base station
  • the second base station is a base station other than the first base station, the first UE belongs to the first base station, and N is an integer greater than 0.
  • the first UE sends the identifiers of the N first reflectors, and the identifiers of the N first reflectors are used by the first base station to obtain the control rights of the M first reflectors from the second base station, and the N first reflectors
  • the reflector includes the M first reflectors.
  • the first UE communicates with the first base station through the M first reflectors.
  • the first base station After the first UE sends the identifiers of the N first reflectors, the first base station only obtains the control rights of the M first reflectors from the second base station, and communicates with the first UE through the M first reflectors In this way, during the communication process, the resources in the second base station will not be used, the second base station does not need to stop using the time-frequency resources occupied by the first UE, and the second base station does not need to change the transmission direction, so that the second base station will not be affected.
  • the communication between the base station and the second UE belonging to the second base station does not affect the communication capability of the second UE, and avoids affecting the communication capability of users in neighboring cells.
  • the first base station and the second base station do not need to exchange data such as control signaling, and the The communication between the first base station and the first UE is directly implemented, thereby reducing the communication delay and improving the communication capability of the first UE.
  • the first UE receives a power adjustment parameter sent by the first base station, where the power adjustment parameter is determined by the first base station based on channel quality information of an uplink equivalent channel, where the uplink equivalent channel includes M cascaded channels, each cascaded channel includes a channel from the first UE to a first reflector and a channel from the one first reflector to the first base station, where the one first reflector is one of the M first reflectors One.
  • the first UE can adjust the transmit power of the first UE based on the power adjustment parameter, which ensures that the first UE can communicate with the first base station.
  • the first UE receives the cyclic prefix CP length indication information sent by the first base station, and the CP length indication information is sent by the first base station based on the delay information of the uplink equivalent channel, and the uplink equivalent channel It includes M concatenated channels, each concatenated channel includes a channel from the first UE to a first reflector and a channel from the one first reflector to the first base station, and the one first reflector is an M-th channel. one of the reflectors. In this way, the first UE can adjust the CP length of the first UE based on the CP length indication information, which ensures that the first UE can communicate with the first base station.
  • the first UE receives the measurement signal sent by the first base station in a time slot corresponding to each second reflector in the at least one second reflector, and the first base station is used for each second reflector.
  • each second reflector is activated respectively, and a measurement signal is respectively sent in the time slot corresponding to each second reflector, and the at least one second reflector belongs to the first base station.
  • the first UE selects a reflector from each second reflector according to the measurement signal received in the time slot corresponding to each second reflector, and accesses the first base station through the selected reflector. In this way, even if the signal quality of the first base station where the first UE is located is poor, the first UE can access the first base station through the reflector, ensuring that the first base station and the first UE can communicate.
  • the present application provides a communication apparatus for executing the method in the first aspect or any possible implementation manner of the first aspect.
  • the apparatus includes means for performing the method of the first aspect or any one of possible implementations of the first aspect.
  • the present application provides a communication apparatus for executing the method in the second aspect or any possible implementation manner of the second aspect.
  • the apparatus includes means for performing the method of the second aspect or any one of possible implementations of the second aspect.
  • the present application provides a communication apparatus for performing the method in the third aspect or any possible implementation manner of the third aspect.
  • the apparatus includes means for performing the method of the third aspect or any one of possible implementations of the third aspect.
  • the present application provides a communication apparatus, the apparatus includes: a processor, a memory, and a network interface. Wherein, the processor, the memory and the network interface may be connected through a bus system.
  • the memory is used to store one or more programs, and the processor is used to execute the one or more programs in the memory to cause the apparatus to perform the method of the first aspect or any possible implementation of the first aspect.
  • the present application provides a communication apparatus, the apparatus includes: a processor, a memory, and a network interface. Wherein, the processor, the memory and the network interface may be connected through a bus system.
  • the memory is used to store one or more programs, and the processor is used to execute the one or more programs in the memory to cause the apparatus to perform the method of the second aspect or any possible implementation of the second aspect.
  • the present application provides a communication apparatus, the apparatus includes: a processor, a memory, and a network interface. Wherein, the processor, the memory and the network interface may be connected through a bus system.
  • the memory is used to store one or more programs, and the processor is used to execute the one or more programs in the memory, so that the apparatus performs the method of the third aspect or any possible implementation of the third aspect.
  • the present application provides a communication apparatus, the apparatus includes: a processor, a memory, and a network interface.
  • the processor, the memory and the network interface may be connected through a bus system.
  • the memory is used to store one or more programs, and the processor is used to execute the one or more programs in the memory, so that the apparatus performs the method of the third aspect or any possible implementation of the third aspect.
  • the present application provides a computer-readable storage medium, where program codes are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer enables the computer to execute the first aspect, the second aspect, and the third aspect.
  • the present application provides a computer program product comprising program codes, which, when running on a device, enables the device to perform any possible implementation of the first aspect, the second aspect, the third aspect, and the first aspect A method, any possible implementation of the second aspect, or any possible implementation of the third aspect.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a program, and the program is used to implement the above-mentioned first aspect, second aspect, third aspect, and first aspect A method in any possible implementation, any possible implementation of the second aspect, or any possible implementation of the third aspect.
  • the present application provides a communication system, where the communication system includes the apparatus described in the fourth aspect, the apparatus described in the fifth aspect, and the apparatus described in the sixth aspect, or the communication system includes The device of the seventh aspect, the device of the eighth aspect, and the device of the ninth aspect.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another network architecture provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a reflector provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of an access method provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of another access method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • a network architecture provided by an embodiment of the present application includes multiple base stations, and the multiple base stations can form a cooperative set.
  • the basic resources belonging to each base station can be stored in each base station. Shared use between base stations.
  • the base resource of the base station includes at least one reflector.
  • the at least one reflector belongs to the base station, which has control over each of the at least one reflector.
  • the at least one reflector is an intelligent reflector, such as an intelligent electromagnetic reflector, the reflection phase of each reflector in the at least one reflector is controllable, and the base station can change the reflection of each reflector phase.
  • the network architecture includes base station 1 and base station 2, the basic resources of base station 1 include reflector 1, reflector 2 and reflector 3, reflector 1, reflector 2 and reflector 3 Belonging to base station 1, base station 1 has the control right of reflector 1, the control right of reflector 2, and the control right of reflector 3.
  • the basic resources of base station 2 include reflector 4, reflector 5, reflector 6 and reflector 7.
  • Reflector 4, reflector 5, reflector 6 and reflector 7 belong to base station 2, and base station 2 has control of reflector 4 control of reflector 5, control of reflector 6, and control of reflector 7.
  • each base station in the cooperative set stores basic information of each reflector in the cooperative set
  • each reflector in the cooperative set is a reflector belonging to each base station.
  • the basic information of the reflector includes information such as the identity, location, and identity of the base station to which the reflector belongs. That is to say, for any base station in the cooperation set, the base station not only stores the basic information of the reflector belonging to itself, but also stores the basic information of the reflectors belonging to other base stations in the cooperation set. or,
  • the network architecture further includes a management device, there is a network connection between the management device and each base station in the cooperative set, and each reflector in the cooperative set is stored in the management device basic information.
  • User equipment can access a certain base station in the cooperative set.
  • the base station is called the first base station
  • the UE is called the first UE, that is, the first base station is the home of the first UE.
  • the base station the so-called home base station, is the base station accessed by the first UE.
  • the first base station may establish a direct connection channel with the first UE, and communicate with the first UE through the direct connection channel.
  • the first base station determines Z reflectors from reflectors belonging to the first base station, the first base station communicates with the first UE through the Z reflectors, and Z is an integer greater than 0.
  • each reflector in the Z reflectors is used to reflect the signal between the first base station and the first UE. That is, the first base station sends a downlink signal, and the Z reflectors can reflect the downlink signal to the first UE; the first UE sends an uplink signal, and the Z reflectors can reflect the uplink signal to the first base station.
  • the equivalent channel between the first base station and the first UE includes Z concatenated channels, and the Z concatenated channels
  • the concatenated channel corresponding to one reflector includes a channel between the first UE and the reflector and a channel between the reflector and the first base station.
  • the equivalent channel between the first base station and the first UE further includes a direct connection channel between the first base station and the first UE.
  • the first UE accesses the first base station (ie, base station 1 ), the first base station determines reflector 2 and reflector 3 , and communicates with the first UE through reflector 2 and reflector 3 .
  • the equivalent channel between the first base station and the first UE includes a concatenated channel corresponding to the reflector 2, a concatenated channel corresponding to the reflector 3, and a direct connection channel between the first base station and the first UE.
  • the concatenated channel corresponding to the reflector 2 includes a channel between the first UE and the reflector 2 and a channel between the reflector 2 and the first base station.
  • the concatenated channel corresponding to the reflector 3 includes a channel between the first UE and the reflector 3 and a channel between the reflector 3 and the first base station.
  • the first base station determines Z reflectors, and communicates with the first UE through the Z reflectors.
  • the detailed implementation process will be described in detail in the embodiment shown in FIG. 4 later.
  • the first base station may also send the data to the second base station.
  • Requesting reflectors belonging to the second base station the second base station can release the control rights of M reflectors, where M is an integer greater than 0, and the second base station is other base stations in the cooperative set except the first base station.
  • the first base station can acquire the control right of the M reflectors, and communicate with the first UE through the M reflectors.
  • the first base station communicates with the first UE through the M reflectors and the Z reflectors.
  • the reflector belonging to the second base station is called the first reflector
  • the reflector belonging to the first base station is called the second reflector. That is to say, the first base station communicates with the first UE through the M first reflectors. Alternatively, the first base station communicates with the first UE through the M first reflectors and the Z second reflectors.
  • the equivalent channel between the first base station and the first UE includes M concatenated channels, and the M The concatenated channels are in one-to-one correspondence with the M first reflectors, and the concatenated channels corresponding to one first reflector include the channel between the first UE and the first reflector and the channel between the first reflector and the first base station. channel between.
  • the equivalent channel between the first base station and the first UE includes the M concatenated channels further include Z concatenated channels, the Z concatenated channels are in one-to-one correspondence with the Z second reflectors, and the concatenated channels corresponding to one second reflector include the first UE and the second reflector.
  • the equivalent channel between the first base station and the first UE further includes the first base station.
  • the first base station may request one or more second base stations to provide a second reflector, and communicate with the first UE through the requested second reflector.
  • the detailed implementation process will be described in the subsequent embodiment shown in FIG. 7 . Explain in detail.
  • the reflector includes a plurality of reflection units, and each reflection unit is used to reflect the signal between the first base station and the first UE.
  • the reflection phase of the reflection unit in the reflector needs to be adjusted first, so that the reflector can reflect the signal between the first base station and the first UE.
  • an embodiment of the present application provides a communication method, and the method is applied to the network architecture shown in FIG. 1 or 2, including:
  • Step 401 The first base station activates each second reflector in the time slot corresponding to each second reflector in the at least one second reflector, and activates each second reflector respectively in the time slot corresponding to each second reflector Send measurement signals.
  • the at least one second reflector is a reflector belonging to the first base station and in an idle state.
  • the first base station may activate each second reflector respectively in a time slot corresponding to each second reflector belonging to the first base station. That is to say: for any second reflector, the first base station activates the second reflector in the time slot corresponding to the second reflector, sends a measurement signal after activation, and the second reflector reflects the measurement signal. In this way, the UE entering the coverage area of the first base station measures the signal reflected by the second reflector.
  • the first base station may perform this step periodically, and one period includes a time slot corresponding to each second reflector.
  • each second reflector is respectively activated and a measurement signal is sent in the time slot corresponding to each second reflector.
  • each second reflector is activated in a time slot corresponding to each second reflector in sequence, and a measurement signal is sent in a time slot corresponding to each second reflector.
  • the UE entering the coverage of the first base station measures the signal reflected by each second reflector in the time slot corresponding to each second reflector, selects a second reflector as the access reflector, and uses the The incident reflector is connected to the first base station.
  • the first base station sends reflector configuration information, where the reflector configuration information includes an activation time and an identifier of each second reflector in one cycle.
  • the reflector configuration information includes the activation time of each second reflector to be activated in one cycle and the identification of each second reflector, and the activation time of each second reflector is corresponding to each second reflector respectively. the identifier of the time slot.
  • the activation time of each second reflector is the identifier of the time slot corresponding to each second reflector, which means: the identifier of the time slot corresponding to each second reflector is used to indicate each second reflector.
  • the activation time of the reflector is the identifier of the time slot corresponding to each second reflector.
  • the first base station may broadcast the reflector configuration information at the start of each cycle, so as to inform the UE entering the coverage of the first base station that the UE determines the reflector configuration information belonging to the first base station through the reflector configuration information.
  • the second reflector and the activation time of the second reflector may be broadcast the reflector configuration information at the start of each cycle, so as to inform the UE entering the coverage of the first base station that the UE determines the reflector configuration information belonging to the first base station through the reflector configuration information.
  • the first base station may broadcast the reflector configuration information in a signaling manner.
  • the first base station broadcasts a master system module (master information block, MIB) and a system information block (system information block, SIB), the MIB includes indication information, and the indication information is used to indicate the coverage of the first base station to the UE A reflector exists, and the SIB includes configuration information for the reflector.
  • MIB master information block
  • SIB system information block
  • the first UE receives the MIB, and determines, according to the indication information included in the MIB, that there is a reflector within the coverage of the first base station; In the SIB, each second reflector and a time slot corresponding to each second reflector are determined according to the reflector configuration information included in the SIB.
  • the first base station activates each second reflector in a time slot corresponding to each second reflector, and sends a measurement signal in a time slot corresponding to each second reflector.
  • the measurement signal is a pilot signal.
  • Step 402 The first UE measures the signal reflected by each second reflector in the time slot corresponding to each second reflector, selects a reflector as the access reflector according to the signal reflected by each reflector, and passes the The access reflector sends an access request to the first base station.
  • the first UE receives the measurement signal in the time slot corresponding to each second reflector, measures the signal quality of the measurement signal received in the time slot corresponding to each second reflector, and obtains each second reflector.
  • the quality of the signal reflected by the reflector According to the quality of the signal reflected by each second reflector, a second reflector that satisfies the first condition is selected from each second reflector, the selected second reflector is used as the access reflector, and the access reflector is passed through the access reflector.
  • the body accesses the first base station, that is, sends an access request to the first base station through the access reflector.
  • the first base station activates the second reflector in the time slot corresponding to the second reflector, and after the activation, sends a measurement signal.
  • the second reflector can reflect the measurement signal after being activated, and the first UE entering the coverage of the first base station may receive the measurement signal, measure the signal quality of the measurement signal, and obtain the reflected signal from the second reflector. Signal quality.
  • the first condition is to select a reflector whose reflected signal quality is the best, or the first condition is to select a reflector whose reflected signal quality exceeds a quality threshold.
  • the first UE selects the access reflector in the following two ways, and the two ways are:
  • the first UE first measures the signal quality reflected by each second reflector in the current cycle, and selects a second reflector that satisfies the first condition according to the signal quality reflected by each second reflector
  • the body acts as an access reflector, and accesses the first base station through the access reflector in the next cycle.
  • the first UE measures the quality of the signal reflected by each second reflector in the time slot corresponding to each second reflector in the current cycle, and according to the signal reflected by each second reflector quality, select a second reflector that satisfies the first condition from each second reflector as the access reflector, and pass the access reflector to the first reflector in the time slot corresponding to the access reflector included in the next cycle.
  • a base station sends an access request.
  • the first base station activates the reflector 1 in the time slot 1 corresponding to the reflector 1 of the current cycle, and sends the measurement signal 1; the first UE measures the measurement signal The signal quality of 1, that is, the quality of the signal reflected by the reflector 1 is obtained.
  • the first base station activates the reflector 2 in the time slot 2 corresponding to the reflector 2 in the current cycle, and sends the measurement signal 2; the first UE measures the signal quality of the measurement signal 2, that is, obtains the signal quality reflected by the reflector 2.
  • the first base station activates the reflector 3 in the time slot 3 corresponding to the reflector 3 in the current cycle, and sends the measurement signal 3 ; the first UE measures the signal quality of the measurement signal 3 , that is, obtains the signal quality reflected by the reflector 3 .
  • the first UE selects reflector 2 as the access reflector from reflector 1, reflector 2, and reflector 3 according to the quality of the signal reflected by reflector 1, the quality of the signal reflected by reflector 2, and the quality of the signal reflected by reflector 3 .
  • an access request is sent to the first base station through the access reflector.
  • the first UE measures the quality of the signal reflected by the second reflector in the time slot corresponding to the second reflector, and when the signal quality exceeds the quality threshold, the second reflector is selected as the Access the reflector, and access the first base station through the access reflector in the time slot corresponding to the access reflector in the current cycle.
  • the first base station activates the reflector 1 in the time slot 1 corresponding to the reflector 1 of the current cycle, and sends the measurement signal 1; the first UE measures the measurement signal The signal quality of 1, that is, the quality of the signal reflected by the reflector 1 is obtained. Assuming that the quality of the signal reflected by the reflector 1 does not exceed the quality threshold, continue the measurement.
  • the first base station activates the reflector 2 in the time slot 2 corresponding to the reflector 2 in the current cycle, and sends the measurement signal 2; the first UE measures the signal quality of the measurement signal 2, that is, obtains the signal quality reflected by the reflector 2, assuming that the reflector 2 2 When the quality of the reflected signal exceeds the quality threshold, reflector 2 is selected as the access reflector, and an access request is sent to the first base station through the access reflector in the time slot 2.
  • Step 403 The first base station receives the access request sent by the first UE, determines an access reflector for the access of the first UE, and binds the first UE and the access reflector.
  • the first base station determines the current time slot for receiving the access request, determines the reflector corresponding to the current time slot, and uses the determined reflector as the access for the first UE to access the first base station
  • the identifier of the first UE and the identifier of the access reflector are stored correspondingly in the corresponding relationship between the identifier of the UE and the identifier of the access reflector.
  • the first base station receives the access request, determines that the time slot for receiving the access request is time slot 2, determines the reflector 2 corresponding to the time slot 2, and uses the reflector 2 as the time slot 2 for the first base station.
  • a UE accesses the access reflector of the first base station.
  • the first base station can use Z second reflectors belonging to the first base station to communicate with the first UE, where Z is an integer greater than 0, and the detailed implementation process is as follows:
  • Step 404 The first base station determines, from the second reflectors belonging to the first base station, Z second reflectors that can cover the first UE, where the Z second reflectors are other reflectors except the access reflectors body.
  • the Z second reflectors can be determined by the following ways 1 and 2, and the ways 1 and 2 are respectively:
  • the first base station determines Z second reflectors that can cover the first UE from the second reflectors belonging to the first base station according to the location description information of the first UE.
  • the location description information includes at least one of the location of the first UE, coordinate system information, uplink channel information, downlink channel information, multipath delay information, and time difference information between different base stations reaching the first UE.
  • the first base station may obtain the location description information of the first UE, determine the location of the first UE according to the location description information of the first UE, and select the location of the first UE from the second UE belonging to the first base station according to the location of the first UE.
  • the reflectors Z second reflectors that can cover the first UE are determined.
  • the first base station directly acquires the location of the first UE from the location description information of the first UE.
  • the location description information of the first UE includes at least one of coordinate system information of the first UE, uplink channel information, downlink channel information, multipath delay information, and time difference information between different base stations reaching the first UE.
  • the first base station obtains the location of the first UE according to at least one of coordinate system information of the first UE, uplink channel information, downlink channel information, multipath delay information, and time difference information between different base stations reaching the first UE.
  • the Z second reflectors are other reflectors except the access reflector.
  • the Z second reflectors are idle reflectors.
  • the first base station may determine each access reflector belonging to the first base station according to the identifier of each access reflector included in the corresponding relationship between the identifier of the access reflector and the identifier of the UE.
  • a certain access reflector is removed from the second reflectors that can cover the first UE, and Z second reflectors are selected from the remaining second reflectors.
  • the Z second reflectors are all second reflectors in an idle state, or the first base station can select the second reflectors in an idle state from the remaining second reflectors, and can also select other UEs that are in the idle state.
  • the second reflector used.
  • the first base station may select one or more second reflectors being used by other UEs that currently transmit less data.
  • the first base station may select one or more second reflectors that are being used by other UEs whose current transmission data volume is less than the data volume threshold.
  • each reflecting unit in the second reflector is allocated to the first UE.
  • the first base station may select each reflection unit in the second reflector for the first UE, that is, assign each reflection unit in the second reflector to the first UE.
  • the first base station may select the partial reflection unit in the second reflector for the first UE, that is, allocate the partial reflection unit in the second reflector to the first UE.
  • the first base station receives a request message sent by the first UE, where the request message includes identifiers of X second reflectors, where the X second reflectors are signals reflected by the first UE by measuring the second reflectors
  • X is an integer greater than or equal to Z
  • Z second reflectors are selected from the X second reflectors corresponding to the identifiers of the X second reflectors.
  • the first UE measures the signal reflected by each second reflector belonging to the first base station, and obtains the signal quality reflected by each second reflector. According to the signal quality reflected by each second reflector, X second reflectors that satisfy the third condition are selected, and a request message is sent to the first base station, where the request message includes the identifiers of the X second reflectors.
  • the third condition includes X reflectors whose reflected signal quality exceeds a quality threshold or X reflectors whose reflected signal quality is the highest. That is, the first UE selects X second reflectors whose reflected signal quality exceeds the quality threshold according to the signal quality reflected by each second reflector, or selects X second reflectors whose reflected signal quality is the highest.
  • the order among the identifiers of the X second reflectors in the request message may be an order after sorting based on the signal qualities reflected by the X second reflectors.
  • the first base station may determine each access reflector belonging to the first base station according to the identifier of each access reflector included in the corresponding relationship between the identifier of the access reflector and the identifier of the UE.
  • the access reflectors are removed from the X second reflectors corresponding to the identifiers of the X second reflectors, and Z second reflectors are selected from the remaining second reflectors.
  • the first base station selects Z idle second reflectors from the remaining second reflectors.
  • the Z second reflectors are all idle second reflectors, or the first base station can select an idle second reflector from the remaining second reflectors, and can also select an idle second reflector that is being used by other UEs. second reflector.
  • the first base station can select an idle second reflector from the remaining second reflectors, and can also select an idle second reflector that is being used by other UEs. second reflector.
  • Step 405 The first base station adjusts the reflection phases of the Z second reflectors, and the adjusted Z second reflectors are used to reflect signals between the first base station and the first UE.
  • the adjusted Z second reflectors are used to reflect the downlink signal sent by the first base station to the first UE to the first UE, and used to reflect the uplink signal sent by the first UE to the first base station to the first base station.
  • the first base station obtains the target reflection coefficient set corresponding to each second reflector included in the Z second reflectors, and adjusts each second reflector according to the target reflection coefficient set corresponding to each second reflector.
  • the reflection phase of the reflector is the reflection phase of the reflector.
  • the second reflector includes one or more reflection units
  • the target reflection coefficient set corresponding to the second reflector includes target reflection coefficients corresponding to the reflection units in the second reflector.
  • adjusting the reflection phase of the second reflector may be: adjusting the reflection phase of the reflection unit in the second reflector according to the target reflection coefficient corresponding to the reflection unit in the second reflector.
  • the reflection phases of the Z second reflectors are adjusted through the following first implementation manner and second implementation manner.
  • the first implementation manner is: adjusting the reflection phases of the Z second reflectors at one time.
  • the first base station obtains the target reflection coefficient sets corresponding to the Z second reflectors at one time, and adjusts the Z second reflectors respectively according to the target reflection coefficient sets corresponding to the Z second reflectors reflection phase.
  • the second implementation manner is: adjusting the reflection phases of the Z second reflectors in batches.
  • the first base station obtains the target reflection coefficient sets corresponding to the Z second reflectors in batches, and each batch obtains the target reflections corresponding to some of the second reflectors in the Z second reflectors
  • the following operations 4051 to 4055 may be used to adjust the reflection phases of the Z second reflectors.
  • the operations of the 4051 to 4055 are:
  • the first base station generates multiple control vectors, each of the multiple control vectors is orthogonal to each other, and any one of the multiple control vectors includes a test reflection coefficient set corresponding to each second reflector .
  • each second reflector in the Z second reflectors includes a plurality of reflection units, and the test reflection coefficient set of one second reflector includes the second reflector in the second reflector.
  • the test reflectance of the reflective unit is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, each second reflector includes a plurality of reflection units, and the test reflection coefficient set of one second reflector includes the second reflector in the second reflector. The test reflectance of the reflective unit.
  • a set of test reflection coefficients of a second reflector includes K test reflection coefficients, and the K test reflection coefficients are in one-to-one correspondence with the K reflection units respectively.
  • the first base station allocates each reflection unit in the Z second reflectors to the first UE, the number of reflection units in each second reflector is K. Since one control vector includes the test reflection coefficient set of each second reflector, and the test reflection coefficient set of one second reflector includes the test reflection coefficients of K reflection elements in the second reflector, one control vector includes Z *K test reflection coefficients. And in the operation of 4051, the first base station can generate Z*K+1 mutually orthogonal control vectors.
  • the first base station allocates each reflection unit in the part of the second reflectors in the Z second reflectors to the first UE, and allocates the part of the reflection units in the remaining second reflectors to the first UE. Assuming that there are V reflection units in the Z second reflectors and are allocated to the first UE, then one control vector includes V test reflection coefficients, and in the operation of 4051, the first base station can generate V+1 mutually positive The control vector of the intersection.
  • the first base station allocates each of the W second reflectors to the first UE, then in operation 4051, the first base station generates W*K+1 mutually orthogonal control vectors, each control vector The vector includes W*K test reflection coefficients. If the first base station allocates each reflection unit in the part of the second reflectors in the W second reflectors to the first UE, and distributes the part of the reflection units in the remaining second reflectors to the first UE. Assuming that there are Q reflection units in the W second reflectors and are allocated to the first UE, then one control vector includes Q test reflection coefficients, and in the operation of 4051, the first base station can generate Q mutually orthogonal control vector.
  • Step 4052 For any one of the multiple control vectors, the first base station sends the control vector to the multiple second reflectors and the first UE, and then sends the measurement signal.
  • the first base station if the first base station generates Z*K+1 control vectors, the first base station sends the Z*K+1 control vectors in Z*K+1 times. , the first base station sends one control vector among the Z*K+1 control vectors to the Z second reflectors and the first UE each time, and sends a measurement signal after sending the one control vector. If the first base station generates V control vectors, the first base station sends the V+1 control vectors in V times, and the first base station sends the V+1 control vectors to the Z second reflectors and the first UE each time A control vector in the vector, after the one control vector is sent, the measurement signal is sent.
  • the second reflector receives the control vector, and obtains the test reflection coefficient corresponding to the reflection unit in the second reflector from the control vector, and according to the first reflector The reflection coefficient corresponding to the reflection unit in the second reflector is tested, and the reflection phase of the reflection unit in the second reflector is adjusted. The second reflector then reflects the measurement signal sent by the first base station.
  • the first base station if the first base station generates W*K+1 control vectors, the first base station sends the W*K+1 control vectors in W*K+1 times. , the first base station sends the control vector to the W second reflectors and the first UE each time, and sends the measurement signal after sending the control vector. If the first base station generates Q control vectors, the first base station sends the Q+1 control vectors in Q times, and the first base station sends the Q+1 control vectors to the W second reflectors and the first UE each time A control vector in the vector, after the one control vector is sent, the measurement signal is sent.
  • the second reflector receives the control vector, obtains the test reflection coefficient corresponding to the reflection unit in the second reflector from the control vector, and according to the first reflector The reflection coefficient corresponding to the reflection unit in the second reflector is tested, and the reflection phase of the reflection unit in the second reflector is adjusted. The second reflector then reflects the measurement signal sent by the first base station.
  • the first base station when sending a control vector, also sends coefficient indication information, where the coefficient indication information is used to indicate the second reflector and the second reflector corresponding to each test reflection coefficient in the control vector.
  • a reflective unit After receiving the control vector and the coefficient indication information, the second reflector acquires the test reflection coefficient corresponding to the reflection unit in the second reflector from the control vector based on the coefficient indication information.
  • the first UE receives the control vector, and measures downlink equivalent channel quality information from the first base station to the first UE, where the control vector corresponds to the downlink equivalent channel quality information.
  • the first UE may receive the measurement signal reflected by the second reflector, measure the measurement signal, and obtain downlink equivalent channel quality information corresponding to the control vector.
  • the downlink equivalent channel quality information includes Z+1 downlink channel quality information
  • the Z+1 downlink channel quality information includes Z downlink concatenated channel quality information.
  • the Z downlink concatenated channels are in one-to-one correspondence with the Z second reflectors, and the downlink concatenated channels corresponding to one second reflector include the channel from the first base station to the second reflector and the channel from the second reflector to the second reflector.
  • the first base station and the first UE repeatedly perform the above operations from 4052 to 4053 until the first base station has sent Z*K+1 control vectors, so that the first UE measures and obtains Z*K+1 downlinks, etc.
  • the effective channel quality information and the Z*K+1 control vectors, the Z*K+1 downlink equivalent channel quality information respectively correspond to the Z*K+1 control vectors one-to-one.
  • the first UE obtains V+1 downlink equivalent channel quality information and the V+1 control vectors by measurement, and the V+1 downlink equivalent channels
  • the quality information is in one-to-one correspondence with the V+1 control vectors. Then perform the following 4054 operations.
  • the downlink equivalent channel quality information includes W+1 downlink channel quality information
  • the W+1 downlink channel quality information includes W downlink concatenated channel quality information.
  • the W downlink concatenated channels are in one-to-one correspondence with the W second reflectors.
  • the first base station and the first UE repeatedly perform the above operations from 4052 to 4053 until the first base station has sent W*K+1 control vectors, so that the first UE measures and obtains W*K+1 downlinks, etc.
  • the effective channel quality information and the W*K+1 control vectors, the W*K+1 downlink equivalent channel quality information respectively correspond to the W*K+1 control vectors one-to-one.
  • the first base station transmits Q+1 control vectors the first UE obtains Q+1 downlink equivalent channel quality information and the Q+1 control vectors by measurement, and the Q+1 downlink equivalent channels
  • the quality information is in one-to-one correspondence with the Q+1 control vectors. Then perform the following 4054 operations.
  • the first UE obtains the target reflection coefficient set corresponding to each second reflector according to the multiple control vectors and the downlink equivalent channel quality information corresponding to each of the multiple control vectors, and sends the set of target reflection coefficients to the first base station.
  • the target reflection coefficient set corresponding to each second reflector is sent.
  • the first UE obtains, according to the Z*K+1 downlink equivalent channel quality information and the Z*K+1 control vectors, the Z*K+1 control vectors.
  • the target reflection coefficient set corresponding to each second reflector of For the target reflection coefficient set corresponding to any second reflector, the target reflection coefficient set includes the target reflection coefficient of each reflection unit in the second reflector.
  • the first UE sends the target reflection coefficient set of the Z second reflectors to the first base station. Or, the first UE acquires a target reflection coefficient set corresponding to each of the Z second reflectors according to the V+1 downlink equivalent channel quality information and the V+1 control vectors.
  • the target reflection coefficient set includes the target reflection coefficient of the reflection unit allocated to the first UE in the second reflector.
  • the first UE sends the target reflection coefficient set of the Z second reflectors to the first base station.
  • the first UE obtains the W*K+1 downlink equivalent channel quality information and the W*K+1 control vectors in the W second reflectors.
  • the target reflection coefficient set includes the target reflection coefficient of each reflection unit in the second reflector.
  • the first UE sends the target reflection coefficient set of the W second reflectors to the first base station.
  • the first UE obtains a target reflection coefficient set corresponding to each of the W second reflectors according to the Q+1 downlink equivalent channel quality information and the Q+1 control vectors.
  • the target reflection coefficient set includes the target reflection coefficient of the reflection unit allocated to the first UE in the second reflector.
  • the first UE sends the target reflection coefficient set of the W second reflectors to the first base station.
  • Step 4055 The first base station receives the target reflection system set of each second reflector, and adjusts the reflection phase of each second reflector respectively according to the target reflection coefficient set of each second reflector.
  • the first base station receives the target reflection coefficient set of the Z second reflectors, and sends each second reflector to each of the Z second reflectors respectively.
  • a set of target reflection coefficients of the second reflector Any one of the Z second reflectors, the second reflector receives a target reflection coefficient set, and adjusts the reflection unit in the second reflector according to the target reflection coefficient set.
  • the first base station receives the target reflection coefficient set of the W second reflectors, and sends each second reflector to each of the W second reflectors respectively.
  • a set of target reflection coefficients of the second reflector Any one of the W second reflectors, the second reflector receives a target reflection coefficient set, and adjusts the reflection unit in the second reflector according to the target reflection coefficient set.
  • the first base station may first adjust the reflection phase of part of the second reflector, and after the adjustment, the first base station may communicate with the first UE through the part of the second reflector.
  • the reflection phase of a batch of second reflectors is quickly adjusted, and the communication between the first base station and the first UE is realized through the batch of second reflectors, improving the communication efficiency.
  • the reflection phases of the remaining second reflectors are adjusted continuously.
  • Step 406 The first base station communicates with the first UE through the Z second reflectors.
  • the Z second reflectors reflect the downlink signal to the first UE.
  • the Z second reflectors reflect the uplink signal to the first base station.
  • the transmit power of the first UE may also need to be adjusted.
  • the first base station measures channel quality information of an uplink equivalent channel between the first base station and the first UE, where the uplink equivalent channel includes Z concatenated channels, and the Z concatenated channels are respectively associated with the Z concatenated channels.
  • the second reflectors are in one-to-one correspondence, and the concatenated channel corresponding to one second reflector includes the channel from the first UE to the second reflector and the channel from the second reflector to the first base station; based on the uplink equivalent
  • the channel quality information of the channel determines the power adjustment parameter of the first UE; and sends the power adjustment parameter to the first UE.
  • the first UE receives the power adjustment parameter, adjusts the transmit power of the first UE according to the power adjustment parameter, and after the adjustment is completed, the first UE can communicate with the first base station.
  • the uplink equivalent channel further includes a direct connection channel from the first UE to the first base station.
  • the transmit power of the first UE may be adjusted in a dynamic manner or a semi-static manner.
  • the power adjustment parameter includes a power adjustment step size and a power adjustment instruction, where the power adjustment instruction is a power increase instruction or a power decrease instruction.
  • the power adjustment parameter includes a power increase indication
  • the first UE increases the transmit power of the first UE according to the power adjustment step included in the power adjustment parameter.
  • the power adjustment parameter includes a power reduction indication
  • the first UE reduces the transmit power of the first UE according to the power adjustment step size included in the power adjustment parameter.
  • the first base station and the first UE may agree on a power adjustment step size in advance.
  • the power adjustment parameter determined by the first base station includes a power adjustment instruction, where the power adjustment instruction is a power increase instruction or a power decrease instruction.
  • the power adjustment parameter is a power increase indication
  • the first UE increases the transmit power of the first UE according to the power adjustment step size.
  • the power adjustment parameter is a power reduction indication
  • the first UE reduces the transmit power of the first UE according to the power adjustment step size.
  • the first UE may send the uplink signal based on the adjusted transmit power.
  • the length of a cyclic prefix (Cyclic Prefix, CP) of the first UE may also need to be adjusted.
  • the first base station measures the delay information of the uplink equivalent channel between the first base station and the first UE, and sends CP length indication information to the first UE according to the delay information.
  • the first UE adjusts the CP length of the first UE according to the CP length indication information, and after the adjustment is completed, the first UE can communicate with the first base station.
  • the delay information of the uplink equivalent channel includes the delays of the Z concatenated channels.
  • the time delay information of the uplink equivalent channel further includes the time delay of the direct connection channel from the first UE to the first base station.
  • the operation of acquiring the CP length indication information by the first base station may be: the first base station selects the longest delay from the delay information of the uplink equivalent channel, and determines the CP length of the first UE according to the longest delay ; Obtain the standard CP length with the smallest difference between the CP length and the CP length from the correspondence between the standard CP length and the CP length indication information; Obtain the standard CP length from the correspondence between the standard CP length and the CP length indication information. Corresponding CP length indication information.
  • the first UE after receiving the CP length indication information, obtains the corresponding standard CP length from the correspondence between the standard CP length and the CP length indication information according to the CP length indication information, and adjusts the first standard CP length according to the obtained standard CP length.
  • the first base station and the first UE may pre-determine the correspondence between the standard CP length and the CP length indication information.
  • the first base station adjusts the reflection phase of the second reflector in the second implementation manner
  • the first base station adjusts the first UE in the foregoing manner after adjusting the reflection phases of a batch of the second reflectors. the transmit power and/or CP length.
  • a reflector cooperates with the first base station and the first UE to transmit data, and the detailed implementation process will be described in detail in the embodiment shown in FIG. 7 later.
  • the first base station determines Z second reflectors, so that the downlink signals sent by the first base station to the first UE are reflected by the Z second reflectors, and the downlink signals sent by the first UE to the first base station are reflected by the first base station In this way, the quality of the downlink signal at the first UE and the quality of the uplink signal sent by the first UE to the first base station can be increased, thereby greatly improving the communication capability of the first UE.
  • an embodiment of the present application provides a communication method, and the method is applied to the network architecture shown in FIG. 1 or 2, including:
  • Step 701 The first base station determines N first reflectors that can cover the first UE, where the N first reflectors are reflectors belonging to the second base station, and N is an integer greater than 0.
  • the second base station is a base station other than the first base station in the cooperating set.
  • N first reflectors can be determined through the following ways 1 and 2, where the first and second ways are respectively:
  • the first base station determines a neighbor cell that can cover the first UE according to the location description information of the first UE, and determines N first reflectors that can cover the first UE from reflectors belonging to the neighbor cell.
  • the basic information of each reflector in the cooperative set is stored in the first base station, and the basic information of the reflector includes the identity of the reflector, the position of the reflector, and the identity of the base station to which the reflector belongs (the identity of the base station includes the cell identity belonging to the base station).
  • the first base station obtains the location of the first UE according to the location description information of the first UE, determines a neighbor cell that can cover the first UE according to the location of the first UE, and determines the basic information of each reflector in the saved cooperative set according to the stored basic information of the reflector. , obtain the identifiers of the reflectors belonging to the neighbor cell, and select N second reflectors from the second reflectors in the neighbor cell according to the position of the first UE and the positions of the second reflectors in the neighbor cell reflector.
  • the first base station obtains the distance between the first UE and each second reflector in the neighbor cell according to the position of the first UE and the position of each second reflector in the neighbor cell, and selects a distance less than N second reflectors from the threshold.
  • the first base station may determine at least one neighbor cell, and select one or more first reflectors from reflectors of each neighbor cell.
  • Manner 1 when the first base station has a large amount of data to be sent to the first UE or receives a sending request, the first base station performs the operations shown in Manner 1.
  • the request is sent by the first UE when a large amount of data needs to be sent to the first base station.
  • the first base station determines a neighbor cell covering the first UE, and the neighbor cell includes a reflector 4, a reflector 5, a reflector 6 and a reflector 7.
  • the reflector Basic information of body 4 basic information of reflector 5, basic information of reflector 6, and basic information of reflector 7, and obtain the relationship between the first UE and reflector 4, reflector 5, reflector 6, and reflector 7 respectively distance, select reflector 4 and reflector 5 whose distance is less than the distance threshold.
  • the first base station receives a cooperation request sent by the first UE, where the cooperation request includes the identifiers of N first reflectors and the identifiers of the second base station, and the N first reflectors are obtained by the first UE by measuring the Selected for the signal reflected by a reflector.
  • the first UE measures the signal reflected by each first reflector belonging to the second base station, obtains the signal quality reflected by each first reflector, and selects the signal quality reflected by each first reflector according to the signal quality reflected by each first reflector.
  • the N first reflectors that satisfy the third condition send a cooperation request to the first base station, where the cooperation request includes the identifiers of the N first reflectors.
  • the third condition includes the reflected signal quality exceeding a quality threshold or the N reflectors with the highest reflected signal quality. That is, according to the signal quality reflected by each first reflector, the first UE selects N first reflectors whose reflected signal quality exceeds a quality threshold, or selects N first reflectors whose reflected signal quality is the highest.
  • the signal reflected by the first reflector may be a measurement signal sent by the second base station or a downlink signal of the second UE sent by the second base station, and the second UE is a UE belonging to the second base station. Therefore, when the reflected signal is a measurement signal, the first UE determines that the state of the first reflector is an idle state, and when the reflected signal is a downlink signal of the second UE, the first UE determines the state of the first reflector for use status.
  • the first UE may preferentially select the first reflector in an idle state.
  • the first UE may measure multiple second base stations and the identity of the first reflector belonging to each second base station, and accordingly, the cooperation request may include the identity of each second base station and the identity of the first reflector belonging to each second base station. Identification of the first reflector of each second base station.
  • the order among the identifiers of the N first reflectors in the cooperation request may be an order after sorting based on the signal qualities reflected by the N first reflectors.
  • the first UE sends the cooperation request when there is a large amount of data to be sent to the first base station.
  • the first UE sends the cooperation request when receiving the instruction of the first base station.
  • the first base station sends the instruction to the first UE when a large amount of data needs to be sent to the first UE.
  • Step 702 The first base station sends a cooperation request to the second base station, where the cooperation request includes the identifiers of the N first reflectors.
  • the first base station selects the reflector 4 and the reflector 5, and sends a cooperation request to the second base station, where the cooperation request includes the identifier of the reflector 4 and the identifier of the reflector 5.
  • the first base station sends a cooperation request to the management device, and the management device determines the second base station to which each first reflector belongs according to the identifier of each first reflector included in the cooperation request, and sends the request to the management device.
  • the second base station sends the cooperation request.
  • the first base station obtains a plurality of second base stations and the identifiers of the first reflectors belonging to each second base station, then the first base station transmits the coordination to each second base station according to the identifiers of each second base station.
  • Request, for any second base station, the cooperation request sent by the first base station to the second base station includes the identifier of the first reflector belonging to the second base station.
  • Step 703 The second base station receives the cooperation request, determines to release the control rights of the M first reflectors according to the identifiers of the N first reflectors included in the cooperation request, and sends a cooperation response to the first base station, where the cooperation response includes: Identification of the M first reflectors, the N first reflectors include the M first reflectors, and M is an integer greater than 0 and less than or equal to N.
  • the second base station receives the cooperation request, where the cooperation request includes the identifiers of the N first reflectors, and selects M first reflectors from the N first reflectors corresponding to the identifiers of the N first reflectors
  • the reflector releases the control right of the M first reflectors, and sends a cooperation response to the first base station, where the cooperation response includes the identifiers of the M first reflectors.
  • the second base station may determine each access reflector belonging to the second base station according to the identifier of each access reflector included in the corresponding relationship between the identifier of the access reflector and the identifier of the UE.
  • the access reflector is removed from the N first reflectors corresponding to the identifiers of the N first reflectors, and M second reflectors are selected from the remaining first reflectors.
  • the second base station selects M idle first reflectors from the remaining first reflectors.
  • the M first reflectors are all idle first reflectors, or, in addition to selecting the idle first reflectors from the remaining first reflectors, the second base station can also select the second UE being used. the first reflector.
  • the second base station may select a partial reflection unit in the second reflector from the first reflector being used by the second UE.
  • the second base station releasing the control right of the second reflector is releasing the control right of the part of the reflection unit in the second reflector.
  • the cooperation response includes the information of the N first reflectors, see Table 1 below, the information of one first reflector includes the identifier of the second base station to which the first reflector belongs, the Identification, category information of the first reflector, and control instruction information of the first reflector.
  • the category information is used to indicate that the first reflector is an idle reflector, the first reflector is used for the second UE or whether the first reflector is an access reflector.
  • the control indication information is used to indicate whether the second base station agrees to release the control right of the first reflector and other information.
  • the second base station may also implement in other ways.
  • another way is listed next, in this other way:
  • the first base station sends a cooperation request to the second base station, where the cooperation request includes location description information of the first UE.
  • the second base station receives the cooperation request, determines M second reflectors that can cover the first UE from the first reflectors belonging to the second base station according to the location description information of the first UE, and releases the M first reflectors control right of the body, and send a cooperation response to the first base station, where the cooperation response includes the identifiers of the M first reflectors.
  • the second base station determines the position of the first UE according to the position description information of the first UE, and obtains the relationship between the first UE and the first reflector according to the position of the first UE and the basic information of each first reflector belonging to the second base station. For the distance between each first reflector, M first reflectors whose distance is smaller than the distance threshold are selected.
  • the second base station allocates some of the reflection units in the first reflectors to the first UE, and the cooperation response includes unit indication information, where the unit indication information is used for Indicates the part of the first reflector and the part of the reflection unit in the first reflector.
  • Step 704 The first base station receives the cooperation response, and obtains the control right of the M first reflectors according to the identifiers of the M first reflectors included in the cooperation response.
  • the first base station when the cooperation response includes unit indication information, the first base station further determines a part of the first reflector indicated by the unit indication information and a part of the reflection unit in the first reflector.
  • the first base station obtains multiple second base stations and sends a cooperation request to each second base station, then in this step, the first base station receives cooperation responses from multiple second base stations.
  • Step 705 The first base station adjusts the reflection phases of the M second reflectors, and the adjusted M second reflectors are used to reflect signals between the first base station and the first UE.
  • step 405 For the detailed implementation process of this step, reference may be made to the related content in step 405 in the embodiment shown in FIG. 4 , which will not be described in detail here.
  • Step 706 The first base station communicates with the first UE through the M second reflectors.
  • the M second reflectors reflect the downlink signal to the first UE.
  • the M second reflectors reflect the uplink signal to the first base station.
  • the first base station when the first base station has adjusted the reflection phases of the Z second reflectors through the embodiment shown in FIG. 4 , the first base station passes the Z second reflectors and the M first reflectors. Communicate with the first UE.
  • the transmit power of the first UE may also need to be adjusted.
  • the first base station measures channel quality information of an uplink equivalent channel between the first base station and the first UE, where the uplink equivalent channel includes M concatenated channels, and the M concatenated channels are respectively associated with the M concatenated channels.
  • the first reflectors are in one-to-one correspondence, and the concatenated channel corresponding to one first reflector includes the channel from the first UE to the first reflector and the channel from the first reflector to the first base station; based on the uplink equivalent
  • the channel quality information of the channel determines the power adjustment parameter of the first UE; and sends the power adjustment parameter to the first UE.
  • the first UE receives the power adjustment parameter, adjusts the transmit power of the first UE according to the power adjustment parameter, and after the adjustment is completed, the first UE can communicate with the first base station.
  • the uplink equivalent channel may also include Z concatenated channels, the Z concatenated channels are in one-to-one correspondence with the Z second reflectors, and the concatenated channels corresponding to one second reflector include the first reflector.
  • the uplink equivalent channel further includes a direct connection channel from the first UE to the first base station.
  • the transmit power of the first UE may be adjusted in a dynamic manner or a semi-static manner.
  • the dynamic manner or the semi-static manner please refer to the relevant content in step 406 of the embodiment shown in FIG. 4 , which is not repeated here. Detailed description.
  • the CP length of the first UE may also need to be adjusted.
  • the first base station measures the delay information of the uplink equivalent channel between the first base station and the first UE, and sends CP length indication information to the first UE according to the delay information.
  • the first UE adjusts the CP length of the first UE according to the CP length indication information, and after the adjustment is completed, the first UE can communicate with the first base station.
  • the delay information of the uplink equivalent channel includes the delay of the M concatenated channels.
  • the delay information of the uplink equivalent channel may further include the delay of the Z concatenated channels.
  • the time delay information of the uplink equivalent channel further includes the time delay of the direct connection channel from the first UE to the first base station.
  • the operation of acquiring the CP length indication information by the first base station may be: the first base station selects the longest delay from the delay information of the uplink equivalent channel, and determines the CP length of the first UE according to the longest delay ; Obtain the standard CP length with the smallest difference between the CP length and the CP length from the correspondence between the standard CP length and the CP length indication information; Obtain the standard CP length from the correspondence between the standard CP length and the CP length indication information. Corresponding CP length indication information.
  • the first UE after receiving the CP length indication information, obtains the corresponding standard CP length from the correspondence between the standard CP length and the CP length indication information according to the CP length indication information, and adjusts the first standard CP length according to the obtained standard CP length.
  • CP length of a UE CP length of a UE.
  • the first base station after the first base station obtains the M first reflectors, before each data transmission between the first base station and the first UE, the first base station does not need to perform data exchange such as signaling with the second base station, The first base station directly performs data transmission with the first UE through the M first reflectors, thereby improving communication efficiency and further improving the communication capability of the first UE.
  • the first base station determines M first reflectors belonging to the second base station, obtain the control right of the M first reflectors, adjust the reflection phases of the M first reflectors, and then pass the Z second reflectors and the M first reflectors
  • the first reflector communicates with the first UE, thereby increasing the channel bandwidth between the first base station and the first UE, improving the communication efficiency and greatly improving the communication capability of the first UE.
  • the first base station only requests the first reflector in the second base station, so there is no need to request the resources of the second base station, so as to avoid affecting the resources allocated by the second base station for the second UE, and it is not necessary for the second base station to stop using the first reflector.
  • the time-frequency resources occupied by the UE do not require the second base station to change the transmission direction, so as to avoid affecting the communication capability of the second UE.
  • an embodiment of the present application provides a communication apparatus 800, and the apparatus 800 may be deployed in the first base station in any of the foregoing embodiments, including:
  • a sending unit 801 configured to send a cooperation request to a second base station, where the second base station is another base station except the apparatus 800;
  • a receiving unit 802 configured to receive a cooperation response, where the cooperation response includes identifiers of M first reflectors, where M is an integer greater than 0, the M first reflectors belong to the second base station, and the cooperation response is the second base station Sent after releasing the control rights of the M first reflectors based on the cooperation request, the M first reflectors can cover the first user equipment UE, and the first UE belongs to the apparatus 800;
  • the processing unit 803 is configured to acquire the control right of the M first reflectors; communicate with the first UE through the M first reflectors.
  • the cooperation request includes identifiers of N first reflectors, the N first reflectors belong to the second base station, and the cooperation request is used by the second base station to obtain the first reflector corresponding to the identifiers of the N first reflectors.
  • M first reflectors that can release the control right are determined in a reflector; or,
  • the cooperation request includes location description information of the first UE, and the cooperation request is used by the second base station to determine, based on the location description information, M first reflectors capable of releasing control rights.
  • the processing unit 803 is further configured to determine the N first reflectors that can cover the first UE.
  • step 701 for the detailed implementation process of determining the first reflector by the processing unit 803, reference may be made to the relevant content of step 701 in the embodiment shown in FIG. 7, and details are not described herein again.
  • the receiving unit 802 is configured to receive the identifiers of N first reflectors sent by the first UE, where the N first reflectors are obtained by the first UE by measuring the signals reflected by the reflectors belonging to the second base station. of.
  • processing unit 803 is configured to:
  • N first reflectors are selected from reflectors belonging to neighbor cells.
  • processing unit 803 is further configured to:
  • the uplink equivalent channel includes M concatenated channels, each concatenated channel includes a channel from the first UE to a first reflector and The channel from the one first reflector to the first base station, the one first reflector is one of the M first reflectors;
  • the power adjustment parameter is sent to the first UE, where the power adjustment parameter is used by the first UE to adjust the transmit power of the first UE, and the transmit power is used for the first UE to communicate with the first base station.
  • the processing unit 803 is further configured to measure the delay information of the uplink equivalent channel between the first base station and the first UE, where the uplink equivalent channel includes M concatenated channels, and each concatenated channel includes the first A channel from a UE to a first reflector and a channel from the one first reflector to a first base station, where the one first reflector is one of M first reflectors;
  • the sending unit 801 is further configured to send cyclic prefix CP length indication information to the first UE according to the delay information, the CP length adjustment indication information is used for the first UE to adjust the CP length of the first UE, and the CP length is used for the first UE
  • the UE communicates with the first base station.
  • processing unit 803 is further configured to:
  • each second reflector is activated respectively, and the at least one second reflector belongs to the device 800;
  • the sending unit 801 is further configured to send a measurement signal in the time slot corresponding to each second reflector, and the measurement signal sent in the time slot corresponding to each second reflector is used by the first UE to select a second reflection
  • the first base station refuses to release the access reflector when the third base station requests the control right of the access reflector after the first UE accesses the first base station.
  • the control right of the entity, and the third base station is another base station except the first base station.
  • the processing unit 803 is further configured to determine a second reflector capable of covering the first UE; and communicate with the first UE through the M first reflectors and the determined second reflector.
  • step 404 in the embodiment shown in FIG. 4 and related content of step 706 in the embodiment shown in FIG. 7 , It will not be described in detail here.
  • the processing unit since the processing unit only obtains the control rights of the M first reflectors from the second base station, and communicates with the first UE through the M first reflectors, in the process of communication, no The resources in the second base station will be used, and the second base station does not need to stop using the time-frequency resources occupied by the first UE, nor does it need the second base station to change the transmission direction, so that the second base station and the second base station belonging to the second base station will not be affected.
  • the communication between the UEs will not affect the communication capability of the second UE, and avoid affecting the communication capability of users in neighboring cells.
  • the processing unit and the second base station do not need to exchange data such as control signaling, and the first reflector can be directly implemented.
  • the communication between a base station and the first UE reduces the communication delay and improves the communication capability of the first UE.
  • an embodiment of the present application provides a communication apparatus 900, and the apparatus 900 may be deployed in the second base station in any of the foregoing embodiments, including:
  • a receiving unit 901 configured to receive a cooperation request sent by a first base station, where the apparatus 900 is another base station except the first base station;
  • a processing unit 902 configured to release the control rights of M first reflectors based on the cooperation request, the M first reflectors can cover the first user equipment UE, the first UE belongs to the first base station, the M first reflectors The reflector belongs to the device 900, and M is an integer greater than 0;
  • the sending unit 903 is configured to send a cooperation response to the first base station, where the cooperation response includes the identifiers of the M first reflectors, and the cooperation response is used for the first base station to communicate with the first UE.
  • the cooperation request includes identifiers of N first reflectors that can cover the first UE, the N first reflectors belong to the apparatus 900, and N is an integer greater than or equal to M;
  • the processing unit 902 is configured to select M first reflectors from the first reflectors corresponding to the identifiers of the N first reflectors, and release the control right of the M first reflectors.
  • step 404 in the embodiment shown in FIG. 7 and related content of step 703 in the embodiment shown in FIG.
  • the cooperation request includes location description information of the first UE
  • the processing unit 902 is configured to determine M first reflectors that can cover the first UE based on the location description information, and release the control right of the M first reflectors.
  • step 703 for the detailed implementation process of determining the first reflector by the processing unit 902, reference may be made to the relevant content of step 703 in the embodiment shown in FIG. 7, which will not be described in detail here.
  • the processing unit since the processing unit releases the control rights of the M first reflectors, after the sending unit sends the identifiers of the M first reflectors to the first base station, the first base station only obtains the identifiers from the second base station
  • the control rights of the M first reflectors are used to communicate with the first UE through the M first reflectors.
  • the resources in the second base station will not be used, and the second base station does not need to stop using the first UE.
  • the occupied time-frequency resources do not require the second base station to change the transmission direction, so that the communication between the second base station and the second UE belonging to the second base station will not be affected, so that the communication capability of the second UE will not be affected.
  • the communication capabilities of users of neighbor cells since the sending unit sends the identifiers of the M first reflectors to the first base station, the first base station only obtains the identifiers from the second base station
  • the control rights of the M first reflectors are used to communicate with the first UE through
  • an embodiment of the present application provides a communication apparatus 1000, and the apparatus 1000 may be deployed in the first UE in any of the foregoing embodiments, including:
  • the processing unit 1001 is configured to obtain the identifiers of the N first reflectors by measuring the signals reflected by the N first reflectors belonging to the second base station, and the second base station is another base station except the first base station, and the device 1000 belongs to the first base station, and N is an integer greater than 0;
  • a sending unit 1002 configured to send the identifiers of the N first reflectors, where the identifiers of the N first reflectors are used by the first base station to obtain the control rights of the M first reflectors from the second base station, the N first reflectors
  • the first reflector includes the M first reflectors
  • the processing unit 1001 is further configured to communicate with the first base station through the M first reflectors.
  • step 701 for a detailed implementation process for the processing unit 1001 to measure the N first reflectors, reference may be made to the relevant content of step 701 in the embodiment shown in FIG. 7 , which will not be described in detail here.
  • the apparatus 1000 further includes: a receiving unit 1003,
  • the receiving unit 1003 is configured to receive a power adjustment parameter sent by the first base station, where the power adjustment parameter is determined by the first base station based on channel quality information of an uplink equivalent channel, and the uplink equivalent channel includes M concatenated channels, each level
  • the connecting channel includes a channel from the device 1000 to a first reflector and a channel from the one first reflector to a first base station, and the one first reflector is one of the M first reflectors;
  • the processing unit 1001 is further configured to adjust the transmit power of the apparatus 1000 according to the power adjustment parameter, where the transmit power is used for the apparatus 1000 to communicate with the first base station.
  • step 706 for a detailed implementation process of adjusting the transmit power by the processing unit 803, reference may be made to the relevant content of step 706 in the embodiment shown in FIG. 7, and details are not described herein again.
  • the receiving unit 1003 is configured to receive cyclic prefix CP length indication information sent by the first base station, where the CP length indication information is sent by the first base station based on the delay information of an uplink equivalent channel, and the uplink equivalent channel includes: M concatenated channels, each of which includes a channel from the device 1000 to a first reflector and a channel from the one first reflector to a first base station, where the one first reflector is M first reflectors one of the bodies;
  • the processing unit 1001 is further configured to adjust the CP length of the apparatus 1000 according to the CP length adjustment indication information, where the CP length is used for the apparatus 1000 to communicate with the first base station.
  • step 706 for the detailed implementation process of adjusting the CP length by the processing unit 803, reference may be made to the relevant content of step 706 in the embodiment shown in FIG. 7, which will not be described in detail here.
  • the receiving unit 1003 is configured to receive the measurement signal sent by the first base station in the time slot corresponding to each second reflector in the at least one second reflector, and the first base station is used for each second reflector In the corresponding time slot, each second reflector is activated respectively, and the measurement signal is respectively sent in the time slot corresponding to each second reflector, and at least one second reflector belongs to the first base station;
  • the processing unit 1001 is further configured to select a reflector from each second reflector according to the measurement signal received in the time slot corresponding to each second reflector, and access the first base station through the selected reflector.
  • the first base station obtains the control right of the M first reflectors from the second base station, and communicates with the device through the M first reflectors, in the process of communication, no The resources in the second base station will be used, and the second base station does not need to stop using the time-frequency resources occupied by the device, nor does it need the second base station to change the transmission direction, so that the second base station and the second base station belonging to the second base station will not be affected.
  • the communication between the UEs will not affect the communication capability of the second UE and avoid affecting the communication capability of the users of the neighbor cells.
  • an embodiment of the present application provides a schematic diagram of a communication apparatus 1100 .
  • the apparatus 1100 may be the first base station in any of the foregoing embodiments.
  • the apparatus 1100 includes at least one processor 1101 , a bus system 1102 , a memory 1103 and at least one network interface 1104 .
  • the apparatus 1100 is an apparatus with a hardware structure, and can be used to implement the functional modules in the apparatus 800 described in FIG. 8 .
  • the processing unit 803 in the apparatus 800 shown in FIG. 8 can be implemented by calling the code in the memory 1103 by the at least one processor 1101, and the sending unit 801 and the sending unit 801 in the apparatus 800 shown in FIG.
  • the receiving unit 802 can be implemented through the network interface 1104 .
  • processor 1101 may be a general-purpose central processing unit (central processing unit, CPU), network processor (network processor, NP), microprocessor, application-specific integrated circuit (application-specific integrated circuit, ASIC) , or one or more integrated circuits used to control the execution of the program of this application.
  • CPU central processing unit
  • NP network processor
  • ASIC application-specific integrated circuit
  • the bus system 1102 described above may include a path to transfer information between the above described components.
  • the above-mentioned network interface 1104 is used to communicate with other devices or communication networks.
  • the above-mentioned memory 1103 can be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types of storage devices that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Types of dynamic storage devices which can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical storage, CD-ROM storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being accessed by Any other medium accessed by the computer, but not limited to this.
  • the memory can exist independently and be connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 1103 is used for storing the application program code for executing the solution of the present application, and the execution is controlled by the processor 1101 .
  • the processor 1101 is used for executing the application program code stored in the memory 1103, so as to realize the functions in the method of the present patent.
  • the processor 1101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 11 .
  • the apparatus 1100 may include multiple processors, such as the processor 1101 and the processor 1107 in FIG. 11 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • an embodiment of the present application provides a schematic diagram of a communication apparatus 1200 .
  • the apparatus 1200 may be the second base station in any of the foregoing embodiments.
  • the apparatus 1200 includes at least one processor 1201 , a bus system 1202 , a memory 1203 and at least one network interface 1204 .
  • the apparatus 1200 is an apparatus with a hardware structure, which can be used to implement the functional modules in the apparatus 900 described in FIG. 9 .
  • the processing unit 902 in the apparatus 900 shown in FIG. 9 can be implemented by calling the code in the memory 1203 by the at least one processor 1201, and the receiving unit 901 and the receiving unit 901 in the apparatus 900 shown in FIG.
  • the sending unit 903 can be implemented through the network interface 1204 .
  • processor 1201 may be a general-purpose central processing unit (central processing unit, CPU), network processor (network processor, NP), microprocessor, application-specific integrated circuit (application-specific integrated circuit, ASIC) , or one or more integrated circuits used to control the execution of the program of this application.
  • CPU central processing unit
  • NP network processor
  • ASIC application-specific integrated circuit
  • the bus system 1202 described above may include a path to transfer information between the above described components.
  • the above-mentioned network interface 1204 is used to communicate with other devices or communication networks.
  • the above-mentioned memory 1203 can be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types of storage devices that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Types of dynamic storage devices which can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical storage, CD-ROM storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being accessed by Any other medium accessed by the computer, but not limited to this.
  • the memory can exist independently and be connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 1203 is used for storing the application program code for executing the solution of the present application, and the execution is controlled by the processor 1201 .
  • the processor 1201 is used to execute the application program code stored in the memory 1203, so as to realize the functions in the method of the present patent.
  • the processor 1201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 12 .
  • the apparatus 1200 may include multiple processors, such as the processor 1201 and the processor 1207 in FIG. 12 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • an embodiment of the present application provides a schematic diagram of a communication apparatus 1300 .
  • the apparatus 1300 may be the first UE in any of the foregoing embodiments.
  • the apparatus 1300 includes at least one processor 1301 , a bus system 1302 , a memory 1303 and at least one network interface 1304 .
  • the apparatus 1300 is an apparatus with a hardware structure, and can be used to implement the functional modules in the apparatus 1000 described in FIG. 10 .
  • the processing unit 1001 in the apparatus 1000 shown in FIG. 10 can be implemented by calling the code in the memory 1303 by the at least one processor 1301, and the sending unit 1002 and the sending unit 1002 in the apparatus 1000 shown in FIG.
  • the receiving unit 1003 can be implemented through the network interface 1304 .
  • processor 1301 may be a general-purpose central processing unit (central processing unit, CPU), network processor (network processor, NP), microprocessor, application-specific integrated circuit (application-specific integrated circuit, ASIC) , or one or more integrated circuits used to control the execution of the program of this application.
  • CPU central processing unit
  • NP network processor
  • ASIC application-specific integrated circuit
  • the bus system 1302 described above may include a path to transfer information between the above described components.
  • the above-mentioned network interface 1304 is used to communicate with other devices or communication networks.
  • the above-mentioned memory 1303 can be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types of storage devices that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Types of dynamic storage devices which can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical storage, CD-ROM storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being accessed by Any other medium accessed by the computer, but not limited to this.
  • the memory can exist independently and be connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 1303 is used for storing the application program code for executing the solution of the present application, and the execution is controlled by the processor 1301.
  • the processor 1301 is used to execute the application program code stored in the memory 1303, so as to realize the functions in the method of the present patent.
  • the processor 1301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 13 .
  • the apparatus 1300 may include multiple processors, such as the processor 1301 and the processor 1307 in FIG. 13 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • An embodiment of the present application provides a communication system, including the apparatus 800 provided by the embodiment shown in FIG. 8 , the apparatus 900 provided by the embodiment shown in FIG. 9 , and the apparatus 1000 provided by the embodiment shown in FIG. 10 , or, It includes the apparatus 1100 provided by the embodiment shown in FIG. 11 , the apparatus 1200 provided by the embodiment shown in FIG. 12 , and the apparatus 1300 provided by the embodiment shown in FIG. 13 .
  • the apparatus 800 provided by the embodiment shown in FIG. 8 or the apparatus 1100 provided by the embodiment shown in FIG. 11 is the first base station 1401
  • the apparatus 1200 provided by the embodiment is the second base station 1402
  • the apparatus 1000 provided by the embodiment shown in FIG. 10 or the apparatus 1300 provided by the embodiment shown in FIG. 13 is the first UE 1403 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置、系统及计算机可读存储介质,属于通信领域。所述方法包括:第一基站向第二基站发送协作请求,第二基站是除第一基站之外的其他基站;第一基站接收协作响应,所述协作响应包括M个第一反射体的标识,M为大于0的整数,所述M个第一反射体归属于第二基站,所述协作响应是第二基站基于所述协作请求释放所述M个第一反射体的控制权后发送的,所述M个第一反射体能够覆盖第一用户设备UE,第一UE归属于第一基站;第一基站获取所述M个第一反射体的控制权;第一基站通过所述M个第一反射体与第一UE进行通信。本申请能够提升第一UE的通信能力并避免影响邻居小区的用户的通信能力。

Description

通信方法、装置、系统及计算机可读存储介质
本申请要求于2020年6月29日提交的申请号为202010604945.X、发明名称为“通信方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种通信方法、装置、系统及计算机可读存储介质。
背景技术
在移动通信领域中,一个基站会负责一定区域内所属用户设备的数据发送和接收,该区域是该基站覆盖的区域。在目前往往多个基站的覆盖区域可能会重叠,这样对于某些用户设备,该用户设备可能位于该多个基站的覆盖区域之间的重叠区域内。
对于位于重叠区域内的用户设备,为了便于说明称为第一用户设备,为了提高第一用户设备的通信能力,目前可以采用如下三种方式来实现。该三种方式分别为:
第一种,第一用户设备的归属基站向第一用户设备发送数据,以及归属基站的邻居基站也向第一用户设备发送属于第一用户设备的数据,这样能够增加第一用户设备接收的信号强度,以提高第一用户设备的通信能力。
第二种,归属基站请求邻居基站停止使用第一用户设备占用的时频资源,这样邻居基站停止在该时频资源上向归属于自身的第二用户设备发送数据,减小邻居基站对第一用户设备的干扰,以提高第一用户设备的通信能力。
第三种,归属基站请求邻居基站改变发射方向,以停止向第一用户设备发送属于第二用户设备的数据,这样可以减小邻居基站对第一用户设备的干扰,以提高第一用户设备的通信能力。
在实现本申请的过程中,发明人发现现有技术至少存在以下问题:
对于上述第一种方式,邻居基站使用资源向第一用户设备发送数据,这样邻居基站会减小为第二用户设备分配的资源,从而影响第二用户设备的通信能力。
对于上述第二种方式或第三种方式,邻居基站停止使用第一用户设备占用的时频资源或改变发射方向,也会影响第二用户设备的通信能力。
发明内容
本申请提供了一种通信方法、装置、系统及计算机可读存储介质,以避免影响邻居小区的用户的通信能力。所述技术方案如下:
第一方面,本申请提供了一种通信方法,在所述方法中,第一基站向第二基站发送协作请求,第二基站是除第一基站之外的其他基站。第一基站接收协作响应,该协作响应包括M个第一反射体的标识,M为大于0的整数,该M个第一反射体归属于第二基站,该协作响应 是第二基站基于该协作请求释放该M个第一反射体的控制权后发送的,该M个第一反射体能够覆盖第一用户设备UE,第一UE归属于第一基站。第一基站获取M个第一反射体的控制权,通过M个第一反射体与第一UE进行通信。
由于第一基站只从第二基站中获取该M个第一反射体的控制权,通过M个第一反射体与第一UE进行通信,这样在通信的过程中,不会使用第二基站中的资源,不需要第二基站停止使用第一UE占用的时频资源,也不需要第二基站改变发射方向,从而不会影响第二基站与归属第二基站的第二UE之间的通信,从而不会影响第二UE的通信能力,避免影响邻居小区的用户的通信能力。另外,在第一基站获取该M个第一反射体的控制权之后,第一基站与第一UE进行通信之前,第一基站与第二基站之间不需要交互控制信令等数据,就可以直接实现第一基站与第一UE之间的通信,从而减小了通信时延,提高了第一UE的通信能力。
在一种可能的实现方式中,协作请求包括能够覆盖第一UE的N个第一反射体的标识,该N个第一反射体归属于第二基站,该协作请求用于第二基站从该N个第一反射体的标识对应的第一反射体中确定能够释放控制权的M个第一反射体,N为大于或等于M的整数。这样可以使第二基站在指定的范围内选择能够释放控制权的第一反射体。
在另一种可能的实现方式中,协作请求包括第一UE的位置描述信息,协作请求用于第二基站基于该位置描述信息确定能够释放控制权的M个第一反射体。这样使得第二基站自主确定能释放控制权的第一反射体。
在另一种可能的实现方式中,在协作请求包括N个第一反射体的标识的情况下,第一基站确定能够覆盖第一UE的N个第一反射体。由于确定的N个第一反射体能够覆盖第一UE,而该M个第一反射体又是从该N个第一反射体中选择得到的,保证了第一基站可以使用该M个第一反射体与第一UE进行通信。
在另一种可能的实现方式中,第一基站接收第一UE发送的N个第一反射体的标识,该N个第一反射体是第一UE通过测量归属于第二基站的反射体反射的信号得到的。由于该N个第一反射体是第一UE测量得到的,而该M个第一反射体又是从该N个第一反射体中选择得到的,保证了第一基站可以使用该M个第一反射体与第一UE进行通信。
在另一种可能的实现方式中,第一基站根据第一UE的位置描述信息,确定能够覆盖到第一UE的邻居小区。第一基站根据第一UE的位置描述信息,从属于邻居小区的反射体中选择N个第一反射体。如此由于基于第一UE的位置描述信息选择N个第一反射体,保证该N个第一反射体能够覆盖第一UE。
在另一种可能的实现方式中,第一基站测量第一基站与第一UE之间的上行等效信道的信道质量信息,上行等效信道包括M个级联信道,每个级联信道包括第一UE至一个第一反射体的信道和一个第一反射体至第一基站的信道,该一个第一反射体是M个第一反射体中的 一个。第一基站基于上行等效信道的信道质量信息确定第一UE的功率调整参数,向第一UE发送该功率调整参数,这样第一UE可以基于该功率调整参数调整第一UE的发射功率,确保了第一UE与第一基站能够进行通信。
在另一种可能的实现方式中,第一基站测量第一基站与第一UE之间的上行等效信道的时延信息,该上行等效信道包括M个级联信道,每个级联信道包括第一UE至一个第一反射体的信道和该一个第一反射体至第一基站的信道,该一个第一反射体是该M个第一反射体中的一个。第一基站根据该时延信息向第一UE发送循环前缀CP长度指示信息,这样第一UE能够基于该CP长度指示信息调整第一UE的CP长度,确保了第一UE与第一基站能够进行通信。
在另一种可能的实现方式中,第一基站在至少一个第二反射体中的每个第二反射体对应的时隙内,分别激活每个第二反射体,以及分别在每个第二反射体对应的时隙内发送测量信号,至少一个第二反射体归属于第一基站,每个第二反射体对应的时隙内被发送的测量信号用于第一UE选择一个第二反射体作为第一UE接入第一基站的接入反射体,其中在第一UE接入第一基站后,在存在第三基站请求接入反射体的控制权时,第一基站拒绝释放接入反射体的控制权,第三基站是除第一基站之外的其他基站。由于第一基站拒绝释放接入反射体的控制权,从而保证第一基站与第一UE之间的通信不会断开。
在另一种可能的实现方式中,第一基站确定能够覆盖第一UE的第二反射体;通过M个第一反射体和确定的第二反射体与第一UE进行通信。这样联合归属于第一基站的反射体和归属于第二基站的反射体,来实现第一基站与第一UE之间的通信,能够大幅度地提升第一UE的通信能力。
第二方面,本申请提供了一种通信方法,在所述方法中,第二基站接收第一基站发送的协作请求,第二基站是除第一基站之外的其他基站。第二基站基于该协作请求释放M个第一反射体的控制权,该M个第一反射体能够覆盖第一用户设备UE,第一UE归属于第一基站,该M个第一反射体归属于第二基站,M为大于0的整数。第二基站向第一基站发送协作响应,该协作响应包括该M个第一反射体的标识,该协作响应用于第一基站与第一UE进行通信。
由于第二基站释放该M个第一反射体的控制权,这样第一基站只从第二基站中获取该M个第一反射体的控制权,通过M个第一反射体与第一UE进行通信,在通信的过程中不会使用第二基站中的资源,不需要第二基站停止使用第一UE占用的时频资源,也不需要第二基站改变发射方向,从而不会影响第二基站与归属第二基站的第二UE之间的通信,从而不会影响第二UE的通信能力,避免影响邻居小区的用户的通信能力。
在一种可能的实现方式中,协作请求包括能够覆盖第一UE的N个第一反射体的标识,N个第一反射体归属于第二基站,N为大于或等于M的整数。第二基站从该N个第一反射体的标识对应的第一反射体中,选择M个第一反射体,释放该M个第一反射体的控制权。这样可以使第二基站在指定的范围内选择能够释放控制权的第一反射体。
在另一种可能的实现方式中,该协作请求包括第一UE的位置描述信息。第二基站基于该位置描述信息确定能够覆盖第一UE的M第一反射体,释放该M个第一反射体的控制权。这样使得第二基站自主确定能释放控制权的第一反射体。
第三方面,本申请提供了一种通信方法,在所述方法中,第一用户设备UE通过测量归属于第二基站的N个第一反射体反射的信号,得到该N个第一反射体的标识,第二基站是除第一基站之外的其他基站,第一UE归属于第一基站,N为大于0的整数。第一UE发送该N个第一反射体的标识,该N个第一反射体的标识用于第一基站从该第二基站中获取M个第一反射体的控制权,该N个第一反射体包括该M个第一反射体。第一UE通过该M个第一反射体与第一基站通信。
由于第一UE发送该N个第一反射体的标识后,第一基站只从第二基站中获取该M个第一反射体的控制权,通过M个第一反射体与第一UE进行通信,这样在通信的过程中,不会使用第二基站中的资源,不需要第二基站停止使用第一UE占用的时频资源,也不需要第二基站改变发射方向,从而不会影响第二基站与归属第二基站的第二UE之间的通信,不会影响第二UE的通信能力,避免影响邻居小区的用户的通信能力。另外,在第一基站获取该M个第一反射体的控制权之后,第一基站与第一UE进行通信之前,第一基站与第二基站之间不需要交互控制信令等数据,就可以直接实现第一基站与第一UE之间的通信,从而减小了通信时延,提高了第一UE的通信能力。
在一种可能的实现方式中,第一UE接收第一基站发送的功率调整参数,该功率调整参数是第一基站基于上行等效信道的信道质量信息确定的,该上行等效信道包括M个级联信道,每个级联信道包括第一UE至一个第一反射体的信道和该一个第一反射体至第一基站的信道,该一个第一反射体是M个第一反射体中的一个。这样第一UE可以基于该功率调整参数调整第一UE的发射功率,确保了第一UE与第一基站能够进行通信。
在另一种可能的实现方式中,第一UE接收第一基站发送的循环前缀CP长度指示信息,CP长度指示信息是第一基站基于上行等效信道的时延信息发送的,上行等效信道包括M个级联信道,每个级联信道包括第一UE至一个第一反射体的信道和该一个第一反射体至所述第一基站的信道,该一个第一反射体是M个第一反射体中的一个。这样第一UE能够基于该CP长度指示信息调整第一UE的CP长度,确保了第一UE与第一基站能够进行通信。
在另一种可能的实现方式中,第一UE在至少一个第二反射体中的每个第二反射体对应的时隙内接收第一基站发送的测量信号,第一基站用于每个第二反射体对应的时隙内,分别激活每个第二反射体,以及分别在每个第二反射体对应的时隙内发送测量信号,该至少一个第二反射体归属于第一基站。第一UE根据在每个第二反射体对应的时隙内接收的测量信号,从每个第二反射体中选择一个反射体,并通过选择的反射体接入第一基站。如此,即使第一UE所在位置处的第一基站的信号质量较差,第一UE也可以通过反射体接入第一基站,确保了第一基站与第一UE能够进行通信。
第四方面,本申请提供了一种通信装置,用于执行第一方面或第一方面的任意一种可能实现方式中的方法。具体地,所述装置包括用于执行第一方面或第一方面的任意一种可能实现方式的方法的单元。
第五方面,本申请提供了一种通信装置,用于执行第二方面或第二方面的任意一种可能实现方式中的方法。具体地,所述装置包括用于执行第二方面或第二方面的任意一种可能实现方式的方法的单元。
第六方面,本申请提供了一种通信装置,用于执行第三方面或第三方面的任意一种可能实现方式中的方法。具体地,所述装置包括用于执行第三方面或第三方面的任意一种可能实现方式的方法的单元。
第七方面,本申请提供了一种通信装置,所述装置包括:处理器、存储器和网络接口。其中,所述处理器、所述存储器和所述网络接口之间可以通过总线系统相连。所述存储器用于存储一个或多个程序,所述处理器用于执行所述存储器中的一个或多个程序,使得所述装置完成第一方面或第一方面的任意可能实现方式中的方法。
第八方面,本申请提供了一种通信装置,所述装置包括:处理器、存储器和网络接口。其中,所述处理器、所述存储器和所述网络接口之间可以通过总线系统相连。所述存储器用于存储一个或多个程序,所述处理器用于执行所述存储器中的一个或多个程序,使得所述装置完成第二方面或第二方面的任意可能实现方式中的方法。
第九方面,本申请提供了一种通信装置,所述装置包括:处理器、存储器和网络接口。其中,所述处理器、所述存储器和所述网络接口之间可以通过总线系统相连。所述存储器用于存储一个或多个程序,所述处理器用于执行所述存储器中的一个或多个程序,使得所述装置完成第三方面或第三方面的任意可能实现方式中的方法。
第十方面,本申请提供了一种通信装置,所述装置包括:处理器、存储器和网络接口。其中,所述处理器、所述存储器和所述网络接口之间可以通过总线系统相连。所述存储器用于存储一个或多个程序,所述处理器用于执行所述存储器中的一个或多个程序,使得所述装置完成第三方面或第三方面的任意可能实现方式中的方法。
第十一方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有程序代码,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面、第三方面、第一方面的任意可能实现方式、第二方面的任意可能实现方式或第三方面的任意可能实现方式中的方法。
第十二方面,本申请提供了一种包含程序代码的计算机程序产品,当其在设备上运行时, 使得设备执行上述第一方面、第二方面、第三方面、第一方面的任意可能实现方式、第二方面的任意可能实现方式或第三方面的任意可能实现方式中的方法。
第十三方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储程序,所述程序用于实现上述第一方面、第二方面、第三方面、第一方面的任意可能实现方式、第二方面的任意可能实现方式或第三方面的任意可能实现方式中的方法。
第十四方面,本申请提供了一种通信系统,所述通信系统包括第四方面所述的装置、第五方面所述的装置和第六方面所述的装置,或者,所述通信系统包括第七方面所述的装置、第八方面所述的装置和第九方面所述的装置。
附图说明
图1是本申请实施例提供的一种网络架构的示意图;
图2是本申请实施例提供的另一种网络架构的示意图;
图3是本申请实施例提供的一种反射体结构示意图;
图4是本申请实施例提供的一种通信方法流程图;
图5是本申请实施例提供的一种接入方法流程图;
图6是本申请实施例提供的另一种接入方法流程图;
图7是本申请实施例提供的另一种通信方法流程图;
图8是本申请实施例提供的一种通信装置结构示意图;
图9是本申请实施例提供的另一种通信装置结构示意图;
图10是本申请实施例提供的另一种通信装置结构示意图;
图11是本申请实施例提供的另一种通信装置结构示意图;
图12是本申请实施例提供的另一种通信装置结构示意图;
图13是本申请实施例提供的另一种通信装置结构示意图;
图14是本申请实施例提供的一种通信系统结构示意图。
具体实施方式
参见图1,本申请实施例提供的一种网络架构,该网络架构包括多个基站,该多个基站可组成一个协作集合,对于协作集合内的各基站,属于各基站的基础资源能够在各基站之间共享使用。
对于任一个基站,该基站的基础资源包括至少一个反射体。该至少一个反射体归属于该基站,该基站拥有该至少一个反射体中的每个反射体的控制权。
可选的,该至少一个反射体为智能反射体,例如为智能电磁反射体,该至少一个反射体中的每个反射体的反射相位是可控的,该基站可改变每个反射体的反射相位。
例如,参见图1所示的网络架构,该网络架构包括基站1和基站2,基站1的基础资源包括反射体1、反射体2和反射体3,反射体1、反射体2和反射体3归属于基站1,基站1拥有反射体1的控制权、反射体2的控制权和反射体3的控制权。
基站2的基础资源包括反射体4、反射体5、反射体6和反射体7,反射体4、反射体5、反射体6和反射体7归属于基站2,基站2拥有反射体4的控制权、反射体5的控制权、反射体6的控制权和反射体7的控制权。
可选的,该协作集合中的每个基站中保存有属于该协作集合中的每个反射体的基本信息,该协作集合中的每个反射体为归属于该每个基站的反射体。反射体的基本信息包括该反射体的标识、位置和归属的基站的标识等信息。也就是说,对于协作集合中的任一个基站,该基站中不仅保存有归属其自身的反射体的基本信息,还保存有归属协作集合中的其他基站的反射体的基本信息。或者,
可选的,参见图2,该网络架构中还包括管理设备,该管理设备与该协作集合中的每个基站之间存在网络连接,该管理设备中保存有该协作集合中的每个反射体的基本信息。
用户设备(user equipment,UE)可以接入到协作集合中的某个基站上,为了便于说明称该基站为第一基站,称该UE为第一UE,即第一基站为第一UE的归属基站,所谓归属基站就是第一UE接入的基站。
在第一UE接入第一基站后,第一基站可以建立与第一UE之间的直连信道,通过该直连信道与第一UE进行通信。或者,第一基站从归属于第一基站的反射体中确定Z个反射体,第一基站通过该Z个反射体与第一UE进行通信,Z为大于0的整数。
在第一基站通过Z个反射体与第一UE进行通信时,该Z个反射体中的每个反射体用于反射第一基站与第一UE之间的信号。即第一基站发送下行信号,该Z个反射体能够向第一UE反射该下行信号;第一UE发送上行信号,该Z个反射体能够向第一基站反射该上行信号。
可选的,在第一基站通过该Z个反射体与第一UE进行通信的情况下,第一基站与第一UE之间的等效信道包括Z个级联信道,该Z个级联信道分别与该Z个反射体一一对应,一个反射体对应的级联信道包括第一UE与该反射体之间的信道和该反射体与第一基站之间的信道。
可选的,第一基站与第一UE之间的等效信道还包括第一基站与第一UE之间的直连信道。
例如,参见图1,第一UE接入第一基站(即为基站1),第一基站确定反射体2和反射体3,通过反射体2和反射体3与第一UE进行通信。其中,第一基站与第一UE之间的等效信道包括反射体2对应的级联信道、反射体3对应的级联信道、以及第一基站与第一UE之间的直连信道。
反射体2对应的级联信道包括第一UE与反射体2之间的信道和反射体2与第一基站之间的信道。反射体3对应的级联信道包括第一UE与反射体3之间的信道和反射体3与第一基站之间的信道。
可选的,第一基站确定Z个反射体,通过Z个反射体与第一UE进行通信,详细实现过程将在后续图4所示的实施例进行详细说明。
可选的,在第一基站有大量待发送的数据需要发送给第一UE,或,第一UE有大量待发送的数据需要发送第一基站等情况下,第一基站还可以向第二基站请求归属于第二基站的反射体,第二基站可以释放M个反射体的控制权,M为大于0的整数,第二基站是协作集合中除第一基站之外的其他基站。
这样,第一基站能够获取该M反射体的控制权,通过该M个反射体与第一UE进行通信。 或者,第一基站通过该M个反射体和该Z个反射体与第一UE进行通信。
为了便于说明,称归属于第二基站的反射体为第一反射体,称归属于第一基站的反射体为第二反射体。即就是说,第一基站通过该M个第一反射体与第一UE进行通信。或者,第一基站通过该M个第一反射体和该Z个第二反射体与第一UE进行通信。
可选的,在第一基站通过该M个第一反射体与第一UE进行通信的情况下,第一基站与第一UE之间的等效信道包括M个级联信道,该M个级联信道分别与该M个第一反射体一一对应,一个第一反射体对应的级联信道包括第一UE与该第一反射体之间的信道和该第一反射体与第一基站之间的信道。
可选的,在第一基站通过该M个第一反射体和该Z个第二反射体与第一UE进行通信的情况下,第一基站与第一UE之间的等效信道除了包括该M个级联信道,还包括Z个级联信道,该Z个级联信道分别与该Z个第二反射体一一对应,一个第二反射体对应的级联信道包括第一UE与该第二反射体之间的信道和该第二反射体与第一基站之间的信道。
可选的,在第一基站通过该M个第一反射体和该Z个第二反射体与第一UE进行通信的情况下,第一基站与第一UE之间的等效信道还包括第一基站与第一UE之间的直连信道。
可选的,第一基站可以向一个或多个第二基站请求提供第二反射体,通过请求的第二反射体与第一UE进行通信,详细实现过程将在后续图7所示的实施例进行详细说明。
可选的,参见图3,反射体包括多个反射单元,每个反射单元用于反射第一基站与第一UE之间的信号,在第一基站与第一UE使用反射体进行通信时,需要先调整反射体中的反射单元的反射相位,使得该反射体能够反射第一基站与第一UE之间的信号。
参见图4,本申请实施例提供了一种通信方法,该方法应用于图1或2所示的网络架构,包括:
步骤401:第一基站在至少一个第二反射体中的每个第二反射体对应的时隙内,分别激活每个第二反射体,以及分别在每个第二反射体对应的时隙内发送测量信号。
该至少一个第二反射体为归属于第一基站且处于空闲状态的反射体。第一基站可以在归属于第一基站的每个第二反射体对应的时隙内,分别激活每个第二反射体。也就是说:对于任一个第二反射体,第一基站在该第二反射体对应的时隙内激活该第二反射体,在激活后发送测量信号,该第二反射体反射该测量信号。这样,以便进入第一基站覆盖范围内的UE测量该第二反射体反射的信号。
第一基站可以周期性执行本步骤,一个周期包括每个第二反射体对应的时隙。在一个周期内,在每个第二反射体对应的时隙内分别激活每个第二反射体以及发送测量信号。如此实现循环往复地依次在每个第二反射体对应的时隙内分别激活每个第二反射体,以及在每个第二反射体对应的时隙内发送测量信号。这样,进入第一基站覆盖范围内的UE通过在每个第二反射体对应的时隙内测量每个第二反射体反射的信号,选择一个第二反射体作为接入反射体,通过该接入反射体接入第一基站。
在本步骤中,通过如下4011至4012的操作来实现,该4011至4012的操作分别为:
4011:第一基站发送反射体配置信息,该反射体配置信息包括在一个周期内每个第二反射体的激活时间和标识。
该反射体配置信息包括在一个周期内待激活的每个第二反射体的激活时间和每个第二反 射体的标识,每个第二反射体的激活时间分别为每个第二反射体对应的时隙的标识。
可选的,每个第二反射体的激活时间分别为每个第二反射体对应的时隙的标识是指:每个第二反射体对应的时隙的标识分别用于指示每个第二反射体的激活时间。
可选的,第一基站可以在每个周期的起始时刻广播该反射体配置信息,如此可以告知进入第一基站覆盖范围内的UE,UE通过该反射体配置信息确定归属于第一基站的第二反射体和第二反射体的激活时间。
可选的,第一基站可以通过信令方式广播该反射体配置信息。在实现时,第一基站广播主系统模块(master information block,MIB)和系统信息块(system information block,SIB),该MIB包括指示信息,该指示信息用于向UE指示第一基站的覆盖范围内存在反射体,该SIB包括该反射体配置信息。
对于进入第一基站覆盖范围内的任一个UE,为了便于说明称为第一UE,第一UE接收MIB,根据该MIB包括的该指示信息确定第一基站的覆盖范围内存在反射体;接收该SIB,根据该SIB包括的该反射体配置信息确定每个第二反射体和每个第二反射体对应的时隙。
4012:第一基站在每个第二反射体对应的时隙内分别激活每个第二反射体,以及在每个第二反射体对应的时隙内发送测量信号。
可选的,该测量信号为导频信号。
步骤402:第一UE在每个第二反射体对应的时隙内,分别测量每个第二反射体反射的信号,根据每个反射体反射的信号选择一个反射体作为接入反射体,通过接入反射体向第一基站发送接入请求。
在本步骤中,第一UE在每个第二反射体对应的时隙内接收测量信号,测量在每个第二反射体对应的时隙内接收的测量信号的信号质量,得到每个第二反射体反射的信号质量。根据每个第二反射体反射的信号质量,从每个第二反射体中选择一个满足第一条件的第二反射体,将选择的第二反射体作为接入反射体,并通过接入反射体接入第一基站,即通过接入反射体向第一基站发送接入请求。
其中,需要说明的是:对于任一个第二反射体,第一基站在该第二反射体对应的时隙内激活该第二反射体,在激活后,发送测量信号。该第二反射体在激活后可反射该测量信号,进入第一基站覆盖范围内的第一UE可能会接收到该测量信号,测量该测量信号的信号质量,从而得到该第二反射体反射的信号质量。
第一条件是选择反射的信号质量最好的反射体,或者,第一条件是选择反射的信号质量超过质量阈值的反射体。
可选的,第一UE通过如下两种方式选择接入反射体,该两种方式分别为:
参见图5,第一种方式,第一UE在当前周期先分别测量出每个第二反射体反射的信号质量,根据每个第二反射体反射的信号质量选择满足第一条件一个第二反射体作为接入反射体,在下一个周期通过接入反射体接入第一基站。
在第一种方式中,第一UE分别在当前周期内的每个第二反射体对应的时隙内,测量每个第二反射体反射的信号质量,根据每个第二反射体反射的信号质量,从每个第二反射体中选择一个满足第一条件的第二反射体作为接入反射体,在下一个周期包括的该接入反射体对应的时隙内通过该接入反射体向第一基站发送接入请求。
例如,对于上述图1或图2所示的实例,参见图5,第一基站在当前周期的反射体1对 应的时隙1内激活反射体1,发送测量信号1;第一UE测量测量信号1的信号质量,即得到反射体1反射的信号质量。第一基站在当前周期的反射体2对应的时隙2内激活反射体2,发送测量信号2;第一UE测量测量信号2的信号质量,即得到反射体2反射的信号质量。第一基站在当前周期的反射体3对应的时隙3内激活反射体3,发送测量信号3;第一UE测量测量信号3的信号质量,即得到反射体3反射的信号质量。
第一UE根据反射体1反射的信号质量、反射体2反射的信号质量和反射体3反射的信号质量,从反射体1、反射体2和反射体3中选择反射体2作为接入反射体。在下一个周期包括的接入反射体对应的时隙2,通过接入反射体向第一基站发送接入请求。
参见图6,第二种方式,第一UE在一个第二反射体对应的时隙内测量该第二反射体反射的信号质量,在该信号质量超过质量阈值时,选择该第二反射体作为接入反射体,在当前周期的该接入反射体对应的时隙内通过接入反射体接入第一基站。
例如,对于上述图1或图2所示的实例,参见图6,第一基站在当前周期的反射体1对应的时隙1内激活反射体1,发送测量信号1;第一UE测量测量信号1的信号质量,即得到反射体1反射的信号质量,假设反射体1反射的信号质量未超过质量阈值,继续测量。第一基站在当前周期的反射体2对应的时隙2内激活反射体2,发送测量信号2;第一UE测量测量信号2的信号质量,即得到反射体2反射的信号质量,假设反射体2反射的信号质量超过质量阈值,选择反射体2作为接入反射体,在该时隙2内通过接入反射体向第一基站发送接入请求。
步骤403:第一基站接收第一UE发送的接入请求,确定用于第一UE接入的接入反射体,绑定第一UE与接入反射体。
在本步骤中,第一基站确定接收该接入请求的当前时隙,确定与该当前时隙相对应的反射体,将确定的反射体作为用于第一UE接入第一基站的接入反射体,将第一UE的标识和接入反射体的标识对应保存在UE的标识与接入反射体的标识的对应关系中。
例如,参见图5和6,第一基站接收接入请求,确定接收接入请求的时隙为时隙2,确定与该时隙2相对应的反射体2,将反射体2作为用于第一UE接入第一基站的接入反射体。
在第一UE接入第一基站后,第一基站可以使用归属于第一基站的Z个第二反射体与第一UE进行通信,Z为大于0的整数,详细实现过程如下:
步骤404:第一基站从归属于第一基站的第二反射体中确定能够覆盖第一UE的Z个第二反射体,该Z个第二反射体是除接入反射体之外的其他反射体。
在本步骤中,可以通过如下方式一和方式二,确定Z个第二反射体,该方式一和方式二分别为:
方式一、第一基站根据第一UE的位置描述信息,从归属于第一基站的第二反射体中确定能够覆盖第一UE的Z个第二反射体。
可选的,该位置描述信息包括第一UE的位置、坐标系信息、上行信道信息、下行信道信息、多径时延信息和不同基站到达第一UE的时间差信息等中的至少一个。
在方式一中,第一基站可获取第一UE的位置描述信息,根据第一UE的位置描述信息,确定第一UE的位置,根据第一UE的位置,从归属于第一基站的第二反射体中确定能够覆盖第一UE的Z个第二反射体。
可选的,在第一UE的位置描述信息包括第一UE的位置,则第一基站直接从第一UE的 位置描述信息中获取第一UE的位置。或者,
可选的,在第一UE的位置描述信息包括第一UE的坐标系信息、上行信道信息、下行信道信息、多径时延信息和不同基站到达第一UE的时间差信息等中的至少一个。第一基站根据第一UE的坐标系信息、上行信道信息、下行信道信息、多径时延信息和不同基站到达第一UE的时间差信息等中的至少一个,获取第一UE的位置。
可选的,该Z个第二反射体为除接入反射体之外的其他反射体。或者,该Z个第二反射体为空闲的反射体。
可选的,第一基站可以根据接入反射体的标识与UE的标识的对应关系中包括的每个接入反射体的标识,确定归属于第一基站的各接入反射体。从能够覆盖第一UE的各第二反射体中去除确定的接入反射体,在剩下的第二反射体选择Z个第二反射体。
可选的,Z个第二反射体均为空闲状态的第二反射体,或者,第一基站从剩下的第二反射体中除了选择空闲状态的第二反射体,还能够选择其他UE正在使用的第二反射体。
可选的,在选择其他UE正在使用的第二反射体时,第一基站可以选择当前传输数据量较少的其他UE正在使用的一个或多个第二反射体。例如,第一基站可以选择当前传输数据量小于数据量阈值的其他UE正在使用的一个或多个第二反射体。
可选的,在选择空闲状态的第二反射体时,将第二反射体中的每个反射单元分配给第一UE。在选择其他UE正在使用的第二反射体时,第一基站可以为第一UE选择该第二反射体中的每个反射单元,即将该第二反射体中的每个反射单元分配给第一UE。或者,第一基站可以为第一UE选择该第二反射体中的部分反射单元,即将该第二反射体中的部分反射单元分配给第一UE。
在方式二中,第一基站接收第一UE发送的请求消息,该请求消息包括X个第二反射体的标识,该X个第二反射体是第一UE通过测量第二反射体反射的信号选择的,X为大于或等于Z的整数,从该X个第二反射体的标识对应的X个第二反射体中选择Z个第二反射体。
在方式二中,第一UE测量的归属于第一基站的每个第二反射体反射的信号,得到每个第二反射体反射的信号质量,根据每个第二反射体反射的信号质量,选择满足第三条件的X个第二反射体,向第一基站发送请求消息,该请求消息包括该X个第二反射体的标识。
第三条件包括反射的信号质量超过质量阈值的X个反射体或反射的信号质量最大的X个反射体。即第一UE根据每个第二反射体反射的信号质量,选择反射的信号质量超过质量阈值的X个第二反射体,或者,选择反射的信号质量最大的X个第二反射体。
可选的,在该请求消息中该X个第二反射体的标识之间的顺序可以为基于该X个第二反射体反射的信号质量进行排序后的顺序。
可选的,第一基站可以根据接入反射体的标识与UE的标识的对应关系中包括的每个接入反射体的标识,确定归属于第一基站的各接入反射体。从该X个第二反射体的标识对应的X个第二反射体中,去除接入反射体,从剩下的第二反射体中选择Z个第二反射体。
可选的,第一基站从剩下的第二反射体中选择空闲的Z个第二反射体。
可选的,Z个第二反射体均为空闲的第二反射体,或者,第一基站从剩下的第二反射体中除了选择空闲的第二反射体,还能够选择其他UE正在使用的第二反射体。详细选择过程,参见上述方式一中的相关内容,在此不再详细说明。
步骤405:第一基站调整该Z个第二反射体的反射相位,调整后的该Z个第二反射体用 于反射第一基站与第一UE之间的信号。
调整后的该Z个第二反射体用于向第一UE反射第一基站发送给第一UE的下行信号,以及用于向第一基站反射第一UE发送给第一基站的上行信号。
在本步骤中,第一基站获取该Z个第二反射体包括的每个第二反射体对应的目标反射系数集合,根据每个第二反射体对应的目标反射系数集合,调整每个第二反射体的反射相位。
可选的,对于该Z个第二反射体中的任一个第二反射体。该第二反射体包括一个或多个反射单元,该第二反射体对应的目标反射系数集合包括该第二反射体中的反射单元对应的目标反射系数。
可选的,调整该第二反射体的反射相位可以为:根据该第二反射体中的反射单元对应的目标反射系数,调整该第二反射体中的反射单元的反射相位。
在本步骤中,通过如下第一种实现方式和第二种实现方式来调整该Z个第二反射体的反射相位。其中,第一种实现方式为:一次调整该Z个第二反射体的反射相位。在第一种实现方式中,第一基站一次获取该Z个第二反射体对应的目标反射系数集合,根据该Z个第二反射体对应的目标反射系数集合分别调整该Z个第二反射体的反射相位。
第二种实现方式为:分批调整该Z个第二反射体的反射相位。在第二种实现方式中,第一基站分多批获取该Z个第二反射体对应的目标反射系数集合,每批获取该Z个第二反射体中的部分第二反射体对应的目标反射系数集合,根据该部分第二反射体中的每个第二反射体对应的目标反射系数集合,分别调整该部分第二反射体中的每个第二反射体反射相位。
可选的,在本步骤中,可以通过如下4051至4055的操作,调整该Z个第二反射体的反射相位。该4051至4055的操作分别为:
4051:第一基站生成多个控制向量,该多个控制向量中的各控制向量之间正交,该多个控制向量中的任一个控制向量包括每个第二反射体对应的测试反射系数集合。
可选的,对于该Z个第二反射体中的每个第二反射体,每个第二反射体包括多个反射单元,一个第二反射体的测试反射系数集合包括该第二反射体中的反射单元的测试反射系数。
假设一个第二反射体包括的反射单元数目用K表示。如此,一个第二反射体的测试反射系数集合包括K个测试反射系数,该K个测试反射系数分别与该K个反射单元一一对应。
在本步骤采用第一种实现方式的情况下,如果第一基站将该Z个第二反射体中的每个反射单元都分配给第一UE,每个第二反射体中的反射单元数目为K。由于一个控制向量包括每个第二反射体的测试反射系数集合,一个第二反射体的测试反射系数集合包括该第二反射体中的K个反射单元的测试反射系数,所以一个控制向量包括Z*K个测试反射系数。且在4051的操作中,第一基站能够生成Z*K+1个相互正交的控制向量。
如果第一基站将该Z个第二反射体中的部分第二反射体中的每个反射单元分配给第一UE,将剩下的第二反射体中的部分反射单元分配给第一UE。假设该Z个第二反射体中存在V个反射单元分配给了第一UE,则一个控制向量包括V个测试反射系数,且在4051的操作中,第一基站能够生成V+1个相互正交的控制向量。
在本步骤采用第二种实现方式的情况下,即分批调整该Z个第二反射体的反射相位,假设一批调整W个第二反射体的反射相位,W为大于0且小于Z的整数。如果第一基站将该W个第二反射体中的每个反射单元都分配给第一UE,这样在4051操作中第一基站生成W*K+1个相互正交的控制向量,每个控制向量包括W*K个测试反射系数。如果第一基站将 该W个第二反射体中的部分第二反射体中的每个反射单元分配给第一UE,将剩下的第二反射体中的部分反射单元分配给第一UE。假设该W个第二反射体中存在Q个反射单元分配给了第一UE,则一个控制向量包括Q个测试反射系数,且在4051的操作中,第一基站能够生成Q个相互正交的控制向量。
步骤4052:对于该多个控制向量中的任一个控制向量,第一基站向多个第二反射体和第一UE发送该控制向量,然后再发送测量信号。
可选的,在采用第一种实现方式的情况下,如果第一基站生成Z*K+1个控制向量,则第一基站分Z*K+1次发送该Z*K+1个控制向量,第一基站每次向该Z个第二反射体和第一UE发送该Z*K+1个控制向量中的一个控制向量,在发送该一个控制向量之后,再发送测量信号。如果第一基站生成V个控制向量,则第一基站分V次发送该V+1个控制向量,第一基站每次向该Z个第二反射体和第一UE发送该V+1个控制向量中的一个控制向量,在发送该一个控制向量之后,再发送测量信号。
该Z个第二反射体中的任一个第二反射体,该第二反射体接收该控制向量,从该控制向量中获取该第二反射体中的反射单元对应的测试反射系数,根据该第二反射体中的反射单元对应的测试反射系数,调整该第二反射体中的反射单元的反射相位。然后该第二反射体再反射第一基站发送的测量信号。
可选的,在采用第二种实现方式的情况下,如果第一基站生成W*K+1个控制向量,则第一基站分W*K+1次发送该W*K+1个控制向量,第一基站每次向该W个第二反射体和第一UE发送该控制向量,在发送该控制向量之后,再发测量信号。如果第一基站生成Q个控制向量,则第一基站分Q次发送该Q+1个控制向量,第一基站每次向该W个第二反射体和第一UE发送该Q+1个控制向量中的一个控制向量,在发送该一个控制向量之后,再发送测量信号。
该W个第二反射体中的任一个第二反射体,该第二反射体接收该控制向量,从该控制向量中获取该第二反射体中的反射单元对应的测试反射系数,根据该第二反射体中的反射单元对应的测试反射系数,调整该第二反射体中的反射单元的反射相位。然后该第二反射体再反射第一基站发送的测量信号。
可选的,第一基站在发送一个控制向量时,还发送系数指示信息,该系数指示信息用于指示该控制向量中的每个测试反射系数对应的第二反射体和该第二反射体中的一个反射单元。第二反射体接收到该控制向量和该系数指示信息后,基于该系数指示信息,从该控制向量中获取该第二反射体中的反射单元对应的测试反射系数。
4053:第一UE接收该控制向量,测量第一基站到第一UE的下行等效信道质量信息,该控制向量与该下行等效信道质量信息相对应。
在第一基站发送一个控制向量和测量信号后,第一UE可以接收第二反射体反射的测量信号,对该测量信号进行测量,得到与该控制向量相对应的下行等效信道质量信息。
可选的,在采用第一种实现方式的情况下,该下行等效信道质量信息包括Z+1个下行信道质量信息,该Z+1个下行信道质量信息包括Z个下行级联信道质量信息和第一基站到第一UE的直连下行信道质量信息。该Z个下行级联信道分别与该Z个第二反射体一一对应,一个第二反射体对应的下行级联信道包括第一基站至该第二反射体的信道和第二反射体至第一UE的信道。
可选的,第一基站和第一UE重复执行上述4052至4053的操作,直到第一基站发送完Z*K+1个控制向量为止,这样第一UE测量得到Z*K+1个下行等效信道质量信息和该Z*K+1个控制向量,该Z*K+1个下行等效信道质量信息分别和该Z*K+1个控制向量一一对应。或者,直到第一基站发送完V+1个控制向量为止,这样第一UE测量得到V+1个下行等效信道质量信息和该V+1个控制向量,该V+1个下行等效信道质量信息分别和该V+1个控制向量一一对应。然后执行如下4054的操作。
可选的,在采用第二种实现方式的情况下,该下行等效信道质量信息包括W+1个下行信道质量信息,该W+1个下行信道质量信息包括W个下行级联信道质量信息和第一基站到第一UE的直连下行信道质量信息。该W个下行级联信道分别与该W个第二反射体一一对应。
可选的,第一基站和第一UE重复执行上述4052至4053的操作,直到第一基站发送完W*K+1个控制向量为止,这样第一UE测量得到W*K+1个下行等效信道质量信息和该W*K+1个控制向量,该W*K+1个下行等效信道质量信息分别和该W*K+1个控制向量一一对应。或者,直到第一基站发送完Q+1个控制向量为止,这样第一UE测量得到Q+1个下行等效信道质量信息和该Q+1个控制向量,该Q+1个下行等效信道质量信息分别和该Q+1个控制向量一一对应。然后执行如下4054的操作。
4054:第一UE根据该多个控制向量和该多个控制向量中的每个控制向量对应的下行等效信道质量信息,获取每个第二反射体对应的目标反射系数集合,向第一基站发送每个第二反射体对应的目标反射系数集合。
可选的,在采用第一种实现方式时,第一UE根据该Z*K+1个下行等效信道质量信息和该Z*K+1个控制向量,获取该Z个第二反射体中的每个第二反射体对应的目标反射系数集合。对于任一个第二反射体对应的目标反射系数集合,该目标反射系数集合包括该第二反射体中的每个反射单元的目标反射系数。第一UE向第一基站发送该Z个第二反射体的目标反射系数集合。或者,第一UE根据该V+1个下行等效信道质量信息和该V+1个控制向量,获取该Z个第二反射体中的每个第二反射体对应的目标反射系数集合。对于任一个第二反射体对应的目标反射系数集合,该目标反射系数集合包括该第二反射体中分配给第一UE的反射单元的目标反射系数。第一UE向第一基站发送该Z个第二反射体的目标反射系数集合。
可选的,在采用第二种实现方式时,第一UE根据该W*K+1个下行等效信道质量信息和该W*K+1个控制向量,获取该W个第二反射体中的每个第二反射体对应的目标反射系数集合。对于任一个第二反射体对应的目标反射系数集合,该目标反射系数集合包括该第二反射体中的每个反射单元的目标反射系数。第一UE向第一基站发送该W个第二反射体的目标反射系数集合。或者,第一UE根据该Q+1个下行等效信道质量信息和该Q+1个控制向量,获取该W个第二反射体中的每个第二反射体对应的目标反射系数集合。对于任一个第二反射体对应的目标反射系数集合,该目标反射系数集合包括该第二反射体中分配给第一UE的反射单元的目标反射系数。第一UE向第一基站发送该W个第二反射体的目标反射系数集合。
步骤4055:第一基站接收每个第二反射体的目标反射系统集合,根据每个第二反射体的目标反射系数集合,分别调整每个第二反射体的反射相位。
可选的,在采用第一种实现方式的情况下,第一基站接收Z个第二反射体的目标反射系数集合,向该Z个第二反射体中的每个第二反射体分别发送每个第二反射体的目标反射系数集合。该Z个第二反射体中的任一个第二反射体,该第二反射体接收一个目标反射系数集合, 根据该目标反射系数集合调整该第二反射体中的反射单元。
可选的,在采用第二种实现方式的情况下,第一基站接收W个第二反射体的目标反射系数集合,向该W个第二反射体中的每个第二反射体分别发送每个第二反射体的目标反射系数集合。该W个第二反射体中的任一个第二反射体,该第二反射体接收一个目标反射系数集合,根据该目标反射系数集合调整该第二反射体中的反射单元。
在采用第二种实现方式的情况下,对于该Z个第二反射体中反射相位还未调整的第二反射体,重复执行上述4051至4055的操作,直到调整完该Z个第二反射体中的每个第二反射体的反射相位。
可选的,在采用第二种实现方式的情况下,第一基站可以先调整部分第二反射体的反射相位,调整完之后第一基站可以通过该部分第二反射体与第一UE进行通信,由于每批调整的反射体数目较小,从而很快调整完一批第二反射体的反射相位,并通过该批第二反射体来实现第一基站与第一UE之间的通信,提高了通信效率。在第一基站与第一UE通信的过程,再继续调整剩下的第二反射体的反射相位。
步骤406:第一基站通过该Z个第二反射体与第一UE进行通信。
在本步骤中,第一基站向第一UE发送下行信号时,该Z个第二反射体向第一UE反射该下行信号。或者,第一UE向第一基站发送上行信号时,该Z个第二反射体向第一基站反射该上行信号。
可选的,在执行本步骤之前,可能还需要调整第一UE的发射功率。在实现时,第一基站测量第一基站与第一UE之间的上行等效信道的信道质量信息,该上行等效信道包括Z个级联信道,该Z个级联信道分别与该Z个第二反射体一一对应,一个第二反射体对应的级联信道包括第一UE至该一个第二反射体的信道和该一个第二反射体至第一基站的信道;基于该上行等效信道的信道质量信息确定第一UE的功率调整参数;向第一UE发送该功率调整参数。
第一UE接收该功率调整参数,根据该功率调整参数调整第一UE的发射功率,调整完之后第一UE可与第一基站进行通信。
可选的,该上行等效信道还包括第一UE到第一基站的直连信道。
可选的,可以采用动态方式或半静态方式调整第一UE的发射功率。
在动态方式调整第一UE的发射功率的情况下,该功率调整参数包括功率调整步长和功率调整指示,该功率调整指示为功率增加指示或功率减小指示。当该功率调整参数包括功率增加指示时,第一UE根据该功率调整参数包括的功率调整步长,增加第一UE的发射功率。当该功率调整参数包括功率减小指示时,第一UE根据该功率调整参数包括的功率调整步长,减小第一UE的发射功率。
在半静态方式调整第一UE的发射功率的情况下,第一基站和第一UE可事先约定功率调整步长。第一基站确定的功率调整参数包括功率调整指示,该功率调整指示为功率增加指示或功率减小指示。当该功率调整参数为功率增加指示,第一UE根据该功率调整步长,增加第一UE的发射功率。当该功率调整参数为功率减小指示,第一UE根据该功率调整步长,减小第一UE的发射功率。
在第一UE发送上行信号时,第一UE可以基于调整后的发射功率,发送上行信号。
可选的,在执行本步骤之前,可能还需要调整第一UE的循环前缀(Cyclic Prefix,CP)长度。 在实现时,第一基站测量第一基站与第一UE之间的上行等效信道的时延信息,根据该时延信息向第一UE发送CP长度指示信息。
第一UE根据该CP长度指示信息调整第一UE的CP长度,调整完之后第一UE可与第一基站进行通信。
可选的,上行等效信道的时延信息包括Z个级联信道的时延。
可选的,上行等效信道的时延信息还包括第一UE至第一基站的直连信道的时延。
可选的,第一基站获取CP长度指示信息的操作可以为:第一基站从该上行等效信道的时延信息中选择最长时延,根据最长时延,确定第一UE的CP长度;从标准CP长度与CP长度指示信息的对应关系中获取与该CP长度之间差值最小的标准CP长度;从该标准CP长度与CP长度指示信息的对应关系中获取与该标准CP长度相对应的CP长度指示信息。
可选的,第一UE接收该CP长度指示信息后,根据该CP长度指示信息,从标准CP长度与CP长度指示信息的对应关系中获取对应的标准CP长度,根据获取的标准CP长度调整第一UE的CP长度
可选的,第一基站和第一UE可事先约定标准CP长度与CP长度指示信息的对应关系。
可选的,在第一基站采用上述第二种实现方式调整第二反射体的反射相位的情况下,第一基站每调整一批第二反射体的反射相位之后,按上述方式调整第一UE的发射功率和/或CP长度。
在第一基站通过Z个第二反射体与第一UE进行通信的过程,第一基站与第一UE之间可能存在待传输的大量数据需要传输,此时可以请求归属于第二基站的第一反射体,协作第一基站和第一UE传输数据,详细实现过程将在后续图7所示的实施例进行详细说明。
在本申请实施例中,第一基站确定Z个第二反射体,这样通过该Z个第二反射体反射第一基站发送给第一UE的下行信号,以及反射第一UE发送给第一基站的上行信号,这样可以增加第一UE处的下行信号质量以及增加第一UE发送给第一基站的上行信号质量,从而大幅度提升了第一UE的通信能力。
参见图7,本申请实施例提供了一种通信方法,该方法应用于图1或2所示的网络架构,包括:
步骤701:第一基站确定能够覆盖第一UE的N个第一反射体,该N个第一反射体是归属于第二基站的反射体,N为大于0的整数。
第二基站是协作集合中的除第一基站之外的其他基站。
在本步骤中,可以通过如下方式一和方式二,确定N个第一反射体,该方式一和方式二分别为:
方式一、第一基站根据第一UE的位置描述信息,确定能够覆盖到第一UE的邻居小区,从归属于该邻居小区的反射体中确定能够覆盖第一UE的N个第一反射体。
第一基站中保存有协作集合中的每个反射体的基本信息,反射体的基本信息包括该反射体的标识、该反射体的位置和该反射体归属的基站的标识(该基站的标识包括归属于该基站的小区标识)。
第一基站根据第一UE的位置描述信息获取第一UE的位置,根据第一UE的位置,确定能够覆盖到第一UE的邻居小区,根据保存的协作集合中的每个反射体的基本信息,获取归 属于该邻居小区的各反射体的标识,根据第一UE的位置和该邻居小区中的各第二反射体的位置,从该邻居小区的各第二反射体中选择N个第二反射体。
可选的,第一基站根据第一UE的位置和该邻居小区中的各第二反射体的位置,获取第一UE与该邻居小区中的各第二反射体之间的距离,选择距离小于距离阈值的N个第二反射体。
可选的,第一基站可以确定至少一个邻居小区,从每个邻居小区的反射体中选择一个或多个第一反射体。
可选的,在方式一中,第一基站当有大量数据需要发送给第一UE或接收到发送的请求时,第一基站执行方式一所示的操作。
可选的,该请求是第一UE在有大量数据需要发送给第一基站时发送的。
例如,参见图1或图2,第一基站确定覆盖第一UE的邻居小区,该邻居小区中包括反射体4、反射体5、反射体6和反射体7,根据第一UE的位置、反射体4的基本信息、反射体5的基本信息、反射体6的基本信息和反射体7的基本信息,获取第一UE分别与反射体4、反射体5、反射体6和反射体7之间的距离,选择距离小于距离阈值的反射体4和反射体5。
在方式二中,第一基站接收第一UE发送的协作请求,该协作请求包括N个第一反射体的标识和第二基站的标识,该N个第一反射体是第一UE通过测量第一反射体反射的信号选择的。
在方式二中,第一UE测量归属于第二基站的每个第一反射体反射的信号,得到每个第一反射体反射的信号质量,根据每个第一反射体反射的信号质量,选择满足第三条件的N个第一反射体,向第一基站发送协作请求,该协作请求包括该N个第一反射体的标识。
第三条件包括反射的信号质量超过质量阈值或反射的信号质量最大的N个反射体。即第一UE根据每个第一反射体反射的信号质量,选择反射的信号质量超过质量阈值的N个第一反射体,或者,选择反射的信号质量最大的N个第一反射体。
可选的,第一反射体反射的信号可能是第二基站发送的测量信号或第二基站发送的第二UE的下行信号,第二UE为归属于第二基站的UE。因此,当反射的信号为测量信号时,第一UE确定该第一反射体的状态为空闲状态,当反射的信号为第二UE的下行信号时,第一UE确定该第一反射体的状态为使用状态。
可选的,第一UE可优先选择空闲状态的第一反射体。
可选的,第一UE可以测量到多个第二基站和归属于每个第二基站的第一反射体的标识,相应的,该协作请求可以包括该每个第二基站的标识和归属于每个第二基站的第一反射体的标识。
可选的,在该协作请求中该N个第一反射体的标识之间的顺序可以为基于该N个第一反射体反射的信号质量进行排序后的顺序。
可选的,在方式二中,第一UE在有大量数据需要发送给第一基站时发送该协作请求。或者,第一UE接收到第一基站的指令时发送该协作请求。
可选的,第一基站在有大量数据需要发送给第一UE时向第一UE发送该指令。
步骤702:第一基站向第二基站发送协作请求,该协作请求包括该N个第一反射体的标识。
例如,参见图1或图2所示的网络架构,第一基站选择反射体4和反射体5,向第二基 站发送协作请求,该协作请求包括反射体4的标识和反射体5的标识。
可选的,参见图2,第一基站向管理设备发送协作请求,管理设备根据该协作请求中包括的每个第一反射体的标识,确定每个第一反射体属于的第二基站,向第二基站发送该协作请求。
在步骤701中第一基站得到多个第二基站和归属于每个第二基站的第一反射体的标识,则第一基站根据每个第二基站的标识分别向每个第二基站发送协作请求,对于任一个第二基站,第一基站向该第二基站发送的协作请求包括归属于该第二基站的第一反射体的标识。
步骤703:第二基站接收该协作请求,根据该协作请求包括的N个第一反射体的标识,确定释放M个第一反射体的控制权,向第一基站发送协作响应,该协作响应包括该M个第一反射体的标识,该N个第一反射体包括该M个第一反射体,M为大于0且小于或等于N的整数。
在本步骤中,第二基站接收该协作请求,该协作请求包括N个第一反射体的标识,从该N个第一反射体的标识对应的N个第一反射体中选择M个第一反射体,释放该M个第一反射体的控制权,向第一基站发送协作响应,该协作响应包括该M个第一反射体的标识。
可选的,第二基站可以根据接入反射体的标识与UE的标识的对应关系中包括的每个接入反射体的标识,确定归属于第二基站的各接入反射体。从该N个第一反射体的标识对应的N个第一反射体中,去除接入反射体,从剩下的第一反射体中选择M个第二反射体。
可选的,第二基站从剩下的第一反射体中选择空闲的M个第一反射体。
可选的,M个第一反射体均为空闲的第一反射体,或者,第二基站从剩下的第一反射体中除了选择空闲的第一反射体,还能够选择第二UE正在使用的第一反射体。
可选的,第二基站可从第二UE正在使用的第一反射体中选择该第二反射体中的部分反射单元。第二基站释放该第二反射体的控制权为释放该第二反射体中的该部分反射单元的控制权。
可选的,该协作响应包括该N个第一反射体的信息,参见下表1,一个第一反射体的信息包括该第一反射体属于的第二基站的标识、该第一反射体的标识、该第一反射体的类别信息和该第一反射体的控制指示信息。该类别信息用于指示该第一反射体是空闲反射体,该第一反射体用于第二UE或该第一反射体是否为接入反射体。该控制指示信息用于指示第二基站是否同意释放该第一反射体的控制权等信息。
表1
第二基站的标识 第一反射体的标识 第一反射体的类别信息 控制指示信息
可选的,第二基站除了按上述701至703的步骤来得到M个第一反射体以及释放该M个第一反射体的控制权外,还可以通过其他方式来实现。例如,接下来列举另一种方式,在该另一种方式中:
第一基站向第二基站发送协作请求,该协作请求包括第一UE的位置描述信息。第二基站接收该协作请求,根据第一UE的位置描述信息,从归属于第二基站的第一反射体中确定能够覆盖第一UE的M个第二反射体,释放该M个第一反射体的控制权,向第一基站发送协作响应,该协作响应包括该M个第一反射体的标识。
可选的,第二基站根据第一UE的位置描述信息确定第一UE的位置,根据第一UE的位 置和归属于第二基站的每个第一反射体的基本信息,获取第一UE与该每个第一反射体之间的距离,选择距离小于距离阈值的M个第一反射体。
对于该M个第一反射体中的部分第一反射体,第二基站将该第一反射体中的部分反射单元分配给第一UE,该协作响应包括单元指示信息,该单元指示信息用于指示该部分第一反射体和该第一反射体中的部分反射单元。
步骤704:第一基站接收协作响应,根据该协作响应包括的该M个第一反射体的标识,获取该M个第一反射体的控制权。
可选的,在该协作响应包括单元指示信息的情况下,第一基站还确定该单元指示信息指示的部分第一反射体和该第一反射体中的部分反射单元。
可选的,第一基站得到了多个第二基站并向每个第二基站发送协作请求,则在本步骤中第一基站接收到多个第二基站的协作响应。
步骤705:第一基站调整该M个第二反射体的反射相位,调整后的该M个第二反射体用于反射第一基站与第一UE之间的信号。
本步骤的详细实现过程,可以参见图4所示的实施例中的步骤405中的相关内容,在此不再详细说明。
步骤706:第一基站通过该M个第二反射体与第一UE进行通信。
在本步骤中,第一基站向第一UE发送下行信号时,该M个第二反射体向第一UE反射该下行信号。或者,第一UE向第一基站发送上行信号时,该M个第二反射体向第一基站反射该上行信号。
可选的,在第一基站已通过图4所示的实施例调整Z个第二反射体的反射相位的情况下,第一基站通过该Z个第二反射体和该M个第一反射体与第一UE进行通信。
可选的,在执行本步骤之前,可能还需要调整第一UE的发射功率。在实现时,第一基站测量第一基站与第一UE之间的上行等效信道的信道质量信息,该上行等效信道包括M个级联信道,该M个级联信道分别与该M个第一反射体一一对应,一个第一反射体对应的级联信道包括第一UE至该一个第一反射体的信道和该一个第一反射体至第一基站的信道;基于该上行等效信道的信道质量信息确定第一UE的功率调整参数;向第一UE发送该功率调整参数。
第一UE接收该功率调整参数,根据该功率调整参数调整第一UE的发射功率,调整完之后第一UE可与第一基站进行通信。
可选的,该上行等效信道还可能包括Z个级联信道,该Z个级联信道分别与该Z个第二反射体一一对应,一个第二反射体对应的级联信道包括第一UE至该一个第二反射体的信道和该一个第二反射体至第一基站的信道。
可选的,该上行等效信道还包括第一UE到第一基站的直连信道。
可选的,可以采用动态方式或半静态方式调整第一UE的发射功率,动态方式或半静态方式的详细实现过程,参见图4所示实施例的步骤406中的相关内容,在此不再详细说明。
可选的,在执行本步骤之前,可能还需要调整第一UE的CP长度。在实现时,第一基站测量第一基站与第一UE之间的上行等效信道的时延信息,根据该时延信息向第一UE发送CP长度指示信息。
第一UE根据该CP长度指示信息调整第一UE的CP长度,调整完之后第一UE可与第 一基站进行通信。
可选的,上行等效信道的时延信息包括该M个级联信道的时延。
可选的,上行等效信道的时延信息还可能包括该Z个级联信道的时延。
可选的,上行等效信道的时延信息还包括第一UE至第一基站的直连信道的时延。
可选的,第一基站获取CP长度指示信息的操作可以为:第一基站从该上行等效信道的时延信息中选择最长时延,根据最长时延,确定第一UE的CP长度;从标准CP长度与CP长度指示信息的对应关系中获取与该CP长度之间差值最小的标准CP长度;从该标准CP长度与CP长度指示信息的对应关系中获取与该标准CP长度相对应的CP长度指示信息。
可选的,第一UE接收该CP长度指示信息后,根据该CP长度指示信息,从标准CP长度与CP长度指示信息的对应关系中获取对应的标准CP长度,根据获取的标准CP长度调整第一UE的CP长度。
可选的,第一基站在得到该M个第一反射体之后,在第一基站与第一UE每进行一次数据传输之前,第一基站都不需要与第二基站进行信令等数据交互,第一基站直接通过该M个第一反射体与第一UE进行数据传输,从而提高了通信效率,进一步提升了第一UE的通信能力。
在本申请实施例中,在第一基站通过Z个第二反射体与第一UE进行通信的过程,第一基站与第一UE之间可能存在待传输的大量数据需要传输,第一基站确定归属于第二基站的M个第一反射体,获取该M个第一反射体的控制权,调整该M个第一反射体的反射相位,然后通过该Z个第二反射体和该M个第一反射体与第一UE进行通信,从而增加了第一基站与第一UE之间的信道带宽,提高了通信效率以及大幅度提升了第一UE的通信能力。另外,第一基站只是请求第二基站中的第一反射体,这样不需要请求第二基站的资源,避免影响第二基站为第二UE分配的资源,还不需要第二基站停止使用第一UE占用的时频资源,也不需要第二基站改变发射方向,从而避免影响了第二UE的通信能力。
参见图8,本申请实施例提供了一种通信装置800,所述装置800可部署在上述任一实施例中的第一基站中,包括:
发送单元801,用于向第二基站发送协作请求,第二基站是除所述装置800之外的其他基站;
接收单元802,用于接收协作响应,该协作响应包括M个第一反射体的标识,M为大于0的整数,该M个第一反射体归属于第二基站,该协作响应是第二基站基于该协作请求释放该M个第一反射体的控制权后发送的,该M个第一反射体能够覆盖第一用户设备UE,第一UE归属于所述装置800;
处理单元803,用于获取该M个第一反射体的控制权;通过该M个第一反射体与第一UE进行通信。
可选的,处理单元803获取控制权以及与第一UE进行通信的详细实现过程,可参见图7所示实施例的步骤704至706的相关内容,在此不再详细说明。
可选的,该协作请求包括N个第一反射体的标识,N个第一反射体归属于第二基站,该协作请求用于第二基站从该N个第一反射体的标识对应的第一反射体中确定能够释放控制权的M个第一反射体;或者,
该协作请求包括第一UE的位置描述信息,该协作请求用于第二基站基于该位置描述信息确定能够释放控制权的M个第一反射体。
可选的,在该协作请求包括该N个第一反射体的标识的情况下,处理单元803,还用于确定能够覆盖第一UE的N个第一反射体。
可选的,处理单元803确定第一反射体的详细实现过程,可参见图7所示实施例的步骤701的相关内容,在此不再详细说明。
可选的,接收单元802,用于接收第一UE发送的N个第一反射体的标识,该N个第一反射体是第一UE通过测量归属于第二基站的反射体反射的信号得到的。
可选的,处理单元803,用于:
根据第一UE的位置描述信息,确定能够覆盖到第一UE的邻居小区;
根据第一UE的位置描述信息,从属于邻居小区的反射体中选择N个第一反射体。
可选的,处理单元803,还用于:
测量第一基站与第一UE之间的上行等效信道的信道质量信息,该上行等效信道包括M个级联信道,每个级联信道包括第一UE至一个第一反射体的信道和该一个第一反射体至第一基站的信道,该一个第一反射体是该M个第一反射体中的一个;
基于该上行等效信道的信道质量信息确定第一UE的功率调整参数;
向第一UE发送该功率调整参数,该功率调整参数用于第一UE调整第一UE的发射功率,该发射功率用于第一UE与第一基站进行通信。
可选的,处理单元803,还用于测量第一基站与第一UE之间的上行等效信道的时延信息,该上行等效信道包括M个级联信道,每个级联信道包括第一UE至一个第一反射体的信道和该一个第一反射体至第一基站的信道,该一个第一反射体是M个第一反射体中的一个;
发送单元801,还用于根据该时延信息向第一UE发送循环前缀CP长度指示信息,该CP长度调整指示信息用于第一UE调整第一UE的CP长度,该CP长度用于第一UE与第一基站进行通信。
可选的,处理单元803,还用于:
在至少一个第二反射体中的每个第二反射体对应的时隙内,分别激活每个第二反射体,至少一个第二反射体归属于所述装置800;
发送单元801,还用于分别在每个第二反射体对应的时隙内发送测量信号,每个第二反射体对应的时隙内被发送的测量信号用于第一UE选择一个第二反射体作为第一UE接入第一基站的接入反射体,其中在第一UE接入第一基站后,在存在第三基站请求接入反射体的控制权时,第一基站拒绝释放接入反射体的控制权,第三基站是除第一基站之外的其他基站。
可选的,处理单元803,还用于确定能够覆盖第一UE的第二反射体;通过M个第一反射体和确定的第二反射体与第一UE进行通信。
可选的,处理单元803确定第二反射体以及与第一UE进行通信的详细实现过程,可参见图4所示实施例的步骤404,以及图7所示实施例的步骤706的相关内容,在此不再详细说明。
在本申请实施例中,由于处理单元只从第二基站中获取该M个第一反射体的控制权,通过M个第一反射体与第一UE进行通信,这样在通信的过程中,不会使用第二基站中的资源,不需要第二基站停止使用第一UE占用的时频资源,也不需要第二基站改变发射方向,从而 不会影响第二基站与归属第二基站的第二UE之间的通信,不会影响第二UE的通信能力,避免影响邻居小区的用户的通信能力。另外,在处理单元获取该M个第一反射体的控制权之后,处理单元与第一UE进行通信之前,处理单元与第二基站之间不需要交互控制信令等数据,就可以直接实现第一基站与第一UE之间的通信,从而减小了通信时延,提高了第一UE的通信能力。
参见图9,本申请实施例提供了一种通信装置900,所述装置900可部署在上述任一实施例中的第二基站中,包括:
接收单元901,用于接收第一基站发送的协作请求,所述装置900是除第一基站之外的其他基站;
处理单元902,用于基于该协作请求释放M个第一反射体的控制权,该M个第一反射体能够覆盖第一用户设备UE,第一UE归属于第一基站,该M个第一反射体归属于所述装置900,M为大于0的整数;
发送单元903,用于向第一基站发送协作响应,该协作响应包括该M个第一反射体的标识,该协作响应用于第一基站与第一UE进行通信。
可选的,该协作请求包括能够覆盖第一UE的N个第一反射体的标识,该N个第一反射体归属于所述装置900,N为大于或等于M的整数;
处理单元902,用于从该N个第一反射体的标识对应的第一反射体中,选择M个第一反射体,释放该M个第一反射体的控制权。
可选的,处理单元902选择第一反射体的详细实现过程,可参见图7所示实施例的步骤404,以及图7所示实施例的步骤703的相关内容,在此不再详细说明。
可选的,该协作请求包括第一UE的位置描述信息;
处理单元902,用于基于该位置描述信息确定能够覆盖第一UE的M第一反射体,释放该M个第一反射体的控制权。
可选的,处理单元902确定第一反射体的详细实现过程,可参见图7所示实施例的步骤703的相关内容,在此不再详细说明。
在本申请实施例中,由于处理单元释放该M个第一反射体的控制权,发送单元向第一基站发送该M个第一反射体的标识后,第一基站只从第二基站中获取该M个第一反射体的控制权,通过M个第一反射体与第一UE进行通信,在通信的过程中不会使用第二基站中的资源,不需要第二基站停止使用第一UE占用的时频资源,也不需要第二基站改变发射方向,从而不会影响第二基站与归属第二基站的第二UE之间的通信,从而不会影响第二UE的通信能力,避免影响邻居小区的用户的通信能力。
参见图10,本申请实施例提供了一种通信装置1000,所述装置1000可部署在上述任一实施例中的第一UE中,包括:
处理单元1001,用于通过测量归属第二基站的N个第一反射体反射的信号,得到N个第一反射体的标识,第二基站是除第一基站之外的其他基站,所述装置1000归属于第一基站,N为大于0的整数;
发送单元1002,用于发送该N个第一反射体的标识,该N个第一反射体的标识用于第 一基站从第二基站中获取M个第一反射体的控制权,该N个第一反射体包括该M个第一反射体;
处理单元1001,还用于通过该M个第一反射体与第一基站通信。
可选的,处理单元1001测量N个第一反射体的详细实现过程,可参见图7所示实施例的步骤701的相关内容,在此不再详细说明。
可选的,所述装置1000还包括:接收单元1003,
接收单元1003,用于接收第一基站发送的功率调整参数,该功率调整参数是第一基站基于上行等效信道的信道质量信息确定的,上行等效信道包括M个级联信道,每个级联信道包括所述装置1000至一个第一反射体的信道和该一个第一反射体至第一基站的信道,该一个第一反射体是M个第一反射体中的一个;
处理单元1001,还用于根据该功率调整参数调整所述装置1000的发射功率,该发射功率用于所述装置1000与第一基站进行通信。
可选的,处理单元803调整发射功率的详细实现过程,可参见图7所示实施例的步骤706的相关内容,在此不再详细说明。
可选的,接收单元1003,用于接收第一基站发送的循环前缀CP长度指示信息,该CP长度指示信息是第一基站基于上行等效信道的时延信息发送的,该上行等效信道包括M个级联信道,每个级联信道包括所述装置1000至一个第一反射体的信道和该一个第一反射体至第一基站的信道,该一个第一反射体是M个第一反射体中的一个;
处理单元1001,还用于根据该CP长度调整指示信息调整所述装置1000的CP长度,该CP长度用于所述装置1000与第一基站进行通信。
可选的,处理单元803调整CP长度的详细实现过程,可参见图7所示实施例的步骤706的相关内容,在此不再详细说明。
可选的,接收单元1003,用于在至少一个第二反射体中的每个第二反射体对应的时隙内接收第一基站发送的测量信号,第一基站用于每个第二反射体对应的时隙内,分别激活每个第二反射体,以及分别在每个第二反射体对应的时隙内发送测量信号,至少一个第二反射体归属于第一基站;
处理单元1001,还用于根据在每个第二反射体对应的时隙内接收的测量信号,从每个第二反射体中选择一个反射体,并通过选择的反射体接入第一基站。
可选的,处理单元1001接入第一基站的详细实现过程,可参见图4所示实施例的步骤401至403的相关内容,在此不再详细说明。
在本申请实施例中,由于第一基站从第二基站中获取该M个第一反射体的控制权,通过M个第一反射体与所述装置进行通信,这样在通信的过程中,不会使用第二基站中的资源,不需要第二基站停止使用所述装置占用的时频资源,也不需要第二基站改变发射方向,从而不会影响第二基站与归属第二基站的第二UE之间的通信,从而不会影响第二UE的通信能力,避免影响邻居小区的用户的通信能力。
参见图11,本申请实施例提供了一种通信装置1100示意图。该装置1100可以是上述任一实施例中的第一基站。该装置1100包括至少一个处理器1101,总线系统1102,存储器1103以及至少一个网络接口1104。
该装置1100是一种硬件结构的装置,可以用于实现图8所述的装置800中的功能模块。例如,本领域技术人员可以想到图8所示的装置800中的处理单元803可以通过该至少一个处理器1101调用存储器1103中的代码来实现,图8所示的装置800中的发送单元801和接收单元802可以通过该网络接口1104来实现。
可选的,上述处理器1101可以是一个通用中央处理器(central processing unit,CPU),网络处理器(network processor,NP),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
上述总线系统1102可包括一通路,在上述组件之间传送信息。
上述网络接口1104,用于与其他设备或通信网络通信。
上述存储器1103可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1103用于存储执行本申请方案的应用程序代码,并由处理器1101来控制执行。处理器1101用于执行存储器1103中存储的应用程序代码,从而实现本专利方法中的功能。
在具体实现中,作为一种实施例,处理器1101可以包括一个或多个CPU,例如图11中的CPU0和CPU1。
在具体实现中,作为一种实施例,该装置1100可以包括多个处理器,例如图11中的处理器1101和处理器1107。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
参见图12,本申请实施例提供了一种通信装置1200示意图。该装置1200可以是上述任一实施例中的第二基站。该装置1200包括至少一个处理器1201,总线系统1202,存储器1203以及至少一个网络接口1204。
该装置1200是一种硬件结构的装置,可以用于实现图9所述的装置900中的功能模块。例如,本领域技术人员可以想到图9所示的装置900中的处理单元902可以通过该至少一个处理器1201调用存储器1203中的代码来实现,图9所示的装置900中的接收单元901和发送单元903可以通过该网络接口1204来实现。
可选的,上述处理器1201可以是一个通用中央处理器(central processing unit,CPU),网络处理器(network processor,NP),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
上述总线系统1202可包括一通路,在上述组件之间传送信息。
上述网络接口1204,用于与其他设备或通信网络通信。
上述存储器1203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1203用于存储执行本申请方案的应用程序代码,并由处理器1201来控制执行。处理器1201用于执行存储器1203中存储的应用程序代码,从而实现本专利方法中的功能。
在具体实现中,作为一种实施例,处理器1201可以包括一个或多个CPU,例如图12中的CPU0和CPU1。
在具体实现中,作为一种实施例,该装置1200可以包括多个处理器,例如图12中的处理器1201和处理器1207。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
参见图13,本申请实施例提供了一种通信装置1300示意图。该装置1300可以是上述任一实施例中的第一UE。该装置1300包括至少一个处理器1301,总线系统1302,存储器1303以及至少一个网络接口1304。
该装置1300是一种硬件结构的装置,可以用于实现图10所述的装置1000中的功能模块。例如,本领域技术人员可以想到图10所示的装置1000中的处理单元1001可以通过该至少一个处理器1301调用存储器1303中的代码来实现,图10所示的装置1000中的发送单元1002和接收单元1003可以通过该网络接口1304来实现。
可选的,上述处理器1301可以是一个通用中央处理器(central processing unit,CPU),网络处理器(network processor,NP),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
上述总线系统1302可包括一通路,在上述组件之间传送信息。
上述网络接口1304,用于与其他设备或通信网络通信。
上述存储器1303可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1303用于存储执行本申请方案的应用程序代码,并由处理器1301来控制 执行。处理器1301用于执行存储器1303中存储的应用程序代码,从而实现本专利方法中的功能。
在具体实现中,作为一种实施例,处理器1301可以包括一个或多个CPU,例如图13中的CPU0和CPU1。
在具体实现中,作为一种实施例,该装置1300可以包括多个处理器,例如图13中的处理器1301和处理器1307。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
本申请实施例提供了一种通信系统,包括如图8所示实施例提供的装置800、如图9所示实施例提供的装置900和如图10所示实施例提供的装置1000,或者,包括如图11所示实施例提供的装置1100、如图12所示实施例提供的装置1200和如图13所示实施例提供的装置1300。
参见图14,如图8所示实施例提供的装置800或如图11所示实施例提供的装置1100为第一基站1401,如图9所示实施例提供的装置900或如图12所示实施例提供的装置1200为第二基站1402,如图10所示实施例提供的装置1000或如图13所示实施例提供的装置1300为第一UE1403。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (32)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一基站向第二基站发送协作请求,所述第二基站是除所述第一基站之外的其他基站;
    所述第一基站接收协作响应,所述协作响应包括M个第一反射体的标识,M为大于0的整数,所述M个第一反射体归属于所述第二基站,所述协作响应是所述第二基站基于所述协作请求释放所述M个第一反射体的控制权后发送的,所述M个第一反射体能够覆盖第一用户设备UE,所述第一UE归属于所述第一基站;
    所述第一基站获取所述M个第一反射体的控制权;
    所述第一基站通过所述M个第一反射体与第一UE进行通信。
  2. 如权利要求1所述的方法,其特征在于,所述协作请求包括能够覆盖所述第一UE的N个第一反射体的标识,所述N个第一反射体归属于所述第二基站,所述协作请求用于所述第二基站从所述N个第一反射体的标识对应的第一反射体中确定能够释放控制权的所述M个第一反射体,N为大于或等于M的整数;或者,
    所述协作请求包括所述第一UE的位置描述信息,所述协作请求用于所述第二基站基于所述位置描述信息确定能够释放控制权的所述M个第一反射体。
  3. 如权利要求2所述的方法,其特征在于,在所述协作请求包括所述N个第一反射体的标识的情况下,所述方法还包括:
    所述第一基站确定能够覆盖所述第一UE的N个第一反射体。
  4. 如权利要求3所述的方法,其特征在于,所述第一基站确定能够覆盖第一用户设备UE的N个第一反射体,包括:
    所述第一基站接收所述第一UE发送的所述N个第一反射体的标识,所述N个第一反射体是所述第一UE通过测量归属于所述第二基站的反射体反射的信号得到的。
  5. 如权利要求3所述的方法,其特征在于,所述第一基站确定能够覆盖第一用户设备UE的N个第一反射体,包括:
    所述第一基站根据所述第一UE的位置描述信息,确定能够覆盖到所述第一UE的邻居小区;
    所述第一基站根据所述第一UE的位置描述信息,从属于所述邻居小区的反射体中选择N个第一反射体。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述第一基站获取所述M个第一反射体的控制权之后,还包括:
    所述第一基站测量所述第一基站与所述第一UE之间的上行等效信道的信道质量信息,所述上行等效信道包括M个级联信道,每个级联信道包括所述第一UE至一个第一反射体的信道和所述一个第一反射体至所述第一基站的信道,所述一个第一反射体是所述M个第一反 射体中的一个;
    所述第一基站基于所述上行等效信道的信道质量信息确定所述第一UE的功率调整参数;
    所述第一基站向所述第一UE发送所述功率调整参数,所述功率调整参数用于所述第一UE调整所述第一UE的发射功率,所述发射功率用于所述第一UE与所述第一基站进行通信。
  7. 如权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    所述第一基站测量所述第一基站与所述第一UE之间的上行等效信道的时延信息,所述上行等效信道包括M个级联信道,每个级联信道包括所述第一UE至一个第一反射体的信道和所述一个第一反射体至所述第一基站的信道,所述一个第一反射体是所述M个第一反射体中的一个;
    所述第一基站根据所述时延信息向所述第一UE发送循环前缀CP长度指示信息,所述CP长度调整指示信息用于所述第一UE调整所述第一UE的CP长度,所述CP长度用于所述第一UE与所述第一基站进行通信。
  8. 如权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    所述第一基站在至少一个第二反射体中的每个第二反射体对应的时隙内,分别激活所述每个第二反射体,以及分别在所述每个第二反射体对应的时隙内发送测量信号,所述至少一个第二反射体归属于所述第一基站,所述每个第二反射体对应的时隙内被发送的测量信号用于所述第一UE选择一个第二反射体作为所述第一UE接入所述第一基站的接入反射体,其中在所述第一UE接入所述第一基站后,在存在第三基站请求所述接入反射体的控制权时,所述第一基站拒绝释放所述接入反射体的控制权,所述第三基站是除所述第一基站之外的其他基站。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第一基站确定能够覆盖所述第一UE的所述第二反射体;
    所述第一基站通过所述M个第一反射体与所述第一UE进行通信,包括:
    所述第一基站通过所述M个第一反射体和所述确定的第二反射体与所述第一UE进行通信。
  10. 一种通信方法,其特征在于,所述方法包括:
    第二基站接收第一基站发送的协作请求,所述第二基站是除所述第一基站之外的其他基站;
    所述第二基站基于所述协作请求释放M个第一反射体的控制权,所述M个第一反射体能够覆盖第一用户设备UE,所述第一UE归属于所述第一基站,所述M个第一反射体归属于所述第二基站,M为大于0的整数;
    所述第二基站向所述第一基站发送协作响应,所述协作响应包括所述M个第一反射体的标识,所述协作响应用于所述第一基站与所述第一UE进行通信。
  11. 如权利要求10所述的方法,其特征在于,所述协作请求包括能够覆盖所述第一UE的 N个第一反射体的标识,所述N个第一反射体归属于所述第二基站,N为大于或等于M的整数;
    所述第二基站基于所述协作请求释放M个第一反射体的控制权,包括:
    所述第二基站从所述N个第一反射体的标识对应的第一反射体中,选择M个第一反射体,释放所述M个第一反射体的控制权。
  12. 如权利要求10所述的方法,其特征在于,所述协作请求包括所述第一UE的位置描述信息;
    所述第二基站基于所述协作请求释放M个第一反射体的控制权,包括:
    所述第二基站基于所述位置描述信息确定能够覆盖所述第一UE的M第一反射体,释放所述M个第一反射体的控制权。
  13. 一种通信方法,其特征在于,所述方法包括:
    第一用户设备UE通过测量归属于第二基站的N个第一反射体反射的信号,得到所述N个第一反射体的标识,所述第二基站是除第一基站之外的其他基站,所述第一UE归属于所述第一基站,N为大于0的整数;
    所述第一UE发送所述N个第一反射体的标识,所述N个第一反射体的标识用于第一基站从所述第二基站中获取M个第一反射体的控制权,所述N个第一反射体包括所述M个第一反射体;
    所述第一UE通过所述M个第一反射体与所述第一基站通信。
  14. 如权利要求13所述的方法,其特征在于,所述第一UE通过所述M个第一反射体与所述第一基站通信之前,还包括:
    所述第一UE接收所述第一基站发送的功率调整参数,所述功率调整参数是所述第一基站基于上行等效信道的信道质量信息确定的,所述上行等效信道包括M个级联信道,每个级联信道包括所述第一UE至一个第一反射体的信道和所述一个第一反射体至所述第一基站的信道,所述一个第一反射体是所述M个第一反射体中的一个;
    所述第一UE根据所述功率调整参数调整所述第一UE的发射功率,所述发射功率用于所述第一UE与所述第一基站进行通信。
  15. 如权利要求13或14所述的方法,其特征在于,所述第一UE通过所述M个第一反射体与所述第一基站通信之前,还包括:
    所述第一UE接收所述第一基站发送的循环前缀CP长度指示信息,所述CP长度指示信息是所述第一基站基于所述上行等效信道的时延信息发送的,所述上行等效信道包括M个级联信道,每个级联信道包括所述第一UE至一个第一反射体的信道和所述一个第一反射体至所述第一基站的信道,所述一个第一反射体是所述M个第一反射体中的一个;
    所述第一UE根据所述CP长度调整指示信息调整所述第一UE的CP长度,所述CP长度用于所述第一UE与所述第一基站进行通信。
  16. 如权利要求13至15任一项所述的方法,其特征在于,所述第一用户设备UE得到所述N个第一反射体的标识之前,还包括:
    所述第一UE在至少一个第二反射体中的每个第二反射体对应的时隙内接收所述第一基站发送的测量信号,所述第一基站用于所述每个第二反射体对应的时隙内,分别激活所述每个第二反射体,以及分别在所述每个第二反射体对应的时隙内发送测量信号,所述至少一个第二反射体归属于所述第一基站;
    所述第一UE根据在所述每个第二反射体对应的时隙内接收的测量信号,从所述每个第二反射体中选择一个反射体,并通过所述选择的反射体接入所述第一基站。
  17. 一种通信装置,其特征在于,所述装置包括:
    发送单元,用于向第二基站发送协作请求,所述第二基站是除所述装置之外的其他基站;
    接收单元,用于接收协作响应,所述协作响应包括M个第一反射体的标识,M为大于0的整数,所述M个第一反射体归属于所述第二基站,所述协作响应是所述第二基站基于所述协作请求释放所述M个第一反射体的控制权后发送的,所述M个第一反射体能够覆盖第一用户设备UE,所述第一UE归属于所述装置;
    处理单元,用于获取所述M个第一反射体的控制权;通过所述M个第一反射体与第一UE进行通信。
  18. 如权利要求17所述的装置,其特征在于,所述协作请求包括能够覆盖所述第一UE的N个第一反射体的标识,所述N个第一反射体归属于所述第二基站,所述协作请求用于所述第二基站从所述N个第一反射体的标识对应的第一反射体中确定能够释放控制权的所述M个第一反射体,N为大于或等于M的整数;或者,
    所述协作请求包括所述第一UE的位置描述信息,所述协作请求用于所述第二基站基于所述位置描述信息确定能够释放控制权的所述M个第一反射体。
  19. 如权利要求18所述的装置,其特征在于,在所述协作请求包括所述N个第一反射体的标识的情况下,所述处理单元,还用于确定能够覆盖所述第一UE的N个第一反射体。
  20. 如权利要求19所述的装置,其特征在于,所述接收单元,用于接收所述第一UE发送的所述N个第一反射体的标识,所述N个第一反射体是所述第一UE通过测量归属于所述第二基站的反射体反射的信号得到的。
  21. 如权利要求19所述的装置,其特征在于,所述处理单元,用于:
    根据所述第一UE的位置描述信息,确定能够覆盖到所述第一UE的邻居小区;
    根据所述第一UE的位置描述信息,从属于所述邻居小区的反射体中选择N个第一反射体。
  22. 如权利要求17至21任一项所述的装置,其特征在于,
    所述处理单元,还用于在至少一个第二反射体中的每个第二反射体对应的时隙内,分别 激活所述每个第二反射体,所述至少一个第二反射体归属于所述装置;
    所述发送单元,还用于分别在所述每个第二反射体对应的时隙内发送测量信号,所述每个第二反射体对应的时隙内被发送的测量信号用于所述第一UE选择一个第二反射体作为所述第一UE接入所述装置的接入反射体,其中在所述第一UE接入所述装置后,在存在第三基站请求所述接入反射体的控制权时,所述处理单元拒绝释放所述接入反射体的控制权,所述第三基站是除所述装置之外的其他基站。
  23. 如权利要求22所述的装置,其特征在于,所述处理单元,还用于:
    确定能够覆盖所述第一UE的所述第二反射体;
    通过所述M个第一反射体和所述确定的第二反射体与所述第一UE进行通信。
  24. 一种通信装置,其特征在于,所述装置包括:
    接收单元,用于接收第一基站发送的协作请求,所述装置是除所述第一基站之外的其他基站;
    处理单元,用于基于所述协作请求释放M个第一反射体的控制权,所述M个第一反射体能够覆盖第一用户设备UE,所述第一UE归属于所述第一基站,所述M个第一反射体归属于所述装置,M为大于0的整数;
    发送单元,用于向所述第一基站发送协作响应,所述协作响应包括所述M个第一反射体的标识,所述协作响应用于所述第一基站与所述第一UE进行通信。
  25. 如权利要求24所述的装置,其特征在于,所述协作请求包括能够覆盖所述第一UE的N个第一反射体的标识,所述N个第一反射体归属于所述装置,N为大于或等于M的整数;
    所述处理单元,用于从所述N个第一反射体的标识对应的第一反射体中,选择M个第一反射体,释放所述M个第一反射体的控制权。
  26. 如权利要求24所述的装置,其特征在于,所述协作请求包括所述第一UE的位置描述信息;
    所述处理单元,用于基于所述位置描述信息确定能够覆盖所述第一UE的M第一反射体,释放所述M个第一反射体的控制权。
  27. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于通过测量归属于第二基站的N个第一反射体反射的信号,得到所述N个第一反射体的标识,所述第二基站是除第一基站之外的其他基站,所述装置归属于所述第一基站,N为大于0的整数;
    发送单元,用于发送所述N个第一反射体的标识,所述N个第一反射体的标识用于第一基站从所述第二基站中获取M个第一反射体的控制权,所述N个第一反射体包括所述M个第一反射体;
    所述处理单元,还用于通过所述M个第一反射体与所述第一基站通信。
  28. 如权利要求27所述的装置,其特征在于,所述装置还包括:接收单元,
    所述接收单元,用于在至少一个第二反射体中的每个第二反射体对应的时隙内接收所述第一基站发送的测量信号,所述第一基站用于所述每个第二反射体对应的时隙内,分别激活所述每个第二反射体,以及分别在所述每个第二反射体对应的时隙内发送测量信号,所述至少一个第二反射体归属于所述第一基站;
    处理单元,还用于根据在所述每个第二反射体对应的时隙内接收的测量信号,从所述每个第二反射体中选择一个反射体,并通过所述选择的反射体接入所述第一基站。
  29. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述处理器执行所述存储器中的程序,使得所述装置执行权利要求1至16任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储程序,所述程序用于实现权利要求1至16任一项所述的方法。
  31. 一种包含指令的计算机程序产品,其特征在于,当前在计算机上执行时,使得如权利要求1-16任一项所述的方法被执行。
  32. 一种通信系统,其特征在于,所述通信系统包括如权利要求17-23任一项所述的装置、如权利要求24-26任一项所述的装置和如权利要求27-28任一项所述的装置。
PCT/CN2021/100367 2020-06-29 2021-06-16 通信方法、装置、系统及计算机可读存储介质 WO2022001661A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21832060.4A EP4156784A4 (en) 2020-06-29 2021-06-16 COMMUNICATION METHOD, DEVICE AND SYSTEM AND COMPUTER READABLE STORAGE MEDIUM
US18/147,245 US20230134172A1 (en) 2020-06-29 2022-12-28 Communication Method, Apparatus, and System, and Computer-Readable Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010604945.XA CN113938969B (zh) 2020-06-29 2020-06-29 通信方法、装置及计算机可读存储介质
CN202010604945.X 2020-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/147,245 Continuation US20230134172A1 (en) 2020-06-29 2022-12-28 Communication Method, Apparatus, and System, and Computer-Readable Storage Medium

Publications (1)

Publication Number Publication Date
WO2022001661A1 true WO2022001661A1 (zh) 2022-01-06

Family

ID=79273023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100367 WO2022001661A1 (zh) 2020-06-29 2021-06-16 通信方法、装置、系统及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230134172A1 (zh)
EP (1) EP4156784A4 (zh)
CN (1) CN113938969B (zh)
WO (1) WO2022001661A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065585A (zh) * 2014-07-16 2014-09-24 福州大学 一种在软件定义网络中动态调整控制器负载的方法
WO2014181484A1 (ja) * 2013-05-09 2014-11-13 富士通株式会社 通信システム、通信方法、ユーザ端末、制御方法、接続基地局、協調基地局、及び、無線通信システム
CN110830097A (zh) * 2019-11-05 2020-02-21 西南交通大学 一种基于反射面的主被动互惠共生传输通信系统
CN210430093U (zh) * 2019-11-06 2020-04-28 康普技术有限责任公司 用于波束成形天线的天线组件以及基站天线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100234071A1 (en) * 2009-03-12 2010-09-16 Comsys Communication & Signal Processing Ltd. Vehicle integrated communications system
JP4922426B2 (ja) * 2010-03-30 2012-04-25 株式会社エヌ・ティ・ティ・ドコモ 反射板装置、無線基地局及び無線通信方法
CN102833793B (zh) * 2011-06-17 2016-06-08 华为技术有限公司 干扰协调方法和基站
US8965385B2 (en) * 2013-01-04 2015-02-24 The Boeing Company Staggered cells for wireless coverage
CN108282796B (zh) * 2017-01-05 2022-08-09 中兴通讯股份有限公司 一种无线链路管理的方法及装置、系统
CN111201447A (zh) * 2017-09-01 2020-05-26 诺基亚通信公司 远程电可倾斜扩散式聚焦无源反射器
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication
CN111181615B (zh) * 2019-11-29 2022-08-12 广东工业大学 一种基于智能反射面的多小区无线通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181484A1 (ja) * 2013-05-09 2014-11-13 富士通株式会社 通信システム、通信方法、ユーザ端末、制御方法、接続基地局、協調基地局、及び、無線通信システム
CN104065585A (zh) * 2014-07-16 2014-09-24 福州大学 一种在软件定义网络中动态调整控制器负载的方法
CN110830097A (zh) * 2019-11-05 2020-02-21 西南交通大学 一种基于反射面的主被动互惠共生传输通信系统
CN210430093U (zh) * 2019-11-06 2020-04-28 康普技术有限责任公司 用于波束成形天线的天线组件以及基站天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156784A4

Also Published As

Publication number Publication date
EP4156784A4 (en) 2023-11-15
CN113938969B (zh) 2023-04-07
US20230134172A1 (en) 2023-05-04
EP4156784A1 (en) 2023-03-29
CN113938969A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2021164676A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US9531513B2 (en) Interference coordination method, base station, and communication system
CN110324842B (zh) 一种通信方法及通信装置
CN111818604A (zh) 一种波束切换的方法、设备和系统
WO2023051226A1 (zh) 一种智能反射面相移控制方法、系统、设备及存储介质
WO2022037372A1 (zh) 资源分配方法及装置
JP2019506100A (ja) 動的ランダムアクセス応答(rar)受信終了
JP2023546242A (ja) データ伝送方法および装置
US9532231B2 (en) System and method for cooperative scheduling for co-located access points
CN106105349A (zh) 一种资源分配方法及基站控制器
JP6851537B2 (ja) サブセット制限を伴う広帯域幅でのueランダム・アクセスのためのシステムおよび方法
EP2597785A2 (en) Method for mitigating interference caused by base stations, and terminals and base stations supporting the method
WO2022001661A1 (zh) 通信方法、装置、系统及计算机可读存储介质
WO2018120156A1 (zh) 系统信息发送方法、系统信息接收方法及装置
US20220400502A1 (en) Policy-Based Resource Pool Allocation for Low-Latency IIOT and Other Applications
CN114828036A (zh) 一种干扰管理方法、装置及存储介质
WO2022027681A1 (zh) 无线通信方法和设备
BR112021012474A2 (pt) Conjunto de coordenação ativa para ambientes de espectros compartilhados
WO2019174586A1 (zh) 随机接入方法及装置
WO2023109244A1 (zh) 小区的干扰协调方法、装置、服务器和存储介质
WO2024061012A1 (zh) 一种波束确定的方法和装置
WO2023202628A1 (zh) 一种信息接收方法、信息发送方法、装置及可读存储介质
WO2024000586A1 (zh) 无线通信方法、装置、设备、存储介质、芯片及程序产品
WO2023047744A1 (ja) 無線通信の遅延を低減する基地局装置、端末装置、通信方法、及びプログラム
WO2023131319A1 (zh) 定时提前确定方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021832060

Country of ref document: EP

Effective date: 20221221

NENP Non-entry into the national phase

Ref country code: DE