WO2024061012A1 - 一种波束确定的方法和装置 - Google Patents

一种波束确定的方法和装置 Download PDF

Info

Publication number
WO2024061012A1
WO2024061012A1 PCT/CN2023/117493 CN2023117493W WO2024061012A1 WO 2024061012 A1 WO2024061012 A1 WO 2024061012A1 CN 2023117493 W CN2023117493 W CN 2023117493W WO 2024061012 A1 WO2024061012 A1 WO 2024061012A1
Authority
WO
WIPO (PCT)
Prior art keywords
narrow beam
terminal device
downlink
uplink
narrow
Prior art date
Application number
PCT/CN2023/117493
Other languages
English (en)
French (fr)
Inventor
耿长青
王银波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024061012A1 publication Critical patent/WO2024061012A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and device for beam determination.
  • Millimeter wave has become a key player in the communications field due to its technical advantages of rich frequency resources/extreme bandwidth, easy integration with beamforming technology, extremely low latency, support for dense deployment, high-precision positioning, and high integration.
  • HBF hybrid beamforming
  • millimeter wave adopts hybrid beamforming (HBF) architecture, which can generate simulated beams by changing the direction shifter and receive terminal signals in a certain area in a direction. Then each time slot is weighted by simulation to transmit or receive a certain coverage area. The user signals within the network are covered by time division scheduling to complete the coverage of the entire sector.
  • HBF hybrid beamforming
  • the millimeter wave base station is based on the HBF architecture. It first generates an analog beam with a direction shifter, and then superimposes the precoding matrix indicator (PMI) digital rights to communicate with the terminal device.
  • PMI precoding matrix indicator
  • a beam determination method and device can determine a suitable communication beam while taking into account the overhead and coverage distance of the beam.
  • this application provides a beam determination method, which is applied to network equipment.
  • This method can be executed by the network equipment or by components of the network equipment (such as processors, chips, or chip systems, etc.).
  • This application There is no specific limit on this.
  • the method may specifically include the following steps: the network device obtains measurement information of the first wide beam; and the network device determines to use the first wide beam or the first narrow beam to communicate with the terminal device based on the measurement information of the first wide beam.
  • the network device is a base station.
  • a wide beam can be understood as a beam with a larger coverage angle
  • a narrow beam can be understood as a beam with a smaller coverage angle.
  • the coverage angle of the wide beam is greater than (or equal to) a preset angle
  • the coverage angle of the narrow beam is less than (or equal to) the preset angle.
  • the preset angle may be 30 degrees.
  • the network device obtains the measurement information of the first wide beam, and then determines to use the first wide beam or the first narrow beam to communicate with the terminal device based on the measurement information of the first wide beam. Since the wide beam has a wide coverage area and generates less overhead, the narrow beam has a long coverage distance and can ensure the communication of the terminal equipment at a distance. Therefore, the network equipment in the solution of this application can first use the wide beam to communicate with the terminal equipment and obtain the wide beam. The measurement results of the beam are then determined based on the measurement results of the wide beam whether to continue to select the wide beam to communicate with the terminal device or to select a new narrow beam to communicate with the terminal device, thereby taking into account the beam overhead and coverage distance. Under such circumstances, determining the appropriate beam to communicate with the terminal device can not only ensure the effectiveness of communication, but also reduce system overhead.
  • the network device obtains the measurement information of the first wide beam, including: the network device uses the first wide beam to send a downlink reference signal to the terminal device; the network device receives the first wide beam from the terminal device. Broad beam downlink reference signal received power RSRP.
  • the network device can effectively obtain the downlink reference signal received power RSRP of the first wide beam, and regard the downlink reference signal received power RSRP of the first wide beam as the measurement information of the first wide beam, which can be used Determining the far and near position of the terminal device can also be used as a basis for subsequent network devices to determine whether the first wide beam can continue to be used.
  • the network device determines, according to the measurement information of the first wide beam, to use the first wide beam or the first narrow beam to communicate with the terminal device, including: if the downlink RSRP of the first wide beam is greater than or equal to a preset downlink RSRP threshold, the network device determines to use the first wide beam or the first narrow beam to communicate with the terminal device, The network device determines to use the first wide beam to communicate with the terminal device; or if the downlink RSRP of the first wide beam is less than a preset downlink RSRP threshold, the network device determines to use the first narrow beam to communicate with the terminal device.
  • the network device can accurately and effectively determine a suitable beam to communicate with the terminal device according to the downlink RSRP of the first wide beam.
  • the method before the network device determines to use the first narrow beam to communicate with the terminal device, the method further includes: the network device uses a downward traversal method to determine the first narrow beam from at least one narrow beam. beam.
  • the network device uses a downward traversal method to determine the first narrow beam from at least one narrow beam, it can be achieved through but is not limited to the following two methods:
  • Method 1 The network device uses the at least one narrow beam in turn to send a downlink signal to the terminal device and receive indication information from the terminal device, each narrow beam corresponds to a direction and is located within the coverage range of the first wide beam, and the indication information is used to indicate whether the downlink signal sent by the corresponding narrow beam is correctly received by the terminal device; when the network device determines, based on the indication information, that the downlink signal is correctly received by the terminal device, the corresponding narrow beam used is used as the first beam.
  • the network device sequentially uses the at least one narrow beam to send downlink signals to the terminal device within the coverage of the first wide beam and receives the instruction information of the terminal device, because the instruction information is used to instruct the corresponding narrow beam to send Whether the downlink signal is correctly received by the terminal device, therefore, based on the indication information received each time, the network device can know the reception situation of the terminal device each time a narrow beam is used to send a downlink signal to the terminal device. Until the network device determines that the terminal device correctly receives the downlink signal, the corresponding narrow beam is used as the first narrow beam to ensure the effectiveness of the network device using the first narrow beam to communicate with the terminal device.
  • Method 2 The network device sequentially uses the at least one narrow beam to send downlink signals to the terminal device and receive feedback information from the terminal device.
  • Each narrow beam corresponds to one direction and is located within the coverage of the first wide beam.
  • the feedback information is used to indicate the reception quality of the downlink signal sent by a corresponding narrow beam; when the network device determines that the reception quality of the downlink signal meets the preset reception quality of the downlink signal based on the feedback information, the corresponding narrow beam is used as the reception quality of the downlink signal.
  • First narrow beam First narrow beam.
  • the network device sequentially uses the at least one narrow beam to send downlink signals to the terminal device and receives feedback information from the terminal device within the coverage of the first wide beam, because the feedback information is used to indicate the corresponding one
  • the reception quality of downlink signals sent by narrow beams Therefore, based on the feedback information received each time, the network equipment can know the reception quality of the downlink signals received by the terminal equipment each time a narrow beam is used to send downlink signals to the terminal equipment, until the network equipment determines that the terminal equipment receives When the reception quality of the downlink signal meets the preset reception quality of the downlink signal, the corresponding narrow beam is used as the first narrow beam to ensure the effectiveness and quality of the network device using the narrow beam to communicate with the terminal device.
  • the network device obtains the measurement information of the first wide beam, including: the network device uses the first wide beam to receive an uplink reference signal from the terminal device; the network device measures based on the uplink reference signal.
  • the uplink reference signal received power RSRP of the first wide beam is obtained.
  • the network device can effectively obtain the uplink reference signal received power RSRP of the first wide beam, and regard the uplink reference signal received power RSRP of the first wide beam as the measurement information of the first wide beam, which can be used Determining the far and near position of the terminal device can also be used as a basis for subsequent network devices to determine whether the first wide beam can continue to be used.
  • the network device determines to use the first wide beam or the first narrow beam to communicate with the terminal device based on the measurement information of the first wide beam, including: if the uplink RSRP of the first wide beam is greater than or equal to the preset uplink RSRP threshold, the network device determines to use the first wide beam to communicate with the terminal device; or if the uplink RSRP of the first wide beam is less than the preset uplink RSRP threshold, the network device determines The first narrow beam is used to communicate with the terminal device.
  • the network device can accurately and effectively determine a suitable beam to communicate with the terminal device according to the uplink RSRP of the first wide beam.
  • the method before the network device determines to use the first narrow beam to communicate with the terminal device, the method further includes: the network device uses an upward traversal method to determine the first narrow beam from at least one narrow beam. .
  • the network device uses an upward traversal method to determine the first narrow beam from at least one narrow beam, which can be implemented in but not limited to the following ways:
  • Method 1 The network device uses at least one narrow beam in sequence to receive the uplink signal from the terminal device.
  • Each narrow beam corresponds to one direction and is located within the coverage of the first wide beam; when the network device determines that it has correctly received the signal from the terminal device, For the uplink signal of the terminal equipment, the corresponding narrow beam used is the first beam.
  • the network device sequentially uses at least one narrow beam to receive the downlink signal of the terminal device within the coverage of the first wide beam.
  • the network device determines that it can correctly receive the uplink signal of the terminal device, it will use the corresponding narrow beam.
  • this first narrow beam To ensure the effectiveness of the network device using the first narrow beam to communicate with the terminal device.
  • Method 2 The network device uses at least one narrow beam in sequence to receive the uplink signal from the terminal device and measure the reception quality of the uplink signal.
  • Each narrow beam corresponds to one direction and is located within the coverage of the first wide beam; when the When the network device determines that the uplink signal reception quality meets the preset uplink signal reception quality, the corresponding narrow beam is used as the first narrow beam.
  • the network device sequentially uses at least one narrow beam to receive the uplink signal from the terminal device within the coverage of the first wide beam, until the network device determines that the reception quality of the received downlink signal meets the preset downlink signal reception quality.
  • the corresponding narrow beam is used as the first narrow beam to ensure the effectiveness and quality of the network device using the narrow beam to communicate with the terminal device.
  • embodiments of the present application also provide a communication device, which can be used to perform the method of the first aspect.
  • the communication device can be a network device or a device in the network device (for example, a chip, or Chip system, or circuit), or a device that can be used with the network equipment.
  • the communication device may include a module or unit that performs one-to-one correspondence with the method/operation/step/action described in the first aspect.
  • the module or unit may be a hardware circuit or software, It can also be implemented by hardware circuit combined with software.
  • the communication device may include a processing module and a communication module. The processing module is used to call the communication module to perform receiving and/or sending functions.
  • the communication device includes a communication unit and a processing unit; the processing unit may be used to call the communication unit to perform receiving and/or sending functions; wherein the communication unit is used to obtain the first wide Measurement information of the beam; the processing unit is configured to determine, according to the measurement information of the first wide beam, to use the first wide beam or the first narrow beam to communicate with the terminal device.
  • the communication unit when acquiring the measurement information of the first wide beam, is specifically used to:
  • the processing unit determines to use the first wide beam or the first narrow beam to communicate with the terminal device based on the measurement information of the first wide beam, it is specifically used to:
  • the downlink RSRP of the first wide beam is greater than or equal to the preset downlink RSRP threshold, it is determined to use the first wide beam to communicate with the terminal device; or if the downlink RSRP of the first wide beam is less than the preset When the downlink RSRP threshold is set, it is determined to use the first narrow beam to communicate with the terminal device.
  • the processing unit is further configured to: before determining to use the first narrow beam to communicate with the terminal device, use a downward traversal method to determine the third narrow beam from at least one narrow beam. A narrow beam.
  • the processing unit uses a downward traversal method to determine the first narrow beam from at least one narrow beam, it is specifically configured to: use the at least one narrow beam in sequence through the communication unit. Beams, transmit downlink signals to the terminal equipment and receive indication information from the terminal equipment. Each narrow beam corresponds to one direction and is located within the coverage of the first wide beam. The indication information is used to indicate the corresponding one. Whether the downlink signal sent by the narrow beam is correctly received by the terminal device; when it is determined according to the indication information that the downlink signal is correctly received by the terminal device, the corresponding narrow beam is used as the first beam; or
  • the communication unit uses the at least one narrow beam in sequence to send downlink signals to the terminal device and receive feedback information from the terminal device.
  • Each narrow beam corresponds to one direction and is located in the first wide beam coverage area.
  • the feedback information is used to indicate the reception quality of the downlink signal transmitted by a corresponding narrow beam; when it is determined based on the feedback information that the reception quality of the downlink signal meets the preset reception quality of the downlink signal, the corresponding narrow beam will be used. beam as the first narrow beam.
  • the communication unit when acquiring the measurement information of the first wide beam, is specifically used to:
  • the first wide beam is used to receive an uplink reference signal from the terminal device; and the processing unit measures the uplink reference signal received power RSRP of the first wide beam based on the uplink reference signal.
  • the processing unit determines to use the first wide beam or the first narrow beam to communicate with the terminal device based on the measurement information of the first wide beam, it is specifically used to:
  • the uplink RSRP of the first wide beam is greater than or equal to the preset uplink RSRP threshold, it is determined to use the first wide beam to communicate with the terminal device; or if the uplink RSRP of the first wide beam is less than the preset threshold.
  • the uplink RSRP threshold is set, it is determined to use the first narrow beam to communicate with the terminal device.
  • the processing unit is further configured to: before determining to use the first narrow beam to communicate with the terminal device, use an upward traversal method to determine the first narrow beam from at least one narrow beam. Narrow beam.
  • the processing unit uses an upward traversal method to determine the first narrow beam from at least one narrow beam, it is specifically configured to: use the at least one narrow beam sequentially through the communication unit. , receiving the uplink signal from the terminal device No., each narrow beam corresponds to one direction and is located within the coverage of the first wide beam; when it is determined that the uplink signal from the terminal device is correctly received, the corresponding narrow beam used is the first beam; or
  • the communication unit uses the at least one narrow beam in sequence to receive uplink signals from the terminal equipment and measure the uplink signal reception quality.
  • Each narrow beam corresponds to one direction and is located in the first wide beam coverage area. Within; when it is determined that the uplink signal reception quality meets the preset uplink signal reception quality, the corresponding narrow beam is used as the first narrow beam.
  • embodiments of the present application provide a computer storage medium.
  • a software program is stored in the storage medium.
  • the software program is read and executed by one or more processors, it can implement the first aspect or any of the above.
  • a possible implementation method is provided.
  • embodiments of the present application provide a computer program product containing instructions. When the instructions are run on a computer, they cause the computer to execute the method provided in the first aspect or any of the possible implementations.
  • inventions of the present application provide a chip system.
  • the chip system includes a processor and is used to support a device to implement the functions involved in the first aspect.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • embodiments of the present application further provide a chip system.
  • the chip system includes a processor and an interface.
  • the interface is used to obtain programs or instructions.
  • the processor is used to call the programs or instructions to implement or support The equipment implements the functions involved in the first aspect.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a seventh aspect provides a communication system, which includes the device (such as a network device) described in the first aspect and a device (such as a terminal device) that communicates with the device described in the first aspect.
  • Figure 1 is a schematic diagram of a communication system to which a beam determination method provided by an embodiment of the present application may be applicable;
  • Figure 2A is a schematic diagram of a base station communicating with a terminal device through a beam
  • Figure 2B is a schematic diagram of an interactive process for optimal millimeter wave measurement
  • Figure 2C is an example of the structure of a wide beam and a narrow beam
  • Figure 3 is a schematic flowchart of a beam determination method provided by an embodiment of the present application.
  • FIG4 is a schematic diagram of a flow chart of a first specific embodiment provided in the embodiment of the present application.
  • Figure 5 is a schematic flow chart of a second specific embodiment provided by the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • FIG 1 is a schematic architectural diagram of a communication system applied in an embodiment of the present application.
  • the communication system 1000 includes a network device 100 and a core network 200.
  • the communication system 1000 may also include the Internet 300.
  • the network device 100 may include at least one network device, such as 110a and 110b in Figure 1, and may also include at least one terminal device, such as 120a-120j in Figure 1.
  • 110a is a base station
  • 110b is a micro station
  • 120a, 120e, 120f and 120j are mobile phones
  • 120b is a car
  • 120c is a gas pump
  • 120d is a home access point (HAP) arranged indoors or outdoors.
  • 120g is a laptop
  • 120h is a printer
  • 120i is a drone.
  • terminal equipment can be connected to network equipment, and network equipment can be connected to core network equipment in the core network.
  • Core network equipment and network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the network equipment can be integrated on the same physical device, or part of the core network can be integrated into one physical device.
  • Device functionality and functionality of some wireless network devices. Terminal devices and network devices can be connected to each other in a wired or wireless manner.
  • Figure 1 is only a schematic diagram.
  • the communication system can also include other equipment, such as wireless relay equipment and wireless backhaul equipment. In Figure 1 Not shown in the picture.
  • the following introduces the core network equipment, network equipment and terminal equipment.
  • Core network equipment is a network device located in the core network of a mobile communication network and is used to implement the functions of the core network.
  • the core network can be divided into a control plane and a user plane according to logical functions.
  • network elements in the core network that are responsible for control plane functions can be collectively called control plane network elements
  • network elements that are responsible for user plane functions can be collectively called user plane network elements.
  • the core network equipment involved is mainly a control plane network element, such as access and mobility management function (AMF).
  • AMF access and mobility management function
  • Network equipment is a node in a radio access network (RAN). It can also be called a base station or a RAN node (or device). Some examples of network equipment are: next generation base station (next generation nodeB, gNB), next generation evolved base station (next generation evolved nodeB, Ng-eNB), transmission reception point (transmission reception point, TRP), evolved node B ( evolved Node B, eNB), wireless network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), Home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), network equipment also It can be a satellite, which can also be called a high-altitude platform, high-altitude aircraft, or satellite base station.
  • next generation base station next generation
  • the network device can also be other devices with network device functions.
  • the network device can also be a device that serves as a network device in device-to-device (D2D) communication.
  • the network device may also be a network device in a possible future communication system.
  • D2D device-to-device
  • network equipment may include centralized units (CU) and distributed units (DU).
  • Network equipment may also include active antenna units (active antenna units, AAU).
  • CU implements some functions of network equipment
  • DU implements some functions of network equipment.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the RAN, or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the device used to implement the function of the network device may be a network device, or may be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the chip system can be composed of chips, or can also include chips and other discrete devices.
  • Terminal equipment can also be called terminal, user equipment (UE), mobile station, mobile terminal, etc.
  • Terminal devices can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), and the Internet of Things (internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc. The embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • the device for realizing the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the technical solution provided by the embodiments of the present application is described by taking the device for realizing the functions of the terminal device being a terminal device as an example.
  • the mobile phones in Figure 1 include 120a, 120e, 120f and 120j.
  • the mobile phone 120a can access the base station 110a, connect to the car 120b, directly communicate with the mobile phone 120e and access the HAP;
  • the mobile phone 120e can access the HAP and directly communicate with the mobile phone 120a;
  • the mobile phone 120f can access as a micro
  • the station 110b is connected to the laptop 120g and the printer 120h;
  • the mobile phone 120j can control the drone 120i.
  • the helicopter or drone 120i in Figure 1 can be configured as a mobile base station.
  • the terminal device 120i is a base station; but for the base station 110a, 120i
  • the terminal device that is, the communication between 110a and 120i is through the wireless air interface protocol.
  • communication between 110a and 120i can also be carried out through an interface protocol between base stations.
  • relative to 110a, 120i is also a base station. Therefore, both network equipment and terminal equipment can be collectively called communication devices.
  • 110a and 110b in Figure 1 can be called communication devices with base station functions
  • 120a-120j in Figure 1 can be called communication devices with terminal equipment functions.
  • Network equipment and terminal equipment can be fixed-location or removable.
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky.
  • the embodiments of this application do not limit the application scenarios of network devices and terminal devices.
  • Communication between network equipment and terminal equipment, between network equipment and network equipment, and between terminal equipment and terminal equipment can be carried out through licensed spectrum (licensed spectrum), or through unlicensed spectrum (unlicensed spectrum), or at the same time. Communicates through licensed and unlicensed spectrum; can communicate through spectrum below 6 gigahertz (GHz), can communicate through spectrum above 6 GHz, and can also use spectrum below 6 GHz and spectrum above 6 GHz simultaneously communicate.
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the beam used in the beam determination method proposed in the embodiment of the present application may be millimeter waves.
  • millimeter waves and the application of millimeter waves are introduced below.
  • millimeter wave adopts hybrid beamforming HBF architecture, which generates simulated beams by changing the direction shifter to directionally receive terminal signals in a certain area.
  • Each time slot Slot sends or receives user signals within a certain coverage area through simulation weighting, and completes the coverage of the entire sector through time division scheduling.
  • each beam sent by the base station can cover a certain area, and all beams Time division covers a sector range, and the base station can communicate with the terminal equipment located within the sector range.
  • the current millimeter wave optimal beam measurement process includes: Step 1.
  • the base station periodically sends channel state information (CSI) beams (i.e., downlink CSI beams).
  • CSI channel state information
  • the terminal device passes Periodically scan the CSI beams issued by the base station; Step 2.
  • the terminal device measures the downlink CSI beam corresponding to the serving SSB beam; Step 3.
  • the terminal device reports the measurement results of the downlink CSI beam corresponding to the serving SSB beam to the base station.
  • the base station receives The measurement result from the terminal device; Step 4.
  • the base station determines the appropriate downlink serving CSI beam for the terminal device based on the measurement result reported by the terminal device; Step 5.
  • the base station uses the downlink serving CSI beam to perform downlink services with the terminal device. of sending.
  • the terminal device may measure the reference signal receiving power (RSRP) of the downlink CSI beam of the base station and report at least one CSI beam (Beam) with the highest RSRP.
  • RSRP reference signal receiving power
  • Beam CSI beam
  • the base station selects an appropriate downlink serving CSI beam for the terminal device from the at least one CSI beam, and uses the downlink serving CSI beam to communicate with the terminal device for downlink services.
  • this application proposes a beam determination method that can take into account both overhead and beam coverage distance, and ensure coverage of remote terminal equipment with as little overhead as possible.
  • millimeter wave communication systems such as NR communication systems
  • other communication systems such as future mobile communication systems (such as 6G communication systems), etc.
  • future mobile communication systems such as 6G communication systems
  • the network architecture of the communication system shown in FIG. 1 is only an example and does not limit the network architecture of the communication system in the embodiment of the present application.
  • the embodiments of this application do not limit the number of network devices and the number of terminal devices in the communication system.
  • multi-point collaborative communication can be performed between the network devices.
  • the communication system includes multiple macro base stations and multiple micro base stations, in which multi-point coordinated communication can be performed between macro base stations, micro base stations and micro base stations, and macro base stations and micro base stations.
  • a beam is a communication resource.
  • a beam can be a wide beam, a narrow beam, or other types of beams. form
  • the beam technology may be beam forming technology or other technical means. Beamforming technology can be specifically digital beamforming technology, analog beamforming technology, hybrid digital/analog beamforming technology, etc. Different beams can be considered as different communication resources, and the same information or different information can be sent through different beams. Optionally, multiple beams with the same or similar communication characteristics can be regarded as one beam, and one beam can include one or more antenna ports for transmitting data channels, control channels, detection signals, etc.
  • the transmitting beam may refer to the signal strength distribution in different directions in space after the signal is emitted by the antenna
  • the receiving beam may refer to the signal strength distribution in different directions in space of the signal received from the antenna.
  • one or more antenna ports forming a beam can also be regarded as a set of antenna ports.
  • the beam can also be called a spatial filter (spatial filer).
  • the transmit beam can also be called a spatial transmit filter.
  • the receiving beam can also be called a spatial filter.
  • the beam may also be called a spatial receive filter.
  • signals are received or sent between the terminal and the network device through beams.
  • the beam can be divided into a receiving beam and a transmitting beam according to the direction of signal reception or transmission.
  • the receiving beam is used to receive signals
  • the transmitting beam is used to send signals.
  • network equipment uses transmit beams to send downlink signals
  • end devices use receive beams to receive downlink signals.
  • the terminal device uses a transmit beam to send an uplink signal
  • the network device uses a receive beam to receive the uplink signal.
  • the transmit beam used by the terminal device and the receive beam used by the network device form a beam pair
  • the receive beam used by the terminal device and the transmit beam used by the network device also form a beam pair.
  • the receiving beam can also be called a downlink beam, and the transmitting beam can also be called an uplink beam.
  • the receiving beam used by the terminal device to receive downlink signals can also be called a downlink working beam, and the transmitting beam used by the terminal device to send uplink signals can also be called an uplink working beam.
  • the terminal equipment can determine the uplink working beam based on the downlink working beam, or determine the downlink working beam based on the uplink working beam.
  • the millimeter wave base station is based on the hybrid beamforming HBF architecture.
  • the direction shifter first generates an analog beam and then superimposes the precoding matrix to indicate the PMI digital weight to achieve coverage and communication.
  • SSB: 5G NR introduces the synchronization system/physical broadcast channel block (SS/PBCH block).
  • the SS/PBCH block can be referred to as SSB.
  • the network device sends multiple SSBs in a scanning manner in one cycle, and different SSBs correspond to different spatial directions (for example, corresponding to different beams).
  • the number of SSBs is configured by the network device to the terminal through system messages.
  • NR supports three SSB numbers: 4, 8, and 64. Generally, the higher the frequency, the greater the number of SSBs, and the narrower the beam used to send SSBs.
  • the terminal measures the reference signal receiving power (RSRP) of the SSB sent by the network device.
  • RSRP reference signal receiving power
  • the terminal can select the SSB.
  • the mapped random access resources perform a random access (random access channel, RACH) process.
  • the downlink reference signal is a reference signal (RS) sent by the network device to the terminal device.
  • Downlink reference signals can include channel state information reference signal (CSI-RS), synchronization signal block SSB, sounding reference signal (Sounding reference signal, SRS), demodulation reference signal (demodulation reference signal, DMRS), etc.
  • CSI-RS channel state information reference signal
  • SRS Sounding reference signal
  • demodulation reference signal demodulation reference signal
  • DMRS demodulation reference signal
  • the downlink reference signals received by the terminal may be different.
  • the downlink reference signal received by the terminal is SSB.
  • the downlink reference signal received is CSI-RS.
  • the terminal may receive the downlink reference signal periodically and/or through event triggering.
  • one or more refers to one, two or more; “and/or” describes the association relationship of associated objects, indicating that three relationships may exist; for example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the objects associated before and after are in an "or” relationship.
  • references to "one embodiment” or “some embodiments” etc. described in this specification mean that a particular feature, structure or characteristic described in conjunction with the embodiment is included in one or more embodiments of the present application.
  • the phrases “in one embodiment”, “in some embodiments”, “in some other embodiments”, “in some other embodiments”, etc. appearing in different places in this specification do not necessarily all refer to the same embodiment, but mean “one or more but not all embodiments", unless otherwise specifically emphasized in other ways.
  • the terms “including”, “comprising”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized in other ways.
  • the plurality involved in the embodiments of this application means greater than or equal to two.
  • indication may include direct indication, indirect indication, explicit indication, and implicit indication.
  • indication information may include direct indication, indirect indication, explicit indication, and implicit indication.
  • the information indicated by the indication information is called information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the index of the information to be indicated, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be achieved by means of a pre-agreed (for example, protocol stipulated) arrangement order of each piece of information, thereby reducing the indication overhead to a certain extent.
  • the information to be indicated can be sent as a whole, or divided into multiple sub-information and sent separately, and the sending period and/or sending time of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending time of these sub-information can be pre-defined, for example, pre-defined according to the protocol, or configured by the transmitting device by sending configuration information to the receiving device.
  • the configuration information can include, for example, but not limited to, one or a combination of at least two of radio resource control signaling, media access control MAC layer signaling and physical layer signaling.
  • radio resource control signaling for example, radio resource control RRC signaling
  • MAC layer signaling for example, includes MAC control element (CE)
  • physical layer signaling for example, includes downlink control information DCI.
  • An embodiment of the present application provides a method for beam determination, which is applicable to but not limited to the communication system architecture of Figure 1, and the method can be executed by a transceiver and/or processor of a terminal device (which can also be a network device), or by a chip corresponding to the transceiver and/or processor.
  • the embodiment can also be implemented by a controller or control device to which the terminal device (which can also be a network device) is connected, and the controller or control device is used to manage at least one device including the terminal device (which can also be a network device).
  • the present application does not make specific restrictions on the specific form of the communication device that executes this embodiment.
  • the ordinal numbers such as "first" and "second” mentioned below are used to distinguish multiple objects for the purpose of description, and are not used to limit the order, timing, priority or importance of multiple objects. Please refer to Figure 3, the specific process of the method is as follows:
  • S301 The network device obtains the measurement information of the first wide beam.
  • the network device is a base station.
  • the measurement information of the beam may be used to reflect the communication quality or communication characteristics of the beam.
  • the network device uses a beam to send a downlink signal to the terminal device, and the terminal device performs measurements based on the downlink signal and obtains a measurement result of the downlink signal.
  • the measurement result may include but is not limited to: the received power (RSRP) of the downlink signal. , whether the downlink signal is successfully or accurately received, and the resource size for receiving the downlink signal.
  • the measurement results can be used as the measurement information of the beam.
  • the network device can also use a beam to receive the uplink signal of the terminal device, and measure the uplink signal to obtain the measurement result of the uplink signal, and use the measurement result of the uplink signal as the measurement information of the beam.
  • step S301 When performing step S301, the following implementations may be included but are not limited to:
  • the network device obtains measurement information of a first wide beam, including: the network device uses the first wide beam to send a downlink reference signal to the terminal device; the network device receives a downlink reference signal receiving power RSRP of the first wide beam from the terminal device.
  • the downlink reference signal is downlink CSI-RS or downlink SRS.
  • the network device obtains the measurement information of the first wide beam, including: the network device uses the first wide beam to receive an uplink reference signal from the terminal device; the network device measures based on the uplink reference signal.
  • the uplink reference signal received power RSRP of the first wide beam is obtained.
  • the terminal device needs to be in a connected state, or the terminal device and the network device are in a communicative state, and the uplink reference signal sent by the terminal device can reach the network device.
  • the uplink reference signal is an uplink CSI-RS or an uplink SRS.
  • the network device determines, according to the measurement information of the first wide beam, to use the first wide beam or the first narrow beam to communicate with the terminal device.
  • a wide beam can be understood as a beam with a larger coverage angle
  • a narrow beam can be understood as a beam with a smaller coverage angle.
  • the coverage angle of a wide beam is greater than (or equal to) a preset angle
  • the coverage angle of a narrow beam is less than (or equal to) a preset angle
  • the preset angle can be 30 degrees or set according to actual needs.
  • step S302 when performing step S302, the following situations may be included but not limited to:
  • Case 1 The downlink RSRP of the first wide beam is greater than or equal to the preset downlink RSRP threshold, and the network device determines to use the first wide beam to communicate with the terminal device.
  • the terminal equipment is in a near-point position, and the first wide beam can cover the terminal equipment. Therefore, the network equipment can continue to use the first wide beam to carry out effective downlink service communication with the terminal equipment, and no longer Further determine the first narrow beam.
  • Case 2 When the downlink RSRP of the first wide beam is less than the preset downlink RSRP threshold, the network device determines to use the first narrow beam to communicate with the terminal device.
  • the network device needs to further determine a suitable first narrow beam and use the first narrow beam to perform downlink service communication with the terminal device.
  • the network device uses a downward traversal method to determine the first narrow beam from at least one narrow beam.
  • the network device uses a downward traversal method to determine the first narrow beam from at least one narrow beam, it can be determined by, but not limited to, the following methods:
  • Method 1 The network device uses the at least one narrow beam in sequence to send downlink signals to the terminal device and receive indication information from the terminal device.
  • Each narrow beam corresponds to one direction and is located within the coverage of the first wide beam.
  • the indication The information is used to indicate whether the downlink signal sent by a corresponding narrow beam is correctly received by the terminal device; when the network device determines based on the indication information that the downlink signal is correctly received by the terminal device, the corresponding narrow beam is used as The first beam.
  • the network device can use the measurement information (ie, the measurement result) of the first wide beam to determine the position of the terminal device (far point or near point); if the terminal device is in the far point position, the network device The device can traverse and use the narrow beam to send the preamble (Preamble) to the terminal device.
  • the network device determines that the terminal device receives the preamble (Preamble) correctly based on the feedback information from the terminal device, the network device will use the narrow beam accordingly. The first narrow beam is used subsequently.
  • the network device can use the measurement information (result) of the first wide beam to determine the position of the terminal device (far point or near point); when the terminal device is in the far point position, the network device can traverse the direction using the narrow beam.
  • the terminal device sends services (or data) until the network device determines that the feedback information received from the terminal device is an acknowledgment ACK, and the network device will correspondingly use the narrow beam as the first narrow beam for subsequent use.
  • Method 2 The network device uses the at least one narrow beam in sequence to send downlink signals to the terminal device and receive feedback information from the terminal device.
  • Each narrow beam corresponds to one direction and is located within the coverage of the first wide beam.
  • the feedback The information is used to indicate the reception quality of the downlink signal sent by the corresponding narrow beam; when the network device determines that the downlink signal reception quality meets the preset downlink signal reception quality based on the feedback information, the corresponding narrow beam will be used. as the first narrow beam.
  • the downlink signal reception quality may be the power value of the received downlink signal, or the energy value of the received downlink signal, or the accuracy of the received uplink signal.
  • the network device may also use at least one narrow beam to send downlink signals to the terminal device at the same time; then, the network device receives at least one indication from the terminal device Information, each indication information is used to indicate whether the downlink signal sent by a corresponding narrow beam is correctly (or successfully) received by the terminal device; the network device determines, based on the at least one indication information, that the downlink signal sent by the instruction is correctly (or successfully) received by the terminal device. or successfully) receives the corresponding narrow beam and uses it as the first narrow beam.
  • the network device can use at least one narrow beam to send downlink signals to the terminal device at the same time.
  • the terminal device measures the downlink signal sent by each narrow beam to obtain the downlink signal measurement results, such as the downlink signal reception quality; then, the network device selects the downlink signal.
  • the narrow beam corresponding to the best reception quality is used as the first narrow beam.
  • step S302 when performing step S302, the following situations may also be included but are not limited to:
  • Case 1 The uplink RSRP of the first wide beam is greater than or equal to the preset uplink RSRP threshold, and the network device determines to use the first wide beam to communicate with the terminal device.
  • the terminal device is in a near-point position and the first wide beam can cover the terminal device. Therefore, the network device can continue to use the first wide beam to perform effective uplink service communication with the terminal device.
  • Case 2 The uplink RSRP of the first wide beam is less than the preset uplink RSRP threshold, and the network device determines to use the first narrow beam to communicate with the terminal device.
  • Scenario 2 shows that the terminal device is in a far-point location and the coverage of the first wide beam is insufficient, resulting in poor quality of the uplink reference signal received by the network device. Therefore, the network device needs to further determine the appropriate first narrow beam and use the third narrow beam.
  • a narrow beam communicates with the terminal equipment for uplink services.
  • the network device uses an upward traversal method to determine the first narrow beam from at least one narrow beam
  • the network device uses an upward traversal method to determine the first narrow beam from at least one narrow beam, which can be determined in the following manner:
  • Method 1 The network device uses at least one narrow beam in sequence to receive the uplink signal from the terminal device.
  • Each narrow beam corresponds to one direction and is located within the coverage of the first wide beam; when the network device determines that it has correctly received the signal from When the terminal device sends an uplink signal, the corresponding narrow beam used is the first beam.
  • the measurement information (result) of the first wide beam can be used to determine the position of the terminal device (far point or near point); when the terminal device is in the far point position, the network device can traverse the narrow beam using Try to receive the data sent by the terminal device until the network device can correctly demodulate the data from the terminal device, and use the corresponding narrow beam as the first narrow beam for subsequent use.
  • Method 2 The network device uses at least one narrow beam in sequence to receive the uplink signal from the terminal device and measure the reception quality of the uplink signal.
  • Each narrow beam corresponds to one direction and is located within the coverage of the first wide beam; when the network When the device determines that the uplink signal reception quality meets the preset uplink signal reception quality, the corresponding narrow beam is used as the first narrow beam.
  • the uplink signal reception quality may be the power value of the received uplink signal, or the energy value of the received uplink signal, or the accuracy of the received uplink signal.
  • the network device when performing Mode 1 or Mode 2 in this embodiment, may also use at least one narrow beam to receive the uplink signal from the terminal device; and then, the network device determines from this that the network device can The narrow beam corresponding to the uplink signal of the terminal device is correctly received and used as the first narrow beam; or
  • the network device can use at least one narrow beam to receive the uplink signal from the terminal device at the same time, and measure the uplink signal received from the terminal device by each narrow beam to obtain the uplink signal measurement results, such as the uplink signal reception quality; then, the network device selects The narrow beam corresponding to the best uplink signal reception quality is used as the first narrow beam.
  • the network device obtains the measurement information of the first wide beam, and then determines to use the first wide beam or the first narrow beam to communicate with the terminal device based on the measurement information of the first wide beam. Since the wide beam has a wide coverage area and generates less overhead, the narrow beam has a long coverage distance and can ensure the communication of the terminal equipment at a distance. Therefore, the network equipment in the solution of this application can first use the wide beam to communicate with the terminal equipment and obtain the wide beam. The measurement results of the beam are then used to determine whether to continue to select the wide beam to communicate with the terminal equipment or to select a new narrow beam to communicate with the terminal equipment based on the measurement results of the wide beam, so as to take into account the beam overhead and coverage distance. , determining the appropriate beam to communicate with the terminal device can not only ensure the effectiveness of communication, but also reduce system overhead.
  • the main focus is on how the network device determines a suitable downlink beam to perform downlink communication with the terminal device.
  • the network device takes a base station as an example, as shown in Figure 4.
  • the process of the first specific embodiment is as follows:
  • S401 The base station uses a wide beam to send downlink reference signals.
  • the base station uses one or more wide beams (which may also be called baseline beams) to send corresponding downlink reference signals.
  • one or more wide beams which may also be called baseline beams
  • the downlink reference signal may be a sounding reference signal SRS or a channel state information reference signal CSI-RS, or the like.
  • the base station uses wide beam 0, wide beam 1, and wide beam 2 to transmit downlink CSI-RS respectively.
  • the terminal equipment scans the wide beam and measures the downlink reference signal received power RSRP of the wide beam.
  • the terminal device scans one or more wide beams of the base station.
  • the terminal device may scan at least one of the wide beams, receive the corresponding downlink reference signal through the at least one scanned wide beam, and based on each The downlink reference signal received by each wide beam is measured to obtain the downlink RSRP of each wide beam, and then the wide beam with the largest downlink RSRP is determined.
  • the base station uses wide beam 0, wide beam 1, and wide beam 2 to send downlink reference signals respectively.
  • the terminal equipment can scan wide beam 0 and wide beam 1, and receive the downlink reference signal from the base station through wide beam 0 and wide beam 1 respectively. ; Then, the terminal equipment measures the RSRP value of wide beam 0 based on the downlink reference signal of wide beam 0, and measures the RSRP value of wide beam 1 based on the downlink reference signal of wide beam 1, and the RSRP value of wide beam 1 is greater than that of wide beam 0. RSRP value.
  • S403 The terminal device reports the downlink RSRP of the optimal beam to the base station.
  • the base station receives the downlink RSRP of the optimal wide beam.
  • the terminal equipment determines that the RSRP value of wide beam 1 is greater than the RSRP value of wide beam 0, the terminal equipment regards wide beam 1 as the optimal wide beam and reports the RSRP value of wide beam 1 to the base station.
  • the base station determines the location of the terminal device according to the downlink RSRP of the optimal beam reported by the terminal device.
  • step S404 if the downlink RSRP of the optimal beam reported by the terminal device is greater than or equal to the preset downlink RSRP threshold, the base station determines that the terminal device is at a near point position (medium near point); if the downlink RSRP of the optimal beam reported by the terminal device is less than the preset downlink RSRP threshold, the base station determines that the terminal device is at a far point position (far point).
  • the base station determines that the terminal equipment is in a near-point position; if the downlink RSRP value of wide beam 1 reported by the terminal equipment is less than the preset If the downlink RSRP threshold is reached, the base station determines that the terminal device is at a remote location.
  • the base station can preliminarily determine the location of the terminal equipment, and then determine an appropriate beam based on the location of the terminal equipment for downlink communication between the base station and the terminal equipment.
  • the base station determines the beam for communicating with the terminal device based on the location of the terminal device.
  • step S405 When executing step S405, the following two situations may occur:
  • step S405 If the base station determines that the terminal device is in a near-point position through the above step S404, then in step S405, the base station continues to use the optimal wide beam reported by the above terminal device to perform downlink communication (or transmission) with the terminal device. Then execute the following steps S406-S408.
  • the base station determines that the terminal device is at a near point position, and the base station determines to use wide beam 1 to communicate downlink services with the terminal device. If the downlink RSRP value of wide beam 1 reported by the terminal device is less than the preset downlink RSRP threshold, the base station determines that the terminal device is at a far point position, and the base station does not use wide beam 1 to communicate downlink services with the terminal device, and continues to determine a suitable beam through the following steps S406-S408.
  • the base station uses at least one narrow beam to send downlink signals to the terminal device within the coverage of the wide beam.
  • the terminal equipment receives the downlink signal from the base station through the at least one narrow beam.
  • the downlink signal in step S406 may also be a communication signal, a broadcast signal, or a downlink reference signal. This application does not specifically limit the type of the downlink signal. When it is a downlink reference signal, its type may be the same as or different from the type of the downlink reference signal in step S401, which is not limited in this embodiment of the present application.
  • the downlink signal is SRS or CSI-RS.
  • step S405 if the base station determines that the terminal device is at a remote location, the base station will traverse the downlink and try a narrower beam to send downlink signals to the terminal device within the coverage of the wide beam corresponding to the optimal RSRP reported by the terminal device.
  • the downlink traversal can be understood as sequentially trying to use various narrower beams (which can be collectively referred to as narrow beams) to send downlink signals to the terminal device.
  • the coverage angles, coverage distances, and coverage directions of these narrow beams are different; or some narrow beams have the same coverage direction, but different coverage angles and coverage distances; or some narrow beams have the same coverage angle, same coverage distance, but different coverage directions.
  • the embodiments of this application do not specifically limit this.
  • the base station attempts to use narrow beam 0, narrow beam 1, narrow beam 2, and narrow beam 3 to send downlink signals to the terminal device.
  • the coverage angles and coverage distances (lengths) of these narrow beams are different, and the coverage angle of narrow beam 0 is greater than (greater than) the coverage angle of narrow beam 1, greater than (greater than) the coverage angle of narrow beam 2, and greater than (greater than) the coverage angle of narrow beam 3.
  • the smaller the coverage angle of a beam the farther the coverage distance of the beam is; the larger the coverage angle of the beam, the shorter the coverage distance of the beam.
  • the terminal device generates feedback information of the at least one narrow beam based on the downlink signal received through the at least one narrow beam, and reports the feedback information of the at least one narrow beam to the base station.
  • the feedback information of the at least one narrow beam can be determined through but is not limited to the following two methods:
  • Method 1 is that the base station can determine the narrow beam used for uplink communication with the terminal device based on the downlink RSRP of at least one narrow beam. Based on this method 1, it can include but is not limited to the following two execution methods:
  • Execution method 1 The base station can first use a narrow beam to send downlink signals to the terminal device, and the terminal device receives the signal based on the narrow beam.
  • the downlink signal measurement is performed to obtain the downlink RSRP of the narrow beam and reported to the base station.
  • the base station receives the RSRP of the narrow beam reported by the terminal equipment. If the RSRP of the narrow beam is not less than the target RSRP, it means that the quality of the downlink signal received by the terminal equipment from the base station through the narrow beam is good, and the narrow beam can meet the requirements of the terminal equipment. If the communication needs are met, the base station uses the narrow beam to communicate with the terminal equipment for downlink services and does not try other narrow beams. If the RSRP of the narrow beam is less than the target RSRP, it means that the terminal equipment receives the downlink signal of the base station through the narrow beam.
  • the base station will continue to try to use another narrower beam to send downlink signals to the terminal device, and the terminal device will continue to report the RSRP of the narrower beam to the base station until the base station determines The RSRP of a certain narrow beam reported by the terminal device can reach the target RSRP, that is, the base station uses the narrow beam corresponding to the RSRP that meets the target RSRP to communicate with the terminal device for downlink services.
  • the base station first uses narrow beam 0 to send downlink signals to the terminal device.
  • the terminal device measures the downlink signal based on the narrow beam 0 and obtains the downlink RSRP of the narrow beam 0, and reports it to the base station. If the base station determines that the downlink RSRP of narrow beam 0 reported by the terminal equipment is not less than the target RSRP, the base station determines to use the narrow beam 0 to communicate with the terminal equipment; if the base station determines that the downlink RSRP of narrow beam 0 reported by the terminal equipment is is less than the target RSRP, the base station attempts to use narrow beam 1 (the coverage angle of narrow beam 1 is smaller than the coverage angle of narrow beam 0, and the coverage distance of narrow beam 1 is greater than the coverage distance of narrow beam 0) to send downlink signals to the terminal device, and the terminal device sends a downlink signal to the base station Report the downlink RSRP of the narrow beam 1.
  • the base station determines that the downlink RSRP of the narrow beam 1 reported by the terminal device is not less than the target RSRP, the base station determines to use the narrow beam 1 to conduct downlink service communication with the terminal device and will not try other attempts.
  • Narrow beam if the base station determines that the downlink RSRP of narrow beam 1 reported by the terminal device is less than the target RSRP, the base station continues to try to use narrow beam 2 (the coverage angle of narrow beam 2 is smaller than the coverage angle of narrow beam 1, and the coverage distance of narrow beam 2 is greater than Coverage distance of narrow beam 1) sends a downlink signal to the terminal device, and the terminal device reports the downlink RSRP of narrow beam 2 to the base station again.
  • the base station will use narrow beam 3 to communicate with the terminal device for downlink services.
  • Execution method 2 The base station can simultaneously send downlink signals to the terminal device through at least one narrow beam.
  • the terminal device receives the downlink signal from the base station through the at least one narrow beam, and then the terminal device receives the downlink signal based on each narrow beam.
  • the RSRP of each narrow beam is measured (equivalent to the signal reception quality in this application); further, the terminal device reports the measured RSRP of the at least one narrow beam to the base station.
  • the terminal equipment receives downlink signals from the base station through narrow beam 0, narrow beam 1, narrow beam 2, and narrow beam 3 respectively, and measures the downlink signal based on narrow beam 0 to obtain RSRP0, and obtains RSRP0 based on the downlink signal received by narrow beam 1.
  • the signal is measured to obtain RSRP1
  • the downlink signal received based on narrow beam 2 is measured to obtain RSRP2
  • the downlink signal received based on narrow beam 3 is measured to obtain RSRP3; then, the terminal device sends (that is, reports) the RSRP0 and narrow beam of narrow beam 0 to the base station.
  • the RSRP of each of the above narrow beams can be reported directly to the base station by the terminal device as feedback information, or the RSRP of each of the above narrow beams is carried in separate feedback information and reported to the base station by the terminal device, or the RSRP of each of the above narrow beams is carried in the same message.
  • a piece of feedback information is reported by the terminal device to the base station, and this application does not limit this.
  • Method 2 is for the base station to determine the narrow beam used for downlink communication with the terminal device based on the downlink reception status of at least one narrow beam reported by the terminal device. Based on method 2, it can include but is not limited to the following two execution methods:
  • Execution method 1 The base station can first use a narrow beam to send downlink signals to the terminal device, and the terminal device determines whether the downlink signal from the base station is correctly (or successfully) received through the narrow beam, and reports feedback information to the base station to inform To the base station (that is, the reception status of the terminal device).
  • the base station determines whether the terminal device can successfully (or correctly) receive the downlink signal from the base station through the narrow beam; if it can, the base station will use the narrow beam to communicate with the terminal device for downlink services and no longer Try other narrow beams; if not, the base station continues to try to use another narrower beam to send downlink signals to the terminal device, and the terminal device continues to feedback the reception situation to the base station until the base station determines that the terminal device can successfully receive using a certain narrow beam.
  • the base station uses the narrow beam to communicate with the terminal equipment for downlink services.
  • the base station first uses narrow beam 0 to send downlink signals to the terminal device.
  • the terminal device determines whether the downlink signal from the base station can be successfully (or correctly) received through the narrow beam 0, and feeds back the reception status of the narrow beam 0 to the base station.
  • the base station determines that the terminal equipment can successfully (or correctly) receive the downlink signal of the base station using narrow beam 0 according to the reception status of narrow beam 0 reported by the terminal equipment, it will no longer try other narrow beams.
  • the base station determines that the terminal equipment When the base station's downlink signal cannot be successfully (or correctly) received using narrow beam 0, the base station attempts to use narrow beam 1 to send a downlink signal to the terminal device, and the terminal device feeds back the reception status of narrow beam 1 to the base station. Until the base station determines that the terminal device can correctly receive the downlink signal from the base station through the narrow beam 3 according to the reception status of a certain narrow beam reported by the terminal equipment, such as the reception status of narrow beam 3, then the base station determines to use this narrow beam 3 Communicate downlink services with terminal equipment.
  • the base station can simultaneously send downlink signals to the terminal device through at least one narrow beam.
  • the terminal device receives the downlink signal from the base station through the at least one narrow beam, and the terminal device reports feedback information of the at least one narrow beam to the base station.
  • the feedback information of each narrow beam is used to indicate whether the terminal device successfully (or correctly) receives the downlink signal from the base station.
  • the terminal equipment receives the downlink signal from the base station through narrow beam 0, narrow beam 1, narrow beam 2, and narrow beam 3 respectively.
  • the terminal equipment determines whether the downlink signal from the base station is successfully (or correctly) received through each narrow wave, and Feedback information of each narrow wave is reported to the base station, and each feedback information is used to indicate whether the terminal device successfully (or correctly) receives the downlink signal of the base station.
  • each narrowband can be indicated using separate indication information.
  • the indication information can be directly used as feedback information, or the indication information can be carried in the feedback information. Therefore, the indication information corresponding to each narrow wave can be independently reported by the terminal device to the base station, or the indication information corresponding to each narrow wave can be carried in a separate feedback information and reported to the base station by the terminal device, or the indication information corresponding to each narrow wave can be reported to the base station. The information is carried in the same feedback information and reported to the base station by the terminal device, which is not specifically limited in this application.
  • the base station can use but is not limited to the above two execution methods; since the overhead generated by the above execution method one is relatively small, execution method one (ie, the traversal attempt method) can be preferred in this embodiment of the application.
  • the base station determines the narrow beam used for communication with the terminal device based on the feedback information reported by the terminal device.
  • the base station determines to use the narrow beam with the largest RSRP value to communicate with the terminal device based on the RSRP of each narrow beam reported by the terminal device.
  • the base station determines that the RSRP3 of narrow beam 3 is the largest, the base station determines to use narrow beam 3 to perform downlink communication with the terminal device.
  • the base station determines, based on the feedback information (or indication information) of each narrow beam reported by the terminal equipment, to indicate that the terminal equipment has successfully (or correctly) received the downlink signal of the base station corresponding to the narrow beam. beams and used to communicate with end devices.
  • the base station determines that the feedback information (instruction information) of narrow beam 3 indicates that the terminal device has successfully (correctly) received the downlink signal from the base station, the base station determines to use narrow beam 3 for downlink communication with the terminal device.
  • a base station may communicate with multiple terminal devices. Therefore, the base station is configured for each terminal device.
  • Each terminal device may refer to the steps in the above-mentioned specific embodiment 1 to determine the downlink beam used for communication, which will not be described in detail here.
  • the base station can determine the location of the terminal device based on the measurement results of the downlink reference signal fed back by the terminal device.
  • the base station can use a wide beam to communicate with the terminal device, thereby increasing beam coverage. scope, can provide services for more terminal devices, and save resource overhead.
  • the base station can perform downlink traversal testing of narrow beams within the original wide beam range to select a narrow beam with better coverage to communicate with the terminal equipment, which not only ensures effective communication, but also takes into account the beam's Coverage to provide services for more terminal devices, saving resource overhead. Therefore, this method can take into account the advantages of wide and narrow beams at the same time, and determine the appropriate service beam for the terminal equipment, which not only ensures the effectiveness of communication between the base station and the terminal equipment, but also saves resource overhead.
  • the downlink beam determined by the base station through the above-mentioned specific embodiment 1 can be used to communicate with the terminal equipment for downlink services, or can be reused as an uplink beam for To communicate with the terminal equipment for uplink services, the base station no longer needs to determine the appropriate uplink beam for the terminal equipment through the following specific embodiment two.
  • the base station can determine the uplink beam through the following specific embodiment 2 to use the terminal device to communicate uplink services.
  • the network device determines an appropriate uplink beam to perform uplink communication with the terminal device.
  • the network device takes a base station as an example, as shown in Figure 5.
  • the process of the second specific embodiment is as follows:
  • the base station uses a wide beam to receive the uplink signal from the terminal device.
  • the base station uses one or more wide beams (which may also be called baseline beams) to receive uplink signals from the terminal equipment.
  • one or more wide beams which may also be called baseline beams
  • the uplink signal may be an uplink communication signal or an uplink reference signal, such as SRS or CSI-RS.
  • the base station uses wide beam 0, wide beam 1, and wide beam 2 to receive uplink signals from the terminal equipment.
  • the base station measures the RSRP of the wide beam based on the uplink signal received by the wide beam.
  • the base station obtains the uplink RSRP of wide beam 0 based on the uplink signal received by wide beam 0; the base station obtains the uplink RSRP of wide beam 1 based on the measured uplink signal. Based on the received uplink signal, the uplink RSRP of wide beam 1 is measured; the base station measures the uplink RSRP of wide beam 2 based on the uplink signal received by wide beam 2.
  • the base station determines the location of the terminal device based on the RSRP of the optimal wide beam.
  • step S503 if the base station determines that the uplink RSRP of the optimal wide beam is greater than or equal to the preset uplink RSRP threshold, the base station determines that the terminal equipment is in a near-point position (mid-near point); if the base station determines that the optimal wide beam When the uplink RSRP is less than the preset uplink RSRP threshold, the base station determines that the terminal device is at a far point location (far point).
  • the base station determines that the uplink RSRP value of wide beam 1 is greater than the uplink RSRP value of wide beam 0 and the uplink RSRP value of wide beam 2, the base station regards wide beam 1 as the optimal wide beam. If the base station determines that the uplink RSRP value of wide beam 1 is greater than or equal to the preset uplink RSRP threshold, the base station determines that the terminal device is at a near point position; if the base station determines that the uplink RSRP value of wide beam 1 is less than the preset uplink RSRP threshold, the base station determines that the terminal device is at a far point position.
  • the base station determines the beam for communicating with the terminal device based on the location of the terminal device.
  • step S504 When executing step S504, the following two situations may be included:
  • the base station uses at least one narrow beam to receive the uplink signal from the terminal device within the coverage area of the optimal wide beam.
  • the terminal equipment sends uplink signals to the base station through the at least one narrow beam within the coverage of the optimal wide beam determined in the above step S503.
  • the uplink signal in step S505 may also be a communication signal or an uplink reference signal, which is not limited in the embodiment of the present application.
  • the uplink signal is an SRS or a CSI-RS.
  • step S503 if the base station determines that the terminal device is at a remote location, the base station will try an uplink traversal within the coverage of the wide beam corresponding to the optimal uplink RSRP and use a narrower beam to receive the uplink signal from the terminal device.
  • the base station attempts to use narrow beam 0, narrow beam 1, narrow beam 2, and narrow beam 3 to receive the uplink signal from the terminal device.
  • the coverage angles and coverage distances (lengths) of these narrow beams are different.
  • the base station determines a narrow beam used for uplink communication with the terminal device based on the uplink signal received through the at least one narrow beam.
  • step S506 it can be determined in but not limited to the following two ways:
  • Method 1 is that the base station can determine the narrow beam used for uplink communication with the terminal device based on the uplink RSRP of at least one narrow beam. Based on method 1, it can include but is not limited to the following two execution methods:
  • Execution method 1 The base station first uses a narrow beam to receive the uplink signal from the terminal device, and measures the uplink RSRP corresponding to the narrow beam. If the uplink RSRP of the narrow beam meets the target uplink RSRP, the base station determines to use the narrow beam to communicate with the terminal equipment for uplink service and will not try other narrow beams; if the uplink RSRP of the narrow beam does not meet the target uplink RSRP, the base station Try to use another narrower beam to receive the uplink signal from the terminal equipment, and measure the uplink RSRP of the narrower beam. If the target uplink RSRP is met, the base station uses the narrower beam to communicate with the terminal equipment for uplink business.
  • the base station will continue to try other narrower beams in the aforementioned manner until the uplink RSRP of a certain narrow beam meets the target uplink RSRP.
  • the base station will use the narrow beam corresponding to the RSRP that meets the target uplink RSRP to perform uplink with the terminal device.
  • Business communications (Corresponding to the second execution method in the above-mentioned specific implementation one).
  • the base station first uses narrow beam 0 to receive the uplink signal from the terminal equipment, and measures the uplink RSRP of narrow beam 0. If the target uplink RSRP is met, the base station determines to use narrow beam 0 to communicate with the terminal equipment for uplink service. If it does not meet the Target uplink RSRP, the base station attempts to use narrow beam 1 (the coverage angle of narrow beam 1 is smaller than the coverage angle of narrow beam 0, and the coverage distance of narrow beam 1 is greater than the coverage distance of narrow beam 0) to receive the uplink signal from the terminal device, and measures If the uplink RSRP of narrow beam 1 meets the target uplink RSRP, the base station determines to use narrow beam 1 to communicate with the terminal device for uplink services.
  • narrow beam 1 the coverage angle of narrow beam 1 is smaller than the coverage angle of narrow beam 0, and the coverage distance of narrow beam 1 is greater than the coverage distance of narrow beam 0
  • the base station If it does not meet the target uplink RSRP, the base station continues to try to use narrow beam 2 (The coverage angle of narrow beam 2 is smaller than the coverage angle of narrow beam 1, and the coverage distance of narrow beam 2 is greater than that of narrow beam 2. Coverage distance of beam 1) receives the uplink signal from the terminal equipment and measures the uplink RSRP of the narrow beam 2. Until the measured uplink RSRP of a certain narrow beam meets the target uplink RSRP, the base station will use the RSRP to meet the target uplink RSRP corresponding to Narrow beams communicate with terminal equipment for uplink services.
  • Implementation method two the base station can receive uplink signals from the terminal equipment through at least one narrow beam at the same time, and then the base station measures the uplink RSRP of each narrow beam based on the uplink signal received by each narrow beam (equivalent to the above in this application) Signal reception quality), the base station determines the largest RSRP from the uplink RSRP of the at least one narrow beam; the base station will use the narrow beam with the largest uplink RSRP to communicate with the terminal device for uplink services.
  • the base station uses narrow beam 0, narrow beam 1, narrow beam 2, and narrow beam 3 to receive uplink signals from the terminal equipment respectively, and measures the uplink RSRP0 based on the uplink signal received by narrow beam 0, and obtains the uplink RSRP0 based on the uplink signal received by narrow beam 1.
  • the uplink signal is measured to obtain uplink RSRP1, the uplink RSRP2 is obtained based on the uplink signal received by narrow beam 2, and the uplink RSRP3 is obtained based on the uplink signal received by narrow beam 3. If the base station determines that the uplink RSRP3 of narrow beam 3 is the largest, the base station uses narrow beam 3 to obtain the uplink RSRP3.
  • Beam 3 communicates with the terminal equipment for uplink services.
  • Method 2 is for the base station to determine the narrow beam used for uplink communication with the terminal device based on the uplink reception situation of at least one narrow beam. Based on method 2, it can include but is not limited to the following two execution methods:
  • Execution method 1 The base station first uses a narrow beam to receive the uplink signal from the terminal device. If the base station can successfully (or correctly) receive the uplink signal from the terminal device, the base station determines to use the narrow beam to conduct uplink services with the terminal device. Communication, no longer try other narrow beams; if the base station cannot successfully (or correctly) receive the uplink signal from the terminal device, the base station tries to use another narrower beam to receive the uplink signal from the terminal device. If the base station can successfully If the uplink signal from the terminal device is successfully (or correctly) received, the base station will use the narrower beam to communicate with the terminal device.
  • the base station will Continue to try to use other narrower beams to receive uplink signals from the terminal equipment according to the foregoing method. Until the base station can successfully (or correctly) receive the uplink signal from the terminal equipment using a narrow beam, the base station will use the narrow beam that enables the base station to successfully (or correctly) receive the uplink signal from the terminal equipment, and the terminal The device performs uplink service communication.
  • the base station first uses narrow beam 0 to receive the uplink signal from the terminal equipment. If the base station can successfully (or correctly) receive the uplink signal from the terminal equipment using narrow beam 0, the base station determines to use narrow beam 0 to communicate with the terminal equipment.
  • narrow beams For uplink service communication, other narrow beams will no longer be tried; if the base station can use narrow beam 0 and cannot successfully (or correctly) receive the uplink signal from the terminal device, the base station will try to use narrow beam 1 (the coverage angle of narrow beam 1 is less than The coverage angle of narrow beam 0, the coverage distance of narrow beam 1 is greater than the coverage distance of narrow beam 0) to receive the uplink signal from the terminal equipment, if the base station can use narrow beam 1 to successfully (or correctly) receive the uplink signal from the terminal equipment , then the base station determines that it will use the narrow beam 1 to communicate with the terminal equipment for uplink services; if the base station can use the narrow beam 1 and cannot successfully (or correctly) receive the uplink signal from the terminal equipment, the base station continues to try to use the narrow beam 1 according to the aforementioned method.
  • narrow beam 2 (the coverage angle of narrow beam 2 is smaller than the coverage angle of narrow beam 1, and the coverage distance of narrow beam 2 is greater than the coverage distance of narrow beam 1) can correctly receive the uplink signal from the terminal device. Until the base station can use one of the narrow beams to successfully (or correctly) receive the uplink signal from the network device, the base station will use the narrow beam to communicate with the terminal device for uplink services.
  • Execution method 2 The base station can use at least one narrow beam to receive uplink signals from the terminal equipment at the same time.
  • the base station determines that the uplink signal from the terminal equipment can be successfully (or correctly) received through one of the narrow beams, and the base station will use this narrow beam. Communicate uplink services with terminal equipment.
  • the base station uses narrow beam 0, narrow beam 1, narrow beam 2, and narrow beam 3 to respectively receive uplink signals from the terminal device.
  • the base station cannot successfully (or correctly) receive the uplink signal from the terminal device through narrow beams 0, 1, and 2.
  • the base station can successfully (or correctly) receive the uplink signal from the terminal device through narrow beam 3. Then the base station determines that narrow beam 3 will be used to communicate uplink services with the terminal device.
  • the base station can use but is not limited to the above two execution methods; since the overhead generated by the above execution method one is relatively small, execution method one (ie, the traversal attempt method) can be preferred in this embodiment of the application.
  • the steps shown in the second specific embodiment are introduced by taking a base station and a terminal device as an example.
  • a base station may communicate with multiple terminal devices. Therefore, the base station must be configured for each terminal device.
  • the uplink beam used for communication may be determined with reference to the steps in the second specific embodiment above, which will not be described in detail here.
  • the base station uses a wide beam to receive the uplink signal from the terminal device, and obtains the measurement result or reception status of the wide beam; then, the base station determines the location of the terminal device based on the measurement result or reception status of the wide beam.
  • the base station can continue to use wide beams to communicate with terminal devices, thereby increasing the beam coverage, providing services to more terminal devices, and saving resource overhead.
  • the base station can perform uplink traversal testing of narrow beams within the original wide beam range to select a narrow beam with better coverage to communicate with the terminal equipment. This not only ensures effective communication, but also takes into account the waveforms.
  • the coverage range of the beam can provide services for more terminal devices and save resource overhead. Therefore, this method can take into account the advantages of wide and narrow beams at the same time and determine the appropriate service beam for the terminal equipment, which not only ensures the effectiveness of communication between the base station and the terminal equipment, but also saves resource overhead.
  • the uplink beam determined by the base station through the second specific embodiment can be used to communicate with the terminal device for uplink services, or can be reused as a downlink beam for To communicate with the terminal equipment for downlink services, the base station no longer needs to determine the appropriate downlink beam for the terminal equipment through the above-mentioned specific embodiment one.
  • the base station can determine the downlink beam through the above-mentioned specific embodiment 1 to use the terminal device to communicate the downlink service.
  • the network device or terminal device may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in various embodiments of the present application can be integrated into a processor, or can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • the embodiment of the present application further provides a communication device 600 for implementing the functions of the network device or terminal device in the above method.
  • the communication device may be a software module or a chip system.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the communication device 600 may include: a communication unit 601 and a processing unit 602.
  • the communication unit 601 may also be called a transceiver unit, and may include a sending unit and/or a receiving unit, respectively configured to perform the steps of sending and receiving by the network device or terminal device in the above method embodiment.
  • the processing unit 602 may be used to read instructions and/or data in the storage module, so that the communication device 600 implements the foregoing method embodiments.
  • the communication device 600 may also include a storage unit 603, which is equivalent to a storage module and may be used to store instructions and/or data.
  • the communication device provided by the embodiment of the present application will be described in detail below with reference to FIGS. 6 to 7 . It should be understood that the description of the device embodiments corresponds to the description of the method embodiments. Therefore, for content that is not described in detail, please refer to the above method embodiments. For the sake of brevity, they will not be described again here.
  • the communication unit 601 may also be called a transceiver, a transceiver, a transceiver device, etc.
  • the processing unit can also be called a processor, a processing board, a processing module, a processing device, etc.
  • the device used to implement the receiving function in the communication unit 601 can be regarded as a receiving unit
  • the device used to implement the sending function in the communication unit 601 can be regarded as a sending unit, that is, the communication unit 601 includes a receiving unit and a sending unit.
  • the communication unit may sometimes be called a transceiver, transceiver, or transceiver circuit.
  • the receiving unit may also be called a receiver, receiver, or receiving circuit.
  • the sending unit may sometimes be called a transmitter, transmitter or transmitting circuit.
  • the communication unit 601 is used for network equipment to obtain measurement information of the first wide beam; the processing unit determines to use the first wide beam or the first narrow beam to communicate with the terminal according to the measurement information of the first wide beam. devices communicate.
  • the processing unit 602 and the communication unit 601 can also perform other functions.
  • the processing unit 602 and the communication unit 601 can also perform other functions.
  • Figure 7 shows a communication device 700 provided by an embodiment of the present application.
  • the communication device shown in Figure 7 can be an implementation of a hardware circuit of the communication device shown in Figure 6.
  • the communication device 700 can be adapted to the flow chart shown above to perform the functions of the terminal device or network device in the above method embodiment.
  • FIG. 7 shows only the main components of the communication device.
  • the communication device 700 includes a transceiver 701 and a processor 702 .
  • Transceiver 701 and processor 702 are coupled to each other.
  • the transceiver 701 can be a communication interface or an input/output interface, or it can also be an interface circuit such as a transceiver circuit.
  • the communication device 700 may also include a memory 703 for storing instructions executed by the processor 702 or input data required for the processor 702 to run the instructions or data generated after the processor 702 executes the instructions.
  • the processor 702 is used to implement the functions of the above-mentioned processing unit 602, sending and receiving The processor 701 is used to implement the functions of the above communication unit 601.
  • connection medium between the above-mentioned transceiver 701, processor 702 and memory 703 is not limited in the embodiment of the present application.
  • the memory 703, the processor 702 and the transceiver 701 are connected through a communication bus 704 in Figure 7.
  • the bus is represented by a thick line in Figure 7.
  • the connection between other components is only schematic. Description, not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 7, but it does not mean that there is only one bus or one type of bus.
  • FIG. 8 shows a simplified structural diagram of the chip.
  • the chip 800 includes an interface circuit 801 and one or more processors 802 .
  • the chip 800 may also include a bus. in:
  • the processor 802 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above communication method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 802 .
  • the above-mentioned processor 802 can be a general-purpose processor, a digital communicator (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components. .
  • DSP digital communicator
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the interface circuit 801 can be used to send or receive data, instructions or information.
  • the processor 802 can use the data, instructions or other information received by the interface circuit 801 to process, and can send the processed information through the interface circuit 801.
  • the chip also includes a memory 803, which may include read-only memory and random access memory, and provide operating instructions and data to the processor.
  • memory 803 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory stores executable software modules or data structures
  • the processor can perform corresponding operations by calling operating instructions stored in the memory (the operating instructions can be stored in the operating system).
  • the chip may be used in the terminal equipment or network equipment involved in the embodiments of this application.
  • the interface circuit 801 may be used to output execution results of the processor 802.
  • the communication method provided by one or more embodiments of the present application, reference may be made to the foregoing embodiments, which will not be described again here.
  • interface circuit 801 and the processor 802 can be realized through hardware design, software design, or a combination of software and hardware, which are not limited here.
  • Embodiments of the present application also provide a computer-readable storage medium, on which are stored computer instructions for implementing the method executed by the first communication device in the above method embodiment, and/or on which are stored computer instructions for implementing the above method embodiment.
  • the computer program when executed by a computer, the computer can implement the method executed by a terminal device or a network device (such as a base station) in the above method embodiment.
  • Embodiments of the present application also provide a computer program product containing instructions.
  • the instructions When executed by a computer, the instructions enable the computer to implement the method executed by the terminal device in the above method embodiment, and/or when executed by the computer, the instructions enable the computer to implement The method executed by the network device in the above method embodiment.
  • An embodiment of the present application also provides a chip device, including a processor for calling a computer program or computer instructions stored in the memory, so that the processor executes a beam determination method in the embodiment shown in Figure 3. .
  • the input of the chip device corresponds to the receiving operation in the embodiment shown in FIG. 3
  • the output of the chip device corresponds to the sending operation in the embodiment shown in FIG. 3 .
  • the processor is coupled to the memory via an interface.
  • the chip device further includes a memory, in which computer programs or computer instructions are stored.
  • the processor mentioned in any of the above places can be a general central processing unit, a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors used to control the above-mentioned devices in Figure 3.
  • ASIC application-specific integrated circuit
  • a program of a beam determination method is executed on an integrated circuit.
  • the memory mentioned in any of the above places can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • the communication devices may also include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system of the operating system layer may be any One or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or Windows operating system, etc.
  • the application layer can include applications such as browsers, address books, word processing software, instant messaging software, etc.
  • each functional module in each embodiment of the present application may be integrated into one processing unit. In the device, it can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by the computer.
  • computer readable media may include RAM, ROM, electrically erasable programmable read only memory (EEPROM), compact disc read-only memory (CD- ROM) or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures that can be accessed by a computer. also. Any connection can be adapted to a computer-readable medium.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • CD- ROM compact disc read-only memory
  • magnetic disk storage media or other magnetic storage devices or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures that can be accessed by a computer.
  • Any connection can be adapted to a computer-readable medium.
  • disk and disc include compact disc (CD), laser disc, optical disc, digital video disc (digital video disc, DVD), floppy disk and Blu-ray disc, where Disks usually copy data magnetically, while discs use lasers to copy data optically. Combinations of the above should also be included within the scope of protection of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出了一种波束确定的方法和装置,该方法包括:网络设备获取第一宽波束的测量信息;该网络设备根据该第一宽波束的测量信息,确定使用该第一宽波束或第一窄波束与终端设备进行通信。可知该方法中网络设备可以先使用宽波束与终端设备进行通信并获得该宽波束的测量结果,然后依据该宽波束的测量结果确定使用该宽波束与该终端设备进行通信,还是使用窄波束与该终端设备进行通信,从而可以在兼顾波束开销和覆盖距离的情况下,确定合适的波束与该终端设备实现通信。

Description

一种波束确定的方法和装置
相关申请的交叉引用
本申请要求在2022年09月20日提交中国专利局、申请号为202211146466.3、申请名称为“一种波束确定的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束确定的方法和装置。
背景技术
毫米波因拥有频率资源丰富/带宽极大、易与波束赋形技术结合、可实现极低时延、可支持密集化部署、可进行高精度定位、集成度高的技术优势,而成为通信领域的核心技术之一。通常毫米波由于采用混合波束成型(hybrid beamforming,HBF)架构,可以通过改变移向器生成模拟波束,定向接收一定区域的终端信号,然后每个时隙Slot通过模拟加权,发送或接收一定覆盖范围内的用户信号,通过时分调度,完成整个扇区的覆盖。例如毫米波基站基于HBF架构,先由移向器生成模拟波束,再叠加预编码矩阵指示(precoding matrix indicator,PMI)数字权,进而与终端设备进行通信。
在毫米波的使用过程中,若将波束设计的比较窄,会使得波束覆盖的距离更长,但是使用波束的数量会增加,导致系统开销增大,且由于终端设备能扫描的波束有限,使用波束的数量过多,会超出终端设备扫描波束的能力;若将波束设计的比较宽,虽波束使用的数量会减少,但是波束覆盖的距离会减短。因此,如何确定合适的通信波束以兼顾波束的开销和覆盖距离是目前亟需解决的技术问题。
发明内容
一种波束确定的方法和装置,可以在兼顾波束的开销和覆盖距离下,确定合适的通信波束。
第一方面,本申请提供一种波束确定的方法,应用于网络设备,该方法可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片、或芯片系统等)执行,本申请对此不做具体限定。该方法具体可包括以下步骤:网络设备获取第一宽波束的测量信息;该网络设备根据该第一宽波束的测量信息,确定使用该第一宽波束或第一窄波束与终端设备进行通信。
示例性地,该网络设备为基站。
在本申请实施例中,宽波束可以理解为覆盖角度较大的波束,窄波束可以理解为覆盖角度较小的波束。例如宽波束的覆盖角度大于(或等于)预设的角度,窄波束的覆盖角度小于(或等于)预设的角度,该预设的角度可以为30度。
在本申请方案中,网络设备获取第一宽波束的测量信息,然后根据该第一宽波束的测量信息,确定使用该第一宽波束或第一窄波束与终端设备进行通信。由于宽波束的覆盖范围广且产生开销少,窄波束的覆盖距离远能保证较远终端设备的通信,因此,本申请方案中的网络设备可以先使用宽波束与终端设备进行通信并获得该宽波束的测量结果,进而再依据该宽波束的测量结果确定是继续选择该宽波束与该终端设备进行通信,还是选择新的窄波束与该终端设备进行通信,从而在兼顾波束开销和覆盖距离的情况下,确定合适的波束与终端设备进行通信,既可保证通信的有效性,也可减少系统的开销。
在一种实施方式中,该网络设备获取第一宽波束的测量信息,包括:该网络设备使用该第一宽波束向该终端设备发送下行参考信号;该网络设备从该终端设备接收该第一宽波束的下行参考信号接收功率RSRP。
通过该实施方式,网络设备可以有效地获得第一宽波束的下行参考信号接收功率RSRP,将该第一宽波束的下行参考信号接收功率RSRP视为该第一宽波束的测量信息,可以用于判断终端设备的远近点位置,同时也可以作为后续网络设备判断该第一宽波束是否可继续被使用的一个依据。
在一种实施方式中,该网络设备根据该第一宽波束的测量信息,确定使用该第一宽波束或第一窄波束与终端设备进行通信,包括:若该第一宽波束的下行RSRP大于或等于预设的下行RSRP阈值时,该网 络设备确定使用该第一宽波束与该终端设备进行通信;或者若该第一宽波束的下行RSRP小于预设的下行RSRP阈值时,该网络设备确定使用该第一窄波束与该终端设备进行通信。
通过该实施方式,网络设备可以根据第一宽波束的下行RSRP,准确且有效性地确定合适的波束与终端设备进行通信。
在一种实施方式中,该网络设备确定使用该第一窄波束与该终端设备进行通信之前,该方法还包括:该网络设备采用向下遍历方式从至少一个窄波束中,确定该第一窄波束。
其中,该网络设备采用向下遍历方式从至少一个窄波束中,确定该第一窄波束时,可以通过但不限于以下两个方式实现:
方式1:该网络设备依次使用该至少一个窄波束,向该终端设备发送下行信号并接收来自该终端设备的指示信息,每个窄波束对应一个方向且位于该第一宽波束覆盖范围内,该指示信息用于指示对应的一个窄波束发送的下行信号是否被该终端设备正确接收;当该网络设备根据该指示信息,确定指示该下行信号被该终端设备正确接收时,将对应使用的窄波束作为该第一波束。
通过该方式1,网络设备在第一宽波束覆盖范围内,依次使用该至少一个窄波束向终端设备发送下行信号并接收终端设备的指示信息,由于该指示信息用于指示对应的一个窄波束发送的下行信号是否被该终端设备正确接收,因此,网络设备根据每次接收的指示信息,可知每次使用窄波束向终端设备发送下行信号时终端设备接收的情况。直至网络设备确定终端设备正确接收到下行信号时,将对应使用的窄波束作为该第一窄波束,以保证网络设备使用该第一窄波束与终端设备进行通信的有效性。
方式2:该网络设备依次使用该至少一个窄波束,向该终端设备发送下行信号并接收来自该终端设备的反馈信息,每个窄波束对应一个方向且位于该第一宽波束覆盖范围内,该反馈信息用于指示对应的一个窄波束发送的下行信号接收质量;当该网络设备根据该反馈信息,确定该下行信号接收质量满足预设的下行信号接收质量时,将对应使用的窄波束作为该第一窄波束。
通过该方式2,网络设备在第一宽波束覆盖范围内,依次使用该至少一个窄波束向该终端设备发送下行信号并接收来自该终端设备的反馈信息,由于该反馈信息用于指示对应的一个窄波束发送的下行信号接收质量,因此,网络设备根据每次接收的反馈信息,可知每次使用窄波束向终端设备发送下行信号时终端设备接收下行信号的接收质量,直至网络设备确定终端设备接收下行信号的接收质量满足预设的下行信号接收质量时,将对应使用的窄波束作为该第一窄波束,以保证网络设备使用该窄波束与终端设备进行通信的有效性和质量。
在一种实施方式中,该网络设备获取第一宽波束的测量信息,包括:该网络设备使用该第一宽波束接收来自该终端设备的上行参考信号;该网络设备基于该上行参考信号,测量得到该第一宽波束的上行参考信号接收功率RSRP。
通过该实施方式,网络设备可以有效地获得第一宽波束的上行参考信号接收功率RSRP,将该第一宽波束的上行参考信号接收功率RSRP视为该第一宽波束的测量信息,可以用于判断终端设备的远近点位置,同时也可作为后续网络设备判断该第一宽波束是否可继续被使用的一个依据。
在一种实施方式中,该网络设备根据该第一宽波束的测量信息,确定使用该第一宽波束或第一窄波束与终端设备进行通信,包括:若该第一宽波束的上行RSRP大于或等于预设的上行RSRP阈值时,该网络设备确定使用该第一宽波束与该终端设备进行通信;或者若该第一宽波束的上行RSRP小于预设的上行RSRP阈值时,该网络设备确定使用该第一窄波束与该终端设备进行通信。
通过该实施方式,网络设备可以根据第一宽波束的上行RSRP,准确且有效性地确定合适的波束与终端设备进行通信。
在一种实施方式中,该网络设备确定使用该第一窄波束与该终端设备进行通信之前,该方法还包括:该网络设备采用向上遍历方式从至少一个窄波束中,确定该第一窄波束。
其中,该网络设备采用向上遍历方式从至少一个窄波束中,确定该第一窄波束,可以通过但不限于以下方式实现:
方式1:该网络设备依次使用至少一个窄波束,接收来自该终端设备的上行信号,每个窄波束对应一个方向且位于该第一宽波束覆盖范围内;当该网络设备确定正确接收到来自该终端设备的上行信号时,将对应使用的窄波束为该第一波束。
通过该方式1,网络设备在第一宽波束覆盖范围内,依次使用至少一个窄波束接收终端设备的下行信号,当网络设备确定能正确接收到终端设备的上行信号时,将对应使用的窄波束作为该第一窄波束, 以保证网络设备使用该第一窄波束与终端设备进行通信的有效性。
方式2:该网络设备依次使用至少一个窄波束,接收来自该终端设备的上行信号并测量得到该上行信号接收质量,每个窄波束对应一个方向且位于该第一宽波束覆盖范围内;当该网络设备确定该上行信号接收质量满足预设的上行信号接收质量时,将对应使用的窄波束作为该第一窄波束。
通过该方式2,网络设备在第一宽波束覆盖范围内,依次使用至少一个窄波束接收来自该终端设备的上行信号,直至网络设备确定接收的下行信号的接收质量满足预设的下行信号接收质量时,将对应使用的窄波束作为该第一窄波束,以保证网络设备使用该窄波束与终端设备进行通信的有效性和质量。
第二方面,本申请实施例还提供一种通信装置,该通信装置可以用于执行第一方面的方法,该通信装置可以是网络设备,也可以是网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和该网络设备匹配使用的装置。
一种可能的实现方式中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现方式中,该通信装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。
一种可能的实现方式中,该通信装置包括通信单元、处理单元;所述处理单元可以用于调用通信单元执行接收和/或发送的功能;其中,所述通信单元,用于获取第一宽波束的测量信息;所述处理单元,用于根据所述第一宽波束的测量信息,确定使用所述第一宽波束或第一窄波束与终端设备进行通信。
一种可能的实现方式中,所述通信单元在获取第一宽波束的测量信息时,具体用于:
使用所述第一宽波束向所述终端设备发送下行参考信号;从所述终端设备接收所述第一宽波束的下行参考信号接收功率RSRP。
一种可能的实现方式中,所述处理单元在根据所述第一宽波束的测量信息,确定使用所述第一宽波束或第一窄波束与终端设备进行通信时,具体用于:
若所述第一宽波束的下行RSRP大于或等于预设的下行RSRP阈值时,确定使用所述第一宽波束与所述终端设备进行通信;或者若所述第一宽波束的下行RSRP小于预设的下行RSRP阈值时,确定使用所述第一窄波束与所述终端设备进行通信。
一种可能的实现方式中,所述处理单元,还用于:确定使用所述第一窄波束与所述终端设备进行通信之前,采用向下遍历方式从至少一个窄波束中,确定所述第一窄波束。
一种可能的实现方式中,所述处理单元在采用向下遍历方式从至少一个窄波束中,确定所述第一窄波束时,具体用于:通过所述通信单元依次使用所述至少一个窄波束,向所述终端设备发送下行信号并接收来自所述终端设备的指示信息,每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内,所述指示信息用于指示对应的一个窄波束发送的下行信号是否被所述终端设备正确接收;当根据所述指示信息,确定指示所述下行信号被所述终端设备正确接收时,将对应使用的窄波束作为所述第一波束;或者
通过所述通信单元依次使用所述至少一个窄波束,向所述终端设备发送下行信号并接收来自所述终端设备的反馈信息,每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内,所述反馈信息用于指示对应的一个窄波束发送的下行信号接收质量;当根据所述反馈信息,确定所述下行信号接收质量满足预设的下行信号接收质量时,将对应使用的窄波束作为所述第一窄波束。
一种可能的实现方式中,所述通信单元在获取第一宽波束的测量信息时,具体用于:
使用所述第一宽波束接收来自所述终端设备的上行参考信号;通过所述处理单元基于所述上行参考信号,测量得到所述第一宽波束的上行参考信号接收功率RSRP。
一种可能的实现方式中,所述处理单元在根据所述第一宽波束的测量信息,确定使用所述第一宽波束或第一窄波束与终端设备进行通信时,具体用于:
若所述第一宽波束的上行RSRP大于或等于预设的上行RSRP阈值时,确定使用所述第一宽波束与所述终端设备进行通信;或者若所述第一宽波束的上行RSRP小于预设的上行RSRP阈值时,确定使用所述第一窄波束与所述终端设备进行通信。
一种可能的实现方式中,所述处理单元,还用于:确定使用所述第一窄波束与所述终端设备进行通信之前,采用向上遍历方式从至少一个窄波束中,确定所述第一窄波束。
一种可能的实现方式中,所述处理单元在采用向上遍历方式从至少一个窄波束中,确定所述第一窄波束时,具体用于:通过所述通信单元依次使用所述至少一个窄波束,接收来自所述终端设备的上行信 号,每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内;当确定正确接收到来自所述终端设备的上行信号时,将对应使用的窄波束为所述第一波束;或者
通过所述通信单元依次使用所述至少一个窄波束,接收来自所述终端设备的上行信号并测量得到所述上行信号接收质量,每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内;当确定所述上行信号接收质量满足预设的上行信号接收质量时,将对应使用的窄波束作为所述第一窄波束。
第三方面,本申请实施例中提供一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时,可实现上述第一方面或其中任意一种可能的实施方式提供的方法。
第四方面,本申请实施例中提供一种包含指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行上述第一方面或其中任一种可能的实施方式提供的方法。
第五方面,本申请实施例中提供一种芯片系统,该芯片系统包括处理器,用于支持设备实现上述第一方面中所涉及的功能。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,本申请实施例中还提供一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持设备实现第一方面所涉及的功能。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第七方面,提供一种通信系统,所述系统包括第一方面所述的装置(如网络设备)以及与第一方面所述的装置进行通信的装置(如终端设备)。
上述第二方面和第三方面或该第二方面和第三方面中任意一种可能的实现可以达到的技术效果,可以参照上述第一方面或其中任意一种可能的实施方式所能达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请实施例提供的一种波束确定的方法可能适用的通信系统示意图;
图2A为一种基站通过波束与终端设备进行通信的示意图;
图2B为一种毫米波最优测量的交互流程的示意图;
图2C为一种宽波束和窄波束的结构示例图;
图3为本申请实施例提供的一种波束确定的方法的流程示意图;
图4为本申请实施例提供的第一个具体实施例的流程示意图;
图5为本申请实施例提供的第二个具体实施例的流程示意图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的另一种通信装置的结构示意图;
图8为本申请实施例提供的一种芯片的装置结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1为本申请实施例应用的通信系统的架构示意图。如图1所示,通信系统1000包括网络设备100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,网络设备100可以包括至少一个网络设备,如图1中的110a和110b,还可以包括至少一个终端设备,如图1中的120a-120j。其中,110a是基站,110b是微站,120a、120e、120f和120j是手机,120b是汽车,120c是加油机,120d是布置在室内或室外的家庭接入节点(home access point,HAP),120g是笔记本电脑,120h是打印机,120i是无人机。
图1中,终端设备可以与网络设备相连,网络设备可以与核心网中的核心网设备连接。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线网络设备的功能。终端设备和终端设备之间以及网络设备和网络设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它设备,如还可以包括无线中继设备和无线回传设备,在图1 中未画出。
下面对核心网设备、网络设备和终端设备进行介绍。
(1)核心网设备
核心网设备位于移动通信网络中的核心网中的网络设备,用于实现核心网的功能。
通常,按照逻辑功能划分,核心网可以划分为控制面和用户面。其中,核心网中负责控制面功能网元可以统称为控制面网元,负责用户面功能的网元可以统称为用户面网元。在本申请实施例中,涉及的核心网设备主要为控制面网元,例如,接入和移动性管理功能(access and mobility management function,AMF)。
(2)网络设备
网络设备,为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。一些网络设备的举例为:下一代基站(next generation nodeB,gNB)、下一代演进的基站(next generation evolved nodeB,Ng-eNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),网络设备还可以是卫星,卫星还可以称为高空平台、高空飞行器、或卫星基站。网络设备还可以是其他具有网络设备功能的设备,例如,网络设备还可以是设备到设备(device to device,D2D)通信中担任网络设备功能的设备。网络设备还可以是未来可能的通信系统中的网络设备。
在一些部署中,网络设备可以包括集中式单元(centralized unit,CU)和(distributed unit,DU)。网络设备还可以包括有源天线单元(active antenna unit,AAU)。CU实现网络设备的部分功能,DU实现网络设备的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。其中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
(3)终端设备
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
此外,同一个终端设备或网络设备,在不同应用场景中可以提供不同的功能。比如,图1中的手机包括120a、120e、120f和120j。其中,手机120a可以接入基站110a,连接汽车120b,与手机120e直连通信以及接入到HAP;手机120e可以接入HAP以及与手机120a直连通信;手机120f可以接入为微 站110b,连接笔记本电脑120g,连接打印机120h;手机120j可以控制无人机120i。
网络设备和终端设备的角色可以是相对的。例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到网络设备100的终端设备120j来说,终端设备120i是基站;但对于基站110a来说,120i是终端设备,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,网络设备和终端设备都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端设备功能的通信装置。
网络设备和终端设备可以是固定位置的,也可以是可移动的。网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间、网络设备和网络设备之间、终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫兹(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
本申请实施例所提出的一种波束的确定方法所使用的波束可以为毫米波,为了更好的理解本申请实施例方案,下面对毫米波以及毫米波的运用进行相关介绍。
通常,毫米波由于采用混合波束成型HBF架构,通过改变移向器生成模拟波束,定向接收一定区域的终端信号。每个时隙Slot通过模拟加权,发送或接收一定覆盖范围内的用户信号,通过时分调度,完成整个扇区的覆盖,如图2A所示,基站发送的每个波束可以覆盖一定区域,所有波束时分覆盖扇区范围,基站可以与位于该扇区范围内的终端设备进行通信。
目前毫米波最优波束测量流程中,如图2B所示,包括:步骤1、基站周期性下发信道状态信息(channel state information,CSI)波束(即下行CSI波束),相应的,终端设备通过周期性扫描基站下发的CSI波束;步骤2、终端设备测量服务SSB波束对应的下行CSI波束;步骤3、终端设备向基站上报服务SSB波束对应的下行CSI波束的测量结果,相应的,基站接收来自终端设备的该测量结果;步骤4、基站根据终端设备上报的该测量结果,为该终端设备确定合适的下行服务CSI波束;步骤5、基站使用该下行服务CSI波束与该终端设备进行下行业务的发送。
示例性地,在上述步骤2至步骤5中,终端设备可以通过测量基站的下行CSI波束的参考信号接收功率(Reference Signal Receiving Power,RSRP),将其中RSRP最高的至少一个CSI波束(Beam)上报给基站,基站从该至少一个CSI波束中为该终端设备选择合适的下行服务CSI波束,并使用该下行服务CSI波束与该终端设备进行下行业务的通信。
基于上述波束测量的场景中,如图2C中(a)所示,如果波束设计的较宽,虽然能减少使用波束个数,但相应波束覆盖距离会变小。如图2C中(b)所示,如果波束设计的较窄,虽然波束的覆盖距离会变大,但相应使用波束个数会变多,从而导致测量开销变大,而且终端设备能扫描的波束有限,如果使用波束个数过多,则会超出终端设备扫描测量能力;因此,在该场景中无法兼顾测量开销和波束的覆盖距离。
鉴于此,本申请提出一种波束确定的方法,该方法可以兼顾开销和波束覆盖距离,在尽量小的开销下,保障远点终端设备的覆盖。
本申请实施例可以应用于毫米波通信系统中,例如NR通信系统、或者其它通信系统中,如未来移动通信系统(如6G通信系统)等。示例性的,如上述图1所示。
应理解,上述图1所示的通信系统的网络架构仅为一个举例,并不对本申请实施例中的通信系统的网络架构构成限定。本申请实施例不限定通信系统中网络设备的个数、终端设备的个数。示例的,当本申请实施例的通信系统中包括多个网络设备时,网络设备与网络设备之间可以进行多点协同通信。例如,通信系统中包括多个宏基站、多个微基站,其中,宏基站与宏基站、微基站与微基站、宏基站与微基站间可以进行多点协同通信。
以下对本申请实施例涉及的部分用语进行解释,以便于本领域技术人员理解。
1)、波束:波束是一种通信资源,波束可以是宽波束,也可以是窄波束,或其它类型的波束。形成 波束的技术可以是波束成形技术或其它技术手段。波束成形技术可具体为数字波束成形技术、模拟波束成形技术、混合数字/模拟波束成形技术等。不同的波束可认为是不同的通信资源,通过不同的波束可发送相同的信息或不同的信息。可选的,可以将具有相同或者类似通信特征的多个波束视为一个波束,一个波束可包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。例如,发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度分布,接收波束可以是指从天线上接收到的信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集,波束还可以称为空域滤波器(spatial filer),发送波束也可称为空域发送滤波器,接收波束也可称为空域接收滤波器。
此外,本申请实施例中终端和网络设备之间是通过波束接收或发送信号的。具体的,波束可以按照信号接收或发送的方向,划分为接收波束和发送波束。其中,接收波束用于接收信号,发送波束用于发送信号。例如,网络设备使用发送波束发送下行信号,而终端设备使用接收波束接收下行信号。再例如,终端设备使用发送波束发送上行信号,网络设备使用接收波束接收上行信号。而终端设备使用的发送波束、和网络设备使用的接收波束组成一个波束对,终端设备使用的接收波束、网络设备使用的发送波束也组成一个波束对。
需要说明的是,对于终端设备来说,接收波束又可以称之为下行波束,发送波束又可以称之为上行波束。终端设备接收下行信号所使用的接收波束还可以称之为下行工作波束,终端设备发送上行信号所使用的发送波束还可以称之为上行工作波束。在终端设备支持波束互易能力的情况下,终端设备可以基于下行工作波束,确定上行工作波束,或者,基于上行工作波束,确定下行工作波束。
此外,在本申请实施例中,毫米波基站基于混合波束成型HBF架构,先由移向器生成模拟波束在叠加预编码矩阵指示PMI数字权以实现覆盖和通信。
2)、SSB:5G NR引入了同步信号/物理广播信道块(synchronization system/physical broadcast channel block,SS/PBCH block),SS/PBCH block可以简称为SSB。网络设备在一个周期中以扫描的方式发送多个SSB,不同的SSB对应不同的空间方向(例如对应不同的波束)。SSB的数量由网络设备通过系统消息配置给终端,NR支持4、8、64三种SSB数量。通常情况下,频点越高,SSB数量越多,发送SSB的波束越窄。
在随机接入过程中,终端对网络设备发送的SSB,测量参考信号接收功率(reference signal receiving power,RSRP),当某个SSB的RSRP测量结果大于或等于预设门限时,终端可以选择该SSB所映射的随机接入资源执行随机接入(random access channel,RACH)过程。
3)、下行参考信号:本申请实施例中下行参考信号为网络设备发送给终端设备的参考信号(reference signal,RS)。下行参考信号可以包括信道状态参考信号(channel state information reference signal,CSI-RS)、同步信号块SSB、探测参考信号(sounding reference signal,SRS)、解调参考信号(demodulation reference signal,DMRS)等。其中,不同的通信过程中,终端接收的下行参考信号可以是不同的。例如,在随机接入过程中,终端接收的下行参考信号为SSB。再例如,终端在接入网络设备后,在波束追踪过程中,接收的下行参考信号为CSI-RS。具体的,终端可以周期性、和/或通过事件触发接收下行参考信号。
需要注意的是,以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请实施例中,“一个或多个”是指一个、两个或两个以上;“和/或”,描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
在本申请实施例的描述中,本申请实施例涉及的多个,是指大于或等于两个。
此外,在本申请中,“指示”可以包括直接指示、间接指示、显示指示、隐式指示。当描述某一指示信息用于指示A时,可以理解为该指示信息携带A、直接指示A,或间接指示A。
本申请中,指示信息所指示的信息,称为待指示信息。在具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、媒体接入控制MAC层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例如包无线资源控制RRC信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括下行控制信息DCI。
下面结合具体实施例介绍本申请的技术方案。
本申请实施例提供了一种波束确定的方法,该方法可适用于但不限于图1的通信系统架构,并且该方法可以由终端设备(也可以是网络设备)的收发器和/或处理器执行,也可以由该收发器和/或处理器对应的芯片执行。或者该实施例还可由该终端设备(也可以是网络设备)所连接的控制器或控制设备实现,该控制器或控制设备用于管理包括该终端设备(也可以是网络设备)在内的至少一个装置。并且针对执行该实施例的通信装置的具体形态,本申请不做具体限定。并且下文中提及的“第一”、“第二”等序数词是用于对多个对象进行区分,以便于描述,并不用于限定多个对象的顺序、时序、优先级或者重要程度。请参阅图3,该方法的具体流程如下:
S301:网络设备获取第一宽波束的测量信息。
示例性地,该网络设备为基站。
在本申请实施例中,波束的测量信息可以用于反映波束的通信质量或通信特性。示例性地,网络设备使用波束向终端设备发送下行信号,由终端设备基于该下行信号进行测量并得到下行信号的测量结果,该测量结果可以包括但不限于:该下行信号的接收功率(RSRP)、下行信号是否被成功或准确地接收、接收该下行信号的资源大小,该测量结果可以作为该波束的测量信息。同理,也可以通过网络设备使用波束接收终端设备的上行信号,并基于该上行信号测量得到上行信号的测量结果,并将该上行信号的测量结果作为该波束的测量信息。
在执行该步骤S301时,可以包括但不限于以下几种实施方式:
在第一实施方式中,该网络设备获取第一宽波束的测量信息,包括:该网络设备使用该第一宽波束向该终端设备发送下行参考信号;该网络设备从该终端设备接收该第一宽波束的下行参考信号接收功率RSRP。
示例性地,该下行参考信号为下行的CSI-RS或下行的SRS。
在第二实施方式中,该网络设备获取第一宽波束的测量信息,包括:该网络设备使用该第一宽波束接收来自该终端设备的上行参考信号;该网络设备基于该上行参考信号,测量得到该第一宽波束的上行参考信号接收功率RSRP。
需要注意的是,在该第二实施方式中,该终端设备需处于连接态,或该终端设备与该网络设备处于可通信状态,并且该终端设备发送的上行参考信号可以到达网络设备。
示例性地,该上行参考信号为上行的CSI-RS或上行的SRS。
S302:网络设备根据该第一宽波束的测量信息,确定使用该第一宽波束或第一窄波束与终端设备进行通信。
在本申请方案中,宽波束可以理解为覆盖角度较大的波束,窄波束可以理解为覆盖角度较小的波束。例如宽波束的覆盖角度大于(或等于)预设的角度,窄波束的覆盖角度小于(或等于)预设的角度,该预设的角度可以为30度或者根据实际需求设定的。
基于上述的第一实施方式,在执行该步骤S302时,可以包括但不限于以下情况:
情况1:该第一宽波束的下行RSRP大于或等于预设的下行RSRP阈值,该网络设备确定使用该第一宽波束与该终端设备进行通信。
通过该情况1,可以说明终端设备处于近点位置,该第一宽波束可以覆盖到该终端设备,因此,网络设备可以继续使用该第一宽波束与终端设备进行有效的下行业务通信,不再进一步的确定第一窄波束。
情况2:该第一宽波束的下行RSRP小于预设的下行RSRP阈值时,该网络设备确定使用该第一窄波束与该终端设备进行通信。
通过该情况2,可以说明终端设备处于远点位置,该第一宽波束覆盖不足,导致终端设备接收下行参考信号质量较差。因此,网络设备需要进一步确定合适的第一窄波束,使用该第一窄波束与终端设备进行下行业务通信。
在情况2下,该网络设备确定使用第一窄波束与终端设备进行通信之前,执行下述的步骤:
该网络设备采用向下遍历方式从至少一个窄波束中,确定该第一窄波束。
其中,该网络设备采用向下遍历方式从至少一个窄波束中,确定该第一窄波束时,可以通过但不限于以下方式确定:
方式1:该网络设备依次使用该至少一个窄波束,向该终端设备发送下行信号并接收来自该终端设备的指示信息,每个窄波束对应一个方向且位于第一宽波束覆盖范围内,该指示信息用于指示对应的一个窄波束发送的下行信号是否被该终端设备正确接收;当该网络设备根据该指示信息,确定指示该下行信号被该终端设备正确接收时,将对应使用的窄波束作为该第一波束。
示例性地,当终端设备处于空闲态:网络设备可以利用第一宽波束的测量信息(即测量结果)确定终端设备的位置(远点还是近点);若终端设备处于远点位置时,网络设备可以遍历使用窄波束向该终端设备发送前导码(Preamble),直到网络设备根据终端设备的反馈信息,确定该终端设备接收前导码(Preamble)正确为止时,网络设备将对应使用该窄波束作为后续使用的第一窄波束。
当终端设备处于连接态:网络设备可以利用第一宽波束的测量信息(结果)确定终端设备的位置(远点还是近点);终端设备处于远点位置时,网络设备可以遍历使用窄波束向该终端设备发送业务(或数据),直到网络设备确定接收到来自该终端设备的反馈信息为确认ACK时,该网络设备将对应使用该窄波束作为后续使用的第一窄波束。
方式2:该网络设备依次使用该至少一个窄波束,向该终端设备发送下行信号并接收来自该终端设备的反馈信息,每个窄波束对应一个方向且位于第一宽波束覆盖范围内,该反馈信息用于指示对应的一个窄波束发送的下行信号接收质量;当所述网络设备根据所述反馈信息,确定所述下行信号接收质量满足预设的下行信号接收质量时,将对应使用的窄波束作为所述第一窄波束。
示例性地,该下行信号接收质量可以为接收下行信号的功率值,或接收下行信号的能量值,或接收上行信号的正确率。
此外,在本申请实施中,在执行该实施方式中的方式1或方式2时,网络设备也可以同时使用至少一个窄波束向终端设备发送下行信号;然后,网络设备从终端设备接收至少一个指示信息,每个指示信息用于指示对应的一个窄波束发送的下行信号是否被终端设备正确(或成功)接收;网络设备根据所述至少一个指示信息,确定指示发送的下行信号被终端设备正确(或成功)接收对应的窄波束,并作为第一窄波束。
网络设备可以同时使用至少一个窄波束向终端设备发送下行信号,终端设备对每个窄波束发送的下行信号进行测量,得到下行信号测量结果,如下行信号接收质量;然后,网络设备从中选择下行信号接收质量最优对应的窄波束,作为第一窄波束。
基于上述第二实施方式,在执行该步骤S302时,也可以包括但不限于以下情况:
情况1:该第一宽波束的上行RSRP大于或等于预设的上行RSRP阈值,该网络设备确定使用该第一宽波束与该终端设备进行通信。
通过该情况1中,可以说明终端设备处于近点位置,该第一宽波束可以覆盖到该终端设备,因此,网络设备可以继续使用该第一宽波束与终端设备进行有效的上行业务通信。
情况2:该第一宽波束的上行RSRP小于预设的上行RSRP阈值,该网络设备确定使用该第一窄波束与该终端设备进行通信。
通过该情况2,可以说明终端设备处于远点位置,该第一宽波束覆盖不足,导致网络设备接收上行参考信号质量较差,因此,网络设备需要进一步确定合适的第一窄波束,使用该第一窄波束与终端设备进行上行业务通信。
在该情况2下,该网络设备确定使用第一窄波束与终端设备进行通信之前,执行下述的步骤:
该网络设备采用向上遍历方式从至少一个窄波束中,确定该第一窄波束;
其中,该网络设备采用向上遍历方式从至少一个窄波束中,确定该第一窄波束,可以通过以下方式确定:
方式1:该网络设备依次使用至少一个窄波束,接收来自该终端设备的上行信号,每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内;当该网络设备确定正确接收到来自该终端设备的上行信号时,将对应使用的窄波束为该第一波束。
示例性地,终端设备处于连接态:可以利用第一宽波束的测量信息(结果)确定终端设备的位置(远点还是近点);终端设备处于远点位置时,网络设备可以遍历使用窄波束尝试接收该终端设备发送的数据,直到网络设备可以正确解调来自该终端设备的数据时,将对应使用的窄波束作为后续使用的第一窄波束。
方式2:该网络设备依次使用至少一个窄波束,接收来自该终端设备的上行信号并测量得到该上行信号接收质量,每个窄波束对应一个方向且位于第一宽波束覆盖范围内;当该网络设备确定该上行信号接收质量满足预设的上行信号接收质量时,将对应使用的窄波束作为该第一窄波束。
示例性地,该上行信号接收质量可以为接收上行信号的功率值,或接收上行信号的能量值,或接收上行信号的正确率。
此外,在本申请实施中,在执行该实施方式中的方式1或方式2时,网络设备也可以同时使用至少一个窄波束接收来自终端设备的上行信号;然后,网络设备从中确定该网络设备能正确接收到终端设备的上行信号对应使用的窄波束,并作为第一窄波束;或者
网络设备可以同时使用至少一个窄波束接收来自终端设备的上行信号,对每个窄波束接收来自终端设备的上行信号进行测量,得到上行信号测量结果,如上行信号接收质量;然后,网络设备从中选择上行信号接收质量最优对应的窄波束,作为第一窄波束。
综上,在本申请方案中,网络设备获取第一宽波束的测量信息,然后根据该第一宽波束的测量信息,确定使用该第一宽波束或第一窄波束与终端设备进行通信。由于宽波束的覆盖范围广且产生开销少,窄波束的覆盖距离远能保证较远终端设备的通信,因此,本申请方案中的网络设备可以先使用宽波束与终端设备进行通信并获得该宽波束的测量结果,进而再依据该宽波束的测量结果确定是继续选择该宽波束与终端设备进行通信,还是选择新的窄波束与终端设备进行通信,从而在兼顾波束开销和覆盖距离的情况下,确定合适的波束与终端设备进行通信,既可以保证通信的有效性,也可以减少系统的开销。
下面针对上述图3所示本申请实施例提出的一种波束确定的方法,通过具体实施例进一步详细阐述。
具体实施例一
在该具体实施例一,主要针对网络设备如何确定合适的下行波束,以与终端设备进行下行通信,该网络设备以基站为例,如图4所示,该具体实施例一的流程如下:
S401:基站使用宽波束发送下行参考信号。
在该步骤S401中,基站使用一个或多个宽波束(也可以称为基线波束)发送对应的下行参考信号。
示例性地,该下行参考信号可以探测参考信号SRS或信道状态信息参考信号CSI-RS等。
例如,基站分别使用宽波束0、宽波束1、宽波束2发送下行CSI-RS。
S402:终端设备对宽波束进行扫描,并测量得到宽波束的下行参考信号接收功率RSRP。
在该步骤S402中,终端设备扫描基站的一个或多个宽波束,终端设备可能扫描到其中至少一个宽波束,通过扫描到的该至少一个宽波束分别接收到对应的下行参考信号,并基于每个宽波束所接收的下行参考信号测量得到每个宽波束的下行RSRP,进而从中确定下行RSRP最大的宽波束。
例如,基站分别使用宽波束0、宽波束1、宽波束2发送下行参考信号,终端设备能扫描到宽波束0和宽波束1,分别通过宽波束0和宽波束1接收来自基站的下行参考信号;然后,终端设备基于宽波束0的下行参考信号测量得到宽波束0的RSRP值,基于宽波束1的下行参考信号测量得到宽波束1的RSRP值,且宽波束1的RSRP值大于宽波束0的RSRP值。
S403:终端设备向基站上报最优波束的下行RSRP。
相应的,基站接收该最优宽波束的下行RSRP。
例如,若终端设备确定宽波束1的RSRP值大于宽波束0的RSRP值,则终端设备将宽波束1视为最优宽波束,并向基站上报宽波束1的RSRP值。
S404:基站根据终端设备上报的最优波束的下行RSRP,确定该终端设备的位置。
在该步骤S404中,若终端设备上报的最优波束的下行RSRP大于或等于预设的下行RSRP阈值时,基站确定该终端设备处于近点位置(中近点),若终端设备上报的最优波束的下行RSRP小于预设的下行RSRP阈值时,基站确定该终端设备处于远点位置(远点)。
例如,若终端设备上报的宽波束1的下行RSRP值大于或等于预设的下行RSRP阈值,则基站确定该终端设备处于近点位置;若终端设备上报的宽波束1的下行RSRP值小于预设的下行RSRP阈值,则基站确定该终端设备处于远点位置。
通过上述步骤S401-S404,基站可以初步判定终端设备的位置,进而可以依据终端设备的位置,确定合适的波束,用于基站与该终端设备之间的下行通信。
S405:基站根据终端设备的位置,确定与该终端设备进行通信的波束。
在执行该步骤S405时,可能包括以下两种情况:
情况1:若通过上述步骤S404,基站确定终端设备处于近点位置时,则在该步骤S405中基站继续使用上述终端设备上报的最优宽波束与该终端设备进行下行通信(或传输),不再执行下述步骤S406-S408。
情况2:若通过上述步骤S404,基站确定终端设备处于远点位置时,说明上述终端设备上报的最优宽波束的覆盖不足,会导致终端设备的下行业务较差,因此,基站继续通过下述步骤S406-S408确定合适的波束,以用于与终端设备进行下行业务通信。
例如,若终端设备上报的宽波束1的下行RSRP值大于或等于预设的下行RSRP阈值,则基站确定终端设备处于近点位置,基站确定使用宽波束1与该终端设备进行下行业务通信。若终端设备上报的宽波束1的下行RSRP值小于预设的下行RSRP阈值,则基站确定终端设备处于远点位置,基站不使用宽波束1与该终端设备进行下行业务通信,继续通过下述步骤S406-S408确定合适的波束。
S406:基站在宽波束的覆盖范围内,使用至少一个窄波束向终端设备发送下行信号。
相应的,终端设备分别通过该至少一个窄波束接收来自基站的下行信号。
该步骤S406中的下行信号也可以通信信号、广播信号,也可以为下行参考信号,本申请对该下行信号的类型不做具体限定。当其为下行参考信号时,其类型与上述步骤S401的下行参考信号的类型可以相同或者不同,本申请实施例对此不做限定。
示例性地,该下行信号为SRS或CSI-RS。
基于上述步骤S405,若基站确定终端设备处于远点位置,则基站在终端设备上报的最优RSRP对应的宽波束的覆盖范围内,下行遍历尝试更窄的波束向终端设备发送下行信号。
在本申请实施例中,所述下行遍历可以理解为依次尝试使用各种更窄的波束(可统称为窄波束)向终端设备发送下行信号。这些窄波束的覆盖角度和覆盖距离、以及覆盖方向均不同;或者部分窄波束的覆盖方向相同,覆盖角度和覆盖距离不同;又或者部分窄波束的覆盖角度和覆盖距离相同,覆盖方向不相同,本申请实施例对此不做具体限定。
例如,基站在宽波束1的覆盖范围(或角度)内,分别尝试使用窄波束0、窄波束1、窄波束2、窄波束3分别向终端设备发送下行信号。这些窄波束的覆盖角度和覆盖距离(长度)均不同,窄波束0的覆盖角度>(大于)窄波束1的覆盖角度>(大于)窄波束2的覆盖角度>(大于)窄波束3的覆盖角度。
通常波束的覆盖角度越小,则该波束的覆盖距离越远;波束的覆盖角度越大,则该波束的覆盖距离越短。
S407:终端设备基于通过该至少一个窄波束所接收的下行信号,生成该至少一个窄波束的反馈信息,并向基站上报该至少一个窄波束的反馈信息。
在该步骤S407中,可以通过但不限于以下两种方法确定该至少一个窄波束的反馈信息:
方法1
方法1为基站可以根据至少一个窄波束的下行RSRP,确定与终端设备进行上行通信使用的窄波束。基于该方式1,又可以包括但不限于以下两种执行方式:
执行方式一:基站可以先使用一个窄波束向终端设备发送下行信号,终端设备基于该窄波束接收到 的下行信号测量得到该窄波束的下行RSRP,并上报给基站。
基站接收到终端设备上报的窄波束的RSRP,若该窄波束的RSRP不小于目标RSRP,说明该终端设备通过该窄波束接收基站的下行信号的质量较好,该窄波束能满足该终端设备的通信需求,则基站使用该窄波束与终端设备进行下行业务的通信,不再尝试其它的窄波束;若该窄波束的RSRP小于目标RSRP,说明该终端设备通过该窄波束接收基站的下行信号的质量较差,该窄波束不能满足该终端设备的通信需求,则基站继续尝试使用另一个更窄的波束向终端设备发送下行信号,终端设备继续向基站上报该更窄波束的RSRP,直到基站确定终端设备上报的某个窄波束的RSRP能达到目标RSRP,即基站使用RSRP满足目标RSRP对应的窄波束与终端设备进行下行业务的通信。
例如,基站先使用窄波束0向终端设备发送下行信号,终端设备基于该窄波束0接收的下行信号测量得到该窄波束0的下行RSRP,并上报给基站。若基站确定终端设备上报的该窄波束0的下行RSRP不小于目标RSRP,则基站确定将使用该窄波束0与终端设备进行下行业务通信;若基站确定终端设备上报的该窄波束0的下行RSRP小于目标RSRP,基站尝试使用窄波束1(窄波束1的覆盖角度小于窄波束0的覆盖角度,窄波束1的覆盖距离大于窄波束0的覆盖距离)向终端设备发送下行信号,终端设备向基站上报该窄波束1的下行RSRP,若基站确定终端设备上报的该窄波束1的下行RSRP不小于目标RSRP,则基站确定将使用该窄波束1与终端设备进行下行业务通信,不再尝试其它的窄波束;若基站确定终端设备上报的该窄波束1的下行RSRP小于目标RSRP,基站继续尝试使用窄波束2(窄波束2的覆盖角度小于窄波束1的覆盖角度,窄波束2的覆盖距离大于窄波束1的覆盖距离)向终端设备发送下行信号,终端设备再次向基站上报该窄波束2的下行RSRP。直到基站根据终端设备上报的某个窄波束的下行RSRP达到目标RSRP,比如窄波束3,基站将使用窄波束3与终端设备进行下行业务通信。
执行方式二:基站可以同时通过至少一个窄波束向终端设备发送下行信号,相应的,终端设备通过该至少一个窄波束接收来自基站的下行信号,然后终端设备基于每个窄波束所接收的下行信号,测量得到每个窄波束的RSRP(相当于上述本申请中的信号接收质量);进一步的,终端设备将测量得到的该至少一个窄波束的RSRP均上报给基站。
例如,终端设备通过窄波束0、窄波束1、窄波束2、窄波束3分别接收来自基站的下行信号,并基于窄波束0所接收的下行信号测量得到RSRP0,基于窄波束1所接收的下行信号测量得到RSRP1,基于窄波束2所接收的下行信号测量得到RSRP2,基于窄波束3所接收的下行信号测量得到RSRP3;然后,终端设备向基站发送(即上报)窄波束0的RSRP0、窄波束1的RSRP1、窄波束2的RSRP2、窄波束3的RSRP3。
上述各窄波束的RSRP可以作为反馈信息由终端设备直接上报给基站,或者上述各窄波束的RSRP携带在单独的反馈信息中由终端设备上报给基站,或者上述各窄波的RSRP均携带在同一个反馈信息中由终端设备上报给基站,本申请对此不做限定。
方法2:
方法2为基站根据终端设备上报的至少一个窄波束的下行接收情况,确定与终端设备进行下行通信使用的窄波束。基于该方法2,又可以包括但不限于以下两种执行方式:
执行方式一:基站可以先使用一个窄波束向终端设备发送下行信号,由终端设备确定通过该窄波束是否正确(或成功)地接收到来自基站的下行信号,并向基站上报反馈信息,以告知给基站(即终端设备的接收情况)。
基站根据该反馈信息,确定终端设备通过该窄波束是否可以成功(或正确)地接收到来自基站的下行信号;若可以,则基站将使用该窄波束与终端设备进行下行业务的通信,不再尝试其它的窄波束;若不可以,则基站继续尝试使用另一个更窄的波束向终端设备发送下行信号,终端设备继续向基站反馈接收情况,直到基站确定终端设备使用某个窄波束能成功接收到来自网络设备的下行信号,基站将该窄波束与终端设备进行下行业务的通信。
例如,基站先使用窄波束0向终端设备发送下行信号,终端设备确定通过该窄波束0是否能成功(或正确)地接收来自基站的下行信号,并向基站反馈该窄波束0的接收情况。基站根据终端设备上报的该窄波束0的接收情况,确定终端设备使用窄波束0能成功(或正确)地接收到基站的下行信号时,则不再尝试其它的窄波束,若基站确定终端设备使用窄波束0不能成功(或正确)地接收到基站的下行信号时,基站尝试使用窄波束1向终端设发送下行信号,终端设备向基站反馈该窄波束1的接收情况。直到基站根据终端设备上报的某个窄波束的接收情况,比如窄波束3的接收情况,确定终端设备通过该窄波束3能正确接收到来自基站的下行信号,则基站确定将使用该窄波束3与终端设备进行下行业务通信。
执行方式二:基站可以同时通过至少一个窄波束向终端设备发送下行信号,相应的,终端设备通过该至少一个窄波束接收来自基站的下行信号,终端设备向基站上报该至少一个窄波束的反馈信息,每个窄波束的反馈信息用于指示终端设备是否成功(或正确)地接收来自基站的下行信号。
例如,终端设备通过窄波束0、窄波束1、窄波束2、窄波束3分别接收来自基站的下行信号,终端设备确定通过各窄波是否成功(或正确)地接收到基站的下行信号,并向基站上报各窄波的反馈信息,每个反馈信息用于指示终端设备是否成功(或正确)地接收到基站的下行信号。
上述终端设备通过各窄波是否成功(或正确)地接收到基站的下行信号可以使用单独的指示信息进行指示,指示信息可以直接作为反馈信息,或者指示信息携带在反馈信息中。因此,各窄波对应的指示信息可以单独的由终端设备上报给基站,或者各窄波对应的指示信息可以携带在单独的反馈信息中由终端设备上报给基站,又或者各窄波对应的指示信息携带在同一反馈信息中由终端设备上报给基站,本申请对此不做具体限定。
需要注意的是,基站可以通过但不限于上述两种执行方式;由于上述执行方式一所产生的开销相对较小,因而本申请实施例中可以优先选择执行方式一(即遍历尝试的方式)。
S408:基站根据终端设备上报的反馈信息,确定与终端设备进行通信使用的窄波束。
当基于上述步骤S407中方法1对应的反馈方式,基站根据终端设备上报的各窄波束的RSRP,确定使用RSRP值最大的窄波束与终端设备进行通信。
例如,基站确定窄波束3的RSRP3最大,则基站确定使用窄波束3与终端设备进行下行通信。
当基于上述步骤S407中方法2对应的反馈方式,基站根据终端设备上报的各窄波束的反馈信息(或指示信息),确定指示终端设备成功(或正确)地接收到基站的下行信号对应的窄波束,并用于与终端设备进行通信。
例如,基站确定窄波束3的反馈信息(指示信息)指示终端设备成功(正确地)接收到来自基站的下行信号,则基站确定使用窄波束3与终端设备进行下行通信。
需要注意的是,上述具体实施例一所示的步骤以一个基站和一个终端设备为例进行介绍,然而,在实际中,一个基站可能会与多个终端设备进行通信,因此,基站针对每个终端设备均可以参考上述具体实施例一中的步骤来确定通信所使用的下行波束,此处不再具体赘述。
通过该具体实施例一,基站可以终端设备反馈的下行参考信号的测量结果,确定终端设备的位置,针对近点位置的终端设备,基站可以采用宽波束与终端设备进行通信,从而增加了波束覆盖范围,可以为更多终端设备提供服务,节省了资源开销。针对远点位置的终端设备,基站可以在原宽波束范围内进行下行遍历试探窄波束,以选择到覆盖更好的窄波束与终端设备进行通信,既保证了有效的通信,同时也考虑到波束的覆盖范围,以为更多终端设备提供服务,节省了资源开销。因此,通过该方式可以同时兼顾宽窄波束的优点,为终端设备确定合适的服务波束,既保证了基站与终端设备通信的有效性,同时也节省了资源开销。
此外,针对上下行互易性较好的场景,基站通过上述具体实施例一所确定的下行波束,既可以用于与终端设备进行下行业务的通信,也可以复用作为上行波束,以用于与终端设备进行上行业务的通信,基站无需再通过下述具体实施例二为终端设备确定合适的上行波束。
针对上下行互易性较差的场景,基站可以通过下述具体实施例二来确定上行波束,以用于终端设备进行上行业务的通信。
具体实施例二
在该具体实施二中,针对上下行互易性较差的场景,网络设备如何确定合适的上行波束,以与终端设备进行上行通信。该网络设备以基站为例,如图5所示,该具体实施例二的流程如下:
S501:基站使用宽波束接收来自终端设备的上行信号。
在该步骤S501中,基站使用一个或多个宽波束(也可以称为基线波束)接收来自终端设备的上行信号。
示例性地,该上行信号可以为上行通信信号,也可以为上行参考信号,例如SRS、CSI-RS。
例如,基站分别使用宽波束0、宽波束1、宽波束2接收来自终端设备的上行信号。
S502:基站基于宽波束所接收的上行信号,测量得到宽波束的RSRP。
例如,基站基于宽波束0所接收的上行信号测量得到宽波束0的上行RSRP;基站基于宽波束1所 接收的上行信号,测量得到宽波束1的上行RSRP;基站基于宽波束2所接收的上行信号测量得到宽波束2的上行RSRP。
S503:基站根据最优宽波束的RSRP,确定终端设备的位置。
在该步骤S503中,若基站确定最优宽波束的上行RSRP大于或等于预设的上行RSRP阈值时,则基站确定该终端设备处于近点位置(中近点);若基站确定最优宽波束的上行RSRP小于预设的上行RSRP阈值时,则基站确定该终端设备处于远点位置(远点)。
例如,若基站确定宽波束1的上行RSRP的值均大于宽波束0的上行RSRP值和宽波束2的上行RSRP值,基站将宽波束1视为最优宽波束。若基站确定宽波束1的上行RSRP值大于或等于预设的上行RSRP阈值,则基站确定该终端设备处于近点位置;若基站确定宽波束1的上行RSRP值小于预设的上行RSRP阈值,则基站确定该终端设备处于远点位置。
S504:基站根据终端设备的位置,确定与该终端设备进行通信的波束。
在执行该步骤S504时,可能包括以下两种情况:
情况1:若通过上述步骤S503,基站确定终端设备处于近点位置时,则在该步骤S504中基站继续使用上述最优宽波束与该终端设备进行上行通信(或传输),不再执行下述步骤S505-S506。
情况2:若通过上述步骤S503,基站确定终端设备处于远点位置时,说明上述最优宽波束的覆盖不足,会导致终端设备的上行业务较差,因此,基站继续通过下述步骤S505-S506确定合适的波束,与终端设备进行上行业务通信。
S505:基站在最优宽波束的覆盖范围内,使用至少一个窄波束接收来自终端设备的上行信号。
相应的,终端设备在上述步骤S503中所确定的最优宽波束的覆盖范围内,分别通过该至少一个窄波束向基站发送上行信号。
该步骤S505中的上行信号也可以通信信号,也可以为上行参考信号,本申请实施例对此不做限定。例如,该上行信号为SRS或CSI-RS。
在上述步骤S503中,若基站确定终端设备处于远点位置,则基站在最优上行RSRP对应的宽波束的覆盖范围内,上行遍历尝试更窄的波束接收来自终端设备的上行信号。
例如,基站在最优宽波束1的覆盖范围(或角度)内,分别尝试使用窄波束0、窄波束1、窄波束2、窄波束3分别接收来自终端设备的上行信号。这些窄波束的覆盖角度和覆盖距离(长度)均不同,窄波束0的覆盖角度>(大于)窄波束1的覆盖角度>(大于)窄波束2的覆盖角度>(大于)窄波束3的覆盖角度。
S506:基站基于通过该至少一个窄波束所接收的上行信号,确定与终端设备进行上行通信使用的窄波束。
在执行该步骤S506时,可以通过但不限于以下两种方式确定:
方法1:
方法1为基站可以根据至少一个窄波束的上行RSRP,确定与终端设备进行上行通信使用的窄波束。基于该方法1,又可以包括但不限于以下两种执行方式:
执行方式一:基站先采用一个窄波束接收来自终端设备的上行信号,并测量得到该窄波束对应的上行RSRP。若该窄波束的上行RSRP满足目标上行RSRP,则基站确定使用该窄波束与终端设备进行上行业务通信,不再尝试其它的窄波束;若该窄波束的上行RSRP不满足目标上行RSRP,则基站尝试使用另一个更窄的波束接收来自终端设备的上行信号,并测量得到该更窄波束的上行RSRP,若满足目标上行RSRP,则基站使用该更窄波束与终端设备进行上行业务通信,若不满足目标上行RSRP,则基站按照前述的方式,继续尝试其它的更窄波束,直到某个窄波束的上行RSRP满足目标上行RSRP,基站将使用RSRP满足目标上行RSRP对应的窄波束与终端设备进行上行业务通信。(对应于上述具体实施一中的执行方式二)。
例如,基站先使用窄波束0接收来自终端设备上行信号,测量得到该窄波束0的上行RSRP,若满足目标上行RSRP,则基站确定使用该窄波束0与终端设备进行上行业务通信,若不满足目标上行RSRP,基站尝试使用窄波束1(窄波束1的覆盖角度小于窄波束0的覆盖角度,窄波束1的覆盖距离大于窄波束0的覆盖距离)接收来自终端设备的上行信号,并测得该窄波束1的上行RSRP,若满足目标上行RSRP,则基站确定使用该窄波束1与终端设备进行上行业务通信,若不满足目标上行RSRP,则基站根据前述方式,继续尝试使用窄波束2(窄波束2的覆盖角度小于窄波束1的覆盖角度,窄波束2的覆盖距离大于窄波 束1的覆盖距离)接收来自终端设备的上行信号并测得该窄波束2的上行RSRP,直到测得某个窄波束的上行RSRP满足目标上行RSRP,则基站将使用RSRP满足目标上行RSRP对应的窄波束与终端设备进行上行业务通信。
执行方式二:基站可以同时通过至少一个窄波束接收来自终端设备的上行信号,然后基站基于每个窄波束所接收的上行信号,测量得到每个窄波束的上行RSRP(相当于上述本申请中的信号接收质量),基站从该至少一个窄波束的上行RSRP中确定最大的RSRP;基站将使用上行RSRP最大的窄波束,与终端设备进行上行业务通信。
例如,基站使用窄波束0、窄波束1、窄波束2、窄波束3分别接收来自终端设备的上行信号,并基于窄波束0所接收的上行信号测量得到上行RSRP0,基于窄波束1所接收的上行信号测量得到上行RSRP1,基于窄波束2所接收的上行信号测量得到上行RSRP2,基于窄波束3所接收的上行信号测量得到上行RSRP3;若基站确定窄波束3的上行RSRP3最大,则基站使用窄波束3与终端设备进行上行业务通信。
方法2:
方法2为基站根据至少一个窄波束的上行接收情况,确定与终端设备进行上行通信使用的窄波束。基于该方法2,又可以包括但不限于以下两种执行方式:
执行方式一:基站先使用一个窄波束接收来自终端设备的上行信号,若基站能成功(或正确)地接收到来自终端设备的上行信号,则基站确定将使用该窄波束与终端设备进行上行业务通信,不再尝试其它的窄波束;若基站不能成功(或正确)地接收到来自终端设备的上行信号,则基站尝试使用另一个更窄的波束接收来自终端设备的上行信号,若基站能成功(或正确)地接收到来自终端设备的上行信号,则基站将使用该更窄的波束与终端设备进行上行业务通信,若不能成功(或正确)地接收到来自终端设备的上行信号,则基站根据前述方式继续尝试使用其它更窄的波束接收来自终端设备的上行信号。直至基站使用某个窄波束能成功(或正确)地接收到来自终端设备的上行信号,基站将使用该能使基站成功(或正确)地接收到来自终端设备的上行信号的窄波束,与终端设备进行上行业务通信。
例如,基站先使用窄波束0接收来自终端设备上行信号,若基站能使用窄波束0成功(或正确)地接收到来自终端设备的上行信号,则基站确定将使用该窄波束0与终端设备进行上行业务通信,则不再尝试其它的窄波束;若基站能使用窄波束0不能成功(或正确)地接收到来自终端设备的上行信号,基站尝试使用窄波束1(窄波束1的覆盖角度小于窄波束0的覆盖角度,窄波束1的覆盖距离大于窄波束0的覆盖距离)接收来自终端设备的上行信号,若基站能使用窄波束1成功(或正确)地接收到来自终端设备的上行信号,则基站确定将使用该窄波束1与终端设备进行上行业务通信;若基站能使用窄波束1不能成功(或正确)地接收到来自终端设备的上行信号,则基站根据前述的方式继续尝试使用窄波束2(窄波束2的覆盖角度小于窄波束1的覆盖角度,窄波束2的覆盖距离大于窄波束1的覆盖距离)能否正确接收到来自终端设备的上行信号。直到基站可以使用其中某个窄波束能成功(或正确)地接收到来自网络设备的上行信号,则基站将使用该窄波束与终端设备进行上行业务通信。
执行方式二:基站可以同时使用至少一个窄波束接收来自终端设备的上行信号,基站确定通过其中某个窄波束能够成功(或正确)地接收到来自终端设备的上行信号,基站将使用该窄波束与终端设备进行上行业务通信。
例如,基站使用窄波束0、窄波束1、窄波束2、窄波束3分别接收来自终端设备的上行信号,基站通过窄波束0、1、2均不能成功(或正确)地接收到来自终端设备的上行信号,基站通过窄波束3能成功(或正确)地接收到来自终端设备的上行信号,那么基站确定将使用窄波束3与终端设备进行上行业务通信。
需要注意的是,基站可以通过但不限于上述两种执行方式;由于上述执行方式一所产生的开销相对较小,因而本申请实施例中可以优先选择执行方式一(即遍历尝试的方式)。
另外,上述具体实施例二所示的步骤以一个基站和一个终端设备为例进行介绍,然而,在实际中,一个基站可能会与多个终端设备进行通信,因此,基站针对每个终端设备均可以参考上述具体实施例二中的步骤来确定通信所使用的上行波束,此处不再具体赘述。
通过该具体实施例二,基站使用宽波束接收来自终端设备的上行信号,并得到该宽波束的测量结果或接收情况;然后,基站根据该宽波束的测量结果或接收情况,确定终端设备的位置,针对近点位置的终端设备,基站可以继续采用宽波束与终端设备进行通信,从而增加了波束覆盖范围,可以为更多终端设备提供服务,节省了资源开销。针对远点位置的终端设备,基站可以在原宽波束范围内进行上行遍历试探窄波束,以选择到覆盖更好的窄波束与终端设备进行通信,既保证了有效的通信,同时也考虑到波 束的覆盖范围,以为更多终端设备提供服务,节省了资源开销。因此,通过该方式可以同时兼顾宽窄波束的优点,为终端设备确定合适的服务波束,既保证了基站与终端设备通信的有效性,同时也节省了资源开销。
此外,针对上下行互易性较好的场景,基站通过上述具体实施例二所确定的上行波束,既可以用于与终端设备进行上行业务的通信,也可以复用作为下行波束,以用于与终端设备进行下行业务的通信,基站无需再通过上述具体实施例一为终端设备确定合适的下行波束。
针对上下行互易性较差的场景,基站可以通过上述具体实施例一来确定下行波束,以用于终端设备进行下行业务的通信。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图6所示,本申请实施例还提供一种通信装置600用于实现上述方法中网络设备或终端设备的功能。例如,该通信装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该通信装置600可以包括:通信单元601和处理单元602。
本申请实施例中,通信单元601也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备或终端设备发送和接收的步骤。处理单元602可以用于读取存储模块中的指令和/或数据,以使得通信装置600实现前述方法实施例。
可选地,该通信装置600还可以包括存储单元603,该存储单元603相当于存储模块,可以用于存储指令和/或数据。
以下,结合图6至图7详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元601也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将通信单元601中用于实现接收功能的器件视为接收单元,将通信单元601中用于实现发送功能的器件视为发送单元,即通信单元601包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
当所述通信装置600执行上面实施例中图3所示的流程中网络设备的功能时:
所述通信单元601,用于网络设备获取第一宽波束的测量信息;所述处理单元,根据所述第一宽波束的测量信息,确定使用所述第一宽波束或第一窄波束与终端设备进行通信。
以上只是示例,处理单元602和通信单元601还可以执行其他功能,更详细的描述可以参考图3所示的方法实施例中相关描述,这里不加赘述。
如图7所示为本申请实施例提供的通信装置700,图7所示的通信装置可以为图6所示的通信装置的一种硬件电路的实现方式。该通信装置700可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图7仅示出了该通信装置的主要部件。
如图7所示,通信装置700包括收发器701和处理器702。收发器701和处理器702之间相互耦合。可以理解的是,收发器701可以为通信接口或输入输出接口,也可以为接口电路如收发电路等。可选地,通信装置700还可以包括存储器703,用于存储处理器702执行的指令或存储处理器702运行指令所需要的输入数据或存储处理器702运行指令后产生的数据。
当通信装置700用于实现图3所示的方法时,处理器702用于实现上述处理单元602的功能,收发 器701用于实现上述通信单元601的功能。
本申请实施例中不限定上述收发器701、处理器702以及存储器703之间的具体连接介质。本申请实施例在图7中以存储器703、处理器702以及收发器701之间通过通信总线704连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
当上述通信装置为芯片时,图8示出了一种简化的芯片的结构示意图,该芯片800包括接口电路801和一个或多个处理器802。可选的,所述芯片800还可以包含总线。其中:
处理器802可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述通信方法的各步骤可以通过处理器802中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器802可以是通用处理器、数字通信器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
接口电路801可以用于数据、指令或者信息的发送或者接收,处理器802可以利用接口电路801接收的数据、指令或者其它信息,进行加工,可以将加工完成信息通过接口电路801发送出去。
可选的,芯片还包括存储器803,存储器803可以包括只读存储器和随机存取存储器,并向处理器提供操作指令和数据。存储器803的一部分还可以包括非易失性随机存取存储器(NVRAM)。
可选的,存储器存储了可执行软件模块或者数据结构,处理器可以通过调用存储器存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
可选的,芯片可以使用在本申请实施例涉及的终端设备中或网络设备中。可选的,接口电路801可用于输出处理器802的执行结果。关于本申请的一个或多个实施例提供的通信方法可参考前述各个实施例,这里不再赘述。
需要说明的,接口电路801、处理器802各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由第一通信装置执行的方法的计算机指令,和/或其上存储有用于实现上述方法实施例中由终端设备或网络设备(例如基站)执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备或网络设备(例如基站)执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,和/或该指令被计算机执行时使得该计算机实现上述方法实施例中由网络设备执行的方法。
本申请实施例还提供一种芯片装置,包括处理器,用于调用该存储器中存储的计算机程度或计算机指令,以使得该处理器执行上述图3所示的实施例的一种波束确定的方法。
一种可能的实现方式中,该芯片装置的输入对应上述图3所示的实施例中的接收操作,该芯片装置的输出对应上述图3所示的实施例中的发送操作。
可选地,该处理器通过接口与存储器耦合。
可选地,该芯片装置还包括存储器,该存储器中存储有计算机程度或计算机指令。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述图3所示的实施例的一种波束确定的方法的程序执行的集成电路。上述任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
需要注意的是,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的通信方法实施例,此处不再赘述。
本申请中,通信装置之间还可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理模块(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意 一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请实施例可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、只读光盘(compact disc read-Only memory,CD-ROM)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(digital subscriber line,DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请实施例所使用的,盘(disk)和碟(disc)包括压缩光碟(compact disc,CD)、激光碟、光碟、数字通用光碟(digital video disc,DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请的实施例而已,并非用于限定本申请的保护范围。凡根据本申请的揭露,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种波束确定的方法,其特征在于,包括:
    网络设备获取第一宽波束的测量信息;
    所述网络设备根据所述第一宽波束的测量信息,确定使用所述第一宽波束或第一窄波束与终端设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备获取第一宽波束的测量信息,包括:
    所述网络设备使用所述第一宽波束向所述终端设备发送下行参考信号;
    所述网络设备从所述终端设备接收所述第一宽波束的下行参考信号接收功率RSRP。
  3. 根据权利要求1或2所述的方法,其特征在于,所述网络设备根据所述第一宽波束的测量信息,确定使用所述第一宽波束或第一窄波束与终端设备进行通信,包括:
    若所述第一宽波束的下行RSRP大于或等于预设的下行RSRP阈值时,所述网络设备确定使用所述第一宽波束与所述终端设备进行通信;或者
    若所述第一宽波束的下行RSRP小于预设的下行RSRP阈值时,所述网络设备确定使用所述第一窄波束与所述终端设备进行通信。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述网络设备确定使用所述第一窄波束与所述终端设备进行通信之前,还包括:
    所述网络设备采用向下遍历方式从至少一个窄波束中,确定所述第一窄波束。
  5. 根据权利要求4所述的方法,其特征在于,所述网络设备采用向下遍历方式从至少一个窄波束中,确定所述第一窄波束,包括:
    所述网络设备依次使用所述至少一个窄波束,向所述终端设备发送下行信号并接收来自所述终端设备的指示信息,每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内,所述指示信息用于指示对应的一个窄波束发送的下行信号是否被所述终端设备正确接收;当所述网络设备根据所述指示信息,确定指示所述下行信号被所述终端设备正确接收时,将对应使用的窄波束作为所述第一波束;或者
    所述网络设备依次使用所述至少一个窄波束,向所述终端设备发送下行信号并接收来自所述终端设备的反馈信息,每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内,所述反馈信息用于指示对应的一个窄波束发送的下行信号接收质量;当所述网络设备根据所述反馈信息,确定所述下行信号接收质量满足预设的下行信号接收质量时,将对应使用的窄波束作为所述第一窄波束。
  6. 根据权利要求1所述的方法,其特征在于,所述网络设备获取第一宽波束的测量信息,包括:
    所述网络设备使用所述第一宽波束接收来自所述终端设备的上行参考信号;
    所述网络设备基于所述上行参考信号,测量得到所述第一宽波束的上行参考信号接收功率RSRP。
  7. 根据权利要求1或6所述的方法,其特征在于,所述网络设备根据所述第一宽波束的测量信息,确定使用所述第一宽波束或第一窄波束与终端设备进行通信,包括:
    若所述第一宽波束的上行RSRP大于或等于预设的上行RSRP阈值时,所述网络设备确定使用所述第一宽波束与所述终端设备进行通信;或者
    若所述第一宽波束的上行RSRP小于预设的上行RSRP阈值时,所述网络设备确定使用所述第一窄波束与所述终端设备进行通信。
  8. 根据权利要求1,6-7中任一项所述的方法,其特征在于,所述网络设备确定使用所述第一窄波束与所述终端设备进行通信之前,还包括:
    所述网络设备采用向上遍历方式从至少一个窄波束中,确定所述第一窄波束。
  9. 根据权利要求8所述的方法,其特征在于,所述网络设备采用向上遍历方式从至少一个窄波束中,确定所述第一窄波束,包括:
    所述网络设备依次使用所述至少一个窄波束,接收来自所述终端设备的上行信号,每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内;当所述网络设备确定正确接收到来自所述终端设备的上行信号时,将对应使用的窄波束为所述第一波束;或者
    所述网络设备依次使用所述至少一个窄波束,接收来自所述终端设备的上行信号并测量得到所述上行信号接收质量,每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内;当所述网络设备确定所述上行信号接收质量满足预设的上行信号接收质量时,将对应使用的窄波束作为所述第一窄波束。
  10. 一种波束确定的装置,其特征在于,包括:通信单元和处理单元;
    所述通信单元,用于获取第一宽波束的测量信息;
    所述处理单元,用于根据所述第一宽波束的测量信息,确定使用所述第一宽波束或第一窄波束与终端设备进行通信。
  11. 根据权利要求10所述的装置,其特征在于,所述通信单元,在获取第一宽波束的测量信息时,具体用于:
    使用所述第一宽波束向所述终端设备发送下行参考信号;
    从所述终端设备接收所述第一宽波束的下行参考信号接收功率RSRP。
  12. 根据权利要求10或11所述的装置,其特征在于,所述处理单元,在根据所述第一宽波束的测量信息,确定使用所述第一宽波束或第一窄波束与终端设备进行通信时,具体用于:
    若所述第一宽波束的下行RSRP大于或等于预设的下行RSRP阈值时,确定使用所述第一宽波束与所述终端设备进行通信;或者
    若所述第一宽波束的下行RSRP小于预设的下行RSRP阈值时,确定使用所述第一窄波束与所述终端设备进行通信。
  13. 根据权利要求10至12中任一项所述的装置,其特征在于,所述处理单元,还用于:
    在确定使用所述第一窄波束与所述终端设备进行通信之前,采用向下遍历方式从至少一个窄波束中,确定所述第一窄波束。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元,在采用向下遍历方式从至少一个窄波束中,确定所述第一窄波束时,具体用于:
    通过所述通信单元依次使用所述至少一个窄波束,向所述终端设备发送下行信号并接收来自所述终端设备的指示信息;每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内,所述指示信息用于指示对应的一个窄波束发送的下行信号是否被所述终端设备正确接收;当根据所述指示信息,确定指示所述下行信号被所述终端设备正确接收时,将对应使用的窄波束作为所述第一波束;或者
    通过所述通信单元依次使用所述至少一个窄波束,向所述终端设备发送下行信号并接收来自所述终端设备的反馈信息;每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内,所述反馈信息用于指示对应的一个窄波束发送的下行信号接收质量;当根据所述反馈信息,确定所述下行信号接收质量满足预设的下行信号接收质量时,将对应使用的窄波束作为所述第一窄波束。
  15. 根据权利要求10所述的装置,其特征在于,所述通信单元,在获取第一宽波束的测量信息时,具体用于:
    使用所述第一宽波束接收来自所述终端设备的上行参考信号;
    通过所述处理单元基于所述上行参考信号,测量得到所述第一宽波束的上行参考信号接收功率RSRP。
  16. 根据权利要求10或15所述的装置,其特征在于,所述处理单元,在根据所述第一宽波束的测量信息,确定使用所述第一宽波束或第一窄波束与终端设备进行通信时,具体用于:
    若所述第一宽波束的上行RSRP大于或等于预设的上行RSRP阈值时,确定使用所述第一宽波束与所述终端设备进行通信;或者
    若所述第一宽波束的上行RSRP小于预设的上行RSRP阈值时,确定使用所述第一窄波束与所述终端设备进行通信。
  17. 根据权利要求10,15-16中任一项所述的装置,其特征在于,所述处理单元,还用于:
    在确定使用所述第一窄波束与所述终端设备进行通信之前,采用向上遍历方式从至少一个窄波束中,确定所述第一窄波束。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元,在采用向上遍历方式从至少一个窄波束中,确定所述第一窄波束时,具体用于:
    通过所述通信单元依次使用所述至少一个窄波束,接收来自所述终端设备的上行信号,每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内;当确定正确接收到来自所述终端设备的上行信号时,将对应使用的窄波束为所述第一波束;或者
    通过所述通信单元依次使用所述至少一个窄波束,接收来自所述终端设备的上行信号并测量得到所述上行信号接收质量,每个窄波束对应一个方向且位于所述第一宽波束覆盖范围内;当确定所述上行信 号接收质量满足预设的上行信号接收质量时,将对应使用的窄波束作为所述第一窄波束。
  19. 一种通信装置,其特征在于,所述通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得如权利要求1-9中任一项所述的方法被实现。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当所述指令被处理器运行时,使得如权利要求1-9中任一项所述的方法被实现。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被处理器运行时,使得如权利要求1-9中任一项所述的方法被实现。
PCT/CN2023/117493 2022-09-20 2023-09-07 一种波束确定的方法和装置 WO2024061012A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211146466.3A CN117793772A (zh) 2022-09-20 2022-09-20 一种波束确定的方法和装置
CN202211146466.3 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024061012A1 true WO2024061012A1 (zh) 2024-03-28

Family

ID=90385487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117493 WO2024061012A1 (zh) 2022-09-20 2023-09-07 一种波束确定的方法和装置

Country Status (2)

Country Link
CN (1) CN117793772A (zh)
WO (1) WO2024061012A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412638A (zh) * 2013-08-20 2015-03-11 华为技术有限公司 通信方法及装置
CN109936397A (zh) * 2017-12-15 2019-06-25 北京小米移动软件有限公司 波束对准方法及装置
US20200015106A1 (en) * 2018-07-06 2020-01-09 Mixcomm, Inc. Beam management methods and apparatus
EP4044650A1 (en) * 2019-10-09 2022-08-17 Sony Group Corporation Terminal device and communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412638A (zh) * 2013-08-20 2015-03-11 华为技术有限公司 通信方法及装置
CN109936397A (zh) * 2017-12-15 2019-06-25 北京小米移动软件有限公司 波束对准方法及装置
US20200015106A1 (en) * 2018-07-06 2020-01-09 Mixcomm, Inc. Beam management methods and apparatus
EP4044650A1 (en) * 2019-10-09 2022-08-17 Sony Group Corporation Terminal device and communication method

Also Published As

Publication number Publication date
CN117793772A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US10666336B2 (en) Inter-device coordination method, beam training method, and apparatus
US11265921B2 (en) Method and apparatus for non-contention based random access
WO2020048438A1 (zh) 一种射频参数的上报方法及装置
US20170289917A1 (en) Dynamic time division duplex interference mitigation in a wireless network
WO2022077387A1 (zh) 一种通信方法及通信装置
US20220338076A1 (en) Handover method and apparatus
WO2023050472A1 (zh) 用于寻呼的方法和装置
WO2022001241A1 (zh) 一种波束管理方法及装置
WO2021062764A1 (zh) 终端的定时提前量ta处理的方法和装置
US20220167339A1 (en) Beam failure recovery method and apparatus
WO2022116839A1 (zh) 通信方法、装置、设备、存储介质及程序产品
WO2021134682A1 (zh) 一种定向测量方法及设备
EP4366423A1 (en) Communication method and apparatus
WO2024061012A1 (zh) 一种波束确定的方法和装置
US20220312261A1 (en) User Equipment (UE) Supplemental BSR for Reduced Latency in High-Propagation-Delay Networks
US20220312460A1 (en) Base Station (BS) Supplemental BSR Procedures for Reduced Latency in High-Propagation-Delay Networks
WO2022027681A1 (zh) 无线通信方法和设备
WO2020200115A1 (zh) 通信方法、装置、系统和存储介质
WO2023131319A1 (zh) 定时提前确定方法及相关装置
WO2024140129A1 (zh) 波束测量方法及相关装置
US11317311B2 (en) Spatial reuse method and apparatus
US11800322B2 (en) Signalling for positioning latency control
WO2024022511A1 (zh) 定时提前命令确定方法与装置、终端设备和网络设备
WO2023179368A1 (zh) 感知方法及装置
WO2023198059A1 (zh) 一种通信方法、装置、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867303

Country of ref document: EP

Kind code of ref document: A1