WO2022037372A1 - 资源分配方法及装置 - Google Patents

资源分配方法及装置 Download PDF

Info

Publication number
WO2022037372A1
WO2022037372A1 PCT/CN2021/108671 CN2021108671W WO2022037372A1 WO 2022037372 A1 WO2022037372 A1 WO 2022037372A1 CN 2021108671 W CN2021108671 W CN 2021108671W WO 2022037372 A1 WO2022037372 A1 WO 2022037372A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
irs
downlink
array
time period
Prior art date
Application number
PCT/CN2021/108671
Other languages
English (en)
French (fr)
Inventor
孙欢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21857467.1A priority Critical patent/EP4188015A4/en
Publication of WO2022037372A1 publication Critical patent/WO2022037372A1/zh
Priority to US18/170,222 priority patent/US20230199734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a resource allocation method and apparatus.
  • multiple-input multiple-output multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • the transmission performance of the communication system is improved by deploying multiple antennas at the transmitting end and the receiving end respectively.
  • MIMO technology can effectively improve transmission reliability; in multiplexing scenarios, MIMO technology can greatly improve transmission throughput.
  • AAA active antenna array
  • an electromagnetic metasurface array also called an intelligent reflecting surface (IRS) array
  • IRS- MIMO system a MIMO system with a new architecture, called IRS- MIMO system.
  • the IRS array only controls the phase of the input signal and the output signal, and does not actively transmit user data itself, and its power consumption is low. Therefore, the IRS array can be regarded as a passive array.
  • FIG 3 it is the relationship between the signal-to-noise ratio of the transmitter and the sum rate of the receiver of the combination of different numbers of active antennas on the base station side and different numbers of IRS passive antennas.
  • a small-scale active antenna array is configured on the base station side, which cooperates with a medium-scale IRS The array can obtain a larger sum rate, achieve better communication performance, and effectively reduce the power consumption of the base station side.
  • channel design needs to be performed by configuring control parameters (eg, phase parameters) of the reflection units in the IRS array to improve transmission efficiency.
  • control parameters eg, phase parameters
  • the downlink channel information needs to be measured by the terminal side and uploaded to the base station, and the base station determines the control parameters of the reflection unit based on the downlink channel information.
  • the amount of downlink channel information data in the IRS-MIMO system is large, resulting in a long measurement and feedback period and low channel design efficiency.
  • Embodiments of the present application provide a resource allocation method and device, which can utilize flexible time slot resources to determine control parameters of an IRS array without affecting the transmission of uplink data and downlink data.
  • the present application provides a resource allocation method.
  • the method can be executed by a terminal device or by a component (such as a chip system) in the terminal device.
  • the method may include: the terminal device obtains resource indication information.
  • the resource indication information is used to indicate uplink UL transmission resources and downlink DL transmission resources in the flexible timeslot.
  • the flexible time slot is used to determine the control parameters of the intelligent reflecting surface IRS array.
  • the terminal device performs UL transmission and DL transmission based on the resource indication information.
  • control parameters of the IRS array include, for example, the phase parameters of the reflection units in the IRS array, and the IRS array reflects the received incident signal based on the control parameters.
  • the network device configures the resources in the flexible timeslot as uplink transmission resources and downlink transmission resources for determining the control parameters of the IRS array.
  • the network equipment determines the control parameters of the IRS array by interacting with the terminal equipment.
  • the network device will not affect the transmission of uplink data and downlink data in the process of determining the parameters of the IRS array.
  • the time slot can be flexibly determined, the IRS array parameters can be flexibly determined, and the channel design efficiency can be improved.
  • the uplink concatenated channel and the downlink concatenated channel between the terminal device and the network device are reciprocal
  • the resource indication information includes first indication information
  • the first indication information includes the first resource configuration information.
  • the first resource configuration information is used to configure the first UL transmission resource and the first DL transmission resource.
  • the first UL transmission resource includes a first time period
  • the first DL transmission resource includes a second time period
  • the first time period and the second time period contain the same number of symbols or Are not the same.
  • the network device before the terminal device obtains the resource indication information, the network device is required to determine whether the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device are reciprocal. After that, configure the resource indication information according to the reciprocity.
  • the network device presets that the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device do not have reciprocity. Or, the network device determines, according to the location information of the terminal device, whether the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device are reciprocal.
  • the network device can obtain the uplink reference signal sent by the terminal device in combination with the control parameters of the current IRS array to obtain Upstream channel information. After that, the network device estimates the downlink channel information according to the uplink channel information, and then determines the control parameters of the adjusted IRS array according to the downlink channel information to complete the channel design.
  • the network device needs to estimate the downlink channel information based on the uplink reference signal. Therefore, in the flexible timeslot, the first UL transmission resource needs to be configured first, and then the first DL transmission resource needs to be configured, that is, the first time period precedes the second time period.
  • the network device may configure, among the symbols other than the symbols used for transmitting resource indication information in the flexible time slot, one or more preceding consecutive symbols as UL symbols, and the remaining symbols as DL symbols.
  • the flexible timeslot includes symbols numbered 0 to 13 to 14 symbols.
  • the symbols with symbol number 0 and symbol number 1 are configured as DL symbols for transmitting resource indication information.
  • the symbols numbered 3 to 8 are configured as UL symbols, that is, the first time period includes 6 UL symbols.
  • the symbols with the symbol number 9 to the symbol number 13 are configured as DL symbols, that is, the second time period includes 5 DL symbols.
  • the symbol with the symbol number 2 is configured as a flexible symbol for converting the downlink transmission mode to the uplink transmission mode.
  • one or more first UL transmission resources and one or more first DL transmission resources may also be configured in the flexible timeslot. Then, the first time period and the second time period may be implemented alternately. The preceding first time period and the succeeding second time period may be regarded as a group of time periods, one or more groups of which are contained in the flexible time slot.
  • the network device may alternately configure symbols other than the symbols used for transmitting resource indication information in the flexible timeslot as UL symbols and DL symbols, and ensure that the UL symbols are configured first.
  • the symbols with the symbol number 0 and the symbol number 1 are configured as DL symbols for transmitting resource indication information.
  • the symbols with the symbol number 3 to the symbol number 5 are configured as UL symbols, that is, the first time period includes 3 UL symbols.
  • the symbols with the symbol number 6 to the symbol number 8 are configured as DL symbols, that is, the second time period includes 3 DL symbols.
  • the symbols with the symbol number 10 and the symbol number 11 are configured as UL symbols, that is, another first time period, including 2 UL symbols.
  • the symbol with the symbol number of 12 is configured as a DL symbol, that is, another second time period, including 1 DL symbol.
  • the symbols with symbol number 2 and symbol number 9 are configured as flexible symbols for converting the downlink transmission mode to the uplink transmission mode.
  • the control parameters of the IRS array can be quickly determined.
  • the first indication information further includes a first IRS array control parameter
  • the method further includes: the terminal device sends an uplink reference signal to the network device by using the first UL transmission resource, so that the network device based on the first IRS The array control parameter and the uplink reference signal are used to obtain the second IRS array control parameter.
  • the terminal device uses the first DL transmission resource to receive the first downlink signal and/or the first downlink data reflected by the IRS array using the control parameter of the second IRS array.
  • the terminal device needs to send the uplink reference signal first.
  • the terminal device can receive the first downlink signal and/or the first downlink data sent by the network device reflected by the IRS array using the second IRS array control parameter.
  • the IRS array uses the second IRS array control parameter to reflect the uplink signal sent by the terminal device, and the network device obtains an uplink signal and rate obtained when the terminal device's uplink signal and rate are greater than the first IRS array control parameter. That is to say, the adjusted control parameters of the second IRS array can improve the sum rate of uplink signals sent by the terminal device.
  • the uplink concatenated channel and the downlink concatenated channel between the terminal device and the network device do not have reciprocity
  • the resource indication information includes second indication information
  • the second indication information includes the second resource configuration information
  • the second resource configuration information is used to configure the second DL transmission resource and the second UL transmission resource
  • the second DL transmission resource includes a third time period
  • the second UL transmission resource includes a fourth time period
  • the third time period first In the fourth time period, the numbers of symbols included in the third time period and the fourth time period are the same or different.
  • the network device needs to combine the control parameters of the current IRS array according to the downlink channel information measured by the terminal device, Determine the control parameters of the adjusted IRS array, and complete the channel design. Therefore, the network device needs to configure the second DL transmission resources for transmitting downlink data and/or downlink signals first, and then configure the second UL transmission resources for transmitting downlink channel information measurement results. That is, the third time period precedes the fourth time period.
  • the network device may configure, among the symbols other than the symbols used for transmitting the resource indication information in the flexible time slot, one or more preceding consecutive symbols as DL symbols, and the remaining symbols as UL symbols.
  • the symbols with the symbol number 0 and the symbol number 1 are configured as DL symbols for transmitting resource indication information.
  • the symbols with the symbol number 2 to the symbol number 8 are configured as DL symbols, that is, the third time period includes 7 DL symbols.
  • the symbols numbered 10 to 12 are configured as UL symbols, that is, the fourth time period includes 3 UL symbols.
  • the symbol with symbol number 9 is configured as a flexible symbol for converting the downlink transmission mode to the uplink transmission mode.
  • the symbol with the symbol number 13 is configured as a DL symbol, which is used to transmit the control parameters of the IRS array determined by the network device to the IRS array.
  • one or more second DL transmission resources and one or more second UL transmission resources may also be configured in the flexible timeslot.
  • the third time period and the fourth time period may be implemented alternately.
  • the preceding third time period and the succeeding fourth time period can be regarded as a group of time periods, and one or more groups of the time periods are included in the flexible time slot.
  • the network device may alternately configure symbols other than the symbols used to transmit resource indication information in the flexible timeslot as DL symbols and UL symbols, and ensure that the DL symbols are configured first.
  • the symbols with the symbol number 0 and the symbol number 1 are configured as DL symbols for transmitting resource indication information.
  • the symbols with symbol number 2 and symbol number 3 are configured as DL symbols, that is, the third time period includes 2 UL symbols.
  • the symbols with the symbol number 5 and the symbol number 6 are configured as UL symbols, that is, the fourth time period includes 2 UL symbols.
  • the symbols with the symbol number 7 and the symbol number 8 are configured as DL symbols, that is, another third time period, including 2 DL symbols.
  • the symbols with the symbol number 10 and the symbol number 11 are configured as UL symbols, that is, another fourth time period, including 2 UL symbols.
  • the symbols with symbol number 4 and symbol number 9 are configured as flexible symbols for converting the downlink transmission mode to the uplink transmission mode.
  • the symbol with symbol number 12 is configured as a DL symbol, which is used to transmit the control parameters of the IRS array determined by the network device to the IRS array.
  • the method further includes: the target terminal device sends request information to the network device; the request information is used to request participation in the determination process of the control parameters of the IRS array; the target terminal device is at least one of the terminal devices .
  • the downlink channel information includes downlink direct channel information and downlink concatenated channel information.
  • the amount of downlink concatenated channel information data is relatively large, and the period of measurement and feedback is relatively long. Therefore, part of the terminal equipment parameter channel design can be selected to reduce the amount of measured data.
  • the target terminal device is a device that participates in determining the control parameters of the IRS array.
  • the target terminal device moves to the edge of a cell, channel design needs to be performed to improve the communication speed. Therefore, request information is sent to the network device, so that the network device can determine the device involved in determining the control parameters of the IRS array according to the request information.
  • the method further includes: the target terminal device uses the second DL transmission resource to receive the second downlink signal and the second downlink data sent by the network device.
  • the target terminal device obtains first channel information according to the second downlink signal and the second downlink data; the first channel information includes downlink direct channel information and downlink concatenated channel information.
  • the target terminal device sends the first channel information to the network device by using the second UL transmission resource.
  • the number of target terminal devices is multiple, and the transmission mode of the first channel information is a multiplexing transmission mode.
  • the network device can determine the control parameters of the IRS array based on the downlink channel measurement result of the target terminal device, thereby improving the channel optimization efficiency.
  • the second UL transmission resource further includes physical uplink shared channel PUSCH resource information configured by the network device for the target terminal device, and the PUSCH resource is used to transmit the first channel information.
  • the network device will only configure the physical uplink control channel PUCCH resource for the terminal device for transmitting control information.
  • the capacity of the PUCCH is small, and the transmission of the first channel information cannot be completed alone. Therefore, the network device also needs to configure PUSCH resources for the target terminal device. If the number of target terminal devices is multiple, the multiple target terminal devices can use the PUSCH and PUCCH to transmit on the allocated UL symbols using the multiplexing mode.
  • the first flexible symbol to the 1+i-th flexible symbol of the flexible time slot are used to transmit resource indication information, and i is a natural number; wherein, the size of i is determined by the network device according to one of the following or Several items are determined: the number of antennas for network equipment, the number of antennas for terminal equipment or target terminals, the number of terminal equipment or target terminals, the number of IRS arrays, and the number of reflective elements in the IRS array.
  • the resource indication information includes a resource configuration mode. Therefore, the terminal device needs to receive the resource indication information before it can configure the resources in the flexible time slot. Therefore, in the flexible timeslot, the first i symbols in the time domain are configured as downlink resources used for transmitting resource indication information.
  • the number of flexible timeslots used for determining the control parameter of the IRS array is multiple, and the first flexible timeslot among the multiple flexible timeslots is used for transmitting resource indication information.
  • the number of flexible timeslots is multiple, the first time periods of the multiple flexible timeslots are the same or different, and the second time periods of the multiple flexible timeslots are the same or different.
  • the number of flexible timeslots is multiple, the third time periods of the multiple flexible timeslots are the same or different, and the fourth time periods of the multiple flexible timeslots are the same or different.
  • the network device needs to use three flexible time slots to determine the control parameters of the IRS array, and mainly configure DL resources in the first flexible time slot and the second flexible time slot in the time domain, and do not need to feed back downlink channel measurements.
  • resources for transmitting the first channel information do not need to be configured.
  • Part of DL resources and part of UL resources are configured in the third flexible time slot, that is, both downlink channel measurement and feedback of downlink channel measurement results are taken into account.
  • the process of determining the control parameters of the IRS array is completed in the third flexible time slot, so as to avoid repeatedly adjusting the uplink and downlink transmission modes during the process of determining the control parameters of the IRS array, and reduce resource utilization.
  • the network device mainly configures DL resources in the first flexible time slot in the time domain, and does not need to feed back downlink channel measurement results, and is mainly used to measure the downlink channel of the IRS array 1 .
  • the symbols numbered 6 to 10 in the second flexible time slot are configured as UL symbols for feeding back downlink channel measurement results of the IRS array 1, and then the process of determining the control parameters of the IRS array 1 is completed first.
  • DL resources and UL resources are configured in the third flexible time slot to complete the process of determining the control parameters of the IRS array 2 .
  • the process of determining the control parameters of the IRS array can be completed step by step.
  • the IRS array or the control unit in the IRS array whose control parameters have been updated can gradually participate in the transmission process of the uplink and downlink signals, gradually improve the channel performance, and shorten the channel design period of the IRS-MIMO system.
  • the present application provides a resource allocation method.
  • the method may be performed by a network device (such as a base station) or a component in the network device (such as a chip system).
  • the method may include: the network device determines a resource indication information; resource indication information is used to indicate the uplink UL transmission resources and downlink DL transmission resources in the flexible time slot, and the flexible time slot is used to determine the control parameters of the intelligent reflective surface IRS array.
  • the network device sends resource indication information to the terminal device.
  • the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device are reciprocal
  • the resource indication information includes first indication information
  • the first indication information includes the first resource configuration information
  • the first resource configuration information is used to configure the first UL transmission resource and the first DL transmission resource
  • the first UL transmission resource includes a first time period
  • the first DL transmission resource includes a second time period
  • the first time period precedes In the second time period, the number of symbols included in the first time period and the second time period are the same or different.
  • the first indication information further includes a first IRS array control parameter
  • the method further includes: the network device uses the first UL transmission resource to receive an uplink reference reflected by the IRS array based on the first IRS array control parameter and obtain the second IRS array control parameter according to the uplink reference signal.
  • the network device sends the second IRS array control parameter to the IRS array by using the first DL transmission resource, so that the IRS array uses the second IRS array control parameter to perform UL transmission and DL transmission.
  • the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device do not have reciprocity
  • the resource indication information includes second indication information
  • the second indication information includes the second resource configuration information
  • the second resource configuration information is used to configure the second DL transmission resource and the second UL transmission resource
  • the second DL transmission resource includes a third time period
  • the second UL transmission resource includes a fourth time period
  • the third time period first In the fourth time period, the numbers of symbols included in the third time period and the fourth time period are the same or different.
  • the method further includes: the network device receives request information sent by the target terminal device; the request information is used to request participation in the determination process of the control parameters of the IRS array; the target terminal device is at least one of the terminal devices equipment.
  • the method further includes: the network device sends a downlink signal and downlink data to the target terminal device by using the second DL transmission resource.
  • the network device uses the second UL transmission resource to receive the first channel information sent by the target terminal device; the first channel information is channel information obtained by the target terminal device according to the downlink signal and downlink data, and the first channel information includes downlink direct channel information and downlink level Link channel information.
  • the method further includes: the network device obtains the third IRS array control parameter by using the first channel information.
  • the network device may determine the adjusted third IRS array control parameter according to the measurement result of the downlink channel information by the terminal device.
  • the third IRS array control parameter is sent to the IRS array, so that the IRS array reflects the incident signal based on the third IRS array control parameter to realize channel optimization.
  • the second UL transmission resource further includes physical uplink shared channel PUSCH resource information configured by the network device for the target terminal device, and the PUSCH resource is used to transmit the first channel information.
  • the first flexible symbol to the 1+i-th flexible symbol of the flexible time slot are used to transmit resource indication information, and i is a natural number; wherein, the size of i is determined by the network device according to one of the following or Several items are determined: the number of antennas for network equipment, the number of antennas for terminal equipment or target terminals, the number of terminal equipment or target terminals, the number of IRS arrays, and the number of reflective elements in the IRS array.
  • the method before the network device determines the resource indication information, the method further includes: the network device determines whether the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device are reciprocal.
  • the network device determines whether the uplink concatenation channel and the downlink concatenation channel between the network device and the terminal device are reciprocal, including: the network device presets the uplink between the network device and the terminal device. Concatenated channels and downlink concatenated channels are not reciprocal. Or, the network device determines, according to the location information of the terminal device, whether the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device are reciprocal.
  • the present application provides a resource allocation apparatus, the apparatus is applied to a terminal device, and the apparatus may include: a receiving module and a processing module.
  • the receiving module is used to obtain resource indication information; the resource indication information is used to indicate uplink UL transmission resources and downlink DL transmission resources in flexible time slots, and the flexible time slots are used to determine the control of the intelligent reflective surface IRS array parameter.
  • the processing module is configured to perform UL transmission and DL transmission based on the resource indication information.
  • the uplink concatenated channel and the downlink concatenated channel between the apparatus and the network device are reciprocal
  • the resource indication information includes first indication information
  • the first indication information includes first resource configuration information
  • the first resource configuration information is used to configure the first UL transmission resource and the first DL transmission resource
  • the first UL transmission resource includes a first time period
  • the first DL transmission resource includes a second time period
  • the first time period precedes the first time period. Two time periods, the number of symbols contained in the first time period and the second time period are the same or different.
  • the first indication information further includes the first IRS array control parameter.
  • the device also includes a sending module.
  • the sending module is configured to use the first UL transmission resource to send the uplink reference signal to the network device, so that the network device obtains the second IRS array control parameter based on the first IRS array control parameter and the uplink reference signal.
  • the receiving module is further configured to use the first DL transmission resource to receive the first downlink signal and/or the first downlink data reflected by the IRS array using the control parameter of the second IRS array.
  • the uplink concatenated channel and the downlink concatenated channel between the apparatus and the network device do not have reciprocity
  • the resource indication information includes second indication information
  • the second indication information includes the second resource configuration information
  • the second resource configuration information is used to configure the second DL transmission resource and the second UL transmission resource
  • the second DL transmission resource includes a third time period
  • the second UL transmission resource includes a fourth time period
  • the third time period first In the fourth time period, the numbers of symbols included in the third time period and the fourth time period are the same or different.
  • the apparatus is applied to a target terminal device, and the target terminal device is at least one of the terminal devices; the apparatus further includes a sending module.
  • the sending module is used for sending request information to the network device; the request information is used for requesting to participate in the determination process of the control parameters of the IRS array.
  • the receiving module is further configured to receive the second downlink signal and the second downlink data sent by the network device by using the second DL transmission resource.
  • the processing module is further configured to obtain first channel information according to the second downlink signal and the second downlink data; the first channel information includes downlink direct channel information and downlink concatenated channel information.
  • the sending module is further configured to send the first channel information to the network device by using the second UL transmission resource.
  • the second UL transmission resource further includes physical uplink shared channel PUSCH resource information configured by the network device for the device, and the PUSCH resource is used to transmit the first channel information.
  • the first flexible symbol to the 1+i-th flexible symbol of the flexible time slot are used to transmit resource indication information, and i is a natural number; wherein, the size of i is determined by the network device according to one of the following or Several items are determined: the number of antennas of network equipment, the number of antennas of device terminal devices or target terminals, the number of device terminal devices or target terminals, the number of IRS arrays, and the number of reflective elements in the IRS array.
  • the sending module and the receiving module may also be integrated together, such as a transceiver module, which is not specifically limited in this embodiment of the present application.
  • the resource allocation apparatus described in the third aspect may further include a storage module, where the storage module stores programs or instructions.
  • the processing module executes the program or the instruction
  • the resource allocation apparatus described in the third aspect can execute the resource allocation method described in the first aspect.
  • the resource allocation apparatus described in the third aspect may be a terminal device or a chip (system) or other components or components that can be provided in the terminal device, which is not limited in this application.
  • the present application provides a resource allocation apparatus, the apparatus is applied to a network device, and the apparatus may include: a processing module and a sending module.
  • the processing module is used to determine resource indication information; the resource indication information is used to indicate uplink UL transmission resources and downlink DL transmission resources in flexible time slots, and the flexible time slots are used to determine the control of the intelligent reflective surface IRS array parameter.
  • the sending module is used for sending resource indication information to the terminal device.
  • the uplink concatenated channel and the downlink concatenated channel between the apparatus and the terminal device are reciprocal, and the resource indication information includes first indication information, and the first indication information includes the first resource configuration information; the first resource configuration information is used to configure the first UL transmission resource and the first DL transmission resource; the first UL transmission resource includes a first time period, the first DL transmission resource includes a second time period, and the first time period precedes In the second time period, the number of symbols included in the first time period and the second time period are the same or different.
  • the first indication information further includes the first IRS array control parameter;
  • the apparatus further includes: a receiving module.
  • the receiving module is configured to use the first UL transmission resource to receive the uplink reference signal reflected by the IRS array based on the control parameter of the first IRS array.
  • the processing module is further configured to obtain the second IRS array control parameter according to the uplink reference signal.
  • the sending module is further configured to use the first DL transmission resource to send the second IRS array control parameter to the IRS array, so that the IRS array uses the second IRS array control parameter to perform UL transmission and DL transmission.
  • the uplink concatenated channel and the downlink concatenated channel between the apparatus and the terminal device do not have reciprocity
  • the resource indication information includes second indication information
  • the second indication information includes the second resource configuration information
  • the second resource configuration information is used to configure the second DL transmission resource and the second UL transmission resource
  • the second DL transmission resource includes a third time period
  • the second UL transmission resource includes a fourth time period
  • the third time period first In the fourth time period, the numbers of symbols included in the third time period and the fourth time period are the same or different.
  • the apparatus further includes: a receiving module.
  • the receiving module is used for receiving request information sent by the target terminal equipment; the request information is used for requesting participation in the determination process of the control parameters of the IRS array; the target terminal equipment is at least one of the terminal equipments.
  • the sending module is further configured to send downlink signals and downlink data to the target terminal device by using the second DL transmission resource.
  • the receiving module is further configured to use the second UL transmission resource to receive the first channel information sent by the target terminal equipment; the first channel information is the channel information obtained by the target terminal equipment according to the downlink signal and the downlink data, and the first channel information includes the downlink direct channel information and downlink concatenated channel information.
  • the second UL transmission resource further includes physical uplink shared channel PUSCH resource information configured by the apparatus for the target terminal device, and the PUSCH resource is used to transmit the first channel information.
  • the first flexible symbol to the 1+i-th flexible symbol of the flexible time slot are used to transmit resource indication information, and i is a natural number; wherein, the size of i is determined by the device according to one or more of the following The content of the item is determined: the number of antennas of the device, the number of antennas of the terminal equipment or the target terminal, the number of the terminal equipment or the target terminal, the number of IRS arrays, and the number of reflection units in the IRS array.
  • the processing module is further configured to determine whether the uplink concatenated channel and the downlink concatenated channel between the apparatus and the terminal device are reciprocal.
  • the processing module is specifically configured to preset the uplink concatenated channel and the downlink concatenated channel between the device and the terminal device without reciprocity.
  • the apparatus determines, according to the location information of the terminal equipment, whether the uplink concatenated channel and the downlink concatenated channel between the apparatus and the terminal equipment are reciprocal.
  • the sending module and the receiving module may also be integrated together, such as a transceiver module, which is not specifically limited in this embodiment of the present application.
  • the resource allocation apparatus may further include a storage module, where the storage module stores programs or instructions.
  • the processing module executes the program or the instruction
  • the resource allocation apparatus described in the fourth aspect can execute the resource allocation method described in the second aspect.
  • the resource allocation apparatus described in the fourth aspect may be a network device or a chip (system) or other components or components that can be provided in the network device, which is not limited in this application.
  • the present application provides a communication device, the device having the function of implementing the resource allocation method in the above-mentioned first aspect and any of the possible implementation manners.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the present application provides a communication apparatus, the apparatus having the function of implementing the resource allocation method in the second aspect and any of the possible implementation manners.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a communication device comprising: a processor and a memory; the memory is used to store computer-executed instructions, and when the communication device operates, the processor executes the computer-executed instructions stored in the memory, so as to enable the communication
  • the apparatus executes the first aspect and the second aspect as described above, and the resource allocation method in any of the possible implementation manners.
  • an embodiment of the present application provides a communication device, and the device may be a chip system, where the chip system includes a processor, and may also include a memory, for implementing the first aspect and the second aspect, and any one of them function of the resource allocation method in one possible implementation.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a communication device may be a circuit system, the circuit system includes a processing circuit, and the processing circuit is configured to execute the above-mentioned first and second aspects, as well as the resources in any of the possible implementation manners. allocation method.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when a computer executes the instructions, the computer executes the first aspect and the second aspect, and any of the possible The resource allocation method in the implementation.
  • the present application provides a computer program product comprising instructions, which, when the computer program product is run on a computer, causes the computer to perform the above-mentioned first and second aspects, and any of the possible The resource allocation method in the implementation.
  • FIG. 1 is a schematic diagram 1 of a communication network structure in the prior art provided by an embodiment of the present application;
  • FIG. 2 is a second schematic diagram of a communication network structure in the prior art provided by an embodiment of the present application;
  • 3 is a schematic diagram of the relationship between the signal-to-noise ratio of the transmitter and the sum rate of the receiver according to an embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of a communication network provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a reciprocity perspective provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a frame structure of a resource allocation method in the prior art provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram 1 of a resource allocation method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram 1 of a frame structure of a resource allocation method provided by an embodiment of the present application.
  • FIG. 10 is a second schematic diagram of a frame structure of a resource allocation method provided by an embodiment of the present application.
  • FIG. 11 is a third schematic diagram of a frame structure of a resource allocation method provided by an embodiment of the present application.
  • FIG. 12 is a fourth schematic diagram of a frame structure of a resource allocation method provided by an embodiment of the present application.
  • FIG. 13 is a fifth schematic diagram of a frame structure of a resource allocation method provided by an embodiment of the present application.
  • FIG. 14 is a second schematic diagram of a resource allocation method provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram 3 of a resource allocation method provided by an embodiment of the present application.
  • FIG. 16 is a first schematic structural diagram of a resource device provided by an embodiment of the present application.
  • FIG. 17 is a second schematic structural diagram of a resource device provided by an embodiment of the present application.
  • FIG. 18 is a third schematic structural diagram of a resource device provided by an embodiment of the present application.
  • FIG. 19 is a fourth schematic structural diagram of a resource device provided by an embodiment of the present application.
  • FIG. 20 is a fifth schematic structural diagram of a resource device provided by an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code Wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WIMAX worldwide interoperability for microwave access
  • public land mobile network public land mobile network
  • PLMN fifth generation
  • 5G fifth generation
  • new radio new radio
  • the network architecture involved in the embodiment of the present application is given as follows, referring to FIG. 4 , which is the architecture of the communication system to which the embodiment of the present application is applied.
  • the communication system includes a network device 100, one or more terminal devices 200 in communication with the network device 100 (eg, terminal device 1 to terminal device 4 in FIG. 4 ), and one or more IRS arrays (eg, IRS in FIG. 4 ) Array 1 and IRS Array 2).
  • the channel used for direct communication between the network device 100 and the terminal device 200 is called a direct channel (the dotted line shown in FIG. 4 ), including an uplink direct channel and a downlink direct channel.
  • the uplink direct channel is used for the terminal device 200 to send the uplink signal to the network device 100
  • the downlink direct channel is used for the network device 100 to send the downlink signal to the terminal device 200 .
  • the channel through which the network device 100 communicates with the terminal device 200 via the IRS array 300 is called a concatenation channel (as shown by the solid line in FIG. 4 ), including an uplink concatenated channel and a downlink concatenated channel.
  • the uplink concatenated channel is used for the terminal device 200 to send the uplink signal to the network device 100
  • the downlink concatenated channel is used for the network device 100 to send the downlink signal to the terminal device 200 .
  • the terminal devices 1 to 4 are terminal devices within the coverage of the cell signal of the network device. It is assumed that terminal equipment 2 and terminal equipment 4 are located in the center of the cell, and terminal equipment 1 and terminal equipment 3 are located at the edge of the cell.
  • the network equipment calls the same or different IRS arrays, configures the IRS array control parameters, and performs channel design to improve the channel performance with the terminal equipment.
  • the network equipment calls IRS array 1 and IRS array 2 to serve terminal equipment 3 located at the cell edge to obtain diversity gain and multiplexing gain, so as to improve the channel quality of terminal equipment 3 and improve transmission performance.
  • the network device calls the IRS array 1 to serve the terminal device 1 located at the cell edge, so that it can obtain higher diversity gain and reduce power consumption.
  • the terminal device when the terminal device receives the downlink signal reflected by an IRS array, the diversity gain can be obtained.
  • the terminal equipment receives the downlink signals transmitted by the multiple IRS arrays, and can obtain the multiplexing gain.
  • the channel design of IRS-MIMO reference may be made to the prior art, which is not specifically described in the embodiments of the present application.
  • IRS array 300 is a planar array containing a large number of reconfigurable passive elements (eg, low cost printed dipoles). Each passive element can be called a reflection unit. Each reflection unit reflects the incident signal with a specific phase offset, and cooperates to achieve beamforming or suppress interference at the designated receiving end.
  • reconfigurable passive elements eg, low cost printed dipoles.
  • Each passive element can be called a reflection unit.
  • Each reflection unit reflects the incident signal with a specific phase offset, and cooperates to achieve beamforming or suppress interference at the designated receiving end.
  • multiple IRS arrays 300 may form an IRS network.
  • the IRS array includes a large number of reflection units
  • one or more reflection units in the IRS array may be divided into one IRS sub-array, and one IRS array includes one or more IRS sub-arrays.
  • the network device 100 may refer to a device on the air interface of the access network that communicates with the wireless terminal through one or more cells.
  • a base station base transceiver station, BTS
  • BTS base transceiver station
  • NodeB, NB base station
  • Evolutional Node B, eNB or LTE evolved base station
  • the eNodeB can be a network device in a satellite system, device to device (D2D), Internet of Vehicles, machine to machine (M2M) system, or the network device can also be a relay station, access Points, in-vehicle devices, wearable devices, network-side devices in future 5G networks or networks after 5G, or network devices in future evolved PLMN networks, etc.
  • the device implementing the function of the network device 100 may be a network device, or may be a device (such as a chip system in the network device) that supports the network device to implement the function.
  • the network device 100 may perform attribute management on the air interface and coordinate the attributes of the air interface.
  • the network device 100 includes various forms of macro base stations, micro base stations (also referred to as small cells), relay devices such as relay stations or chips of relay devices, transmission reception points (TRPs), evolved network nodes ( evolved Node B (eNB), next-generation network node (gNodeB, gNB), and evolved Node B (ng evolved Node B, ng-eNB) connected to the next-generation core network, etc.
  • the network equipment may be a base band unit (BBU) and a remote radio unit (RRU).
  • BBU base band unit
  • RRU remote radio unit
  • the network device can be a baseband pool (BBU pool) and an RRU.
  • the terminal device 200 involved in the embodiments of the present application includes, but is not limited to, a vehicle-mounted device, a wearable device, a computing device, a chip built into the computing device, or other processing devices connected to a wireless modem; it may also include a cellular phone.
  • cellular phone personal communication service (PCS) phone, cordless phone, session initiation protocol (SIP) phone, smart phone (smart phone), personal digital assistant (personal digital assistant, PDA) computer , tablet computer, laptop computer (laptop computer), wireless modem (modem), handheld device (handheld), wireless local loop (wireless local loop, WLL) station.
  • the wireless terminal may also be a subscriber unit (subscriber unit, SU), a subscriber station (subscriber station, SS), a mobile station (mobile station, MB), a mobile station (mobile), a remote station (remote station, RS), a remote terminal ( remote terminal, RT), user terminal (user terminal, UT), terminal equipment (user device, UD), user equipment (user equipment, UE), wireless data card, subscriber unit (subscriber unit), machine type communication (machine type) communication, MTC) terminal (terminal), terminal device (terminal device), customer premise equipment (CPE), access terminal (access terminal, AT), access point (accessPoint, AP), user agent (user agent) , UA), artificial intelligence (artificial intelligence, AI) terminals, etc.
  • the device implementing the function of the terminal device 200 may be a terminal device, or may be a device (such as a chip system in the terminal device) that supports the terminal device to implement the function.
  • communication in the embodiments of the present application may also be described as “data transmission”, “information transmission”, “signal transmission” or “transmission”, and so on.
  • the network device and the terminal device in this embodiment of the present application may be implemented by different devices.
  • FIG. 5 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • the communication device includes at least one processor 501 , communication line 502 , memory 503 and at least one communication interface 504 .
  • the memory 503 may also be included in the processor 501 .
  • the processor 501 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 502 may include a path to communicate information between the components described above.
  • the communication interface may be a module, a circuit, a bus, an interface, a transceiver, or other devices capable of implementing a communication function, and is used to communicate with other devices.
  • the transceiver can be an independently set transmitter, which can be used to send information to other devices, and the transceiver can also be an independently set receiver, used to send information from other devices.
  • the device receives the information.
  • the transceiver may also be a component that integrates the functions of sending and receiving information, and the specific implementation of the transceiver is not limited in this embodiment of the present application.
  • Memory 503 may be volatile memory or nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • DR RAM direct rambus RAM
  • the memory may exist independently and be connected to the processor 501 through the communication line 502 .
  • the memory 503 may also be integrated with the processor 501 .
  • the memory 503 is used for storing computer-executed instructions for implementing the solutions of the present application, and the execution is controlled by the processor 501 .
  • the processor 501 is configured to execute the computer-executed instructions stored in the memory 503, thereby implementing the resource allocation method provided by the following embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application code, instructions, computer programs, or other names, which are not specifically limited in the embodiments of the present application.
  • the processor 501 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 5 .
  • the communication device may include multiple processors, such as the processor 501 and the processor 505 in FIG. 5 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the above communication apparatus may be a general-purpose device or a dedicated device, and the embodiment of the present application does not limit the type of the communication apparatus.
  • the structures illustrated in the embodiments of the present application do not constitute a specific limitation on the communication device.
  • the communication device may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the number of antennas configured by the network device is N
  • the number of antennas configured by the terminal device is M
  • the number of reflection units in the IRS array is K.
  • M, N and K are positive integers.
  • the direct channel matrix between the network equipment and the terminal equipment is G M ⁇ N .
  • the concatenated channel between the network device and the terminal device includes the channel between the network device and the IRS array and the channel between the IRS array and the terminal device.
  • the channel matrix between the network device and the IRS array is (H 0 ) K ⁇ N
  • the channel matrix between the IRS array and the terminal device is R M ⁇ K .
  • the control parameters of the reflection unit in the IRS array can be adjusted by designing the phased matrix ⁇ KxK of the IRS array to dynamically adjust the performance of the IRS-MIMO system.
  • the control parameters of each reflection unit in the IRS array constitute the control parameters of the IRS array.
  • the system capacity C can be determined by the following formula.
  • Network equipment can generate concatenated channels required by terminal equipment by adjusting ⁇ by design.
  • w i represents the transmit precoding vector of the i-th user among the u users, which is used to enhance the link gain and eliminate the interference between multi-user data streams.
  • p i represents the transmit power allocated by the network device to the i-th terminal device among the u terminal devices.
  • the diag function is used to convert a matrix into a vector, or convert a vector into a matrix.
  • diag( ⁇ ) is used to indicate that the elements on the diagonal in the matrix ⁇ are taken to form a new column vector.
  • the superscript "H" on the vector or matrix is used to indicate the operation of taking the conjugate transpose of the current vector or matrix. for example, It is used to represent the operation of taking the conjugate transpose of the vector w i , is the conjugate transpose vector of vector w i .
  • the acquisition of the parameter set needs to input the downlink channel information of the terminal equipment, including the downlink direct channel information ⁇ g i ⁇ between the network equipment and the terminal equipment and the downlink concatenated channel information ⁇ diag( r i )H 0 ⁇ .
  • the network device can obtain the control parameters of the IRS array that maximize the system and rate, that is, the control parameters of the reflection unit in the IRS array.
  • the channel design is completed.
  • the designed channel can guarantee the maximum downlink transmission rate.
  • the network device needs to send downlink data and downlink signals to the terminal device, and the terminal device then performs channel measurement based on the downlink data and the downlink signal. After that, the terminal device feeds back downlink channel information obtained by measurement to the network device, so that the network device can design the control parameters of the IRS array according to the measurement result of the downlink channel information.
  • the network device Due to the large amount of downlink concatenated channel information in the downlink channel information, the period of measurement and feedback is long, the efficiency of IRS array parameter design is low, and the channel design efficiency of the IRS-MIMO system is relatively high. Low.
  • the uplink and downlink transmission of the communication system use the same frequency domain resources.
  • the time interval between uplink and downlink signals is short enough, it can be considered that the channel fading of the uplink channel and the downlink channel is basically the same, that is, the uplink channel and the downlink channel are reciprocal.
  • the network device can estimate the channel fading to be experienced by sending the downlink signal by detecting the uplink reference signal sent by the terminal device.
  • the uplink concatenated channel and the downlink concatenated channel can also have reciprocity, but limited by the IRS array, the reciprocity of the uplink concatenated channel and the downlink concatenated channel is limited to Within a certain range of incident angle and reflection angle. That is, the IRS array has local reciprocity.
  • NO is used to represent the normal vector perpendicular to the plane of the IRS array
  • AO is used to represent the incident signal (which can also be described as incident electromagnetic waves)
  • OB is used to represent the reflected signal (which can also be described as reflection). electromagnetic waves).
  • the incident signal received by the IRS array in Fig. 6 and the reflected transmitted signal are both on the AOB plane.
  • the angle between AO and ON is the incident angle
  • the angle between ON and OB is the reflection angle.
  • ⁇ 1 represents the minimum incident angle
  • ⁇ 2 represents the maximum incident angle
  • ⁇ 1 represents the minimum reflection angle
  • ⁇ 2 represents the maximum reflection angle.
  • FIG. 7 is a schematic diagram of time domain resources configured according to the resource allocation method.
  • the allocation method of time domain resources is to configure the uplink time slot first, and the network device uses the uplink time slot to receive the uplink reference signal sent by the terminal device. After that, the network device estimates the uplink direct channel information and the uplink concatenated channel information according to the uplink reference signal and the current IRS array parameters. Based on the reciprocity of the channel, the IRS array parameters that can maximize the downlink transmission rate are determined by using the uplink direct channel information and the uplink concatenated channel information.
  • the IRS array parameters are transmitted to the IRS array controller on the configured configuration time resource to complete the reconfiguration of the IRS array parameters.
  • the network device transmits downlink signals to the IRS array in the configured downlink time slot, and the IRS array transmits downlink signals to the terminal device using the reconfigured IRS array parameters to complete the downlink transmission.
  • time domain resources of multiple cycles are configured. It is necessary to configure the time advance (time advance, TA) guard time slot used to adjust the alignment of the uplink transmission time slot between different periods, so as to ensure that the uplink signal sent by the terminal device can reach the network device at the same time, and ensure that the terminal device
  • the orthogonality of uplink signals helps to eliminate uplink signal interference between terminal devices.
  • the guard time slot can be described as a flexible time slot or the like.
  • the resource allocation method in the prior art has at least the following problems: First, the resource allocation method is based on the reciprocity of the uplink and downlink concatenated channels. However, as can be seen from the above introduction to the reciprocity , at the IRS array, it is necessary to ensure that the incident angle and reflection angle of the signal are within a certain angle range, so as to ensure the reciprocity of the channel. Due to the limitation of channel mutuality, the current resource allocation method has certain limitations. Second, allocating configuration time resources dedicated to configuring the parameters of the IRS array will lead to a reduction in the utilization rate of transmission resources. Based on this, less configuration time resources are allocated in the prior art to alleviate the problem of reduced utilization of transmission resources.
  • the IRS array controller needs to complete receiving and reconfigure the IRS array parameters in a relatively short time, which increases the performance requirements of the IRS array controller.
  • downlink control channel resources are generally configured at the beginning of the frame. Then, the current resource allocation method will affect the capacity and reliability of the downlink control channel.
  • an embodiment of the present application provides a resource allocation method. As shown in FIG. 8 , the method may include S801-S804.
  • the network device determines resource indication information.
  • the resource indication information is used to indicate uplink (uplink, UL) transmission resources and downlink (downlink, DL) transmission resources in the flexible time slot, and the flexible time slot is used to determine the control parameters of the IRS array.
  • a guard interval for switching between uplink and downlink transmission modes is configured between the uplink subframe and the downlink subframe.
  • the guard interval can be implemented by a flexible time slot, and the flexible time slot can also be described as a guard interval. time slot. Therefore, using the flexible time slot to complete the setting of the control parameters of the IRS array can not affect the signal transmission between the existing network equipment and the terminal equipment.
  • the time domain resources used for determining the control parameters of the IRS array can be flexibly configured, thereby saving the overhead of the IRS-MIMO system.
  • a scheduled transmission resource includes one or multiple consecutive sub-channels (sub-channels) (not shown in FIG. 9 ) in the frequency domain, and each sub-channel In the frequency domain, it includes a plurality of consecutive resource blocks (resource blocks, RBs), such as 10 RBs, and in the time domain, it includes one subframe (subframe) or one time slot (slot). The following takes the time slot as an example for description.
  • FIG. 9 is a schematic diagram 1 of a time domain resource provided by an embodiment of the present application.
  • the resource pool corresponding to the terminal device includes time unit 0, time unit 1, time unit 2, time unit 3, time unit 4, time unit 5, time unit 6, time unit 7, time unit 8 , time unit 9, . . .
  • the resource pool may include one or more consecutive sub-channels (sub-channels) in the frequency domain, and one sub-channel may include several consecutive RBs in the frequency domain.
  • a time unit may include one or more small time units in the time domain, and the time unit may be composed of slots, mini-slots, subframes, and radio frames. , transmission time interval (transmission time interval, TTI) and other possible time units of time granularity. It should be understood that the embodiment of the present application does not specifically limit the bandwidth of the time unit, and the number of subchannels included in the time unit and the size of each subchannel may be configured or preconfigured by the network device.
  • a time unit is described as a time slot in the time domain, the time slot includes 14 symbols, and the 14 symbols are sequentially numbered from left to right from 0 to 13. There are 14 symbols.
  • any symbol may be configured or preconfigured by the network device as a symbol containing UL transmission resources (also referred to as UL symbols), symbols containing DL transmission resources (also referred to as DL symbols), and/or containing Symbol used for guard interval and/or automatic gain control.
  • the symbol of the guard interval and/or automatic gain control can be used for the terminal equipment to perform transceiving conversion or automatic gain control, and can also be referred to as a flexible symbol.
  • the symbols numbered 0 are configured as DL symbols
  • the symbols numbered 1 and 2 are configured as UL symbols.
  • the network device configures at least the first symbol starting in the time domain in the flexible time slot used to determine the IRS array control parameter as a DL symbol, which is used to transmit resource indication information to the terminal device, the resource indication
  • the information may be downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the symbol number 0 is configured as a DL symbol.
  • the resource indication information is used to indicate the starting position and number of UL symbols and the starting position and number of DL symbols in the flexible slot.
  • the number of DL symbols required for the resource indication information is determined by the network device according to one or more of the following: the number of antennas of the network device, the number of antennas of the terminal device, the number of terminal devices, the number of IRS arrays, the reflections in the IRS array number of units. That is to say, the network device uses the first flexible symbol to the 1+i-th flexible symbol of the flexible time slot for transmitting resource indication information, where i is a natural number. The network device may set the value of i according to the size of the data amount of the resource indication information.
  • the network device configures three symbols with symbol numbers from 0 to 2 as DL symbols for transmitting resource indication information.
  • the network device before determining the resource indication information, the network device needs to determine whether the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device are reciprocal. With different reciprocity, different resource allocation methods can be determined to achieve efficient determination of IRS array control parameters and improve channel design efficiency.
  • the network device presets that the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device do not have reciprocity. Or, the network device determines, according to the location information of the terminal device, whether the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device are reciprocal.
  • the network device can obtain the incident angle range and the reflection angle range that enable the uplink concatenated channel and the downlink concatenated channel to have reciprocity.
  • the network device predicts the angle of the reflected signal of the IRS array according to the distribution of the IRS array, the distribution of terminal devices, and the angle of the incident signal. Then, it is judged whether the incident angle of the uplink signal is within the range of the incident angle, and whether the reflection angle is within the range of the reflection angle. And determine whether the incident angle of the downlink signal is within the range of the incident angle, and whether the reflection angle is within the range of the reflection angle. Thereby, it is determined whether the uplink concatenated channel and the downlink concatenated channel have reciprocity.
  • the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device are reciprocal.
  • the resource indication information includes first indication information, where the first indication information includes first resource configuration information.
  • the first resource configuration information is used to configure the first UL transmission resource and the first DL transmission resource.
  • the first UL transmission resource includes a first time period
  • the first DL transmission resource includes a second time period
  • the number of symbols included in the first time period and the second time period are the same or different .
  • the uplink concatenated channel and the downlink concatenated channel are reciprocal.
  • the network device can determine the IRS array control parameters according to the uplink reference signal sent by the terminal device. Therefore, when configuring the resources in the flexible timeslot, first configure the UL resources for transmitting uplink reference signals, and then configure the DL resources for transmitting URL array control parameters and downlink signals.
  • the network device may configure, among the symbols other than the symbols used for transmitting resource indication information in the flexible time slot, one or more preceding consecutive symbols as UL symbols, and the remaining symbols as DL symbols.
  • the symbols with the symbol number 0 and the symbol number 1 are configured as DL symbols for transmitting resource indication information.
  • the symbols numbered 3 to 8 are configured as UL symbols, that is, the first time period includes 6 UL symbols.
  • the symbols with the symbol number 9 to the symbol number 13 are configured as DL symbols, that is, the second time period includes 5 DL symbols.
  • the symbol with the symbol number 2 is configured as a flexible symbol for converting the downlink transmission mode to the uplink transmission mode. That is, it is realized that the first period of time precedes the second period of time in the time domain, and the length of the first period of time and the length of the second period of time are the same or different.
  • the network device may alternately configure symbols in the flexible time slot other than the symbols used for transmitting resource indication information as UL symbols and DL symbols, and ensure that the UL symbols are configured first.
  • the symbols with the symbol number 0 and the symbol number 1 are configured as DL symbols for transmitting resource indication information.
  • the symbols with the symbol number 3 to the symbol number 5 are configured as UL symbols, that is, the first time period includes 3 UL symbols.
  • the symbols with the symbol number 6 to the symbol number 8 are configured as DL symbols, that is, the second time period includes 3 DL symbols.
  • the symbols with the symbol number 10 and the symbol number 11 are configured as UL symbols, that is, another first time period, including 2 UL symbols.
  • the symbol with the symbol number of 12 is configured as a DL symbol, that is, another second time period, including 1 DL symbol.
  • the symbols with symbol number 2 and symbol number 9 are configured as flexible symbols for converting the downlink transmission mode to the uplink transmission mode.
  • the IRS array confirmation process can be completed, and the symbol with symbol number 13 is configured as a flexible symbol.
  • the symbol with the symbol number 13 is used to convert the downlink transmission mode to the uplink transmission mode, so as to reduce the impact on the uplink transmission resource time unit 4 .
  • the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device do not have reciprocity
  • the resource indication information includes second indication information
  • the second indication information includes the second resource configuration information.
  • the second resource configuration information is used to configure the second DL transmission resource and the second UL transmission resource.
  • the second DL transmission resource includes a third time period
  • the second UL transmission resource includes a fourth time period
  • the third time period precedes the fourth time period
  • the number of symbols contained in the third time period and the fourth time period is the same or different .
  • the uplink concatenated channel and the downlink concatenated channel are not reciprocal.
  • the network device needs to design the control parameters of the IRS array according to the measurement results of the downlink channel. Therefore, when configuring the resources in the flexible timeslot, first configure DL resources for transmitting downlink signals and downlink data, and then configure UL resources for transmitting uplink signals and uplink data.
  • the downlink concatenated channel has a large amount of information and data. If all terminal devices participate in the measurement, the measurement period will be long and the channel design efficiency will be reduced. Therefore, some of the target terminal devices can be used to participate in determining the control parameters of the IRS array.
  • the network device receives the request information sent by the target terminal device.
  • the request information is used to request participation in the determination process of the control parameters of the IRS array.
  • the target terminal device is at least one terminal device among the terminal devices. For example, when a terminal device moves to the edge of a cell and needs to perform channel optimization, it sends request information to the network device. Or, if a terminal device needs to obtain better communication quality, it needs to perform channel optimization, and then it needs to send request information to the network device.
  • the network device can determine the target terminal device according to the received request information, and then determine the terminal device that needs to send the resource indication information.
  • the number of DL symbols required by the resource indication information is determined by the network device according to one or more of the following: the number of antennas of the network device, the number of antennas of the target terminal device, the number of target terminal devices, the number of Quantity, the number of reflective elements in the IRS array.
  • the network device may configure, among the symbols other than the symbols used for transmitting the resource indication information in the flexible time slot, one or more preceding consecutive symbols as DL symbols, and the remaining symbols as UL symbols.
  • the symbols with the symbol number 0 and the symbol number 1 are configured as DL symbols for transmitting resource indication information.
  • the symbols with the symbol number 2 to the symbol number 8 are configured as DL symbols, that is, the third time period includes 7 DL symbols.
  • the symbols numbered 10 to 12 are configured as UL symbols, that is, the fourth time period includes 3 UL symbols.
  • the symbol with symbol number 9 is configured as a flexible symbol for converting the downlink transmission mode to the uplink transmission mode.
  • the symbol with symbol number 13 is configured as a DL symbol, which is used to transmit the control parameters of the IRS array determined by the network device to the IRS array.
  • the network device may alternately configure symbols other than the symbols used for transmitting resource indication information in the flexible time slot as DL symbols and UL symbols, and ensure that the DL symbols are configured first.
  • the symbols with the symbol number 0 and the symbol number 1 are configured as DL symbols for transmitting resource indication information.
  • the symbols with symbol number 2 and symbol number 3 are configured as DL symbols, that is, the third time period includes 2 UL symbols.
  • the symbols with the symbol number 5 and the symbol number 6 are configured as UL symbols, that is, the fourth time period includes 2 UL symbols.
  • the symbols with the symbol number 7 and the symbol number 8 are configured as DL symbols, that is, another third time period, including 2 DL symbols.
  • the symbols with the symbol number 10 and the symbol number 11 are configured as UL symbols, that is, another fourth time period, including 2 UL symbols.
  • the symbols with symbol number 4 and symbol number 9 are configured as flexible symbols for converting the downlink transmission mode to the uplink transmission mode.
  • the symbol with symbol number 12 is configured as a DL symbol, which is used to transmit the control parameters of the IRS array determined by the network device to the IRS array. After the network device determines the first 13 symbols, the IRS array confirmation process can be completed, and the symbol with symbol number 13 is configured as a flexible symbol. Alternatively, the symbol with the symbol number 13 is used to convert the downlink transmission mode to the uplink transmission mode, so as to reduce the impact on the uplink transmission resource time unit 4 .
  • the second UL transmission resource further includes physical uplink shared channel (physical uplink shared channel, PUSCH) resource information configured by the network device for the target terminal device, and the PUSCH resource is used to transmit the first channel information.
  • the first channel information includes downlink direct channel information and downlink concatenated channel information.
  • the network device when the terminal device has no data transmission requirements, the network device will only configure physical uplink control channel (physical uplink control channel, PUCCH) resources for the terminal device to transmit control information.
  • PUCCH physical uplink control channel
  • the capacity of the PUCCH is small, and the transmission of the first channel information cannot be completed alone. Therefore, the network device also needs to configure PUSCH resources for the target terminal device. If the number of target terminal devices is multiple, the multiple target terminal devices can use the PUSCH and PUCCH to transmit on the allocated UL symbols using the multiplexing mode.
  • the resource indication information is further used to indicate the number of flexible time slots for determining the control parameter of the IRS array.
  • the process of determining the control parameters of the IRS array may not be completed by using one flexible time slot resource.
  • the network device needs to configure multiple flexible time slot resources for determining the control parameters of the IRS array.
  • the allocation manner of the UL resource and the DL resource in each flexible time slot is as described above.
  • the allocation results of UL resources and DL resources in each flexible time slot are the same or different.
  • the network device configures the first i symbols in the first flexible time slot in the time domain among the plurality of flexible time slots used for determining the control parameters of the IRS array to be used for transmitting the resource indication information DL resources.
  • the resource indication information includes the number of flexible time slots and the allocation result of UL resources and DL resources in each flexible time slot. Then, DL resources for transmitting resource indication information do not need to be configured in the following flexible time slots.
  • the network device needs to determine the control parameters of two IRS arrays, IRS array 1 and IRS array 2 .
  • the network device determines that three flexible time slots (ie, time unit 3, time unit 8, and time unit 13) need to be allocated resources for determining the IRS array 1 and IRS array 2 control parameter.
  • the allocation results of the UL resources and the DL resources in the three flexible time slots are the same or different.
  • the network equipment mainly configures DL resources in the first flexible time slot (ie time unit 3) and the second flexible time slot (ie time unit 8), and no feedback is required
  • the downlink channel measurement result that is, the resource for transmitting the first channel information does not need to be configured.
  • Part of the DL resources and part of the UL resources are configured in the third flexible time slot (ie, time unit 13 ), that is, both downlink channel measurement and feedback of downlink channel measurement results are taken into account.
  • the process of determining the control parameters of the two IRS arrays is completed in the third flexible time slot, so as to avoid repeatedly adjusting the uplink and downlink transmission modes during the process of determining the control parameters of the IRS arrays, and reduce resource utilization.
  • the network device mainly configures DL resources in the first flexible time slot (ie, time unit 3), and does not need to feed back downlink channel measurement results, which is mainly used for IRS array 1.
  • Downlink channel measurement Configure the symbols numbered 6 to 10 in the second flexible time slot (that is, time unit 8) as UL symbols to feed back the downlink channel measurement results of IRS array 1, and then complete the control parameters of IRS array 1 first determination process.
  • the third flexible time slot ie, the time unit 13
  • the process of determining the control parameters of the IRS array can be completed step by step.
  • the IRS array or the control unit in the IRS array whose control parameters have been updated can gradually participate in the transmission process of the uplink and downlink signals, gradually improve the channel performance, and shorten the channel design period of the IRS-MIMO system.
  • the network device determines that multiple flexible time slots need to be configured to determine the control parameters of the IRS array, then the time domain
  • all the resources in the first flexible slot are configured as DL resources. That is, only the second DL transmission resource is configured in the first flexible time slot, and the second UL transmission resource is not configured. That is, only the third time period is included in the first flexible time slot, and the fourth time period is not included.
  • the symbols in the last flexible time slot in the time domain can also be configured as UL transmission resources for transmitting downlink channel measurement results. In this case, only the second UL transmission resource is configured in the last flexible time slot, and the second DL transmission resource is not configured. That is, the last flexible time slot only includes the fourth time period and does not include the third time period.
  • the network device can use the first flexible time slot Only the first DL transmission resource for transmitting the resource indication information is configured in the above, and the first UL transmission resource is not configured. That is, the first flexible time slot only includes the first time period and does not include the second time period.
  • the symbols in the last flexible time slot in the time domain can also be configured as DL transmission resources for transmitting the determined IRS array control parameters, downlink signals and downlink data. In this case, only the first DL transmission resource is configured in the last flexible time slot, and the first UL transmission resource is not configured. That is, only the second time period is included in the last flexible time slot, and the first time period is not included.
  • the network device needs to configure control parameters of one IRS array for multiple terminal devices.
  • the first uplink concatenated channel and the first downlink concatenated channel between the first terminal device and the network device among the multiple terminal devices are reciprocal, and the second terminal device and the network device are reciprocal.
  • the second cascade channel and the second cascade channel are not reciprocal between devices.
  • the number thresholds of the first terminal device and the second terminal device can be preconfigured. For example, the quantity threshold is 80%.
  • the number of the first terminal devices exceeds 80% of the total number of terminal devices. Then, the network device sets the IRS array control parameters so that the first uplink concatenated channel and the first downlink concatenated channel are reciprocal, and the second uplink concatenated channel and the second downlink concatenated channel are reciprocal. After that, the network device may determine the resource indication information according to the method described in the above scenario where the uplink concatenated channel and the downlink concatenated channel are reciprocal.
  • the number of second terminal devices exceeds 80% of the total number of terminal devices. Then, the network device may determine the resource indication information according to the method described in the above scenario where the uplink concatenated channel and the downlink concatenated channel do not have reciprocity.
  • the channel design efficiency can also be improved.
  • the network device sends resource indication information to the terminal device.
  • the network device sends the resource indication information to the device terminal, so that the device terminal clearly needs the flexible time slot for determining the IRS array control parameter and the resources in the flexible time slot that can be used for UL transmission and DL transmission.
  • the network device sends first signaling to the terminal device, where the first signaling includes the resource indication information, and the first signaling includes radio resource control (radio resource control, RRC) signaling, media access control (media access control) signaling , MAC) signaling, or at least one of physical layer signaling.
  • RRC radio resource control
  • media access control media access control
  • MAC media access control
  • the network device can also determine different resource indication information according to the current terminal device location, the IRS array to be used, the IRS array configuration and other information, flexibly and in real time according to the resources in the flexible time slot indicated by the terminal device demand, and improve the channel design. effectiveness.
  • the network device determines the resource indication information according to the request information sent by the terminal device. Then, in step S802, the network device sends resource indication information to the target terminal device. That is, only the target terminal equipment is required to measure the downlink channel.
  • the terminal device acquires resource indication information.
  • the terminal device receives the resource indication information sent by the network device to complete the configuration of the UL resource and the DL resource in the flexible timeslot.
  • the terminal device performs UL transmission and DL transmission based on the resource indication information.
  • the terminal device completes the configuration of UL resources and DL resources in the flexible time slot in the above step S803, then UL transmission and DL transmission can be performed based on the configuration result.
  • the resource indication information is different in the two scenarios where the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device have reciprocity and do not have reciprocity. Then, the implementation manner of step S804 in the two scenarios is described in detail as follows.
  • step S804 may be implemented as step S1401-step S1404.
  • the terminal device sends an uplink reference signal to the network device by using the first UL transmission resource.
  • the network device obtains the second IRS array control parameter according to the first IRS array control parameter and the uplink reference signal.
  • the first IRS array control parameter is a historical control parameter of the IRS array or a control parameter preconfigured by the network device for the IRS array, which is not specifically limited in this embodiment of the present application.
  • the resource indication information received by the terminal device includes first indication information
  • the first indication information may include, in addition to the first resource configuration information introduced in step S801, also include: The first IRS array control parameter. Then, the IRS array controls the reflected uplink reference signal based on the first IRS array parameter.
  • the symbols with the symbol number 3 to the symbol number 8 are the first UL transmission resources.
  • the network device sends the second IRS array control parameter to the IRS array by using the first DL transmission resource.
  • the symbols with the symbol number 9 to the symbol number 13 are the first DL transmission resources.
  • the IRS array uses the second IRS array control parameter to perform UL transmission and DL transmission.
  • the IRS array can use the second IRS array control parameter to reflect the received uplink signal and downlink signal, thereby realizing UL transmission and DL transmission.
  • step S804 may be implemented as step S1501-step S1505.
  • the network device sends the downlink signal and the downlink data to the target terminal device by using the second DL transmission resource.
  • the symbols with the symbol number 2 to the symbol number 8 are the second DL transmission resources.
  • the target terminal device obtains first channel information according to the downlink signal and the downlink data.
  • the first channel information includes downlink direct channel information and downlink concatenated channel information.
  • the target terminal device sends the first channel information to the network device by using the second UL resource.
  • the symbols with the symbol number 10 to the symbol number 12 are the second UL transmission resources.
  • the network device obtains the third IRS array control parameter according to the first channel information.
  • the IRS array uses the third IRS array control parameter to perform UL transmission and DL transmission.
  • the IRS array can use the third IRS array control parameter to reflect the received uplink signal and downlink signal, thereby realizing UL transmission and DL transmission.
  • step S801 in the process of judging whether the uplink concatenated channel and the downlink concatenated channel between the network device and the terminal device are reciprocal, there is a way of preset uplink concatenation. Channels and downlink concatenated channels are not reciprocal. Then, in the current scenario, the network device determines the resource indication information, and determines the control parameters of the third IRS array through the above steps S1501-S1505. After that, the network device determines again whether the uplink concatenated channel and the downlink concatenated channel have reciprocity according to the third IRS array control parameter. If there is reciprocity, when the IRS array control parameter needs to be determined later, the network device determines the resource indication information according to the method described in the above scenario with reciprocity. Otherwise, the resource indication information is determined according to the method described above in the scenario without reciprocity.
  • the resource allocation method provided by the present application can utilize flexible time slot resources to determine the control parameters of the IRS array without affecting the transmission of uplink data and downlink data. And will not reduce the resource utilization in the existing frame structure.
  • the method for receiving feedback information and the method for sending feedback information provided by the embodiments of the present application are described in detail above with reference to FIG. 8 , FIG. 14 and FIG. 15 .
  • the resource allocation apparatus provided by the embodiment of the present application is described in detail below with reference to FIG. 16 , FIG. 17 , FIG. 18 , FIG. 19 , and FIG. 20 .
  • FIG. 16 is a schematic structural diagram 1 of a resource allocation apparatus provided by an embodiment of the present application.
  • the resource allocation apparatus 1600 includes: a receiving module 1601 and a processing module 1602 .
  • the resource allocation apparatus 1600 may be used to implement the functions of the terminal equipment involved in the foregoing method embodiments.
  • the resource allocation apparatus 1600 may be an independent terminal device, such as a handheld terminal device, a vehicle-mounted terminal device, a vehicle user device, etc., or may be a chip or a chip system included in the terminal device.
  • the receiving module 1601 is configured to obtain resource indication information.
  • the resource indication information is used to indicate the uplink UL transmission resources and the downlink DL transmission resources in the flexible time slot, and the flexible time slot is used to determine the control parameters of the intelligent reflective surface IRS array.
  • the processing module 1602 is configured to perform UL transmission and DL transmission based on the resource indication information.
  • the uplink concatenated channel and the downlink concatenated channel between the resource allocation apparatus 1600 and the network device are reciprocal.
  • the resource indication information includes first indication information, and the first indication information includes first resource configuration information; the first resource configuration information is used to configure the first UL transmission resource and the first DL transmission resource; the first UL transmission resource Including a first time period, the first DL transmission resource includes a second time period, the first time period precedes the second time period, and the number of symbols contained in the first time period and the second time period are the same or different.
  • the first indication information further includes the first IRS array control parameter.
  • the resource allocation apparatus 1600 further includes a sending module 1603 .
  • the sending module 1603 is configured to send an uplink reference signal to the network device by using the first UL transmission resource, so that the network device obtains the second IRS array control parameter based on the first IRS array control parameter and the uplink reference signal.
  • the receiving module 1601 is further configured to use the first DL transmission resource to receive the first downlink signal and/or the first downlink data reflected by the IRS array using the control parameter of the second IRS array.
  • the uplink concatenated channel and the downlink concatenated channel between the resource allocation apparatus 1600 and the network device do not have reciprocity.
  • the resource indication information includes second indication information, and the second indication information includes second resource configuration information; the second resource configuration information is used to configure the second DL transmission resource and the second UL transmission resource; the second DL transmission resource Including a third time period, the second UL transmission resource includes a fourth time period, the third time period precedes the fourth time period, and the numbers of symbols included in the third time period and the fourth time period are the same or different.
  • the resource allocation apparatus 1600 is applied to a target terminal device, and the target terminal device is at least one device among the terminal devices.
  • the resource allocation apparatus 1600 further includes a sending module 1603 .
  • the sending module 1603 is configured to send the request information to the network device.
  • the request information is used to request participation in the determination process of the control parameters of the IRS array.
  • the receiving module 1601 is further configured to use the second DL transmission resource to receive the second downlink signal and the second downlink data sent by the network device.
  • the processing module 1602 is further configured to obtain first channel information according to the second downlink signal and the second downlink data; the first channel information includes downlink direct channel information and downlink concatenated channel information.
  • the sending module 1603 is further configured to send the first channel information to the network device by using the second UL transmission resource.
  • the second UL transmission resource further includes physical uplink shared channel PUSCH resource information configured by the network device for the device, and the PUSCH resource is used to transmit the first channel information.
  • the first flexible symbol to the 1+i-th flexible symbol of the flexible time slot are used to transmit resource indication information, and i is a natural number.
  • the size of i is determined by the network device according to one or more of the following: the number of antennas of the network device, the number of antennas of the resource allocation apparatus 1600, the number of the resource allocation apparatus 1600, the number of IRS arrays, the number of Number of reflection units.
  • the resource allocation apparatus 1600 shown in FIG. 16 may further include a storage module (not shown in FIG. 16 ), where the storage module stores programs or instructions.
  • the processing module 1602 executes the program or instruction
  • the resource allocation apparatus 1600 shown in FIG. 16 can execute the resource allocation method shown in FIG. 8 .
  • the processing modules involved in the resource allocation apparatus 1600 shown in FIG. 16 may be implemented by processors or processor-related circuit components, and may be processors or processing units.
  • the receiving module 1601 and the sending module 1603 may be collectively referred to as a transceiver module, which may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver or a transceiver unit.
  • FIG. 17 is a second schematic structural diagram of a resource allocation apparatus according to an embodiment of the present application.
  • the resource allocation apparatus 1700 includes: a processing module 1701 and a sending module 1702 .
  • the resource allocation apparatus 1700 may be configured to implement the functions of the network equipment involved in the foregoing method embodiments.
  • the resource allocation apparatus 1700 may be an independent network device, such as a base station, etc., or may be a chip or a chip system included in the network device.
  • the processing module 1701 is configured to determine resource indication information.
  • the resource indication information is used to indicate uplink UL transmission resources and downlink DL transmission resources in the flexible time slot, and the flexible time slot is used to determine the control parameters of the intelligent reflective surface IRS array.
  • the sending module 1702 is configured to send resource indication information to the terminal device.
  • the uplink concatenated channel and the downlink concatenated channel between the resource allocation apparatus 1700 and the terminal equipment are reciprocal.
  • the resource indication information includes first indication information, and the first indication information includes first resource configuration information; the first resource configuration information is used to configure the first UL transmission resource and the first DL transmission resource; the first UL transmission resource Including a first time period, the first DL transmission resource includes a second time period, the first time period precedes the second time period, and the number of symbols contained in the first time period and the second time period are the same or different.
  • the first indication information further includes the first IRS array control parameter.
  • the resource allocation apparatus 1700 further includes: a receiving module 1703 .
  • the receiving module 1703 is configured to use the first UL transmission resource to receive the uplink reference signal reflected by the IRS array based on the control parameter of the first IRS array.
  • the processing module 1701 is further configured to obtain the second IRS array control parameter according to the uplink reference signal.
  • the sending module 1702 is further configured to use the first DL transmission resource to send the second IRS array control parameter to the IRS array, so that the IRS array uses the second IRS array control parameter to perform UL transmission and DL transmission.
  • the uplink concatenated channel and the downlink concatenated channel between the resource allocation apparatus 1700 and the terminal equipment do not have reciprocity.
  • the resource indication information includes second indication information, and the second indication information includes second resource configuration information; the second resource configuration information is used to configure the second DL transmission resource and the second UL transmission resource; the second DL transmission resource Including a third time period, the second UL transmission resource includes a fourth time period, the third time period precedes the fourth time period, and the numbers of symbols included in the third time period and the fourth time period are the same or different.
  • the resource allocation apparatus 1700 further includes: a receiving module.
  • the receiving module 1703 is configured to receive the request information sent by the target terminal device.
  • the request information is used to request participation in the determination process of the control parameters of the IRS array.
  • the target terminal device is at least one of the terminal devices.
  • the sending module 1702 is further configured to send downlink signals and downlink data to the target terminal device by using the second DL transmission resource.
  • the receiving module 1703 is further configured to use the second UL transmission resource to receive the first channel information sent by the target terminal device;
  • the first channel information is the channel information obtained by the target terminal device according to the downlink signal and the downlink data, and the first channel information includes the downlink direct Channel information and downlink concatenated channel information.
  • the second UL transmission resource further includes physical uplink shared channel PUSCH resource information configured by the apparatus for the target terminal device, and the PUSCH resource is used to transmit the first channel information.
  • the first flexible symbol to the 1+i-th flexible symbol of the flexible time slot are used to transmit resource indication information, and i is a natural number.
  • the size of i is determined by the resource allocation apparatus 1700 according to one or more of the following: the number of antennas of the resource allocation apparatus 1700, the number of antennas of the terminal equipment or the target terminal, the number of the terminal equipment or the target terminal, the number of IRS arrays, The number of reflector elements in the IRS array.
  • the processing module 1701 is further configured to determine whether the uplink concatenated channel and the downlink concatenated channel between the apparatus and the terminal device are reciprocal.
  • the processing module 1701 is specifically configured to preset that the uplink concatenated channel and the downlink concatenated channel between the resource allocation apparatus 1700 and the terminal device do not have reciprocity.
  • the resource allocation apparatus 1700 determines whether the uplink concatenated channel and the downlink concatenated channel between the resource allocation apparatus 1700 and the terminal equipment are reciprocal according to the location information of the terminal equipment.
  • the resource allocation apparatus 1700 shown in FIG. 17 may further include a storage module (not shown in FIG. 17 ), where the storage module stores programs or instructions.
  • the processing module 1701 executes the program or instruction
  • the resource allocation apparatus 1700 shown in FIG. 17 can execute the resource allocation method shown in FIG. 8 .
  • the processing modules involved in the resource allocation apparatus 1700 shown in FIG. 17 may be implemented by processors or processor-related circuit components, and may be processors or processing units.
  • the receiving module 1703 and the sending module 1702 may be collectively referred to as a transceiver module, which may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver or a transceiver unit.
  • FIG. 18 is a third schematic structural diagram of a resource allocation apparatus provided in an embodiment of the present application.
  • the resource allocation apparatus 1800 may specifically be a terminal device.
  • the terminal device takes a mobile phone as an example.
  • the resource allocation apparatus 1800 includes a processor, may also include a memory, and of course, may also include a radio frequency circuit, an antenna, an input and output device, and the like.
  • the processor is mainly used to process communication protocols and communication data, control the resource allocation apparatus 1800, execute software programs, process data of software programs, and the like.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of resource allocation apparatuses 1800 may not have input and output apparatuses.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data. deal with.
  • FIG. 18 For ease of illustration, only one memory and processor are shown in FIG. 18 .
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • an antenna and a radio frequency circuit with a transceiver function can be regarded as the transceiver unit 1810 of the resource allocation apparatus 1800
  • a processor with a processing function can be regarded as the processing unit 1820 of the resource allocation apparatus 1800 .
  • the resource allocation apparatus 1800 includes a transceiver unit 1810 and a processing unit 1820 .
  • the transceiving unit 1810 may also be referred to as a transceiver, a transceiver, a transceiving device, a transceiving circuit, and the like.
  • the processing unit 1820 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1810 may be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 1810 may be regarded as a transmitting unit, that is, the transceiver unit 1810 includes a receiving unit and a transmitting unit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, receiving device, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, a transmitting device, or a transmitting circuit, or the like.
  • transceiving unit 1810 is configured to perform the sending and receiving operations on the terminal device side in the above method embodiments
  • processing unit 1820 is configured to perform other operations on the terminal device in the above method embodiments except the transceiving operations.
  • the transceiver unit 1810 is configured to perform the receiving operations on the terminal device side in steps S802 and S803 in FIG. 8 , and/or the transceiver unit 1810 is further configured to execute the terminal device in this embodiment of the present application.
  • the processing unit 1820 is configured to execute step S804 in FIG. 8 , and/or the processing unit 1820 is further configured to execute other processing steps on the terminal device side in this embodiment of the present application.
  • the transceiver unit 1810 is configured to perform the sending operation on the terminal device side in step S1401 in FIG. 14 , and/or the transceiver unit 1810 is further configured to perform the terminal device side sending operation in this embodiment of the present application. other sending and receiving steps.
  • the processing unit 1820 is configured to execute other processing steps on the terminal device side in the embodiments of the present application.
  • the transceiver unit 1810 is configured to perform the receiving operation on the terminal device side in step S1501 in FIG. 15 , and/or the sending operation on the terminal device side in step S1503 , and/or the transceiver unit 1810 It is also used to perform other transceiving steps on the terminal device side in the embodiment of the present application.
  • the processing unit 1820 is configured to execute step S1502 in FIG. 15 , and/or the processing unit 1820 is further configured to execute other processing steps on the terminal device side in this embodiment of the present application.
  • the resource allocation apparatus 1800 may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface;
  • the processing unit may be an integrated processor, a microprocessor or an integrated circuit.
  • FIG. 19 is a fourth schematic structural diagram of a resource allocation apparatus provided in an embodiment of the present application.
  • the resource allocation apparatus 1900 may specifically be a network device.
  • the network device takes a base station as an example.
  • the resource allocation apparatus 1900 includes one or more radio frequency units, such as a remote radio unit (RRU) 1910 and one or more baseband units (BBU) (also referred to as digital unit, digital unit, DU) 1920.
  • RRU remote radio unit
  • BBU baseband units
  • the RRU 1910 can be called a transceiver module, which corresponds to the sending module 1702 and the receiving module 1703 in FIG. 17 , and optionally, the transceiver module can also be called a transceiver, a transceiver circuit, or a transceiver, etc., which can At least one antenna 1911 and a radio frequency unit 1912 are included.
  • the part of the RRU 1910 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals to baseband signals, for example, for sending downlink data and/or downlink signals to terminal equipment.
  • the BBU 1920 part is mainly used to perform baseband processing, control the base station, and the like.
  • the RRU 1910 and the BBU 1920 may be physically set together, or may be physically separated, that is, a distributed base station.
  • Described BBU 1920 is the control center of base station, also can be called processing module, can correspond to processing module 1701 in Figure 17, is mainly used to complete baseband processing function, such as channel coding, multiplexing, modulation, spread spectrum etc.
  • the BBU processing module
  • the BBU may be used to control the base station to perform the operation procedure of the network device in the foregoing method embodiments, for example, to determine the control parameters of the IRS array, and the like.
  • the BBU 1920 may be composed of one or more single boards, and the multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support a wireless access network of different access standards.
  • a wireless access network such as an LTE network
  • Wireless access network such as LTE network, 5G network or other network.
  • the BBU 1920 also includes a memory 1921 and a processor 1922.
  • the memory 1921 is used to store necessary instructions and data.
  • the processor 1922 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow of the network device in the foregoing method embodiments.
  • the memory 1921 and processor 1922 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the RRU1910 is configured to perform the sending operation on the network device side in step S802 in FIG. 8 , and/or the RRU1910 is further configured to perform other transceiving steps on the network device side in this embodiment of the present application.
  • the BBU 1920 is configured to execute step S801 in FIG. 8 , and/or the BBU 1920 is further configured to execute other processing steps on the network device side in this embodiment of the present application.
  • the RRU1910 is configured to perform the sending operation on the network device side in step S1403 in FIG. 14 , and/or the RRU1910 is further configured to perform other transceiving steps on the network device side in this embodiment of the present application.
  • the BBU 1920 is configured to perform the operations on the network device side in step S1402 in FIG. 14 , and/or the BBU 1920 is further configured to perform other processing steps on the network device side in this embodiment of the present application.
  • the RRU1910 is configured to perform the sending operation on the network device side in step S1501 in FIG. 15 and/or the receiving operation on the network device side in step S1503, and/or the RRU1910 is further configured to perform Other transceiving steps on the network device side in this embodiment of the present application.
  • the BBU 1920 is configured to execute step S1504 in FIG. 15 , and/or the BBU 1920 is further configured to execute other processing steps on the network device side in this embodiment of the present application.
  • the resource allocation apparatus 1900 may include an RRU and a BBU.
  • the RRU may be an input/output circuit and/or a communication interface;
  • the BBU is an integrated processor or microprocessor or integrated circuit.
  • FIG. 20 shows a fifth schematic structural diagram of a resource allocation apparatus provided by an embodiment of the present application.
  • the resource allocation apparatus can be applied to terminal equipment or network equipment.
  • the communication device includes at least one processor 2001 and at least one interface circuit 2002 .
  • the processor 2001 and the interface circuit 2002 may be interconnected by wires.
  • interface circuit 2002 may be used to receive signals from other devices.
  • the interface circuit 2002 may be used to send signals to other devices (eg, the processor 2001).
  • the interface circuit 2002 can read the instructions stored in the memory and send the instructions to the processor 2001 .
  • the communication device can be made to execute each step in the feedback information receiving method in the above-mentioned embodiment.
  • the communication apparatus may also include other discrete devices, which are not specifically limited in this embodiment of the present application.
  • An embodiment of the present application provides a communication device, which includes a logic circuit, an input interface and an output interface.
  • the communication apparatus is applied to terminal equipment.
  • the input interface is used to receive resource indication information sent by the network device, and/or also used to perform other receiving steps on the terminal device side in the embodiments of the present application.
  • a logic circuit configured to configure UL resources and DL resources in flexible time slots based on resource indication information; and/or measure downlink channel information according to downlink data and downlink signals; and/or also be used to execute the terminal equipment in the embodiments of the present application other processing steps on the side.
  • the output interface is used to send the uplink reference signal to the network device, and/or also used to perform other sending steps on the terminal device side in the embodiment of the present application.
  • the communication apparatus is applied to network equipment.
  • the input interface is used to receive the uplink reference signal sent by the terminal device, and/or also used to perform other receiving steps on the network device side in the embodiment of the present application.
  • the logic circuit is configured to determine resource indication information, and/or further configured to execute other processing steps on the network device side in the embodiments of the present application.
  • the output interface is used to send resource indication information to the terminal device, and/or also used to perform other sending steps on the network device side in the embodiment of the present application.
  • input and output interfaces may be collectively referred to as input and output interfaces, transceiver interfaces or communication interfaces, which may be implemented by transceivers or transceiver-related circuit components, and may be transceivers or transceiver units.
  • An embodiment of the present application further provides a chip system, including: a processor, where the processor is coupled with a memory, the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • the number of processors in the chip system may be one or more.
  • the processor can be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can be a non-transitory processor, such as a read-only memory ROM, which can be integrated with the processor on the same chip, or can be provided on different chips.
  • the setting method of the processor is not particularly limited.
  • the system-on-chip may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), It can also be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller).
  • controller unit, MCU it can also be a programmable logic device (PLD) or other integrated chips.
  • each step in the above method embodiments may be implemented by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the method steps disclosed in conjunction with the embodiments of the present application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer software instructions used by the above-mentioned communication apparatus.
  • Embodiments of the present application also provide a computer program product, such as a computer-readable storage medium, including a program designed to execute the steps performed by the communication apparatus in the above embodiments.
  • the steps of the methods or algorithms described in conjunction with the disclosure of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (RAM), flash memory, read only memory (ROM), erasable programmable read only memory (erasable programmable ROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • the disclosed method and apparatus may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network devices. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .
  • the present application can be implemented by means of software plus necessary general-purpose hardware, and of course hardware can also be used, but in many cases the former is a better implementation manner .
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art.
  • the computer software products are stored in a readable storage medium, such as a floppy disk of a computer. , a hard disk or an optical disk, etc., including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源分配方法及装置,涉及通信领域,能够利用灵活时隙资源,确定IRS阵列的控制参数,不会对上行数据和下行数据的传输产生影响。该方法包括:终端设备获取资源指示信息;资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源,灵活时隙用于确定智能反射面IRS阵列的控制参数。终端设备基于资源指示信息进行UL传输和DL传输。

Description

资源分配方法及装置
本申请要求于2020年08月19日提交国家知识产权局、申请号为202010839306.1、发明名称为“资源分配方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种资源分配方法及装置。
背景技术
如图1所示,为一种传统的多入多出(multiple-input multiple-output,MIMO)系统。在MIMO系统中通过在发射端和接收端分别部署多根天线,提高通信系统的传输性能。例如,在分集场景下,MIMO技术可有效提升传输可靠性;在复用场景下,MIMO技术可以大大提升传输吞吐量。但是,由于基站侧部署的天线为有源天线阵列(active antenna array,AAA),需要处理的信号数据量较大,导致基站侧功耗较大。
基于此,如图2所示,在传统MIMO系统中引入电磁超表面阵列,也称之为智能反射面(intelligence reflecting surface,IRS)阵列,构成一种新型架构的MIMO系统,称之为IRS-MIMO系统。其中,IRS阵列只对输入信号和输出信号的相位进行控制,本身不主动发射用户数据,其功耗较低。因此,可以将IRS阵列视为一种无源阵列。如图3所示,为基站侧不同数量的有源天线与不同数量的IRS无源天线组合,发射端信噪比与接收端的和速率的关系。在发射端信噪比相同的情况下,相对于配置较大规模有源天线阵列的传统MIMO系统,在IRS-MIMO系统中,基站侧配置较小规模的有源天线阵列,配合中等规模的IRS阵列,即可获得较大的和速率,实现较优的通信性能,有效降低基站侧功耗。
IRS-MIMO系统在运行过程中,需要通过配置IRS阵列中的反射单元的控制参数(例如相位参数),进行信道设计,以提高传输效率。在信道设计过程中,需要由终端侧进行下行信道信息测量并上传至基站,基站基于下行信道信息,确定反射单元的控制参数。但是,IRS-MIMO系统中的下行信道信息数据量较大,导致测量和反馈的周期较长,信道设计的效率较低。
发明内容
本申请的实施例提供一种资源分配方法及装置,能够利用灵活时隙资源,确定IRS阵列的控制参数,不会对上行数据和下行数据的传输产生影响。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供一种资源分配方法,该方法可以由终端设备执行,也可以由终端设备中的组件(比如芯片系统)执行,该方法可以包括:终端设备获取资源指示信息。该资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源。其中,灵活时隙用于确定智能反射面IRS阵列的控制参数。终端设备基于资源指示信息进行UL传输和DL传输。
其中,IRS阵列的控制参数例如包括IRS阵列中的反射单元的相位参数,IRS阵列基于控制参数,反射接收到的入射信号。
在一些实施例中,网络设备将灵活时隙中的资源配置为用于确定IRS阵列的控制参数的上行传输资源和下行传输资源。在灵活时隙中,网络设备通过与终端设备交互,确定IRS阵列的控制参数。
如此,网络设备在确定IRS阵列参数的过程中,不会对上行数据和下行数据的传输产生影响。并且,能够灵活时隙,灵活的确定IRS阵列参数,提高信道设计效率。
在一种可能的实现方式中,终端设备和网络设备之间的上行级联信道和下行级联信道具有互易性,资源指示信息中包含第一指示信息,第一指示信息包含第一资源配置信息。第一资源配置信息用于配置第一UL传输资源和第一DL传输资源。其中,第一UL传输资源包括第一时间段,第一DL传输资源包括第二时间段,第一时间段先于第二时间段,第一时间段和第二时间段包含的符号数量相同或者不相同。
可选的,在终端设备获得资源指示信息之前,需要网络设备由确定网络设备和终端设备之间的上行级联信道和下行级联信道是否具有互易性。之后,再根据互易性配置资源指示信息。
在一些实施例中,网络设备预设网络设备和终端设备之间的上行级联信道和下行级联信道不具有互易性。或者,网络设备根据终端设备的位置信息,确定网络设备和终端设备之间的上行级联信道和下行级联信道是否具有互易性。
其中,在网络设备和终端设备之间的上行级联信道和下行级联信道具有互易性的情况下,网络设备可以根据终端设备发送的上行参考信号,结合当前的IRS阵列的控制参数,获得上行信道信息。之后,网络设备根据上行信道信息估计下行信道信息,进而根据下行信道信息,确定调节后的IRS阵列的控制参数,完成信道设计。
可选的,网络设备需要基于上行参考信号,估计下行信道信息。因此,在灵活时隙中,需要先配置第一UL传输资源,再配置第一DL传输资源,也即,第一时间段先于第二时间段。
示例性的,网络设备可以将灵活时隙中除用于传输资源指示信息的符号以外的符号中,在先的连续一个或多个符号配置为UL符号,剩余符号配置为DL符号。比如,灵活时隙中包含符号编号0至符号编号13工14个符号。将符号编号为0和符号编号为1的符号配置为DL符号,用于传输资源指示信息。将符号编号为3至符号编号为8的符号配置为UL符号,即第一时间段包含6个UL符号。将符号编号为9至符号编号为13的符号配置为DL符号,即第二时间段包含5个DL符号。将符号编号为2的符号配置为灵活符号,用于将下行传输模式转换为上行传输模式。
在另一种实现方式中,灵活时隙中也可以配置一个或多个第一UL传输资源,以及配置一个或多个第一DL传输资源。那么,第一时间段和第二时间段可以交替实现。可以将在先的第一时间段和在后的第二时间段视为一组时间段,灵活时隙中包含一组或多组该时间段。
示例性的,网络设备可以将灵活时隙中除用于传输资源指示信息的符号以外的符号中,交替配置为UL符号和DL符号,并保证先配置UL符号。比如,将符号编号为0和符号编号为1的符号配置为DL符号,用于传输资源指示信息。将符号编号为3至符号编号为5的符号配置为UL符号,即第一时间段包含3个UL符号。将符号编号为6至符号编号为8的符号配置为DL符号,即第二时间段包含3个DL符号。将符号编号为10和符号编号为11的符号配置为UL符号,即又一个第一时间段,包含2个UL符号。将符号编号为12的符号配置为DL符号,即又一个第二时间段,包含1个DL符号。将符号编号为2和符号编号为9的符号配置为灵活符号,用于将下行传输模式转换为上行传输模式。
如此,利用IRS阵列的局部互易性,实现快速确定IRS阵列的控制参数。
在一种可能的实现方式中,第一指示信息还包括第一IRS阵列控制参数,方法还包括:终端设备利用第一UL传输资源向网络设备发送上行参考信号,以使得网络设备基于第一IRS阵列控制参数和上行参考信号,获得第二IRS阵列控制参数。终端设备利用第一DL传输资源,接收IRS阵列利用第二IRS阵列控制参数反射的第一下行信号和/或第一下行数据。
也就是说,终端设备需要先发送上行参考信号。在网络设备确定第二IRS阵列控制参数之后,终端设备能够接收到IRS阵列利用第二IRS阵列控制参数,反射的网络设备发送的第一下行信号和/或第一下行数据。
后续,IRS阵列利用第二IRS阵列控制参数反射终端设备发送的上行信号,网络设备获得的终端设备的上行信号和速率大于第一IRS阵列控制参数时,获得的上行信号和速率。也就是说,调整后的第二IRS阵列控制参数,能够提升终端设备发送上行信号的和速率。
在一种可能的实现方式中,终端设备和网络设备之间的上行级联信道和下行级联信道不具有互易性,资源指示信息中包含第二指示信息,第二指示信息包含第二资源配置信息;第二资源配置信息用于配置第二DL传输资源和第二UL传输资源;第二DL传输资源包括第三时间段,第二UL传输资源包括第四时间段,第三时间段先于第四时间段,第三时间段和第四时间段包含的符号数量相同或者不相同。
其中,在网络设备和终端设备之间的上行级联信道和下行级联信道不具有互易性的情况下,网络设备需要根据终端设备测量的下行信道信息,结合当前的IRS阵列的控制参数,确定调节后的IRS阵列的控制参数,完成信道设计。因此,网络设备需要先配置用于发送下行数据和/或下行信号的第二DL传输资源,再配置用于传输下行信道信息测量结果的第二UL传输资源。也即,第三时间段先于第四时间段。
示例性的,网络设备可以将灵活时隙中除用于传输资源指示信息的符号以外的符号中,在先的连续一个或多个符号配置为DL符号,剩余符号配置为UL符号。比如,将符号编号为0和符号编号为1的符号配置为DL符号,用于传输资源指示信息。将符号编号为2至符号编号为8的符号配置为DL符号,即第三时间段包含7个DL符号。将符号编号为10至符号编号为12的符号配置为UL符号,即第四时间段包含3个UL符号。将符号编号为9的符号配置为灵活符号,用于将下行传输模式转换为上行传输模式。将符号编号为13的符号配置为DL符号,用于向IRS 阵列传输网络设备确定的IRS阵列的控制参数。
在另一种可能的实现方式中,灵活时隙中也可以配置一个或多个第二DL传输资源,以及配置一个或多个第二UL传输资源。那么,第三时间段和第四时间段可以交替实现。可以将在先的第三时间段和在后的第四时间段视为一组时间段,灵活时隙中包含一组或多组该时间段。
示例性的,网络设备可以将灵活时隙中除用于传输资源指示信息的符号以外的符号中,交替配置为DL符号和UL符号,并保证先配置DL符号。比如,将符号编号为0和符号编号为1的符号配置为DL符号,用于传输资源指示信息。将符号编号为2和符号编号为3的符号配置为DL符号,即第三时间段包含2个UL符号。将符号编号为5和符号编号为6的符号配置为UL符号,即第四时间段包含2个UL符号。将符号编号为7和符号编号为8的符号配置为DL符号,即又一个第三时间段,包含2个DL符号。将符号编号为10和符号编号为11的符号配置为UL符号,即又一个第四时间段,包含2个UL符号。将符号编号为4和符号编号为9的符号配置为灵活符号,用于将下行传输模式转换为上行传输模式。将符号编号为12的符号配置为DL符号,用于向IRS阵列传输网络设备确定的IRS阵列的控制参数。
在一种可能的实现方式中,该方法还包括:目标终端设备向网络设备发送请求信息;请求信息用于请求参与IRS阵列的控制参数的确定过程;目标终端设备为终端设备中的至少一个设备。
其中,下行信道信息包括下行直达信道信息和下行级联信道信息。其中,下行级联信道信息数据量较大,测量和反馈的周期较长。因此,可以选取其中的部分终端设备参数信道设计,以减小测量的数据量。
可选的,目标终端设备为由参与确定IRS阵列的控制参数的设备。例如,终端设备移动到小区边缘,则需要进行信道设计,以提升通信速度。因此,会向网络设备发送请求信息,使得网络设备可以根据请求信息,确定参与确定IRS阵列的控制参数的设备。
在一种可能的实现方式中,该方法还包括:目标终端设备利用第二DL传输资源接收网络设备发送的第二下行信号和第二下行数据。目标终端设备根据第二下行信号和第二下行数据,获得第一信道信息;第一信道信息包括下行直达信道信息和下行级联信道信息。目标终端设备利用第二UL传输资源向网络设备发送第一信道信息。
可选的,目标终端设备的数量为多个,第一信道信息的传输模式为复用传输模式。
如此,网络设备基于目标终端设备的下行信道测量结果,就可以确定IRS阵列的控制参数,提升信道优化效率。
在一种可能的实现方式中,第二UL传输资源还包括网络设备为目标终端设备配置的物理上行共享信道PUSCH资源信息,PUSCH资源用于传输第一信道信息。
在一些实施例中,终端设备若无发送上行数据的需求,网络设备只会为终端设备配置物理上行控制信道PUCCH资源,用于传输控制信息。PUCCH容量较小,无法单独完成传输第一信道信息。因此,网络设备还需要为目标终端设备配置PUSCH 资源。若目标终端设备的数量为多个,则多个目标终端设备可以利用PUSCH和PUCCH,在分配的UL符号上利用复用模式传输。
在一种可能的实现方式中,灵活时隙的第1个灵活符号至第1+i个灵活符号用于传输资源指示信息,i为自然数;其中,i的大小为网络设备根据如下一项或几项内容确定:网络设备的天线数量,终端设备或目标终端的天线数量,终端设备或目标终端的数量,IRS阵列的数量,IRS阵列中的反射单元数量。
可选的,资源指示信息中包含资源配置方式。因此,终端设备需要先接收到资源指示信息,才可以配置灵活时隙中的资源。因此,将灵活时隙中,时域上的前i个符号配置为用于传输资源指示信息的下行资源。
进一步的,若需要配置的资源数量较多,则需要配置更多的灵活符号用于传输资源指示信息。
在一种可能的实现方式中,用于确定IRS阵列的控制参数的灵活时隙的数量为多个,多个灵活时隙中最先的第一个灵活时隙用于传输资源指示信息。
可选的,灵活时隙的数量为多个,多个灵活时隙的第一时间段相同或不相同,多个灵活时隙的第二时间段相同或不相同。
可选的,灵活时隙的数量为多个,多个灵活时隙的第三时间段相同或不相同,多个灵活时隙的第四时间段相同或不相同。
比如,网络设备需要利用三个灵活时隙确定IRS阵列的控制参数,在时域上的第一个灵活时隙内和第二个灵活时隙内以配置DL资源为主,无需反馈下行信道测量结果,即不用配置用于传输第一信道信息的资源。在第三个灵活时隙内配置部分DL资源和部分UL资源,即兼顾下行信道测量和反馈下行信道测量结果。
如此,在第三个灵活时隙完成IRS阵列的控制参数的确定过程,避免在确定IRS阵列的控制参数的过程中反复调整上下行传输模式,降低资源利用率。
又比如,网络设备在时域上的第一个灵活时隙内以配置DL资源为主,无需反馈下行信道测量结果,主要用于对IRS阵列1的下行信道进行测量。将第二个灵活时隙内符号编号为6至符号编号为10的符号配置为UL符号,用于反馈IRS阵列1的下行信道测量结果,进而先完成IRS阵列1控制参数的确定过程。第三个灵活时隙内配置DL资源和UL资源,用于完成IRS阵列2控制参数的确定过程。
如此,若小区内IRS阵列的数量和/或IRS阵列中的反射单元数量较多,则可以逐步完成IRS阵列控制参数的确定过程。已更新控制参数的IRS阵列或IRS阵列中的控制单元,可以逐步参与到上下行信号的传输过程中,逐步提升信道性能,缩短IRS-MIMO系统的信道设计周期。
第二方面,本申请提供一种资源分配方法,该方法可以由网络设备(比如基站)执行,也可以由网络设备中的组件(比如芯片系统)执行,该方法可以包括:网络设备确定资源指示信息;资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源,灵活时隙用于确定智能反射面IRS阵列的控制参数。网络设备向终端设备发送资源指示信息。
在一种可能的实现方式中,网络设备和终端设备之间的上行级联信道和下行级联信道具有互易性,资源指示信息中包含第一指示信息,第一指示信息包含第一资 源配置信息;第一资源配置信息用于配置第一UL传输资源和第一DL传输资源;第一UL传输资源包括第一时间段,第一DL传输资源包括第二时间段,第一时间段先于第二时间段,第一时间段和第二时间段包含的符号数量相同或者不相同。
在一种可能的实现方式中,第一指示信息还包括第一IRS阵列控制参数,该方法还包括:网络设备利用第一UL传输资源,接收IRS阵列基于第一IRS阵列控制参数反射的上行参考信号;并根据上行参考信号,获得第二IRS阵列控制参数。网络设备利用第一DL传输资源,向IRS阵列发送第二IRS阵列控制参数,以使得IRS阵列利用第二IRS阵列控制参数进行UL传输和DL传输。
在一种可能的实现方式中,网络设备和终端设备之间的上行级联信道和下行级联信道不具有互易性,资源指示信息中包含第二指示信息,第二指示信息包含第二资源配置信息;第二资源配置信息用于配置第二DL传输资源和第二UL传输资源;第二DL传输资源包括第三时间段,第二UL传输资源包括第四时间段,第三时间段先于第四时间段,第三时间段和第四时间段包含的符号数量相同或者不相同。
在一种可能的实现方式中,该方法还包括:网络设备接收目标终端设备发送的请求信息;请求信息用于请求参与IRS阵列的控制参数的确定过程;目标终端设备为终端设备中的至少一个设备。
在一种可能的实现方式中,该方法还包括:网络设备利用第二DL传输资源向目标终端设备发送下行信号和下行数据。网络设备利用第二UL传输资源接收目标终端设备发送的第一信道信息;第一信道信息为目标终端设备根据下行信号和下行数据获得的信道信息,第一信道信息包括下行直达信道信息和下行级联信道信息。
在一种可能的实现方式中,该方法还包括:网络设备利用第一信道信息,获得第三IRS阵列控制参数。
在一些实施例中,网络设备根据终端设备对下行信道信息的测量结果,可以确定调整后的第三IRS阵列控制参数。将第三IRS阵列控制参数发送至IRS阵列,使得IRS阵列基于第三IRS阵列控制参数反射入射信号,实现信道优化。
在一种可能的实现方式中,第二UL传输资源还包括网络设备为目标终端设备配置的物理上行共享信道PUSCH资源信息,PUSCH资源用于传输第一信道信息。
在一种可能的实现方式中,灵活时隙的第1个灵活符号至第1+i个灵活符号用于传输资源指示信息,i为自然数;其中,i的大小为网络设备根据如下一项或几项内容确定:网络设备的天线数量,终端设备或目标终端的天线数量,终端设备或目标终端的数量,IRS阵列的数量,IRS阵列中的反射单元数量。
在一种可能的实现方式中,在网络设备确定资源指示信息之前,方法还包括:网络设备确定网络设备和终端设备之间的上行级联信道和下行级联信道是否具有互易性。
在一种可能的实现方式中,网络设备确定网络设备和终端设备之间的上行级联信道和下行级联信道是否具有互易性,包括:网络设备预设网络设备和终端设备之间的上行级联信道和下行级联信道不具有互易性。或者,网络设备根据终端设备的位置信息,确定网络设备和终端设备之间的上行级联信道和下行级联信道是否具有互易性。
此外,第二方面所述的资源分配方法的技术效果可以参考第一方面所述的资源分配方法的技术效果,此处不再赘述。
第三方面,本申请提供一种资源分配装置,该装置应用于终端设备,该装置可以包括:接收模块和处理模块。其中,接收模块,用于获取资源指示信息;资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源,灵活时隙用于确定智能反射面IRS阵列的控制参数。处理模块,用于基于资源指示信息进行UL传输和DL传输。
在一种可能的实现方式中,装置和网络设备之间的上行级联信道和下行级联信道具有互易性,资源指示信息中包含第一指示信息,第一指示信息包含第一资源配置信息;第一资源配置信息用于配置第一UL传输资源和第一DL传输资源;第一UL传输资源包括第一时间段,第一DL传输资源包括第二时间段,第一时间段先于第二时间段,第一时间段和第二时间段包含的符号数量相同或者不相同。
在一种可能的实现方式中,第一指示信息还包括第一IRS阵列控制参数。该装置还包括发送模块。其中,发送模块,用于利用第一UL传输资源向网络设备发送上行参考信号,以使得网络设备基于第一IRS阵列控制参数和上行参考信号,获得第二IRS阵列控制参数。接收模块,还用于利用第一DL传输资源,接收IRS阵列利用第二IRS阵列控制参数反射的第一下行信号和/或第一下行数据。
在一种可能的实现方式中,该装置和网络设备之间的上行级联信道和下行级联信道不具有互易性,资源指示信息中包含第二指示信息,第二指示信息包含第二资源配置信息;第二资源配置信息用于配置第二DL传输资源和第二UL传输资源;第二DL传输资源包括第三时间段,第二UL传输资源包括第四时间段,第三时间段先于第四时间段,第三时间段和第四时间段包含的符号数量相同或者不相同。
在一种可能的实现方式中,该装置应用于目标终端设备,目标终端设备为终端设备中的至少一个设备;装置还包括发送模块。其中,发送模块,用于向网络设备发送请求信息;请求信息用于请求参与IRS阵列的控制参数的确定过程。
在一种可能的实现方式中,接收模块,还用于利用第二DL传输资源接收网络设备发送的第二下行信号和第二下行数据。处理模块,还用于根据第二下行信号和第二下行数据,获得第一信道信息;第一信道信息包括下行直达信道信息和下行级联信道信息。发送模块,还用于利用第二UL传输资源向网络设备发送第一信道信息。
在一种可能的实现方式中,第二UL传输资源还包括网络设备为装置配置的物理上行共享信道PUSCH资源信息,PUSCH资源用于传输第一信道信息。
在一种可能的实现方式中,灵活时隙的第1个灵活符号至第1+i个灵活符号用于传输资源指示信息,i为自然数;其中,i的大小为网络设备根据如下一项或几项内容确定:网络设备的天线数量,装置终端设备或目标终端的天线数量,装置终端设备或目标终端的数量,IRS阵列的数量,IRS阵列中的反射单元数量。
需要说明的是,发送模块和接收模块也可以集成在一起,如收发模块,本申请实施例对此不做具体限定。
可选的,第三方面所述的资源分配装置还可以包括存储模块,该存储模块存储有 程序或指令。当处理模块执行该程序或指令时,使得第三方面所述的资源分配装置可以执行第一方面所述的资源分配方法。
需要说明的是,第三方面所述的资源分配装置可以是终端设备或可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第三方面所述的资源分配装置的技术效果可以参考第一方面所述的资源分配方法的技术效果,此处不再赘述。
第四方面,本申请提供一种资源分配装置,该装置应用于网络设备,该装置可以包括:处理模块和发送模块。其中,处理模块,用于确定资源指示信息;资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源,灵活时隙用于确定智能反射面IRS阵列的控制参数。发送模块,用于向终端设备发送资源指示信息。
在一种可能的实现方式中,该装置和终端设备之间的上行级联信道和下行级联信道具有互易性,资源指示信息中包含第一指示信息,第一指示信息包含第一资源配置信息;第一资源配置信息用于配置第一UL传输资源和第一DL传输资源;第一UL传输资源包括第一时间段,第一DL传输资源包括第二时间段,第一时间段先于第二时间段,第一时间段和第二时间段包含的符号数量相同或者不相同。
在一种可能的实现方式中,第一指示信息还包括第一IRS阵列控制参数;装置还包括:接收模块。其中,接收模块,用于利用第一UL传输资源,接收IRS阵列基于第一IRS阵列控制参数反射的上行参考信号。处理模块,还用于根据上行参考信号,获得第二IRS阵列控制参数。发送模块,还用于利用第一DL传输资源,向IRS阵列发送第二IRS阵列控制参数,以使得IRS阵列利用第二IRS阵列控制参数进行UL传输和DL传输。
在一种可能的实现方式中,该装置和终端设备之间的上行级联信道和下行级联信道不具有互易性,资源指示信息中包含第二指示信息,第二指示信息包含第二资源配置信息;第二资源配置信息用于配置第二DL传输资源和第二UL传输资源;第二DL传输资源包括第三时间段,第二UL传输资源包括第四时间段,第三时间段先于第四时间段,第三时间段和第四时间段包含的符号数量相同或者不相同。
在一种可能的实现方式中,该装置还包括:接收模块。其中,接收模块,用于接收目标终端设备发送的请求信息;请求信息用于请求参与IRS阵列的控制参数的确定过程;目标终端设备为终端设备中的至少一个设备。
在一种可能的实现方式中,发送模块,还用于利用第二DL传输资源向目标终端设备发送下行信号和下行数据。接收模块,还用于利用第二UL传输资源接收目标终端设备发送的第一信道信息;第一信道信息为目标终端设备根据下行信号和下行数据获得的信道信息,第一信道信息包括下行直达信道信息和下行级联信道信息。
在一种可能的实现方式中,第二UL传输资源还包括装置为目标终端设备配置的物理上行共享信道PUSCH资源信息,PUSCH资源用于传输第一信道信息。
在一种可能的实现方式中,灵活时隙的第1个灵活符号至第1+i个灵活符号用于传输资源指示信息,i为自然数;其中,i的大小为装置根据如下一项或几项 内容确定:装置的天线数量,终端设备或目标终端的天线数量,终端设备或目标终端的数量,IRS阵列的数量,IRS阵列中的反射单元数量。
在一种可能的实现方式中,处理模块,还用于确定装置和终端设备之间的上行级联信道和下行级联信道是否具有互易性。
在一种可能的实现方式中,处理模块,具体用于预设装置和终端设备之间的上行级联信道和下行级联信道不具有互易性。或者,装置根据终端设备的位置信息,确定装置和终端设备之间的上行级联信道和下行级联信道是否具有互易性。
需要说明的是,发送模块和接收模块也可以集成在一起,如收发模块,本申请实施例对此不做具体限定。
可选的,第四方面所述的资源分配装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第四方面所述的资源分配装置可以执行第二方面所述的资源分配方法。
需要说明的是,第四方面所述的资源分配装置可以是网络设备或可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第四方面所述的资源分配装置的技术效果可以参考第二方面所述的资源分配方法的技术效果,此处不再赘述。
第五方面,本申请提供一种通信装置,该装置具有实现上述第一方面以及其中任一种可能的实现方式中资源分配方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第六方面,本申请提供一种通信装置,该装置具有实现上述第二方面以及其中任一种可能的实现方式中资源分配方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第一方面和第二方面,以及其中任一种可能的实现方式中资源分配方法。
第八方面,本申请实施例提供了一种通信装置,该装置可以为芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面和第二方面,以及其中任一种可能的实现方式中资源分配方法的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,提供一种通信装置,该装置可以为电路系统,电路系统包括处理电路,处理电路被配置为执行如上述第一方面和第二方面,以及其中任一种可能的实现方式中资源分配方法。
第十方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当计算机执行该指令时,该计算机执行上述第一方面和第二方面,以及其中任一种可能的实现方式中资源分配方法。
第十一方面,本申请提供一种包含指令的计算机程序产品,当所述计算机程 序产品在计算机上运行时,使得所述计算机执行上述第一方面和第二方面,以及其中任一种可能的实现方式中资源分配方法。
附图说明
图1为本申请实施例提供的现有技术中的通信网络结构示意图一;
图2为本申请实施例提供的现有技术中的通信网络结构示意图二;
图3为本申请实施例提供的发射端信噪比与接收端的和速率的关系示意图;
图4为本申请实施例提供的通信网络结构示意图;
图5为本申请实施例提供的通信设备的结构示意图;
图6为本申请实施例提供的互易性角度示意图;
图7为本申请实施例提供的现有技术中资源分配方法帧结构示意图;
图8为本申请实施例提供的资源分配方法示意图一;
图9为本申请实施例提供的资源分配方法的帧结构示意图一;
图10为本申请实施例提供的资源分配方法的帧结构示意图二;
图11为本申请实施例提供的资源分配方法的帧结构示意图三;
图12为本申请实施例提供的资源分配方法的帧结构示意图四;
图13为本申请实施例提供的资源分配方法的帧结构示意图五;
图14为本申请实施例提供的资源分配方法示意图二;
图15为本申请实施例提供的资源分配方法示意图三;
图16为本申请实施例提供的资源装置结构示意图一;
图17为本申请实施例提供的资源装置结构示意图二;
图18为本申请实施例提供的资源装置结构示意图三;
图19为本申请实施例提供的资源装置结构示意图四;
图20为本申请实施例提供的资源装置结构示意图五。
具体实施方式
下面结合附图对本申请实施例提供的一种资源分配方法及装置进行详细地描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、公共陆地移动网络(public land mobile network,PLMN)系统、第五代(5th generation,5G)系统或新无线(new radio,NR),或者应用于未来的通信系统或其它类似的通信系统等。
如下给出本申请实施例所涉及的网络架构,参见图4,为本申请实施例所适用的通信系统的架构。该通信系统包括网络设备100,与网络设备100通信的一个或 多个终端设备200(例如图4中的终端设备1至终端设备4),以及一个或多个IRS阵列(例如图4中的IRS阵列1和IRS阵列2)。
其中,网络设备100和终端设备200之间用于直接通信的信道称之为直达信道(如图4中所示的虚线),包括上行直达信道和下行直达信道。其中,上行直达信道用于终端设备200向网络设备100发送上行信号,下行直达信道用于网络设备100向终端设备200发送下行信号。网络设备100经由IRS阵列300与终端设备200通信的信道称之为级联信道(如图4中所示的实线),包括上行级联信道和下行级联信道。其中,上行级联信道用于终端设备200向网络设备100发送上行信号,下行级联信道用于网络设备100向终端设备200发送下行信号。
在一种场景中,终端设备1至4为网络设备小区信号覆盖范围内的终端设备。假设终端设备2和终端设备4位于小区中心,终端设备1和终端设备3位于小区边缘。网络设备调用相同或不相同的IRS阵列,并配置IRS阵列控制参数,进行信道设计,以改善与终端设备之间信道性能。
比如,网络设备调用IRS阵列1和IRS阵列2为位于小区边缘的终端设备3服务,使其获得分集增益和复用增益,以改善终端设备3的信道质量,提升传输性能。
又比如,网络设备调用IRS阵列1为位于小区边缘的终端设备1服务,使其获得更高的分集增益,降低功率消耗。
需要说明的是,终端设备接收一个IRS阵列反射的下行信号,可以获得分集增益。终端设备接收多个IRS阵列发射的下行信号,可以获得复用增益。对于IRS-MIMO的信道设计可以参考现有技术,本申请实施例不做具体阐述。
可选的,IRS阵列300是一个包含大量可重配无源元素(element)(例如低成本的印刷偶极子(printed dipoles))的平面阵列。各个无源元素可以称之为反射单元,每个反射单元以一个特定的相位偏移去反射入射信号,协同的在指定的接收端实现波束成形或者抑制干扰。
其中,多个IRS阵列300可以构成一个IRS网络。在IRS阵列包含大量反射单元的情况下,可以将IRS阵列中的一个或多个反射单元划分为一个IRS子阵,一个IRS阵列中包含一个或多个IRS子阵。
可选的,网络设备100可以指接入网的空中接口上通过一个或多个小区与无线终端通信的设备。例如,可以是GSM系统或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者可以是卫星系统,设备到设备(device to device,D2D),车联网,机器到机器(machine to machine,M2M)系统中的网络设备,或者该网络设备还可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络或5G之后的网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。其中,实现网络设备100的功能的装置可以是网络设备,也可以是支持网络设备实现该功能的装置(比如网络设备中的芯片系统)。可选的,网络设备100可以对空中接口进行属性管理,协调对空中接口的属性。网络设备100包括各种形式的宏基站,微基站(也称为小站),诸如中继 站的中继设备或中继设备的芯片,发送接收点(transmission reception point,TRP),演进型网络节点(evolved Node B,eNB),下一代网络节点(gNodeB,gNB)、连接下一代核心网的演进型节点B(ng evolved Node B,ng-eNB)等。或者,在分布式基站场景下,网络设备可以是基带单元(base band unit,BBU)和射频拉远单元(remote radio unit,RRU),在云无线接入网(cloud radio access Netowrk,CRAN)场景下,网络设备可以是基带池(BBU pool)和RRU。
可选的,本申请实施例中所涉及到的终端设备200包括但不限于车载设备、可穿戴设备、计算设备、计算设备内置的芯片或连接到无线调制解调器的其它处理设备;还可以包括蜂窝电话(cellular phone)、个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、智能电话(smart phone)、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、膝上型电脑(laptop computer)、无线调制解调器(modem)、手持设备(handheld)、无线本地环路(wireless local loop,WLL)站。无线终端还可以为用户单元(subscriber unit,SU)、用户站(subscriber station,SS)、移动站(mobile station,MB)、移动台(mobile)、远程站(remote station,RS)、远程终端(remote terminal,RT)、用户终端(user terminal,UT)、终端设备(user device,UD)、用户设备(user equipment,UE)、无线数据卡、用户单元(subscriber unit)、机器类型通信(machine type communication,MTC)终端(terminal)、终端设备(terminal device)、客户终端设备(customer premise equipment,CPE)、接入终端(accessterminal,AT)、接入点(accessPoint,AP)、用户代理(user agent,UA),人工智能(artificial intelligence,AI)终端等。在本申请实施例中,实现终端设备200的功能的装置可以是终端设备,也可以是支持终端设备实现该功能的装置(比如终端设备中的芯片系统)。
需要说明的是,本申请实施例中的术语“通信”还可以描述为“数据传输”、“信息传输”、“信号传输”或“传输”等。
可选的,本申请实施例中的网络设备和终端设备可以通过不同的设备实现。
例如,本申请实施例中的网络设备和终端设备可以通过图5中的通信设备来实现。图5所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备包括至少一个处理器501,通信线路502,存储器503以及至少一个通信接口504。其中,存储器503还可以包括于处理器501中。
处理器501可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路502可包括一通路,在上述组件之间传送信息。
通信接口504,用于与其他设备通信。在本申请实施例中,通信接口可以是模块、电路、总线、接口、收发器或者其它能实现通信功能的装置,用于与其他设备通信。可选的,当通信接口是收发器时,该收发器可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该收发器也可以为独立设置的接收器,用于从其他设备接收信息。该收发器也可以是将发送、接收信息功能集成在一起的 部件,本申请实施例对收发器的具体实现不做限制。
存储器503可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路502与处理器501相连接。存储器503也可以和处理器501集成在一起。
其中,存储器503用于存储用于实现本申请方案的计算机执行指令,并由处理器501来控制执行。处理器501用于执行存储器503中存储的计算机执行指令,从而实现本申请下述实施例提供的资源分配方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码、指令、计算机程序或者其它名称,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器501可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备可以包括多个处理器,例如图5中的处理器501和处理器505。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
需要说明的是,上述的通信装置可以是一个通用设备或者是一个专用设备,本申请实施例不限定该通信装置的类型。本申请实施例示意的结构并不构成对该通信装置的具体限定。在本申请另一些实施例中,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)IRS阵列控制参数
在一些实施例中,网络设备配置的天线数量为N,终端设备配置的天线数量为M,IRS阵列中的反射单元数量为K。其中,M,N和K为正整数。如图4所示,网络设备和终端设备之间的直达信道矩阵为G M×N。网络设备和终端设备之间的级联信道包含网络设备和IRS阵列之间的信道以及IRS阵列和终端设备之间的信道。其中,网络设备和IRS阵列之间的信道矩阵为(H 0) K×N,IRS阵列和终端设备之间的信道矩阵R M×K
IRS-MIMO系统中,可以通过设计IRS阵列的相控矩阵Φ KxK来调节IRS阵列中反射单元的控制参数,实现动态调整IRS-MIMO系统性能。其中,IRS阵列中各个反射单元的控制参数构成IRS阵列控制参数。
示例性的,优化IRS-MIMO系统性能,使得IRS-MIMO系统能够获得最大化的下行传输速率,即需要调节反射单元控制参数,最大化系统容量,获得最大和速率。其中,系统容量C可以通过下述公式确定。
Figure PCTCN2021108671-appb-000001
S.t.|θ i|=1;
||w i||=1;
Figure PCTCN2021108671-appb-000002
Figure PCTCN2021108671-appb-000003
在上述求解系统容量C的公式中,θ=diag(Φ)表示IRS阵列各发射单元的控制参数,即相位参数。网络设备通过设计调整θ,可以生成终端设备需要的级联信道。w i表示u个用户中第i个用户的发射预编码矢量,用于增强链路增益且消除多用户数据流间的干扰。p i表示网络设备分配给u个终端设备中第i个终端设备的发射功率。通过优化设计参数集{θ,w i,p i},以获得最大的系统和速率。其中,diag函数用于将矩阵转化为向量,或者将向量转化为矩阵。比如,diag(Φ)用于表示取矩阵Φ中对角线上的元素,组成为一个新的列向量。向量或矩阵上带有角标“H”用于表示对当前向量或矩阵进行求共轭转置的操作。比如,
Figure PCTCN2021108671-appb-000004
用于表示对向量w i进行求共轭转置的操作,
Figure PCTCN2021108671-appb-000005
为向量w i的共轭转置向量。
其中,该参数集合的获得需要输入终端设备的下行信道信息,包含网络设备与终端设备之间的下行直达信道信息{g i}和网络设备与终端设备之间的下行级联信道信息{diag(r i)H 0}。网络设备基于下行信道信息,可以获得使系统和速率最大的IRS阵列的控制参数,也即IRS阵列中的反射单元的控制参数。基于IRS阵列控制 参数,完成信道设计。并且,当前情况下,设计后的信道可以保证下行传输速率最大。
但是,需要由网络设备向终端设备发送下行数据和下行信号,终端设备再基于下行数据和下行信号进行信道测量。之后,终端设备将测量获得的下行信道信息反馈至网络设备,网络设备才能够根据下行信道信息的测量结果,设计IRS阵列的控制参数。在该过程中,由于下行信道信息中的下行级联信道信息数据量较大,导致测量和反馈的周期较长,IRS阵列参数设计的效率较低,进而导致IRS-MIMO系统的信道设计效率较低。
(2)互易性
通信系统的上下传输使用相同的频域资源,当上行信号和下行信号发送的时间间隔足够短时,可以认为上行信道和下行信道的信道衰落基本相同,即上行信道和下行信道具有互易性。在上行信道和下行信道具有互易性时,网络设备可以通过检测终端设备发送的上行参考信号,估计发送下行信号要经历的信道衰落。
可选的,在IRS-MIMO系统中,上行级联信道和下行级联信道同样也可以具有互易性,但是受限于IRS阵列,上行级联信道和下行级联信道的互易性局限在一定的入射角度和反射角度范围以内。也即IRS阵列具有局部互易性。
示例性的,如图6所示,NO用于表示垂直于IRS阵列平面的法向量,AO用于表示入射信号(也可以描述为入射电磁波),OB用于表示反射信号(也可以描述为反射电磁波)。图6中IRS阵列接收的入射信号和反射的发射信号均处于AOB平面上。其中,AO和ON之间的夹角为入射角度,ON和OB之间的夹角为反射角度。用α1表示最小入射角度,α2表示最大入射角度,β1表示最小反射角度,β2表示最大反射角度。如图6所示,在入射角度在[α1,α2]的角度范围内且反射角度在[β1,β2]的角度范围且反射角度内的情况下,上行级联信道和下行级联信道具有互易性。
首先介绍一种现有技术中的资源分配方法,图7为根据该资源分配方法配置的时域资源示意图。如图7中(a)所示,利用上下行级联信道的互易性,时域资源的分配方式为先配置上行时隙,网络设备利用上行时隙接收终端设备发送的上行参考信号。之后,网络设备根据上行参考信号和当前IRS阵列参数,估计上行直达信道信息和上行级联信道信息。基于信道的互易性,利用上行直达信道信息和上行级联信道信息,确定能够最大化下行传输速率的IRS阵列参数。之后,在配置的配置时间资源上向IRS阵列控制器传输该IRS阵列参数,完成IRS阵列参数的重配置。最后,如图7中(a)所示,网络设备在配置的下行时隙向IRS阵列传输下行信号,IRS阵列利用重配置的IRS阵列参数向终端设备发射下行信号,完成下行传输。
如图7中(b)所示,按照如图7中(a)所示的一个周期内的时域资源配置方式,配置多个周期的时域资源。不同周期之间需要配置用于调整上行传输时隙对齐的时间前置(time advance,TA)的保护时隙,以保证终端设备发送的上行信号能够在同一时刻到达网络设备,确保终端设备之间上行信号的正交性,从而有助于消除终端设备间的上行信号干扰。其中,保护时隙可以描述为灵活时隙等。那么,如图7中(b)所示,为了配置保护时隙,需要占用一部分下行时隙资源, 导致下行传输资源的利用率降低。
进一步的,现有技术中的资源分配方法至少还具有以下问题:首先,该资源分配方法是基于上下行级联信道的互易性进行的资源分配,但是,如上文对互易性的介绍可知,在IRS阵列处需要保证信号的入射角度和反射角度在一定的角度范围以内,才能够保证信道的互易性。信道互异性的局限性,导致当前资源分配方法具有一定的局限性。其次,分配专门用于配置IRS阵列参数的配置时间资源,会导致传输资源的利用率降低。基于此,现有技术中会分配较少的配置时间资源,以缓解传输资源的利用率降低的问题。但是,IRS阵列控制器就需要在较短时间内完成接收并重配置IRS阵列参数,增加了对IRS阵列控制器性能的要求。最后,根据现有帧结构设计,如5G帧结构,一般在帧开始的位置配置下行控制信道资源。那么,当前的资源分配方法,会影响下行控制信道的容量和可靠性。
基于此,本申请实施例提供一种资源分配方法,如图8所示,该方法可以包括S801-S804。
S801、网络设备确定资源指示信息。
其中,资源指示信息用于指示灵活时隙中的上行链路(uplink,UL)传输资源和下行链路(downlink,DL)传输资源,灵活时隙用于确定IRS阵列的控制参数。一般的,在无线帧结构中,上行子帧和下行子帧之间都会配置用于上下行传输模式转换的保护间隔,该保护间隔可以用灵活时隙实现,该灵活时隙也可以描述为保护时隙。因此,利用灵活时隙完成IRS阵列控制参数设置,能够不影响现有的网络设备和终端设备之间的信号传输。并且,能够灵活配置用于确定IRS阵列控制参数的时域资源,节约IRS-MIMO系统开销。
可选的,如图9所示的一种资源映射方式,一次调度的传输资源在频域上包括一个或连续的多个子信道(sub-channel)(图9中未示出),每个子信道在频域上包括连续的多个资源块(resource block,RB),如10个RB,在时域上包括一个子帧(subframe)或一个时隙(slot)。下面以时隙为例说明。
示例性的,图9为本申请实施例提供的一种时域资源示意图一。如图9所示,终端设备所对应的资源池中包含时间单元0,时间单元1,时间单元2,时间单元3,时间单元4,时间单元5,时间单元6,时间单元7,时间单元8,时间单元9,…。
其中,资源池在频域上可包括一个或多个连续的子信道(sub-channel),一个子信道可包括频域上连续的若干个RB。一个时间单元在时域上可包括一个或多个小的时间单元,该时间单元可以由时隙(slot)、微时隙(mini-slot)、子帧(subframe)、无线帧(radio frame)、发送时间间隔(transmission time interval,TTI)等多种可能的时间粒度构成的时间单元。应理解,本申请实施例对时间单元的带宽不作具体限定,时间单元中包括的子信道的数量、以及每个子信道的大小均可由网络设备进行配置或预配置。
示例性的,如图9所示,以一个时间单元在时域上为一个时隙进行说明,该时隙包括14个符号,这14个符号从左到右依次编号为0至13。14个符号中,可以将任意符号由网络设备进行配置或预配置为包含UL传输资源的符号(也称之为UL符号),包含DL传输资源的符号(也称之为DL符号),和/或包含用于保护间 隔和/或自动增益控制的符号。该保护间隔和/或自动增益控制的符号可以用于终端设备进行收发转换或自动增益控制,也可以称之为灵活符号。比如,如图9所示,将符号编号为0配置为DL符号,将符号编号为1和符号编号为2的符号配置为UL符号。
可选的,网络设备将用于确定IRS阵列控制参数的灵活时隙中,在时域上起始的至少第一个符号配置为DL符号,用于向终端设备传输资源指示信息,该资源指示信息可以为下行控制信息(downlink control information,DCI)。如图10中(a)所示,将符号编号为0配置为DL符号。资源指示信息用于指示灵活时隙中UL符号的起始位置和数量,以及DL符号的起始位置和数量。
其中,资源指示信息需要的DL符号数量为网络设备根据如下一项或几项内容确定:网络设备的天线数量,终端设备的天线数量,终端设备的数量,IRS阵列的数量,IRS阵列中的反射单元数量。也就是说,网络设备将灵活时隙的第1个灵活符号至第1+i个灵活符号用于传输资源指示信息,i为自然数。网络设备可以根据资源指示信息数据量的大小,设置i的取值。
示例性的,如图10中(b)所示,网络设备将符号编号为0至符号编号为2的3个符号配置为DL符号,用于传输资源指示信息。
可选的,网络设备在确定资源指示信息之前,需要先确定网络设备和终端设备之间的上行级联信道和下行级联信道是否具有互易性。互易性不同,可以确定不同的资源配置方式,以实现高效的确定IRS阵列控制参数,提升信道设计效率。
示例性的,网络设备预设网络设备和终端设备之间的上行级联信道和下行级联信道不具有互易性。或者,网络设备根据终端设备的位置信息,确定网络设备和终端设备之间的上行级联信道和下行级联信道是否具有互易性。
具体的,如上文对互易性的介绍,网络设备可以获得使上行级联信道和下行级联信道具有互易性的入射角度范围和反射角度范围。网络设备根据IRS阵列分布、终端设备分布以及入射信号角度,预测IRS阵列的反射信号角度。进而判断上行信号的入射角度是否在入射角度范围以内,反射角度是否在反射角度范围以内。以及判断下行信号的入射角度是否在入射角度范围以内,反射角度是否在反射角度范围以内。从而确定上行级联信道和下行级联信道是否具有互易性。
在一些实施例中,网络设备和终端设备之间的上行级联信道和下行级联信道具有互易性。资源指示信息中包含第一指示信息,该第一指示信息包含第一资源配置信息。该第一资源配置信息用于配置第一UL传输资源和第一DL传输资源。第一UL传输资源包括第一时间段,第一DL传输资源包括第二时间段,第一时间段先于第二时间段,第一时间段和第二时间段包含的符号数量相同或者不相同。
具体的,上行级联信道和下行级联信道具有互易性,如上文对IRS阵列控制参数的介绍,网络设备可以根据终端设备发送的上行参考信号,确定IRS阵列控制参数。因此,在配置灵活时隙中的资源时,先配置用于传输上行参考信号的UL资源,再配置用于传输URL阵列控制参数和下行信号的DL资源。
示例性的,网络设备可以将灵活时隙中除用于传输资源指示信息的符号以外的符号中,在先的连续一个或多个符号配置为UL符号,剩余符号配置为DL符号。 如图11中(a)所示,将符号编号为0和符号编号为1的符号配置为DL符号,用于传输资源指示信息。将符号编号为3至符号编号为8的符号配置为UL符号,即第一时间段包含6个UL符号。将符号编号为9至符号编号为13的符号配置为DL符号,即第二时间段包含5个DL符号。将符号编号为2的符号配置为灵活符号,用于将下行传输模式转换为上行传输模式。即实现第一时间段在时域上先于第二时间段,第一时间段长度与第二时间段长度相同或不相同。
又示例性的,网络设备可以将灵活时隙中除用于传输资源指示信息的符号以外的符号中,交替配置为UL符号和DL符号,并保证先配置UL符号。如图11中(b)所示,将符号编号为0和符号编号为1的符号配置为DL符号,用于传输资源指示信息。将符号编号为3至符号编号为5的符号配置为UL符号,即第一时间段包含3个UL符号。将符号编号为6至符号编号为8的符号配置为DL符号,即第二时间段包含3个DL符号。将符号编号为10和符号编号为11的符号配置为UL符号,即又一个第一时间段,包含2个UL符号。将符号编号为12的符号配置为DL符号,即又一个第二时间段,包含1个DL符号。将符号编号为2和符号编号为9的符号配置为灵活符号,用于将下行传输模式转换为上行传输模式。网络设备确定前13个符号即可完成IRS阵列确认过程,则将符号编号为13的符号配置为灵活符号。或者,符号编号为13的符号用于将下行传输模式转换为上行传输模式,以减少对上行传输资源时间单元4的影响。
在另一些实施例中,网络设备和终端设备之间的上行级联信道和下行级联信道不具有互易性,该资源指示信息中包含第二指示信息,该第二指示信息包含第二资源配置信息。第二资源配置信息用于配置第二DL传输资源和第二UL传输资源。第二DL传输资源包括第三时间段,第二UL传输资源包括第四时间段,第三时间段先于第四时间段,第三时间段和第四时间段包含的符号数量相同或者不相同。
具体的,上行级联信道和下行级联信道不具有互易性,如上文对IRS阵列控制参数的介绍,网络设备需要根据下行信道的测量结果,设计IRS阵列的控制参数。因此,在配置灵活时隙中的资源时,先配置用于传输下行信号和下行数据的DL资源,再配置用于传输上行信号和上行数据的UL资源。
进一步的,由于下行信道的测量结果中,下行级联信道信息数据量较大,若全部终端设备均参与测量,则会导致测量周期较长,降低信道设计效率。因此,可以利用其中的部分目标终端设备参与确定IRS阵列的控制参数。具体的,网络设备接收到目标终端设备发送的请求信息。该请求信息用于请求参与IRS阵列的控制参数的确定过程。其中,目标终端设备为终端设备中的至少一个终端设备。比如,某终端设备移动到小区边缘,需要进行信道优化,则向网络设备发送请求信息。或者,某终端设备需要获得更好的通信质量,则需要进行信道优化,那么就需要向网络设备发送请求信息。
基于此,网络设备可以根据接收到的请求信息,确定目标终端设备,进而确定需要发送资源指示信息的终端设备。
并且,在当前场景中,资源指示信息需要的DL符号数量为网络设备根据如下一项或几项内容确定:网络设备的天线数量,目标终端设备的天线数量,目标终 端设备的数量,IRS阵列的数量,IRS阵列中的反射单元数量。
示例性的,网络设备可以将灵活时隙中除用于传输资源指示信息的符号以外的符号中,在先的连续一个或多个符号配置为DL符号,剩余符号配置为UL符号。如图12中(a)所示,将符号编号为0和符号编号为1的符号配置为DL符号,用于传输资源指示信息。将符号编号为2至符号编号为8的符号配置为DL符号,即第三时间段包含7个DL符号。将符号编号为10至符号编号为12的符号配置为UL符号,即第四时间段包含3个UL符号。将符号编号为9的符号配置为灵活符号,用于将下行传输模式转换为上行传输模式。将符号编号为13的符号配置为DL符号,用于向IRS阵列传输网络设备确定的IRS阵列的控制参数。
又示例性的,网络设备可以将灵活时隙中除用于传输资源指示信息的符号以外的符号中,交替配置为DL符号和UL符号,并保证先配置DL符号。如图12中(b)所示,将符号编号为0和符号编号为1的符号配置为DL符号,用于传输资源指示信息。将符号编号为2和符号编号为3的符号配置为DL符号,即第三时间段包含2个UL符号。将符号编号为5和符号编号为6的符号配置为UL符号,即第四时间段包含2个UL符号。将符号编号为7和符号编号为8的符号配置为DL符号,即又一个第三时间段,包含2个DL符号。将符号编号为10和符号编号为11的符号配置为UL符号,即又一个第四时间段,包含2个UL符号。将符号编号为4和符号编号为9的符号配置为灵活符号,用于将下行传输模式转换为上行传输模式。将符号编号为12的符号配置为DL符号,用于向IRS阵列传输网络设备确定的IRS阵列的控制参数。网络设备确定前13个符号即可完成IRS阵列确认过程,则将符号编号为13的符号配置为灵活符号。或者,符号编号为13的符号用于将下行传输模式转换为上行传输模式,以减少对上行传输资源时间单元4的影响。
在一种可能的实现方式中,第二UL传输资源还包括网络设备为目标终端设备配置的物理上行共享信道(physical uplink shared channel,PUSCH)资源信息,PUSCH资源用于传输第一信道信息。其中,第一信道信息包括下行直达信道信息和下行级联信道信息。
具体的,在终端设备没有数据传输需求的情况下,网络设备只会为终端设备配置物理上行控制信道(physical uplink control channel,PUCCH)资源,用于传输控制信息。PUCCH容量较小,无法单独完成传输第一信道信息。因此,网络设备还需要为目标终端设备配置PUSCH资源。若目标终端设备的数量为多个,则多个目标终端设备可以利用PUSCH和PUCCH,在分配的UL符号上利用复用模式传输。
可选的,资源指示信息还用于指示确定IRS阵列的控制参数的灵活时隙的数量。具体的,若IRS阵列的数量和/或IRS阵列中的反射单元数量较多,则利用一个灵活时隙资源可能无法完成IRS阵列控制参数的确定过程。那么,网络设备需要配置多个灵活时隙资源用于确定IRS阵列的控制参数。其中,每个灵活时隙中UL资源和DL资源的分配方式如上文所述。各个灵活时隙中UL资源和DL资源的分配结果相同或不相同。
在一些实施例中,网络设备将多个用于确定IRS阵列的控制参数的灵活时隙中,在时域上的第一个灵活时隙中的前i个符号配置为用于传输资源指示信息的DL资源。该资源指示信息中包含灵活时隙的数量和每一灵活时隙中UL资源和DL资源的分配结果。那么,在之后的几个灵活时隙中不必再配置用于传输资源指示信息的DL资源。
示例性的,假设网络设备和终端设备之间的上行级联信道和下行级联信道不具有互易性,网络设备需要确定IRS阵列1和IRS阵列2共两个IRS阵列的控制参数。如图13中(a)或(b)所示,网络设备确定需要分配3个灵活时隙(即时间单元3,时间单元8和时间单元13)资源用于确定IRS阵列1和IRS阵列2的控制参数。其中,3个灵活时隙中UL资源和DL资源的分配结果相同或不相同。
比如,图13中(a)所示,网络设备在第一个灵活时隙(即时间单元3)内和第二个灵活时隙(即时间单元8)内以配置DL资源为主,无需反馈下行信道测量结果,即不用配置用于传输第一信道信息的资源。在第三个灵活时隙(即时间单元13)内配置部分DL资源和部分UL资源,即兼顾下行信道测量和反馈下行信道测量结果。
如此,在第三个灵活时隙完成两个IRS阵列的控制参数的确定过程,避免在确定IRS阵列的控制参数的过程中反复调整上下行传输模式,降低资源利用率。
又比如,图13中(b)所示,网络设备在第一个灵活时隙(即时间单元3)内以配置DL资源为主,无需反馈下行信道测量结果,主要用于对IRS阵列1的下行信道进行测量。将第二个灵活时隙(即时间单元8)内符号编号为6至符号编号为10的符号配置为UL符号,用于反馈IRS阵列1的下行信道测量结果,进而先完成IRS阵列1控制参数的确定过程。第三个灵活时隙(即时间单元13)内配置DL资源和UL资源,用于完成IRS阵列2控制参数的确定过程。
如此,若小区内IRS阵列的数量和/或IRS阵列中的反射单元数量较多,则可以逐步完成IRS阵列控制参数的确定过程。已更新控制参数的IRS阵列或IRS阵列中的控制单元,可以逐步参与到上下行信号的传输过程中,逐步提升信道性能,缩短IRS-MIMO系统的信道设计周期。
进一步的,如图13中(a)或(b)所示的资源配置方式,可以看出,若网络设备确定需要配置多个灵活时隙用于确定IRS阵列控制参数,那么,可以将时域上的第一个灵活时隙中的符号配置为相同的传输资源。如图13中(a)所示,将第一个灵活时隙中的资源全部配置为DL资源。也就是说,在该第一个灵活时隙中只配置第二DL传输资源,未配置第二UL传输资源。即第一个灵活时隙中只包含第三时间段,不包含第四时间段。相应的,也可以将时域上最后一个灵活时隙中的符号均配置为UL传输资源,用于传输下行信道测量结果。在此情况下,在该最后一个灵活时隙中只配置第二UL传输资源,未配置第二DL传输资源。即最后一个灵活时隙中只包含第四时间段,不包含第三时间段。
同样的,在上行级联信道和下行级联信道具有互易性的情况下,若同样需要配置多个灵活时隙用于确定IRS阵列控制参数,那么,网络设备可以在第一个灵活时隙中只配置用于传输资源指示信息的第一DL传输资源,未配置第一UL传输 资源。即第一个灵活时隙中只包含第一时间段,不包含第二时间段。相应的,也可以将时域上最后一个灵活时隙中的符号均配置为DL传输资源,用于传输已确定的IRS阵列控制参数,下行信号和下行数据。在此情况下,在该最后一个灵活时隙中只配置第一DL传输资源,未配置第一UL传输资源。即最后一个灵活时隙中只包含第二时间段,不包含第一时间段。
可选的,网络设备需要为多个终端设备配置一个IRS阵列的控制参数。并且,对于该IRS阵列而言,多个终端设备中的第一终端设备和网络设备之间的第一上行级联信道和第一下行级联信道具有互易性,第二终端设备和网络设备之间的第二级联信道和第二级联信道不具有互易性。那么,可以预配置第一终端设备和第二终端设备的数量阈值。比如数量阈值为80%。
在一些实施例中,第一终端设备数量超过全部终端设备数量的80%。那么,网络设备设置IRS阵列控制参数,使得第一上行级联信道和第一下行级联信道具有互易性,并且使得第二上行级联信道和第二下行级联信道具有互易性。之后,网络设备可以按照上述上行级联信道和下行级联信道具有互易性的场景中介绍的方法,确定资源指示信息。
在另一些实施例中,第二终端设备数量超过全部终端设备数量的80%。那么,网络设备可以按照上述上行级联信道和下行级联信道不具有互易性的场景中介绍的方法,确定资源指示信息。
如此,在多个终端设备的上行级联信道和下行级联信道的互易性不相同,同时需要确定IRS阵列控制参数的场景中,也可以提升信道设计效率。
S802、网络设备向终端设备发送资源指示信息。
可选的,网络设备通过将上述资源指示信息发送给设备终端,使得设备终端明确需要用于确定IRS阵列控制参数的灵活时隙,以及灵活时隙中可以用于UL传输和DL传输的资源。
具体的,网络设备向终端设备发送第一信令,该第一信令包括上述资源指示信息,第一信令包括无线资源控制(radio resource control,RRC)信令、媒体存储控制(media access control,MAC)信令、或物理层信令中的至少一种。使得终端设备可以按照第一信令所指示的资源进行配置灵活时隙中的UL传输资源和DL传输资源。并且,网络设备还可以根据当前终端设备位置,需要使用的IRS阵列,IRS阵列配置等信息,确定不同的资源指示信息,灵活实时的根据终端设备需求指示的灵活时隙中的资源,提高信道设计效率。
需要说明的是,若网络设备根据终端设备发送的请求信息,确定资源指示信息。那么,在步骤S802中网络设备向目标终端设备发送资源指示信息。即仅需要目标终端设备进行下行信道的测量。
S803、终端设备获取资源指示信息。
具体的,终端设备接收网络设备发送的资源指示信息,以完成灵活时隙中的UL资源和DL资源配置。
S804、终端设备基于资源指示信息进行UL传输和DL传输。
可选的,终端设备在上述步骤S803中完成灵活时隙中的UL资源和DL资源的 配置,那么可以基于配置结果进行UL传输和DL传输。根据上述步骤S801可知,在网络设备和终端设备之间的上行级联信道和下行级联信道具有互易性和不具有互易性的两种场景中,资源指示信息不同。那么,如下分别对两种场景中,步骤S804的实现方式进行具体介绍。
在一些实施例中,网络设备和终端设备之间的上行级联信道和下行级联信道具有互易性。如图14所示,步骤S804可以实现为步骤S1401-步骤S1404。
S1401、终端设备利用第一UL传输资源向网络设备发送上行参考信号。
S1402、网络设备根据第一IRS阵列控制参数和上行参考信号,获得第二IRS阵列控制参数。
其中,第一IRS阵列控制参数为IRS阵列的历史控制参数或者为网络设备为IRS阵列预配置的控制参数,对此本申请实施例不做具体限定。
可选的,在上述步骤S1401和步骤S1402中,终端设备接收到的资源指示信息中包含第一指示信息,第一指示信息中除了包括步骤S801中介绍的第一资源配置信息以外,还可以包括第一IRS阵列控制参数。那么,IRS阵列基于第一IRS阵列控制参数反射的上行参考信号。
示例性的,如图11中(a)所示,符号编号为3至符号编号为8的符号为第一UL传输资源。
S1403、网络设备利用第一DL传输资源向IRS阵列发送第二IRS阵列控制参数。
示例性的,如图11中(a)所示,符号编号为9至符号编号为13的符号为第一DL传输资源。
S1404、IRS阵列利用第二IRS阵列控制参数进行UL传输和DL传输。
具体的,IRS阵列完成第二IRS阵列控制参数的设置后,即完成了上行信道和下行信道的设计。IRS阵列可以利用第二IRS阵列控制参数反射接收到的上行信号和下行信号,进而实现UL传输和DL传输。
在一些实施例中,网络设备和终端设备之间的上行级联信道和下行级联信道不具有互易性。如图15所示,步骤S804可以实现为步骤S1501-步骤S1505。
S1501、网络设备利用第二DL传输资源向目标终端设备发送下行信号和下行数据。
示例性的,如图12中(a)所示,符号编号为2至符号编号为8的符号为第二DL传输资源。
S1502、目标终端设备根据下行信号和下行数据,获得第一信道信息。
其中,第一信道信息包括下行直达信道信息和下行级联信道信息。
S1503、目标终端设备利用第二UL资源向网络设备发送第一信道信息。
示例性的,如图12中(a)所示,符号编号为10至符号编号为12的符号为第二UL传输资源。
S1504、网络设备根据第一信道信息,获得第三IRS阵列控制参数。
S1505、IRS阵列利用第三IRS阵列控制参数进行UL传输和DL传输。
具体的,IRS阵列完成第三IRS阵列控制参数的设置后,即完成了上行信道和下行信道的设计。IRS阵列可以利用第三IRS阵列控制参数反射接收到的上行信号 和下行信号,进而实现UL传输和DL传输。
可选的,上述步骤S801中,网络设备在判断网络设备和终端设备之间的上行级联信道和下行级联信道是否具有互易性的过程中,其中存在一种方式为预设上行级联信道和下行级联信道不具有互易性。那么,网络设备在当前场景中,确定资源指示信息,并通过上述步骤S1501-步骤S1505确定第三IRS阵列的控制参数。之后,网络设备根据第三IRS阵列控制参数,再次确定上行级联信道和下行级联信道是否具有互易性。若具有互易性,则后续再需要确定IRS阵列控制参数时,网络设备按照上述具有互易性的场景中介绍的方法,确定资源指示信息。否则,按照上述不具有互易性的场景中介绍的方法,确定资源指示信息。
由此,本申请提供的一种资源分配方法,能够利用灵活时隙资源,确定IRS阵列的控制参数,不会对上行数据和下行数据的传输产生影响。并且不会降低现有帧结构中的资源利用率。
以上结合图8,图14和图15详细说明了本申请实施例提供的反馈信息接收方法和反馈信息发送方法。以下结合图16、图17、图18、图19以及图20详细说明本申请实施例提供的资源分配装置。
示例性地,图16为本申请实施例提供的资源分配装置结构示意图一。如图16所示,资源分配装置1600包括:接收模块1601和处理模块1602。资源分配装置1600可用于实现上述方法实施例中涉及的终端设备的功能。其中,资源分配装置1600可以是独立的终端设备,例如手持终端设备、车载终端设备、车辆用户设备等,也可以是终端设备中包括的芯片或芯片系统。
接收模块1601,用于获取资源指示信息。
其中,资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源,灵活时隙用于确定智能反射面IRS阵列的控制参数。
处理模块1602,用于基于资源指示信息进行UL传输和DL传输。
在一种可能的实现方式中,资源分配装置1600和网络设备之间的上行级联信道和下行级联信道具有互易性。
可选的,资源指示信息中包含第一指示信息,第一指示信息包含第一资源配置信息;第一资源配置信息用于配置第一UL传输资源和第一DL传输资源;第一UL传输资源包括第一时间段,第一DL传输资源包括第二时间段,第一时间段先于第二时间段,第一时间段和第二时间段包含的符号数量相同或者不相同。
在一种可能的实现方式中,第一指示信息还包括第一IRS阵列控制参数。资源分配装置1600还包括发送模块1603。
其中,发送模块1603,用于利用第一UL传输资源向网络设备发送上行参考信号,以使得网络设备基于第一IRS阵列控制参数和上行参考信号,获得第二IRS阵列控制参数。
接收模块1601,还用于利用第一DL传输资源,接收IRS阵列利用第二IRS阵列控制参数反射的第一下行信号和/或第一下行数据。
在一种可能的实现方式中,资源分配装置1600和网络设备之间的上行级联信道和下行级联信道不具有互易性。
可选的,资源指示信息中包含第二指示信息,第二指示信息包含第二资源配置信息;第二资源配置信息用于配置第二DL传输资源和第二UL传输资源;第二DL传输资源包括第三时间段,第二UL传输资源包括第四时间段,第三时间段先于第四时间段,第三时间段和第四时间段包含的符号数量相同或者不相同。
在一种可能的实现方式中,资源分配装置1600应用于目标终端设备,目标终端设备为终端设备中的至少一个设备。
其中,资源分配装置1600还包括发送模块1603。
发送模块1603,用于向网络设备发送请求信息。请求信息用于请求参与IRS阵列的控制参数的确定过程。
在一种可能的实现方式中,接收模块1601,还用于利用第二DL传输资源接收网络设备发送的第二下行信号和第二下行数据。
处理模块1602,还用于根据第二下行信号和第二下行数据,获得第一信道信息;第一信道信息包括下行直达信道信息和下行级联信道信息。
发送模块1603,还用于利用第二UL传输资源向网络设备发送第一信道信息。
在一种可能的实现方式中,第二UL传输资源还包括网络设备为装置配置的物理上行共享信道PUSCH资源信息,PUSCH资源用于传输第一信道信息。
在一种可能的实现方式中,灵活时隙的第1个灵活符号至第1+i个灵活符号用于传输资源指示信息,i为自然数。
可选的,i的大小为网络设备根据如下一项或几项内容确定:网络设备的天线数量,资源分配装置1600的天线数量,资源分配装置1600的数量,IRS阵列的数量,IRS阵列中的反射单元数量。
可选地,图16所示的资源分配装置1600还可以包括存储模块(图16中未示出),该存储模块存储有程序或指令。当处理模块1602执行该程序或指令时,使得图16所示的资源分配装置1600可以执行图8所示的资源分配方法。
图16所示的资源分配装置1600的技术效果可以参考图8所示的资源分配方法的技术效果,此处不再赘述。
图16所示的资源分配装置1600中涉及的处理模块可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元。
接收模块1601和发送模块1603可以统称为收发模块,可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
上述资源分配装置1600中的各个模块的操作和/或功能分别为了实现图8所示资源分配方法的相应流程,为了简洁,在此不再赘述。
示例性地,图17为本申请实施例提供的资源分配装置结构示意图二。如图17所示,资源分配装置1700包括:处理模块1701和发送模块1702。资源分配装置1700可用于实现上述方法实施例中涉及的网络设备的功能。其中,资源分配装置1700可以是独立的网络设备,例如基站等,也可以是网络设备中包括的芯片或芯片系统。
处理模块1701,用于确定资源指示信息。
可选的,资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链 路DL传输资源,灵活时隙用于确定智能反射面IRS阵列的控制参数。
发送模块1702,用于向终端设备发送资源指示信息。
在一种可能的实现方式中,资源分配装置1700和终端设备之间的上行级联信道和下行级联信道具有互易性。
可选的,资源指示信息中包含第一指示信息,第一指示信息包含第一资源配置信息;第一资源配置信息用于配置第一UL传输资源和第一DL传输资源;第一UL传输资源包括第一时间段,第一DL传输资源包括第二时间段,第一时间段先于第二时间段,第一时间段和第二时间段包含的符号数量相同或者不相同。
在一种可能的实现方式中,第一指示信息还包括第一IRS阵列控制参数。
可选的,资源分配装置1700还包括:接收模块1703。
其中,接收模块1703,用于利用第一UL传输资源,接收IRS阵列基于第一IRS阵列控制参数反射的上行参考信号。
处理模块1701,还用于根据上行参考信号,获得第二IRS阵列控制参数。
发送模块1702,还用于利用第一DL传输资源,向IRS阵列发送第二IRS阵列控制参数,以使得IRS阵列利用第二IRS阵列控制参数进行UL传输和DL传输。
在一种可能的实现方式中,资源分配装置1700和终端设备之间的上行级联信道和下行级联信道不具有互易性。
可选的,资源指示信息中包含第二指示信息,第二指示信息包含第二资源配置信息;第二资源配置信息用于配置第二DL传输资源和第二UL传输资源;第二DL传输资源包括第三时间段,第二UL传输资源包括第四时间段,第三时间段先于第四时间段,第三时间段和第四时间段包含的符号数量相同或者不相同。
在一种可能的实现方式中,资源分配装置1700还包括:接收模块。
其中,接收模块1703,用于接收目标终端设备发送的请求信息。请求信息用于请求参与IRS阵列的控制参数的确定过程。目标终端设备为终端设备中的至少一个设备。
在一种可能的实现方式中,发送模块1702,还用于利用第二DL传输资源向目标终端设备发送下行信号和下行数据。
接收模块1703,还用于利用第二UL传输资源接收目标终端设备发送的第一信道信息;第一信道信息为目标终端设备根据下行信号和下行数据获得的信道信息,第一信道信息包括下行直达信道信息和下行级联信道信息。
在一种可能的实现方式中,第二UL传输资源还包括装置为目标终端设备配置的物理上行共享信道PUSCH资源信息,PUSCH资源用于传输第一信道信息。
在一种可能的实现方式中,灵活时隙的第1个灵活符号至第1+i个灵活符号用于传输资源指示信息,i为自然数。
其中,i的大小为资源分配装置1700根据如下一项或几项内容确定:资源分配装置1700的天线数量,终端设备或目标终端的天线数量,终端设备或目标终端的数量,IRS阵列的数量,IRS阵列中的反射单元数量。
在一种可能的实现方式中,处理模块1701,还用于确定装置和终端设备之间的上行级联信道和下行级联信道是否具有互易性。
在一种可能的实现方式中,处理模块1701,具体用于预设资源分配装置1700和终端设备之间的上行级联信道和下行级联信道不具有互易性。或者,资源分配装置1700根据终端设备的位置信息,确定资源分配装置1700和终端设备之间的上行级联信道和下行级联信道是否具有互易性。
可选地,图17所示的资源分配装置1700还可以包括存储模块(图17中未示出),该存储模块存储有程序或指令。当处理模块1701执行该程序或指令时,使得图17所示的资源分配装置1700可以执行图8所示的资源分配方法。
图17所示的资源分配装置1700的技术效果可以参考图8所示的资源分配方法的技术效果,此处不再赘述。
图17所示的资源分配装置1700中涉及的处理模块可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元。
接收模块1703和发送模块1702可以统称为收发模块,可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
上述资源分配装置1700中的各个模块的操作和/或功能分别为了实现图8所示资源分配方法的相应流程,为了简洁,在此不再赘述。
图18为本申请实施例中提供的资源分配装置的结构示意图三。如图18所示,该资源分配装置1800具体可为终端设备。为了便于理解和图示方便,在图18中,终端设备以手机作为例子。
如图18所示,资源分配装置1800包括处理器,还可以包括存储器,当然,也还可以包括射频电路、天线以及输入输出装置等。
其中,处理器主要用于对通信协议以及通信数据进行处理,以及对资源分配装置1800进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的资源分配装置1800可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到资源分配装置1800时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为便于说明,图18中仅示出了一个存储器和处理器。在实际的资源分配装置1800中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为资源分配装置1800的收发单元1810,将具有处理功能的处理器视为资源分配装置1800的处理单元1820。
如图18所示,资源分配装置1800包括收发单元1810和处理单元1820。收发 单元1810也可以称为收发器、收发机、收发装置、收发电路等。处理单元1820也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1810中用于实现接收功能的器件视为接收单元,将收发单元1810中用于实现发送功能的器件视为发送单元,即收发单元1810包括接收单元和发送单元。接收单元有时也可以称为接收机、接收器、接收装置或接收电路等。发送单元有时也可以称为发射机、发射器、发射装置、或发射电路等。
应理解,收发单元1810用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1820用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种可能的实现方式中,收发单元1810用于执行图8中的步骤S802和步骤S803中终端设备侧的接收操作,和/或收发单元1810还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1820,用于执行图8中的步骤S804,和/或处理单元1820还用于执行本申请实施例中终端设备侧的其他处理步骤。
再例如,在另一种实现方式中,收发单元1810用于执行图14中的步骤S1401中终端设备侧的发送操作,和/或收发单元1810还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1820用于执行本申请实施例中终端设备侧的其他处理步骤。
又例如,在再一种实现方式中,收发单元1810用于执行图15中的步骤S1501中终端设备侧的接收操作,和/或步骤S1503中终端设备侧的发送操作,和/或收发单元1810还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1820,用于执行图15中的步骤S1502,和/或处理单元1820还用于执行本申请实施例中终端设备侧的其他处理步骤。
当资源分配装置1800为芯片类的装置或者电路时,该资源分配装置1800可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
图19为本申请实施例中提供的资源分配装置的结构示意图四。如图19所示,该资源分配装置1900具体可为网络设备。为了便于理解和图示方便,在图19中,网络设备以基站作为例子。
如图19所示,资源分配装置1900包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1910和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1920。
所述RRU 1910可以称为收发模块,与图17中的发送模块1702和接收模块1703和对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1911和射频单元1912。所述RRU 1910部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送下行数据和/或下行信号。所述BBU 1920部分主要用于进行基带处理,对基站进行控制等。所述RRU 1910与BBU 1920可以是物理上设置在一起,也可以是在物理上分离设置的,即分布式基站。
所述BBU 1920为基站的控制中心,也可以称为处理模块,可以与图17中的 处理模块1701对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,确定IRS阵列的控制参数等。
在一个示例中,所述BBU 1920可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。
所述BBU 1920还包括存储器1921和处理器1922。所述存储器1921用以存储必要的指令和数据。所述处理器1922用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1921和处理器1922可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
例如,在一种可能的实现方式中,RRU1910用于执行图8中的步骤S802中网络设备侧的发送操作,和/或RRU1910还用于执行本申请实施例中网络设备侧的其他收发步骤。BBU1920,用于执行图8中的步骤S801,和/或BBU1920还用于执行本申请实施例中网络设备侧的其他处理步骤。
再例如,在另一种实现方式中,RRU1910用于执行图14中的步骤S1403中网络设备侧的发送操作,和/或RRU1910还用于执行本申请实施例中网络设备侧的其他收发步骤。BBU1920用于执行图14中的步骤S1402中网络设备侧的操作,和/或BBU1920还用于执行本申请实施例中网络设备侧的其他处理步骤。
又例如,在再一种实现方式中,RRU1910用于执行图15中的步骤S1501中网络设备侧的发送操作,和/或步骤S1503中网络设备侧的接收操作,和/或RRU1910还用于执行本申请实施例中网络设备侧的其他收发步骤。BBU1920,用于执行图15中的步骤S1504,和/或BBU1920还用于执行本申请实施例中网络设备侧的其他处理步骤。
当资源分配装置1900为芯片类的装置或者电路时,该资源分配装置1900可以包括RRU和BBU。其中,所述RRU可以是输入输出电路和/或通信接口;BBU为集成的处理器或者微处理器或者集成电路。
图20所示为本申请实施例提供的资源分配装置的结构示意图五。该资源分配装置可以应用于终端设备或网络设备。
如图20所示,该通信装置包括至少一个处理器2001和至少一个接口电路2002。处理器2001和接口电路2002可通过线路互联。例如,接口电路2002可用于从其它装置接收信号。又例如,接口电路2002可用于向其它装置(例如处理器2001)发送信号。示例性的,接口电路2002可读取存储器中存储的指令,并将该指令发送给处理器2001。当所述指令被处理器2001执行时,可使得通信装置执行上述实施例中的反馈信息接收方法中的各个步骤。当然,该通信装置还可以包含其他分立器件,本申请实施例对此不作具体限定。
本申请的实施例提供了一种通信装置,该通信装置包括逻辑电路,输入接口和输出接口。
在一些实施例中,该通信装置应用于终端设备。其中,输入接口,用于接收网络设备发送的资源指示信息,和/或还用于执行本申请实施例中终端设备侧的其他接收步骤。逻辑电路,用于基于资源指示信息,配置灵活时隙中的UL资源和DL资源;和/或根据下行数据和下行信号测量下行信道信息;和/或还用于执行本申请实施例中终端设备侧的其他处理步骤。输出接口,用于向网络设备发送上行参考信号,和/或还用于执行本申请实施例中终端设备侧的其他发送步骤。
在另一些实施例中,该通信装置应用于网络设备。其中,输入接口,用于接收终端设备发送的上行参考信号,和/或还用于执行本申请实施例中网络设备侧的其他接收步骤。逻辑电路,用于确定资源指示信息,和/或还用于执行本申请实施例中网络设备侧的其他处理步骤。输出接口,用于向终端设备发送资源指示信息,和/或还用于执行本申请实施例中网络设备侧的其他发送步骤。
上述输入接口和输出接口可以统称为输入输出接口,收发接口或通信接口,可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请的实施例还提供了一种计算机可读存储介质,用于存储为上述通信装置所用的计算机软件指令。
本申请的实施例还提供了一种计算机程序产品,例如计算机可读存储介质,包括用于执行上述实施例中通信装置执行的步骤所设计的程序。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法及装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以 使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种资源分配方法,其特征在于,所述方法包括:
    终端设备获取资源指示信息;所述资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源,所述灵活时隙用于确定智能反射面IRS阵列的控制参数;
    所述终端设备基于所述资源指示信息进行UL传输和DL传输。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备和网络设备之间的上行级联信道和下行级联信道具有互易性,所述资源指示信息中包含第一指示信息,所述第一指示信息包含第一资源配置信息;所述第一资源配置信息用于配置第一UL传输资源和第一DL传输资源;所述第一UL传输资源包括第一时间段,所述第一DL传输资源包括第二时间段,所述第一时间段先于所述第二时间段,所述第一时间段和所述第二时间段包含的符号数量相同或者不相同。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息还包括第一IRS阵列控制参数,所述方法还包括:
    所述终端设备利用所述第一UL传输资源向所述网络设备发送上行参考信号,以使得所述网络设备基于所述第一IRS阵列控制参数和所述上行参考信号,获得第二IRS阵列控制参数;
    所述终端设备利用所述第一DL传输资源,接收所述IRS阵列利用所述第二IRS阵列控制参数反射的第一下行信号和/或第一下行数据。
  4. 根据权利要求1所述的方法,其特征在于,所述终端设备和网络设备之间的上行级联信道和下行级联信道不具有互易性,所述资源指示信息中包含第二指示信息,所述第二指示信息包含第二资源配置信息;所述第二资源配置信息用于配置第二DL传输资源和第二UL传输资源;所述第二DL传输资源包括第三时间段,所述第二UL传输资源包括第四时间段,所述第三时间段先于所述第四时间段,所述第三时间段和所述第四时间段包含的符号数量相同或者不相同。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    目标终端设备向所述网络设备发送请求信息;所述请求信息用于请求参与所述IRS阵列的控制参数的确定过程;所述目标终端设备为所述终端设备中的至少一个设备。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述目标终端设备利用所述第二DL传输资源接收所述网络设备发送的第二下行信号和第二下行数据;
    所述目标终端设备根据所述第二下行信号和所述第二下行数据,获得第一信道信息;所述第一信道信息包括下行直达信道信息和下行级联信道信息;
    所述目标终端设备利用所述第二UL传输资源向所述网络设备发送所述第一信道信息。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,所述第二UL传输资源还包括所述网络设备为目标终端设备配置的物理上行共享信道PUSCH资源信息,所述PUSCH资源用于传输第一信道信息。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述灵活时隙的第1个灵活符号至第1+i个灵活符号用于传输所述资源指示信息,i为自然数;其中,所述i的大小为网络设备根据如下一项或几项内容确定:所述网络设备的天线数量,所述终端设备或目标终端的天线数量,所述终端设备或目标终端的数量,所述IRS阵列的数量,所述IRS阵列中的反射单元数量。
  9. 一种资源分配方法,其特征在于,所述方法包括:
    网络设备确定资源指示信息;所述资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源,所述灵活时隙用于确定智能反射面IRS阵列的控制参数;
    所述网络设备向终端设备发送所述资源指示信息。
  10. 根据权利要求9所述的方法,其特征在于,所述网络设备和所述终端设备之间的上行级联信道和下行级联信道具有互易性,所述资源指示信息中包含第一指示信息,所述第一指示信息包含第一资源配置信息;所述第一资源配置信息用于配置第一UL传输资源和第一DL传输资源;所述第一UL传输资源包括第一时间段,所述第一DL传输资源包括第二时间段,所述第一时间段先于所述第二时间段,所述第一时间段和所述第二时间段包含的符号数量相同或者不相同。
  11. 根据权利要求10所述的方法,其特征在于,所述第一指示信息还包括第一IRS阵列控制参数,所述方法还包括:
    所述网络设备利用所述第一UL传输资源,接收所述IRS阵列基于所述第一IRS阵列控制参数反射的上行参考信号;并根据所述上行参考信号,获得第二IRS阵列控制参数;
    所述网络设备利用所述第一DL传输资源,向所述IRS阵列发送所述第二IRS阵列控制参数,以使得所述IRS阵列利用所述第二IRS阵列控制参数进行UL传输和DL传输。
  12. 根据权利要求9所述的方法,其特征在于,所述网络设备和所述终端设备之间的上行级联信道和下行级联信道不具有互易性,所述资源指示信息中包含第二指示信息,所述第二指示信息包含第二资源配置信息;所述第二资源配置信息用于配置第二DL传输资源和第二UL传输资源;所述第二DL传输资源包括第三时间段,所述第二UL传输资源包括第四时间段,所述第三时间段先于所述第四时间段,所述第三时间段和所述第四时间段包含的符号数量相同或者不相同。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收目标终端设备发送的请求信息;所述请求信息用于请求参与所述IRS阵列的控制参数的确定过程;所述目标终端设备为所述终端设备中的至少一个设备。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述网络设备利用所述第二DL传输资源向所述目标终端设备发送下行信号和下行数据;
    所述网络设备利用所述第二UL传输资源接收所述目标终端设备发送的第一信道信息;所述第一信道信息为所述目标终端设备根据所述下行信号和所述下行数 据获得的信道信息,所述第一信道信息包括下行直达信道信息和下行级联信道信息。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,所述第二UL传输资源还包括所述网络设备为目标终端设备配置的物理上行共享信道PUSCH资源信息,所述PUSCH资源用于传输第一信道信息。
  16. 根据权利要求9-12任一项所述的方法,其特征在于,所述灵活时隙的第1个灵活符号至第1+i个灵活符号用于传输所述资源指示信息,i为自然数;其中,所述i的大小为所述网络设备根据如下一项或几项内容确定:所述网络设备的天线数量,所述终端设备或目标终端的天线数量,所述终端设备或目标终端的数量,所述IRS阵列的数量,所述IRS阵列中的反射单元数量。
  17. 根据权利要求9所述的方法,其特征在于,在所述网络设备确定资源指示信息之前,所述方法还包括:
    所述网络设备确定所述网络设备和所述终端设备之间的上行级联信道和下行级联信道是否具有互易性。
  18. 根据权利要求17所述的方法,其特征在于,所述网络设备确定所述网络设备和所述终端设备之间的上行级联信道和下行级联信道是否具有互易性,包括:
    所述网络设备预设所述网络设备和所述终端设备之间的上行级联信道和下行级联信道不具有互易性;
    或者,所述网络设备根据所述终端设备的位置信息,确定所述网络设备和所述终端设备之间的上行级联信道和下行级联信道是否具有互易性。
  19. 一种资源分配装置,其特征在于,所述装置应用于终端设备,所述装置包括:接收模块和处理模块;
    所述接收模块,用于获取资源指示信息;所述资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源,所述灵活时隙用于确定智能反射面IRS阵列的控制参数;
    所述处理模块,用于基于所述资源指示信息进行UL传输和DL传输。
  20. 根据权利要求19所述的装置,其特征在于,所述装置和网络设备之间的上行级联信道和下行级联信道具有互易性,所述资源指示信息中包含第一指示信息,所述第一指示信息包含第一资源配置信息;所述第一资源配置信息用于配置第一UL传输资源和第一DL传输资源;所述第一UL传输资源包括第一时间段,所述第一DL传输资源包括第二时间段,所述第一时间段先于所述第二时间段,所述第一时间段和所述第二时间段包含的符号数量相同或者不相同。
  21. 根据权利要求20所述的装置,其特征在于,所述第一指示信息还包括第一IRS阵列控制参数;所述装置还包括发送模块;
    所述发送模块,用于利用所述第一UL传输资源向所述网络设备发送上行参考信号,以使得所述网络设备基于所述第一IRS阵列控制参数和所述上行参考信号,获得第二IRS阵列控制参数;
    所述接收模块,还用于利用所述第一DL传输资源,接收所述IRS阵列利用所述第二IRS阵列控制参数反射的第一下行信号和/或第一下行数据。
  22. 根据权利要求19所述的装置,其特征在于,所述装置和网络设备之间的上行级联信道和下行级联信道不具有互易性,所述资源指示信息中包含第二指示信息,所述第二指示信息包含第二资源配置信息;所述第二资源配置信息用于配置第二DL传输资源和第二UL传输资源;所述第二DL传输资源包括第三时间段,所述第二UL传输资源包括第四时间段,所述第三时间段先于所述第四时间段,所述第三时间段和所述第四时间段包含的符号数量相同或者不相同。
  23. 根据权利要求22所述的装置,其特征在于,所述装置应用于目标终端设备,所述目标终端设备为所述终端设备中的至少一个设备;所述装置还包括发送模块;
    所述发送模块,用于向所述网络设备发送请求信息;所述请求信息用于请求参与所述IRS阵列的控制参数的确定过程。
  24. 根据权利要求23所述的装置,其特征在于,
    所述接收模块,还用于利用所述第二DL传输资源接收所述网络设备发送的第二下行信号和第二下行数据;
    所述处理模块,还用于根据所述第二下行信号和所述第二下行数据,获得第一信道信息;所述第一信道信息包括下行直达信道信息和下行级联信道信息;
    所述发送模块,还用于利用所述第二UL传输资源向所述网络设备发送所述第一信道信息。
  25. 根据权利要求22-24任一项所述的装置,其特征在于,所述第二UL传输资源还包括所述网络设备为所述装置配置的物理上行共享信道PUSCH资源信息,所述PUSCH资源用于传输第一信道信息。
  26. 根据权利要求19-25任一项所述的装置,其特征在于,所述灵活时隙的第1个灵活符号至第1+i个灵活符号用于传输所述资源指示信息,i为自然数;其中,所述i的大小为网络设备根据如下一项或几项内容确定:所述网络设备的天线数量,所述装置的天线数量,所述装置的数量,所述IRS阵列的数量,所述IRS阵列中的反射单元数量。
  27. 一种资源分配装置,其特征在于,所述装置应用于网络设备,所述装置包括:处理模块和发送模块;
    所述处理模块,用于确定资源指示信息;所述资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源,所述灵活时隙用于确定智能反射面IRS阵列的控制参数;
    所述发送模块,用于向终端设备发送所述资源指示信息。
  28. 根据权利要求27所述的装置,其特征在于,所述装置和所述终端设备之间的上行级联信道和下行级联信道具有互易性,所述资源指示信息中包含第一指示信息,所述第一指示信息包含第一资源配置信息;所述第一资源配置信息用于配置第一UL传输资源和第一DL传输资源;所述第一UL传输资源包括第一时间段,所述第一DL传输资源包括第二时间段,所述第一时间段先于所述第二时间段,所述第一时间段和所述第二时间段包含的符号数量相同或者不相同。
  29. 根据权利要求28所述的装置,其特征在于,所述第一指示信息还包括第一IRS阵列控制参数;所述装置还包括:接收模块;
    所述接收模块,用于利用所述第一UL传输资源,接收所述IRS阵列基于所述第一IRS阵列控制参数反射的上行参考信号;
    所述处理模块,还用于根据所述上行参考信号,获得第二IRS阵列控制参数;
    所述发送模块,还用于利用所述第一DL传输资源,向所述IRS阵列发送所述第二IRS阵列控制参数,以使得所述IRS阵列利用所述第二IRS阵列控制参数进行UL传输和DL传输。
  30. 根据权利要求27所述的装置,其特征在于,所述装置和所述终端设备之间的上行级联信道和下行级联信道不具有互易性,所述资源指示信息中包含第二指示信息,所述第二指示信息包含第二资源配置信息;所述第二资源配置信息用于配置第二DL传输资源和第二UL传输资源;所述第二DL传输资源包括第三时间段,所述第二UL传输资源包括第四时间段,所述第三时间段先于所述第四时间段,所述第三时间段和所述第四时间段包含的符号数量相同或者不相同。
  31. 根据权利要求30所述的装置,其特征在于,所述装置还包括:接收模块;
    所述接收模块,用于接收目标终端设备发送的请求信息;所述请求信息用于请求参与所述IRS阵列的控制参数的确定过程;所述目标终端设备为所述终端设备中的至少一个设备。
  32. 根据权利要求31所述的装置,其特征在于,
    所述发送模块,还用于利用所述第二DL传输资源向所述目标终端设备发送下行信号和下行数据;
    所述接收模块,还用于利用所述第二UL传输资源接收所述目标终端设备发送的第一信道信息;所述第一信道信息为所述目标终端设备根据所述下行信号和所述下行数据获得的信道信息,所述第一信道信息包括下行直达信道信息和下行级联信道信息。
  33. 根据权利要求30-32任一项所述的装置,其特征在于,所述第二UL传输资源还包括所述装置为目标终端设备配置的物理上行共享信道PUSCH资源信息,所述PUSCH资源用于传输第一信道信息。
  34. 根据权利要求27-33任一项所述的装置,其特征在于,所述灵活时隙的第1个灵活符号至第1+i个灵活符号用于传输所述资源指示信息,i为自然数;其中,所述i的大小为所述装置根据如下一项或几项内容确定:所述装置的天线数量,所述终端设备或目标终端的天线数量,所述终端设备或目标终端的数量,所述IRS阵列的数量,所述IRS阵列中的反射单元数量。
  35. 根据权利要求27所述的装置,其特征在于,
    所述处理模块,还用于确定所述装置和所述终端设备之间的上行级联信道和下行级联信道是否具有互易性。
  36. 根据权利要求35所述的装置,其特征在于,
    所述处理模块,具体用于预设所述装置和所述终端设备之间的上行级联信道和下行级联信道不具有互易性;
    或者,所述装置根据所述终端设备的位置信息,确定所述装置和所述终端设备之间的上行级联信道和下行级联信道是否具有互易性。
  37. 一种通信装置,其特征在于,包括:处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1至8中任一项所述的方法;或者,使得所述通信装置执行如权利要求9至18中任一项所述的方法。
  38. 一种通信装置,其特征在于,所述通信装置包括逻辑电路和通信接口;
    所述通信接口,用于获取资源指示信息;所述资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源,所述灵活时隙用于确定智能反射面IRS阵列的控制参数;
    所述逻辑电路被配置为执行如权利要求1至8中任一项所述的方法。
  39. 一种通信装置,其特征在于,所述通信装置包括逻辑电路和通信接口;
    所述通信接口,用于发送资源指示信息,所述资源指示信息用于指示灵活时隙中的上行链路UL传输资源和下行链路DL传输资源,所述灵活时隙用于确定智能反射面IRS阵列的控制参数;
    所述逻辑电路被配置为执行如权利要求9至18中任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当计算机执行所述指令时,如权利要求1至8中任一项所述的方法被执行;或者,如权利要求9至18中任一项所述的方法被执行。
  41. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令在计算机上运行时,如权利要求1至8中任一项所述的方法被执行,或者,如权利要求9至18中任一项所述的方法被执行。
PCT/CN2021/108671 2020-08-19 2021-07-27 资源分配方法及装置 WO2022037372A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21857467.1A EP4188015A4 (en) 2020-08-19 2021-07-27 RESOURCE ALLOCATION METHOD AND APPARATUS
US18/170,222 US20230199734A1 (en) 2020-08-19 2023-02-16 Resource allocation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010839306.1A CN114080036A (zh) 2020-08-19 2020-08-19 资源分配方法及装置
CN202010839306.1 2020-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/170,222 Continuation US20230199734A1 (en) 2020-08-19 2023-02-16 Resource allocation method and apparatus

Publications (1)

Publication Number Publication Date
WO2022037372A1 true WO2022037372A1 (zh) 2022-02-24

Family

ID=80282746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108671 WO2022037372A1 (zh) 2020-08-19 2021-07-27 资源分配方法及装置

Country Status (4)

Country Link
US (1) US20230199734A1 (zh)
EP (1) EP4188015A4 (zh)
CN (1) CN114080036A (zh)
WO (1) WO2022037372A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4297286A1 (en) * 2022-06-24 2023-12-27 Apple Inc. Resource allocation for communication via reflective surfaces

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230078537A1 (en) * 2021-09-16 2023-03-16 Qualcomm Incorporated Channel state information reporting for reconfigurable intelligent surfaces
CN114710186A (zh) * 2022-04-12 2022-07-05 东南大学 一种低成本广覆盖的毫米波预编码方法
WO2024026827A1 (en) * 2022-08-05 2024-02-08 Qualcomm Incorporated Interference mitigation in reflective intelligent surface-based communication systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190044246A1 (en) * 2017-08-01 2019-02-07 University Of Cyprus New wireless communication paradigm: realizing programmable wireless environments through software-controlled metasurfaces
CN111131096A (zh) * 2019-12-03 2020-05-08 东南大学 基于可编程超表面的无线中继系统及其一种信道估计方法
CN111245493A (zh) * 2020-01-10 2020-06-05 北京邮电大学 智能反射面辅助毫米波通信系统的高效波束训练方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10904909B2 (en) * 2018-01-23 2021-01-26 Huawei Technologies Co., Ltd. System and method for time domain grant-free PUSCH resource allocation
KR20200012241A (ko) * 2018-07-26 2020-02-05 삼성전자주식회사 무선 통신 시스템에서 자원을 할당하는 방법, 장치 및 시스템
EP4391432A2 (en) * 2019-01-10 2024-06-26 Wilus Institute of Standards and Technology Inc. Method for transmitting uplink shared channel in wireless communication system and device using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190044246A1 (en) * 2017-08-01 2019-02-07 University Of Cyprus New wireless communication paradigm: realizing programmable wireless environments through software-controlled metasurfaces
CN111131096A (zh) * 2019-12-03 2020-05-08 东南大学 基于可编程超表面的无线中继系统及其一种信道估计方法
CN111245493A (zh) * 2020-01-10 2020-06-05 北京邮电大学 智能反射面辅助毫米波通信系统的高效波束训练方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4188015A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4297286A1 (en) * 2022-06-24 2023-12-27 Apple Inc. Resource allocation for communication via reflective surfaces

Also Published As

Publication number Publication date
CN114080036A (zh) 2022-02-22
EP4188015A1 (en) 2023-05-31
US20230199734A1 (en) 2023-06-22
EP4188015A4 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2022037372A1 (zh) 资源分配方法及装置
CN110972251B (zh) 信号传输方法、相关设备及系统
CN111867094B (zh) 数据接收和发送方法及装置
CN109890079B (zh) 一种资源配置方法及其装置
WO2020088571A1 (zh) 一种信息传输方法、装置和设备
WO2021013013A1 (en) Methods and devices for determining spatial relation, user equipment and network device
CN110324904A (zh) Nr系统中的自给式时隙和时隙持续时间配置
JP7429242B2 (ja) 測定管理方法及び装置、通信デバイス
WO2018120156A1 (zh) 系统信息发送方法、系统信息接收方法及装置
CN114828036B (zh) 一种干扰管理方法、装置及存储介质
AU2021302094B2 (en) Coverage enhancement method and apparatus
WO2022027681A1 (zh) 无线通信方法和设备
EP4091390B1 (en) Coordination of contention based wireless transmissions
WO2020200115A1 (zh) 通信方法、装置、系统和存储介质
CN113840380A (zh) 一种波束指示方法及通信装置
WO2020154837A1 (zh) 一种通信方法及装置
CN114451036A (zh) 探测参考信号的发送方法,及相关产品
EP3624523A1 (en) Wireless communication method, terminal device, network device, and network node
CN111757351A (zh) 数据接收和发送方法及装置
WO2023019464A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2022036719A1 (zh) 无线通信方法和设备
WO2022205459A1 (zh) 无线通信方法、终端设备和网络设备
WO2024067516A1 (zh) 一种通信方法及装置
WO2023097693A1 (zh) 无线通信方法、终端设备和网络设备
WO2022061777A1 (zh) 无线通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021857467

Country of ref document: EP

Effective date: 20230221

NENP Non-entry into the national phase

Ref country code: DE