WO2020154837A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020154837A1
WO2020154837A1 PCT/CN2019/073376 CN2019073376W WO2020154837A1 WO 2020154837 A1 WO2020154837 A1 WO 2020154837A1 CN 2019073376 W CN2019073376 W CN 2019073376W WO 2020154837 A1 WO2020154837 A1 WO 2020154837A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
reference signal
terminal device
network device
downlink channel
Prior art date
Application number
PCT/CN2019/073376
Other languages
English (en)
French (fr)
Inventor
苏立焱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/073376 priority Critical patent/WO2020154837A1/zh
Priority to EP19912829.9A priority patent/EP3905544A4/en
Priority to CN201980089948.XA priority patent/CN114128163B/zh
Publication of WO2020154837A1 publication Critical patent/WO2020154837A1/zh
Priority to US17/387,330 priority patent/US20210360598A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • the communication system may include a time division duplex (TDD) system and a frequency division duplex (FDD) system.
  • TDD time division duplex
  • FDD frequency division duplex
  • the instantaneous uplink channel and the downlink channel have reciprocity.
  • the terminal device sends a sounding reference signal (SRS) in the uplink, and the network device can use the SRS to estimate the uplink channel state information.
  • SRS sounding reference signal
  • the network device can use the SRS to estimate the uplink channel state information.
  • the instantaneous uplink channel and the downlink channel do not have reciprocity, and the network equipment cannot use the uplink channel state information to obtain the downlink channel state information.
  • a communication system is a TDD system or an FDD system is determined by the frequency band used by the communication system, and the frequency band used by the communication system is fixed. Therefore, the FDD system cannot be changed to a TDD system to solve the downlink channel state information or other types Downlink channel information (such as partial downlink channel state information, or the maximum eigenvector of the channel, etc.) acquisition problem.
  • a solution is proposed for the terminal equipment to carry the downlink channel information through the reference signal, so that the terminal equipment can send the downlink channel information to the network equipment by sending the reference signal to the network equipment. Furthermore, the network device can obtain downlink channel information through the reference signal from the terminal device.
  • the implementation details of this solution are still under discussion, and how the terminal device sends the reference signal is still an unresolved problem.
  • This application provides a communication method and device for sending reference signals carrying downlink channel information.
  • a communication method determines a first parameter for sending a first reference signal, sends the first reference signal to the network device according to the first parameter, and the network device receives The first reference signal, and the downlink channel information is determined according to the received first reference signal.
  • the first reference signal is used to carry downlink channel information.
  • the first parameter may include only one parameter or a group of parameters, which is not limited in the present application.
  • the terminal device first determines the first parameter for sending the first reference signal, and then sends the first reference signal according to the first parameter, providing a method for sending the first reference signal.
  • the terminal device determines the first parameter according to the downlink channel information.
  • the terminal device can send the first reference signal without waiting for the scheduling of the network device, and the time delay for the terminal device to send the first reference signal is small, so that the network device can obtain the downlink channel information faster, so that the network device can Faster scheduling of downlink transmission.
  • the network device sends the first indication information to the terminal device, the first indication information is used to indicate the first parameter, and the terminal device receives the first indication information from the network device.
  • the first parameter is used to indicate transmission of the first reference signal.
  • the first indication information may indicate the first parameter in two ways. In one mode, the first indication information includes the first parameter, and in another mode, the first indication information includes an indication bit, and the value of the indication bit is used to indicate the first parameter.
  • the indicator bit may be at least one bit (bit).
  • the terminal device determines the second parameter for sending the first reference signal according to the downlink channel information, and the terminal device sends the second parameter to the network device.
  • the terminal device may send the second information to the network device, and indicate the second parameter through the second information.
  • the second information includes the second parameter, or the second information includes an indicator bit, and the value of the indicator bit is used to indicate the second parameter.
  • the indicator bit may be at least one bit, and the value of the indicator bit is the state of the at least one bit. It should be noted that, in this application, only one terminal device is used as an example. When there are multiple terminal devices, each terminal device of the multiple terminal devices can execute the communication method provided in this application.
  • each terminal device in the multiple terminal devices can use the method in this design to determine the first reference signal that it uses to send the first reference signal.
  • Second parameter it is understandable that the second parameter determined by each terminal device in the multiple terminal devices may be the same or different, and each terminal device in the multiple terminal devices determines its own second parameter for sending the first reference signal Afterwards, each of the multiple terminal devices may send the second parameter determined by itself to the network device.
  • the network device also needs to determine the first parameter before sending the first indication information to the terminal device.
  • the network device determines the first parameter according to at least one second parameter, the at least one second parameter comes from at least one terminal device, and the second parameter is a parameter recommended for transmission of the first reference signal.
  • the network device determines the first parameter according to the uplink channel state information.
  • the first parameter and the second parameter may be the same parameter or different parameters.
  • the second parameter may include only one parameter or a group of parameters, which is not limited in the present application.
  • the terminal device can suggest to the network device to send the first reference signal to use the second parameter through signaling, and the network device can comprehensively determine the first parameter for finally sending the first reference signal according to the second parameter suggested by at least one terminal device.
  • the terminal device can use the optimal or nearly optimal parameters to send the first reference signal, thereby improving the feedback performance of the downlink channel.
  • the first parameter belongs to the first parameter set.
  • the first parameter set may be configured by the network device for the terminal device through high-level signaling or predefined.
  • the terminal device may determine the first parameter based on the downlink channel information based on the first parameter set.
  • the first parameter set includes at least one set of parameters for transmitting the first reference signal.
  • the terminal device may also send the first parameter to the network device, and the network device receives the first parameter from the terminal device.
  • the network device receives the first parameter from the terminal device.
  • the first parameter includes but is not limited to: at least one of the size of the first precoding resource group (PRG) or the first bandwidth used for the first reference signal
  • the second parameter includes but is not limited to: at least one of a second PRG size or a second bandwidth used for the first reference signal.
  • the embodiments of the present application provide a communication device.
  • the device may be a terminal device or a device in a terminal device.
  • the device may include a processing module and a storage module. These modules can execute the first aspect or the first aspect described above.
  • the method executed by the terminal device in any possible implementation manner on the one hand is specifically:
  • the storage module stores a computer program
  • the processing module is configured to call the computer program stored in the storage module to make the communication device execute:
  • the first reference signal is sent to the network device.
  • an embodiment of the present application provides a terminal device, which has a function of implementing the behavior of the terminal device in the above-mentioned method example of the first aspect.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the module can be software and/or hardware.
  • the terminal device includes a memory, a transceiver, a processor, and a bus, where the memory, the transceiver, and the processor are connected through the bus; the processor calls are stored in the memory
  • the instructions in the above-mentioned first aspect or any one of the possible design methods of the first aspect are executed.
  • an embodiment of the present application provides a communication device.
  • the device may be a network device or a device in a network device.
  • the device may include a processing module and a storage module. These modules can execute the first aspect or the first aspect described above.
  • the method executed by the network device in any possible implementation manner on the one hand is specifically:
  • the storage module stores a computer program
  • the processing module is configured to call the computer program stored in the storage module to make the communication device execute:
  • an embodiment of the present application provides a network device that has a function of realizing the behavior of the network device in the foregoing method example of the first aspect.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the module can be software and/or hardware.
  • the network device includes a memory, a transceiver, a processor, and a bus, where the memory, the transceiver, and the processor are connected through the bus; the processor calls are stored in the memory
  • the instructions in the above-mentioned first aspect or any one of the possible design methods of the first aspect are executed.
  • a chip is provided, the chip is connected to a memory or the chip includes a memory, and is used to read and execute a software program stored in the memory to implement any one of the first aspect and the first aspect described above. Possible design methods.
  • a communication system in a seventh aspect, includes the terminal device described in the second aspect and the network device described in the fourth aspect.
  • a communication system in an eighth aspect, includes the terminal device described in the third aspect and the network device described in the fifth aspect.
  • an embodiment of the present application also provides a computer storage medium.
  • the computer storage medium stores computer-executable instructions. When called by a computer, the computer-executable instructions cause the computer to execute the first aspect. Or the method provided by any of the above-mentioned first aspects.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product stores instructions, which when run on a computer, cause the computer to execute the first aspect or any one of the first aspects.
  • FIG. 1 is a schematic diagram of an open-loop precoding provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a closed-loop precoding provided by an embodiment of the application
  • FIG. 3 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of a communication flow provided by an embodiment of this application.
  • FIG. 5 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 6 is a flowchart of another communication method provided by an embodiment of this application.
  • FIG. 7 is a flowchart of another communication method provided by an embodiment of this application.
  • FIG. 8 is a flowchart of another communication method provided by an embodiment of this application.
  • FIG. 9 is a flowchart of another communication method provided by an embodiment of this application.
  • FIG. 10 is a flowchart of another communication method provided by an embodiment of this application.
  • FIG. 11 is a flowchart of another communication method provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 15 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of yet another terminal device provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, such as handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote Station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user Equipment (user device), etc.
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal devices, portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, smart wearable devices, and so on.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • a network device is a device in a wireless network.
  • it may be a radio access network (RAN) node (or device) that connects a terminal device to the wireless network, which may also be called a base station.
  • RAN radio access network
  • some examples of network equipment are: continuously evolving Node B (gNB), transmission reception point (TRP), evolved Node B (eNB), Node B (Node B, NB), Home base stations (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), or wireless fidelity (wifi) access point (AP), etc.
  • the RAN may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure splits the protocol layer of the base station, part of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the base station.
  • Reference signal also called pilot signal
  • a reference signal can be used to estimate the channel state information.
  • the reference signal can also be called an uplink reference signal.
  • the uplink reference signal can be used for uplink channel estimation and uplink channel quality measurement, etc.; correspondingly, when the transmitting end is a network
  • the reference signal may also be called a downlink reference signal, and the downlink reference signal may be used for downlink channel estimation and downlink channel quality measurement.
  • the uplink reference signal may include, for example, a sounding reference signal (SRS), a demodulation reference signal (DM-RS), and so on.
  • the downlink reference signal may include, for example, a channel state information reference signal (CSI-RS), a cell reference signal (CRS), and the like.
  • Channel information refers to all possible matrices or vectors that may carry channel information, and can include the channel itself, a part of the channel, or the eigenvector of the channel.
  • Channel state information refers to information that can reflect the channel state, and can be used to describe the attenuation factor of a signal on each transmission path, that is, the value of each element in the channel matrix.
  • reference signals are usually used to estimate channel state information.
  • the channel state information may include, for example, channel matrix, multipath delay, Doppler frequency offset and other information.
  • the uplink channel state information may include, for example, uplink channel (matrix), multipath delay, Doppler frequency offset and other information.
  • open-loop precoding and closed-loop precoding can be used for data transmission in wireless communication systems.
  • open-loop precoding When using open-loop precoding to transmit data, there is only a one-way transmission link for network equipment to send downlink data to terminal equipment in the entire system, and no terminal equipment feedbacks to the network equipment to assist the network equipment in better downlink transmission feedback Link, see Figure 1.
  • Figure 1 when open-loop precoding is used to transmit data, since the network device does not know the channel state information from the network device to the terminal device, it can only send downlink data in all directions, which will cause a certain amount of energy waste.
  • the entire system has both a transmission link for the network device to send downlink data to the terminal device, and a feedback link from the terminal device to the network device, see Figure 2.
  • the terminal device when using closed-loop precoding to transmit data, the terminal device can send a reference signal to the network device through the feedback link, and the network device can estimate the uplink channel state information based on the reference signal, and then can target the terminal Sending downlink data (directional sending) where the device is located can enhance the energy of the terminal device to receive the signal.
  • the embodiments of the present application mainly relate to a communication system that uses a closed-loop precoding manner for data transmission. Unless otherwise specified, the communication systems involved in the following in this application refer to systems that use closed-loop precoding.
  • the wireless communication system can support two duplexing modes: frequency division duplexing (FDD) and time division duplexing (TDD).
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a communication system supporting TDD is referred to as a TDD system
  • FDD system a communication system supporting FDD
  • Whether a communication system is a TDD system or an FDD system depends on the frequency band used by the communication system.
  • the uplink transmission and the downlink transmission are performed at different times on the same carrier, and the instantaneous uplink channel and the downlink channel have reciprocity.
  • the terminal device sends the uplink reference signal to the network device, and the network device can use the uplink reference signal to estimate the uplink channel state
  • the downlink channel information is obtained from the uplink channel state information.
  • instantaneous uplink transmission and downlink transmission are performed on different carriers. Since the channels on different carriers are different, it can be understood that the instantaneous uplink channel and the downlink channel do not have reciprocity in the FDD system, so for FDD systems , Unless the receiving end feeds back the channel state information, the transmitting end cannot obtain the channel state information.
  • the embodiments of this application mainly involve FDD systems.
  • system and “network” in the embodiments of this application can be used interchangeably.
  • Multiple refers to two or more. In view of this, “multiple” can also be understood as “at least two” in the embodiments of the present application.
  • And/or describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” unless otherwise specified, generally indicates that the associated objects before and after are in an "or” relationship.
  • the communication system in FIG. 3 includes a network device and a terminal device.
  • the communication system is an FDD system using closed-loop precoding.
  • the network device is an example of a base station
  • the terminal device is an example of a UE
  • the base station provides services for the UE.
  • the downlink transmission is taken as an example.
  • the base station can send downlink data to the UE through the downlink, or receive the uplink reference signal sent by the UE through the feedback link.
  • the base station can estimate the uplink channel state information based on the uplink reference signal.
  • the base station cannot obtain downlink channel information from the uplink channel state information.
  • Whether a communication system is a TDD system or an FDD system is determined by the frequency band used by the communication system.
  • the frequency band used by the communication system is usually fixed, either in FDD frequency band or TDD frequency band. Therefore, FDD system cannot be changed to TDD System to solve the problem of obtaining downlink channel information.
  • the UE can send the downlink channel information to the base station by sending the reference signal carrying the downlink channel information to the base station.
  • the base station enables the base station to obtain downlink channel information through the reference signal from the UE.
  • This application does not limit the name of the reference signal.
  • the reference signal may be referred to as a virtual precoding-sounding reference signal (VIP-SRS).
  • VIP-SRS virtual precoding-sounding reference signal
  • the VIP-SRS mentioned below refers to Reference signal that carries downlink channel information.
  • the uplink channel state information is the uplink channel (matrix)
  • the downlink channel information is the downlink channel (matrix)
  • the downlink reference signal is CSI-RS
  • the uplink reference signal is SRS and VIP-SRS as examples to introduce the specific content of the scheme. See Figure 4.
  • Figure 4 corresponds to three steps, as follows:
  • Step 1 The base station sends CSI-RS to the UE, and the UE estimates the downlink channel (matrix) according to the CSI-RS.
  • Step 2 The UE sends SRS and VIP-SRS to the base station.
  • the VIP-SRS carries the downlink channel (matrix).
  • the base station can estimate the uplink channel (matrix) based on the SRS, and the base station can estimate the uplink channel based on the VIP-SRS ( The product of the matrix) and the downlink channel (matrix) can be reversed to obtain the downlink channel (matrix).
  • the UE uses different SRS resources to send SRS on different transmit antenna ports. For example, a 2-port UE uses SRS resource 1 on port 1 to send SRS, and port 2 uses SRS resource 2 to send SRS. Since the SRS resources are different, the base station can distinguish the two SRSs, and estimate the uplink channel state information from port 1 of the UE to all ports of the base station based on the first SRS, and estimate the port 2 of the UE to all ports of the base station based on the second SRS. For the uplink channel state information of the port, the base station combines these two sets of information to obtain all uplink channel state information (channel information from all ports of the UE to all ports of the base station), that is, an uplink channel (matrix) can be obtained.
  • uplink channel state information channel information from all ports of the UE to all ports of the base station
  • SRS resources include time domain resources, frequency domain resources and sequences used by SRS. Two SRS resources are different, which means that the time domain resources, frequency domain resources, code domain resources and other resources corresponding to the two SRS resources have at least A difference. As long as the SRS resources used by the two SRSs are different, the base station can distinguish the two SRSs.
  • the uplink channel (matrix) is denoted as: Where M is the number of transmit antenna ports of the UE, L is the number of receive antenna ports of the base station, and h ij represents the channel from the jth port of the UE to the ith port of the base station.
  • the UE uses the first SRS resource on the first port to send the SRS, which is recorded as: Indicates that only port 1 sent s 1 ; in the same way, the UE also sent s 2 on port 2 , denoted as By analogy, s M is sent on port M , denoted as The sum of these SRS sent by the UE is the real SRS sent by the UE:
  • the SRS sent by the UE reaches the base station after the uplink channel, assuming that the signal received by the base station is Among them, N is the receiver noise. For ease of understanding, we can ignore the influence of this item.
  • the processing method of the base station here is only an example, and the base station usually uses other processing methods to reduce the influence of noise N. It is noted that the present application refers S S H is the conjugate transpose.
  • VIP-SRS Unlike SRS, each VIP-SRS can be sent on multiple antenna ports, and the VIP-SRS sent on different antenna ports each have the same or different weighting coefficients, that is, with precoding .
  • the SRS sent by the UE on the SRS resource s i is from the SRS became After a simple modification, we get among them It is called the precoding of the VIP-SRS.
  • the UE can also send multiple VIP-SRS, denoted as The sum of these VIP-SRS sent by the UE is the real VIP-SRS sequence sent by the UE:
  • the VIP-SRS sent by the UE reaches the base station after passing the uplink channel, and the signal received by the base station is:
  • the base station and UE pre-arranged for precoding (matrix) Downlink channel estimated for UE (matrix) Then the UE can feed the downlink channel (matrix) on the VIP-SRS to the base station, and the base station can And the uplink channel (matrix) estimated by SRS before Estimate the downlink channel (matrix)
  • Step 3 The base station calculates the precoding used for downlink data transmission according to the downlink channel (matrix), and transmits the downlink data.
  • VCP-SRS reference signal
  • an embodiment of the present application provides a communication method for sending a reference signal carrying downlink channel information.
  • FIG. 5 is a flowchart of a communication method provided by an embodiment of this application. As shown in FIG. 5, the method includes:
  • the terminal device determines a first parameter used to send a first reference signal.
  • the first reference signal is used to carry downlink channel information.
  • the first reference signal is an uplink reference signal.
  • the first reference signal can be sent on multiple antenna ports, and the first reference signals sent on different antenna ports each have the same or different weighting coefficients, that is, with pre-
  • the coding (matrix) can be understood as the VIP-SRS described above.
  • the precoding (matrix) of the first reference signal the downlink channel information
  • the first reference signal can carry the downlink channel information. The details can be See the description of VIP-SRS above.
  • the first parameter used to send the first reference signal can be understood as the sending of the first reference signal is related to the first parameter, and its meaning can also be “used for the first reference signal”.
  • the first parameter of transmission It is not limited here that the first parameter is related to the sending action of the first reference signal.
  • the first parameter may include only one parameter or a group of parameters, which is not limited in the present application.
  • the first parameter may include a set of parameters, multiple parameters in the set of parameters may be the same type of parameters, or may be different types of parameters.
  • the first parameter may be all parameters used to transmit/transmit the first reference signal, or may be part of the parameters used to transmit/transmit the first reference signal.
  • the first parameter includes but is not limited to: at least one of the size of a first precoding resource group (PRG) or the first bandwidth used for the first reference signal.
  • PRG precoding resource group
  • the first bandwidth used for the first reference signal may be understood as the bandwidth used for sending/transmitting the first reference signal.
  • the downlink channel information includes but is not limited to: frequency selectivity of the downlink channel, downlink channel matrix, compressed downlink channel matrix, the eigenvector corresponding to the largest eigenvalue among the N eigenvalues of the downlink channel matrix, or , At least one of the eigenvectors corresponding to the M largest eigenvalues in the N eigenvalues of the downlink channel matrix, M is an integer greater than or equal to 2, and N is an integer greater than or equal to M.
  • the terminal device sends a first reference signal to the network device according to the first parameter, and the network device receives the first reference signal from the terminal device. It can also be understood that the terminal device sends the first reference signal to the network device on the resource corresponding to the first parameter.
  • the network device determines downlink channel information according to the first reference signal.
  • the terminal device determines the first parameter, and sends the first reference signal according to the first parameter.
  • each terminal device is taken as an example to illustrate the communication method provided in this application.
  • each of the multiple terminal devices can execute the methods provided in this application. Communication method.
  • the terminal device determines the first parameter used to send the first reference signal.
  • the terminal device may use the following method to determine the first parameter for sending the first reference signal.
  • Method 1 The terminal device determines the first parameter according to the downlink channel information. Please refer to FIG. 6, which is a flowchart of another communication method provided in an embodiment of this application.
  • the method includes:
  • the terminal device determines the first parameter according to the downlink channel information.
  • the terminal device may estimate the downlink channel information according to the downlink reference signal sent by the network device. For example, taking the example that the lower line reference signal is CSI-RS, the terminal device can estimate the downlink channel information according to the CSI-RS.
  • the terminal device in the first method will determine the first PRG size according to the frequency selectivity of the downlink channel.
  • the terminal device may determine that the size of the first PRG is less than the second threshold when the frequency selectivity of the downlink channel is greater than the first threshold; the terminal device may determine the first PRG when the frequency selectivity of the downlink channel is less than the first threshold The size is greater than the third threshold.
  • the second threshold and the third threshold may be the same or different.
  • the first threshold, the second threshold, and the third threshold may all be empirical values, which are not limited in this application.
  • the terminal device may determine the first parameter based on the downlink channel information and the first parameter set, or in other words, the terminal device may determine the first parameter based on the downlink channel information based on the first parameter set.
  • the first parameter determined above belongs to the first parameter set, where the first parameter set is configured through high-layer signaling or predefined.
  • the first parameter set may include at least one set for sending the first parameter. A parameter of the reference signal.
  • the terminal device may determine the first parameter in the first parameter set according to the downlink channel information, for example: record the first parameter set configured through high-layer signaling or predefined as ⁇ parameter 1, parameter 2, Parameter 3 ⁇ , the terminal device can estimate the downlink channel (matrix) obtained by the network device after the terminal device sends the first reference signal with parameter 1 as the first parameter, and then estimate that the network device calculates according to the downlink channel (matrix)
  • the downlink precoding can then be calculated to calculate the downlink transmission performance of the network device to the terminal device (for example, the spectrum efficiency of downlink transmission) after the terminal device sends the first reference signal with parameter 1 as the first parameter, and so on.
  • the device may calculate one by one the corresponding downlink transmission performance when each parameter in the first parameter set is used as the first parameter to send the first reference signal.
  • the terminal device can also calculate one by one the corresponding VIP-SRS resource overhead when sending the first reference signal with each parameter in the first parameter set as the first parameter, that is, the uplink resource occupied by the terminal device for sending VIP-SRS quantity.
  • the terminal device weighs the downlink transmission performance and the resource overhead of VIP-SRS, and determines that parameter 1 is the first parameter. Specifically, determining that parameter 1 is the first parameter may include but is not limited to the following situations:
  • Case 1 The downlink transmission performance corresponding to parameter 1 is better than the downlink transmission performance corresponding to parameter 2 and parameter 3, and the resource overhead of VIP-SRS corresponding to parameter 1, parameter 2, and parameter 3 is almost equal;
  • S202 The terminal device sends a first reference signal to the network device according to the first parameter, and the network device receives the first reference signal sent by the terminal device.
  • S203 The network device determines downlink channel information according to the first reference signal.
  • S202-S203 are the same as S102-S103 respectively, and the repetitions can be referred to each other, and will not be repeated here.
  • the terminal device itself determines the first parameter for sending the first reference signal.
  • the terminal device can directly send the first reference signal without waiting for the scheduling of the network device, which can reduce the transmission delay and make the network device faster To obtain downlink channel information, the downlink transmission of terminal equipment can be quickly scheduled.
  • the terminal device may or may not report the first parameter to the network device after determining the first parameter, corresponding to the following three processing methods respectively.
  • Processing method 1 The terminal device sends the first parameter to the network device.
  • the terminal device may send the first information to the network device, and indicate the first parameter through the first information.
  • the processing complexity of the network device can be reduced.
  • Processing method 2 There is a correspondence between the format of the first reference signal sent by the terminal device and the first parameter, and the correspondence is predefined or configured through high-level signaling.
  • the network device may further configure the corresponding relationship between the first parameter and the first reference signal format for the terminal device, As shown in Table 1, the network device can configure parameter 1 corresponding to the first reference signal to be sent on frequency band 1, parameter 2 to correspond to the first reference signal to be sent on frequency band 2, and parameter 3 to correspond to the first reference signal to be sent on frequency band 3.
  • the network device detects the first reference signal on the frequency band 1, it means that the terminal device uses the parameter 1 as the first parameter to send the first reference signal.
  • Parameter 3 Send the first reference signal on band 3
  • the terminal device can send the first parameter to the network device by means of implicit feedback, without signaling instructions, which can save signaling overhead, and by reporting the first parameter to the network device, the network device can be reduced The processing complexity.
  • Processing method 3 The terminal device does not report the first parameter to the network device. In this processing manner, after receiving the first reference signal sent by the terminal device, the network device relies on blind detection to demodulate the downlink channel information. With this processing method, there is no need to report the first parameter, which saves signaling overhead and reduces processing delay.
  • each of the multiple terminal devices can execute method one.
  • the following describes another method for the terminal device to determine the first parameter for sending the first reference signal.
  • Method 2 Assume that the statistical characteristics between the uplink channel and the downlink channel are reciprocal. At this time, the network device can determine the first parameter according to the uplink channel status information, and can notify the terminal device through signaling. See Figure 7 for A flowchart of another communication method provided in an embodiment of the present application.
  • the method includes:
  • the network device determines the first parameter according to the uplink channel state information.
  • the network device determines the first parameter according to the uplink channel state information. For example, suppose that the network equipment recognizes that the uplink channel is in a flat fading state based on the uplink channel state information, that is, the channels of different frequency points in the uplink bandwidth are roughly the same, and then can be based on the reciprocity of the statistical characteristics between the uplink channel and the downlink channel , It is judged that the downlink channel is also in a flat fading state. At this time, the network device thinks that the terminal device only needs to feed back the downlink channel information of a certain frequency point, which can represent the downlink channel information on the entire frequency band. Therefore, the network device can determine the first PRG size Is the entire downstream bandwidth.
  • the uplink channel state information includes but is not limited to: uplink channel (matrix), compressed uplink channel (matrix), etc.
  • the network device may estimate the uplink channel state information according to the uplink reference signal sent by the terminal device. For example, if the upstream reference signal is SRS as an example, the network device can estimate the uplink channel state information according to the SRS.
  • the network device sends first indication information to the terminal device, and the terminal device receives the first indication information from the network device, where the first indication information is used to indicate a first parameter, and the first parameter is used to indicate transmission of the first reference signal (transmission).
  • the first indication information may indicate the first parameter in two ways. In one manner, the first indication information includes the first parameter. In another manner, the first indication information includes an indication bit, and the value of the indication bit is used to indicate the first parameter.
  • the indicator bit may be at least one bit (bit).
  • the network device may also send second instruction information while sending the first instruction information to the terminal device, and the second instruction information is used to instruct the terminal device to send the first reference signal.
  • the first indication information and the second indication information may be sent through existing signaling, or may be sent through new signaling, which is not limited in this application.
  • the network device sends the first indication information and the second indication information through downlink control information (DCI).
  • DCI downlink control information
  • the terminal device needs to be configured with a corresponding relationship between the value of the indicator bit and the first parameter.
  • the first indication information is sent through DCI as an example. It is assumed that the first parameter is indicated by two bits of DCI.
  • the first parameter in Table 2 includes parameter 1, parameter 2, and parameter 3 which are decided by the network device itself. , Use the value 01 of the two bits of DCI to instruct the terminal device to use parameter 1 to send the first reference signal, use the value 10 of the two bits of DCI to instruct the terminal device to use parameter 2 to send the first reference signal, and use the two The bit value 11 indicates that the terminal device uses parameter 3 to send the first reference signal.
  • the terminal device sends a first reference signal to the network device according to the first parameter, and the network device receives the first reference signal sent by the terminal device.
  • S304 The network device determines downlink channel information according to the first reference signal.
  • S303-S304 are the same as S102-S103 respectively, and the repetitions can be referred to each other, and will not be repeated here.
  • each terminal device can use the optimal or nearly optimal parameters to send the first reference signal, and the performance of the downlink channel feedback is improved.
  • each of the multiple terminal devices can execute the second method.
  • the following introduces another method for the terminal device to determine the first parameter used to send the first reference signal.
  • Method 3 The parameters recommended by the terminal equipment to the network equipment.
  • the network equipment determines the first parameter actually used for the transmission of the first reference signal according to the parameters recommended by one or more terminal equipment, and determines the parameters through signaling
  • the terminal device is notified of the first parameter of, please refer to FIG. 8, which is a flowchart of another communication method provided in an embodiment of this application.
  • the method includes:
  • the terminal device determines a second parameter for sending the first reference signal according to the downlink channel information.
  • the second parameter here can be the same as or different from the first parameter above.
  • each terminal device of the multiple terminal devices can execute method three.
  • each terminal device of the multiple terminal devices can use the method of S401 to determine its own second parameter for sending the first reference signal.
  • the second parameter determined by each terminal device may be the same or different. For example, suppose the number of terminal devices is three, denoted as terminal device 1, terminal device 2, and terminal device 3.
  • terminal device 1 can use the method S401 to determine the second parameter A of terminal device 1, and terminal device 2 can use S401 The method determines the second parameter B of the terminal device 2, and the terminal device 3 can use the method of S401 to determine the second parameter C of the terminal device 3.
  • the second parameter may include only one parameter or a group of parameters, which is not limited in the present application.
  • the second parameter includes a set of parameters, multiple parameters in the set of parameters may be the same type of parameters or different types of parameters.
  • the second parameter may be all parameters used to send the first reference signal, or may be part of the parameters used to send the first reference signal.
  • the second parameter includes but is not limited to: at least one of the size of the second precoding resource group (PRG) or the second bandwidth used for the first reference signal.
  • PRG second precoding resource group
  • the second bandwidth used for the first reference signal can be understood as the bandwidth used for sending/transmitting the first reference signal.
  • the terminal device sends the second parameter to the network device, and the network device receives the second parameter from the terminal device.
  • the second parameter is a suggested parameter for the transmission of the first reference signal.
  • the terminal device may send the second information to the network device, and indicate the second parameter through the second information.
  • the second information includes the second parameter, or the second information includes an indicator bit, and the value of the indicator bit is used to indicate the second parameter.
  • the indicator bit may be at least one bit, and the value of the indicator bit is the state of the at least one bit.
  • each terminal device of the multiple terminal devices uses the method S401 to determine its own second parameter for sending the first reference signal, each terminal device of the multiple terminal devices
  • the method of S402 may be used to send the second parameter determined by itself. For example, still assuming that the number of terminal devices is three, denoted as terminal device 1, terminal device 2, and terminal device 3.
  • terminal device 1 uses the method of S401 to determine the second parameter A of terminal device 1, it can use the method of S402 to The network device sends the second parameter A.
  • the terminal device 2 uses the method S401 to determine the second parameter B of the terminal device 2, it can use the method S402 to send the second parameter B to the network device, and the terminal device 3 uses the method S401 to determine the terminal device After the second parameter C of 3, the method of S402 may be used to send the second parameter C to the network device.
  • the second parameter sent by the terminal device to the network device may be carried on a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the network device determines the first parameter according to the at least one second parameter, and the at least one second parameter comes from at least one terminal device.
  • the network device determines the first parameter according to the second parameter sent by the terminal device.
  • the network device can comprehensively determine the first parameter used by each terminal device according to the second parameters reported by the multiple terminal devices, and understand what each terminal device uses The first parameter can be the same or different. For example, still assume that the number of terminal devices is three, denoted as terminal device 1, terminal device 2, and terminal device 3.
  • Terminal device 1 uses S402 to send the second parameter A to the network device
  • terminal device 2 uses S402 to send the second parameter to the network.
  • the device sends the second parameter B, and the terminal device 3 uses the method of S402 to send the second parameter C to the network device.
  • the network device can use the second parameter A , At least one of the second parameter B and the second parameter C determines the first parameter 1 used by the terminal device 1.
  • the terminal can also be determined according to at least one of the second parameter A, the second parameter B, and the second parameter C
  • the first parameter 2 used by the device 2 may also determine the first parameter 3 used by the terminal device 3 according to at least one of the second parameter A, the second parameter B, and the second parameter C.
  • the network device determines that the traffic is congested at a certain moment (there is too much traffic for downlink transmission) according to the uplink channel state information, and the network device needs to let a large number of terminals in a short time
  • the device transmits the first reference signal.
  • the network device will reject the terminal device’s suggestion, and schedule the subband to transmit compressed channels to reduce the first
  • the resource occupation of the reference signal improves the efficiency of multi-user multiplexing.
  • this example only takes that the first parameter and the second parameter are different parameters.
  • the first parameter determined by the network device in this application may be equal to the second parameter, that is, the first parameter determined by the network device
  • the parameter may be the same as or different from the second parameter, which is not limited in this application.
  • the network device sends first indication information to the terminal device, and the terminal device receives the first indication information from the network device, where the first indication information is used to indicate the first parameter.
  • the first indication information in S404 refer to S302, which will not be repeated here.
  • the network device can use the method S404 to provide each terminal device in the multiple terminal devices. Indicates the first parameter corresponding to each terminal device. For example, still assume that the number of terminal devices is three, denoted as terminal device 1, terminal device 2, and terminal device 3.
  • Terminal device 1 uses S402 to send the second parameter A to the network device
  • terminal device 2 uses S402 to send the second parameter to the network.
  • the device sends the second parameter B
  • the terminal device 3 uses the method of S402 to send the second parameter C to the network device.
  • the network device can use the second parameter A
  • At least one of the second parameter B and the second parameter C determines the first parameter 1 used by the terminal device 1.
  • the terminal can also be determined according to at least one of the second parameter A, the second parameter B, and the second parameter C
  • the first parameter 2 used by the device 2 can also determine the first parameter 3 used by the terminal device 3 according to at least one of the second parameter A, the second parameter B, and the second parameter C.
  • the network device is determining the first parameter 1 After that, the terminal device 1 may send indication information for indicating the first parameter 1. After the network device determines the first parameter 2, it may send the terminal device 2 indication information for indicating the first parameter 2, and the network device is determining After the first parameter 3, indication information for indicating the first parameter 3 may be sent to the terminal device 3.
  • the network device indicates the first parameter through the indication bit for example.
  • the first indication information is sent through DCI as an example. It is assumed that the first parameter is indicated by two bits of DCI.
  • the first parameter in Table 3 includes the second parameter reported by the terminal device, and the network device itself Parameter 1, parameter 2, and parameter 3 of the decision, use the value 00 of the two bits of the DCI to instruct the terminal device to use the reported second parameter to send the first reference signal, and use the value 01 of the two bits of the DCI to instruct the terminal device to use Parameter 1 sends the first reference signal, uses the value 10 of the two bits of the DCI to instruct the terminal device to use parameter 2 to send the first reference signal, and uses the value of the two bits of the DCI 11 to instruct the terminal device to use the parameter 3 to send the first reference signal.
  • S405 The terminal device sends a first reference signal to the network device according to the first parameter, and the network device receives the first reference signal sent by the terminal device according to the first parameter.
  • each of the multiple terminal devices may send the first reference signal to the network device according to the first parameter used by itself.
  • the network device determines downlink channel information according to the first reference signal.
  • S405-S406 are the same as S102-S103 respectively, and the repetitions can be referred to each other, and will not be repeated here.
  • FIG. 9 is a flowchart of another communication method provided by an embodiment of this application.
  • the terminal device is the UE and the network device is the base station, and the UE itself is determined to send the first reference signal according to the downlink channel information.
  • the first parameter of is taken as an example to describe the method provided in the embodiment of the present application.
  • the method shown in Figure 9 includes the following steps:
  • the base station sends CSI-RS to the UE, and the UE receives the CSI-RS from the base station.
  • the UE estimates downlink channel information according to the CSI-RS.
  • S503 The UE determines the first parameter according to the downlink channel information. How the UE determines the first parameter according to the downlink channel information may refer to related description in S201 in FIG. 6.
  • S504 The UE reports the first parameter to the base station.
  • S504 is an optional execution step, that is, the UE may not report the first parameter to the base station.
  • S505 The UE sends a first reference signal to the base station according to the first parameter, and the base station receives the first reference signal sent by the UE.
  • the base station determines downlink channel information according to the first reference signal.
  • the UE itself determines the first parameter for sending the first reference signal, and the UE can directly send the first reference signal without waiting for the scheduling of the base station, which can reduce the transmission time delay, so that the base station can quickly obtain downlink channel information , Scheduling the UE's downlink transmission faster.
  • FIG. 10 is a flowchart of another communication method provided by an embodiment of this application.
  • the terminal device is the UE
  • the network device is the base station
  • the first parameter indicated by the base station for sending the first reference signal is For example, the method provided in the embodiment of this application will be described.
  • the method shown in Figure 10 includes the following steps:
  • the UE sends an SRS to the base station, and the base station receives the SRS from the UE.
  • the base station estimates uplink channel state information according to the SRS.
  • the base station determines the first parameter for sending the first reference signal according to the uplink channel state information. For how the base station determines the first parameter according to the uplink channel state information, refer to the related description in S301 in FIG. 7.
  • the base station sends first indication information to the UE, and the UE receives the first indication information from the base station, where the first indication information is used to indicate a first parameter, and the first parameter is used to indicate transmission of a first reference signal.
  • S605 The UE sends a first reference signal to the base station according to the first parameter, and the base station receives the first reference signal sent by the UE.
  • the base station determines downlink channel information according to the first reference signal.
  • each UE can use the optimal or near-optimal parameters to send the first reference signal, and the performance of the downlink channel feedback is improved.
  • FIG. 11 is a flowchart of another communication method provided by an embodiment of this application.
  • a terminal device is a UE and a network device is a base station as an example to illustrate the method provided by the embodiment of the application.
  • the method shown in Figure 11 includes the following steps:
  • the base station sends CSI-RS to the UE, and the UE receives the CSI-RS from the base station.
  • one UE is taken as an example for illustration.
  • each UE of the multiple UEs can execute the method.
  • the UE estimates downlink channel information according to the CSI-RS.
  • S703 The UE determines the second parameter according to the downlink channel information. It should be noted that when the number of UEs is multiple, each UE of the multiple UEs can use the method of S703 to determine its own second parameter. It can be understood that the second parameter determined by each UE of the multiple UEs may be the same. It may be different. For example, assuming that the number of UEs is three, denoted as UE1, UE2, and UE3, UE1 can use S703 to determine the second parameter AA of UE1, UE2 can use S703 to determine the second parameter BB of UE2, and UE3 can use S703. The method of determining the second parameter CC of UE3.
  • the second parameter may be an optimal parameter for sending the first reference signal.
  • S704 The UE sends the second parameter to the base station, and the base station receives the second parameter sent by the UE.
  • S704 may be understood as the UE recommending to the base station to use the second parameter to send the first reference signal.
  • each UE of the multiple UEs can use the method S704 Send the second parameter determined by itself.
  • the number of UEs is three, denoted as UE1, UE2, and UE3, after UE1 uses S703 to determine the second parameter AA of UE1, it may use S704 to send the second parameter AA to the base station, and UE2 uses S703.
  • the second parameter BB may be sent to the base station by the method of S704.
  • the method of S704 may be adopted to send the second parameter CC to the base station.
  • the base station determines the first parameter according to the at least one second parameter, and the at least one second parameter comes from at least one UE.
  • the base station determines the first parameter of the UE according to the second parameter sent by the UE.
  • the base station may comprehensively determine the first parameter used by each UE according to the second parameters reported by multiple UEs, and it can be understood that the first parameter used by each UE may be the same It can also be different. For example, still assume that the number of UEs is three, denoted as UE1, UE2, and UE3.
  • UE1 sends the second parameter AA to the base station in S704, UE2 sends the second parameter BB to the base station in S704, and UE3 sends the second parameter BB to the base station in S704.
  • the base station sends the second parameter CC.
  • the base station can determine UE1 according to at least one of the second parameter AA, the second parameter BB, and the second parameter CC.
  • the first parameter 11 used may also be determined according to at least one of the second parameter AA, the second parameter BB, and the second parameter CC.
  • the first parameter 22 used by the UE2 may also be determined according to the second parameter AA and the second parameter BB. At least one parameter in the second parameter CC determines the first parameter 33 used by UE3.
  • first parameter determined in S705 and the second parameter in S704 may be the same parameter or different parameters.
  • the base station sends first indication information to the UE, and the UE receives the first indication information from the base station, where the first indication information is used to indicate the first parameter.
  • the base station may use the method of S706 to indicate for each UE of the multiple UEs the corresponding The first parameter. For example, still assume that the number of UEs is three, denoted as UE1, UE2, and UE3.
  • UE1 sends the second parameter AA to the base station in S704, UE2 sends the second parameter BB to the base station in S704, and UE3 sends the second parameter BB to the base station in S704.
  • the base station sends the second parameter CC.
  • the base station can determine UE1 according to at least one of the second parameter AA, the second parameter BB, and the second parameter CC.
  • the first parameter 11 used may also be determined according to at least one of the second parameter AA, the second parameter BB, and the second parameter CC.
  • the first parameter 22 used by the UE2 may also be determined according to the second parameter AA and the second parameter BB.
  • At least one parameter in the second parameter CC determines the first parameter 33 used by the UE3.
  • the base station may send indication information for indicating the first parameter 11 to the UE1.
  • the base station is determining the first parameter 22
  • the indication information for indicating the first parameter 22 may be sent to the UE2.
  • the base station may send the indication information for indicating the first parameter 33 to the UE3.
  • S707 The UE sends a first reference signal to the base station according to the first parameter, and the base station receives the first reference signal sent by the UE.
  • each UE of the multiple UEs may send the first reference signal to the base station according to the first parameter used by itself.
  • the base station determines downlink channel information according to the first reference signal.
  • each UE can use the optimal or near-optimal parameters to send the first reference signal, and the performance of the downlink channel feedback is improved.
  • an embodiment of the present application also provides a terminal device.
  • the terminal device may have a structure as shown in FIG. 12 and have the behavioral functions of the terminal device in the foregoing method embodiment.
  • the terminal device 1200 may include a processing module 1201 and a transceiver module 1202.
  • the processing module 1201 may be used to determine a first parameter used to send a first reference signal, wherein the first reference signal is used
  • the transceiver module 1202 may be configured to send the first reference signal to the network device according to the first parameter.
  • the terminal device 1200 may also have a storage module 1203, which may be coupled with the processing module 1201, and used to store programs and instructions required by the processing module 1201 to perform functions.
  • the processing module 1201 in the terminal device 1200 shown in FIG. 12 can be used for the terminal device 1200 to perform the steps shown in S101, and the transceiver module 1202 can be used for the terminal device 1200 to perform the steps shown in S102 .
  • processing module 1201 is specifically configured to:
  • the first parameter is determined according to the downlink channel information.
  • the transceiver module 1202 is also used for:
  • processing module 1201 is also used for:
  • the transceiver module 1202 is also used for:
  • the first parameter belongs to a first parameter set, and the first parameter set is configured through higher layer signaling or predefined.
  • the processing module 1201 determines the first parameter according to downlink channel information in the following manner: determines the first parameter according to the downlink channel information based on the first parameter set.
  • the transceiver module 1202 is also used for:
  • the first parameter includes at least one of a first PRG size or a first bandwidth used for the first reference signal; and/or, the second parameter includes a second PRG size or At least one of the second bandwidths used for the first reference signal.
  • the terminal device involved in the embodiment of the present application may also have the structure of the terminal device 1300 shown in FIG. 13, where the processor 1301 in the terminal device 1300 shown in FIG. 13 can be used to implement the above-mentioned processing module 1201.
  • the processor 1301 can be used for the terminal device 1300 to perform the steps shown in S101 in the communication method shown in FIG. 5
  • the transceiver 1302 can be used to implement the functions of the transceiver module 1202, for example, a transceiver 1302 may be used for the terminal device 1300 to execute the steps shown in S102 in the communication method shown in FIG. 5.
  • the transceiver 1302 may be coupled with the antenna 1303 to support the terminal device 1300 to communicate.
  • the terminal device 1300 may further include a memory 1304, which stores computer programs and instructions.
  • the memory 1304 may be coupled with the processor 1301 and/or the transceiver 1302 to support the processor 1301 to call the computer programs in the memory 1304,
  • the instructions are used to implement the steps involved in the terminal device in the method provided by the embodiment of this application; in addition, the memory 1304 can also be used to store the data involved in the method embodiment of this application, for example, it is used to store the necessary for supporting the transceiver 1302 to realize the interaction.
  • the data, instructions, and/or are used to store configuration information necessary for the terminal device 1300 to execute the method described in the embodiment of the present application.
  • the embodiments of the present application also provide a network device.
  • the network device may have a structure as shown in FIG. 14 and have the behavior function of the network device in the foregoing method embodiment.
  • the network device 1400 may include a processing module 1401 and a transceiver module 1402.
  • the transceiver module 1402 is configured to receive a first reference signal from a terminal device.
  • the first reference signal is used to carry downlink channel information.
  • the processing module 1401 is configured to determine the downlink channel information according to the first reference signal.
  • the network device 1400 may also have a storage module 1403, and the storage module 1403 may be coupled with the processing module 1401 to store programs and instructions required by the processing module 1401 to perform functions.
  • the processing module 1401 in the network device 1400 shown in FIG. 14 can be used for the network device 1400 to perform the steps shown in S103, and the transceiver module 1402 can be used for the network device 1400 to perform the steps shown in S102 .
  • the transceiver module 1402 is also used for:
  • processing module 1401 is also used for:
  • the first parameter is determined according to the uplink channel state information, or,
  • the first parameter is determined according to at least one second parameter, the at least one second parameter comes from at least one terminal device, and the second parameter is recommended Parameters for the transmission of the first reference signal.
  • the transceiver module 1402 is also used for:
  • the first parameter includes at least one of a first PRG size or a first bandwidth used for the first reference signal; and/or, the second parameter includes a second PRG size or At least one of the second bandwidths used for the first reference signal.
  • the first parameter belongs to a first parameter set, where: the transceiver module 1402 configures the first parameter set for the terminal device through high-level signaling, or the first parameter set Is predefined.
  • the network device involved in the embodiment of the present application may also have the structure of the network device 1500 as shown in FIG. 15, where the processor 1501 in the network device 1500 as shown in FIG. 15 can be used to implement the above-mentioned processing module 1401.
  • the transceiver 1502 can be used to implement the functions of the transceiver module 1402 described above.
  • the transceiver 1502 may be coupled with the antenna 1503 to support the network device 1500 to communicate.
  • the network device 1500 may further include other interfaces 1504 for supporting the network device 1500 to interact in a wired manner.
  • the other interfaces 1504 may be optical fiber link interfaces, Ethernet interfaces, copper wire interfaces, etc.
  • the network device 1500 may further include a memory 1505 in which computer programs and instructions are stored.
  • the memory 1505 may be coupled with the processor 1501 and/or the transceiver 1502 to support the processor 1501 to call the computer programs and instructions in the memory 1505.
  • the memory 1505 may also be used to store the data involved in the method embodiment of the present application, for example, it is used to store the necessary for supporting the transceiver 1502 to achieve interaction. Data, instructions.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication device may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 16 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 16. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1610 and a processing unit 1620.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1610 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1610 as the sending unit, that is, the transceiver unit 1610 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, transceiver, or transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1610 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 1620 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the processing unit 1620 is configured to perform the operation of the terminal device in S101 in FIG. 5, and the processing unit 1620 is also configured to perform other processing steps of the terminal device in the embodiment of the present application.
  • the transceiving unit 1610 is configured to perform the operation of the terminal device in S102 in FIG. 5, and/or the transceiving unit 1610 is also configured to perform other transceiving steps of the terminal device in the embodiment of the present application.
  • the processing unit 1620 is configured to perform the operation of the terminal device in S201 in FIG. 6, and the processing unit 1620 is also configured to perform other processing steps of the terminal device in the embodiment of the present application.
  • the transceiver unit 1610 is configured to perform operations on the terminal device side in S202 in FIG. 6, and/or the transceiver unit 1610 is also configured to perform other transceiver steps on the terminal device side in the embodiment of the present application.
  • the transceiver unit 1610 is used to perform operations on the terminal device side in S302 and S303 in FIG. 7, and/or the transceiver unit 1610 is also used to perform other operations on the terminal device side in the embodiment of the present application. Send and receive steps.
  • the processing unit 1620 is configured to perform the operation of the terminal device in S401 in FIG. 8, and the processing unit 1620 is also configured to perform other processing steps of the terminal device in the embodiment of the present application.
  • the transceiver unit 1610 is configured to perform operations on the terminal device side in S402, S404, and S405 in FIG. 8, and/or the transceiver unit 1610 is also configured to perform other transceiver steps on the terminal device side in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the device can perform functions similar to the processor 1301 in FIG. 13.
  • the device includes a processor 1710, a data sending processor 1720, and a data receiving processor 1730.
  • the processing module 1201 in the foregoing embodiment may be the processor 1710 in FIG. 17, and completes corresponding functions.
  • the transceiver module 1202 in the foregoing embodiment may be the sending data processor 1720 and/or the receiving data processor 1730 in FIG. 17.
  • the channel encoder and the channel decoder are shown in FIG. 17, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1800 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1803 and an interface 1804.
  • the processor 1803 completes the function of the aforementioned processing module 1201, and the interface 1804 completes the function of the aforementioned transceiver module 1202.
  • the modulation subsystem includes a memory 1806, a processor 1803, and a program stored on the memory 1806 and running on the processor.
  • the processor 1803 executes the program to implement the terminal device side in the above method embodiment. Methods.
  • the memory 1806 can be nonvolatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1800, as long as the memory 1806 can be connected to the The processor 1803 is fine.
  • a computer-readable storage medium is provided with instructions stored thereon, and when the instructions are executed, the method on the terminal device side in the foregoing method embodiment is executed.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method on the terminal device side in the foregoing method embodiment is executed.
  • processors mentioned in the embodiments of the present invention may be a central processing unit (central processing unit, CPU), or may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the foregoing processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用以发送承载下行信道信息的参考信号。该方法包括:终端设备确定用于发送第一参考信号的第一参数,根据第一参数向网络设备发送第一参考信号,网络设备接收终端设备发送的第一参考信号,并根据接收到的第一参考信号确定下行信道信息。其中,第一参考信号用于承载下行信道信息。通过上述方法,终端设备先确定用于发送第一参考信号的第一参数,进而根据第一参数发送第一参考信号,提供一种发送第一参考信号的方法。

Description

一种通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
通信系统可包括时分双工(time division duplex,TDD)系统和频分双工(frequency division duplex,FDD)系统。
在TDD系统中,瞬时上行信道和下行信道具有互易性,终端设备在上行发送探测参考信号(sounding reference signal,SRS),网络设备可利用SRS估计出上行信道状态信息,根据上行信道状态信息可获得下行信道状态信息。在FDD系统中,瞬时上行信道和下行信道不具有互易性,网络设备无法利用上行信道状态信息获得下行信道状态信息。而一个通信系统是TDD系统还是FDD系统是由通信系统使用的频段决定的,且通信系统使用的频段是固定的,因此,FDD系统不能通过改成TDD系统来解决下行信道状态信息或其他种类的下行信道信息(例如部分下行信道状态信息,或信道的最大特征向量等)获取问题。
目前,为解决FDD系统中网络设备的下行信道信息获取问题,提出终端设备通过参考信号承载下行信道信息的方案,这样终端设备可通过向网络设备发送参考信号,将下行信道信息发送给网络设备,进而,使得网络设备可通过来自终端设备的参考信号获得下行信道信息。针对该方案的实施细节仍在讨论中,终端设备如何发送该参考信号仍然是未解决的问题。
发明内容
本申请提供一种通信方法及装置,用以发送承载下行信道信息的参考信号。
第一方面,提供一种通信方法,在该方法中,终端设备确定用于发送第一参考信号的第一参数,根据第一参数向网络设备发送第一参考信号,网络设备接收来自终端设备的第一参考信号,并根据接收到的第一参考信号确定下行信道信息。
其中,第一参考信号用于承载下行信道信息。
需要说明的是,本申请实施例中,第一参数可以仅包括一个参数,也可以包括一组参数,本申请对此不做限定。
通过上述方法,终端设备先确定用于发送第一参考信号的第一参数,进而根据第一参数发送第一参考信号,提供一种发送第一参考信号的方法。
在一种可能的设计中,终端设备根据下行信道信息确定第一参数。通过该方法,终端设备无需等待网络设备的调度即可发送第一参考信号,终端设备发送第一参考信号的时延较小,使得网络设备可较快的获得下行信道信息,进而使得网络设备可以较快的调度下行传输。
在一种可能的设计中,网络设备向终端设备发送第一指示信息,第一指示信息用于指示第一参数,终端设备接收来自网络设备的第一指示信息。其中,第一参数用于指示第一参考信号的传输(transmission)。通过该方法,网络设备可综合考量网络状况,为终端设备指示合适的第一参数。
本申请实施例中,第一指示信息指示第一参数可以有两种方式。一种方式中,第一指示信息包括第一参数,另一种方式中,第一指示信息包括指示位,通过该指示位的取值来指示第一参数。可选的,该指示位可以为至少一个比特(bit)。
在一种可能的设计中,终端设备根据下行信道信息确定用于发送第一参考信号的第二参数,终端设备向网络设备发送第二参数。示例性地,终端设备可以向网络设备发送第二信息,通过第二信息指示第二参数。例如,第二信息包括第二参数,或者第二信息包括指示位,通过该指示位的取值来指示第二参数。可选的,所述指示位可以为至少一个比特位,所述指示位的取值为所述至少一个比特位的状态。需要说明的是,本申请中仅以一个终端设备为例说明,当有多个终端设备时,多个终端设备中的每个终端设备均可以执行本申请中提供的通信方法。例如,在该种可能的设计中,当终端设备的数量为多个时,多个终端设备中的每个终端设备均可以采用该种设计中的方法确定自身用于发送第一参考信号的第二参数,可以理解,多个终端设备中的每个终端设备确定的第二参数可能相同也可能不同,多个终端设备中的每个终端设备确定自身用于发送第一参考信号的第二参数后,多个终端设备中的每个终端设备可以向网络设备发送自身确定的第二参数。
在一种可能的设计中,网络设备向终端设备发送第一指示信息之前,还需要确定第一参数。示例性地,网络设备根据至少一个第二参数确定第一参数,至少一个第二参数来自至少一个终端设备,第二参数为建议用于第一参考信号的传输(transmission)的参数。或者,网络设备根据上行信道状态信息确定第一参数。
需要说明的是,本申请实施例中,第一参数与第二参数可以是相同的参数,也可以是不同的参数。本申请实施例中,第二参数可以仅包括一个参数,也可以包括一组参数,本申请对此不做限定。
通过上述方法,终端设备可通过信令向网络设备建议发送第一参考信号使用第二参数,网络设备可以根据至少一个终端设备建议使用的第二参数综合确定最终发送第一参考信号的第一参数,这样,通过网络设备和终端设备之间的信令交互,可实现令终端设备能使用最优或近最优的参数发送第一参考信号,进而提升下行信道的反馈性能。
在一种可能的设计中,第一参数属于第一参数集合。第一参数集合可以是网络设备通过高层信令为终端设备配置的或者预先定义的。
在一种可能的设计中,终端设备可基于第一参数集合,根据下行信道信息确定第一参数。在该种设计中,第一参数集合中包括至少一组用于发送第一参考信号的参数。
在一种可能的设计中,终端设备还可以向网络设备发送第一参数,网络设备接收来自终端设备的第一参数。或者,第一参考信号的格式与第一参数存在对应关系,对应关系是预先定义的或者通过高层信令配置的。这样,网络设备可以获得第一参数,进而可根据第一参数相应的解调接收到的第一参考信号。
在一种可能的设计中,第一参数包括但不限于:第一预编码资源组(precoding resource group,PRG)大小(size)或用于第一参考信号的第一带宽中的至少一个,和/或,第二参数包括但不限于:第二PRG大小或用于第一参考信号的第二带宽中的至少一个。
第二方面,本申请实施例提供一种通信装置,该装置可以是终端设备,也可以是终端设备中的装置,该装置可以包括处理模块以及存储模块,这些模块可以执行上述第一方面或第一方面的任一种可能的实施方式中终端设备所执行的方法,具体的:
所述存储模块存储有计算机程序;
所述处理模块,用于调用所述存储模块中存储的计算机程序以使得所述通信装置执行:
确定用于发送第一参考信号的第一参数,其中,所述第一参考信号用于承载下行信道信息;
根据所述第一参数,向网络设备发送所述第一参考信号。
第三方面,本申请实施例提供一种终端设备,所述终端设备具有实现上述第一方面方法示例中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
在一种可能的设计中,所述终端设备包括存储器、收发器、处理器和总线,其中,所述存储器、收发器以及处理器通过所述总线连接;所述处理器调用存储在所述存储器中的指令,执行上述第一方面的方法或第一方面的任意一种可能的设计中的方法。
第四方面,本申请实施例提供一种通信装置,该装置可以是网络设备,也可以是网络设备中的装置,该装置可以包括处理模块以及存储模块,这些模块可以执行上述第一方面或第一方面的任一种可能的实施方式中网络设备所执行的方法,具体的:
所述存储模块存储有计算机程序;
所述处理模块,用于调用所述存储模块中存储的计算机程序以使得所述通信装置执行:
从终端设备接收第一参考信号,所述第一参考信号用于承载下行信道信息;
根据所述第一参考信号确定所述下行信道信息。
第五方面,本申请实施例提供一种网络设备,所述网络设备具有实现上述第一方面方法示例中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
在一种可能的设计中,所述网络设备包括存储器、收发器、处理器和总线,其中,所述存储器、收发器以及处理器通过所述总线连接;所述处理器调用存储在所述存储器中的指令,执行上述第一方面的方法或第一方面的任意一种可能的设计中的方法。
第六方面,提供一种芯片,该芯片与存储器相连或者该芯片包括存储器,用于读取并执行所述存储器中存储的软件程序,以实现如上述第一方面、第一方面的任一种可能的设计中的方法。
第七方面,提供了一种通信系统,该通信系统包括第二方面所述的终端设备和第四方面所述的网络设备。
第八方面,提供了一种通信系统,该通信系统包括第三方面所述的终端设备和第五方面所述的网络设备。
第九方面,本申请实施例中还提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使所述计算机执行上述第一方面或上述第一方面的任意一种设计提供的方法。
第十方面,本申请实施例中还提供一种计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或上述第一方面的任意一种可能的设计中所述的方法。
附图说明
图1为本申请实施例提供的一种开环预编码示意图;
图2为本申请实施例提供的一种闭环预编码示意图;
图3为本申请实施例提供的一种通信系统结构示意图;
图4为本申请实施例提供的一种通信流程示意图;
图5为本申请实施例提供的一种通信方法流程图;
图6为本申请实施例提供的另一种通信方法流程图;
图7为本申请实施例提供的又一种通信方法流程图;
图8为本申请实施例提供的又一种通信方法流程图;
图9为本申请实施例提供的又一种通信方法流程图;
图10为本申请实施例提供的又一种通信方法流程图;
图11为本申请实施例提供的又一种通信方法流程图;
图12为本申请实施例提供的一种终端设备的结构示意图;
图13为本申请实施例提供的另一种终端设备的结构示意图;
图14为本申请实施例提供的一种网络设备的结构示意图;
图15为本申请实施例提供的另一种网络设备的结构示意图;
图16为本申请实施例提供的又一种终端设备的结构示意图;
图17为本申请实施例提供的又一种终端设备的结构示意图;
图18为本申请实施例提供的又一种终端设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
2)网络设备,是无线网络中的设备,例如可以是将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些网络 设备的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、节点B(Node B,NB)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,wifi)接入点(access point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。本申请的实施例对基站所采用的具体技术和具体设备形态不做限定。
3)参考信号(reference signal,RS),也可以称为导频信号,是指由发射端提供给接收端用于信道估计或信道质量测量的一种信号,例如参考信号可以用于估计信道状态信息。其中,当发射端为终端设备,接收端为网络设备时,该参考信号也可称为上行参考信号,上行参考信号可用于上行信道估计以及上行信道质量测量等;相应的,当发射端为网络设备,接收端为终端设备时,该参考信号也可称为下行参考信号,下行参考信号可用于下行信道估计以及下行信道质量测量等。目前,上行参考信号例如可以包括探测参考信号(sounding reference signal,SRS)、解调参考信号(demodulation reference sgnal,DM-RS)等。下行参考信号例如可以包括信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区参考信号(cell reference signal,CRS)等。
4)信道信息(channel information),泛指一切可能携带信道信息的矩阵或向量,可以包括信道本身、信道的一部分或信道的特征向量等。信道状态信息(channel state information),顾名思义是指可以反映信道状态的信息,可用于描述信号在每条传输路径上的衰弱因子,即信道矩阵中每个元素的值。目前,通常使用参考信号估计信道状态信息。信道状态信息例如可以包括信道矩阵、多径时延、多普勒频偏等信息。示例性地,上行信道状态信息例如可以包括上行信道(矩阵)、多径时延、多普勒频偏等信息。
5)目前,无线通信系统中可采用开环预编码和闭环预编码两种方式进行数据传输。采用开环预编码传输数据时,整个系统中只有网络设备向终端设备发送下行数据的一条单向传输链路,而没有终端设备向网络设备反馈,以辅助网络设备更好地进行下行传输的反馈链路,请参见图1。如图1所示,采用开环预编码传输数据时,由于网络设备不知道网络设备到终端设备的信道状态信息,所以只能全向发送下行数据,会造成一定的能量浪费。而采用闭环预编码传输数据时,整个系统既有网络设备向终端设备发送下行数据的传输链路,又有从终端设备到网络设备的反馈链路,请参见图2。如图2所示,采用闭环预编码传输数据时,终端设备可通过反馈链路向网络设备发送参考信号,网络设备可根据该参考信号估计出上行信道状态信息,进而可有针对性地向终端设备所在的方位发送下行数据(定向发送),可增强终端设备接收信号的能量。本申请实施例中主要涉及采用闭环预编码方式进行数据传输的通信系统,若无特殊说明,本申请下文中所涉及的通信系统均是指采用闭环预编码的系统。
6)目前,无线通信系统可支持频分双工(frequency division duplexing,FDD)和时分双工(time division duplexing,TDD)两种双工方式。以下为便于描述将支持TDD的通信系统称为TDD系统,相应的,将支持FDD的通信系统称为FDD系统。一个通信系统为TDD系统还是FDD系统取决于该通信系统所使用的频段。对于TDD系统,上行传输和下行传输在同一载波的不同时间进行,瞬时上行信道和下行信道具有互易性,终端设备向网 络设备发送上行参考信号,网络设备可利用上行参考信号估计出上行信道状态信息,并根据瞬时上行信道和下行信道的互易性,由上行信道状态信息获得下行信道信息。对于FDD系统,瞬时上行传输和下行传输在不同的载波上进行,由于不同载波上的信道不同,故可以理解为,在FDD系统中瞬时上行信道和下行信道不具有互易性,所以对于FDD系统,除非接收端反馈信道状态信息,否则发射端无法获得信道状态信息。本申请实施例中主要涉及FDD系统。
7)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
需要说明的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面介绍本申请实施例的应用场景,请参见图3。图3中通信系统包括一个网络设备和一个终端设备,该通信系统为采用闭环预编码的FDD系统,其中网络设备以基站为例,终端设备以UE为例,基站为UE提供服务。在图3中,以下行传输为例,基站可通过下行链路向UE发送下行数据,也可通过反馈链路接收UE发送的上行参考信号,基站可根据该上行参考信号估计出上行信道状态信息,但是由于FDD系统中瞬时上行信道和下行信道不具有互易性,故基站无法从上行信道状态信息获得下行信道信息。而一个通信系统是TDD系统还是FDD系统是由通信系统使用的频段决定的,通信系统所使用的频段通常是固定的,要么是FDD频段,要么是TDD频段,因此,FDD系统不能通过改成TDD系统来解决下行信道信息获取问题。
目前,为解决FDD系统中基站的下行信道信息获取问题,提出通过参考信号承载下行信道信息的方案,采用该方案,UE可通过向基站发送承载下行信道信息的参考信号,将下行信道信息发送给基站,进而,使得基站可通过来自UE的参考信号获得下行信道信息。本申请对该参考信号的名称不做限定,以下可将该参考信号称为虚拟预编码-探测参考信号(virtual precoding sounding reference signal,VIP-SRS),下文中所涉及的VIP-SRS均是指承载下行信道信息的参考信号。
下面以上行信道状态信息为上行信道(矩阵)、下行信道信息为下行信道(矩阵)、下行参考信号为CSI-RS、上行参考信号为SRS和VIP-SRS为例,介绍该方案的具体内容,请参见图4。图4对应三个步骤,具体如下:
步骤一:基站向UE发送CSI-RS,UE根据CSI-RS估计出下行信道(矩阵)。
步骤二:UE向基站发送SRS和VIP-SRS,其中VIP-SRS上承载下行信道(矩阵),基站可根据SRS估计出上行信道(矩阵),且,基站可根据VIP-SRS估计出上行信道(矩阵)与下行信道(矩阵)的乘积,进而可反解出下行信道(矩阵)。
为进一步解释本步骤,我们需要先说明一些概念:
SRS:UE在不同的发射天线端口上,采用不同的SRS资源发送SRS,例如2端口的UE在端口1上使用SRS资源1发送SRS,在端口2上使用SRS资源2发送SRS。由于SRS资源不同,基站可以区分开这两个SRS,并根据第一个SRS估计出UE的端口1到基站所有端口的上行信道状态信息,根据第二个SRS估计出UE的端口2到基站所有端口的 上行信道状态信息,基站将这两组信息合并,得到全部的上行信道状态信息(UE的所有端口到基站所有端口的信道信息),即,可以得到上行信道(矩阵)。
SRS资源:SRS资源包括SRS占用的时域资源、频域资源和使用的序列,两个SRS资源不同,意味着两个SRS资源对应的时域资源、频域资源、码域资源等资源至少有一个不同。只要两个SRS使用的SRS资源不同,那么基站就可以区分这两个SRS。
下文中将上行信道(矩阵)记为:
Figure PCTCN2019073376-appb-000001
其中M为UE的发射天线端口数,L为基站的接收天线端口数,h ij表示UE的第j个端口到基站第i个端口的信道。
我们先将UE发送的SRS序列分开逐一描述:UE在第1个端口上使用第1个SRS资源发送了SRS,记为:
Figure PCTCN2019073376-appb-000002
表示只有端口1发送了s 1;同理,UE还在端口2发送了s 2,记为
Figure PCTCN2019073376-appb-000003
以此类推,在端口M发送了s M,记为
Figure PCTCN2019073376-appb-000004
将UE发送的这些SRS求和,即为UE发送的真实SRS:
Figure PCTCN2019073376-appb-000005
UE发送的SRS经过上行信道后到达基站,假设基站接收到的信号为
Figure PCTCN2019073376-appb-000006
其中N为接收机噪声,为便于理解,我们可以忽略这一项的影响,由于基站已知UE发送的S,且通常S有SS H=1,所以基站可以通过矩阵运算,得到上行信道(矩阵)的估计值:
Figure PCTCN2019073376-appb-000007
这里基站的处理方式仅是一个例子,通常基站会使用其他的处理方式,以降低噪声N的影响。这里需要说明的是,本申请中S H是指S的共轭转置。
VIP-SRS:与SRS不同的是,每一个VIP-SRS均可以在多个天线端口上发送,并且不同天线端口上发送的VIP-SRS各自带有相同或不同的加权系数,即带有预编码,则UE在SRS资源s i上发送的SRS,从SRS的
Figure PCTCN2019073376-appb-000008
变成了
Figure PCTCN2019073376-appb-000009
再经过简单变型后,得到
Figure PCTCN2019073376-appb-000010
其中
Figure PCTCN2019073376-appb-000011
称为该VIP-SRS的预编码。同样,UE也可以发送多个VIP-SRS,记为
Figure PCTCN2019073376-appb-000012
将UE发送的这些VIP-SRS求和,即为UE发送的真实VIP-SRS序列:
Figure PCTCN2019073376-appb-000013
UE发送的VIP-SRS经过上行信道后到达基站,则基站接收到的信号为:
Figure PCTCN2019073376-appb-000014
本申请中,基站和UE预先约定令预编码(矩阵)
Figure PCTCN2019073376-appb-000015
为UE估计的下行信道(矩阵)
Figure PCTCN2019073376-appb-000016
则UE可将下行信道(矩阵)承载于VIP-SRS反馈给基站,则基站可以根据
Figure PCTCN2019073376-appb-000017
和之前通过SRS估计出的上行信道(矩阵)
Figure PCTCN2019073376-appb-000018
估计出下行信道(矩阵)
Figure PCTCN2019073376-appb-000019
步骤三,基站根据下行信道(矩阵)计算下行数据传输所使用的预编码,传输下行数据。
针对上述UE通过参考信号(VIP-SRS)反馈下行信道信息的方案的实施细节,目前仍在讨论中,UE如何发送该参考信号(VIP-SRS)仍然是未解决的问题。
基于上述存在的问题,本申请实施例提供一种通信方法,用以发送承载下行信道信息的参考信号。
请参见图5,为本申请实施例提供的一种通信方法流程图,如图5所示,该方法包括:
S101:终端设备确定用于发送第一参考信号的第一参数。第一参考信号用于承载下行信道信息。本申请中第一参考信号为上行参考信号,第一参考信号可以在多个天线端口上发送,并且不同天线端口上发送的第一参考信号各自带有相同或不同的加权系数,即带有预编码(矩阵),可以理解为上文中描述的VIP-SRS,通过令该第一参考信号的预编码(矩阵)为下行信道信息,以实现第一参考信号对下行信道信息的承载,详细内容可参见上文中关于VIP-SRS的描述。这里需要说明的是,“用于发送第一参考信号的第一参数”可以理 解为所述第一参考信号的发送与所述第一参数有关,其含义也可以为“用于第一参考信号的传输(transmission)的第一参数”。这里并不限定第一参数与所述第一参考信号的发送动作相关。
需要说明的是,本申请实施例中,第一参数可以仅包括一个参数,也可以包括一组参数,本申请对此不做限定。此外,当第一参数包括一组参数时,一组参数中的多个参数可以是相同类型的参数,也可以是不同类型的参数。本申请实施例中,第一参数可以是用于发送/传输第一参考信号的全部参数,也可以是用于发送/传输第一参考信号的部分参数。
本申请实施例中,第一参数包括但不限于:第一预编码资源组(precoding resource group,PRG)大小(size)或用于第一参考信号的第一带宽中的至少一个。其中,用于第一参考信号的第一带宽可以理解为发送/传输第一参考信号所使用的带宽。
本申请实施例中,下行信道信息包括但不限于:下行信道的频率选择性、下行信道矩阵、压缩后的下行信道矩阵、下行信道矩阵的N个特征值中最大特征值对应的特征向量,或,下行信道矩阵的N个特征值中的M个最大特征值对应的特征向量中的至少一个,M为大于等于2的整数,N为大于等于M的整数。
S102:终端设备根据第一参数,向网络设备发送第一参考信号,网络设备从终端设备接收该第一参考信号。也可以理解为,终端设备在与第一参数对应的资源上向网络设备发送第一参考信号。
S103:网络设备根据第一参考信号确定下行信道信息。
通过上述方法,终端设备确定第一参数,并根据第一参数发送第一参考信号。
需要说明的是,本申请实施例中仅以一个终端设备为例说明本申请提供的通信方法,当有多个终端设备时,多个终端设备中的每个终端设备均可以执行本申请中提供的通信方法。
本申请实施例中,对终端设备如何确定用于发送第一参考信号的第一参数不做限定。示例性地,终端设备可采用如下方法确定用于发送第一参考信号的第一参数。
方法一:终端设备根据下行信道信息确定第一参数,请参见图6,为本申请实施例提供的另一种通信方法流程图。
如图6所示,该方法包括:
S201:终端设备根据下行信道信息确定第一参数。
一个可能的实例中,终端设备根据下行信道信息确定第一参数之前,可以根据网络设备发送的下行参考信号估计下行信道信息。例如,以下行参考信号为CSI-RS为例,终端设备可根据CSI-RS估计下行信道信息。
以根据下行信道信息为根据下行信道的频率选择性、第一参数为第一PRG大小为例,对方法一中终端设备根据下行信道的频率选择性确定第一PRG大小进行说明。示例性地,终端设备可以在下行信道的频率选择性大于第一阈值时,确定第一PRG大小小于第二阈值;终端设备可以在下行信道的频率选择性小于第一阈值时,确定第一PRG大小大于第三阈值。
本申请中,第二阈值和第三阈值可以相同也可以不同,第一阈值、第二阈值、第三阈值均可以为经验值,本申请不做限定。
一个可能的实例中,终端设备可以根据下行信道信息和第一参数集合确定第一参数,或者说,终端设备可以基于第一参数集合,根据下行信道信息确定第一参数。上述确定的该第一参数属于所述的第一参数集合,其中第一参数集合为通过高层信令配置的或者预先 定义的,在该实例中第一参数集合可以包括至少一组用于发送第一参考信号的参数。示例性地,终端设备可根据下行信道信息在所述的第一参数集合中确定第一参数,例如:记通过高层信令配置的或者预先定义的第一参数集合为{参数1,参数2,参数3},终端设备可估计网络设备在该终端设备以参数1为第一参数发送第一参考信号后,获得的下行信道(矩阵),进而估计出网络设备根据该下行信道(矩阵)所计算出的下行预编码,进而可计算出终端设备以参数1为第一参数发送第一参考信号后,网络设备对该终端设备的下行传输性能(例如下行传输的频谱效率),以此类推,终端设备可逐一计算以第一参数集合中的每一个参数为第一参数发送第一参考信号时对应的下行传输性能。此外,终端设备还可逐一计算以第一参数集合中的每一个参数为第一参数发送第一参考信号时对应的VIP-SRS资源开销,即被该终端设备占用于发送VIP-SRS的上行资源的数量。最后,该终端设备权衡下行传输性能与VIP-SRS的资源开销,确定参数1为第一参数。具体而言,确定参数1为第一参数,可能包含但不限于以下的几种情况:
情况1:参数1对应的下行传输性能优于参数2、参数3对应的下行传输性能,且参数1、参数2、参数3对应的VIP-SRS的资源开销几乎相等;
情况2:参数1对应的下行传输性能与参数2、参数3对应的下行传输性能相差无几(例如差距不足5%),但参数1对应的VIP-SRS的资源开销远小于参数2、参数3对应的VIP-SRS的资源开销。
S202:终端设备根据第一参数,向网络设备发送第一参考信号,网络设备接收终端设备发送的第一参考信号。
S203:网络设备根据第一参考信号确定下行信道信息。
其中,S202-S203分别与S102-S103相同,重复之处可相互参见,此处不再赘述。
通过上述方法一,由终端设备自身确定发送第一参考信号的第一参数,终端设备无需等待网络设备的调度即可直接发送第一参考信号,可减小发送时延,进而使得网络设备可快速的获得下行信道信息,可快速调度终端设备的下行传输。
本申请实施例中,若终端设备采用方法一确定第一参数,则在确定第一参数后可以向网络设备上报第一参数,也可以不上报第一参数,分别对应如下三种处理方式。
处理方式一:终端设备向网络设备发送第一参数。例如,终端设备可以向网络设备发送第一信息,通过第一信息指示第一参数。通过向网络设备上报第一参数,可降低网络设备的处理复杂度。
处理方式二:终端设备发送的第一参考信号的格式与第一参数存在对应关系,该对应关系是预先定义的或者通过高层信令配置的。例如,仍以网络设备为终端设备配置的第一参数集合为{参数1,参数2,参数3}为例,网络设备可以进一步为终端设备配置第一参数与第一参考信号格式的对应关系,参见表1所示,网络设备可配置参数1对应第一参考信号在频段1上发送,参数2对应第一参考信号在频段2上发送,参数3对应第一参考信号在频段3上发送。此时,如果网络设备在频段1上检测到第一参考信号,则说明终端设备是以参数1作为第一参数发送的第一参考信号。
表1
第一参数 第一参考信号的格式
参数1 在频段1上发送第一参考信号
参数2 在频段2上发送第一参考信号
参数3 在频段3上发送第一参考信号
采用处理方式二,终端设备可利用隐式反馈的方式将第一参数发送给网络设备,无需通过信令指示,可节省信令开销,且,通过向网络设备上报第一参数,可降低网络设备的处理复杂度。
处理方式三:终端设备不向网络设备上报第一参数。在该种处理方式中,网络设备在接收到终端设备发送的第一参考信号后,依靠盲检测解调下行信道信息。采用该种处理方式,无需上报第一参数,可节省信令开销,且可降低处理时延。
需要说明的是,本申请实施例中仅以一个终端设备为例对方法一进行说明,当有多个终端设备时,多个终端设备中的每个终端设备均可以执行方法一。
下文介绍终端设备确定用于发送第一参考信号的第一参数的另一种方法。
方法二:假设上行信道与下行信道之间的统计特性具备互易性,此时,网络设备可以根据上行信道状态信息确定第一参数,并可通过信令通知终端设备,请参见图7,为本申请实施例提供的又一种通信方法流程图。
如图7所示,该方法包括:
S301:网络设备根据上行信道状态信息确定第一参数。
下面以第一参数为第一PRG大小为例,对网络设备根据上行信道状态信息确定第一参数进行举例说明。例如,假设网络设备根据上行信道状态信息,识别出上行信道处于平衰落状态,即上行带宽内的不同频点的信道大致相同,进而可根据上行信道与下行信道之间的统计特性的互易性,判断下行信道同样处于平衰落状态,此时网络设备认为终端设备只需反馈某一频点的下行信道信息,即可代表整个频带上的下行信道信息,因此,网络设备可确定第一PRG大小为整个下行带宽。
本申请实施例中,上行信道状态信息包括但不限于:上行信道(矩阵)、压缩后的上行信道(矩阵)等。
一个可能的实例中,网络设备根据上行信道状态信息确定第一参数之前,可以根据终端设备发送的上行参考信号估计上行信道状态信息。例如,以上行参考信号为SRS为例,网络设备可根据SRS估计上行信道状态信息。
S302:网络设备向终端设备发送第一指示信息,终端设备接收来自网络设备的第一指示信息,第一指示信息用于指示第一参数,第一参数用于指示所述第一参考信号的传输(transmission)。
本申请实施例中,第一指示信息指示第一参数可以有两种方式。一种方式中,第一指示信息包括第一参数。另一种方式中,第一指示信息包括指示位,通过该指示位的取值来指示第一参数。可选的,该指示位可以为至少一个比特(bit)。
一个可能的实例中,网络设备在向终端设备发送第一指示信息的同时还可以发送第二指示信息,第二指示信息用于指示终端设备发送第一参考信号。
本申请实施例中,第一指示信息和第二指示信息可以通过现有的信令发送,也可以通过新的信令发送,本申请对此不做限定。一个可能的实例中,网络设备通过下行控制信息(downlink control information,DCI)发送第一指示信息和第二指示信息。
需要说明的是,若网络设备通过指示位的方式指示第一参数,则需要为终端设备配置指示位的取值与第一参数的对应关系。
参见表2,示出一种可能的指示位的取值与第一参数的对应关系:
表2
DCI指示 物理意义
01 使用参数1
10 使用参数2
11 使用参数3
在表2中,以通过DCI发送第一指示信息为例示意,假设由DCI的两个比特来指示第一参数,表2中第一参数包括网络设备自身决策的参数1、参数2、参数3,利用DCI的两个比特的取值01指示终端设备使用参数1发送第一参考信号,利用DCI的两个比特的取值10指示终端设备使用参数2发送第一参考信号,利用DCI的两个比特的取值11指示终端设备使用参数3发送第一参考信号。
S303:终端设备根据第一参数,向网络设备发送第一参考信号,网络设备接收终端设备发送的第一参考信号。
S304:网络设备根据第一参考信号确定下行信道信息。
其中,S303-S304分别与S102-S103相同,重复之处可相互参见,此处不再赘述。
通过上述方法二,通过网络设备和终端设备之间的信令交互,实现了令每个终端设备都能使用最优或近最优的参数发送第一参考信号,提升下行信道反馈的性能。
需要说明的是,本申请实施例中仅以一个终端设备为例对方法二进行说明,当有多个终端设备时,多个终端设备中的每个终端设备均可以执行方法二。
下文介绍终端设备确定用于发送第一参考信号的第一参数的又一种方法。
方法三:终端设备向网络设备建议使用的参数,网络设备根据一个或多个终端设备建议使用的参数确定实际用于第一参考信号的传输(transmission)的第一参数,并通过信令将确定的第一参数通知终端设备,请参见图8,为本申请实施例提供的又一种通信方法流程图。
如图8所示,该方法包括:
S401:终端设备根据下行信道信息确定用于发送第一参考信号的第二参数。此处第二参数与上文中的第一参数可以相同,也可以不同。
需要说明的是,本申请实施例中仅以一个终端设备为例对方法三进行说明,当有多个终端设备时,多个终端设备中的每个终端设备均可以执行方法三。例如,当终端设备的数量为多个时,多个终端设备中的每个终端设备均可以采用S401的方法确定自身用于发送第一参考信号的第二参数,可以理解,多个终端设备中的每个终端设备确定的第二参数可能相同也可能不同。例如,假设终端设备的数量为三,记为终端设备1、终端设备2以及终端设备3,则终端设备1可以采用S401的方法确定终端设备1的第二参数A,终端设备2可以采用S401的方法确定终端设备2的第二参数B,终端设备3可以采用S401的方法确定终端设备3的第二参数C。
需要说明的是,本申请实施例中,第二参数可以仅包括一个参数,也可以包括一组参数,本申请对此不做限定。此外,当第二参数包括一组参数时,一组参数中的多个参数可以是相同类型的参数,也可以是不同类型的参数。本申请实施例中,第二参数可以是用于发送第一参考信号的全部参数,也可以是用于发送第一参考信号的部分参数。
本申请实施例中,第二参数包括但不限于:第二预编码资源组(precoding resource group,PRG)大小(size)或用于第一参考信号的第二带宽中的至少一个。其中,用于第一参考 信号的第二带宽可以理解为发送/传输第一参考信号所使用的带宽。
S402:终端设备向网络设备发送第二参数,网络设备接收来自终端设备的第二参数。其中,第二参数为建议(suggested)用于第一参考信号的传输(transmission)的参数。示例性地,终端设备可以向网络设备发送第二信息,通过第二信息指示第二参数。例如,第二信息包括第二参数,或者第二信息包括指示位,通过该指示位的取值来指示第二参数。可选的,所述指示位可以为至少一个比特位,所述指示位的取值为所述至少一个比特位的状态。当终端设备的数量为多个时,多个终端设备中的每个终端设备采用S401的方法确定自身用于发送第一参考信号的第二参数后,多个终端设备中的每个终端设备均可以采用S402的方法发送自身确定的第二参数。例如,仍假设终端设备的数量为三,记为终端设备1、终端设备2以及终端设备3,则终端设备1采用S401的方法确定终端设备1的第二参数A之后,可以采用S402的方法向网络设备发送第二参数A,终端设备2采用S401的方法确定终端设备2的第二参数B之后,可以采用S402的方法向网络设备发送第二参数B,终端设备3采用S401的方法确定终端设备3的第二参数C之后,可以采用S402的方法向网络设备发送第二参数C。
一个可能的实例中,终端设备向网络设备发送的第二参数可以承载于物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)上。
S403:网络设备根据至少一个第二参数确定第一参数,至少一个第二参数来自至少一个终端设备。示例性地,当终端设备的数量为一个时,网络设备根据该终端设备发送的第二参数确定第一参数。示例性地,当终端设备的数量为多个时,网络设备可以根据多个终端设备上报的第二参数,综合决定每个终端设备所使用的第一参数,可以理解每个终端设备所使用的第一参数可以相同也可以不同。例如,仍假设终端设备的数量为三,记为终端设备1、终端设备2以及终端设备3,终端设备1采用S402的方法向网络设备发送第二参数A,终端设备2采用S402的方法向网络设备发送第二参数B,终端设备3采用S402的方法向网络设备发送第二参数C,网络设备在接收到第二参数A、第二参数B以及第二参数C之后,可以根据第二参数A、第二参数B、第二参数C中的至少一个参数确定终端设备1使用的第一参数1,也可以根据第二参数A、第二参数B、第二参数C中的至少一个参数确定终端设备2使用的第一参数2,也可以根据第二参数A、第二参数B、第二参数C中的至少一个参数确定终端设备3使用的第一参数3。又例如,以第二参数为第二PRG大小为例说明,假设网络设备根据上行信道状态信息确定某一时刻业务拥塞(需要下行传输的业务过多),网络设备需要在短时间内让大量终端设备传输第一参考信号,此时即使终端设备上报的第二PRG大小为全带宽发送全部下行信道,网络设备也会否决终端设备的建议,调度子带发送压缩信道以减少单个终端设备的第一参考信号的资源占用,提高多用户复用效率。需要说明的是,该举例仅以第一参数和第二参数为不同的参数为例说明,本申请中网络设备确定的第一参数可以等于第二参数,也就是说,网络设备确定的第一参数可以与第二参数相同,也可以与第二参数不同,本申请对此不做限定。
S404:网络设备向终端设备发送第一指示信息,终端设备接收来自网络设备的第一指示信息,第一指示信息用于指示第一参数。关于S404中第一指示信息的描述可参见S302,此处不再赘述。当终端设备的数量为多个时,网络设备采用S403的方法为每个终端设备确定每个终端设备的第一参数之后,网络设备可以采用S404的方法为多个终端设备中的 每个终端设备指示与每个终端设备对应的第一参数。例如,仍假设终端设备的数量为三,记为终端设备1、终端设备2以及终端设备3,终端设备1采用S402的方法向网络设备发送第二参数A,终端设备2采用S402的方法向网络设备发送第二参数B,终端设备3采用S402的方法向网络设备发送第二参数C,网络设备在接收到第二参数A、第二参数B以及第二参数C之后,可以根据第二参数A、第二参数B、第二参数C中的至少一个参数确定终端设备1使用的第一参数1,也可以根据第二参数A、第二参数B、第二参数C中的至少一个参数确定终端设备2使用的第一参数2,也可以根据第二参数A、第二参数B、第二参数C中的至少一个参数确定终端设备3使用的第一参数3,网络设备在确定第一参数1之后,可以向终端设备1发送用于指示第一参数1的指示信息,网络设备在确定第一参数2之后,可以向终端设备2发送用于指示第一参数2的指示信息,网络设备在确定第一参数3之后,可以向终端设备3发送用于指示第一参数3的指示信息。
下面以网络设备通过指示位的方式指示第一参数进行举例说明。
参见表3,示出另一种可能的指示位的取值与第一参数的对应关系:
表3
DCI指示 物理意义
00 使用终端设备上报的第二参数
01 使用参数1
10 使用参数2
11 使用参数3
在表3中,以通过DCI发送第一指示信息为例示意,假设由DCI的两个比特来指示第一参数,表3中第一参数包括终端设备上报的第二参数,以及,网络设备自身决策的参数1、参数2、参数3,利用DCI的两个比特的取值00指示终端设备使用上报的第二参数发送第一参考信号,利用DCI的两个比特的取值01指示终端设备使用参数1发送第一参考信号,利用DCI的两个比特的取值10指示终端设备使用参数2发送第一参考信号,利用DCI的两个比特的取值11指示终端设备使用参数3发送第一参考信号。
S405:终端设备根据第一参数,向网络设备发送第一参考信号,网络设备接收终端设备根据第一参数发送的第一参考信号。当终端设备的数量为多个时,多个终端设备中的每个终端设备均可以根据自身使用的第一参数向网络设备发送第一参考信号。
S406:网络设备根据第一参考信号确定下行信道信息。
其中,S405-S406分别与S102-S103相同,重复之处可相互参见,此处不再赘述。
下面结合图9-图11,分别对本申请实施例提供的三种确定第一参数的方法进行举例说明。
参阅图9所示,为本申请实施例提供的另一种通信方法流程图,图9中以终端设备为UE、网络设备为基站,以UE自身根据下行信道信息确定用于发送第一参考信号的第一参数为例,对本申请实施例提供的方法进行说明。
图9所示的方法包括以下步骤:
S501:基站向UE发送CSI-RS,UE接收来自基站的CSI-RS。
S502:UE根据CSI-RS估计下行信道信息。
S503:UE根据下行信道信息确定第一参数。UE如何根据下行信道信息确定第一参数可参见图6中S201中相关描述。
S504:UE向基站上报第一参数。其中,S504为可选执行步骤,即,UE也可以不向基站上报第一参数。
S505:UE根据第一参数向基站发送第一参考信号,基站接收UE发送的第一参考信号。
S506:基站根据第一参考信号确定下行信道信息。
通过上述方法,由UE自身确定发送第一参考信号的第一参数,UE无需等待基站的调度即可直接发送第一参考信号,可减小发送时延,进而使得基站可快速的获得下行信道信息,更快的调度UE的下行传输。
参阅图10所示,为本申请实施例提供的又一种通信方法流程图,图10中以终端设备为UE、网络设备为基站,以基站指示用于发送第一参考信号的第一参数为例,对本申请实施例提供的方法进行说明。
图10所示的方法包括以下步骤:
S601:UE向基站发送SRS,基站接收来自UE的SRS。
S602:基站根据SRS估计上行信道状态信息。
S603:基站根据上行信道状态信息确定用于发送第一参考信号的第一参数。基站如何根据上行信道状态信息确定第一参数可参见图7中S301中相关描述。
S604:基站向UE发送第一指示信息,UE接收来自基站的第一指示信息,第一指示信息用于指示第一参数,第一参数用于指示第一参考信号的传输(transmission)。
S605:UE根据第一参数向基站发送第一参考信号,基站接收UE发送的第一参考信号。
S606:基站根据第一参考信号确定下行信道信息。
采用上述方法,通过基站和UE之间的信令交互,实现了令每个UE都能使用最优或近最优的参数发送第一参考信号,提升下行信道反馈的性能。
参阅图11所示,为本申请实施例提供的又一种通信方法流程图,图11中以终端设备为UE、网络设备为基站为例,对本申请实施例提供的方法进行说明。
图11所示的方法包括以下步骤:
S701:基站向UE发送CSI-RS,UE接收来自基站的CSI-RS。
本申请实施例中以一个UE为例说明,当有多个UE时,多个UE中的每个UE均可以执行该方法。
S702:UE根据CSI-RS估计下行信道信息。
S703:UE根据下行信道信息确定第二参数。需要说明当UE数量为多个时,多个UE中的每个UE均可以采用S703的方法确定自身的第二参数,可以理解,多个UE中的每个UE确定的第二参数可能相同也可能不同。例如,假设UE的数量为三,记为UE1、UE2以及UE3,则UE1可以采用S703的方法确定UE1的第二参数AA,UE2可以采用S703的方法确定UE2的第二参数BB,UE3可以采用S703的方法确定UE3的第二参数CC。
一个可能的实例中,第二参数可以是用于发送第一参考信号的最优参数。
S704:UE向基站发送第二参数,基站接收UE发送的第二参数。S704可以理解为UE向基站建议使用第二参数发送第一参考信号。当UE的数量为多个时,多个UE中的每个UE采用S703的方法确定自身用于发送第一参考信号的第二参数后,多个UE中的每个UE均可以采用S704的方法发送自身确定的第二参数。例如,仍假设UE的数量为三,记为UE1、UE2以及UE3,则UE1采用S703的方法确定UE1的第二参数AA之后,可以采用S704的方法向基站发送第二参数AA,UE2采用S703的方法确定UE2的第二参数BB之 后,可以采用S704的方法向基站发送第二参数BB,UE3采用S703的方法确定UE3的第二参数CC之后,可以采用S704的方法向基站发送第二参数CC。
S705:基站根据至少一个第二参数确定第一参数,至少一个第二参数来自至少一个UE。示例性地,当UE的数量为一个时,基站根据该UE发送的第二参数确定该UE的第一参数。示例性地,当UE的数量为多个时,基站可以根据多个UE上报的第二参数,综合决定每个UE所使用的第一参数,可以理解每个UE所使用的第一参数可以相同也可以不同。例如,仍假设UE的数量为三,记为UE1、UE2以及UE3,UE1采用S704的方法向基站发送第二参数AA,UE2采用S704的方法向基站发送第二参数BB,UE3采用S704的方法向基站发送第二参数CC,基站在接收到第二参数AA、第二参数BB以及第二参数CC之后,可以根据第二参数AA、第二参数BB、第二参数CC中的至少一个参数确定UE1使用的第一参数11,也可以根据第二参数AA、第二参数BB、第二参数CC中的至少一个参数确定UE2使用的第一参数22,也可以根据第二参数AA、第二参数BB、第二参数CC中的至少一个参数确定UE3使用的第一参数33。
需要注意的是,S705确定的第一参数与S704中的第二参数可能是相同的参数,也可能是不同的参数。
S706:基站向UE发送第一指示信息,UE接收来自基站的第一指示信息,第一指示信息用于指示第一参数。当UE的数量为多个时,基站采用S705的方法为每个UE确定每个UE的第一参数之后,基站可以采用S706的方法为多个UE中的每个UE指示与每个UE对应的第一参数。例如,仍假设UE的数量为三,记为UE1、UE2以及UE3,UE1采用S704的方法向基站发送第二参数AA,UE2采用S704的方法向基站发送第二参数BB,UE3采用S704的方法向基站发送第二参数CC,基站在接收到第二参数AA、第二参数BB以及第二参数CC之后,可以根据第二参数AA、第二参数BB、第二参数CC中的至少一个参数确定UE1使用的第一参数11,也可以根据第二参数AA、第二参数BB、第二参数CC中的至少一个参数确定UE2使用的第一参数22,也可以根据第二参数AA、第二参数BB、第二参数CC中的至少一个参数确定UE3使用的第一参数33,基站在确定第一参数11之后,可以向UE1发送用于指示第一参数11的指示信息,基站在确定第一参数22之后,可以向UE2发送用于指示第一参数22的指示信息,基站在确定第一参数33之后,可以向UE3发送用于指示第一参数33的指示信息。
S707:UE根据第一参数向基站发送第一参考信号,基站接收UE发送的第一参考信号。当UE的数量为多个时,多个UE中的每个UE均可以根据自身使用的第一参数向基站发送第一参考信号。
S708:基站根据第一参考信号确定下行信道信息。
采用上述方法,通过基站和UE之间的信令交互,实现了令每个UE都能使用最优或近最优的参数发送第一参考信号,提升下行信道反馈的性能。
基于同一发明构思,本申请实施例还提供一种终端设备,该终端设备可以具有如图12所示的结构,且具有上述方法实施例中终端设备的行为功能。如图12所示,该终端设备1200可包括处理模块1201以及收发模块1202,所述处理模块1201可以用于确定用于发送第一参考信号的第一参数,其中,所述第一参考信号用于承载下行信道信息,所述收发模块1202可以用于根据所述第一参数,向网络设备发送所述第一参考信号。在实施中,终端设备1200还可具有存储模块1203,存储模块1203可与处理模块1201耦合,用于存 储处理模块1201执行功能所需的程序、指令。
基于如图5所示的通信方法,如图12所示的终端设备1200中的处理模块1201可用于终端设备1200执行如S101所示步骤,收发模块1202可用于终端设备1200执行如S102所示步骤。
一种可能的设计中,所述处理模块1201具体用于:
根据下行信道信息确定所述第一参数。
一种可能的设计中,所述收发模块1202还用于:
接收来自网络设备的第一指示信息,所述第一指示信息用于指示所述第一参数。
一种可能的设计中,所述处理模块1201还用于:
根据下行信道信息确定用于发送所述第一参考信号的第二参数;
所述收发模块1202还用于:
向所述网络设备发送所述第二参数。
一种可能的设计中,所述第一参数属于第一参数集合,所述第一参数集合是通过高层信令配置的或者预先定义的。
一种可能的设计中,所述处理模块1201采用如下方式根据下行信道信息确定所述第一参数:基于所述第一参数集合,根据所述下行信道信息确定所述第一参数。
一种可能的设计中,所述收发模块1202还用于:
向所述网络设备发送所述第一参数;或者,
所述第一参考信号的格式与所述第一参数存在对应关系,所述对应关系是预先定义的或者通过高层信令配置的。
一种可能的设计中,所述第一参数包括第一PRG大小或用于所述第一参考信号的第一带宽中的至少一个;和/或,所述第二参数包括第二PRG大小或用于所述第一参考信号的第二带宽中的至少一个。
此外,本申请实施例所涉及的终端设备还可具有如图13所示终端设备1300具有的结构,其中,如图13所示的终端设备1300中的处理器1301,可用于实现上述处理模块1201所具有的功能,例如,处理器1301可用于终端设备1300执行如图5所示的通信方法中的S101所示步骤,收发器1302可用于实现上述收发模块1202所具有的功能,例如,收发器1302可用于终端设备1300执行如图5所示的通信方法中的S102所示步骤。此外,收发器1302可与天线1303耦合,用于支持终端设备1300进行通信。示例性的,终端设备1300还可以包括存储器1304,其中存储有计算机程序、指令,存储器1304可以与处理器1301和/或收发器1302耦合,用于支持处理器1301调用存储器1304中的计算机程序、指令以实现本申请实施例提供的方法中终端设备涉及的步骤;另外,存储器1304还可以用于存储本申请方法实施例所涉及的数据,例如,用于存储支持收发器1302实现交互所必须的数据、指令,和/或,用于存储终端设备1300执行本申请实施例所述方法所必须的配置信息。
基于同一发明构思,本申请实施例还提供一种网络设备,该网络设备可以具有如图14所示的结构,且具有上述方法实施例中网络设备的行为功能。如图14所示,该网络设备1400可包括处理模块1401以及收发模块1402,所述收发模块1402用于从终端设备接收第一参考信号,所述第一参考信号用于承载下行信道信息,所述处理模块1401用于根据所述第一参考信号确定所述下行信道信息。在实施中,网络设备1400还可具有存储模块 1403,存储模块1403可与处理模块1401耦合,用于存储处理模块1401执行功能所需的程序、指令。
基于如图5所示的通信方法,如图14所示的网络设备1400中的处理模块1401可用于网络设备1400执行如S103所示步骤,收发模块1402可用于网络设备1400执行如S102所示步骤。
一种可能的设计中,所述收发模块1402还用于:
向终端设备发送第一指示信息,所述第一指示信息用于指示所述第一参数,所述第一参数用于指示所述第一参考信号的传输(transmission)。
一种可能的设计中,所述处理模块1401还用于:
在所述收发模块1402向终端设备发送第一指示信息之前,根据上行信道状态信息确定所述第一参数,或者,
在所述收发模块1402向终端设备发送第一指示信息之前,根据至少一个第二参数确定所述第一参数,所述至少一个第二参数来自至少一个终端设备,所述第二参数为建议用于所述第一参考信号的传输(transmission)的参数。
一种可能的设计中,所述收发模块1402还用于:
接收来自所述终端设备的所述第一参数;或者,
所述第一参考信号的格式与所述第一参数存在对应关系,所述对应关系是预先定义的。
一种可能的设计中,所述第一参数包括第一PRG大小或用于所述第一参考信号的第一带宽中的至少一个;和/或,所述第二参数包括第二PRG大小或用于所述第一参考信号的第二带宽中的至少一个。
一种可能的设计中,所述第一参数属于第一参数集合,其中:所述收发模块1402通过高层信令为所述终端设备配置所述第一参数集合,或者,所述第一参数集合是预先定义的。
此外,本申请实施例所涉及的网络设备还可具有如图15所示网络设备1500具有的结构,其中,如图15所示的网络设备1500中的处理器1501,可用于实现上述处理模块1401所具有的功能,收发器1502可用于实现上述收发模块1402所具有的功能。此外,收发器1502可与天线1503耦合,用于支持网络设备1500进行通信。示例性的,网络设备1500还可以包括其它接口1504,用于支持网络设备1500通过有线方式进行交互,例如,其它接口1504可以是光纤链路接口,以太网接口,铜线接口等。示例性的,网络设备1500还可以包括存储器1505其中存储有计算机程序、指令,存储器1505可以与处理器1501和/或收发器1502耦合,用于支持处理器1501调用存储器1505中的计算机程序、指令以实现本申请实施例提供的方法中网络设备1500涉及的步骤;另外,存储器1505还可以用于存储本申请方法实施例所涉及的数据,例如,用于存储支持收发器1502实现交互所必须的数据、指令。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图16示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图16中,终端设备以手机作为例子。如图16所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器 主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图16中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图16所示,终端设备包括收发单元1610和处理单元1620。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1610中用于实现接收功能的器件视为接收单元,将收发单元1610中用于实现发送功能的器件视为发送单元,即收发单元1610包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1610用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1620用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元1620,用于执行图5中的S101中终端设备的操作,处理单元1620还用于执行本申请实施例中终端设备的其他处理步骤。收发单元1610用于执行图5中的S102中终端设备的操作,和/或收发单元1610还用于执行本申请实施例中终端设备的其他收发步骤。
再例如,在另一种实现方式中,处理单元1620,用于执行图6中的S201中终端设备的操作,处理单元1620还用于执行本申请实施例中终端设备的其他处理步骤。收发单元1610用于执行图6中S202中终端设备侧的操作,和/或收发单元1610还用于执行本申请实施例中终端设备侧的其他收发步骤。
又例如,在又一种实现方式中,收发单元1610用于执行图7中S302、S303中终端设备侧的操作,和/或收发单元1610还用于执行本申请实施例中终端设备侧的其他收发步骤。
又例如,在又一种实现方式中,处理单元1620,用于执行图8中的S401中终端设备的操作,处理单元1620还用于执行本申请实施例中终端设备的其他处理步骤。收发单元1610用于执行图8中S402、S404、S405中终端设备侧的操作,和/或收发单元1610还用于执行本申请实施例中终端设备侧的其他收发步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图17所示的设备。作为一个例子,该设备可以完成类似于图13中处理器1301的功能。在图17中,该设备包括处理器1710, 发送数据处理器1720,接收数据处理器1730。上述实施例中的处理模块1201可以是图17中的该处理器1710,并完成相应的功能。上述实施例中的收发模块1202可以是图17中的发送数据处理器1720,和/或接收数据处理器1730。虽然图17中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图18示出本实施例的另一种形式。处理装置1800中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1803,接口1804。其中处理器1803完成上述处理模块1201的功能,接口1804完成上述收发模块1202的功能。作为另一种变形,该调制子系统包括存储器1806、处理器1803及存储在存储器1806上并可在处理器上运行的程序,该处理器1803执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1806可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1800中,只要该存储器1806可以连接到所述处理器1803即可。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备侧的方法。
应理解,本发明实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流 程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请中一些可能的实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括本申请实施例以及落入本申请范围的所有变更和修改。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定用于发送第一参考信号的第一参数;
    其中,所述第一参考信号用于承载下行信道信息;
    所述终端设备根据所述第一参数,向网络设备发送所述第一参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述下行信道信息确定所述第一参数。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述第一参数。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据下行信道信息确定用于发送所述第一参考信号的第二参数;
    所述终端设备向所述网络设备发送所述第二参数。
  5. 根据权利要求1至4任一项所述的方法,其特征在于:
    所述第一参数包括第一预编码资源组PRG大小或用于所述第一参考信号的第一带宽中的至少一个;和/或,
    所述第二参数包括第二PRG大小或用于所述第一参考信号的第二带宽中的至少一个。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,所述第一参数属于第一参数集合,所述第一参数集合是通过高层信令配置的或者预先定义的。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备根据下行信道信息确定所述第一参数,包括:
    基于所述第一参数集合,所述终端设备根据所述下行信道信息确定所述第一参数。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送所述第一参数;或者,
    所述第一参考信号的格式与所述第一参数存在对应关系,所述对应关系是预先定义的或者通过高层信令配置的。
  9. 一种通信方法,其特征在于,包括:
    网络设备从终端设备接收第一参考信号;
    其中,所述第一参考信号用于承载下行信道信息;
    所述网络设备根据所述第一参考信号确定所述下行信道信息。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示第一参数,所述第一参数用于指示所述第一参考信号的传输。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据至少一个第二参数确定所述第一参数,所述至少一个第二参数来自至少一个终端设备,所述第二参数为建议用于所述第一参考信号的传输的参数;
    或者,
    所述网络设备根据上行信道状态信息确定所述第一参数。
  12. 根据权利要求11所述的方法,其特征在于:
    所述第一参数包括第一预编码资源组PRG大小或用于所述第一参考信号的第一带宽中的至少一个;和/或,
    所述第二参数包括第二PRG大小或用于所述第一参考信号的第二带宽中的至少一个。
  13. 根据权利要求10至12任一项所述的方法,其特征在于,所述第一参数属于第一参数集合,其中:
    所述方法还包括:所述网络设备通过高层信令为所述终端设备配置所述第一参数集合;或者,
    所述第一参数集合是预先定义的。
  14. 根据权利要求10至13任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的所述第一参数;或者,
    所述第一参考信号的格式与所述第一参数存在对应关系,所述对应关系是预先定义的。
  15. 一种设备,其特征在于,包括处理器以及存储器;
    所述存储器存储有计算机程序;
    所述处理器,用于调用所述存储器中存储的计算机程序以使得所述设备执行:
    确定用于发送第一参考信号的第一参数,其中,所述第一参考信号用于承载下行信道信息;
    根据所述第一参数,向网络设备发送所述第一参考信号。
  16. 根据权利要求15所述的设备,其特征在于,所述处理器还用于:
    根据所述下行信道信息确定所述第一参数。
  17. 根据权利要求15所述的设备,其特征在于,所述处理器还用于:
    接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述第一参数。
  18. 根据权利要求17所述的设备,其特征在于,所述处理器还用于:
    根据下行信道信息确定用于发送所述第一参考信号的第二参数;
    向所述网络设备发送所述第二参数。
  19. 根据权利要求15至18任一项所述的设备,其特征在于:
    所述第一参数包括第一预编码资源组PRG大小或用于所述第一参考信号的第一带宽中的至少一个;和/或,
    所述第二参数包括第二PRG大小或用于所述第一参考信号的第二带宽中的至少一个。
  20. 根据权利要求16至19任一项所述的设备,其特征在于,所述第一参数属于第一参数集合,所述第一参数集合是通过高层信令配置的或者预先定义的。
  21. 根据权利要求20所述的设备,其特征在于,所述处理器采用如下方式根据下行信道信息确定所述第一参数:
    基于所述第一参数集合,根据所述下行信道信息确定所述第一参数。
  22. 根据权利要求15至21任一项所述的设备,其特征在于,所述处理器还用于:
    向所述网络设备发送所述第一参数;或者,
    所述第一参考信号的格式与所述第一参数存在对应关系,所述对应关系是预先定义的或者通过高层信令配置的。
  23. 一种设备,其特征在于,包括处理器以及存储器;
    所述存储器存储有计算机程序;
    所述处理器,用于调用所述存储器中存储的计算机程序以使得所述设备执行:
    从终端设备接收第一参考信号,其中,所述第一参考信号用于承载下行信道信息;
    根据所述第一参考信号确定所述下行信道信息。
  24. 根据权利要求23所述的设备,其特征在于,所述处理器还用于:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示第一参数,所述第一参数用于指示所述第一参考信号的传输。
  25. 根据权利要求24所述的设备,其特征在于,所述处理器还用于:
    根据至少一个第二参数确定所述第一参数,所述至少一个第二参数来自至少一个终端设备,所述第二参数为建议用于所述第一参考信号的传输的参数;
    或者,
    所述处理器还用于:
    根据上行信道状态信息确定所述第一参数。
  26. 根据权利要求25所述的设备,其特征在于:
    所述第一参数包括第一预编码资源组PRG大小或用于所述第一参考信号的第一带宽中的至少一个;和/或,
    所述第二参数包括第二PRG大小或用于所述第一参考信号的第二带宽中的至少一个。
  27. 根据权利要求24至26任一项所述的设备,其特征在于,所述第一参数属于第一参数集合,其中:
    所述处理器还用于:通过高层信令为所述终端设备配置所述第一参数集合;或者,
    所述第一参数集合是预先定义的。
  28. 根据权利要求24至27任一项所述的设备,其特征在于,所述处理器还用于:
    接收来自所述终端设备的所述第一参数;或者,
    所述第一参考信号的格式与所述第一参数存在对应关系,所述对应关系是预先定义的。
PCT/CN2019/073376 2019-01-28 2019-01-28 一种通信方法及装置 WO2020154837A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/073376 WO2020154837A1 (zh) 2019-01-28 2019-01-28 一种通信方法及装置
EP19912829.9A EP3905544A4 (en) 2019-01-28 2019-01-28 Communication method and apparatus
CN201980089948.XA CN114128163B (zh) 2019-01-28 2019-01-28 一种通信方法及装置
US17/387,330 US20210360598A1 (en) 2019-01-28 2021-07-28 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073376 WO2020154837A1 (zh) 2019-01-28 2019-01-28 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/387,330 Continuation US20210360598A1 (en) 2019-01-28 2021-07-28 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020154837A1 true WO2020154837A1 (zh) 2020-08-06

Family

ID=71839853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073376 WO2020154837A1 (zh) 2019-01-28 2019-01-28 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20210360598A1 (zh)
EP (1) EP3905544A4 (zh)
CN (1) CN114128163B (zh)
WO (1) WO2020154837A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112272151A (zh) * 2020-10-28 2021-01-26 中国联合网络通信集团有限公司 一种信道估计方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110319068A1 (en) * 2010-06-29 2011-12-29 Samsung Electronics Co. Ltd. Method and apparatus for transmitting/receiving csi in cellular communication system supporting carrier aggregation
CN106953672A (zh) * 2016-01-07 2017-07-14 中兴通讯股份有限公司 一种多天线系统中信道信息反馈的方法及终端
CN107294585A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 信道状态信息的反馈方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070442A (ja) * 2013-09-27 2015-04-13 京セラ株式会社 ユーザ端末、基地局、及びプロセッサ
WO2018037837A1 (ja) * 2016-08-26 2018-03-01 株式会社Nttドコモ ユーザ装置及び送信方法
AU2017332423B2 (en) * 2016-09-26 2020-11-19 Lg Electronics Inc. Uplink transmission/reception method in wireless communication system and device therefor
EP3598658B1 (en) * 2017-03-17 2021-11-03 LG Electronics Inc. Method for applying precoder on basis of resource bundling in wireless communication system, and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110319068A1 (en) * 2010-06-29 2011-12-29 Samsung Electronics Co. Ltd. Method and apparatus for transmitting/receiving csi in cellular communication system supporting carrier aggregation
CN106953672A (zh) * 2016-01-07 2017-07-14 中兴通讯股份有限公司 一种多天线系统中信道信息反馈的方法及终端
CN107294585A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 信道状态信息的反馈方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905544A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112272151A (zh) * 2020-10-28 2021-01-26 中国联合网络通信集团有限公司 一种信道估计方法及装置
CN112272151B (zh) * 2020-10-28 2022-08-26 中国联合网络通信集团有限公司 一种信道估计方法及装置

Also Published As

Publication number Publication date
US20210360598A1 (en) 2021-11-18
CN114128163B (zh) 2024-05-17
CN114128163A (zh) 2022-03-01
EP3905544A4 (en) 2021-12-29
EP3905544A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
WO2021259180A1 (zh) 一种测量上报方法及装置
CN108366423B (zh) 一种配置资源指示方法及装置
CN108271175B (zh) 功率控制方法和通信设备
CN108809386B (zh) 传输预编码矩阵的指示方法和设备
WO2020135117A1 (zh) 通信方法、通信装置及存储介质
WO2020199066A1 (zh) 功率控制方法及相关装置
WO2020207438A1 (zh) 数据传输方法和设备
WO2021168806A1 (zh) 信道状态信息测量的方法和装置
WO2021052473A1 (zh) 通信方法和通信装置
WO2020143441A1 (zh) 通信方法、通信装置及存储介质
CN115088339A (zh) 一种波束对训练方法及通信装置
US20230239014A1 (en) Information indication method and apparatus
WO2021159257A1 (zh) 一种信息配置方法及装置、终端
CN114157328A (zh) 一种信道反馈方法及装置
WO2021072662A1 (zh) 一种混合自动重传请求反馈方法及装置
WO2018223426A1 (zh) 波束失败报告发送方法、接收方法、用户设备和网络设备
WO2021056588A1 (zh) 一种配置预编码的方法及装置
CN115104263A (zh) 通信方法和通信装置
WO2018228554A1 (zh) 用于测量信道状态的方法和装置
WO2020154837A1 (zh) 一种通信方法及装置
WO2020207473A1 (zh) 数据传输方法和设备
WO2018205436A1 (zh) 波束管理的方法、网络设备及终端
WO2021109150A1 (zh) 一种信道信息确定方法及装置
CN109756935B (zh) 一种调整工作带宽的方法和装置
US11832251B2 (en) Apparatus for CSI prediction control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019912829

Country of ref document: EP

Effective date: 20210730