WO2020207473A1 - 数据传输方法和设备 - Google Patents

数据传输方法和设备 Download PDF

Info

Publication number
WO2020207473A1
WO2020207473A1 PCT/CN2020/084200 CN2020084200W WO2020207473A1 WO 2020207473 A1 WO2020207473 A1 WO 2020207473A1 CN 2020084200 W CN2020084200 W CN 2020084200W WO 2020207473 A1 WO2020207473 A1 WO 2020207473A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
dmrs
subband
port
transmission
Prior art date
Application number
PCT/CN2020/084200
Other languages
English (en)
French (fr)
Inventor
黄秋萍
陈润华
高秋彬
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020217036840A priority Critical patent/KR20210150551A/ko
Priority to EP20787066.8A priority patent/EP3955659A4/en
Priority to US17/602,767 priority patent/US20220158801A1/en
Publication of WO2020207473A1 publication Critical patent/WO2020207473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the embodiments of the present disclosure relate to the field of communication technology, and in particular to a data transmission method and device.
  • An objective of the embodiments of the present disclosure is to provide a data transmission method and device to solve the problem that the transmission power of the terminal cannot meet the requirements.
  • embodiments of the present disclosure provide a data transmission method applied to a first device, including:
  • the different DMRS ports correspond to at least one of different power amplifiers PA, different sounding reference signal SRS ports, or different first signal ports.
  • the same data stream in the first signal is transmitted based on different DMRS ports at at least two frequency domain locations.
  • the same data stream in the first signal is transmitted in different subbands based on different DMRS ports.
  • each physical resource block PRB on the transmission bandwidth of each DMRS port corresponds to at least one of the same PA, SRS port, or first port.
  • the DMRS port and the SRS port have a one-to-one correspondence.
  • the sending the first signal to the second device includes:
  • the first transmission power is determined according to the first ratio and the transmission power of the first signal, and the first ratio is the DMRS port mapped to the data transmission of the first signal in the second device The proportion of all the DMRS ports configured for the first signal; or the first ratio is the SRS port mapped to the data transmission of the first signal in the second device for the first signal configuration The percentage of all SRS ports in
  • the method further includes:
  • the sending the first signal and the DMRS corresponding to the first signal to the second device includes:
  • the method further includes:
  • the sending the first signal and the DMRS corresponding to the first signal to the second device includes:
  • the second information indicates at least one of the following:
  • the first power control strategy used by the first device is the first power control strategy used by the first device
  • the precoding matrix of the first signal is a codeword whose number of transport streams is less than or equal to K, where K is an integer greater than or equal to 1;
  • the number of transmission streams of the first signal is less than or equal to M, where M is an integer greater than or equal to 1;
  • the precoding matrix of the first signal is a non-coherent codeword
  • the precoding matrix of the first signal is a partially coherent codeword
  • the precoding matrix of the first signal is a non-coherent codeword or a partially coherent codeword.
  • the method further includes:
  • the third information indicating the correspondence between the DMRS port and the SRS port.
  • the method further includes:
  • a set of precoding matrices that can be used when mapping the data stream of the first signal to the DMRS port;
  • DMRS port to which one or more data streams can be mapped.
  • the method further includes:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the method further includes:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the signaling includes:
  • a precoding matrix of a predefined subband or,
  • precoding matrices where precoding matrices and subbands in the plurality of precoding matrices have a predefined correspondence.
  • the subband of the first signal is determined by at least one of the following methods:
  • the subbands in the frequency domain resources or the system bandwidth or the BWP where the first signal is scheduled are determined according to a predefined subband division manner.
  • the predefined subband division manner includes:
  • the system bandwidth or BWP of the first signal or the frequency domain resource scheduled for the first signal includes S subbands, and the smallest unit of each subband is P consecutive PRBs.
  • a subband every P* S PRBs, a minimum unit appears, where P is an integer greater than or equal to 1, S is a positive integer, and S is configured by the network side or agreed by the agreement.
  • different DMRS ports are transmitted on different subbands in the frequency domain resource or system bandwidth or BWP where the first signal is scheduled.
  • the position offset of the subband in the frequency domain resource or the system bandwidth or the BWP where the first signal corresponding to the DMRS port is scheduled is configured on the network side or agreed upon in a protocol.
  • the method further includes:
  • DMRS resource indication information indicates the frequency domain resource location of the DMRS port.
  • the method further includes:
  • one DMRS port is mapped on a PRB corresponding to the data stream transmission of the DMRS port.
  • the method further includes:
  • DMRS resource indication information sent by the second device, where the DMRS resource indication information indicates the frequency domain resource location of the DMRS port;
  • the frequency domain resource location of the DMRS corresponding to the first signal is determined according to the DMRS resource indication information.
  • the sending the first signal to the second device includes:
  • the first transmission mode includes at least one of the following:
  • Each data stream of the first signal is transmitted on all PRBs of the transmission resource indicated by the second device for the first device;
  • Each data stream of the first signal is transmitted on the PRB where the DMRS port corresponding to the data stream is located.
  • the method further includes:
  • the resource indication information includes at least one of the following:
  • the resource allocation mode of the SRS port includes at least one of the following:
  • the resource allocation of the SRS port has nothing to do with the mapping between the DMRS port and the SRS port;
  • One of the SRS ports is mapped on a part of subbands.
  • the first signal performs rate matching based on the actual transmission situation of the DMRS port; and/or,
  • the first signal performs rate matching based on the assumption that the DMRS port with data stream mapping exists in each PRB.
  • the first signal is an uplink signal, the first device is a terminal, and the second device is a network device; or, the first signal is a downlink signal, and the first device is a network device, The second device is a terminal.
  • a data transmission method applied to a second device including:
  • the first signal includes at least one data stream, and each data stream corresponds to multiple DMRS ports;
  • the different DMRS ports correspond to at least one of different PAs, different SRS ports, or different first signal ports.
  • the method further includes:
  • the method further includes:
  • the scheduling bandwidth of the first signal is divided into N subbands, the signal to interference and noise ratios of different subbands are calculated based on different precoding matrices or SRS ports, and N is An integer greater than 1.
  • the same data stream in the first signal is transmitted in different subbands based on different DMRS ports.
  • each physical resource block PRB on the transmission bandwidth of each DMRS port corresponds to at least one of the same PA, SRS port, or first port.
  • the DMRS port and the SRS port have a one-to-one correspondence.
  • the method before the step of detecting the first signal sent by the first device and the DMRS corresponding to the first signal, the method further includes:
  • the fifth information indicates at least one of the following:
  • the ability of the first device to transmit the first signal with the maximum transmit power is the ability of the first device to transmit the first signal with the maximum transmit power.
  • the method before the step of detecting the first signal sent by the first device and the DMRS corresponding to the first signal, the method further includes:
  • the first power control strategy used by the first device is the first power control strategy used by the first device
  • the precoding matrix of the first signal is a codeword whose number of transport streams is less than or equal to K, where K is an integer greater than or equal to 1;
  • the number of transmission streams of the first signal is less than or equal to M, where M is an integer greater than or equal to 1;
  • the precoding matrix of the first signal is a non-coherent codeword
  • the precoding matrix of the first signal is a partially coherent codeword
  • the precoding matrix of the first signal is a non-coherent codeword or a partially coherent codeword.
  • the method further includes:
  • the method further includes:
  • a set of precoding matrices that can be used when mapping the data stream of the first signal to the DMRS port;
  • DMRS port to which one or more data streams can be mapped.
  • the method further includes:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the method further includes:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the signaling includes:
  • a precoding matrix of a predefined subband or,
  • precoding matrices where precoding matrices and subbands in the plurality of precoding matrices have a predefined correspondence.
  • the subband of the first signal is determined by at least one of the following methods:
  • the system bandwidth of the first signal or the subband division in the BWP and the scheduling information of the first signal it is determined to obtain the resource division according to the first signal allocation.
  • the subbands in the frequency domain resources or the system bandwidth or the BWP where the first signal is scheduled are determined according to a predefined subband division manner.
  • the predefined subband division manner includes:
  • the system bandwidth of the first signal includes S subbands, and the minimum unit of each subband is P consecutive PRBs. In a subband, every P*S PRBs, a minimum unit appears, where P is greater than or equal to An integer of 1, S is a positive integer, and the S is configured by the network side or agreed by the protocol.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • resource indication information indicates at least one of the following:
  • the method further includes:
  • the resource indication information indicates at least one of the following:
  • the method further includes:
  • the detecting the first signal sent by the first device includes:
  • the first signal sent by the first device is detected on the PRB where the DMRS port corresponding to each data stream of the first signal is located.
  • the first signal is an uplink signal, the first device is a terminal, and the second device is a network device; or, the first signal is a downlink signal, and the first device is a network device, The second device is a terminal.
  • the embodiments of the present disclosure also provide a first device, including:
  • the first sending module is configured to send a first signal and a demodulation reference signal DMRS corresponding to the first signal to a second device.
  • the first signal includes at least one data stream, and each data stream corresponds to multiple DMRS port;
  • the different DMRS ports correspond to at least one of different PAs, different SRS ports, or different first signal ports.
  • an embodiment of the present disclosure further provides a first device, including: a first transceiver and a first processor, wherein:
  • the first transceiver is configured to send a first signal and a demodulation reference signal DMRS corresponding to the first signal to a second device, the first signal includes at least one data stream, and each data stream corresponds to Multiple DMRS ports;
  • the different DMRS ports correspond to at least one of different power amplifiers PA, different sounding reference signal SRS ports, or different first signal ports.
  • an embodiment of the present disclosure further provides a second device, including:
  • the detection module is configured to detect the first signal sent by the first device and the DMRS corresponding to the first signal;
  • the first signal includes at least one data stream, and each data stream corresponds to multiple DMRS ports;
  • the different DMRS ports correspond to at least one of different power amplifiers PA, different sounding reference signal SRS ports, or different first signal ports.
  • an embodiment of the present disclosure further provides a second device, including: a second transceiver and a second processor, wherein:
  • the second processor is configured to detect the first signal sent by the first device and the DMRS corresponding to the first signal; wherein, the first signal includes at least one data stream, and each data stream corresponds to multiple DMRS port; the different DMRS ports correspond to at least one of a different power amplifier PA, a different sounding reference signal SRS port, or a different first signal port.
  • the embodiments of the present disclosure also provide a communication device that includes a processor, a memory, and a program stored on the memory and capable of running on the processor.
  • a communication device that includes a processor, a memory, and a program stored on the memory and capable of running on the processor.
  • the program is executed by the processor, The steps of the data transmission method as described in the first aspect or the second aspect are implemented.
  • embodiments of the present disclosure also provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the implementation of the computer program described in the first aspect or the second aspect The steps of the data transfer method.
  • the embodiments of the present disclosure can make the terminal more effectively use the transmission power of the PA, and improve the performance of the terminal and the system performance.
  • Figure 1 is a schematic diagram of codebook-based uplink transmission
  • FIG. 2 is a schematic structural diagram of a wireless communication system according to an embodiment of the present disclosure
  • FIG. 3 is one of the flowcharts of the data transmission method according to the embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of a centralized subband according to an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of distributed subbands according to an embodiment of the disclosure.
  • FIG. 7 is one of schematic diagrams of resource allocation of SRS according to an embodiment of the disclosure.
  • FIG. 8 is the second schematic diagram of SRS resource allocation according to an embodiment of the disclosure.
  • FIG. 9 is one of the schematic structural diagrams of the first device of an embodiment of the disclosure.
  • FIG. 10 is the second structural diagram of the first device of the embodiment of the disclosure.
  • FIG. 11 is one of the schematic structural diagrams of the second device of the embodiment of the disclosure.
  • FIG. 12 is the second structural diagram of the second device of the embodiment of the disclosure.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the disclosure.
  • FIG. 14 is a schematic structural diagram of a network device according to an embodiment of the disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • New Radio NR New Radio
  • LTE Long Time Evolution
  • LTE-A Long Time Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • the terms “system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • OFDMA system can realize such as Ultra Mobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE 802.11 (Wi-Fi), IEEE802.16 (WiMAX), IEEE802.20, Flash-OFDM And other radio technology.
  • UMB Ultra Mobile Broadband
  • Evolution-UTRA Evolved UTRA
  • E-UTRA IEEE 802.11
  • WiMAX IEEE802.16
  • IEEE802.20 Flash-OFDM And other radio technology.
  • UMB Ultra Mobile Broadband
  • Evolution-UTRA Evolved UTRA
  • Wi-Fi IEEE802.16
  • WiMAX IEEE802.20
  • LTE and more advanced LTE are new UMTS versions that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the technology described in this article can be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the form of the access network is not limited, and may include Macro Base Station, Pico Base Station, Node B (name of 3G mobile base station), enhanced base station (eNB), Home enhanced base station (Femto eNB or Home eNode B or Home eNB or HeNB), relay station, access point, remote radio unit (RRU), remote radio head (RRH), etc.
  • Macro Base Station Pico Base Station
  • Node B name of 3G mobile base station
  • eNB enhanced base station
  • eNB Home enhanced base station
  • Femto eNB or Home eNode B or Home eNB or HeNB relay station
  • access point access point
  • RRU remote radio unit
  • RRH remote radio head
  • the base station can be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, or other access point, etc.), where the base station can be It is called Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (BSS), Extended Service Set (Extended Service Set) , ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or some other appropriate term in the field, as long as the same technical effect is achieved
  • B Evolved Node B
  • eNB Evolved Node B
  • Home Node B Home Evolved Node B
  • WLAN Access Point WiFi Node or some other appropriate term in the field, as long as the same technical effect is achieved
  • WiFi Node or some other appropriate term in
  • UE User Equipment
  • PDA personal digital assistants
  • WLL wireless local loop
  • CPE Customer Premise Equipment
  • the Physical Uplink Shared CHannel (PUSCH) of the 3GPP NR system supports two uplink transmission schemes based on codebook transmission and non-codebook transmission.
  • the codebook-based uplink transmission scheme is a multi-antenna transmission technology that determines the uplink transmission precoding matrix based on a fixed codebook.
  • the codebook-based uplink transmission scheme is similar to the basic principle of the uplink spatial multiplexing technology in the LTE system, but the codebook and precoding indication methods used are different.
  • the terminal User Equipment, UE
  • the terminal is configured with one or two sounding reference signal (Sounding reference signal, SRS) resources for uplink channel estimation and measurement.
  • SRS Sounding reference signal
  • Each SRS resource can include N antennas. Port (N is greater than or equal to 1).
  • the base station determines the transmission precoding matrix indicator (Transmit Precoding Matrix Indicator, TPMI) corresponding to PUSCH transmission by measuring the SRS, and instructs it to the UE.
  • TPMI is used to indicate a precoding matrix in the N-antenna codebook.
  • the flow of the codebook-based uplink transmission scheme in the NR system includes:
  • Step 1 The UE sends to the base station an SRS used for acquiring channel state information (CSI) of the uplink transmission scheme based on the codebook.
  • CSI channel state information
  • Step 2 The base station performs uplink channel detection according to the SRS sent by the UE, performs resource scheduling on the UE, and determines the SRS resource corresponding to the uplink transmission, the number of uplink transmission layers and the precoding matrix, and further determines according to the precoding matrix and channel information
  • MCS Modulation and Coding Scheme
  • the Modulation and Coding Scheme (MCS) level of uplink transmission is output, and then the base station notifies the resource allocation of PUSCH, the corresponding MCS, TPMI, the number of transmission layers, and the corresponding SRS resource indicator (SRI) to UE.
  • MCS Modulation and Coding Scheme
  • Step 3 The UE modulates and encodes the data according to the MCS indicated by the base station, and uses the indicated SRI, TPMI and number of transmission layers to determine the precoding matrix and the number of transmission layers used in data transmission, and then precode and send the data.
  • the PUSCH demodulation reference signal (Demodulation Reference Signal, DMRS) and PUSCH data use the same precoding method, that is, one PUSCH data stream corresponds to one DMRS port.
  • DMRS Demodulation Reference Signal
  • Step 4 The base station estimates the uplink channel based on the demodulated pilot signal and performs data detection.
  • a UE may have multiple power amplifiers (Power Amplifiers, PA), and different PAs may have coherent transmission or non-coherent transmission.
  • PA Power Amplifiers
  • the UE can use the two antenna ports to perform data transmission on the same layer at the same time through precoding to obtain the array gain.
  • the UE's optimal uplink transmission precoding may not be the precoding indicated by TPMI, that is, the terminal uses the precoding indicated by the base station through TPMI for PUSCH transmission and cannot obtain better Performance.
  • the NR system defines three types of UE's antenna coherent transmission capabilities:
  • Non-coherent No antenna can transmit coherently.
  • the base station may send codebook subset restriction signaling to the UE based on the UE's antenna coherent transmission capability to restrict the UE from using part of the codewords for uplink transmission.
  • the base station can configure a codebook corresponding to "fullyAndPartialAndNonCoherent” or “partialAndNonCoherent” or “nonCoherent” through Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the base station can configure the codebook subset restriction corresponding to "partialAndNonCoherent” or "nonCoherent” through RRC signaling; for coherent transmission capability, it is non-coherent (“NonCoherent") UE, the base station can configure the codebook subset restriction corresponding to "nonCoherent” for it through RRC signaling.
  • the "nonCoherent" codebook subset restricts the corresponding codebook to include only non-coherent codewords; the “partialAndNonCoherent” codebook subset restricts the corresponding codebook to include non-coherent and partially coherent codewords; fullyAndPartialAndNonCoherent” codebook
  • the codebook corresponding to the set restriction includes non-coherent codewords, partially coherent codewords, and fully coherent codewords.
  • each PUSCH layer has only one active antenna port (each layer in the codeword has only one antenna port corresponding to a non-zero element).
  • a partially coherent codeword satisfies the following conditions: each PUSCH layer (layer) has at most two active antenna ports (each layer in the codeword has at most two antenna ports corresponding to non-zero elements), and at least one PUSCH exists The layer has two active antenna ports.
  • a fully coherent codeword satisfies the following conditions: at least one PUSCH layer (layer) uses all antenna ports (at least one layer in the codeword has non-zero elements corresponding to all antenna ports).
  • any column in the codeword of partially coherent transmission has only non-zero elements corresponding to the same coherent transmission antenna group (in the 3GPP NR system, the first and third antennas are a coherent transmission antenna group, and the second and fourth antennas Is another coherent transmission antenna group); any column in the non-coherent transmission codeword has only non-zero elements corresponding to one antenna; all elements in at least one column of the fully coherent transmission codeword are non-zero.
  • Precoding matrix W (Precoding matrix W for single-layer transmission using two antenna ports) for single-layer transmission using two antenna ports.
  • codewords with TPMI index of 0 to 1 are codewords for non-coherent transmission; other codewords are codewords for fully coherent transmission.
  • Precoding matrix W for single-layer transmission of four antenna ports under the DFT-S-OFDM waveform (Precoding matrix W for single-layer transmission using four antenna ports with transform precoding enabled).
  • codewords with a TPMI index of 0 to 3 are codewords for non-coherent transmission; codewords with a TPMI index of 4 to 11 are codewords for partially coherent transmission; other codewords are codewords for fully coherent transmission.
  • Precoding matrix W (Precoding matrix W for single-layer transmission using four antenna ports with transform precoding disabled) using four antenna ports for single-layer transmission under the CP-OFDM waveform.
  • codewords with a TPMI index of 0 to 3 are codewords for non-coherent transmission; codewords with a TPMI index of 4 to 11 are codewords for partially coherent transmission; other codewords are codewords for fully coherent transmission.
  • Precoding matrix W (Precoding matrix W for two-layer transmission using two antenna ports with transform precoding disabled) using two antenna ports for dual-layer transmission under the CP-OFDM waveform.
  • codewords with TPMI index of 0 are codewords for non-coherent transmission; codewords with TPMI index of 1 to 2 are codewords for fully coherent transmission.
  • Precoding matrix W (Precoding matrix W for two-layer transmission using four antenna ports with transform precoding disabled) for two-layer transmission using four antenna ports under the CP-OFDM waveform.
  • codewords with TPMI index of 0 to 5 are codewords for non-coherent transmission; codewords with TPMI index of 6 to 13 are codewords for partially coherent transmission; other codewords are codewords for fully coherent transmission.
  • Precoding matrix W (Precoding matrix W for three-layer transmission using four antenna ports with transform precoding disabled) for three-layer transmission using four antenna ports under the CP-OFDM waveform.
  • codewords with TPMI index of 0 are codewords for incoherent transmission; codewords with TPMI index of 1 to 2 are codewords for partially coherent transmission; other codewords are codewords for fully coherent transmission.
  • Precoding matrix W (Precoding matrix W for four-layer transmission using four antenna ports with transform precoding disabled) for four-layer transmission using four antenna ports under the CP-OFDM waveform.
  • codewords with TPMI index of 0 are codewords for non-coherent transmission; codewords with TPMI index of 1 to 2 are codewords for partially coherent transmission; other codewords are codewords for fully coherent transmission.
  • a UE with a specific power class (Power Class, PC) capability needs to meet a maximum output power (or called maximum transmission power, maximum transmission power) requirement. For example, for a UE with a power level of PC3, its maximum output power needs to reach 23 dBm; for a UE with a power level of PC2, its maximum output power needs to reach 26 dBm. For a UE with multiple PAs, it can achieve the maximum output power requirement by using multiple PAs to transmit simultaneously. That is, each PA of the UE is not required to reach the maximum output power required by the power level of the UE.
  • PC Power Class
  • each transmitting antenna (or PA) can reach 20dBm, and it can transmit to 23dBm at the same time through two antennas, then the UE is a PC3 ⁇ UE.
  • the multi-antenna power allocation method of the PUSCH using uplink MIMO is: the UE will calculate the transmission power according to the uplink power control formula according to the actual number of ports that send signals.
  • the maximum number of SRS ports in one SRS resource supported by the terminal Perform power scaling on the proportion in, and then divide the scaled power equally on the antenna ports that actually send signals.
  • the precoding matrix indicated by the base station is The transmission power calculated by the UE according to the PUSCH power control formula is P, then the actual transmission power of the PUSCH is P/2, and the transmission power of the first antenna port and the third antenna port are each P/4.
  • This scaling does not require that each antenna port of the UE can reach the maximum transmit power, allowing the UE to use lower-cost radio frequency components to implement multiple antenna functions.
  • the UE when the TPMI indicated by the base station for the UE is an incoherent codeword or a partially coherent codeword, the UE cannot transmit an uplink signal according to the maximum transmission power, that is, it cannot transmit at full power.
  • the base station when the UE is located at the edge of the cell or the channel conditions are poor, the base station usually configures the UE with a low-rank (rank) transmission (low-rank transmission refers to the transmission with a lower number of streams), and as far as possible
  • the ground transmits data with maximum transmission power.
  • UEs with partial antenna coherent transmission capabilities and non-coherent transmission capabilities always have some antenna ports without PUSCH transmission during low-rank transmission.
  • the current uplink MIMO multi-antenna power allocation mechanism cannot guarantee that a UE with partial antenna coherent transmission capability and non-coherent transmission capability under the codebook-based uplink transmission scheme can reach the maximum transmission power during low-rank transmission, thereby reducing the UE The performance at the edge of the cell affects the coverage of the cell.
  • each PA can reach the maximum output power, or some PAs can reach the maximum output power, and then modify the power control strategy (or called It is a power control criterion) that allows the UE to use the maximum output power to transmit uplink signals when using part of the PA, but this will increase the cost of the UE.
  • It is a power control criterion
  • the UE uses different PAs to send data in different bandwidths, so that the total output power reaches the maximum output power requirement. For example, if the UE uses one PA to send data with 23 dBm in half of the bandwidth, and another PA with 23 dBm in the other half of the bandwidth, the total transmission power can reach 26 dBm.
  • related technologies cannot support this transmission scheme.
  • the data transmission method and device provided by the embodiments of the present disclosure can be applied to a wireless communication system.
  • the wireless communication system may be a 5G system, or an evolved Long Term Evolution (eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • the wireless communication system may include: a network device 20 and a terminal (for example, User Equipment (UE)).
  • UE User Equipment
  • the terminal is denoted as UE21, and the UE21 may communicate with the network device 20 (transmitting signaling or transmitting data).
  • the connection between the above-mentioned various devices may be a wireless connection.
  • a solid line is used in FIG. 2 to indicate.
  • the foregoing communication system may include multiple UEs 21, and the network device 20 may communicate with multiple UEs 21.
  • the network device 20 provided in the embodiment of the present disclosure may be a base station, which may be a commonly used base station, an evolved node base station (eNB), or a network device in a 5G system (for example, the following Equipment such as next generation node base station (gNB) or transmission and reception point (TRP)).
  • eNB evolved node base station
  • 5G system for example, the following Equipment such as next generation node base station (gNB) or transmission and reception point (TRP)).
  • gNB next generation node base station
  • TRP transmission and reception point
  • the user equipment may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA), etc.
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • an embodiment of the present disclosure provides a data transmission method.
  • the execution subject of the method may be a first device, and includes step 301.
  • the specific steps are as follows:
  • Step 301 Send a first signal and a DMRS corresponding to the first signal to a second device.
  • the first signal includes at least one data stream, and each data stream corresponds to multiple DMRS ports; wherein, different DMRS ports correspond to At least one of different PAs, different SRS ports, or different first signal ports.
  • DMRS port 1 corresponds to PA1, and DMRS port 2 corresponds to PA2; or, DMRS port 1 corresponds to SRS port 1, and DMRS port 2 corresponds to SRS port 2; or, DMRS port 1 corresponds to the first signal port 1, and DMRS port 2 corresponds to First signal port 2; or DMRS port 1 corresponds to PA1 and SRS port 1, DMRS port corresponds to PA2 and SRS port 2; or, DMRS port 1 corresponds to PA1, SRS port 1 and first signal port 1, and DMRS port 2 corresponds to PA2 , SRS port 2 and the first signal port 2. It is understandable that the above only takes DMRS port 1 and DMRS port 2 as examples, and other situations are similar.
  • the first signal may be an uplink signal, the first device is a terminal, and the second device is a network device; or, the first signal may also be a downlink signal , The first device is a network device, and the second device is a terminal.
  • the first signal is PUSCH
  • the first signal port is a PUSCH port.
  • the first signal is a Physical Uplink Control Channel (PUCCH), and the first signal port is a PUCCH port.
  • PUCCH Physical Uplink Control Channel
  • the first signal is a physical downlink shared channel (Physical Downlink Shared CHannel, PDSCH), and the first signal port is a PDSCH port.
  • PDSCH Physical Downlink Shared CHannel
  • the first signal is a P physical downlink control channel (Physical Downlink control CHannel, PDCCH), and the first signal port is a PDCCH port.
  • PDCCH Physical Downlink control CHannel
  • different DMRS ports correspond to different reference signal ports used for first signal channel state information (Channel State Information, CSI) acquisition.
  • CSI Channel State Information
  • the reference signal used for CSI acquisition of the first signal is SRS
  • different ports of the DMRS corresponding to the PUSCH correspond to different SRS ports.
  • the reference signal used for CSI acquisition of the first signal is CSI-RS
  • different ports of the DMRS corresponding to the PDSCH correspond to different CSI-RS ports.
  • the same data stream in the first signal is transmitted based on different DMRS ports at at least two frequency domain locations.
  • the same data stream in the first signal is transmitted based on one DMRS port at one frequency domain position.
  • one data stream in a group of physical resource blocks (PRB) is transmitted based on the same DMRS port, and one data stream is transmitted in different PRB groups based on different DMRS ports.
  • PRB physical resource blocks
  • a data stream of the first signal is transmitted based on a certain DMRS port, which means that the DMRS port has non-zero elements in the precoding vector corresponding to the data stream.
  • the precoding matrix for mapping the internal PUSCH data stream to the DMRS port is [1 0 0 0]T
  • the PUSCH in the first PRB group is transmitted based on the first DMRS port
  • the PUSCH data stream in the first PRB group is
  • the precoding matrix for DMRS port mapping is [0 1 0 0]T
  • the PUSCH in the first PRB group is transmitted based on the second DMRS port.
  • the same data stream in the first signal is transmitted in different subbands based on different DMRS ports.
  • the same data stream is transmitted in the same subband based on one DMRS port. For example, when the first signal is single-stream transmission, the first subband is transmitted based on DMRS port 0, and the second subband is transmitted based on DMRS port 1.
  • the same data stream in the first signal is transmitted in different subbands based on different SRS ports.
  • the same data stream in the first signal is transmitted in the same subband based on one SRS port.
  • the precoding matrix corresponding to the uplink signal is different.
  • each physical resource block PRB of each DMRS port on the transmission bandwidth corresponds to the same reference signal port used for acquiring the first signal CSI.
  • the DMRS port has a one-to-one correspondence with the reference signal port used for the first signal CSI acquisition.
  • each physical resource block PRB of each DMRS port on the transmission bandwidth corresponds to at least one of the same PA, SRS port, or first port.
  • the DMRS port and the SRS port have a one-to-one correspondence.
  • sending the first signal to the second device in step 301 includes:
  • the first transmission power is determined according to the first ratio and the transmission power of the first signal, and the first ratio is the DMRS port mapped to the data transmission of the first signal in the second device.
  • the proportion of all the DMRS ports configured for the first signal; or the first ratio is all the SRS ports mapped to the data transmission of the first signal in the second device for the first signal. Percentage of the number of SRS ports.
  • the sending the first signal to the second device according to the first sending power may be: the sending power of the first signal is the result of scaling the sending power of the first signal using a first ratio , Evenly distribute on the antenna port of the first signal with data transmission.
  • the transmission power of the DMRS corresponding to the first signal is determined according to the first ratio and the transmission power of the first signal.
  • the transmission power of the first signal may be the transmission power calculated by the first device according to an existing power control formula.
  • the PUSCH to the current 3GPP NR system is calculated according to the formula in section 7.1.1 of TS38.213 P PUSCH, b, f, c (i, j, q d, l).
  • the method may further include:
  • sending the first signal and the DMRS corresponding to the first signal to the second device in step 301 includes:
  • the method may further include: receiving second information from the second device;
  • sending the first signal and the DMRS corresponding to the first signal to the second device in step 301 includes:
  • the second information may indicate at least one of the following:
  • the first device sends the first signal and the DMRS corresponding to the first signal by sending the first signal with the maximum transmission power
  • the precoding matrix of the first signal is a codeword whose number of transport streams is less than or equal to K, where K is an integer greater than or equal to 1;
  • the number of transmission streams of the first signal is less than or equal to M, where M is an integer greater than or equal to 1;
  • the precoding matrix of the first signal is a non-coherent codeword
  • the precoding matrix of the first signal is a non-coherent codeword or a partially coherent codeword.
  • the precoding matrix of the first signal is a partially coherent codeword.
  • the first power control strategy may include: according to the proportion of the DMRS port mapped to the data transmission of the first signal among all the DMRS ports configured by the second device for the first signal or the mapping
  • the proportion of the SRS port for data transmission of the first signal among all the SRS ports configured by the second device for the first signal is a control strategy for scaling the transmission power of the first signal.
  • the first power control strategy may also be a power control strategy corresponding to the transmission method for sending the first signal proposed in the embodiment of the present disclosure.
  • the transmission scheme proposed in the embodiment of the present disclosure is adopted.
  • the scheme proposed in the embodiment of the present disclosure may not be used to transmit the first signal, but a conventional codebook-based uplink transmission is used.
  • the scheme carries out the transmission of the first signal.
  • the transmission mode of the first signal may be a transmission mode based on the solution proposed in the present disclosure.
  • the transmission mode indicated by the second device is conventional codebook-based uplink transmission, etc.
  • the method proposed in the embodiment of the present disclosure is not used to transmit the first signal, but the transmission mode indicated by the second device corresponds to The transmission scheme for transmitting the first signal.
  • the method may further include: receiving third information from the second device, the third information indicating the correspondence between the DMRS port and the SRS port.
  • the method may further include: sending third information to the second device, the third information indicating the correspondence between the DMRS port and the SRS port.
  • the data stream of the first signal is mapped to different DMRS ports through a precoding matrix.
  • the data stream of the uplink signal is mapped to different DMRS ports through the precoding matrix, that is, in different subbands, the precoding matrix corresponding to the uplink signal is different.
  • the method may further include:
  • the fourth information is received from the second device, where the fourth information may include at least one of the following:
  • the method further includes: receiving from the second device codebook subset information about the precoding matrix mapped from the data stream to the DMRS port, indicating the precoding that can be used by the first signal Collection of matrices.
  • a DMRS port to which each data stream of the first signal can be mapped is received from the second device.
  • the method may further include:
  • the method further includes: sending to the second device codebook subset information about the precoding matrix mapped from the data stream to the DMRS port, indicating the precoding that can be used by the first signal Collection of matrices.
  • the DMRS port to which each data stream of the first signal can be mapped is indicated to the second device.
  • the method may further include:
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • subband frequency domain resources with the same precoding matrix belong to the same subband, and frequency domain resources with different precoding matrices belong to different subbands; or, the same data stream is mapped to the same DMRS port
  • the frequency domain resources belong to the same subband, and the frequency domain resources mapped to different DMRS ports of the same data stream belong to different subbands; or, the PRBs that can transmit the same DMRS port belong to the same subband, and the PRBs that transmit different DMRS belong to different subbands.
  • Band or, PRBs that can transmit the same SRS port belong to the same subband, and PRBs that transmit different SRS belong to different subbands.
  • the definition of the subband is defined per data stream (per data stream). That is, there are different subbands for different data streams.
  • the definition of the subband is defined per user (per UE). That is, there are different subband divisions for the first signals of different users.
  • the first rule is determined or instructed by the network side, or the first rule is agreed upon by a protocol.
  • the network side is the second device, and the network side indication message or signaling is an indication message or signaling from the second device to the first device; if the first signal is a downlink signal , The network side is the first device, and the network side indication message or signaling means that the first device indicates the message or signaling to the second device.
  • the method further includes: sending signaling to the second device, where the signaling indicates at least one of the following:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the signaling may include:
  • a precoding matrix of a predefined subband or,
  • precoding matrices where the precoding matrices and subbands in the plurality of precoding matrices have a predefined correspondence relationship, for example, the precoding matrices and subbands in the plurality of precoding matrices have a one-to-one correspondence relationship.
  • the method may further include:
  • the first device sends the following information to the second device:
  • the DMRS corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or system bandwidth or BWP where the first signal is scheduled.
  • the information is carried by the following information:
  • a precoding matrix of a predefined subband or,
  • precoding matrices where the precoding matrices and subbands in the plurality of precoding matrices have a predefined correspondence relationship, for example, the precoding matrices and subbands in the plurality of precoding matrices have a one-to-one correspondence relationship.
  • the subband of the first signal is determined by at least one of the following methods:
  • the first device determines the frequency domain positions corresponding to the S subbands according to the resources allocated by the second device for the first signal.
  • the second device determines the frequency domain positions corresponding to the S subbands according to the resources allocated by the first device for the first signal. For example, suppose the number of subbands is 2, and the resources allocated for the first signal are PRB 0 ⁇ PRB9. If the predefined rule is that the resources allocated for the first signal are equally divided among all subbands, then The first subband is PRB 0 ⁇ 4, and the second subband is PRB 5 ⁇ 9.
  • the system bandwidth or bandwidth Part (BWP) of the first signal is divided into S subbands, and the subband of the first signal is determined according to which subband the resource scheduled by the second device for the first signal falls. And corresponding DMRS etc.).
  • the subband of the first signal is determined by the system bandwidth or bandwidth Part (BWP) of the first signal according to a predefined subband division manner.
  • BWP bandwidth Part
  • the system bandwidth or BWP of the first signal is divided into S subbands, and the subband corresponding to the resource scheduled by the second device for the first signal is determined as the subband of the first signal, where the subband corresponding to the resource is Refers to the resource falling in the subband.
  • the BWP of the first signal has a total of 20 PRBs, numbered PRB 0 ⁇ PRB 19, which are divided into subband 1 and subband 2, where subband 1 is PRB 0 ⁇ PRB 9, and subband 2 is PRB 10 ⁇ PRB 19. If the resource scheduled for the first signal is to be transmitted in PRB 8 to PRB 10, PRB 8 and PRB 9 are the first subband, and PRB 10 is the second subband. If the resources scheduled for the first signal are PRB 10 to PRB 13, there is only one subband in the first signal, that is, the second subband.
  • the first device may obtain subbands by dividing the resources allocated by the first signal.
  • it is obtained by dividing according to the number of subbands and the resources allocated by the second device for the first signal. For example, suppose the number of subbands is 2, and the resources allocated for the first signal are PRB 0 ⁇ PRB9. If the predefined rule is that the resources allocated for the first signal are equally divided among all subbands, then The first subband is PRB 0 ⁇ 4, and the second subband is PRB 5 ⁇ 9.
  • the correspondence between the physical resources that can be mapped by the DMRS port and the subbands is predefined by the protocol.
  • the correspondence between the physical resources that can be mapped by the DMRS port and the subbands is indicated by the network device through signaling.
  • the correspondence between the SRS port and the subband is predefined by the protocol.
  • the correspondence between the SRS port and the subband is indicated by the network device through signaling.
  • the signaling indicated by the network device may be RRC signaling, or MAC layer signaling, or physical layer signaling (such as signaling indicated by DCI).
  • the predefined subband division manner may include:
  • the system bandwidth or BWP of the first signal transmission or the frequency domain resources scheduled for the first signal include S subbands, and the smallest unit of each subband is P consecutive PRBs. In a subband, every P *S PRBs, a minimum unit appears, where P is an integer greater than or equal to 1, and S is a positive integer. S can be configured by the network side or agreed by the agreement.
  • different DMRS ports are mapped on different subbands.
  • different subbands correspond to different SRS ports.
  • the P may be configured by the network side or agreed by a protocol.
  • the value of S is the same as the number of antenna ports of the SRS resource configured by the network side for the first signal.
  • one DMRS port corresponds to a designated (or called fixed) PA or a designated (or called fixed) SRS port.
  • different DMRS ports can only be transmitted on different subbands in the frequency domain resource or system bandwidth or BWP where the first signal is scheduled.
  • the position offset of the subband in the frequency domain resource or the system bandwidth or in the BWP where the first signal corresponding to the DMRS port is scheduled is configured on the network side or in the protocol Agreed.
  • the method further includes:
  • DMRS resource indication information indicates the frequency domain resource location of the DMRS port.
  • the transmit power of the DMRS port is 10 ⁇ log 10 (S) higher than the transmit power of the conventional DMRS port transmitted on all PRBs in the first signal scheduled resource. dB.
  • the method may further include:
  • the DMRS is sent only on the PRB with data flow mapping, that is, a DMRS port is only mapped on the PRB with the data flow transmission corresponding to the DMRS port.
  • the method may further include:
  • DMRS resource indication information sent by the second device, where the DMRS resource indication information indicates the frequency domain resource location of the DMRS port;
  • the frequency domain resource location of the DMRS corresponding to the first signal is determined according to the DMRS resource indication information.
  • the resource allocation of the DMRS is determined by the frequency domain offset at the PRB level or the PRB group level.
  • sending the first signal to the second device in step 301 includes:
  • Send a first signal to the second device through the first transmission mode may include at least one of the following:
  • Each data stream of the first signal is transmitted on all PRBs of the transmission resource indicated by the second device for the first device;
  • Each data stream of the first signal is only transmitted on the PRB where the DMRS port corresponding to the data stream is located.
  • the method may further include:
  • the resource indication information may include at least one of the following:
  • the resource allocation mode of the SRS port may include at least one of the following:
  • the resource allocation of the SRS port has nothing to do with the mapping between the DMRS port and the SRS port;
  • One SRS port is only mapped on part of the bandwidth, or one SRS port is only mapped on the subband allocated by the second device for the SRS port.
  • the first signal performs rate matching based on the DMRS port corresponding to the first signal in each PRB.
  • rate matching is performed according to the actual transmission situation of the DMRS port. For example, if a DMRS port is only mapped to an odd-numbered PRB, rate matching is performed on the RE occupied by the DMRS port in the odd-numbered PRB, and the rate matching is not performed on the DMRS port in the even-numbered PRB.
  • the first signal performs rate matching based on the assumption that a DMRS port with data flow mapping exists in each PRB. For example, even if a DMRS port is only mapped on the odd-numbered PRB, the rate matching of this DMRS port is still performed on all PRBs during PUSCH transmission.
  • the embodiments of the present disclosure can make the terminal more effectively use the transmission power of the PA, and improve the performance of the terminal and the system performance.
  • an embodiment of the present disclosure provides a data transmission method.
  • the execution subject of the method may be a second device, including step 401.
  • the specific steps are as follows:
  • Step 401 Detect the first signal sent by the first device and the DMRS corresponding to the first signal; wherein, the first signal includes at least one data stream, and each data stream corresponds to multiple DMRS ports; different The DMRS port corresponds to at least one of a PA, an SRS port, or a first signal port.
  • the first signal is an uplink signal, the first device is a terminal, and the second device is a network device; or, the first signal is a downlink signal, and the The first device is a network device, and the second device is a terminal.
  • the first signal is PUSCH
  • the first signal port is a PUSCH port.
  • the first signal is a Physical Uplink Control Channel (PUCCH), and the first signal port is a PUCCH port.
  • PUCCH Physical Uplink Control Channel
  • the first signal is a physical downlink shared channel (Physical Downlink Shared CHannel, PDSCH), and the first signal port is a PDSCH port.
  • PDSCH Physical Downlink Shared CHannel
  • the first signal is a P physical downlink control channel (Physical Downlink control CHannel, PDCCH), and the first signal port is a PDCCH port.
  • PDCCH Physical Downlink control CHannel
  • different DMRS ports correspond to different reference signal ports used for first signal channel state information (Channel State Information, CSI) acquisition.
  • CSI Channel State Information
  • the reference signal used for CSI acquisition of the first signal is SRS
  • different ports of the DMRS corresponding to the PUSCH correspond to different SRS ports.
  • the reference signal used for CSI acquisition of the first signal is CSI-RS
  • different ports of the DMRS corresponding to the PDSCH correspond to different CSI-RS ports.
  • the method may further include: performing channel estimation on the DMRS port in the PRB where the DMRS port is located; and/or, performing channel estimation on the first DMRS port corresponding to the DMRS port.
  • the data stream of the signal performs channel estimation.
  • the DMRS port is only interpolated in the subband where the DMRS port is located during interpolation.
  • interpolation is performed on all PRBs during interpolation.
  • channel estimation is performed separately in each subband.
  • channel interpolation is performed in each subband.
  • interpolation is only performed in the subband where the DMRS port is located during interpolation.
  • interpolation is performed on all PRBs of the scheduled bandwidth of the first signal during interpolation.
  • the method may further include:
  • the scheduling bandwidth of the first signal is divided into N subbands, the signal to interference and noise ratios of different subbands are calculated based on different precoding matrices or SRS ports, and N is An integer greater than 1.
  • each physical resource block PRB of each DMRS port on the transmission bandwidth corresponds to at least one of the same PA, SRS port, or first port.
  • the DMRS port and the SRS port have a one-to-one correspondence.
  • the method may further include:
  • the first transmission power is determined according to the first ratio and the transmission power of the first signal, and the first ratio is the data transmission DMRS port mapped to the first signal is determined by the second device.
  • the proportion of all DMRS ports configured for the first signal; or the first ratio is all the SRS ports mapped to the data transmission of the first signal in the second device for the first signal. Percentage of the number of SRS ports.
  • the same data stream is transmitted in different subbands based on different DMRS ports.
  • the same data stream is transmitted in the same subband based on one DMRS port.
  • the precoding matrix corresponding to the uplink signal is different.
  • subband frequency domain resources with the same precoding matrix belong to the same subband, and frequency domain resources with different precoding matrices belong to different subbands; or, the same data stream is mapped to the same DMRS port
  • the frequency domain resources belong to the same subband, and the frequency domain resources mapped to different DMRS ports of the same data stream belong to different subbands; or, the PRBs that can transmit the same DMRS port belong to the same subband, and the PRBs that transmit different DMRS belong to different subbands.
  • Band or, PRBs that can transmit the same SRS port belong to the same subband, and PRBs that transmit different SRS belong to different subbands.
  • the definition of the subband is defined per data stream (per data stream). That is, there are different subbands for different data streams.
  • the definition of the subband is defined per user (per UE). That is, there are different subband divisions for the first signals of different users.
  • each physical resource block PRB of each DMRS port on the transmission bandwidth corresponds to the same reference signal port used for acquiring the first signal CSI.
  • the DMRS port has a one-to-one correspondence with the reference signal port used for the first signal CSI acquisition.
  • the method may further include:
  • the first device transmits the first signal and the DMRS corresponding to the first signal by using the maximum transmission power
  • the precoding matrix of the first signal is a codeword whose corresponding number of transport streams is less than or equal to K, where K is an integer greater than or equal to 1;
  • the number of transmission streams of the first signal is less than or equal to M, where M is an integer greater than or equal to 1;
  • the precoding matrix of the first signal is a non-coherent codeword
  • the precoding matrix of the first signal is a non-coherent codeword or a partially coherent codeword
  • the precoding matrix of the first signal is a partially coherent codeword.
  • the first power control strategy may include: according to the proportion of the DMRS port mapped to the data transmission of the first signal among all the DMRS ports configured by the second device for the first signal or the mapping
  • the proportion of the SRS port for data transmission of the first signal among all the SRS ports configured by the second device for the first signal is a control strategy for scaling the transmission power of the first signal.
  • the first power control strategy may also be a power control strategy corresponding to the transmission method for transmitting the first signal proposed in the embodiment of the present disclosure.
  • the transmission scheme proposed in the embodiment of the present disclosure is adopted.
  • the scheme proposed in the embodiments of the present disclosure may not be used to transmit the first signal, but a conventional codebook-based uplink transmission scheme may be used to transmit the first signal. Transmission of a signal.
  • the transmission mode of the first signal may be a conventional codebook-based transmission mode, a transmission mode based on the solution proposed in the present disclosure, and the like.
  • the transmission power of the first signal may be the transmission power calculated by the first device according to an existing power control formula.
  • the PUSCH to the current 3GPP NR system is calculated according to the formula in section 7.1.1 of TS38.213 P PUSCH, b, f, c (i, j, q d, l).
  • the method may further include: sending third information to the first device, the third information indicating the correspondence between the DMRS port and the SRS port.
  • the method may further include: receiving third information from the first device, the third information indicating the correspondence between the DMRS port and the SRS port.
  • the data stream of the first signal is mapped to different DMRS ports through a precoding matrix.
  • the data stream of the uplink signal is mapped to different DMRS ports through the precoding matrix, that is, in different subbands, the precoding matrix corresponding to the uplink signal is different.
  • the method may further include:
  • the method may further include:
  • the fourth information is received from the first device, where the fourth information may indicate at least one of the following:
  • the method further includes: receiving from the first device codebook subset information about the precoding matrix mapped from the data stream to the DMRS port, indicating the precoding that can be used by the first signal Collection of matrices.
  • the DMRS port to which each data stream of the first signal can be mapped is indicated to the second device.
  • the method may further include:
  • the DMRS port corresponding to the first signal is the SRS port corresponding to each subband in the frequency domain resource or system bandwidth or BWP where the first signal is scheduled.
  • the method may further include:
  • the DMRS corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the signaling may include:
  • a precoding matrix of a predefined subband or,
  • a plurality of precoding matrices, the precoding matrixes and subbands in the plurality of precoding matrices have a predefined correspondence relationship, for example, the precoding matrix and the subbands have a one-to-one correspondence relationship, which is of course not limited thereto.
  • the subband of the first signal is determined by at least one of the following methods:
  • the first device determines the frequency domain positions corresponding to the S subbands according to the resources allocated by the second device for the first signal.
  • the second device determines the frequency domain positions corresponding to the S subbands according to the resources allocated by the first device for the first signal.
  • the system bandwidth or bandwidth Part (BWP) of the first signal is divided into S subbands, and the subband of the first signal is determined according to which subband the resource scheduled by the second device for the first signal falls. And corresponding DMRS etc.).
  • the subband used by the first signal is determined by the system bandwidth or bandwidth Part (BWP) of the first signal according to a predefined subband division manner.
  • BWP bandwidth Part
  • the system bandwidth or BWP of the first signal or the frequency domain resource scheduled for the first signal is divided into S subbands, and the subband corresponding to the resource scheduled by the second device for the first signal is determined as the first The subband of the signal, where the subband corresponding to the resource refers to the subband where the resource falls.
  • the BWP of the first signal has a total of 20 PRBs, numbered PRB 0 ⁇ PRB 19, which are divided into subband 1 and subband 2, where subband 1 is PRB 0 ⁇ PRB 9, and subband 2 is PRB 10 ⁇ PRB 19. If the resource scheduled for the first signal is to be transmitted in PRB 8 to PRB 10, PRB 8 and PRB 9 are the first subband, and PRB 10 is the second subband. If the resources scheduled for the first signal are PRB 10 to PRB 13, there is only one subband in the first signal, that is, the second subband.
  • the first device may obtain subbands by dividing the resources allocated by the first signal.
  • the correspondence between the physical resources that can be mapped by the DMRS port and the subbands is predefined by the protocol.
  • the correspondence between the physical resources that can be mapped by the DMRS port and the subbands is indicated by the network device through signaling.
  • the correspondence between the SRS port and the subband is predefined by the protocol.
  • the correspondence between the SRS port and the subband is indicated by the network device through signaling.
  • the signaling indicated by the network device may be RRC signaling, or MAC layer signaling, or physical layer signaling (such as signaling indicated by DCI).
  • the predefined subband division manner includes:
  • the system bandwidth of the first signal transmission includes S subbands, and the minimum unit of each subband is P consecutive PRBs.
  • P is greater than An integer equal to 1
  • S is a positive integer
  • the S is configured by the network side or agreed by a protocol.
  • the P is configured by the network side or agreed by a protocol.
  • the value of S is the same as the number of antenna ports of the SRS resource configured by the network side for the first signal.
  • the method further includes:
  • the method may further include:
  • the method may further include:
  • resource indication information may indicate at least one of the following:
  • the method may further include:
  • the resource indication information indicates at least one of the following:
  • the method may further include:
  • the detecting the first signal sent by the first device includes:
  • the first signal sent by the first device is detected on the PRB where the DMRS port corresponding to each data stream of the first signal is located.
  • the embodiments of the present disclosure can make the terminal more effectively use the transmission power of the PA, and improve the performance of the terminal and the system performance.
  • the first signal Take the first signal as the uplink signal, the first device as the UE, and the second device as the network device as an example.
  • the UE sends an uplink signal and the DMRS corresponding to the uplink signal to the network device, where one data stream (or called a layer) of the uplink signal corresponds to multiple DMRS ports;
  • -Different DMRS ports correspond to at least one of different SRS ports or different PUSCH ports of different Power Amplifiers (PA).
  • PA Power Amplifiers
  • Each PRB of each DMRS port on its transmission bandwidth corresponds to at least one of the same PA, SRS port, or PUSCH port.
  • the scheduling bandwidth of the uplink signal is divided into several subbands, and the same data stream is transmitted in different subbands based on different DMRS ports.
  • the data stream of the uplink signal is mapped to different DMRS ports through the precoding matrix. That is, in different subbands, the precoding matrix corresponding to the uplink signal is different.
  • one DMRS port is mapped to the SRS port one by one.
  • the uplink signal includes multiple data streams
  • different data streams correspond to different DMRS ports in the same subband.
  • subband 1 For example, for a 2-antenna UE, there are 2 subbands.
  • subband 0 the first data stream is mapped to the first DMRS port using precoding matrix [1 0], and the second data stream is precoding Matrix [0 1] is mapped to the second DMRS port; in subband 1, the first data stream uses precoding matrix [0 1] is mapped to the second DMRS port, and the second data stream uses precoding.
  • the coding matrix [1 0] is mapped to the first DMRS port.
  • the uplink signal is a signal carried by PUSCH, or the uplink signal is a signal carried by PUCCH.
  • the network device sends the indication information of the SRS port corresponding to the DMRS port to the UE.
  • the network device indicates to the UE that the SRS ports corresponding to the first and third DMRS ports are SRS ports 0 and 1, and the second and fourth DMRS The corresponding SRS ports of the port are SRS ports 3 and 4.
  • the UE receives the codebook subset information about the precoding matrix mapped from the data stream to the DMRS port sent by the network device, and indicates the set of precoding matrices that the UE can use.
  • the network device indicates the DMRS port to which each data stream of the UE can be mapped.
  • the transmit power of the uplink signal is scaled according to the proportion of the number of DMRS ports with data transmission mapped by the scheduled data stream among all the DMRS ports. In this way, even if each PA of the UE cannot reach the maximum output power corresponding to the PC capability of the UE, as long as all DMRS ports are used for uplink data transmission, the UE can use the maximum output power for uplink transmission.
  • the UE reports its full power transmission capability to the network device, and when the UE reports the full power transmission capability, the above transmission scheme is used for transmission; otherwise, the uplink transmission scheme in the related technology is used for transmission.
  • the network equipment indicates the uplink power control scheme and/or transmission scheme to the UE.
  • the network equipment instructs the UE to use full power to transmit the corresponding uplink power control scheme or when the network equipment instructs the UE to use the above transmission scheme, the UE adopts the above The transmission scheme is used for transmission; otherwise, the uplink transmission scheme in the related technology is used for transmission.
  • the UE uses the above transmission scheme for transmission; otherwise, uses the uplink transmission scheme in the related technology for transmission, where K is a predefined value greater than Or an integer equal to 1.
  • the predefined manner may be instructed by the network equipment to the UE, or may be agreed upon by a protocol.
  • the UE uses the above transmission scheme for transmission; otherwise, uses the uplink transmission scheme in the related technology for transmission, where K is a predefined An integer greater than or equal to 1.
  • K is a predefined An integer greater than or equal to 1.
  • the predefined manner may be instructed by the network equipment to the UE, or may be agreed upon by a protocol.
  • the UE uses the above-mentioned transmission scheme for transmission; otherwise, uses the uplink transmission scheme in the related technology for transmission.
  • the UE uses the above transmission scheme for transmission; otherwise, it uses an uplink transmission scheme in the related technology for transmission.
  • the behavior of the network device is:
  • the uplink signal and the DMRS corresponding to the uplink signal are detected, where, when performing channel estimation on the DMRS, channel estimation is performed on the DMRS in the subband where the DMRS is located.
  • the scheduling bandwidth is divided into N subbands, and each subband uses a different precoding matrix to calculate the signal-to-interference and noise ratio, so as to further determine the number of uplink signal transmission streams, DMRS ports, and MCS Level and other information.
  • the network device performs processing in a corresponding manner when the UE performs transmission according to the foregoing transmission scheme.
  • the network device only processes the UEs whose transmission capabilities are partially coherent or non-coherent in the above-mentioned corresponding manner.
  • the embodiments of the present disclosure may also be used for downlink transmission, and the first signal is a downlink signal.
  • the first device is a network device, and the second device is a UE.
  • the downlink signal may be a signal carried by PDSCH, a signal carried by PDCCH, and so on.
  • the UE determines at least one of the following information according to a predefined rule:
  • the precoding matrix used by the uplink signal in each subband is the precoding matrix used by the uplink signal in each subband
  • the DMRS port corresponding to the uplink signal is the SRS port corresponding to each subband.
  • the predefined rule may be predetermined by the UE and the network device, or may be instructed to the UE by the network device.
  • the DMRS port corresponding to the data stream is the numbered subband n small DMRS port (and/or the PA corresponding to the data stream is the nth PA, and/or the SRS port corresponding to the data stream is the nth SRS port).
  • the precoding matrix of the nth subband is a P-dimensional column vector with the nth element being 1, and the other elements being 0.
  • the network equipment indicates to the UE the uplink precoding matrix of the uplink signal in each subband through signaling.
  • the network device indicates to the UE the PA corresponding to the DMRS port corresponding to the uplink signal in each subband through signaling.
  • the network device indicates to the UE through signaling the SRS port corresponding to the DMRS port corresponding to the uplink signal in each subband.
  • the above-mentioned signaling is RRC signaling, or DCI, or MAC-CE signaling.
  • the above-mentioned signaling may be one signaling or multiple different signalings.
  • the network device indicates the aforementioned signaling by indicating the uplink precoding matrix to the UE (for example, indicating the TPMI by means of DCI).
  • the UE determines the following one or more of the uplink signal in each subband according to the uplink precoding matrix indicated by the network device: the precoding matrix, the PA, and the corresponding SRS port.
  • the indication of the uplink precoding matrix is indicated in the following manner:
  • the network device indicates a precoding matrix to the UE, where the precoding matrix is a precoding matrix of a predefined subband.
  • the UE determines one or more of the following predefined subbands and other subbands according to the precoding matrix and predefined rules indicated by the network equipment: the precoding matrix, the PA, and the corresponding SRS port.
  • the predefined subband may be pre-appointed by the network device and the UE, may also be instructed by the network device, or may be a default subband.
  • the predefined subband is the subband with the smallest starting PRB number.
  • the predefined subband is the subband numbered 0.
  • the predefined rule may be pre-appointed by the network device and the UE, or may be a default rule.
  • the predefined rule is that each precoding matrix is in a predefined precoding matrix group, and the network device indicates the precoding matrix of the predefined subband for the UE, assuming that the precoding matrix is in the precoding matrix Is the mth precoding matrix in the group, and the precoding matrixes of the remaining subbands are the precoding matrixes in the precoding matrix group.
  • Precoding matrixes where M is the number of precoding matrixes included in the precoding matrix group (M ⁇ 1).
  • the predefined rule is that the PRB scheduled for the uplink signal is divided into N subbands.
  • the PUSCH uses different precoding matrices to map to the DMRS port in different subbands (bandwidth), and the subband with the lowest PRB number starts
  • the precoding matrix is the precoding matrix indicated by the network device
  • the precoding matrix of the subband with the second smallest starting PRB number is a cyclic shift of the precoding matrix indicated by the network device
  • the precoding matrix is the two cyclic shifts of the precoding matrix indicated by the network device, ..., the precoding matrix of the Nth smallest subband of the starting PRB number is the N-1 cyclic shift of the precoding matrix indicated by the network device .
  • a cyclic shift means that the element of the column vector in the precoding matrix is cyclically shifted down by 1 bit.
  • the network device indicates the N precoding matrices to the UE, and the precoding matrixes correspond to the subbands one-to-one.
  • the UE determines a predefined subband and precoding matrices of other subbands and corresponding DMRS ports according to the precoding matrix indicated by the network device.
  • the nth precoding matrix corresponds to the subband with the smallest starting PRB number n (n is an integer, 1 ⁇ n ⁇ N).
  • the overhead of the precoding matrix in the DCI is determined according to the number of subbands.
  • the base station indicates the candidate precoding matrix set to the UE, and the UE uses different precoding matrices in the candidate precoding matrix set in different subbands to perform uplink signal to DMRS port mapping.
  • one SRS resource of the SRS corresponding to PUSCH includes 4 ports, and the base station indicates the precoding matrix [1 0 0 0] and [0 1 0 0] to the UE, and the UE uses [1 0 0 0] in the first subband. ] Precode the PUSCH, and use [0 1 0] in the second subband to precode the PUSCH.
  • One subband that uses the same precoding matrix may be centralized or distributed.
  • a subband includes multiple non-contiguous PRBs, for example, multiple PRB groups, and each PRB group includes P consecutive PRBs, where P is an integer greater than or equal to 1.
  • P is an integer greater than or equal to 1.
  • FIG. 6 An example is shown in Figure 6. Among them, all the PRBs marked with port 0 indicate that they belong to the same subband and are transmitted using the DMRS port numbered 0; all PRBs marked with port 1 indicate that they belong to the same subband and are transmitted using the DMRS port numbered 1.
  • the subband is determined according to scheduling information of the uplink signal.
  • the density of each subband is 1/S
  • the minimum time unit of each subband is P PRBs, that is, the (n-1)*P+1th to the n*Pth PRBs are the same subband, where n, P, and S are positive integers, and n ⁇ S.
  • the division of the subbands is a predefined way.
  • the entire system bandwidth (the system bandwidth of uplink signal transmission) includes S subbands.
  • the minimum unit of each subband is P consecutive PRBs.
  • S is an integer configured by the network, or S is an integer pre-appointed by the network device and the UE.
  • the value of P is configured by the network device for the UE; optionally, the value of P is pre-appointed by the network device and the UE.
  • one DMRS port corresponds to a fixed PA.
  • one DMRS port corresponds to a fixed SRS port.
  • different DMRS ports can only be transmitted on different subbands.
  • the position offset of the subband corresponding to the DMRS port is configured by RRC signaling or defined in the protocol.
  • the subband offset of the DMRS port whose port number is N is N. That is, the DMRS port with the port number N is only transmitted on the subband numbered N.
  • the transmit power of the DMRS port is 10*log10(S)dB higher than the transmit power of a conventional DMRS port that can be transmitted on any subband.
  • one DMRS port can only be sent on one subband.
  • the UE determines the PRB for sending the DMRS according to the resource allocation indication information about the uplink signal sent by the network device and the precoding of the uplink signal.
  • DMRS is only sent on PRBs where data flow mapping exists.
  • the PRB belongs to subband 1. If the PRB allocated by the network device for the PUSCH is PRB 3-9, a single stream is scheduled to obtain the PUSCH, if the UE uses the precoding matrix [1 0] in subband 0, and uses the precoding matrix [0 1] in subband 1. Then, the UE sends DMRS port 0 on the even-numbered PRB on the scheduled PRB, and sends DMRS port 1 on the odd-numbered PRB.
  • the advantage of this subband division method is that it has nothing to do with the scheduling information of the uplink signal, and can reduce the complexity of calculating the scheduling information of the uplink signal by the network device.
  • the disadvantage is that if there are fewer PRBs scheduled for the uplink signal, it is possible that the transmission of the uplink signal can only use part of the DMRS port and/or PA, and cannot reach the maximum transmission power.
  • sub-band division methods can also be considered in combination.
  • the system bandwidth is large, it is a predefined subband division method; when the system bandwidth is small, it is a subband division method determined according to the scheduling of the uplink signal.
  • the second device may need to interpolate the sub-bands without DMRS ports when performing DMRS channel estimation (that is, perform DMRS port interpolation in all PRBs) to obtain the absence Channel estimation value of the subband of the DMRS port.
  • the second device performs channel estimation on each subband when performing PUSCH channel estimation, so as to avoid performance loss caused by different PA joint channel estimation.
  • the resource allocation of DMRS depends on PRB level or PRB group level frequency domain offset.
  • the frequency domain offset can be port-level. That is, the resource allocation of each DMRS port depends on the frequency domain offset of the DMRS port, and different ports can have different frequency domain offsets.
  • the frequency domain offset may be configured by the network equipment through signaling (for example, configured through RRC signaling), or may be a fixed value agreed in the protocol.
  • the rate matching of the PUSCH is performed based on the actual transmitted DMRS, that is, the actual transmitted DMRS is avoided when the PUSCH mapping is performed, and the PUSCH can be transmitted at a position where no DMRS is transmitted.
  • the rate matching of PUSCH is performed based on DMRS of regular density. That is, corresponding to the DMRS port corresponding to the PUSCH, regardless of whether there is DMRS transmission in the resource element (RE) corresponding to the DMRS port according to the conventional codebook-based uplink transmission scheme, the PUSCH is not performed on the RE. Transmission.
  • DMRS resource element
  • DMRS port For each DMRS, every 2 PRBs are mapped to one PRB. Assuming that the scheduled PUSCH only has single-stream transmission, corresponding to DMRS port 0, then the DMRS port is The two PRBs are transmitted on one PRB, but when the PUSCH rate is matched, according to the pattern of DMRS port 0 on one PRB, the RE corresponding to the position of DMRS port 0 on each PRB does not map the PUSCH.
  • the PUSCH transmission mode can be any of the following:
  • the PUSCH resource allocation mode includes one or more of the following:
  • Manner 1 The network device indicates the resource allocation of PUSCH in the entire bandwidth or BWP through signaling.
  • the network device indicates the resource allocation status of the PUSCH in the predefined subband through signaling, and the UE calculates the resource allocation status of other subbands according to the resource allocation status of the subband.
  • This method is suitable for the method where the relative relationship of the resource allocation of each subband is fixed. For example, each subband occupies the same PRB, and the density of resource occupation is the same.
  • the scheduling resources of PUSCH are divided into 2 subbands, the network device indicates the resource allocation status of the first subband, and the UE obtains the resource allocation status of the second subband according to the resource allocation status of the subband.
  • Manner 3 The network equipment indicates the resource allocation of the PUSCH in all subbands through signaling.
  • the density of DMRS ports is 1/S, that is, the density of each DMRS port is that there is one PRB in each S PRB including the DMRS port (for example, the mapping method of each DMRS port is every S PRB (or PRB group) Mapping to a PRB (or PRB group)), if in single-stream transmission, all DMRS ports are used for PUSCH transmission, a DMRS port can have 10*log 10 (S) relative to a DMRS port in related technologies dB power boost.
  • S log 10
  • the density of DMRS ports is 1/S, that is, the density of each DMRS port is that there is one PRB in every S PRB including the DMRS port (for example, the mapping method of each DMRS port is every S PRB (or PRB) Group) is mapped to a PRB (or PRB group))
  • the number of transport streams is R
  • each transport stream corresponds to K DMRS ports
  • different transport streams correspond to different DMRS ports
  • the DMRS ports of the present disclosure are relative to
  • the DMRS port in the related technology can have a power increase of log 10 (K) dB. Further, the power increase of the DMRS can bring about an improvement of the DMRS detection performance.
  • the SRS resource allocation method is as follows:
  • the resource allocation of SRS has nothing to do with the mapping from DMRS to SRS.
  • each SRS port is mapped on each PRB allocated by the network device for the SRS, see FIG. 7.
  • An SRS port is only mapped on part of the bandwidth allocated by the network device for the SRS.
  • an SRS port only transmits on its corresponding part of the above-mentioned subbands (centralized distribution or distributed distribution).
  • An example is shown in FIG. 8.
  • the transmission power of the SRS can be increased. For example, assuming there are 4 SRS ports in total, if each SRS port transmits the entire bandwidth allocated for the SRS, the transmission power of each SRS port in an RE is P/4 (P is a power value), When two ports only transmit in 1/4 bandwidth, the transmit power of each SRS port in one RE can be P.
  • the embodiment of the present disclosure also provides a first device. Since the principle of the terminal to solve the problem is similar to the data transmission method in the embodiment of the present disclosure, the implementation of the first device can refer to the implementation of the method. Narrated.
  • an embodiment of the present disclosure further provides a first device, and the first device 900 includes:
  • the first sending module 901 is configured to send a first signal and a demodulation reference signal DMRS corresponding to the first signal to a second device.
  • the first signal includes at least one data stream, and each data stream corresponds to multiple data streams.
  • the same data stream in the first signal is transmitted based on different DMRS ports at at least two frequency domain locations.
  • the same data stream in the first signal is transmitted in different subbands based on different DMRS ports.
  • each physical resource block PRB of each DMRS port on the transmission bandwidth corresponds to at least one of the same PA, SRS port, or first port.
  • the DMRS port and the SRS port have a one-to-one correspondence.
  • the first sending module 901 is further configured to: send the first signal to the second device according to the first transmission power;
  • the first transmission power is determined according to the first ratio and the transmission power of the first signal, and the first ratio is the DMRS port mapped to the data transmission of the first signal in the second device The proportion of all the DMRS ports configured for the first signal; or the first ratio is the SRS port mapped to the data transmission of the first signal in the second device for the first signal configuration The percentage of all SRS ports in
  • the first device 900 further includes a second sending module for sending first information to the second device, and the first information indicates that the first device has the maximum transmission power The ability to send the first signal;
  • the first sending module 901 is further configured to send the first signal and the DMRS corresponding to the first signal to the second device according to the capabilities indicated by the first information.
  • the first device 900 further includes a first receiving module, configured to receive second information from the second device;
  • the first sending module 901 is further configured to send the first signal and the DMRS corresponding to the first signal to the second device according to the second information;
  • the second information indicates at least one of the following:
  • the first power control strategy used by the first device is the first power control strategy used by the first device
  • the precoding matrix of the first signal is a codeword whose number of transport streams is less than or equal to K, where K is an integer greater than or equal to 1;
  • the number of transmission streams of the first signal is less than or equal to M, where M is an integer greater than or equal to 1;
  • the precoding matrix of the first signal is a non-coherent codeword
  • the precoding matrix of the first signal is a partially coherent codeword
  • the precoding matrix of the first signal is a non-coherent codeword or a partially coherent codeword.
  • the first device 900 further includes a second receiving module configured to receive third information from the second device, the third information indicating the correspondence between the DMRS port and the SRS port.
  • the first device 900 further includes a third receiving module configured to receive fourth information from the second device, where the fourth information includes at least one of the following:
  • a set of precoding matrices that can be used when mapping the data stream of the first signal to the DMRS port;
  • DMRS port to which one or more data streams can be mapped.
  • the first device 900 further includes a first determining module for:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the first device 900 further includes a third sending module configured to send signaling to the second device, the signaling indicating at least one of the following:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the signaling includes:
  • a precoding matrix of a predefined subband or,
  • precoding matrices where precoding matrices and subbands in the plurality of precoding matrices have a predefined correspondence.
  • the subband of the first signal is determined by at least one of the following methods:
  • the subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled is determined according to a predefined subband division manner.
  • the predefined subband division manner includes:
  • the system bandwidth or BWP of the first signal or the frequency domain resource scheduled for the first signal includes S subbands, and the smallest unit of each subband is P consecutive PRBs.
  • a subband every P* S PRBs, a minimum unit appears, where P is an integer greater than or equal to 1, S is a positive integer, and S is configured by the network side or agreed by the agreement.
  • different DMRS ports are transmitted on different subbands in the frequency domain resource or system bandwidth or BWP where the first signal is scheduled.
  • the position offset of the subband in the frequency domain resource or the system bandwidth or the BWP where the first signal corresponding to the DMRS port is scheduled is configured on the network side or in As agreed in the agreement.
  • the first device 900 further includes a fourth sending module for:
  • DMRS resource indication information indicates the frequency domain resource location of the DMRS port.
  • the first device 900 further includes a fourth receiving module for:
  • one DMRS port is mapped on a PRB with data stream transmission corresponding to the DMRS port.
  • the first device 900 further includes a fifth receiving module configured to receive DMRS resource indication information sent by the second device, where the DMRS resource indication information indicates the frequency domain resource of the DMRS port position;
  • the frequency domain resource location of the DMRS corresponding to the first signal is determined according to the DMRS resource indication information.
  • the first sending module 901 is further configured to:
  • the first transmission mode includes at least one of the following:
  • Each data stream of the first signal is transmitted on all PRBs of the transmission resource indicated by the second device for the first device;
  • Each data stream of the first signal is transmitted on the PRB where the DMRS port corresponding to the data stream is located.
  • the first device 900 further includes a second determining module configured to determine the transmission resource of the first signal according to the resource indication information; wherein the resource indication information includes at least one of the following item:
  • the resource allocation mode of the SRS port includes at least one of the following:
  • the resource allocation of the SRS port has nothing to do with the mapping between the DMRS port and the SRS port;
  • One of the SRS ports is mapped on a part of subbands.
  • the first signal performs rate matching based on the actual transmission situation of the DMRS port; and/or,
  • the first signal performs rate matching based on the assumption that the DMRS port with data stream mapping exists in each PRB.
  • the first signal is an uplink signal, the first device is a terminal, and the second device is a network device; or, the first signal is a downlink signal, and the The first device is a network device, and the second device is a terminal.
  • the first device provided in the embodiment of the present disclosure can execute the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • the embodiment of the present disclosure also provides a first device. Since the principle of the terminal to solve the problem is similar to the data transmission method in the embodiment of the present disclosure, the implementation of the first device can refer to the implementation of the method. Narrated.
  • an embodiment of the present disclosure also provides a first device.
  • the first device 1000 includes: a first transceiver 1001 and a first processor 1002.
  • the first transceiver 1001 is configured to communicate with a second
  • the device sends a first signal and a demodulation reference signal DMRS corresponding to the first signal, the first signal includes at least one data stream, and each data stream corresponds to multiple DMRS ports; wherein, different DMRS The port corresponds to at least one of a different power amplifier PA, a different sounding reference signal SRS port, or a different first signal port.
  • the same data stream in the first signal is transmitted based on different DMRS ports at at least two frequency domain locations.
  • the same data stream in the first signal is transmitted in different subbands based on different DMRS ports.
  • each physical resource block PRB of each DMRS port on the transmission bandwidth corresponds to at least one of the same PA, SRS port, or first port.
  • the DMRS port and the SRS port have a one-to-one correspondence.
  • the first transceiver 1001 is used to:
  • the first transmission power is determined according to the first ratio and the transmission power of the first signal, and the first ratio is the DMRS port mapped to the data transmission of the first signal in the second device The proportion of all the DMRS ports configured for the first signal; or the first ratio is the SRS port mapped to the data transmission of the first signal in the second device for the first signal configuration The percentage of all SRS ports in
  • the first transceiver 1001 is used to:
  • the first transceiver 1001 is configured to: receive second information from the second device; and send the first signal to the second device according to the second information , And the DMRS corresponding to the first signal;
  • the second information indicates at least one of the following:
  • the first power control strategy used by the first device is the first power control strategy used by the first device
  • the precoding matrix of the first signal is a codeword whose number of transport streams is less than or equal to K, where K is an integer greater than or equal to 1;
  • the number of transmission streams of the first signal is less than or equal to M, where M is an integer greater than or equal to 1;
  • the precoding matrix of the first signal is a non-coherent codeword
  • the precoding matrix of the first signal is a partially coherent codeword
  • the precoding matrix of the first signal is a non-coherent codeword or a partially coherent codeword.
  • the first transceiver 1001 is configured to: receive third information from the second device, the third information indicating the correspondence between the DMRS port and the SRS port.
  • the first transceiver 1001 is configured to: receive fourth information from the second device, where the fourth information includes at least one of the following:
  • a set of precoding matrices that can be used when mapping the data stream of the first signal to the DMRS port;
  • DMRS port to which one or more data streams can be mapped.
  • the first processor 1002 is configured to determine at least one of the following according to the first rule or according to the signaling indicated by the network side:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the first transceiver 1001 is configured to: send signaling to the second device, where the signaling indicates at least one of the following:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the signaling includes:
  • a precoding matrix of a predefined subband or,
  • precoding matrices where precoding matrices and subbands in the plurality of precoding matrices have a predefined correspondence.
  • the subband of the first signal is determined by at least one of the following methods:
  • the subbands in the frequency domain resources or the system bandwidth or the BWP where the first signal is scheduled follow a predefined subband
  • the division method is determined.
  • the predefined subband division manner includes:
  • the system bandwidth or BWP of the first signal or the frequency domain resource scheduled for the first signal includes S subbands, and the smallest unit of each subband is P consecutive PRBs.
  • a subband every P* S PRBs, a minimum unit appears, where P is an integer greater than or equal to 1, S is a positive integer, and S is configured by the network side or agreed by the agreement.
  • different DMRS ports are transmitted on different subbands in the frequency domain resource or system bandwidth or BWP where the first signal is scheduled.
  • the position offset of the subband in the frequency domain resource or the system bandwidth or the BWP where the first signal corresponding to the DMRS port is scheduled is configured on the network side or in As agreed in the agreement.
  • the first transceiver 1001 is configured to send DMRS resource indication information to the second device, where the DMRS resource indication information indicates the frequency domain resource location of the DMRS port.
  • the first transceiver 1001 is configured to: receive resource indication information of the first signal from the second device;
  • one DMRS port is mapped on a PRB with data stream transmission corresponding to the DMRS port.
  • the first transceiver 1001 is configured to: receive DMRS resource indication information sent by the second device, where the DMRS resource indication information indicates the frequency domain resource location of the DMRS port;
  • the frequency domain resource location of the DMRS corresponding to the first signal is determined according to the DMRS resource indication information.
  • the first transceiver 1001 is configured to: send a first signal to a second device through a first transmission mode, where the first transmission mode includes at least one of the following:
  • Each data stream of the first signal is transmitted on all PRBs of the transmission resource indicated by the second device for the first device;
  • Each data stream of the first signal is transmitted on the PRB where the DMRS port corresponding to the data stream is located.
  • the first processor 1002 is configured to: determine the transmission resource of the first signal according to the resource indication information; wherein the resource indication information includes at least one of the following:
  • the resource allocation mode of the SRS port includes at least one of the following:
  • the resource allocation of the SRS port has nothing to do with the mapping between the DMRS port and the SRS port;
  • One of the SRS ports is mapped on a part of subbands.
  • the first signal performs rate matching based on the actual transmission situation of the DMRS port; and/or,
  • the first signal performs rate matching based on the assumption that the DMRS port with data stream mapping exists in each PRB.
  • the first signal is an uplink signal, the first device is a terminal, and the second device is a network device; or, the first signal is a downlink signal, and the The first device is a network device, and the second device is a terminal.
  • the first device provided in the embodiment of the present disclosure can execute the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • the embodiment of the present disclosure also provides a second device. Since the principle of the terminal to solve the problem is similar to the data transmission method in the embodiment of the present disclosure, the implementation of the second device can refer to the implementation of the method. Narrated.
  • an embodiment of the present disclosure also provides a second device.
  • the second device 1100 includes: a detection module 1101, configured to detect a first signal sent by the first device and a DMRS corresponding to the first signal; Wherein, the first signal includes at least one data stream, and each data stream corresponds to multiple DMRS ports; different DMRS ports correspond to different power amplifiers PA, different sounding reference signal SRS ports, or different first signals. At least one of a signal port.
  • the second device 1100 further includes a channel estimation module for: performing channel estimation on the DMRS port in the physical resource block PRB where the DMRS port is located; and/or, in the The physical resource block PRB where the DMRS port is located performs channel estimation on the data stream of the first signal corresponding to the DMRS port.
  • a channel estimation module for: performing channel estimation on the DMRS port in the physical resource block PRB where the DMRS port is located; and/or, in the The physical resource block PRB where the DMRS port is located performs channel estimation on the data stream of the first signal corresponding to the DMRS port.
  • the second device 1100 further includes a subband dividing module for: when scheduling the first signal, divide the scheduling bandwidth of the first signal into N subbands, The signal-to-interference and noise ratios of different subbands are calculated based on different precoding matrices or SRS ports, and N is an integer greater than 1.
  • the same data stream in the first signal is transmitted in different subbands based on different DMRS ports.
  • each physical resource block PRB of each DMRS port on the transmission bandwidth corresponds to at least one of the same PA, SRS port, or first port.
  • the DMRS port and the SRS port have a one-to-one correspondence.
  • the second device 1100 further includes: a sixth receiving module configured to: receive fifth information from the first device, and determine the scheduling of the first signal according to the fifth information Information; where,
  • the fifth information indicates at least one of the following:
  • the ability of the first device to transmit the first signal with the maximum transmit power is the ability of the first device to transmit the first signal with the maximum transmit power.
  • the second device 1100 further includes: a fifth sending module configured to send second information to the first device, wherein the second information indicates at least one of the following:
  • the first power control strategy used by the first device is the first power control strategy used by the first device
  • the precoding matrix of the first signal is a codeword whose number of transport streams is less than or equal to K, where K is an integer greater than or equal to 1;
  • the number of transmission streams of the first signal is less than or equal to M, where M is an integer greater than or equal to 1;
  • the precoding matrix of the first signal is a non-coherent codeword
  • the precoding matrix of the first signal is a partially coherent codeword
  • the precoding matrix of the first signal is a non-coherent codeword or a partially coherent codeword.
  • the second device 1100 further includes: a sixth sending module configured to send third information to the first device, the third information indicating the correspondence between the DMRS port and the SRS port .
  • the second device 1100 further includes: a seventh sending module configured to send fourth information to the first device, where the fourth information includes at least one of the following:
  • a set of precoding matrices that can be used when mapping the data stream of the first signal to the DMRS port;
  • DMRS port to which one or more data streams can be mapped.
  • the second device 1100 further includes: an eighth sending module is configured to: send signaling to the first device, and the signaling is used by the first device to determine at least one of the following item:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the second device 1100 further includes: a seventh receiving module configured to: receive signaling from the first device; and determine at least one of the following according to the signaling:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the signaling includes:
  • a precoding matrix of a predefined subband or,
  • precoding matrices where precoding matrices and subbands in the plurality of precoding matrices have a predefined correspondence.
  • the subband used by the first signal is determined by at least one of the following methods:
  • the system bandwidth of the first signal or the subband division in the BWP and the scheduling information of the first signal it is determined to obtain the resource division according to the first signal allocation.
  • the subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled is determined according to a predefined subband division manner.
  • the predefined subband division manner includes:
  • the system bandwidth of the first signal includes S subbands, and the minimum unit of each subband is P consecutive PRBs. In a subband, every P*S PRBs, a minimum unit appears, where P is greater than or equal to An integer of 1, S is a positive integer, and the S is configured by the network side or agreed by the protocol.
  • the second device 1100 further includes: a third determining module configured to determine whether the first signal corresponding to the DMRS port is scheduled in the frequency domain resource or the system bandwidth or the BWP The position of the subband in the offset.
  • the second device 1100 further includes: a ninth sending module configured to send to the first device information about determining the frequency domain in which the first signal corresponding to the DMRS port is scheduled Indication information of the position offset of the subband in the resource or in the system bandwidth or in the BWP.
  • the second device 1100 further includes: a tenth sending module configured to send resource indication information to the first device; wherein the resource indication information indicates at least one of the following:
  • the second device 1100 further includes: an eighth receiving module is configured to: receive resource indication information sent by the second device; and determine that the first signal to which belongs is allocated according to the resource indication information Resources and each sub-band;
  • the resource indication information indicates at least one of the following:
  • the second device 1100 further includes: a fourth determining module configured to: according to the resource indication information of the first signal sent by the first device and the pre-determination of the first signal Encoding and determining the PRB to which the DMRS is mapped.
  • the detection module is further configured to: detect the first signal sent by the first device on all PRBs of the transmission resource indicated by the second device for the first device; or,
  • the first signal sent by the first device is detected on the PRB where the DMRS port corresponding to each data stream of the first signal is located.
  • the first signal is an uplink signal, the first device is a terminal, and the second device is a network device; or, the first signal is a downlink signal, and the The first device is a network device, and the second device is a terminal.
  • the second device provided in the embodiment of the present disclosure can execute the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • the embodiment of the present disclosure also provides a second device. Since the principle of the terminal to solve the problem is similar to the data transmission method in the embodiment of the present disclosure, the implementation of the second device can refer to the implementation of the method. Narrated.
  • an embodiment of the present disclosure also provides a second device.
  • the second device 1200 includes a second transceiver 1201 and a second processor 1202.
  • the second processor 1202 is configured to send data to the first device.
  • the first signal and the DMRS corresponding to the first signal are detected; wherein, the first signal includes at least one data stream, and each data stream corresponds to multiple DMRS ports; different DMRS ports correspond to different At least one of a power amplifier PA, a different sounding reference signal SRS port, or a different first signal port.
  • the second processor 1202 is configured to: perform channel estimation on the DMRS port at the physical resource block PRB where the DMRS port is located; and/or, at the physical resource block where the DMRS port is located
  • the physical resource block PRB performs channel estimation on the data stream of the first signal corresponding to the DMRS port.
  • the second processor 1202 is configured to: when scheduling the first signal, divide the scheduling bandwidth of the first signal into N subbands, and signals of different subbands
  • the interference-to-noise ratio is calculated based on different precoding matrices or SRS ports, and N is an integer greater than 1.
  • the same data stream in the first signal is transmitted in different subbands based on different DMRS ports.
  • each physical resource block PRB of each DMRS port on the transmission bandwidth corresponds to at least one of the same PA, SRS port, or first port.
  • the DMRS port and the SRS port have a one-to-one correspondence.
  • the second transceiver 1201 is configured to: receive fifth information from the first device, and determine scheduling information of the first signal according to the fifth information; wherein,
  • the fifth information indicates at least one of the following:
  • the ability of the first device to transmit the first signal with the maximum transmit power is the ability of the first device to transmit the first signal with the maximum transmit power.
  • the second transceiver 1201 is configured to: send second information to the first device, where the second information indicates at least one of the following:
  • the first power control strategy used by the first device is the first power control strategy used by the first device
  • the precoding matrix of the first signal is a codeword whose number of transport streams is less than or equal to K, where K is an integer greater than or equal to 1;
  • the number of transmission streams of the first signal is less than or equal to M, where M is an integer greater than or equal to 1;
  • the precoding matrix of the first signal is a non-coherent codeword
  • the precoding matrix of the first signal is a partially coherent codeword
  • the precoding matrix of the first signal is a non-coherent codeword or a partially coherent codeword.
  • the second transceiver 1201 is configured to send third information to the first device, the third information indicating the correspondence between the DMRS port and the SRS port.
  • the second transceiver 1201 is configured to send fourth information to the first device, where the fourth information includes at least one of the following:
  • a set of precoding matrices that can be used when mapping the data stream of the first signal to the DMRS port;
  • DMRS port to which one or more data streams can be mapped.
  • the second transceiver 1201 is configured to: send signaling to the first device, and the signaling is used by the first device to determine at least one of the following:
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the second transceiver 1201 is configured to: receive signaling from the first device;
  • the DMRS port corresponding to each subband of the first signal in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled;
  • the DMRS port corresponding to the first signal is an SRS port corresponding to each subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled.
  • the signaling includes:
  • a precoding matrix of a predefined subband or,
  • precoding matrices where precoding matrices and subbands in the plurality of precoding matrices have a predefined correspondence.
  • the subband of the first signal is determined by at least one of the following methods:
  • the system bandwidth of the first signal or the subband division in the BWP and the scheduling information of the first signal it is determined to obtain the resource division according to the first signal allocation.
  • the subband in the frequency domain resource or the system bandwidth or the BWP where the first signal is scheduled is determined according to a predefined subband division manner.
  • the predefined subband division manner includes:
  • the system bandwidth of the first signal includes S subbands, and the minimum unit of each subband is P consecutive PRBs. In a subband, every P*S PRBs, a minimum unit appears, where P is greater than or equal to An integer of 1, S is a positive integer, and the S is configured by the network side or agreed by the protocol.
  • the second processor 1202 is configured to: determine the position of the subband in the frequency domain resource or in the system bandwidth or in the BWP where the first signal corresponding to the DMRS port is scheduled Offset.
  • the second transceiver 1201 is configured to: send to the first device information about determining that the first signal corresponding to the DMRS port is scheduled in the frequency domain resource or in the system bandwidth Or indication information of the position offset of the subband in the BWP.
  • the second transceiver 1201 is configured to: send resource indication information to the first device; wherein the resource indication information indicates at least one of the following:
  • the second transceiver 1201 is configured to: receive resource indication information sent by the second device; and determine the allocated resource and each subband of the first signal according to the resource indication information ;
  • the resource indication information indicates at least one of the following:
  • the second processor 1202 is configured to: determine to map the first signal according to the resource indication information of the first signal sent by the first device and the precoding of the first signal PRB of DMRS.
  • the second processor 1202 is configured to: perform, on all PRBs of the transmission resource indicated by the second device for the first device, on the first signal sent by the first device Testing; or,
  • the first signal sent by the first device is detected on the PRB where the DMRS port corresponding to each data stream of the first signal is located.
  • the first signal is an uplink signal, the first device is a terminal, and the second device is a network device; or, the first signal is a downlink signal, and the The first device is a network device, and the second device is a terminal.
  • the second device provided in the embodiment of the present disclosure can execute the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • the terminal 1300 shown in FIG. 13 includes: at least one processor 1301, a memory 1302, at least one network interface 1304, and a user interface 1303.
  • the various components in the terminal 1300 are coupled together through the bus system 1305.
  • the bus system 1305 is used to implement connection and communication between these components.
  • the bus system 1305 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 1305 in FIG. 13.
  • the user interface 1303 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.).
  • a pointing device for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.
  • the memory 1302 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM DRRAM
  • the memory 1302 of the system and method described in the embodiments of the present disclosure is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 1302 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them: the operating system 13021 and application programs 13022.
  • the operating system 13021 includes various system programs, such as a framework layer, a core library layer, and a driver layer, which are used to implement various basic services and process hardware-based tasks.
  • the application 8022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • a program for implementing the method of the embodiments of the present disclosure may be included in the application program 13022.
  • the terminal provided in the embodiment of the present disclosure can execute the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • FIG. 14 is a structural diagram of a network device applied in an embodiment of the present disclosure.
  • the network device 1400 includes: a processor 1401, a transceiver 1402, a memory 1403, and a bus interface, where:
  • the network device 1400 further includes: a program that is stored in the memory 1403 and can run on the processor 1401, and the program is executed by the processor 1401 to implement the steps in the foregoing method embodiment.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1401 and various circuits of the memory represented by the memory 1403 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 1402 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 1401 is responsible for managing the bus architecture and general processing, and the memory 1403 can store data used by the processor 1401 when performing operations.
  • the network device provided by the embodiment of the present disclosure can execute the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • the steps of the method or algorithm described in conjunction with the disclosure of the present disclosure may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • the software instructions can be composed of corresponding software modules.
  • the software modules can be stored in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disks, mobile hard disks, read-only optical disks, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described in the present disclosure can be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the embodiments of the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present disclosure may adopt the form of computer program products implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种数据传输方法和设备,该方法包括:向第二设备发送第一信号,以及所述第一信号对应的DMRS,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;其中,不同的所述DMRS端口对应于不同的PA、不同的SRS端口或不同的第一信号端口中的至少一者。

Description

数据传输方法和设备
相关申请的交叉引用
本申请主张在2019年4月10日在中国提交的中国专利申请号No.201910286797.9的优先权,其全部内容通过引用包括于此。
技术领域
本公开实施例涉及通信技术领域,具体涉及一种数据传输方法和设备。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)新空口(New Radio,NR)相关技术的系统中对于具有部分相干传输能力的终端和具有非相干传输能力的终端,在配置了多个天线端口的基于码本的上行传输方案下低rank(rank是天线的传输矩阵的秩)传输时,终端的发送功率不能达到最大发送功率。这将降低终端在小区边缘时的性能,影响小区的覆盖。
发明内容
本公开实施例的一个目的在于提供一种数据传输方法和设备,解决终端的发送功率不能满足要求的问题。
第一方面,本公开实施例提供一种数据传输方法,应用于第一设备,包括:
向第二设备发送第一信号,以及所述第一信号对应的解调参考信号DMRS,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;
其中,不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
可选地,所述第一信号中的同一数据流在至少两个频域位置基于不同的DMRS端口进行传输。
可选地,所述第一信号中的同一数据流在不同子带基于不同的DMRS端口进行传输。
可选地,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的PA、SRS端口或第一端口中的至少一者。
可选地,所述DMRS端口与所述SRS端口一一对应。
可选地,所述向第二设备发送第一信号,包括:
根据第一发送功率,向所述第二设备发送所述第一信号;
其中,所述第一发送功率是根据第一比值和所述第一信号的发送功率确定的,所述第一比值为映射有所述第一信号的数据传输的DMRS端口在所述第二设备为所述第一信号配置的所有DMRS端口数中的占比;或者所述第一比值为映射有所述第一信号的数据传输的SRS端口在所述第二设备为所述第一信号配置的所有SRS端口数中的占比。
可选地,所述方法还包括:
向所述第二设备发送第一信息,所述第一信息指示所述第一设备具有通过最大发送功率发送所述第一信号的能力;
所述向第二设备发送第一信号,以及所述第一信号对应的DMRS,包括:
根据所述第一信息指示的能力,向所述的第二设备发送所述第一信号,以及所述第一信号对应的DMRS。
可选地,所述方法还包括:
从所述第二设备接收第二信息;
所述向第二设备发送第一信号,以及所述第一信号对应的DMRS,包括:
根据所述第二信息,向所述的第二设备发送所述第一信号,以及所述第一信号对应的DMRS;
其中,所述第二信息指示以下至少一项:
所述第一设备使用的第一功率控制策略;
所述第一设备通过最大发送功率发送所述第一信号以及所述第一信号对应的DMRS;
所述第一信号的传输模式;
所述第一信号的预编码矩阵为传输流数小于或等于K的码字,其中,K为大于或等于1的整数;
所述第一信号的传输流数小于或等于M,其中,M为大于或等于1的整数;
所述第一信号的预编码矩阵为非相干码字;
所述第一信号的预编码矩阵为部分相干码字;
所述第一信号的预编码矩阵为非相干码字或部分相干码字。
可选地,所述方法还包括:
从所述第二设备接收第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
可选地,所述方法还包括:
从所述第二设备接收第四信息,所述第四信息包括以下至少一项:
所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
一个或多个数据流能够映射的DMRS端口。
可选地,所述方法还包括:
根据第一规则,或者根据网络侧指示的信令,确定以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或带宽部分BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
可选地,所述方法还包括:
向所述第二设备发送信令,所述信令指示以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
可选地,所述信令包括:
一个预定义的子带的预编码矩阵;或者,
多个预编码矩阵,所述多个预编码矩阵中的预编码矩阵与子带具有预定义的对应关系。
可选地,所述第一信号的子带通过以下至少一种方式确定:
根据子带的数量和为所述第一信号分配的资源划分得到的,其中,所述子带的数量是由所述第一设备和第二设备预先约定的;
根据系统带宽或BWP中的子带划分情况和所述第一信号的调度信息确定
根据所述第一信号分配的资源划分得到。
可选地,所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带按照预定义的子带划分方式确定的。
可选地,所述预定义的子带划分方式包括:
所述第一信号的系统带宽或BWP或所述第一信号被调度的频域资源包括S个子带,每个子带的最小单元为P个连续的PRB,在一个子带中,每隔P*S个PRB,出现一个最小单元,其中P为大于等于1的整数,S是一个正整数,S由网络侧配置或者由协议约定。
可选地,不同的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的不同的子带上传输。
可选地,所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移是网络侧配置的或者在协议约定的。
可选地,所述方法还包括:
向所述第二设备发送DMRS资源指示信息,所述DMRS资源指示信息指示DMRS端口的频域资源位置。
可选地,所述方法还包括:
从所述第二设备接收所述第一信号的资源指示信息;
根据所述资源指示信息和所述第一信号的预编码,确定映射所述DMRS的PRB。
可选地,一个DMRS端口映射在有对应于所述DMRS端口的数据流传输的PRB上。
可选地,所述方法还包括:
接收所述第二设备发送的DMRS资源指示信息,所述DMRS资源指示信息指示DMRS端口的频域资源位置;
根据所述DMRS资源指示信息确定所述第一信号对应的DMRS的频域资源位置。
可选地,所述向第二设备发送第一信号,包括:
通过第一传输方式,向第二设备发送第一信号,其中所述第一传输方式包括以下至少一项:
所述第一信号的每个数据流都传输在所述第二设备为所述第一设备指示的传输资源的所有PRB上;
所述第一信号的每个数据流传输在与该数据流对应的DMRS端口所在的PRB上。
可选地,所述方法还包括:
根据资源指示信息,确定所述第一信号的传输资源;其中,所述资源指示信息包括以下至少一项:
所述第一信号在整个带宽或BWP的资源分配情况;
所述第一信号在预定义子带的资源分配情况;
所述第一信号在一个或多个子带的资源分配情况。
可选地,所述SRS端口的资源分配方式包括以下至少一项:
所述SRS端口的资源分配与所述DMRS端口和所述SRS端口的映射无关;
一个所述SRS端口映射在一部分子带上。
可选地,所述第一信号基于DMRS端口的实际传输情况进行速率匹配;和/或,
所述第一信号基于有数据流映射的DMRS端口在每个PRB都存在的假设进行速率匹配。
可选地,所述第一信号为上行信号,所述第一设备为终端,所述第二设备为网络设备;或者,所述第一信号为下行信号,所述第一设备为网络设备,所述第二设备为终端。
第二方面,还提供一种数据传输方法,应用于第二设备,包括:
对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测;
其中,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;
不同的所述DMRS端口对应于不同的PA、不同的SRS端口或不同的第一信号端口中的至少一者。
可选地,所述方法还包括:
在所述DMRS端口所在的物理资源块PRB对所述DMRS端口进行信道估计;和/或,在所述DMRS端口所在的物理资源块PRB对所述DMRS端口对应的所述第一信号的数据流进行信道估计。
可选地,所述方法还包括:
在对所述第一信号进行调度时,将所述第一信号的调度带宽划分为N个子带,不同子带的信干噪比是基于不同的预编码矩阵或SRS端口计算得到的,N为大于1的整数。
可选地,所述第一信号中的同一数据流在不同子带基于不同的DMRS端口进行传输。
可选地,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的PA、SRS端口或第一端口中的至少一者。
可选地,所述DMRS端口与所述SRS端口一一对应。
可选地,在所述对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测的步骤之前,所述方法还包括:
从所述第一设备接收第五信息,根据所述第五信息确定所述第一信号的调度信息;其中,
所述第五信息指示以下至少一项:
所述第一设备的相干传输能力;
所述第一设备通过最大发送功率发送所述第一信号的能力。
可选地,在所述对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测的步骤之前,所述方法还包括:
向所述第一设备发送第二信息,其中,所述第二信息指示以下至少一项:
所述第一设备使用的第一功率控制策略;
所述第一设备通过最大发送功率发送所述第一信号以及所述第一信号对应的DMRS;
所述第一信号的传输模式;
所述第一信号的预编码矩阵为传输流数小于或等于K的码字,其中,K为大于或等于1的整数;
所述第一信号的传输流数小于或等于M,其中,M为大于或等于1的整数;
所述第一信号的预编码矩阵为非相干码字;
所述第一信号的预编码矩阵为部分相干码字;
所述第一信号的预编码矩阵为非相干码字或部分相干码字。
可选地,所述方法还包括:
向所述第一设备发送第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
可选地,所述方法还包括:
向所述第一设备发送第四信息,所述第四信息包括以下至少一项:
所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
一个或多个数据流能够映射的DMRS端口。
可选地,所述方法还包括:
向所述第一设备发送信令,所述信令用于所述第一设备确定以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
可选地,所述方法还包括:
从所述第一设备接收信令;
根据所述信令,确定以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
可选地,所述信令包括:
一个预定义的子带的预编码矩阵;或者,
多个预编码矩阵,所述多个预编码矩阵中的预编码矩阵与子带具有预定义的对应关系。
可选地,所述第一信号的子带通过以下至少一种方式确定:
根据子带的数量和为所述第一信号分配的资源划分得到的,其中,所述子带的数量是由所述第一设备和第二设备预先约定的;
根据所述第一信号的系统带宽或BWP中的子带划分情况和所述第一信号的调度信息确定根据所述第一信号分配的资源划分得到。
可选地,所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带按照预定义的子带划分方式确定的。
可选地,所述预定义的子带划分方式包括:
所述第一信号的系统带宽包括S个子带,每个子带的最小单元为P个连续的PRB,在一个子带中,每隔P*S个PRB,出现一个最小单元,其中P为大于等于1的整数,S是一个正整数,所述S由网络侧配置或者由协议约定。
可选地,所述方法还包括:
确定所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移。
可选地,所述方法还包括:
向所述第一设备发送关于确定所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移的指示信息。
可选地,所述方法还包括:
向所述第一设备发送资源指示信息;其中,所述资源指示信息指示以下至少一项:
所述第一信号在整个带宽或带宽部分BWP的资源分配情况;
所述第一信号在预定义子带的资源分配情况;
所述第一信号在一个或多个子带的资源分配情况。
可选地,所述方法还包括:
接收所述第二设备发送的资源指示信息;根据所述资源指示信息确定所属第一信号被分配的资源和各个子带;
其中,所述资源指示信息指示以下至少一项:
所述第一信号在整个带宽或BWP的资源分配情况;
所述第一信号在预定义子带的资源分配情况;
所述第一信号在一个或多个子带的资源分配情况。
可选地,所述方法还包括:
根据所述第一设备发送的所述第一信号的资源指示信息和所述第一信号的预编码,确定映射所述DMRS的PRB。
可选地,所述对第一设备发送的第一信号进行检测,包括:
在所述第二设备为所述第一设备指示的传输资源的所有PRB上,对第一设备发送的第一信号进行检测;或者,
在所述第一设备为所述第二设备指示的传输资源的所有PRB上,对第一设备发送的第一信号进行检测;或者,
在所述第一信号的每个数据流对应的DMRS端口所在的PRB上,对第一设备发送的第一信号进行检测。
可选地,所述第一信号为上行信号,所述第一设备为终端,所述第二设备为网络设备;或者,所述第一信号为下行信号,所述第一设备为网络设备,所述第二设备为终端。
第三方面,本公开实施例还提供一种第一设备,包括:
第一发送模块,用于向第二设备发送第一信号,以及所述第一信号对应的解调参考信号DMRS,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;
其中,不同的所述DMRS端口对应于不同的PA、不同的SRS端口或不同的第一信号端口中的至少一者。
第四方面,本公开实施例还提供一种第一设备,包括:第一收发机和第一处理器,其中,
所述第一收发机,用于向第二设备发送第一信号,以及所述第一信号对应的解调参考信号DMRS,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;
其中,不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
第四方面,本公开实施例还提供一种第二设备,包括:
检测模块,用于对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测;
其中,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;
不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
第五方面,本公开实施例还提供一种第二设备,包括:第二收发机和第二处理器,其中,
所述第二处理器用于对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测;其中,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
第六方面,本公开实施例还提供一种通信设备,其包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面或第二方面所述的数据传输方法的步骤。
第七方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面或第二方面所述的数据传输方法的步骤。
本公开实施例可以使得终端更有效地利用PA的发送功率,提高终端的性能及系统性能。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为基于码本的上行传输示意图;
图2本公开实施例的无线通信系统的架构示意图;
图3为本公开实施例的数据传输方法的流程图之一;
图4为本公开实施例的数据传输方法的流程图之二;
图5为本公开实施例的集中式子带示意图;
图6为本公开实施例的分布式子带示意图;
图7为本公开实施例的SRS的资源分配示意图之一;
图8为本公开实施例的SRS的资源分配示意图之二;
图9为本公开实施例的第一设备的结构示意图之一;
图10为本公开实施例的第一设备的结构示意图之二;
图11为本公开实施例的第二设备的结构示意图之一;
图12为本公开实施例的第二设备的结构示意图之二;
图13为本公开实施例的终端的结构示意图;
图14为本公开实施例的网络设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包括,例如,包括了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包括单独A,单独B,以及A和B都存在三种情况,例如A和/或B和/或C,表示包括单独A,单独B,单独C,A和B、A和C、B和C、A和B和C都存在的情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本文所描述的技术不限于新空口NR(New Radio)系统,长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。
术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如 CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。
本公开实施例中,接入网的形式不限,可以是包括宏基站(Macro Base Station)、微基站(Pico Base Station)、Node B(3G移动基站的称呼)、增强型基站(eNB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB或HeNB)、中继站、接入点、远端射频模块(Remote Radio Unit,RRU)、射频拉远头(Remote Radio Head,RRH)等的接入网。基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。用户终端(User Equipment,UE)可以是移动电话(或手机),或者其它能够发送或接收无线信号的设备,包括用户设备、个人数字 助理(PDA)、无线调制解调器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为WiFi信号的客户终端(Customer Premise Equipment,CPE)或移动智能热点、智能家电、或其它不通过人的操作就能自发与移动通信网络通信的设备等。
为了便于理解本公开实施例,先介绍以下技术点:
3GPP NR系统的物理上行共享信道(Physical Uplink Shared CHannel,PUSCH)支持基于码本的传输和非码本传输两种上行传输方案。
(1)基于码本的上行传输方案基本原理。
基于码本的上行传输方案是基于固定码本确定上行传输预编码矩阵的多天线传输技术。NR系统中,基于码本的上行传输方案与LTE系统中的上行空间复用技术基本原理相似,但是所采用的码本和预编码指示方式有所不同。对于基于码本的上行传输,终端(User Equipment,UE)被配置一个或两个探测参考信号(Sounding reference signal,SRS)资源用于上行信道的估计和测量,每个SRS资源可以包括N个天线端口(N大于等于1)。基站通过测量SRS,确定PUSCH传输对应的传输预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI)等,将其指示给UE。TPMI用于指示N天线的码本中的一个预编码矩阵。如图1所示,NR系统中基于码本的上行传输方案的流程包括:
步骤1:UE向基站发送用于基于码本的上行传输方案信道状态信息(Channel State Information,CSI)获取的SRS。
步骤2:基站根据UE发送的SRS进行上行信道检测,对UE进行资源调度,并确定出上行传输对应的SRS资源、上行传输的层数和预编码矩阵,进一步根据预编码矩阵和信道信息,确定出上行传输的调制与编码策略(Modulation and Coding Scheme,MCS)等级,然后基站将PUSCH的资源分配和相应的MCS、TPMI、传输层数和对应的SRS资源指示(SRS resource indicator,SRI)通知给UE。
步骤3:UE根据基站指示的MCS对数据进行调制编码,并利用所指示的SRI、TPMI和传输层数确定数据发送时使用的预编码矩阵和传输层数,进而对数据进行预编码及发送。PUSCH解调参考信号(Demodulation Reference  Signal,DMRS)与PUSCH的数据采用相同的预编码方式,即一个PUSCH数据流对应于一个DMRS端口。
步骤4:基站根据解调导频信号估计上行信道,并进行数据检测。
一个UE可以具有多个功率放大器(Power Amplifier,PA),不同的PA之间可能可以相干传输或非相干传输。当两个天线端口对应的PA满足相干条件时,UE可以通过预编码利用这两个天线端口同时进行同一层的数据传输,以获得阵列增益。对于不能做到天线相干传输的UE,基站在计算TPMI时UE天线间的相位差和UE接收到TPMI后进行PUSCH传输时天线间的相位差之间可能存在较大的差值,如果TPMI指示了不能相干传输的天线用于相同数据层的传输,UE最优的上行传输预编码可能并不是TPMI所指示的预编码,即终端使用基站通过TPMI指示的预编码进行PUSCH的传输并不能获得较好的性能。
NR系统定义了三种UE的天线相干传输能力:
(1)全相干(fullCoherent):所有的天线都可以相干传输;
(2)部分相干(partialCoherent):同一相干传输组内的天线可以相干传输,相干传输组之间不能相干传输;
(3)非相干(nonCoherent):没有天线可以相干传输。
基站可以基于UE的天线相干传输能力向UE发送码本子集限制信令,限制UE使用其中的一部分码字用于上行传输。对于相干传输能力为全相干(“fullCoherent”)的UE,基站可以通过无线资源控制(Radio Resource Control,RRC)信令为其配置对应于“fullyAndPartialAndNonCoherent”或“partialAndNonCoherent”或“nonCoherent”的码本子集限制;对于相干传输能力为部分相干(“partialCoherent”)的UE,基站可以通过RRC信令为其配置对应于“partialAndNonCoherent”或“nonCoherent”的码本子集限制;对于相干传输能力为非相干(“nonCoherent”)的UE,基站可以通过RRC信令为其配置对应于“nonCoherent”的码本子集限制。其中,“nonCoherent”的码本子集限制对应的码本只包括非相干的码字;“partialAndNonCoherent”码本子集限制对应的码本包括非相干和部分相干的码字;fullyAndPartialAndNonCoherent”码本子集限制对应的码本包括非相干码字、 部分相干的码字以及全相干的码字。
一个非相干的码字满足以下条件:每个PUSCH层(layer)只有一个激活的天线端口(码字中的每个layer只有一个天线端口对应的元素非零)。
一个部分相干的码字满足以下条件:每个PUSCH层(layer)最多有两个激活的天线端口(码字中的每个layer最多有两个天线端口对应的元素非零),至少存在一个PUSCH层有两个激活的天线端口。
一个全相干的码字满足以下条件:至少存在一个PUSCH层(layer)使用了所有的天线端口(码字中至少存在一个layer在所有的天线端口对应的元素非零)。
换言之,部分相干传输的码字中的任一列只有对应于属于同一个相干传输天线组的非零元素(在3GPP NR系统中,第1、3天线为一个相干传输天线组,第2、4天线为另一个相干传输天线组);非相干传输码字中的任一列只有对应于一个天线的非零元素;全相干传输码字中至少一列所有元素非零。
为了便于理解,下面列出了3GPP NR系统Rel-15中的上行码本,并给出了对应于上述定义的具体的码字类型。
表1:用于使用两个天线端口的单层传输的预编码矩阵W(Precoding matrix W for single-layer transmission using two antenna ports)。其中,TPMI index为0~1的码字为非相干传输的码字;其他码字为全相干传输的码字。
Figure PCTCN2020084200-appb-000001
表2:DFT-S-OFDM波形下的四个天线端口的单层传输的预编码矩阵W,(Precoding matrix W for single-layer transmission using four antenna ports with transform precoding enabled)。其中,TPMI index为0~3的码字为非相干传输的码字;TPMI index为4~11的码字为部分相干传输的码字;其他码字为全相干传输的码字。
Figure PCTCN2020084200-appb-000002
表3:CP-OFDM波形下使用四个天线端口进行单层传输的预编码矩阵W(Precoding matrix W for single-layer transmission using four antenna ports with transform precoding disabled)。其中,TPMI index为0~3的码字为非相干传输的码字;TPMI index为4~11的码字为部分相干传输的码字;其他码字为全相干传输的码字。
Figure PCTCN2020084200-appb-000003
表4:CP-OFDM波形下使用两个天线端口进行双层传输的预编码矩阵W(Precoding matrix W for two-layer transmission using two antenna ports with  transform precoding disabled)。其中,TPMI index为0的码字为非相干传输的码字;TPMI index为1~2的码字为全相干传输的码字。
Figure PCTCN2020084200-appb-000004
表5:CP-OFDM波形下用于使用四个天线端口进行两层传输的预编码矩阵W(Precoding matrix W for two-layer transmission using four antenna ports with transform precoding disabled)。其中,TPMI index为0~5的码字为非相干传输的码字;TPMI index为6~13的码字为部分相干传输的码字;其他码字为全相干传输的码字。
Figure PCTCN2020084200-appb-000005
表6:CP-OFDM波形下用于使用四个天线端口进行三层传输的预编码矩阵W(Precoding matrix W for three-layer transmission using four antenna ports with transform precoding disabled)。其中,TPMI index为0的码字为非相干传输的码字;TPMI index为1~2的码字为部分相干传输的码字;其他码字为 全相干传输的码字。
Figure PCTCN2020084200-appb-000006
表7:CP-OFDM波形下用于使用四个天线端口进行四层传输的预编码矩阵W(Precoding matrix W for four-layer transmission using four antenna ports with transform precoding disabled)。其中,TPMI index为0的码字为非相干传输的码字;TPMI index为1~2的码字为部分相干传输的码字;其他码字为全相干传输的码字。
Figure PCTCN2020084200-appb-000007
(2)UE的PA结构。
具有特定功率等级(Power Class,PC)能力的一个UE需要满足一个最大输出功率(或者称为最大发射功率、最大发送功率)的要求。例如,对于功率等级为PC3的UE,其最大输出功率需要可以达到23dBm;对于功率等级为PC2的UE,其最大输出功率需要可以达到26dBm。对于一个具有多个PA的UE来说,它可以通过使用多个PA同时发送来达到最大输出功率要求。即,不要求UE的每个PA可以达到UE的功率等级所要求的最大输出功率。
举例来说,对于一个有两根发送天线(或两个PA),每个发送天线(或PA)都可以达到20dBm的UE,它可以通过两根天线同时发送达到23dBm,则该UE是一个PC3的UE。
(3)上行多输入多输出(Multiple-Input Multiple-Output,MIMO)功率 控制。
在NR系统中,采用上行MIMO的PUSCH的多天线功率分配方式为:UE将根据上行功率控制公式计算出的发送功率按照实际发送信号的端口数在终端支持的一个SRS资源里的最大SRS端口数中的占比进行功率缩放,然后将缩放后的功率在实际发送信号的天线端口上均分。
举例来说,假设终端支持的一个SRS资源里的最大SRS端口数为4,上行传输配置了4个天线端口,基站指示的预编码矩阵为
Figure PCTCN2020084200-appb-000008
UE根据PUSCH功率控制公式计算出的发送功率为P,则PUSCH的实际发送功率为P/2,其中第一个天线端口和第三个天线端口的发送功率各为P/4。这种缩放不要求UE的每个天线端口都可以达到最大发送功率,允许UE使用更低成本的射频元件实现多天线功能。
根据上述功率控制方案,当基站为UE指示的TPMI为非相干码字或部分相干码字时,UE无法按照最大发送功率发送上行信号,即无法满功率发送。
从UE性能的角度来说,当UE位于小区边缘或信道条件较差时,基站通常给UE配置一个低rank(秩)的传输(低rank传输是指较低流数的传输),且尽可能地以最大发送功率传输数据。在NR系统的码本设计下,对于基于码本的上行传输来说,具有部分天线相干传输能力和非相干传输能力的UE在低rank传输时总是有一部分天线端口没有PUSCH的传输。因此,当前的上行MIMO多天线功率分配机制无法保证在基于码本的上行传输方案下具有部分天线相干传输能力和非相干传输能力的UE在低rank传输时可以达到最大发送功率,从而降低了UE在小区边缘时的性能,影响小区的覆盖。
为了使得UE可以实现满功率发送,最简单的方式就是UE使用更好的PA,例如,每个PA都可以达到最大输出功率,或者部分PA可以达到最大输出功率,然后修改功率控制策略(或者称为功率控制准则),允许UE使用部分PA的时候使用最大输出功率发送上行信号,但这样会增加UE的成本。
在不要求UE的任何一个PA都可以达到最大输出功率要求的情况下,可以考虑UE在不同的带宽使用不同的PA发送数据,从而使得总的输出功率达到最大输出功率要求。例如,UE在一半的带宽使用一个PA使用23dBm发 送数据,在另一半的带宽使用另一个PA用23dBm的功率发送数据,则总的发送功率可以达到26dBm。然而,相关技术无法支持这种传输方案。
下面结合附图介绍本公开的实施例。本公开实施例提供的数据传输方法和设备可以应用于无线通信系统中。该无线通信系统可以为5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
参考图2,为本公开实施例提供的一种无线通信系统的架构示意图。如图2所示,该无线通信系统可以包括:网络设备20和终端(例如用户设备(User Equipment,UE)),例如,终端记做UE21,UE21可以与网络设备20通信(传输信令或传输数据)。在实际应用中上述各个设备之间的连接可以为无线连接,为了方便直观地表示各个设备之间的连接关系,图2中采用实线示意。
需要说明的是,上述通信系统可以包括多个UE21,网络设备20可以与多个UE21通信。
本公开实施例提供的网络设备20可以为基站,该基站可以为通常所用的基站,也可以为演进型基站(evolved node base station,eNB),还可以为5G系统中的网络设备(例如,下一代基站(next generation node base station,gNB)或发送和接收点(transmission and reception point,TRP))等设备。
本公开实施例提供的用户设备可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
参见图3,本公开实施例提供一种数据传输方法,该方法的执行主体可以为第一设备,包括步骤301,具体步骤如下:
步骤301:向第二设备发送第一信号,以及第一信号对应的DMRS,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;其中,不同的DMRS端口对应于不同的PA、不同的SRS端口或不同的第一信号端口中的至少一者。
示例性地,DMRS端口1对应PA1,DMRS端口2对应PA2;或者,DMRS端口1对应SRS端口1,DMRS端口2对应SRS端口2;或者,DMRS端口1 对应第一信号端口1,DMRS端口2对应第一信号端口2;或者,DMRS端口1对应PA1和SRS端口1,DMRS端口对应PA2和SRS端口2;或者,DMRS端口1对应PA1、SRS端口1和第一信号端口1,DMRS端口2对应PA2、SRS端口2和第一信号端口2。可以理解的是,上面仅以DMRS端口1和DMRS端口2为例,其他情形与此类似。
在本公开实施例中,可选地,所述第一信号可以为上行信号,所述第一设备为终端,所述第二设备为网络设备;或者,所述第一信号也可以为下行信号,所述第一设备为网络设备,所述第二设备为终端。
可选地,所述第一信号为PUSCH,所述第一信号端口为PUSCH端口。
可选地,所述第一信号为物理上行控制信道(Physical Uplink control CHannel,PUCCH),所述第一信号端口为PUCCH端口。
可选地,所述第一信号为物理下行共享信道(Physical Downlink Shared CHannel,PDSCH),所述第一信号端口为PDSCH端口。
可选地,所述第一信号为P物理下行控制信道(Physical Downlink control CHannel,PDCCH),所述第一信号端口为PDCCH端口。。
可选地,不同的DMRS端口对应于不同的用于第一信号信道状态信息(Channel State Information,CSI)获取的参考信号端口。例如,在第一信号为PUSCH时,用于第一信号CSI获取的参考信号为SRS,PUSCH对应的DMRS的不同端口对应于不同的SRS端口。再例如,在第一信号为PDSCH时,用于第一信号CSI获取的参考信号为CSI—RS,PDSCH对应的DMRS的不同端口对应于不同的CSI—RS端口。
在本公开实施例中,可选地,所述第一信号中的同一数据流在至少两个频域位置基于不同的DMRS端口进行传输。可选地,所述第一信号中的同一数据流在一个频域位置基于一个DMRS端口传输。
举例来说,在频域资源映射时,一组物理资源模块(Physical Resource Block,PRB)内一个数据流基于相同的DMRS端口传输,一个数据流在不同PRB组基于不同的DMRS端口进行传输。在有第一信号的数据流到DMRS端口通过预编码矩阵映射时,第一信号的一个数据流基于某个DMRS端口传输是指这个数据流对应的预编码向量中这个DMRS端口存在有非零元素。例如, 以第一信号为PUSCH为例,在有PUSCH层到DMRS端口通过预编码矩阵映射时,若基站为PUSCH配置了4个DMRS端口,当PUSCH为单流传输时,在第一个PRB组内PUSCH数据流到DMRS端口映射的预编码矩阵为[1 0 0 0]T,则在第一个PRB组内该PUSCH基于第一个DMRS端口传输;在第一个PRB组内PUSCH数据流到DMRS端口映射的预编码矩阵为[0 1 0 0]T,则在第一个PRB组内该PUSCH基于第二个DMRS端口传输。
在本公开实施例中,可选地,第一信号中的同一数据流在不同的子带基于不同的DMRS端口进行传输。可选地,同一数据流在同一个子带基于一个DMRS端口传输。例如,在所述第一信号为单流传输时,第一个子带基于DMRS端口0传输,第二个子带基于DMRS端口1进行传输。
可选地,第一信号中的同一数据流在不同的子带基于不同的SRS端口进行传输。可选地,第一信号中的同一数据流在同一个子带基于一个SRS端口传输。
可选地,在不同的子带,上行信号对应的预编码矩阵不同。
可选地,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的用于第一信号CSI获取的参考信号端口。
在本公开实施例中,可选地,所述DMRS端口与用于所述第一信号CSI获取的参考信号端口一一对应。
在本公开实施例中,可选地,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的PA、SRS端口或第一端口中的至少一者。
在本公开实施例中,可选地,所述DMRS端口与所述SRS端口一一对应。
在本公开实施例中,可选地,步骤301中的向第二设备发送第一信号,包括:
根据第一发送功率,向所述第二设备发送所述第一信号;
其中,所述第一发送功率是根据第一比值和所述第一信号的发送功率确定的,所述第一比值为映射有所述第一信号的数据传输的DMRS端口在所述第二设备为所述第一信号配置的所有DMRS端口数中的占比;或者第一比值为映射有所述第一信号的数据传输的SRS端口在所述第二设备为所述第一信号配置的所有SRS端口数中的占比。
可选地,所述根据第一发送功率,向所述第二设备发送所述第一信号,可以为:发送第一信号的功率为将所述第一信号的发送功率使用第一比值缩放后,在有数据传输的第一信号的天线端口上均匀分配。
可选地,根据第一比值和所述第一信号的发送功率确定所述第一信号对应的DMRS的发送功率。
可以理解的是,上述第一信号的发送功率可以是第一设备根据现有的功率控制公式计算出的发送功率。例如,在PUSCH时,为在当前的3GPP NR系统中,根据TS38.213的第7.1.1节的公式计算出的P PUSCH,b,f,c(i,j,q d,l)。
在本公开实施例中,可选地,在步骤301之前,所述方法还可以包括:
向所述第二设备发送第一信息,所述第一信息指示所述第一设备具有通过最大发送功率发送所述第一信号的能力(或者称为具有满功率发送第一信号的能力);
相应地,步骤301中的向第二设备发送第一信号,以及所述第一信号对应的DMRS,包括:
根据所述第一信息指示的能力,向所述的第二设备发送所述第一信号,以及所述第一信号对应的DMRS。
在本公开实施例中,可选地,在步骤301之前,所述方法还可以包括:从所述第二设备接收第二信息;
相应地,步骤301中的向第二设备发送第一信号,以及所述第一信号对应的DMRS,包括:
根据所述第二信息,向所述的第二设备发送所述第一信号,以及所述第一信号对应的DMRS;
其中,所述第二信息可以指示以下至少一项:
(1)所述第一设备使用的第一功率控制策略;
(2)所述第一设备通过最大发送功率发送所述第一信号发送所述第一信号以及所述第一信号对应的DMRS;
(3)所述第一信号的预编码矩阵为传输流数小于或等于K的码字,其中,K为大于或等于1的整数;
(4)所述第一信号的传输流数小于或等于M,其中,M为大于或等于1的整数;
(5)所述第一信号的预编码矩阵为非相干码字;
(6)所述第一信号的预编码矩阵为非相干码字或部分相干码字。
(7)所述第一信号的传输模式;
(8)所述第一信号的预编码矩阵为部分相干码字。
其中,第一功率控制策略可以包括:根据映射有所述第一信号的数据传输的DMRS端口在所述第二设备为所述第一信号配置的所有DMRS端口数中的占比或映射有所述第一信号的数据传输的SRS端口在所述第二设备为所述第一信号配置的所有SRS端口数中的占比对第一信号的发送功率进行缩放的控制策。
其中,第一功率控制策略也可以是本公开实施例提出的发送所述第一信号的传输方法所对应得功率控制策略,在这种情况下,采用本公开实施例所提出的发送方案。
若第二设备指示的功率控制策略为第一设备不能满功率发送的功率控制策略,则可以不采用本公开实施例提出的方案进行第一信号的传输,而采用常规的基于码本的上行传输方案进行第一信号的传输。
所述第一信号的传输模式可以为基于本公开所提出方案的传输模式等。
若第二设备指示的传输模式为常规的基于码本的上行传输等,则不采用本公开实施例提出的方法进行所述第一信号的传输,而是采用第二设备指示的传输模式相对应的传输方案进行所述第一信号的传输。
在本公开实施例中,可选地,在步骤301之前,所述方法还可以包括:从所述第二设备接收第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
在本公开实施例中,可选地,所述方法还可以包括:向所述第二设备发送第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
在本公开实施例中,可选地,所述第一信号的数据流通过预编码矩阵映射到不同的所述DMRS端口。可选地,上行信号的数据流通过预编码矩阵映 射到不同的DMRS端口上,即,在不同的子带,上行信号对应的预编码矩阵不同。
在本公开实施例中,可选地,所述方法还可以包括:
从所述第二设备接收第四信息,所述第四信息可以包括以下至少一项:
(1)所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
(2)一个或多个数据流能够映射的DMRS端口。
在本公开实施例中,可选地,所述方法还包括:从第二设备接收关于从数据流到DMRS端口映射的预编码矩阵的码本子集信息,指示第一信号可以使用的预编码矩阵的集合。
在本公开实施例中,可选地,从第二设备接收该第二设备指示第一信号各个数据流可以映射的DMRS端口。
在本公开实施例中,可选地,所述方法还可以包括:
向所述第二设备发送第四信息,所述第四信息可以包括以下至少一项:
(1)所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
(2)一个或多个数据流能够映射的DMRS端口。
在本公开实施例中,可选地,所述方法还包括:向第二设备发送关于从数据流到DMRS端口映射的预编码矩阵的码本子集信息,指示第一信号可以使用的预编码矩阵的集合。
在本公开实施例中,可选地,向第二设备指示第一信号各个数据流可以映射的DMRS端口。
在本公开实施例中,可选地,在步骤301之前,所述方法还可以包括:
根据第一规则,或者根据网络侧指示的信令,确定以下至少一项:
(1)第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
(2)第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
(3)第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
(4)第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
可以理解的是,子带的定义为:具有相同预编码矩阵的频域资源属于同一子带,具有不同预编码矩阵的频域资源属于不同子带;或者,同一个数据流映射至相同DMRS端口的频域资源属于同一子带,同一个数据流映射至不同DMRS端口的频域资源属于不同子带;或者,可传输同一个DMRS端口的PRB属于同一子带,传输不同DMRS的PRB属于不同子带;或者,可传输同一个SRS端口的PRB属于同一子带,传输不同SRS的PRB属于不同子带。
可选地,子带的定义是每数据流(per数据流)定义的。即对于不同的数据流有不同的子带的划分。
可选地,子带的定义是每用户(per UE)定义的。即对于不同的用户的第一信号有不同的子带的划分。
在本公开实施例中,可选地,所述第一规则由网络侧确定或指示,或者,所述第一规则由协议约定。
在本公开实施例中,若第一信号为上行信号,网络侧为第二设备,网络侧指示消息或信令为第二设备向第一设备指示消息或信令;若第一信号为下行信号,则网络侧为第一设备,网络侧指示消息或信令是指第一设备向第二设备指示消息或信令。
在本公开实施例中,可选地,所述方法还包括:向所述第二设备发送信令,所述信令指示以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
在本公开实施例中,可选地,所述信令可以包括:
(1)一个预定义的子带的预编码矩阵;或者,
(2)多个预编码矩阵,所述多个预编码矩阵中的预编码矩阵与子带具有预定义的对应关系,例如多个预编码矩阵中的预编码矩阵与子带具有一一对应的关系。
在本公开实施例中,可选地,所述方法还可以包括:
若所述第一信号为下行信号,第一设备向第二设备发送如下信息:
(1)第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
(2)第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
(3)第一信号对应的DMRS在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
(4)第一信号对应的DMRS在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
可选地,所述信息通过如下信息携带:
(1)一个预定义的子带的预编码矩阵;或者,
(2)多个预编码矩阵,所述多个预编码矩阵中的预编码矩阵与子带具有预定义的对应关系,例如多个预编码矩阵中的预编码矩阵与子带具有一一对应的关系。
在本公开实施例中,可选地,所述第一信号的子带通过以下至少一种方式确定:
(1)根据子带数量和所述第二设备为所述第一信号分配的资源划分得到的,其中,所述子带的数量是由所述第一设备和第二设备预先约定的;
示例性地,对于上行传输,第一设备根据第二设备为第一信号分配的资源确定S个子带对应的频域位置。对于下行传输,第二设备根据第一设备为第一信号分配的资源确定S个子带对应的频域位置。举例来说,假设子带的数量 为2,为所述第一信号分配的资源为PRB 0~PRB9,若预定义的规则为将为第一信号分配的资源在所有子带进行均分,则第一个子带为PRB 0~4,第二个子带为PRB 5~9.
(2)根据所述第一信号的系统带宽或带宽部分中的子带划分情况和所述第一信号的调度信息确定。
示例性地,第一信号的系统带宽或带宽部分(bandwidth Part,BWP)被划分成S个子带,根据第二设备为第一信号调度的资源落在哪个子带确定第一信号的子带(和对应的DMRS等)。
在本公开实施例中,可选地,所述第一信号的子带是由所述第一信号的系统带宽或者带宽部分(bandwidth Part,BWP)按照预定义的子带划分方式确定的。
示例性地,第一信号的系统带宽或BWP被划分成S个子带,将第二设备为第一信号调度的资源对应的子带确定为第一信号的子带,其中资源对应的子带是指资源落在该子带。例如,第一信号的BWP共20个PRB,编号为PRB 0~PRB 19,被划分成子带1和子带2,其中子带1为PRB 0~PRB 9,子带2为PRB 10~PRB 19.若第一信号被调度的资源为在PRB 8~PRB 10传输,则PRB 8和PRB 9为第一个子带,PRB 10为第二个子带。若第一信号被调度的资源为PRB 10~PRB 13,则第一信号中只有一个子带,即第二子带。
(3)根据所述第一信号分配的资源划分得到。如果第一信号为下行信号,第一设备可以根据第一信号分配的资源划分得到子带。可选地,根据子带数量和所述第二设备为所述第一信号分配的资源划分得到的。举例来说,假设子带的数量为2,为所述第一信号分配的资源为PRB 0~PRB9,若预定义的规则为将为第一信号分配的资源在所有子带进行均分,则第一个子带为PRB 0~4,第二个子带为PRB 5~9。
可选地,DMRS端口可映射的物理资源与子带的对应关系是协议预定义的。
可选地,DMRS端口可映射的物理资源与子带的对应关系是网络设备通过信令指示的。
可选地,SRS端口与子带的对应关系是协议预定义的。
可选地,SRS端口与子带的对应关系是网络设备通过信令指示的。
在本公开中,网络设备指示的信令可以为RRC信令,或MAC层信令,或物理层信令(如通过DCI指示的信令)。
在本公开实施例中,可选地,所述预定义的子带划分方式可以包括:
所述第一信号传输的系统带宽或BWP或所述第一信号被调度的频域资源包括S个子带,每个子带的最小单元为P个连续的PRB,在一个子带中,每隔P*S个PRB,出现一个最小单元,其中P为大于等于1的整数,S是一个正整数,S可以由网络侧配置或者由协议约定。可选地,不同的子带上映射不同的DMRS端口。可选地,不同的子带对应不同的SRS端口。
在本公开实施例中,可选地,所述P可以由网络侧配置或者由协议约定。
在本公开实施例中,可选地,所述S的取值与网络侧为所述第一信号配置的SRS资源的天线端口数相同。
在本公开实施例中,可选地,一个DMRS端口对应于指定的(或者称为固定的)PA,或者指定的(或者称为固定的)SRS端口。
在本公开实施例中,可选地,不同的DMRS端口只能在所述第一信号被调度的频域资源或系统带宽中或BWP中的不同的子带上传输。
在本公开实施例中,可选地,所述DMRS端口对应的所述第一信号被调度的频域资源或系统带宽中或BWP中的子带的位置偏移是网络侧配置的或者在协议约定的。
在本公开实施例中,可选地,所述方法还包括:
向所述第二设备发送DMRS资源指示信息,所述DMRS资源指示信息指示DMRS端口的频域资源位置。
在本公开实施例中,可选地,所述DMRS端口的发送功率比常规的在所述第一信号被调度资源中的所有PRB上传输的DMRS端口的发送功率高10×log 10(S)dB。
在本公开实施例中,可选地,所述方法还可以包括:
从所述第二设备接收所述第一信号的资源指示信息;
根据资源指示信息和所述第一信号的预编码,确定映射所述DMRS的PRB。
在本公开实施例中,可选地,只在存在数据流映射的PRB上发送DMRS,即一个DMRS端口只映射在有对应于所述DMRS端口的数据流传输的PRB上。
在本公开实施例中,可选地,在步骤301之前,所述方法还可以包括:
接收所述第二设备发送的DMRS资源指示信息,所述DMRS资源指示信息指示DMRS端口的频域资源位置;
根据所述DMRS资源指示信息确定所述第一信号对应的DMRS的频域资源位置。
在本公开实施例中,可选地,所述DMRS的资源分配由PRB级或PRB组级的频域偏移确定。
在本公开实施例中,可选地,在步骤301中的向第二设备发送第一信号,包括:
通过第一传输方式,向第二设备发送第一信号,其中所述第一传输方式可以包括以下至少一项:
(1)所述第一信号的每个数据流都传输在所述第二设备为所述第一设备指示的传输资源的所有PRB上;
(2)所述第一信号的每个数据流只传输在与该数据流对应的DMRS端口所在的PRB上。
在本公开实施例中,可选地,在步骤301之前,所述方法还可以包括:
根据资源指示信息,确定所述第一信号的传输资源;其中,所述资源指示信息可以包括以下至少一项:
(1)所述第一信号在整个带宽或BWP的资源分配情况;
(2)所述第一信号在预定义子带的资源分配情况;
(3)所述第一信号在一个或多个子带的资源分配情况。
在本公开实施例中,可选地,所述SRS端口的资源分配方式可以包括以下至少一项:
(1)所述SRS端口的资源分配与所述DMRS端口和所述SRS端口的映射无关;
(2)一个所述SRS端口只映射在部分带宽上,或者一个所述SRS端口只映射在所述第二设备为所述SRS端口分配的子带上。
在本公开实施例中,可选地,所述第一信号基于每个PRB中的与所述第一信号对应的DMRS端口进行速率匹配。
举例来说,根据DMRS端口的实际传输情况进行速率匹配。例如,若一个DMRS端口只映射在了编号为奇数的PRB上,则在编号为奇数的PRB对这个DMRS端口占用的RE进行速率匹配,在编号为偶数的PRB不对这个DMRS端口进行速率匹配。
再例如,所述第一信号基于有数据流映射的DMRS端口在每个PRB都存在的假设进行速率匹配。例如,即时一个DMRS端口只映射在了编号为奇数的PRB上,PUSCH传输时仍然在所有的PRB对这个DMRS端口进行速率匹配。
本公开实施例可以使得终端更有效地利用PA的发送功率,提高终端的性能及系统性能。
参见图4,本公开实施例提供一种数据传输方法,该方法的执行主体可以为第二设备,包括步骤401,具体步骤如下:
步骤401:对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测;其中,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;不同的所述DMRS端口对应于PA、SRS端口或第一信号端口中的至少一者。
在本公开实施例中,可选地,所述第一信号为上行信号,所述第一设备为终端,所述第二设备为网络设备;或者,所述第一信号为下行信号,所述第一设备为网络设备,所述第二设备为终端。
可选地,所述第一信号为PUSCH,所述第一信号端口为PUSCH端口。
可选地,所述第一信号为物理上行控制信道(Physical Uplink control CHannel,PUCCH),所述第一信号端口为PUCCH端口。
可选地,所述第一信号为物理下行共享信道(Physical Downlink Shared CHannel,PDSCH),所述第一信号端口为PDSCH端口。
可选地,所述第一信号为P物理下行控制信道(Physical Downlink control CHannel,PDCCH),所述第一信号端口为PDCCH端口。。
可选地,不同的DMRS端口对应于不同的用于第一信号信道状态信息(Channel State Information,CSI)获取的参考信号端口。例如,在第一信号 为PUSCH时,用于第一信号CSI获取的参考信号为SRS,PUSCH对应的DMRS的不同端口对应于不同的SRS端口。再例如,在第一信号为PDSCH时,用于第一信号CSI获取的参考信号为CSI—RS,PDSCH对应的DMRS的不同端口对应于不同的CSI—RS端口。
在本公开实施例中,可选地,所述方法还可以包括:在所述DMRS端口所在的PRB对所述DMRS端口进行信道估计;和/或,对所述DMRS端口对应的所述第一信号的数据流进行信道估计。可选地,对于DMRS信道估计,在插值的时候只在DMRS端口所在的子带对DMRS端口进行插值。
可选地,对于DMRS信道估计,在插值的时候在所有的PRB上进行插值。可选地,所述第二设备在对所述第一信号进行信道估计时,在各个子带分别进行信道估计。例如,在各个子带分别进行信道插值。可选地,对于所述第一信号的信道估计,在插值的时候只在DMRS端口所在的子带进行插值。可选地,对于所述第一信号的信道估计,在插值的时候在所述第一信号被调度带宽的所有的PRB上进行插值。
在本公开实施例中,可选地,所述方法还可以包括:
在对所述第一信号进行调度时,将所述第一信号的调度带宽划分为N个子带,不同子带的信干噪比是基于不同的预编码矩阵或SRS端口计算得到的,N为大于1的整数。
在本公开实施例中,可选地,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的PA、SRS端口或第一端口中的至少一者。
在本公开实施例中,可选地,所述DMRS端口与所述SRS端口一一对应。
在本公开实施例中,可选地,在所述对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测的步骤之前,所述方法还可以包括:
从所述第一设备接收第五信息,根据所述第五信息确定所述第一信号的调度信息,所述第五信息可以指示以下至少一项:
(1)所述第一设备的相干传输能力;
(2)所述第一设备通过最大发送功率发送所述第一信号的能力。
示例性地,根据第一发送功率确定所述第一信号的调度信息;
其中,第一发送功率是根据第一比值和所述第一信号的发送功率确定的, 所述第一比值为映射有所述第一信号的数据传输的DMRS端口在所述第二设备为所述第一信号配置的所有DMRS端口数中的占比;或者所述第一比值为映射有所述第一信号的数据传输的SRS端口在所述第二设备为所述第一信号配置的所有SRS端口数中的占比。
在本公开实施例中,可选地,同一数据流在不同的子带基于不同的DMRS端口进行传输。可选地,同一数据流在同一个子带基于一个DMRS端口传输。
可选地,在不同的子带,上行信号对应的预编码矩阵不同。
可以理解的是,子带的定义为:具有相同预编码矩阵的频域资源属于同一子带,具有不同预编码矩阵的频域资源属于不同子带;或者,同一个数据流映射至相同DMRS端口的频域资源属于同一子带,同一个数据流映射至不同DMRS端口的频域资源属于不同子带;或者,可传输同一个DMRS端口的PRB属于同一子带,传输不同DMRS的PRB属于不同子带;或者,可传输同一个SRS端口的PRB属于同一子带,传输不同SRS的PRB属于不同子带。
可选地,子带的定义是每数据流(per数据流)定义的。即对于不同的数据流有不同的子带的划分。
可选地,子带的定义是每用户(per UE)定义的。即对于不同的用户的第一信号有不同的子带的划分。
可选地,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的用于第一信号CSI获取的参考信号端口。
在本公开实施例中,可选地,所述DMRS端口与用于所述第一信号CSI获取的参考信号端口一一对应。
在本公开实施例中,可选地,所述对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测的步骤之前,所述方法还可以包括:
向所述第一设备发送第二信息,其中,所述第二信息可以指示以下至少一项:
(1)所述第一设备使用的第一功率控制策略;
(2)所述第一设备通过最大发送功率发送所述第一信号以及所述第一信号对应的DMRS;
(3)所述第一信号的预编码矩阵为对应的传输流数小于或等于K的码 字,其中,K为大于或等于1的整数;
(4)所述第一信号的传输流数小于或等于M,其中,M为大于或等于1的整数;
(5)所述第一信号的预编码矩阵为非相干码字;
(6)所述第一信号的预编码矩阵为非相干码字或部分相干码字;
(7)所述第一信号的传输模式;
(8)所述第一信号的预编码矩阵为部分相干码字。
其中,第一功率控制策略可以包括:根据映射有所述第一信号的数据传输的DMRS端口在所述第二设备为所述第一信号配置的所有DMRS端口数中的占比或映射有所述第一信号的数据传输的SRS端口在所述第二设备为所述第一信号配置的所有SRS端口数中的占比对第一信号的发送功率进行缩放的控制策。
第一功率控制策略也可以是本公开实施例提出的发送所述第一信号的传输方法所对应得功率控制策略,在这种情况下,采用本公开实施例所提出的发送方案。
若第一功率控制策略为第一设备不能满功率发送的功率控制策略,则可以不采用本公开实施例提出的方案进行第一信号的传输,而采用常规的基于码本的上行传输方案进行第一信号的传输。
所述第一信号的传输模式可以为常规的基于码本的传输模式,基于本公开所提出方案的传输模式等。
可以理解的是,上述第一信号的发送功率可以是第一设备根据现有的功率控制公式计算出的发送功率。例如,在PUSCH时,为在当前的3GPP NR系统中,根据TS38.213的第7.1.1节的公式计算出的P PUSCH,b,f,c(i,j,q d,l)。
在本公开实施例中,可选地,所述方法还可以包括:向所述第一设备发送第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
在本公开实施例中,可选地,所述方法还可以包括:从所述第一设备接收第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
在本公开实施例中,可选地,所述第一信号的数据流通过预编码矩阵映射到不同的所述DMRS端口。可选地,上行信号的数据流通过预编码矩阵映射到不同的DMRS端口上,即,在不同的子带,上行信号对应的预编码矩阵不同。
在本公开实施例中,可选地,所述方法还可以包括:
向所述第一设备发送第四信息,所述第四信息可以指示以下至少一项:
(1)所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
(2)一个或多个数据流能够映射的DMRS端口。
在本公开实施例中,可选地,所述方法还可以包括:
从所述第一设备接收第四信息,所述第四信息可以指示以下至少一项:
(1)所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
(2)一个或多个数据流能够映射的DMRS端口。
在本公开实施例中,可选地,所述方法还包括:从第一设备接收关于从数据流到DMRS端口映射的预编码矩阵的码本子集信息,指示第一信号可以使用的预编码矩阵的集合。
在本公开实施例中,可选地,向第二设备指示第一信号各个数据流可以映射的DMRS端口。
在本公开实施例中,可选地,所述方法还可以包括:
向所述第一设备发送信令,所述信令用于所述第一设备确定以下至少一项:
(1)所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
(2)所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
(3)所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
(4)所述第一信号对应的DMRS端口在所述第一信号被调度的频域资 源中或系统带宽中或BWP中的各个子带对应的SRS端口。
在本公开实施例中,可选地,所述方法还可以包括:
从所述第一设备接收信令;
根据所述信令,确定以下至少一项:
(1)所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
(2)所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
(3)所述第一信号对应的DMRS在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
(4)所述第一信号对应的DMRS在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
在本公开实施例中,可选地,所述信令可以包括:
一个预定义的子带的预编码矩阵;或者,
多个预编码矩阵,所述多个预编码矩阵中的预编码矩阵与子带具有预定义的对应关系,例如预编码矩阵与子带具有一一对应的关系,当然并不限于此。
在本公开实施例中,可选地,所述第一信号的子带通过以下至少一种方式确定:
(1)根据为所述第一信号分配的资源划分得到的,其中,所述子带的数量是由所述第一设备和第二设备预先约定的;
示例性地,对于上行传输,第一设备根据第二设备为第一信号分配的资源确定S个子带对应的频域位置。对于下行传输,第二设备根据第一设备为第一信号分配的资源确定S个子带对应的频域位置。
(2)根据所述第一信号的系统带宽或带宽部分中的子带划分情况和所述第一信号的调度信息确定。
示例性地,第一信号的系统带宽或带宽部分(bandwidth Part,BWP)被划分成S个子带,根据第二设备为第一信号调度的资源落在哪个子带确定第一信号的子带(和对应的DMRS等)。
在本公开实施例中,可选地,所述第一信号使用的子带是由所述第一信号的系统带宽或者带宽部分(bandwidth Part,BWP)按照预定义的子带划分方式确定的。
示例性地,第一信号的系统带宽或BWP或所述第一信号被调度的频域资源被划分成S个子带,将第二设备为第一信号调度的资源对应的子带确定为第一信号的子带,其中资源对应的子带是指资源落在该子带。例如,第一信号的BWP共20个PRB,编号为PRB 0~PRB 19,被划分成子带1和子带2,其中子带1为PRB 0~PRB 9,子带2为PRB 10~PRB 19.若第一信号被调度的资源为在PRB 8~PRB 10传输,则PRB 8和PRB 9为第一个子带,PRB 10为第二个子带。若第一信号被调度的资源为PRB 10~PRB 13,则第一信号中只有一个子带,即第二子带。
(3)根据所述第一信号分配的资源划分得到。如果第一信号为下行信号,第一设备可以根据第一信号分配的资源划分得到子带。
可选地,DMRS端口可映射的物理资源与子带的对应关系是协议预定义的。
可选地,DMRS端口可映射的物理资源与子带的对应关系是网络设备通过信令指示的。
可选地,SRS端口与子带的对应关系是协议预定义的。
可选地,SRS端口与子带的对应关系是网络设备通过信令指示的。
在本公开中,网络设备指示的信令可以为RRC信令,或MAC层信令,或物理层信令(如通过DCI指示的信令)。
在本公开实施例中,可选地,所述预定义的子带划分方式包括:
所述第一信号传输的系统带宽包括S个子带,每个子带的最小单元为P个连续的PRB,在一个子带中,每隔P*S个PRB,出现一个最小单元,其中P为大于等于1的整数,S是一个正整数,所述S由网络侧配置或者由协议约定。
在本公开实施例中,可选地,所述P由网络侧配置或者由协议约定。
在本公开实施例中,可选地,所述S的取值与网络侧为所述第一信号配置的SRS资源的天线端口数相同。
在本公开实施例中,可选地,所述方法还包括:
根据所述第一设备的指示信息,或者协议约定,确定所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移。
在本公开实施例中,可选地,所述方法还可以包括:
向所述第一设备发送关于确定所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移的指示信息。
在本公开实施例中,可选地,所述方法还可以包括:
向所述第一设备发送资源指示信息;其中,所述资源指示信息可以指示以下至少一项:
(1)所述第一信号在整个带宽或BWP的资源分配情况;
(2)所述第一信号在预定义子带的资源分配情况;
(3)所述第一信号在一个或多个子带的资源分配情况。
在本公开实施例中,可选地,所述方法还可以包括:
接收所述第二设备发送的资源指示信息;根据所述资源指示信息确定所属第一信号被分配的资源和各个子带;
其中,所述资源指示信息指示以下至少一项:
所述第一信号在整个带宽或BWP的资源分配情况;
所述第一信号在预定义子带的资源分配情况;
所述第一信号在一个或多个子带的资源分配情况。
在本公开实施例中,可选地,所述方法还可以包括:
根据所述第一设备发送的所述第一信号的资源指示信息和所述第一信号的预编码,确定映射所述DMRS的PRB。
在本公开实施例中,可选地,所述对第一设备发送的第一信号进行检测,包括:
在所述第二设备为所述第一设备指示的传输资源的所有PRB上,对第一设备发送的第一信号进行检测;或者,
在所述第一设备为所述第二设备指示的传输资源的所有PRB上,对第一设备发送的第一信号进行检测;或者,
在所述第一信号的每个数据流对应的DMRS端口所在的PRB上,对第一设备发送的第一信号进行检测。
本公开实施例可以使得终端更有效地利用PA的发送功率,提高终端的性能及系统性能。
下面以上行传输为例进行阐述,可以理解的是,本公开实施例同样适用于下行传输。
以第一信号为上行信号,第一设备为UE,第二设备为网络设备为例。
传输方案:UE向网络设备发送上行信号和该上行信号对应的DMRS,其中上行信号的一个数据流(或称为层(layer))对应于多个DMRS端口;
-不同的DMRS端口对应于不同的功率放大器(Power Amplifier,PA)不同的SRS端口或不同的PUSCH端口中的至少一者。每个DMRS端口在它的传输带宽上的每个PRB对应于相同的PA、SRS端口或PUSCH端口中的至少一者。
-上行信号的调度带宽被分为若干个子带,同一个数据流在不同子带基于不同的DMRS端口进行传输。
可选地,上行信号的数据流通过预编码矩阵映射到不同的DMRS端口上去。即,在不同的子带,上行信号对应的预编码矩阵不同。
可选地,一个DMRS端口与SRS端口一一映射。
可选地,当上行信号包括多个数据流时,不同的数据流在同一个子带对应于不同的DMRS端口。
例如,对于一个2天线的UE,共有2个子带,在子带0,第一个数据流使用预编码矩阵[1 0]被映射至第一个DMRS端口上,第二个数据流使用预编码矩阵[0 1]被映射至第二个DMRS端口上;在子带1,第一个数据流使用预编码矩阵[0 1]被映射至第二个DMRS端口上,第二个数据流使用预编码矩阵[1 0]被映射至第一个DMRS端口上。
可选地,所述上行信号为PUSCH承载的信号,或者,所述上行信号为PUCCH承载的信号。
可选地,网络设备向UE发送DMRS端口对应的SRS端口的指示信息。
例如,对于一个可以4个天线端口发送的PUSCH承载的信号,网络设 备向UE指示第一个和第三个DMRS端口对应的SRS端口都是SRS端口0和1,第二个和第四个DMRS端口对应的SRS端口都是SRS端口3和4。
可选地,UE接收网络设备发送的关于从数据流到DMRS端口映射的预编码矩阵的码本子集信息,指示UE可以使用的预编码矩阵的集合。
可选地,网络设备指示UE各个数据流可以映射的DMRS端口。
可选地,UE在传输上行信号时,根据被调度的数据流映射的有数据传输的DMRS端口数在所有DMRS端口数中的占比对上行信号的发送功率进行缩放。通过这种方式,即使UE的每个PA都不能达到UE的PC能力所对应的最大输出功率,只要上行数据的传输用到了所有的DMRS端口,UE就能够使用最大输出功率进行上行传输。
可选地,UE向网络设备上报其具有满功率发送的能力,当UE上报了满功率发送能力时,采用上述传输方案进行传输;否则,使用相关技术中的上行传输方案传输。
可选地,网络设备向UE指示上行功率控制方案和/或传输方案,当网络设备指示UE使用满功率发送所对应的上行功率控制方案或者当网络设备指示UE使用上述传输方案时,UE采用上述传输方案进行传输;否则,使用相关技术中的上行传输方案传输。
可选地,网络设备向UE指示传输流数为小于或等于K的码字时,UE采用上述传输方案进行传输;否则,使用相关技术中的上行传输方案传输,其中,K为预定义的大于或等于1的整数。进一步地,所述预定义的方式可以是网络设备指示给UE的,也可以是协议约定的。
可选地,网络设备向UE指示的上行信号的传输流数为小于或等于K时,UE采用上述传输方案进行传输;否则,使用相关技术中的上行传输方案传输,其中,K为预定义的大于或等于1的整数。进一步地,所述预定义的方式可以是网络设备指示给UE的,也可以是协议约定的。
可选地,网络设备向UE指示的预编码矩阵为非相干码字时,UE采用上述传输方案进行传输;否则,使用相关技术中的上行传输方案传输。
可选地,网络设备向UE指示的预编码矩阵为非相干码字或部分相干码字时,UE采用上述传输方案进行传输;否则,使用相关技术中的上行传输方 案传输。
可选地,网络设备的行为为:
对上行信号和该上行信号对应的DMRS进行检测,其中,在对DMRS进行信道估计时,在DMRS所在的子带对DMRS进行信道估计。
可选地,在对上行信号进行调度时,将调度带宽划分为N个子带,每个子带使用不同的预编码矩阵计算信干噪比,从而进一步确定上行信号的传输流数、DMRS端口、MCS等级等信息。
可选地,网络设备在UE根据上述传输方案进行传输时才使用对应的方式进行处理。
可选地,网络设备只对传输能力为部分相干或非相干的UE采用上述对应的方式进行处理。
可以理解的是,本公开实施例也可用于下行传输,第一信号为下行信号。第一设备为网络设备,第二设备为UE。下行信号可以为PDSCH承载的信号,PDCCH承载的信号等。
为了便于更好的理解本公开实施例下面介绍几个技术点:
一、关于上行信号在各个子带的上行预编码和/或子带PA和/或子带对应的SRS端口的指示和确定。
可选地,UE根据预定义的规则确定出以下信息中的至少一项:
所述上行信号在各个子带使用的预编码矩阵;
所述上行信号在各个子带对应的DMRS端口;
所述上行信号对应的DMRS端口在各个子带使用的PA;
所述上行信号对应的DMRS端口在各个子带对应的SRS端口。
其中,所述预定义的规则可以是UE和网络设备预先预定的,也可以是网络设备指示给UE的。
一些可能的单流传输时预定义的规则有:
在单流传输时,在第n个子带(例如起始PRB编号第n小的子带,n为整数,1≤n≤N,假设共有N个子带),数据流对应的DMRS端口为编号第n小的DMRS端口(和/或数据流对应的PA为第n个PA,和/或数据流对应的SRS端口为第n个SRS端口)。
假设PUSCH为P个天线端口的单流传输,第n个子带的预编码矩阵为第n个元素为1,其他元素为0的P维列向量。
在多流传输时,可以有一些其他预定义的规则。
可选地,网络设备通过信令向UE指示上行信号在各个子带的上行预编码矩阵。
可选地,网络设备通过信令向UE指示上行信号对应的DMRS端口在各个子带对应的PA。
可选地,网络设备通过信令向UE指示上行信号对应的DMRS端口在各个子带对应的SRS端口。
可选地,上述信令为RRC信令,或者DCI,或者MAC-CE信令。上述信令可以为一个信令或者多个不同的信令。
可选地,网络设备通过向UE指示上行预编码矩阵(例如通过DCI指示TPMI的方式指示)的方式指示上述信令。UE根据网络设备指示的上行预编码矩阵确定所述上行信号在各个子带上的以下一项或多项:预编码矩阵、PA和对应的SRS端口。
可选地,所述上行预编码矩阵的指示通过下述方式指示:
方式一:网络设备向UE指示一个预编码矩阵,所述预编码矩阵为预定义的子带的预编码矩阵。UE根据网络设备指示的所述预编码矩阵及预定义的规则确定出预定义的子带及其他子带的以下一项或多项:预编码矩阵、PA和对应的SRS端口。
其中,预定义的子带可以是网络设备和UE预先约定的,也可以是网络设备指示的,也可以是默认的子带。例如,预定义的子带是起始PRB编号最小的子带。再例如,预定义的子带为编号为0的子带。
其中,预定义的规则可以是网络设备和UE预先约定的,也可以是默认的规则。
例如,预定义的规则为每个预编码矩阵都在一个预定义的预编码矩阵组中,网络设备为UE指示预定义的子带的预编码矩阵,假设该预编码矩阵在其所在预编码矩阵组中为第m个预编码矩阵,则其余子带的预编码矩阵为所述预编码矩阵组中的第
Figure PCTCN2020084200-appb-000009
个预编码矩阵,其中M为预编码矩阵组包括的预编码矩阵的数目(M≥1)。
再例如,预定义的规则为上行信号被调度的PRB被划分为N个子带,PUSCH在不同的子带(bandwidth)使用不同的预编码矩阵映射到DMRS端口,起始PRB编号最小的子带的预编码矩阵为网络设备指示的预编码矩阵,起始PRB编号次小的子带的预编码矩阵为网络设备指示的预编码矩阵的一次循环移位,起始PRB编号第三小的子带的预编码矩阵为网络设备指示的预编码矩阵的两次循环移位,…,起始PRB编号第N小的子带的预编码矩阵为网络设备指示的预编码矩阵的N-1次循环移位。其中,一次循环移位是指预编码矩阵中列向量的元素向下循环移位1位。
方式二:假设共有N个所述子带,网络设备向UE指示N个预编码矩阵,预编码矩阵与子带一一对应。UE根据网络设备指示的所述预编码矩阵确定出预定义的子带及其他子带的预编码矩阵和对应的DMRS端口。可选地,在第n个预编码矩阵对应于起始PRB编号最n小的子带(n为整数,1≤n≤N)。可选地,预编码矩阵在DCI中的开销根据子带的个数确定。
方式三:基站向UE指示候选的预编码矩阵集合,UE在不同的子带采用在候选的预编码矩阵集合中的不同预编码矩阵进行上行信号到DMRS端口的映射。例如,PUSCH对应的SRS的一个SRS资源包括4个端口,基站向UE指示预编码矩阵[1 0 0 0]和[0 1 0 0],则UE在第一个子带使用[1 0 0 0]对PUSCH进行预编码,在第二个子带使用[0 1 0 0]对PUSCH进行预编码。
二、子带的分配方式。
使用相同预编码矩阵(或PA,或SRS端口,和/或PUSCH端口)的一个子带可以是集中式的或者分布式的。
(1)集中式是指一个子带包括一组连续的PRB。一个示例如图5所示。
(2)分布式是指一个子带包括多个非连续的PRB,例如,可以为多个PRB组,每个PRB组里包括P个连续的PRB,其中P为大于等于1的整数。一个示例如图6所示。其中,标注了port0的所有的PRB表示同属于一个子带,使用标号为0的DMRS端口传输;标注了port1的所有的PRB表示同属于另一个子带,使用标号为1的DMRS端口传输。
可选地,所述子带根据上行信号的调度信息确定。
例如,根据网络设备为上行信号分配的PRB确定。举例来说,假设共有 S个子带,网络设备为上行信号分配的PRB数为M,则前
Figure PCTCN2020084200-appb-000010
1到第
Figure PCTCN2020084200-appb-000011
个PRB为第n个子带,n=1,2,…,S-1,第
Figure PCTCN2020084200-appb-000012
到第S个PRB为第S个子带。
再举例来说,假设共有S个子带,每个子带的密度为1/S,每个子带的最小时间单元为P个PRB,即,第(n-1)*P+1到第n*P个PRB为同一个子带,其中n,P,S为正整数,n≤S。在这种方式下,无论上行信号的资源分配是什么,上行信号的传输可以使用较多的PA,从而可以使用较大的发送功率。
可选地,所述子带的划分是一种预定义的方式。
例如,按照如下方式确定:整个系统带宽(上行信号传输的系统带宽)包括S个子带。每个子带的最小单元为P个连续的PRB,对一个子带来说,每隔P*S个PRB,出现一个最小单元。即,在系统带宽上,第n个P个连续的PRB为第
Figure PCTCN2020084200-appb-000013
个子带的最小单元,其中k为正整数,P为大于等于1的整数,S是一个正整数。
可选地,S是由网络配置的整数,或者,S是网络设备与UE预先约定的整数。
可选地,S的取值与基站为上行信号配置的SRS资源的天线端口数相同(例如,若PUSCH为基于码本的传输的PUSCH,基站为该PUSCH配置的SRS资源包括的天线端口数为4,则S=4)。
可选地,P的取值是网络设备为UE配置的;可选地,P的取值是网络设备与UE预先约定的。
可选地,一个DMRS端口对应于固定的PA。
可选地,一个DMRS端口对应于固定的SRS端口。
可选地,不同的DMRS端口只能在不同的子带上传输。
可选地,DMRS端口对应的子带的位置偏移是RRC信令配置的或者在协议中定义的。
可选地,端口号为N的DMRS端口的子带偏移为N。即端口号为N的DMRS端口只在编号为N的子带上传输。
可选地,DMRS端口的发送功率比常规的可以在任意子带上传输的DMRS端口的发送功率高10*log10(S)dB。
可选地,一个DMRS端口只能发送在一个子带上。
可选地,UE根据网络设备发送的关于上行信号的资源分配指示信息及上行信号的预编码确定发送DMRS的PRB。可选地,只在存在数据流映射的PRB上发送DMRS。
例如,系统中有S=2个子带,子带的最小单元为1PRB,编号为2k(k=0,1,2…)的PRB属于子带0,编号为2k+1(k=0,1,2…)的PRB属于子带1。若网络设备为PUSCH分配的PRB为PRB 3-9,调度单流得PUSCH,若UE在子带0使用预编码矩阵[1 0],在子带1使用预编码矩阵[0 1]。则UE在所调度的PRB上,编号为偶数的PRB上发送DMRS端口0,编号为奇数的PRB上发送DMRS端口1。
这种子带划分的方式的优点在于与上行信号的调度信息无关,可以降低网络设备计算上行信号的调度信息的复杂度。缺点是若上行信号调度的PRB较少,有可能上行信号的传输只能用到部分DMRS端口和/或PA,无法达到最大发送功率。
当然,也可以将上述子带划分的方式结合起来考虑。例如,当系统带宽较大时,为预定义的子带划分方式;当系统带宽较小时,为根据上行信号的调度确定的子带划分方式。
当子带为分布式的子带时,第二设备在进行DMRS的信道估计时可能需要对不存在DMRS端口的子带进行插值(即在所有的PRB进行DMRS端口的插值),以得到不存在DMRS端口的子带的信道估计值。可选地,第二设备在进行PUSCH的信道估计时对各个子带分别进行信道估计,以避免不同PA联合信道估计带来的性能损失。
三、关于DMRS的资源分配。
可选地,DMRS的资源分配取决于PRB级或者PRB组级的频域偏移。
其中,该频域偏移可以是端口级的。即每个DMRS端口的资源分配取决于该DMRS端口的频域偏移,不同的端口可以为不同的频域偏移。
其中,该频域偏移可以是网络设备通过信令配置的(例如通过RRC信令配置),也可以是在协议中约定的固定值。
示例性地,一个端口级的频域偏移为N*P个PRB(N=0,1,……,S-1), 其中N的数值为端口序号,P为一个正整数(当P=1时,为PRB级的频域偏移;当P>1时,为PRB组级的频域偏移)。
四、关于PUSCH的传输。
可选地,PUSCH的速率匹配基于实际传输的DMRS进行,即进行PUSCH映射时避开实际传输的DMRS,没有传输DMRS的位置可以传输PUSCH。
可选地,PUSCH的速率匹配基于常规密度的DMRS进行。即,对应于PUSCH所对应的DMRS端口,无论按照常规的基于码本的上行传输方案,在该DMRS端口对应的资源单元(resource element,RE)是否有DMRS的传输,在该RE都不进行PUSCH的传输。
示例性地,假设DMRS端口的密度为:对于每个DMRS,在每2个PRB上映射到一个PRB上,假设调度的PUSCH只有单流传输,对应于DMRS端口0,则该DMRS端口只在每2个PRB中的一个PRB上传输,但在进行PUSCH的速率匹配时,根据一个PRB上DMRS端口0的图样(pattern),每个PRB上对应于DMRS端口0的位置的RE都不映射PUSCH。
可选地,PUSCH的传输方式可以是以下任意一项:
方式一:PUSCH的每个数据流都传输在网络设备为UE指示的PUSCH资源的所有PRB上。
方式二:PUSCH的每个数据流只传输在这个数据流对应的DMRS端口所在的PRB上。
可选地,PUSCH的资源分配方式包括以下一项或多项:
方式一:网络设备通过信令指示PUSCH在整个带宽或BWP的资源分配情况。
方式二:网络设备通过信令指示PUSCH在预定义子带的资源分配情况,UE根据该子带的资源分配情况计算其他子带的资源分配情况。这种方式适用于各个子带资源分配相对关系固定的方式。例如,各个子带占用相同的PRB,且资源占用的密度相同。例如,PUSCH的调度资源被分为2个子带,网络设备指示第一个子带的资源分配情况,UE根据该子带的资源分配情况获得第二个子带的资源分配情况。
方式三:网络设备通过信令指示PUSCH在所各个子带的资源分配情况。
五、关于本公开实施例中DMRS与相关技术中DMRS的功率比。
如果DMRS端口的密度为1/S,即每个DMRS端口的密度为每S个PRB内有一个PRB包括该DMRS端口(例如,每个DMRS端口的映射方式为每S个PRB(或PRB组)映射到一个PRB(或PRB组)),则若在单流传输时,PUSCH的传输用到了所有的DMRS端口,一个DMRS端口相对于相关技术中的一个DMRS端口可以有10*log 10(S)dB的功率提升。
例如,如果DMRS端口的密度为1/S,即每个DMRS端口的密度为每S个PRB内有一个PRB包括该DMRS端口(例如,每个DMRS端口的映射方式为每S个PRB(或PRB组)映射到一个PRB(或PRB组)),则若传输流数为R,每个传输流对应于K个DMRS端口,不同传输流对应于不同的DMRS端口,则本公开的DMRS端口相对于相关技术中的DMRS端口可以有log 10(K)dB的功率提升。进一步地,DMRS的功率提升可以带来DMRS检测性能的提升。
六、关于SRS的传输。
可选地,SRS的资源分配方式如下:
(1)SRS的资源分配与DMRS到SRS的映射无关。例如,相关技术中的SRS资源分配方案,每个SRS端口都映射在网络设备为SRS分配的每一个PRB上,参见图7。
(2)一个SRS端口只映射在网络设备为SRS分配的部分带宽上。例如,一个SRS端口只发送在其对应的部分上述子带(集中式分布或分布式分布的子带上),一个实例如图8所示。相对于相关技术中的每个SRS端口发送在全部带宽的方案,发送在部分带宽时,SRS的发送功率可以进行提升。例如,假设共有4个SRS端口,若在每个SRS端口都发送在为SRS分配的全部带宽时每个SRS端口在一个RE的发送功率为P/4(P是一个功率值),则在每个端口只发送在1/4带宽时,每个SRS端口在一个RE的发送功率可以为P。
本公开实施例中还提供了一种第一设备,由于终端解决问题的原理与本公开实施例中数据传输方法相似,因此该第一设备的实施可以参见方法的实施,重复之处不再敷述。
参见图9,本公开实施例还提供一种第一设备,该第一设备900包括:
第一发送模块901,用于向第二设备发送第一信号,以及所述第一信号对应的解调参考信号DMRS,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;其中,不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
在本公开实施例中,可选地,所述第一信号中的同一数据流在至少两个频域位置基于不同的DMRS端口进行传输。
在本公开实施例中,可选地,所述第一信号中的同一数据流在不同子带基于不同的DMRS端口进行传输。
在本公开实施例中,可选地,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的PA、SRS端口或第一端口中的至少一者。
在本公开实施例中,可选地,所述DMRS端口与所述SRS端口一一对应。
在本公开实施例中,可选地,第一发送模块901进一步用于:根据第一发送功率,向所述第二设备发送所述第一信号;
其中,所述第一发送功率是根据第一比值和所述第一信号的发送功率确定的,所述第一比值为映射有所述第一信号的数据传输的DMRS端口在所述第二设备为所述第一信号配置的所有DMRS端口数中的占比;或者所述第一比值为映射有所述第一信号的数据传输的SRS端口在所述第二设备为所述第一信号配置的所有SRS端口数中的占比。
在本公开实施例中,可选地,第一设备900还包括第二发送模块用于向所述第二设备发送第一信息,所述第一信息指示所述第一设备具有通过最大发送功率发送所述第一信号的能力;
该第一发送模块901进一步用于:根据所述第一信息指示的能力,向所述的第二设备发送所述第一信号,以及所述第一信号对应的DMRS。
在本公开实施例中,可选地,第一设备900还包括第一接收模块,用于从所述第二设备接收第二信息;
该第一发送模块901进一步用于:根据所述第二信息,向所述的第二设备发送所述第一信号,以及所述第一信号对应的DMRS;
其中,所述第二信息指示以下至少一项:
所述第一设备使用的第一功率控制策略;
所述第一设备通过最大发送功率发送所述第一信号以及所述第一信号对应的DMRS;
所述第一信号的传输模式;
所述第一信号的预编码矩阵为传输流数小于或等于K的码字,其中,K为大于或等于1的整数;
所述第一信号的传输流数小于或等于M,其中,M为大于或等于1的整数;
所述第一信号的预编码矩阵为非相干码字;
所述第一信号的预编码矩阵为部分相干码字;
所述第一信号的预编码矩阵为非相干码字或部分相干码字。
在本公开实施例中,可选地,第一设备900还包括第二接收模块用于:从所述第二设备接收第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
在本公开实施例中,可选地,第一设备900还包括第三接收模块用于:从所述第二设备接收第四信息,所述第四信息包括以下至少一项:
所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
一个或多个数据流能够映射的DMRS端口。
在本公开实施例中,可选地,第一设备900还包括第一确定模块用于:
根据第一规则,或者根据网络侧指示的信令,确定以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或带宽部分BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
在本公开实施例中,可选地,第一设备900还包括第三发送模块用于:向所述第二设备发送信令,所述信令指示以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
在本公开实施例中,可选地,所述信令包括:
一个预定义的子带的预编码矩阵;或者,
多个预编码矩阵,所述多个预编码矩阵中的预编码矩阵与子带具有预定义的对应关系。
在本公开实施例中,可选地,所述第一信号的子带通过以下至少一种方式确定:
根据子带的数量和为所述第一信号分配的资源划分得到的,其中,所述子带的数量是由所述第一设备和第二设备预先约定的;
根据系统带宽或BWP中的子带划分情况和所述第一信号的调度信息确定
根据所述第一信号分配的资源划分得到。
在本公开实施例中,可选地,所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带按照预定义的子带划分方式确定的。
在本公开实施例中,可选地,所述预定义的子带划分方式包括:
所述第一信号的系统带宽或BWP或所述第一信号被调度的频域资源包括S个子带,每个子带的最小单元为P个连续的PRB,在一个子带中,每隔P*S个PRB,出现一个最小单元,其中P为大于等于1的整数,S是一个正整数,S由网络侧配置或者由协议约定。
在本公开实施例中,可选地,不同的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的不同的子带上传输。
在本公开实施例中,可选地,所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移是网络侧配置的或者在协议约定的。
在本公开实施例中,可选地,第一设备900还包括第四发送模块用于:
向所述第二设备发送DMRS资源指示信息,所述DMRS资源指示信息指示DMRS端口的频域资源位置。
在本公开实施例中,可选地,第一设备900还包括第四接收模块用于:
从所述第二设备接收所述第一信号的资源指示信息;
根据所述资源指示信息和所述第一信号的预编码,确定映射所述DMRS的PRB。
在本公开实施例中,可选地,一个DMRS端口映射在有对应于所述DMRS端口的数据流传输的PRB上。
在本公开实施例中,可选地,第一设备900还包括第五接收模块用于:接收所述第二设备发送的DMRS资源指示信息,所述DMRS资源指示信息指示DMRS端口的频域资源位置;
根据所述DMRS资源指示信息确定所述第一信号对应的DMRS的频域资源位置。
在本公开实施例中,可选地,第一发送模块901进一步用于:
通过第一传输方式,向第二设备发送第一信号,其中所述第一传输方式包括以下至少一项:
所述第一信号的每个数据流都传输在所述第二设备为所述第一设备指示的传输资源的所有PRB上;
所述第一信号的每个数据流传输在与该数据流对应的DMRS端口所在的PRB上。
在本公开实施例中,可选地,第一设备900还包括第二确定模块用于:根据资源指示信息,确定所述第一信号的传输资源;其中,所述资源指示信息包括以下至少一项:
所述第一信号在整个带宽或BWP的资源分配情况;
所述第一信号在预定义子带的资源分配情况;
所述第一信号在一个或多个子带的资源分配情况。
在本公开实施例中,可选地,所述SRS端口的资源分配方式包括以下至少一项:
所述SRS端口的资源分配与所述DMRS端口和所述SRS端口的映射无关;
一个所述SRS端口映射在一部分子带上。
在本公开实施例中,可选地,所述第一信号基于DMRS端口的实际传输情况进行速率匹配;和/或,
所述第一信号基于有数据流映射的DMRS端口在每个PRB都存在的假设进行速率匹配。
在本公开实施例中,可选地,所述第一信号为上行信号,所述第一设备为终端,所述第二设备为网络设备;或者,所述第一信号为下行信号,所述第一设备为网络设备,所述第二设备为终端。
本公开实施例提供的第一设备,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
本公开实施例中还提供了一种第一设备,由于终端解决问题的原理与本公开实施例中数据传输方法相似,因此该第一设备的实施可以参见方法的实施,重复之处不再敷述。
参见图10,本公开实施例还提供一种第一设备,该第一设备1000包括:第一收发机1001和第一处理器1002,其中,所述第一收发机1001,用于向第二设备发送第一信号,以及所述第一信号对应的解调参考信号DMRS,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;其中,不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
在本公开实施例中,可选地,所述第一信号中的同一数据流在至少两个频域位置基于不同的DMRS端口进行传输。
在本公开实施例中,可选地,所述第一信号中的同一数据流在不同子带基于不同的DMRS端口进行传输。
在本公开实施例中,可选地,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的PA、SRS端口或第一端口中的至少一者。
在本公开实施例中,可选地,所述DMRS端口与所述SRS端口一一对应。
在本公开实施例中,可选地,第一收发机1001用于:
根据第一发送功率,向所述第二设备发送所述第一信号;
其中,所述第一发送功率是根据第一比值和所述第一信号的发送功率确定的,所述第一比值为映射有所述第一信号的数据传输的DMRS端口在所述第二设备为所述第一信号配置的所有DMRS端口数中的占比;或者所述第一比值为映射有所述第一信号的数据传输的SRS端口在所述第二设备为所述第一信号配置的所有SRS端口数中的占比。
在本公开实施例中,可选地,第一收发机1001用于:
向所述第二设备发送第一信息,所述第一信息指示所述第一设备具有通过最大发送功率发送所述第一信号的能力;根据所述第一信息指示的能力,向所述的第二设备发送所述第一信号,以及所述第一信号对应的DMRS。
在本公开实施例中,可选地,第一收发机1001用于:从所述第二设备接收第二信息;根据所述第二信息,向所述的第二设备发送所述第一信号,以及所述第一信号对应的DMRS;
其中,所述第二信息指示以下至少一项:
所述第一设备使用的第一功率控制策略;
所述第一设备通过最大发送功率发送所述第一信号以及所述第一信号对应的DMRS;
所述第一信号的传输模式;
所述第一信号的预编码矩阵为传输流数小于或等于K的码字,其中,K为大于或等于1的整数;
所述第一信号的传输流数小于或等于M,其中,M为大于或等于1的整数;
所述第一信号的预编码矩阵为非相干码字;
所述第一信号的预编码矩阵为部分相干码字;
所述第一信号的预编码矩阵为非相干码字或部分相干码字。
在本公开实施例中,可选地,第一收发机1001用于:从所述第二设备接收第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
在本公开实施例中,可选地,第一收发机1001用于:从所述第二设备接收第四信息,所述第四信息包括以下至少一项:
所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
一个或多个数据流能够映射的DMRS端口。
在本公开实施例中,可选地,第一处理器1002用于:根据第一规则,或者根据网络侧指示的信令,确定以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或带宽部分BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
在本公开实施例中,可选地,第一收发机1001用于:向所述第二设备发送信令,所述信令指示以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
在本公开实施例中,可选地,所述信令包括:
一个预定义的子带的预编码矩阵;或者,
多个预编码矩阵,所述多个预编码矩阵中的预编码矩阵与子带具有预定义的对应关系。
在本公开实施例中,可选地,所述第一信号的子带通过以下至少一种方式确定:
根据子带的数量和为所述第一信号分配的资源划分得到的,其中,所述子带的数量是由所述第一设备和第二设备预先约定的;
根据系统带宽或BWP中的子带划分情况和所述第一信号的调度信息确定
根据所述第一信号分配的资源划分得到在本公开实施例中,可选地,所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带按照预定义的子带划分方式确定的。
在本公开实施例中,可选地,所述预定义的子带划分方式包括:
所述第一信号的系统带宽或BWP或所述第一信号被调度的频域资源包括S个子带,每个子带的最小单元为P个连续的PRB,在一个子带中,每隔P*S个PRB,出现一个最小单元,其中P为大于等于1的整数,S是一个正整数,S由网络侧配置或者由协议约定。
在本公开实施例中,可选地,不同的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的不同的子带上传输。
在本公开实施例中,可选地,所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移是网络侧配置的或者在协议约定的。
在本公开实施例中,可选地,第一收发机1001用于:向所述第二设备发送DMRS资源指示信息,所述DMRS资源指示信息指示DMRS端口的频域资源位置。
在本公开实施例中,可选地,第一收发机1001用于:从所述第二设备接收所述第一信号的资源指示信息;
根据所述资源指示信息和所述第一信号的预编码,确定映射所述DMRS的PRB。
在本公开实施例中,可选地,一个DMRS端口映射在有对应于所述DMRS端口的数据流传输的PRB上。
在本公开实施例中,可选地,第一收发机1001用于:接收所述第二设备发送的DMRS资源指示信息,所述DMRS资源指示信息指示DMRS端口的频域资源位置;
根据所述DMRS资源指示信息确定所述第一信号对应的DMRS的频域资源位置。
在本公开实施例中,可选地,第一收发机1001用于:通过第一传输方式,向第二设备发送第一信号,其中所述第一传输方式包括以下至少一项:
所述第一信号的每个数据流都传输在所述第二设备为所述第一设备指示的传输资源的所有PRB上;
所述第一信号的每个数据流传输在与该数据流对应的DMRS端口所在的PRB上。
在本公开实施例中,可选地,第一处理器1002用于:根据资源指示信息,确定所述第一信号的传输资源;其中,所述资源指示信息包括以下至少一项:
所述第一信号在整个带宽或BWP的资源分配情况;
所述第一信号在预定义子带的资源分配情况;
所述第一信号在一个或多个子带的资源分配情况。
在本公开实施例中,可选地,所述SRS端口的资源分配方式包括以下至少一项:
所述SRS端口的资源分配与所述DMRS端口和所述SRS端口的映射无关;
一个所述SRS端口映射在一部分子带上。
在本公开实施例中,可选地,所述第一信号基于DMRS端口的实际传输情况进行速率匹配;和/或,
所述第一信号基于有数据流映射的DMRS端口在每个PRB都存在的假设进行速率匹配。
在本公开实施例中,可选地,所述第一信号为上行信号,所述第一设备为终端,所述第二设备为网络设备;或者,所述第一信号为下行信号,所述第一设备为网络设备,所述第二设备为终端。
本公开实施例提供的第一设备,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
本公开实施例中还提供了一种第二设备,由于终端解决问题的原理与本公开实施例中数据传输方法相似,因此该第二设备的实施可以参见方法的实施,重复之处不再敷述。
参见图11,本公开实施例还提供一种第二设备,该第二设备1100包括:检测模块1101,用于对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测;其中,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
在本公开实施例中,可选地,第二设备1100还包括信道估计模块用于:在所述DMRS端口所在的物理资源块PRB对所述DMRS端口进行信道估计;和/或,在所述DMRS端口所在的物理资源块PRB对所述DMRS端口对应的所述第一信号的数据流进行信道估计。
在本公开实施例中,可选地,第二设备1100还包括子带划分模块用于:在对所述第一信号进行调度时,将所述第一信号的调度带宽划分为N个子带,不同子带的信干噪比是基于不同的预编码矩阵或SRS端口计算得到的,N为大于1的整数。
在本公开实施例中,可选地,所述第一信号中的同一数据流在不同子带基于不同的DMRS端口进行传输。
在本公开实施例中,可选地,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的PA、SRS端口或第一端口中的至少一者。
在本公开实施例中,可选地,所述DMRS端口与所述SRS端口一一对应。
在本公开实施例中,可选地,第二设备1100还包括:第六接收模块用于:从所述第一设备接收第五信息,根据所述第五信息确定所述第一信号的调度信息;其中,
所述第五信息指示以下至少一项:
所述第一设备的相干传输能力;
所述第一设备通过最大发送功率发送所述第一信号的能力。
在本公开实施例中,可选地,第二设备1100还包括:第五发送模块用于:向所述第一设备发送第二信息,其中,所述第二信息指示以下至少一项:
所述第一设备使用的第一功率控制策略;
所述第一设备通过最大发送功率发送所述第一信号以及所述第一信号对应的DMRS;
所述第一信号的传输模式;
所述第一信号的预编码矩阵为传输流数小于或等于K的码字,其中,K为大于或等于1的整数;
所述第一信号的传输流数小于或等于M,其中,M为大于或等于1的整数;
所述第一信号的预编码矩阵为非相干码字;
所述第一信号的预编码矩阵为部分相干码字;
所述第一信号的预编码矩阵为非相干码字或部分相干码字。
在本公开实施例中,可选地,第二设备1100还包括:第六发送模块用于:向所述第一设备发送第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
在本公开实施例中,可选地,第二设备1100还包括:第七发送模块用于:向所述第一设备发送第四信息,所述第四信息包括以下至少一项:
所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
一个或多个数据流能够映射的DMRS端口。
在本公开实施例中,可选地,第二设备1100还包括:第八发送模块用于:向所述第一设备发送信令,所述信令用于所述第一设备确定以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
在本公开实施例中,可选地,第二设备1100还包括:第七接收模块用于:从所述第一设备接收信令;根据所述信令,确定以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
在本公开实施例中,可选地,所述信令包括:
一个预定义的子带的预编码矩阵;或者,
多个预编码矩阵,所述多个预编码矩阵中的预编码矩阵与子带具有预定义的对应关系。
在本公开实施例中,可选地,所述第一信号使用的子带通过以下至少一种方式确定:
根据子带的数量和为所述第一信号分配的资源划分得到的,其中,所述子带的数量是由所述第一设备和第二设备预先约定的;
根据所述第一信号的系统带宽或BWP中的子带划分情况和所述第一信号的调度信息确定根据所述第一信号分配的资源划分得到。
在本公开实施例中,可选地,所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带按照预定义的子带划分方式确定的。
在本公开实施例中,可选地,所述预定义的子带划分方式包括:
所述第一信号的系统带宽包括S个子带,每个子带的最小单元为P个连续的PRB,在一个子带中,每隔P*S个PRB,出现一个最小单元,其中P为大于等于1的整数,S是一个正整数,所述S由网络侧配置或者由协议约定。
在本公开实施例中,可选地,第二设备1100还包括:第三确定模块用于:确定所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移。
在本公开实施例中,可选地,第二设备1100还包括:第九发送模块用于:向所述第一设备发送关于确定所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移的指示信息。
在本公开实施例中,可选地,第二设备1100还包括:第十发送模块用于:向所述第一设备发送资源指示信息;其中,所述资源指示信息指示以下至少一项:
所述第一信号在整个带宽或带宽部分BWP的资源分配情况;
所述第一信号在预定义子带的资源分配情况;
所述第一信号在一个或多个子带的资源分配情况。
在本公开实施例中,可选地,第二设备1100还包括:第八接收模块用于:接收所述第二设备发送的资源指示信息;根据所述资源指示信息确定所属第一信号被分配的资源和各个子带;
其中,所述资源指示信息指示以下至少一项:
所述第一信号在整个带宽或BWP的资源分配情况;
所述第一信号在预定义子带的资源分配情况;
所述第一信号在一个或多个子带的资源分配情况。
在本公开实施例中,可选地,第二设备1100还包括:第四确定模块用于:根据所述第一设备发送的所述第一信号的资源指示信息和所述第一信号的预编码,确定映射所述DMRS的PRB。
在本公开实施例中,可选地,检测模块进一步用于:在所述第二设备为所述第一设备指示的传输资源的所有PRB上,对第一设备发送的第一信号进行检测;或者,
在所述第一设备为所述第二设备指示的传输资源的所有PRB上,对第一设备发送的第一信号进行检测;或者,
在所述第一信号的每个数据流对应的DMRS端口所在的PRB上,对第一设备发送的第一信号进行检测。
在本公开实施例中,可选地,所述第一信号为上行信号,所述第一设备为终端,所述第二设备为网络设备;或者,所述第一信号为下行信号,所述第一设备为网络设备,所述第二设备为终端。
本公开实施例提供的第二设备,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
本公开实施例中还提供了一种第二设备,由于终端解决问题的原理与本公开实施例中数据传输方法相似,因此该第二设备的实施可以参见方法的实施,重复之处不再敷述。
参见图12,本公开实施例还提供一种第二设备,该第二设备1200包括:第二收发机1201和第二处理器1202,其中,第二处理器1202用于对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测;其中,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
在本公开实施例中,可选地,第二处理器1202用于:在所述DMRS端口所在的物理资源块PRB对所述DMRS端口进行信道估计;和/或,在所述DMRS端口所在的物理资源块PRB对所述DMRS端口对应的所述第一信号的数据流进行信道估计。
在本公开实施例中,可选地,第二处理器1202用于:在对所述第一信号进行调度时,将所述第一信号的调度带宽划分为N个子带,不同子带的信干噪比是基于不同的预编码矩阵或SRS端口计算得到的,N为大于1的整数。
在本公开实施例中,可选地,所述第一信号中的同一数据流在不同子带基于不同的DMRS端口进行传输。
在本公开实施例中,可选地,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的PA、SRS端口或第一端口中的至少一者。
在本公开实施例中,可选地,所述DMRS端口与所述SRS端口一一对应。
在本公开实施例中,可选地,第二收发机1201用于:从所述第一设备接收第五信息,根据所述第五信息确定所述第一信号的调度信息;其中,
所述第五信息指示以下至少一项:
所述第一设备的相干传输能力;
所述第一设备通过最大发送功率发送所述第一信号的能力。
在本公开实施例中,可选地,第二收发机1201用于:向所述第一设备发送第二信息,其中,所述第二信息指示以下至少一项:
所述第一设备使用的第一功率控制策略;
所述第一设备通过最大发送功率发送所述第一信号以及所述第一信号对应的DMRS;
所述第一信号的传输模式;
所述第一信号的预编码矩阵为传输流数小于或等于K的码字,其中,K为大于或等于1的整数;
所述第一信号的传输流数小于或等于M,其中,M为大于或等于1的整数;
所述第一信号的预编码矩阵为非相干码字;
所述第一信号的预编码矩阵为部分相干码字;
所述第一信号的预编码矩阵为非相干码字或部分相干码字。
在本公开实施例中,可选地,第二收发机1201用于:向所述第一设备发送第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
在本公开实施例中,可选地,第二收发机1201用于:向所述第一设备发送第四信息,所述第四信息包括以下至少一项:
所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
一个或多个数据流能够映射的DMRS端口。
在本公开实施例中,可选地,第二收发机1201用于:向所述第一设备发送信令,所述信令用于所述第一设备确定以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
在本公开实施例中,可选地,第二收发机1201用于:从所述第一设备接收信令;
根据所述信令,确定以下至少一项:
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
在本公开实施例中,可选地,所述信令包括:
一个预定义的子带的预编码矩阵;或者,
多个预编码矩阵,所述多个预编码矩阵中的预编码矩阵与子带具有预定义的对应关系。
在本公开实施例中,可选地,所述第一信号的子带通过以下至少一种方式确定:
根据子带的数量和为所述第一信号分配的资源划分得到的,其中,所述子带的数量是由所述第一设备和第二设备预先约定的;
根据所述第一信号的系统带宽或BWP中的子带划分情况和所述第一信号的调度信息确定根据所述第一信号分配的资源划分得到。
在本公开实施例中,可选地,所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带按照预定义的子带划分方式确定的。
在本公开实施例中,可选地,所述预定义的子带划分方式包括:
所述第一信号的系统带宽包括S个子带,每个子带的最小单元为P个连续的PRB,在一个子带中,每隔P*S个PRB,出现一个最小单元,其中P为大于等于1的整数,S是一个正整数,所述S由网络侧配置或者由协议约定。
在本公开实施例中,可选地,第二处理器1202用于:确定所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移。
在本公开实施例中,可选地,第二收发机1201用于:向所述第一设备发送关于确定所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移的指示信息。
在本公开实施例中,可选地,第二收发机1201用于:向所述第一设备发送资源指示信息;其中,所述资源指示信息指示以下至少一项:
所述第一信号在整个带宽或带宽部分BWP的资源分配情况;
所述第一信号在预定义子带的资源分配情况;
所述第一信号在一个或多个子带的资源分配情况。
在本公开实施例中,可选地,第二收发机1201用于:接收所述第二设备发送的资源指示信息;根据所述资源指示信息确定所属第一信号被分配的资源和各个子带;
其中,所述资源指示信息指示以下至少一项:
所述第一信号在整个带宽或BWP的资源分配情况;
所述第一信号在预定义子带的资源分配情况;
所述第一信号在一个或多个子带的资源分配情况。
在本公开实施例中,可选地,第二处理器1202用于:根据所述第一设备发送的所述第一信号的资源指示信息和所述第一信号的预编码,确定映射所述DMRS的PRB。
在本公开实施例中,可选地,第二处理器1202用于:在所述第二设备为所述第一设备指示的传输资源的所有PRB上,对第一设备发送的第一信号进行检测;或者,
在所述第一设备为所述第二设备指示的传输资源的所有PRB上,对第一设备发送的第一信号进行检测;或者,
在所述第一信号的每个数据流对应的DMRS端口所在的PRB上,对第一设备发送的第一信号进行检测。
在本公开实施例中,可选地,所述第一信号为上行信号,所述第一设备 为终端,所述第二设备为网络设备;或者,所述第一信号为下行信号,所述第一设备为网络设备,所述第二设备为终端。
本公开实施例提供的第二设备,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
如图13所示,图13所示的终端1300包括:至少一个处理器1301、存储器1302、至少一个网络接口1304和用户接口1303。终端1300中的各个组件通过总线系统1305耦合在一起。可理解,总线系统1305用于实现这些组件之间的连接通信。总线系统1305除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图13中将各种总线都标为总线系统1305。
其中,用户接口1303可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器1302可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器1302旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1302保存了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统13021和应用程序 13022。
其中,操作系统13021,包括各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序8022,包括各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包括在应用程序13022中。
在本公开的一个实施例中,通过调用存储器1302保存的程序或指令,具体的,可以是应用程序13022中保存的程序或指令,执行时实现上述数据传输方法中的步骤。
本公开实施例提供的终端,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
请参阅图14,图14是本公开实施例应用的网络设备的结构图,如图14所示,网络设备1400包括:处理器1401、收发机1402、存储器1403和总线接口,其中:
在本公开的一个实施例中,网络设备1400还包括:存储在存储器上1403并可在处理器1401上运行的程序,程序被处理器1401执行时实现上述方法实施例中的步骤。
在图14中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1401代表的一个或多个处理器和存储器1403代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1402可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1401负责管理总线架构和通常的处理,存储器1403可以存储处理器1401在执行操作时所使用的数据。
本公开实施例提供的网络设备,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
结合本公开公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的 软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、只读光盘或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本公开的保护范围之内。
本领域内的技术人员应明白,本公开实施例可提供为方法、系统、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包括有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包括这些改动和变型在内。

Claims (56)

  1. 一种数据传输方法,应用于第一设备,包括:
    向第二设备发送第一信号,以及所述第一信号对应的解调参考信号DMRS,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;
    其中,不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
  2. 根据权利要求1所述的方法,其中,所述第一信号中的同一数据流在至少两个频域位置基于不同的DMRS端口进行传输。
  3. 根据权利要求2所述的方法,其中,所述第一信号中的同一数据流在不同子带基于不同的DMRS端口进行传输。
  4. 根据权利要求1至3任一项所述的方法,其中,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的PA、SRS端口或第一端口中的至少一者。
  5. 根据权利要求1至4任一项所述的方法,其中,所述DMRS端口与所述SRS端口一一对应。
  6. 根据权利要求1至5任一项所述的方法,其中,所述向第二设备发送第一信号,包括:
    根据第一发送功率,向所述第二设备发送所述第一信号;
    其中,所述第一发送功率是根据第一比值和所述第一信号的发送功率确定的,所述第一比值为映射有所述第一信号的数据传输的DMRS端口在所述第二设备为所述第一信号配置的所有DMRS端口数中的占比;或者所述第一比值为映射有所述第一信号的数据传输的SRS端口在所述第二设备为所述第一信号配置的所有SRS端口数中的占比。
  7. 根据权利要求1至6任一项所述的方法,还包括:
    向所述第二设备发送第一信息,所述第一信息指示所述第一设备具有通过最大发送功率发送所述第一信号的能力;
    所述向第二设备发送第一信号,以及所述第一信号对应的DMRS,包括:
    根据所述第一信息指示的能力,向所述的第二设备发送所述第一信号,以及所述第一信号对应的DMRS。
  8. 根据权利要求1至7任一项所述的方法,还包括:
    从所述第二设备接收第二信息;
    所述向第二设备发送第一信号,以及所述第一信号对应的DMRS,包括:
    根据所述第二信息,向所述的第二设备发送所述第一信号,以及所述第一信号对应的DMRS;
    其中,所述第二信息指示以下至少一项:
    所述第一设备使用的第一功率控制策略;
    所述第一设备通过最大发送功率发送所述第一信号以及所述第一信号对应的DMRS;
    所述第一信号的传输模式;
    所述第一信号的预编码矩阵为传输流数小于或等于K的码字,其中,K为大于或等于1的整数;
    所述第一信号的传输流数小于或等于M,其中,M为大于或等于1的整数;
    所述第一信号的预编码矩阵为非相干码字;
    所述第一信号的预编码矩阵为部分相干码字;
    所述第一信号的预编码矩阵为非相干码字或部分相干码字。
  9. 根据权利要求1至8任一项所述的方法,还包括:
    从所述第二设备接收第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
  10. 根据权利要求1至9任一项所述的方法,还包括:
    从所述第二设备接收第四信息,所述第四信息包括以下至少一项:
    所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
    一个或多个数据流能够映射的DMRS端口。
  11. 根据权利要求1至10任一项所述的方法,还包括:
    根据第一规则,或者根据网络侧指示的信令,确定以下至少一项:
    所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或带宽部分BWP中的各个子带使用的预编码矩阵;
    所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
    所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
    所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
  12. 根据权利要求1至11任一项所述的方法,还包括:
    向所述第二设备发送信令,所述信令指示以下至少一项:
    所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
    所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
    所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
    所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
  13. 根据权利要求11或12所述的方法,其中,所述信令包括:
    一个预定义的子带的预编码矩阵;或者,
    多个预编码矩阵,所述多个预编码矩阵中的预编码矩阵与子带具有预定义的对应关系。
  14. 根据权利要求1至13任一项所述的方法,其中,所述第一信号的子带通过以下至少一种方式确定:
    根据子带的数量和为所述第一信号分配的资源划分得到的,其中,所述子带的数量是由所述第一设备和第二设备预先约定的;
    根据系统带宽或BWP中的子带划分情况和所述第一信号的调度信息确定
    根据所述第一信号分配的资源划分得到。
  15. 根据权利要求1至14任一项所述的方法,其中,所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带按照预定义的子带划分方式确定的。
  16. 根据权利要求15所述的方法,其中,所述预定义的子带划分方式包括:
    所述第一信号的系统带宽或BWP或所述第一信号被调度的频域资源包括S个子带,每个子带的最小单元为P个连续的PRB,在一个子带中,每隔P*S个PRB,出现一个最小单元,其中P为大于等于1的整数,S是一个正整数,S由网络侧配置或者由协议约定。
  17. 根据权利要求1至16任一项所述的方法,其中,不同的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的不同的子带上传输。
  18. 根据权利要求1至17任一项所述的方法,其中,所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移是网络侧配置的或者在协议约定的。
  19. 根据权利要求1至18任一项所述的方法,还包括:
    向所述第二设备发送DMRS资源指示信息,所述DMRS资源指示信息指示DMRS端口的频域资源位置。
  20. 根据权利要求1至19任一项所述的方法,还包括:
    从所述第二设备接收所述第一信号的资源指示信息;
    根据所述资源指示信息和所述第一信号的预编码,确定映射所述DMRS的PRB。
  21. 根据权利要求1至20任一项所述的方法,其中,
    一个DMRS端口映射在有对应于所述DMRS端口的数据流传输的PRB上。
  22. 根据权利要求1至21任一项所述的方法,还包括:
    接收所述第二设备发送的DMRS资源指示信息,所述DMRS资源指示信息指示DMRS端口的频域资源位置;
    根据所述DMRS资源指示信息确定所述第一信号对应的DMRS的频域资源位置。
  23. 根据权利要求1至22任一项所述的方法,其中,所述向第二设备发送第一信号,包括:
    通过第一传输方式,向第二设备发送第一信号,其中所述第一传输方式包括以下至少一项:
    所述第一信号的每个数据流都传输在所述第二设备为所述第一设备指示的传输资源的所有PRB上;
    所述第一信号的每个数据流传输在与该数据流对应的DMRS端口所在的PRB上。
  24. 根据权利要求1至23任一项所述的方法,还包括:
    根据资源指示信息,确定所述第一信号的传输资源;其中,所述资源指示信息包括以下至少一项:
    所述第一信号在整个带宽或BWP的资源分配情况;
    所述第一信号在预定义子带的资源分配情况;
    所述第一信号在一个或多个子带的资源分配情况。
  25. 根据权利要求1至24任一项所述的方法,其中,所述SRS端口的资源分配方式包括以下至少一项:
    所述SRS端口的资源分配与所述DMRS端口和所述SRS端口的映射无关;
    一个所述SRS端口映射在一部分子带上。
  26. 根据权利要求1至25任一项所述的方法,其中,所述第一信号基于DMRS端口的实际传输情况进行速率匹配;和/或,
    所述第一信号基于有数据流映射的DMRS端口在每个PRB都存在的假设进行速率匹配。
  27. 根据权利要求1至26任一项所述的方法,其中,所述第一信号为上行信号,所述第一设备为终端,所述第二设备为网络设备;或者,所述第一信号为下行信号,所述第一设备为网络设备,所述第二设备为终端。
  28. 一种数据传输方法,应用于第二设备,包括:
    对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测;
    其中,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;
    不同的所述DMRS端口对应于不同的PA、不同的SRS端口或不同的第一信号端口中的至少一者。
  29. 根据权利要求28所述的方法,还包括:
    在所述DMRS端口所在的物理资源块PRB对所述DMRS端口进行信道估计;和/或,
    在所述DMRS端口所在的物理资源块PRB对所述DMRS端口对应的所述第一信号的数据流进行信道估计。
  30. 根据权利要求28或29所述的方法,还包括:
    在对所述第一信号进行调度时,将所述第一信号的调度带宽划分为N个子带,不同子带的信干噪比是基于不同的预编码矩阵或SRS端口计算得到的,N为大于1的整数。
  31. 根据权利要求28至30任一项所述的方法,其中,所述第一信号中的同一数据流在不同子带基于不同的DMRS端口进行传输。
  32. 根据权利要求28至31任一项所述的方法,其中,每个所述DMRS端口在传输带宽上的每个物理资源块PRB对应于相同的PA、SRS端口或第一端口中的至少一者。
  33. 根据权利要求28至32任一项所述的方法,其中,所述DMRS端口与所述SRS端口一一对应。
  34. 根据权利要求28至35任一项所述的方法,其中,在所述对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测的步骤之前,所述方法还包括:
    从所述第一设备接收第五信息,根据所述第五信息确定所述第一信号的调度信息;其中,
    所述第五信息指示以下至少一项:
    所述第一设备的相干传输能力;
    所述第一设备通过最大发送功率发送所述第一信号的能力。
  35. 根据权利要求28至34任一项所述的方法,其中,在所述对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测的步骤之前,所述方法还包括:
    向所述第一设备发送第二信息,其中,所述第二信息指示以下至少一项:
    所述第一设备使用的第一功率控制策略;
    所述第一设备通过最大发送功率发送所述第一信号以及所述第一信号对应的DMRS;
    所述第一信号的传输模式;
    所述第一信号的预编码矩阵为传输流数小于或等于K的码字,其中,K为大于或等于1的整数;
    所述第一信号的传输流数小于或等于M,其中,M为大于或等于1的整数;
    所述第一信号的预编码矩阵为非相干码字;
    所述第一信号的预编码矩阵为部分相干码字;
    所述第一信号的预编码矩阵为非相干码字或部分相干码字。
  36. 根据权利要求28至35任一项所述的方法,还包括:
    向所述第一设备发送第三信息,所述第三信息指示DMRS端口和SRS端口的对应关系。
  37. 根据权利要求28至36任一项所述的方法,还包括:
    向所述第一设备发送第四信息,所述第四信息包括以下至少一项:
    所述第一信号的数据流到DMRS端口映射时能够使用的预编码矩阵的集合;
    一个或多个数据流能够映射的DMRS端口。
  38. 根据权利要求28至37任一项所述的方法,还包括:
    向所述第一设备发送信令,所述信令用于所述第一设备确定以下至少一项:
    所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
    所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
    所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
    所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
  39. 根据权利要求28至38任一项所述的方法,还包括:
    从所述第一设备接收信令;
    根据所述信令,确定以下至少一项:
    所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的预编码矩阵;
    所述第一信号在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的DMRS端口;
    所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带使用的PA;
    所述第一信号对应的DMRS端口在所述第一信号被调度的频域资源中或系统带宽中或BWP中的各个子带对应的SRS端口。
  40. 根据权利要求38或39所述的方法,其中,所述信令包括:
    一个预定义的子带的预编码矩阵;或者,
    多个预编码矩阵,所述多个预编码矩阵中的预编码矩阵与子带具有预定义的对应关系。
  41. 根据权利要求28至40任一项所述的方法,其中,所述第一信号的子带通过以下至少一种方式确定:
    根据子带的数量和为所述第一信号分配的资源划分得到的,其中,所述子带的数量是由所述第一设备和第二设备预先约定的;
    根据所述第一信号的系统带宽或BWP中的子带划分情况和所述第一信号的调度信息确定根据所述第一信号分配的资源划分得到。
  42. 根据权利要求28至41任一项所述的方法,其中,所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带按照预定义的子带划分方式确定的。
  43. 根据权利要求42所述的方法,其中,所述预定义的子带划分方式包括:
    所述第一信号的系统带宽包括S个子带,每个子带的最小单元为P个连续的PRB,在一个子带中,每隔P*S个PRB,出现一个最小单元,其中P为大于等于1的整数,S是一个正整数,所述S由网络侧配置或者由协议约定。
  44. 根据权利要求28至43任一项所述的方法,还包括:
    确定所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移。
  45. 根据权利要求28至44任一项所述的方法,还包括:
    向所述第一设备发送关于确定所述DMRS端口对应的所述第一信号被调度的频域资源中或系统带宽中或BWP中的子带的位置偏移的指示信息。
  46. 根据权利要求28至45任一项所述的方法,还包括:
    向所述第一设备发送资源指示信息;其中,所述资源指示信息指示以下至少一项:
    所述第一信号在整个带宽或带宽部分BWP的资源分配情况;
    所述第一信号在预定义子带的资源分配情况;
    所述第一信号在一个或多个子带的资源分配情况。
  47. 根据权利要求28至45任一项所述的方法,还包括:
    接收所述第二设备发送的资源指示信息;根据所述资源指示信息确定所属第一信号被分配的资源和各个子带;
    其中,所述资源指示信息指示以下至少一项:
    所述第一信号在整个带宽或BWP的资源分配情况;
    所述第一信号在预定义子带的资源分配情况;
    所述第一信号在一个或多个子带的资源分配情况。
  48. 根据权利要求46所述的方法,还包括:
    根据所述第一设备发送的所述第一信号的资源指示信息和所述第一信号的预编码,确定映射所述DMRS的PRB。
  49. 根据权利要求28至48任一项所述的方法,其中,所述对第一设备发送的第一信号进行检测,包括:
    在所述第二设备为所述第一设备指示的传输资源的所有PRB上,对第一设备发送的第一信号进行检测;或者,
    在所述第一设备为所述第二设备指示的传输资源的所有PRB上,对第一设备发送的第一信号进行检测;或者,
    在所述第一信号的每个数据流对应的DMRS端口所在的PRB上,对第一设备发送的第一信号进行检测。
  50. 根据权利要求28至49任一项所述的方法,其中,所述第一信号为上行信号,所述第一设备为终端,所述第二设备为网络设备;或者,所述第一信号为下行信号,所述第一设备为网络设备,所述第二设备为终端。
  51. 一种第一设备,包括:
    第一发送模块,用于向第二设备发送第一信号,以及所述第一信号对应的解调参考信号DMRS,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;
    其中,不同的所述DMRS端口对应于不同的PA、不同的SRS端口或不同的第一信号端口中的至少一者。
  52. 一种第一设备,包括:第一收发机和第一处理器,其中,
    所述第一收发机,用于向第二设备发送第一信号,以及所述第一信号对应的解调参考信号DMRS,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;
    其中,不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
  53. 一种第二设备,包括:
    检测模块,用于对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测;
    其中,所述第一信号包括至少一个数据流,且每个数据流对应于多个DMRS端口;
    不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
  54. 一种第二设备,包括:第二收发机和第二处理器,其中,
    所述第二处理器用于对第一设备发送的第一信号和所述第一信号对应的DMRS进行检测;其中,所述第一信号包括至少一个数据流,且每个数据流 对应于多个DMRS端口;不同的所述DMRS端口对应于不同的功率放大器PA、不同的探测参考信号SRS端口或不同的第一信号端口中的至少一者。
  55. 一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至27中任一项所述的数据传输方法的步骤,或者,如权利要求28至50中任一项所述的数据传输方法的步骤。
  56. 一种计算机可读存储介质,其上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至27中任一项所述的数据传输方法的步骤,或者,如权利要求28至50中任一项所述的数据传输方法的步骤。
PCT/CN2020/084200 2019-04-10 2020-04-10 数据传输方法和设备 WO2020207473A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217036840A KR20210150551A (ko) 2019-04-10 2020-04-10 데이터 전송 방법 및 기기
EP20787066.8A EP3955659A4 (en) 2019-04-10 2020-04-10 DATA TRANSMISSION METHOD AND DEVICE
US17/602,767 US20220158801A1 (en) 2019-04-10 2020-04-10 Data transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910286797.9A CN111818629B (zh) 2019-04-10 2019-04-10 数据传输方法和设备
CN201910286797.9 2019-04-10

Publications (1)

Publication Number Publication Date
WO2020207473A1 true WO2020207473A1 (zh) 2020-10-15

Family

ID=72752135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084200 WO2020207473A1 (zh) 2019-04-10 2020-04-10 数据传输方法和设备

Country Status (5)

Country Link
US (1) US20220158801A1 (zh)
EP (1) EP3955659A4 (zh)
KR (1) KR20210150551A (zh)
CN (1) CN111818629B (zh)
WO (1) WO2020207473A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230155763A1 (en) * 2019-11-01 2023-05-18 Qualcomm Incorporated Uplink subband precoding via linear combination of frequency domain bases
WO2023028981A1 (en) * 2021-09-03 2023-03-09 Qualcomm Incorporated Techniques for codebook and control signaling for uplink
CN114173422B (zh) * 2021-12-08 2022-09-06 深圳市领创星通科技有限公司 一种上行数据处理方法、接入网设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015096081A1 (zh) * 2013-12-26 2015-07-02 华为技术有限公司 一种处理数据的方法、装置及系统
CN106470174A (zh) * 2015-08-17 2017-03-01 中国电信股份有限公司 一种用于传输信息的方法、基站和系统
CN108259145A (zh) * 2016-12-28 2018-07-06 电信科学技术研究院 一种数据传输方法、发送装置及接收装置
CN108259143A (zh) * 2016-12-28 2018-07-06 电信科学技术研究院 一种参考信号的传输方法、发送端和接收端

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130032906A (ko) * 2009-03-17 2013-04-02 인터디지탈 패튼 홀딩스, 인크 사운딩 레퍼런스 신호(srs) 전송의 전력 제어를 위한 방법 및 장치
US9106355B2 (en) * 2011-04-26 2015-08-11 Panasonic Intellectual Property Corporation Of America Transmission device, receiving device, transmission method, and receiving method
CN102821449A (zh) * 2011-06-08 2012-12-12 中兴通讯股份有限公司 一种上行信号发射功率削减的方法和装置
US9094145B2 (en) * 2012-07-25 2015-07-28 Nec Laboratories America, Inc. Coordinated multipoint transmission and reception (CoMP)
KR102175608B1 (ko) * 2016-04-20 2020-11-06 콘비다 와이어리스, 엘엘씨 구성가능한 기준 신호들
CN107306177B (zh) * 2016-04-22 2023-11-10 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
WO2017196483A1 (en) * 2016-05-13 2017-11-16 Intel IP Corporation Multi-user multiple input multiple ouput systems
US10382115B2 (en) * 2016-06-30 2019-08-13 Futurewei Technologies, Inc. System and method for hybrid beamforming diversity
CN108282284B (zh) * 2017-01-05 2024-04-16 华为技术有限公司 一种发送参考信号的方法和通信设备
CN109565855B (zh) * 2017-03-20 2020-12-29 Oppo广东移动通信有限公司 上行传输的方法、终端设备和网络设备
CN108631815B (zh) * 2017-03-24 2021-05-04 华为技术有限公司 数据传输方法、网络设备及终端设备
CN108111283B (zh) * 2017-11-03 2021-12-14 中兴通讯股份有限公司 一种参考信号的传输方法及设备
CN110149643A (zh) * 2018-02-11 2019-08-20 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
WO2019235756A1 (ko) * 2018-06-07 2019-12-12 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 위상 트래킹 참조 신호를 송수신하는 방법 및 이를 지원하는 장치
US11956762B2 (en) * 2018-09-28 2024-04-09 At&T Intellectual Property I, L.P. Facilitating improved performance in advanced networks with multiple transmission points
US20220124761A1 (en) * 2018-11-02 2022-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for signaling pdsch diversity
WO2020197286A1 (ko) * 2019-03-26 2020-10-01 엘지전자 주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 이에 대한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015096081A1 (zh) * 2013-12-26 2015-07-02 华为技术有限公司 一种处理数据的方法、装置及系统
CN106470174A (zh) * 2015-08-17 2017-03-01 中国电信股份有限公司 一种用于传输信息的方法、基站和系统
CN108259145A (zh) * 2016-12-28 2018-07-06 电信科学技术研究院 一种数据传输方法、发送装置及接收装置
CN108259143A (zh) * 2016-12-28 2018-07-06 电信科学技术研究院 一种参考信号的传输方法、发送端和接收端

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Maintenance for multi-antenna scheme", 3GPP DRAFT; R1-1813247, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 5, XP051479534 *
INTEL CORPORATION: "On Full Power Uplink Transmission", 3GPP DRAFT; R1-1810792, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 3, XP051518197 *
See also references of EP3955659A4 *
VIVO: "Discussion on full TX power UL transmission", 3GPP DRAFT; R1-1810404, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 3, XP051517813 *

Also Published As

Publication number Publication date
KR20210150551A (ko) 2021-12-10
CN111818629A (zh) 2020-10-23
EP3955659A4 (en) 2022-06-08
CN111818629B (zh) 2022-04-29
US20220158801A1 (en) 2022-05-19
EP3955659A1 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
WO2020207438A1 (zh) 数据传输方法和设备
US11342972B2 (en) Uplink transmission method, uplink transmission scheduling method, and device
CN107733549B (zh) 信道质量信息计算方法、装置及系统
WO2018228571A1 (zh) 通信方法和通信装置
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
CN111919398B (zh) 用于测量的参考信号的方法和装置
US8289917B1 (en) Method and apparatus for defining resource elements for the provision of channel state information reference signals
US9225490B2 (en) Method and apparatus for configuring resource elements for the provision of channel state information reference signals
KR102527915B1 (ko) 업링크 파워 제어 방법 및 기기
WO2020207473A1 (zh) 数据传输方法和设备
CN109075828B (zh) 用于实现上行链路mimo的方法和设备
US11206076B2 (en) Method and apparatus for low-latency beam selection
KR20150031242A (ko) Tdd 협력 다중-포인트 및 캐리어 집성 시나리오를 위한 공간 피드백(pmi/ri)없이 cqi 피드백하기 위한 방법
US10334467B2 (en) Method and radio network node for estimating channel quality
WO2019072073A1 (zh) 一种信道测量方法及装置
WO2022206504A1 (zh) Csi反馈方法、相关设备及可读存储介质
CN111182631A (zh) 一种上行传输方法和设备
CN110504999B (zh) 通信方法、终端设备和网络设备
CN117674931A (zh) 用于接收和发送信息的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217036840

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020787066

Country of ref document: EP

Effective date: 20211110