WO2021164676A1 - 电子设备、无线通信方法和计算机可读存储介质 - Google Patents

电子设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2021164676A1
WO2021164676A1 PCT/CN2021/076417 CN2021076417W WO2021164676A1 WO 2021164676 A1 WO2021164676 A1 WO 2021164676A1 CN 2021076417 W CN2021076417 W CN 2021076417W WO 2021164676 A1 WO2021164676 A1 WO 2021164676A1
Authority
WO
WIPO (PCT)
Prior art keywords
available
signal reflection
passive signal
user equipment
user
Prior art date
Application number
PCT/CN2021/076417
Other languages
English (en)
French (fr)
Inventor
许威
周少卿
吴志坤
孙晨
Original Assignee
索尼集团公司
许威
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 许威 filed Critical 索尼集团公司
Priority to CN202180009777.2A priority Critical patent/CN114982137A/zh
Priority to EP21757878.0A priority patent/EP4099574A4/en
Priority to US17/790,582 priority patent/US20230040183A1/en
Publication of WO2021164676A1 publication Critical patent/WO2021164676A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/145Passive relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/0696Determining beam pairs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium

Definitions

  • the embodiments of the present disclosure generally relate to the field of wireless communication, and specifically relate to electronic devices, wireless communication methods, and computer-readable storage media. More specifically, the present disclosure relates to an electronic device as a network-side device in a wireless communication system, a wireless communication method executed by the network-side device in a wireless communication system, and a computer-readable storage medium.
  • the passive signal reflection device adjusts the amplitude and/or phase of the incident signal and performs passive reflection by integrating a large number of low-energy, low-cost reflection elements on the plane, thereby realizing the reconstruction of the wireless propagation environment, which can enhance the communication quality, and has Good development prospects.
  • the passive signal reflection device needs to know the channel state information between it and the base station equipment/user equipment to be able to provide performance gains for the wireless communication system.
  • the passive signal reflection device does not have the ability to sense the channel.
  • the equivalent channel of the indirect link between the user-passive signal reflection device and the base station can be estimated based on the training signal received by the base station equipment.
  • the number of reflection states of the passive signal reflection device is related to the number and accuracy of the reflection elements. As the reflection states increase, the complexity and overhead of estimating the equivalent channel increase.
  • the passive signal reflection device does not have the ability of channel sensing, the traditional schemes such as beamforming and beam tracking based on channel state information are no longer applicable.
  • the passive signal reflection device can theoretically adjust the amplitude and/or phase of the incident signal, the existing passive signal reflection device can only achieve phase adjustment, and it is difficult to adjust the amplitude, thus causing interference between users in the cell. The problem is very serious.
  • the purpose of the present disclosure is to provide an electronic device, a wireless communication method, and a computer-readable storage medium to reasonably select the reflection direction of the passive signal reflection device, so that the communication quality is improved on the basis of reducing the impact on other users in the cell. interference.
  • an electronic device including a processing circuit, configured to determine an interfering user according to a plurality of available passive signal reflection devices of the user equipment, wherein the interfering user is affected by at least one available passive signal reflection device.
  • the interference of the source signal reflection device; the set of available beam pairs is determined according to the multiple available passive signal reflection devices of the user equipment, wherein the two beams in each available beam pair are two available passive signal reflection devices respectively
  • the available beams according to the received signal quality of the user equipment and the received signal quality of the interfering user, one available beam pair is selected from the set of available beam pairs; and the two beams to which the two selected available beam pairs belong
  • the reflection directions of the two available passive signal reflection devices are adjusted to the two beams respectively, so that the two available passive signal reflection devices use the two beams to reflect the signals from the electronic equipment to the user equipment. Signal.
  • a wireless communication method including: determining an interfering user according to a plurality of available passive signal reflection devices of a user equipment, wherein the interfering user is affected by at least one available passive signal reflection device Determining the set of available beam pairs according to the multiple available passive signal reflection devices of the user equipment, wherein the two beams in each available beam pair are the available beams of the two available passive signal reflection devices; According to the received signal quality of the user equipment and the received signal quality of the interfering user, one available beam pair is selected from the set of available beam pairs; and the two available passive beams to which the two selected available beam pairs belong The reflection directions of the signal reflection device are adjusted to the two beams, so that the two available passive signal reflection devices use the two beams to reflect the signal from the electronic device to the user equipment.
  • a computer-readable storage medium including executable computer instructions that, when executed by a computer, cause the computer to execute the wireless communication method according to the present disclosure.
  • a computer instruction that, when executed by a computer, causes the computer to execute the wireless communication method according to the present disclosure.
  • a suitable beam pair can be selected from a plurality of available beam pairs according to the received signal quality of the user equipment and the received signal quality of the interfering user, so that no The source signal reflection device can use the selected beam to reflect the signal toward the user equipment. In this way, the received signal quality of the user equipment can be enhanced, and interference to interfering users can be reduced.
  • FIG. 1 is a schematic diagram showing the working mode of the passive signal reflection device
  • FIG. 2 is a schematic diagram showing the working mode of the passive signal reflection device in the case that the direct link between the gNB (base station equipment in the 5G communication system) and the user is blocked;
  • FIG. 3 is a schematic diagram showing the working mode of the passive signal reflection device when the user is located at the edge of the cell;
  • FIG. 4 is a schematic diagram showing MIMO communication after the introduction of a passive signal reflection device
  • FIG. 5(a) is a schematic diagram showing the relationship between the received signal and the transmitted signal after the signal is reflected by the passive signal reflection device;
  • FIG. 5(b) is a schematic diagram showing the relationship between the received signal and the transmitted signal after amplifying and forwarding the relaying signal;
  • FIG. 6 is a schematic diagram showing a scenario where a user is interfered with in the case of using a passive signal reflection device according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing a scenario where a user is interfered with using a passive signal reflection device according to another embodiment of the present disclosure.
  • FIG. 8 is a block diagram showing an example of the configuration of an electronic device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram showing a process of determining an available passive signal reflection device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram showing a process of determining an interfering user according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram showing a process of determining available beams of a passive signal reflection device according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram showing the available beams of two passive signal reflection devices determined according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram showing a process of selecting an available beam pair according to an embodiment of the present disclosure
  • FIG. 14 is a signaling flowchart showing a process of selecting available beam pairs and making the passive signal reflection device reflect signals using the selected available beam pairs according to an embodiment of the present disclosure
  • FIG. 15 is a flowchart showing a wireless communication method performed by an electronic device according to an embodiment of the present disclosure
  • Fig. 16 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B).
  • Fig. 17 is a block diagram showing a second example of the schematic configuration of an eNB.
  • Example embodiments are provided so that this disclosure will be thorough and will fully convey its scope to those skilled in the art. Numerous specific details such as examples of specific components, devices, and methods are described to provide a detailed understanding of the embodiments of the present disclosure. It will be obvious to those skilled in the art that specific details do not need to be used, the example embodiments can be implemented in many different forms, and none of them should be construed as limiting the scope of the present disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • FIG. 1 is a schematic diagram showing the working mode of the passive signal reflection device.
  • Figure 1 uses LIS (Large Intelligent Surface) as an example to illustrate the working mode of the passive signal reflection device.
  • the LIS includes a plurality of reflective elements (shown by squares in Figure 1).
  • the gNB controls the controller through the wireless control link, and the controller controls the reflection direction of the LIS through the wired control link.
  • the gNB sends a downlink signal to the LIS, and the LIS reflects the downlink signal to the user under the control of the controller.
  • gNB can communicate with users through LIS.
  • FIG. 2 is a schematic diagram showing the working mode of the passive signal reflection device in the case where the through link between the gNB and the user is blocked.
  • the direct link between the gNB and the user is blocked due to the existence of obstacles, and there is an LIS on the building between the gNB and the user.
  • the gNB can control the reflection direction of the LIS through the wireless controller, and then send the downlink signal to the LIS, and the LIS uses the reflection direction controlled by the gNB to reflect the downlink signal to the user.
  • the gNB can also send a downlink signal to the user through the gNB-LIS-user indirect link, thereby improving communication quality.
  • FIG. 3 is a schematic diagram showing the working mode of the passive signal reflection device when the user is located at the edge of the cell.
  • the solid arc shows the coverage of the gNB
  • the dashed arc shows the central coverage of the gNB.
  • the user is located at the edge of the gNB coverage area, so the signal reception quality is poor.
  • LIS exists at the edge of the coverage of gNB.
  • the gNB can control the reflection direction of the LIS through the wireless controller, and then send the downlink signal to the LIS, and the LIS uses the reflection direction controlled by the gNB to reflect the downlink signal to the user.
  • the user can receive the signal through the direct link between the gNB and the user, and can also receive the signal reflected by the LIS, so the two received signals can be combined, thereby improving the signal reception quality.
  • Fig. 4 is a schematic diagram showing MIMO communication after the introduction of a passive signal reflection device.
  • Figure 4 shows two LISs.
  • the gNB can control the reflection directions of the two LISs through the wireless controller.
  • the user can receive the signal through the direct link between the gNB and the user, and can also receive the signal reflected by each of the two LISs.
  • MIMO communication can be realized.
  • traditional MIMO communication there is a serious path loss in the high frequency band, and it is generally difficult to obtain multipath.
  • the direct path plays a major role, resulting in the inability to achieve the performance gain of MIMO.
  • multiple LISs provide multiple propagation paths, so that even in high frequency bands, the equivalent channel between gNB and users is multi-rank. Therefore, it can be implemented in LIS enhanced communication. High frequency MIMO communication.
  • FIG. 5(a) is a schematic diagram showing the relationship between the received signal and the transmitted signal after the signal is reflected by the passive signal reflection device.
  • the signal sent by gNB is denoted as x
  • the channel matrix of the channel between gNB and LIS is denoted as G
  • the channel matrix of the channel between LIS and the user is denoted as h H
  • represents the phase adjustment matrix of the LIS
  • LIS cannot estimate the channel matrix G and h H , but LIS can estimate the equivalent channel of the gNB-LIS-user link, that is, h H ⁇ G, but the equivalent channel estimation complexity is high and the overhead is very high. Big.
  • FIG. 5(b) is a schematic diagram showing the relationship between the received signal and the transmitted signal after amplifying and forwarding the relaying signal.
  • the signal sent by the gNB is denoted as x
  • the channel matrix of the channel between the gNB and the amplifying and forwarding relay is denoted as G
  • the channel matrix of the channel between the amplifying and forwarding relay and the user is denoted as G.
  • h H the signal processing matrix of the amplifying and forwarding relay
  • n 1 represents the noise on the channel between the gNB and the amplifying and forwarding relay
  • n 2 represents the noise on the channel between the amplifying and forwarding relay and the user noise.
  • the amplifying and forwarding relay needs to perform signal processing on the received signal, which can estimate the channel matrices G and h H.
  • FIG. 6 is a schematic diagram illustrating a scenario where a user is interfered in the case of using a passive signal reflection device according to an embodiment of the present disclosure.
  • the arrow labeled (1) shows the through link between gNB and user A and the through link between gNB and user B, where the through link between gNB and user A is Obstacle blocking.
  • the gNB sends a signal to the user A via the reflection of the LIS by controlling the reflection direction of the LIS, and this signal is also referred to as the effective signal of the user A.
  • FIG. 6 shows that in the process of using LIS for downlink transmission, user equipment B receives the signal reflected by LIS to user equipment A, which causes interference.
  • FIG. 7 is a schematic diagram illustrating a scene in which a user is interfered in the case of using a passive signal reflection device according to another embodiment of the present disclosure.
  • the arrow labeled (1A) shows the through link between the gNB and user A
  • the arrow labeled (1B) shows the through link between gNB and user B.
  • the gNB sends a signal to user A via the reflection of the LIS on the left by controlling the reflection direction of the LIS on the left. This signal is also referred to as the effective signal of the user equipment A.
  • the signal reflected by the LIS on the left may also be received by user B.
  • Such a signal is for user B Interfering signal.
  • gNB sends a signal to user B via the reflection of the LIS on the right by controlling the reflection direction of the LIS on the right. This signal is also called the effective signal of user equipment B.
  • the signal reflected by the LIS on the right may also be received by user A. Such a signal is for user A. Interfering signal.
  • Figure 7 shows that during the downlink transmission using LIS, user equipment B receives the signal reflected by LIS to user equipment A, which causes interference, and user equipment A also receives the signal reflected by LIS to user equipment B. , Causing interference.
  • the gNB since the reflection direction of the passive signal reflection device can be controlled by the gNB, the gNB can reduce interference to other users by reasonably selecting the reflection direction of the passive signal reflection device and the passive signal reflection device.
  • the present disclosure proposes an electronic device in a wireless communication system, a wireless communication method executed by the electronic device in the wireless communication system, and a computer-readable storage medium for such a scenario, so as to reasonably select the reflection direction of the passive signal reflection device , So as to reduce the interference to other users in the cell on the basis of enhancing the communication quality.
  • the interference according to the present disclosure mainly refers to the interference caused by the downlink signal from the gNB reflected by the passive signal reflection device to other users.
  • the wireless communication system according to the present disclosure may be a 5G NR (New Radio) communication system.
  • 5G NR New Radio
  • the network-side equipment may be any type of base station equipment, for example, it may be an eNB or a gNB (base station in the 5th generation communication system).
  • the passive signal reflection device can integrate a plurality of reflection elements and can be wiredly connected with an intelligent controller, and the intelligent controller controls the phase of the reflection element of the passive signal reflection device, so that the phase of the incident signal can be adjusted.
  • the base station equipment can be wirelessly connected with the intelligent controller and control the intelligent controller, thereby controlling the reflection direction of the passive signal reflection device located in the coverage area of the base station.
  • the passive signal reflection device can be deployed in any location as needed, such as on the surface of a building, thereby improving the quality of wireless communication.
  • the passive signal reflection device may be a passive signal reflection surface, and the surface may be a flat surface or a curved surface. Further, the main material of the reflective surface may be electromagnetic, that is, the passive signal reflection device may be a passive electromagnetic signal reflection device. In addition, the passive signal reflection device can only passively reflect, so it is also called a passive signal reflection surface.
  • the passive signal reflection device according to the present disclosure may be at least one of the following: LIS (Large Intelligent Surface), IRS (Intelligent Reflecting Surface), RIS (Reconfiguration Intelligent Surface, heavy Structure intelligent surface), PIM (Passive Intelligent Mirror, passive intelligent reflective mirror). The present disclosure does not limit the name of the passive signal reflection device, as long as the signal reflection can be passively and passively performed.
  • FIG. 8 is a block diagram showing an example of the configuration of an electronic device 800 according to an embodiment of the present disclosure.
  • the electronic device 800 here may be used as a network side device in a wireless communication system, and specifically may be used as a base station device in a wireless communication system.
  • the electronic device 800 may include an interference user determination unit 810, an available beam pair determination unit 820, a selection unit 830, a control unit 840, and a communication unit 850.
  • each unit of the electronic device 800 may be included in the processing circuit.
  • the electronic device 800 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be implemented by the same physical entity.
  • the interfering user determining unit 810 may determine the interfering user according to multiple available passive signal reflection devices of the user equipment.
  • the interfering user receives interference from at least one available passive signal reflection device.
  • the user equipment may be any user equipment within the coverage area of the electronic device 800, and is a user equipment to which a passive signal reflection device will reflect a signal to it.
  • Interfering users refers to other user equipment that may be interfered by assuming that the available passive signal reflection device is used to reflect signals to the user equipment.
  • the interfering user may receive the reflected signal from the available passive signal reflection device of the user equipment, and such a signal is an interference signal for the interfering user.
  • the interfering user determining unit 810 may determine one or more interfering users for any user equipment within the coverage area of the electronic device 800.
  • the available beam pair determining unit 820 may determine a set of available beam pairs according to multiple available passive signal reflection devices of the user equipment, where two beams in each available beam pair are two available beam pairs. Available beams for passive signal reflection devices.
  • the available beam pair determining unit 820 may determine a set of available beam pairs for any user equipment within the coverage of the electronic device 800.
  • the set includes multiple available beam pairs, and each available beam pair includes two Available beams, these two available beams belong to two different available passive signal reflection devices.
  • the available beam of the available passive signal reflection device characterizes the reflection direction of the available passive signal reflection device.
  • the selecting unit 830 may select an available beam pair from the set of available beam pairs according to the received signal quality of the user equipment and the received signal quality of one or more interfering users determined by the interfering user determining unit 810.
  • control unit 840 may adjust the reflection directions of the two available passive signal reflection devices to which the two beams of the selected available beam pair belong to the two beams, respectively.
  • control unit 840 may control the reflection direction of the available passive signal reflection device by wirelessly controlling the controller connected to the available passive signal reflection device.
  • the electronic device 800 can send a signal to the two available passive signal reflection devices to which two beams in the selected available beam pair belong through the communication unit 850, so that the two available passive signal reflection devices can The two beams in the selected available beam pair are used to reflect the signal from the electronic device 800 to the user equipment respectively.
  • a suitable beam pair can be selected from multiple available beam pairs according to the received signal quality of the user equipment and the received signal quality of the interfering user, so that the passive signal reflection device can Use the selected beam to reflect the signal toward the user equipment. In this way, the received signal quality of the user equipment can be enhanced, and interference to interfering users can be reduced.
  • the electronic device 800 may further include an available device determining unit 860 for determining multiple available passive signal reflection devices of the user equipment.
  • an available device determining unit 860 for determining multiple available passive signal reflection devices of the user equipment.
  • the available device determining unit 860 may determine multiple available passive signal reflection devices for the user equipment.
  • the available device determining unit 860 may determine a plurality of available passive signal reflection devices of the user equipment according to the range of the received signal of the user equipment and the range of the transmitted signal of the electronic device 800.
  • the range of the received signal of the user equipment refers to the geographic area where the quality of the received signal of the user equipment is greater than a predetermined threshold
  • the range of the transmitted signal of the electronic device 800 refers to the geographic area where the quality of the transmitted signal of the electronic device 800 is greater than the predetermined threshold. area.
  • a circle with the user equipment as the center and the effective reception distance of the user equipment as the radius can be used to indicate the signal reception range of the user equipment. The circle indicates the range of the transmission signal of the electronic device 800.
  • the available device determining unit 860 may determine the multiple passive signal reflection devices in the overlapping area of the receiving signal range of the user equipment and the transmitting signal range of the electronic device 800 as multiple passive signal reflecting devices of the user equipment.
  • Available passive signal reflection device the passive signal reflection device in the overlap area can well receive the signal from the electronic device 800, and the user equipment can also well receive the signal from the passive signal reflection device in the overlap area, so it can The passive signal reflection device in the overlapping area is determined as an available passive signal reflection device of the user equipment.
  • FIG. 9 is a schematic diagram illustrating a process of determining an available passive signal reflection device according to an embodiment of the present disclosure.
  • the electronic device 800 is implemented by gNB
  • the k-th user represents the user equipment that wants to reflect the signal by the passive signal reflection device
  • the square area represents the LIS
  • the circular area represents the user equipment.
  • a circle with gNB as the center and r 1 as the radius can be used to indicate the range of the gNB transmission signal
  • r 1 is the effective transmission distance of gNB
  • the kth user is the center and R 2,k is the radius.
  • the circle represents the range of the received signal of the k-th user
  • R 2,k represents the effective receiving distance of the k-th user.
  • the distance between gNB and the k-th user is d k .
  • the available device determining unit 860 can determine the two LISs as the k-th user The available passive signal reflection device.
  • the interference user determination unit 810 may determine the interference range of each available passive signal reflection device according to the range of the reflected signal of each available passive signal reflection device and the location of the user equipment.
  • the range of the reflection signal of the passive signal reflection device may be represented by the reflection distance of the passive signal reflection device.
  • the reflection distance represents the farthest distance that the reflection signal can reach within all the reflection beam ranges of the passive signal reflection device.
  • the range of the reflected signal of the passive signal reflection device may be a fan shape ( Especially semi-circular).
  • the interference user determination unit 810 may determine the interference range of the available passive signal reflection device according to the reflection distance of the available passive signal reflection device and/or the distance between the available passive signal reflection device and the user equipment.
  • the interference range of the available passive signal reflection device may be rectangular, semicircular or hexagonal, which is not limited in the present disclosure.
  • the following semicircular area can be used as the interference range of the available passive signal reflection device: the semicircle is centered on the available passive signal reflection device, and the available passive signal reflection device and the user equipment
  • the connecting line between is the axis of symmetry, and the reflection distance of the available passive signal reflection device is the radius.
  • the following rectangular area can be used as the interference range of the available passive signal reflection device: the rectangle uses the connection between the available passive signal reflection device and the user equipment as the symmetry axis, and the available passive signal reflection device is used as the axis of symmetry.
  • the distance between the signal reflection device and the user equipment is taken as the length of the side parallel to the symmetry axis, and twice the reflection distance of the available passive signal reflection device is taken as the length of the side perpendicular to the symmetry axis.
  • the interference user determination unit 810 may determine the interference range of each available passive signal reflection device of the user equipment, and then determine the interference user of the user equipment according to the interference range of each available passive signal reflection device. Specifically, the interfering user determining unit 810 may determine a user located within the interference range of one or more available passive signal reflection devices as interfering users. That is, the interfering user determining unit 810 determines the union of users within the interference range of each available passive signal reflection device as the interfering user of the user equipment.
  • FIG. 10 is a schematic diagram showing a process of determining an interfering user according to an embodiment of the present disclosure.
  • the circular area labeled k represents the kth user
  • the two square areas labeled 1 and 2 represent the two available LISs of the kth user determined by the available device determining unit 860.
  • L 2,k represents the distance between the LIS labeled 2 and the k-th user
  • L 2 represents twice the reflection distance of the LIS labeled 2.
  • a rectangular area with the line between the LIS labeled 2 and the k-th user as the axis of symmetry, L 2,k as the length of the side parallel to the axis of symmetry, and L 2 as the length of the side perpendicular to the axis of symmetry Indicates the interference range of LIS labeled 2 (shown by the dotted rectangular area).
  • L 1,k represents the distance between the LIS labeled 1 and the k-th user
  • L 1 represents twice the reflection distance of the LIS labeled 1.
  • a rectangular area with the line between the LIS labeled 1 and the k-th user as the axis of symmetry, L 1,k as the length of the side parallel to the axis of symmetry, and L 1 as the length of the side perpendicular to the axis of symmetry Indicates the interference range of LIS labeled 1 (shown by the dotted rectangular area).
  • the interference range of the LIS labeled 2 that is, the k+1 user shown in the circle labeled k+1, and there is no user in the interference range of the LIS labeled 1. user. Therefore, in the embodiment shown in FIG.
  • the interfering user determining unit 810 may determine that the interfering user of the kth user is the k+1th user.
  • FIG. 10 uses a rectangular interference range area as an example to show the process of determining the interference user by the interference user determination unit 810. The process of determining the interference user for a semicircular area or an interference range area of other shapes is similar. Go into details again.
  • the electronic device 800 may further include an available beam determining unit 870 for determining the available beam of each available passive signal reflection device.
  • the available beam determining unit 870 may determine a beam having an overlapping area between the range of the reflected signal of each available passive signal reflection device and other available passive signal reflection devices as the available passive signal reflection.
  • the available beams of the device may be determined a beam having an overlapping area between the range of the reflected signal of each available passive signal reflection device and other available passive signal reflection devices as the available passive signal reflection. The available beams of the device.
  • FIG. 11 is a schematic diagram illustrating a process of determining available beams of a passive signal reflection device according to an embodiment of the present disclosure.
  • two available passive signal reflection devices of the user equipment are shown: LIS1 and LIS2, and the range of the reflected signal of each LIS is a semicircle.
  • the range of the reflected signal of LIS1 is a semicircle with LIS1 as the center, the reflection distance of LIS1 as the radius, and the direction of the array surface of LIS1. All beams of LIS1 include beam 1, beam 2, beam 3, ... beam 6.
  • the range of the reflected signal of LIS2 is a semicircle with LIS2 as the center, the reflection distance of LIS2 as the radius, and the direction of the array surface of LIS2. All beams of LIS2 include beam 1, beam 2, beam 3, ... beam 6. According to the embodiment of the present disclosure, the range of beam 3, beam 4, and beam 5 of LIS1 and the reflected signal of LIS2 have overlapping areas, so the available beam determining unit 870 can determine beam 3, beam 4, and beam 5 of LIS1 as LIS1 Available beams. Similarly, beam 1 and beam 2 of LIS2 have an overlapping area with the range of the reflected signal of LIS1, so the available beam determining unit 870 may determine beam 1 and beam 2 of LIS2 as available beams of LIS2.
  • FIG. 12 is a schematic diagram showing the available beams of two passive signal reflection devices determined according to an embodiment of the present disclosure. As shown in FIG. 12, the available beams of LIS1 include beam 3, beam 4, and beam 5, and the available beams of LIS2 include beam 1 and beam 2.
  • FIGS. 11 and 12 show a situation where the available passive signal reflection device of the user equipment includes two passive signal reflection devices.
  • the available passive signal reflection device includes more than three passive signal reflection devices, as long as the beam of one passive signal reflection device overlaps with the range of the reflected signal of any one or more other passive signal reflection devices, that is, Yes, it does not need to overlap with the range of the reflected signal of all passive signal reflecting devices.
  • the available beam determining unit 870 determines the available beams of each available passive signal reflection device according to the above method to better fit the direction of the user equipment, so that the electronic device 800 can be based on the available beams.
  • the available beam of the source signal reflection device determines the final beam used, which can well improve the communication quality of the user equipment.
  • the available beam pair determining unit 820 may determine the available beam pair according to the available beams of each available passive signal reflection device. Collection.
  • the available beam pair determining unit 820 may exhaust or traverse various possible available beam pairs, and the two available beams in each available beam pair are available beams from different available passive signal reflection devices. .
  • the available passive signal reflection device of the user equipment includes two passive signal reflection devices, assuming that the two passive signal reflection devices respectively include M and N available beams, the available beam pair determining unit 820 may Determine M ⁇ N available beam pairs.
  • the available beams of LIS1 include beam 3, beam 4, and beam 5, and the available beams of LIS2 include beam 1 and beam 2, and the available beam pair determining unit 820 can determine that the following 6 beams are included.
  • C6 beam 5 of LIS1, beam 2 of LIS2.
  • the set of available beam pairs is described by taking an example of the available passive signal reflection device of the user equipment including two passive signal reflection devices.
  • the available passive signal reflection device of the user equipment includes more than three passive signal reflection devices
  • the available beam pair in the available beam pair set still includes only two available beams, that is, belongs to two different available passive signals
  • the available beam of the reflection device is sufficient.
  • the passive signal reflection device that ultimately serves user equipment includes only two passive signal reflection devices, and other passive signal reflection devices can serve other user equipment, thereby improving the reception quality of user equipment. Do not take up too many resources.
  • the interfering user determining unit 810 can determine one or more interfering users of the user equipment, and the available beam pair determining unit 820 can determine an available beam pair set.
  • the selection unit 830 and the control unit 840 will be described in detail below.
  • the control unit 840 may assign the two available passive signals to which the two beams of the available beam pair belong The reflection direction of the reflection device is adjusted to these two beams respectively. For example, for the above available beam pairs: beam 3 of LIS1 and beam 1 of LIS2, the control unit 840 may adjust the reflection direction of LIS1 to beam 3 and the reflection direction of LIS2 to beam 1. Further, the electronic device 800 may send a downlink signal to the two available passive signal reflection devices to reflect the downlink signal to the user equipment through the two available passive signal reflection devices respectively. Here, the electronic device 800 may send a downlink signal to the available passive signal reflection device in a beamforming manner, and may also send a downlink signal to the available passive signal reflection device in an omnidirectional signal manner.
  • FIG. 13 is a schematic diagram showing a process of selecting an available beam pair according to an embodiment of the present disclosure.
  • gNB sends downlink signals to LIS1 and LIS2, LIS1 can use beam 3 to reflect downlink signals to the user equipment, and LIS2 can use beam 1 to reflect downlink signals to the user equipment.
  • the electronic device 800 may receive the received signal quality of the user equipment from the user equipment through the communication unit 850.
  • the user equipment can receive the reflected signals from the two available passive signal reflection devices, the user equipment can combine the two reflected signals to determine the received signal quality.
  • the user equipment can use any method known in the art to combine the two signals, which is not limited in the present disclosure.
  • various parameters can be used to characterize the received signal quality, such as the received signal strength.
  • the electronic device 800 may receive the received signal quality of the interfering user from each of the one or more interfering users determined by the interfering user determining unit 810 through the communication unit 850.
  • various parameters can be used to characterize the received signal quality, such as the received signal strength.
  • the selecting unit 830 may select the available beam pair according to the received signal quality of the user equipment and the received signal quality of each interfering user. For example, the selecting unit 830 may calculate the ratio of the received signal quality of the user equipment to the sum of the received signal quality of all interfering users. Optionally, the selecting unit 830 may also calculate the ratio of the received signal quality of the user equipment to the sum of the received signal quality of all interfering users and the sum of the noise power.
  • the control unit 840 can adjust the reflection directions of the two available passive signal reflection devices to which the two beams of the available beam pair belong to these two, respectively.
  • the user equipment and each interfering user measure the received signal quality
  • the selection unit 830 can calculate the sum of the received signal quality of the user equipment and the received signal quality of all interfering users according to the received signal quality of the user equipment and the received signal quality of each interfering user Ratio. That is to say, for any available beam pair in the available beam pair set, the selection unit 830 can calculate such a ratio.
  • the selecting unit 830 may select the available beam pair with the largest ratio from the set of available beam pairs. That is to say, for the selected available beam pair, the quality of the received signal of the user equipment is better, and the quality of the received signal of the interfering user is poor, that is, the interference to the interfering user is less. Therefore, according to the embodiments of the present disclosure, the electronic device 800 selects the beam pair in this manner, which can improve the channel quality of the user equipment while reducing interference to other users.
  • the selecting unit 830 may select a beam pair for the k-th user according to the following formula:
  • i represents the number of the available beam pair in the available beam pair set
  • P k,i represents the received signal quality for the i-th available beam pair and the k-th user
  • P k′,i represents the i-th available beam pair Yes
  • the received signal quality of the interfering user k', ⁇ k' ⁇ k P k', i represents the sum of the received signal quality of all interfering users for the i-th available beam pair
  • PN represents the noise power.
  • i opt represents the number of the available beam pair selected by the selecting unit 830, which is equal to the ratio The maximum value of i.
  • the control unit 840 may adjust the reflection directions of the two available passive signal reflection devices to which the two beams in the selected available beam pair belong to These two beams. Then, the electronic device 800 may send a signal to the two available passive signal reflection devices to which the two beams of the selected available beam pair belong through the communication unit 850, so that the two available passive signal reflection devices respectively use the selected available beams. The two beams in the pair reflect the signal from the electronic device 800 to the user equipment.
  • the electronic device 800 may determine the mode of enabling the passive signal reflection device for the user equipment, that is, the passive signal reflection device is used to reflect the signal from the electronic device 800.
  • the electronic device 800 may determine the received signal quality of the user equipment through feedback from the user equipment, so as to determine the mode of enabling the passive signal reflection device when the received quality of the user equipment is less than a predetermined threshold.
  • the mode of the passive signal reflection device can also be activated according to the request of the user equipment.
  • the electronic device 800 may receive request information indicating the mode of enabling the passive signal reflection device from the user equipment through the communication unit 850, and respond to the request information to enable the mode of the passive signal reflection device for the user equipment.
  • the electronic device 800 can collect configuration information of each passive signal reflection device within its coverage, including the position, the size of the reflective surface, the angular range of all reflected beams of the reflective surface, and so on. This can be achieved by reporting the above information to the electronic device 800 when deploying or adjusting each passive signal reflection device. Further, the electronic device 800 may send information about whether there is a passive signal reflection device within its coverage area to the user equipment.
  • the user equipment may determine whether to activate the mode of the passive signal reflection device according to the quality of the received signal. Specifically, in a case where the quality of the received signal of the user equipment is less than a predetermined threshold, the user equipment may determine that a mode of the passive signal reflection device needs to be activated. For example, when the following inequality is true, the k-th user can determine the mode of enabling the passive signal reflection device:
  • p k represents the received signal power of the k-th user
  • ⁇ 2 represents the sum of the interference signal power and the noise power
  • R min,k represents the predetermined threshold of the quality of the received signal of the k-th user.
  • the mode of the passive signal reflection device may be activated by the electronic device 800 or the user equipment.
  • the electronic device 800 can determine multiple available passive signal reflection devices of the user equipment and one or more interfering users, and can determine the available beams of each available passive signal reflection device , So as to determine the set of available beam pairs.
  • the electronic device 800 may select one available beam pair from the set of available beam pairs according to the received signal quality of the user equipment and the received signal quality of each interfering user, and make the two available beam pairs included in the selected available beam pair belong to the two available beams.
  • the passive signal reflection device uses these two available beams to reflect signals to the user equipment. Therefore, the electronic device 800 can reasonably select the passive signal reflection device and the available beam, thereby improving the quality of the received signal of the user equipment while reducing interference to other users.
  • FIG. 14 is a signaling flow chart showing a process of selecting an available beam pair and causing the passive signal reflection device to reflect a signal using the selected available beam pair according to an embodiment of the present disclosure.
  • the gNB can be implemented by the electronic device 800, and LIS is taken as an example to illustrate the passive signal reflection device.
  • the UE sends request information to the gNB to request the activation of the passive signal reflection device mode.
  • the gNB determines multiple available LISs for the UE.
  • the gNB determines one or more interfering users for the UE.
  • the gNB determines the available beams of each available LIS.
  • step S1405 the gNB determines the set of available beam pairs according to the available beams of each LIS.
  • step S1406 for each available beam pair in the available beam pair set, the gNB controls the reflection direction of the LIS to which the two available beams included in the available beam pair belong and sends signals to the two LISs.
  • step S1407 the LIS reflects a signal to the UE according to the control of the gNB.
  • step S1408 the UE measures the received signal quality.
  • the interfering user can also measure the received signal quality.
  • step S1409 the UE feeds back the measured received signal quality to the gNB, and the interfering user can also feed back the measured received signal quality to the gNB.
  • step S1410 the gNB selects an available beam pair from the set of available beam pairs according to the received signal quality of the UE and the received signal quality of the interfering user.
  • step S1411 the gNB adjusts the reflection directions of the two LISs to which the two available beams included in the selected available beam pair belong to the directions of the two available beams, and sends downlink signals to the two LISs.
  • step S1412 the two LISs use the two available beams included in the selected available beam pair to reflect signals to the UE. In this way, the UE can receive the signal reflected by the selected available beam pair, thereby improving the communication quality.
  • FIG. 15 is a flowchart illustrating a wireless communication method executed by an electronic device 800 as a network side device in a wireless communication system according to an embodiment of the present disclosure.
  • step S1510 the interfering user is determined according to multiple available passive signal reflection devices of the user equipment, where the interfering user is interfered by at least one available passive signal reflection device.
  • step S1520 the set of available beam pairs is determined according to the multiple available passive signal reflection devices of the user equipment, where the two beams in each available beam pair are those of the two available passive signal reflection devices. Available beams.
  • step S1530 an available beam pair is selected from the set of available beam pairs according to the received signal quality of the user equipment and the received signal quality of the interfering user.
  • step S1540 the reflection directions of the two available passive signal reflecting devices to which the two beams of the selected available beam pair belong are adjusted to the two beams, so that the two available passive signals reflect The device uses these two beams to reflect the signal from the electronic device 800 to the user equipment respectively.
  • the wireless communication method further includes: determining a plurality of available passive signal reflection devices of the user equipment according to the range of the received signal of the user equipment and the range of the transmitted signal of the electronic device 800.
  • determining the multiple available passive signal reflection devices of the user equipment includes: determining the multiple passive signal reflection devices in the overlapping area of the range of the received signal of the user equipment and the range of the transmitted signal of the electronic device 800 as multiple.
  • An available passive signal reflection device is determining the multiple passive signal reflection devices in the overlapping area of the range of the received signal of the user equipment and the range of the transmitted signal of the electronic device 800 as multiple.
  • determining the interference user includes: determining the interference range of each available passive signal reflection device according to the range of the reflected signal of each available passive signal reflection device and the location of the user equipment; and according to each available passive signal reflection device The interference range determines the interference user.
  • determining the interfering user includes: determining a user located within the interference range of one or more available passive signal reflection devices as the interfering user.
  • the wireless communication method further includes: determining a beam having an overlapping area between the reflection signal range of each available passive signal reflection device and other available passive signal reflection devices as the available beam of the available passive signal reflection device; And the set of available beam pairs is determined according to the available beams of each available passive signal reflection device.
  • the wireless communication method further includes: performing the following operations for each available beam pair: adjusting the reflection directions of the two available passive signal reflection devices to which the two beams of the available beam pair belong to the two beams, and Send the downlink signal to the user equipment through the two available passive signal reflection devices respectively; receive the received signal quality of the user equipment from the user equipment; and receive the received signal quality of the interference user from each interfering user.
  • selecting the available beam pair includes: for each available beam pair, calculating the ratio of the received signal quality of the user equipment to the sum of the received signal quality of all interfering users; and selecting the available beam pair with the largest ratio from the set of available beam pairs. Beam pair.
  • the wireless communication method further includes: receiving request information from the user equipment indicating the mode of enabling the passive signal reflection device, wherein the mode of enabling the passive signal reflection device indicates that the passive signal reflection device reflects the signal from the electronic device 800 .
  • the passive signal reflecting device is a passive electromagnetic signal reflecting surface.
  • the subject that executes the above method may be the electronic device 800 according to the embodiment of the present disclosure, so all the embodiments of the electronic device 800 described above are applicable to this.
  • the technology of the present disclosure can be applied to various products.
  • the network side equipment can also be implemented as any type of base station equipment, such as a macro eNB and a small eNB, and can also be implemented as any type of gNB (a base station in a 5G system).
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a place different from the main body.
  • RRH remote radio heads
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above-mentioned user equipment.
  • FIG. 16 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1600 includes one or more antennas 1610 and a base station device 1620.
  • the base station device 1620 and each antenna 1610 may be connected to each other via an RF cable.
  • Each of the antennas 1610 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 1620 to transmit and receive wireless signals.
  • the gNB 1600 may include multiple antennas 1610.
  • multiple antennas 1610 may be compatible with multiple frequency bands used by gNB 1600.
  • FIG. 16 shows an example in which the gNB 1600 includes multiple antennas 1610, the gNB 1600 may also include a single antenna 1610.
  • the base station device 1620 includes a controller 1621, a memory 1622, a network interface 1623, and a wireless communication interface 1625.
  • the controller 1621 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1620. For example, the controller 1621 generates a data packet based on the data in the signal processed by the wireless communication interface 1625, and transmits the generated packet via the network interface 1623. The controller 1621 may bundle data from multiple baseband processors to generate a bundled packet, and transfer the generated bundled packet. The controller 1621 may have a logical function to perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1622 includes RAM and ROM, and stores programs executed by the controller 1621 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 1623 is a communication interface for connecting the base station device 1620 to the core network 1624.
  • the controller 1621 may communicate with the core network node or another gNB via the network interface 1623.
  • the gNB 1600 and the core network node or other gNB can be connected to each other through logical interfaces (such as the S1 interface and the X2 interface).
  • the network interface 1623 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1623 is a wireless communication interface, the network interface 1623 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1625.
  • the wireless communication interface 1625 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to a terminal located in a cell of the gNB 1600 via an antenna 1610.
  • the wireless communication interface 1625 may generally include, for example, a baseband (BB) processor 1626 and an RF circuit 1627.
  • the BB processor 1626 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 1626 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1626 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 1626.
  • the module may be a card or a blade inserted into the slot of the base station device 1620. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1627 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1610.
  • the wireless communication interface 1625 may include a plurality of BB processors 1626.
  • multiple BB processors 1626 may be compatible with multiple frequency bands used by gNB 1600.
  • the wireless communication interface 1625 may include a plurality of RF circuits 1627.
  • multiple RF circuits 1627 may be compatible with multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 1625 includes a plurality of BB processors 1626 and a plurality of RF circuits 1627, the wireless communication interface 1625 may also include a single BB processor 1626 or a single RF circuit 1627.
  • FIG. 17 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1730 includes one or more antennas 1740, base station equipment 1750, and RRH 1760.
  • the RRH 1760 and each antenna 1740 may be connected to each other via an RF cable.
  • the base station device 1750 and the RRH 1760 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 1740 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 1760 to transmit and receive wireless signals.
  • the gNB 1730 may include multiple antennas 1740.
  • multiple antennas 1740 may be compatible with multiple frequency bands used by gNB 1730.
  • FIG. 17 shows an example in which the gNB 1730 includes multiple antennas 1740, the gNB 1730 may also include a single antenna 1740.
  • the base station equipment 1750 includes a controller 1751, a memory 1752, a network interface 1753, a wireless communication interface 1755, and a connection interface 1757.
  • the controller 1751, the memory 1752, and the network interface 1753 are the same as the controller 1621, the memory 1622, and the network interface 1623 described with reference to FIG. 16.
  • the wireless communication interface 1755 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 1760 via the RRH 1760 and the antenna 1740.
  • the wireless communication interface 1755 may generally include, for example, a BB processor 1756.
  • the BB processor 1756 is the same as the BB processor 1626 described with reference to FIG. 16 except that the BB processor 1756 is connected to the RF circuit 1764 of the RRH 1760 via the connection interface 1757.
  • the wireless communication interface 1755 may include a plurality of BB processors 1756.
  • multiple BB processors 1756 may be compatible with multiple frequency bands used by gNB 1730.
  • FIG. 17 shows an example in which the wireless communication interface 1755 includes a plurality of BB processors 1756, the wireless communication interface 1755 may also include a single BB processor 1756.
  • connection interface 1757 is an interface for connecting the base station device 1750 (wireless communication interface 1755) to the RRH 1760.
  • the connection interface 1757 may also be a communication module for connecting the base station device 1750 (wireless communication interface 1755) to the communication in the above-mentioned high-speed line of the RRH 1760.
  • the RRH 1760 includes a connection interface 1761 and a wireless communication interface 1763.
  • connection interface 1761 is an interface for connecting the RRH 1760 (wireless communication interface 1763) to the base station device 1750.
  • the connection interface 1761 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1763 transmits and receives wireless signals via the antenna 1740.
  • the wireless communication interface 1763 may generally include, for example, an RF circuit 1764.
  • the RF circuit 1764 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1740.
  • the wireless communication interface 1763 may include a plurality of RF circuits 1764.
  • multiple RF circuits 1764 may support multiple antenna elements.
  • FIG. 17 shows an example in which the wireless communication interface 1763 includes a plurality of RF circuits 1764, the wireless communication interface 1763 may also include a single RF circuit 1764.
  • the beam determination unit 870 may be implemented by the controller 1621 and/or the controller 1751. At least part of the functions may also be implemented by the controller 1621 and the controller 1751.
  • the controller 1621 and/or the controller 1751 can determine the interference user, determine the available beam pair, select an available beam pair, control the reflection direction of the passive signal reflection device, determine the available passive signal reflection device of the user equipment, and Determine the function of the available beam of the passive signal reflection device.
  • the units shown in dashed boxes in the functional block diagram shown in the drawings all indicate that the functional unit is optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to achieve the required function .
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • the multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the described order, but also processing performed in parallel or individually rather than necessarily in time series.
  • the order can be changed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开涉及电子设备、无线通信方法和计算机可读存储介质。根据本公开的电子设备包括处理电路,被配置为:根据用户设备的多个可用无源信号反射装置确定干扰用户;根据用户设备的多个可用无源信号反射装置确定可用波束对的集合;根据用户设备的接收信号质量以及干扰用户的接收信号质量从可用波束对的集合中选取一个可用波束对;以及将选取的可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为两个波束。使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,可以合理地选取无源信号反射装置的反射方向,从而使得在增强通信质量的基础上降低对小区内其他用户的干扰。

Description

电子设备、无线通信方法和计算机可读存储介质
本申请要求于2020年2月18日提交中国专利局、申请号为202010100127.6、发明名称为“电子设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为无线通信系统中的网络侧设备的电子设备、一种由无线通信系统中的网络侧设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
无源信号反射装置通过在平面上集成大量低能耗、低成本的反射元件来调整入射信号的幅度和/或相位并进行被动反射,从而实现无线传播环境的重构,其能够增强通信质量,具有良好的发展前景。
无源信号反射装置需要知道其与基站设备/用户设备之间的信道状态信息,才能够为无线通信系统提供性能增益。然而由于无源信号反射装置的硬件限制,其不具备信道感知的能力。可以基于基站设备接收的训练信号估计用户-无源信号反射装置-基站之间的间接链路的等效信道。无源信号反射装置的反射状态的数目与反射元件的数目和精度有关,随着反射状态的增多,估计等效信道的复杂度和开销增大。
进一步,由于无源信号反射装置不具备信道感知的能力,因此传统的基于信道状态信息的波束成形以及波束追踪等方案均不再适用。此外,虽然无源信号反射装置理论上可以调整入射信号的幅度和/或相位,但是在现有的无源信号反射装置中仅能够实现相位调整,难以进行幅度调整,因此导致小区内用户间干扰问题十分严重。
因此,有必要提出一种技术方案,以合理地选取无源信号反射装置的反射方向,从而使得在增强通信质量的基础上降低对小区内其他用户的干扰。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以合理地选取无源信号反射装置的反射方向,从而使得在增强通信质量的基础上降低对小区内其他用户的干扰。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为:根据用户设备的多个可用无源信号反射装置确定干扰用户,其中,所述干扰用户受到来自至少一个可用无源信号反射装置的干扰;根据所述用户设备的多个可用无源信号反射装置确定可用波束对的集合,其中,每个可用波束对中的两个波束分别是两个可用无源信号反射装置的可用波束;根据所述用户设备的接收信号质量以及干扰用户的接收信号质量从所述可用波束对的集合中选取一个可用波束对;以及将选取的可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为所述两个波束,以使得所述两个可用无源信号反射装置分别利用所述两个波束向所述用户设备反射来自所述电子设备的信号。
根据本公开的另一方面,提供了一种无线通信方法,包括:根据用户设备的多个可用无源信号反射装置确定干扰用户,其中,所述干扰用户受到来自至少一个可用无源信号反射装置的干扰;根据所述用户设备的多个可用无源信号反射装置确定可用波束对的集合,其中,每个可用波束对中的两个波束分别是两个可用无源信号反射装置的可用波束;根据所述用户设备的接收信号质量以及干扰用户的接收信号质量从所述可用波束对的集合中选取一个可用波束对;以及将选取的可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为所述两个波束,以使得所述两个可用无源信号反射装置分别利用所述两个波束向所述用户设备反射来自所述电子设备的信号。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
根据本公开的另一方面,提供了一种计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通 信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,可以根据用户设备的接收信号质量和干扰用户的接收信号质量从多个可用波束对中选取一个合适的波束对,从而使得无源信号反射装置能够利用选取的波束对向用户设备反射信号。这样一来,可以增强用户设备的接收信号质量,并且可以减少对干扰用户的干扰。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出无源信号反射装置的工作模式的示意图;
图2是示出在gNB(5G通信系统中的基站设备)与用户之间的直通链路被阻隔的情况下无源信号反射装置的工作模式的示意图;
图3是示出在用户位于小区边缘的情况下无源信号反射装置的工作模式的示意图;
图4是示出在引入了无源信号反射装置之后的MIMO通信的示意图;
图5(a)是示出在经过无源信号反射装置反射信号之后的接收信号与发送信号之间的关系的示意图;
图5(b)是示出在经过放大转发中继转发信号之后的接收信号与发送信号之间的关系的示意图;
图6是示出根据本公开的实施例的在使用无源信号反射装置的情况下用户受到干扰的场景的示意图;
图7是示出根据本公开的另一个实施例的在使用无源信号反射装置的情况下用户受到干扰的场景的示意图;
图8是示出根据本公开的实施例的电子设备的配置的示例的框图;
图9是示出根据本公开的实施例的确定可用无源信号反射装置的过程的示意图;
图10是示出根据本公开的实施例的确定干扰用户的过程的示意图;
图11是示出根据本公开的实施例的确定无源信号反射装置的可用波束的过程的示意图;
图12是示出根据本公开的实施例确定出的两个无源信号反射装置的可用波束的示意图;
图13是示出根据本公开的实施例的选取可用波束对的过程的示意图;
图14是示出根据本公开的实施例的选取可用波束对并使得无源信号反射装置利用选取的可用波束对反射信号的过程的信令流程图;
图15是示出根据本公开的实施例的由电子设备执行的无线通信方法的流程图;
图16是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;以及
图17是示出eNB的示意性配置的第二示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.问题的描述;
2.网络侧设备的配置示例;
3.方法实施例;
4.应用示例。
<1.问题的描述>
图1是示出无源信号反射装置的工作模式的示意图。图1以LIS(Large Intelligent Surface,大规模智能表面)为例说明了无源信号反射装置的工作模式。LIS包括多个反射元件(在图1中由正方形示出)。这里,gNB通过无线控制链路对控制器进行控制,而控制器通过有线控制链路控制LIS的反射方向。gNB向LIS发送下行信号,LIS在控制器的控制下将下行信号反射至用户。由此,gNB可以通过LIS实现与用户之间的通信。
图2是示出在gNB与用户之间的直通链路被阻隔的情况下无源信号反射装置的工作模式的示意图。如图2所示,gNB与用户之间的直通链路由于障碍物的存在而被阻断,而在gNB与用户之间的建筑物上存在LIS。gNB可以通过无线控制器来控制LIS的反射方向,然后将下行信号发送至LIS,LIS利用gNB控制的反射方向将下行信号反射至用户。由此,虽然gNB与用户之间的直通链路被阻断,但是gNB也可以通过gNB-LIS-用户的间接链路向用户发送下行信号,从而提高通信质量。
图3是示出在用户位于小区边缘的情况下无源信号反射装置的工作模式的示意图。如图3所示,实线圆弧示出了gNB的覆盖范围,虚线圆弧示出了gNB的中心覆盖范围。如图3所示,用户位于gNB的覆盖范围的边缘,因此信号接收质量较差。在gNB的覆盖范围的边缘存在LIS。gNB可以通过无线控制器来控制LIS的反射方向,然后将下行信号发送至LIS,LIS利用gNB控制的反射方向将下行信号反射至用户。由此,用户可以通过gNB与用户之间的直通链路接收到信号,还可以接收到LIS反射的信号,因此可以合并两个接收信号,从而提高信号接收质量。
图4是示出在引入了无源信号反射装置之后的MIMO通信的示意图。图4示出了两个LIS,gNB可以通过无线控制器来分别控制两个LIS的反射方向。也就是说,用户可以通过gNB与用户之间的直通链路接收到信号,还可以接收到两个LIS中的每个LIS反射的信号。由此可以实现MIMO通信。在传统的MIMO通信中,高频段存在严重的路径损耗,一般难以获得多径,直达径起到主要作用,导致MIMO的性能增益无法实现。然而,在引入LIS的MIMO通信中,多个LIS提供了多条传播路径,从而 使得即使在高频段,gNB与用户之间的等效信道也是多秩的,因此,可以在LIS增强通信中实现高频MIMO通信。
图5(a)是示出在经过无源信号反射装置反射信号之后的接收信号与发送信号之间的关系的示意图。如图5(a)所示,gNB发送的信号被表示为x,gNB与LIS之间的信道的信道矩阵被表示为G,而LIS与用户之间的信道的信道矩阵被表示为h H,Θ表示LIS进行相位调整的矩阵,n表示gNB与LIS之间的信道以及LIS与用户之间的信道上的噪声。因此,用户的接收信号y可以表示为:y=h HΘGx+n。前文中提到,LIS无法估计信道矩阵G和h H,但是LIS可以估计gNB-LIS-用户这个链路的等效信道,即h HΘG,但是等效信道的估计复杂度较高,开销很大。
图5(b)是示出在经过放大转发中继转发信号之后的接收信号与发送信号之间的关系的示意图。如图5(b)所示,gNB发送的信号被表示为x,gNB与放大转发中继之间的信道的信道矩阵被表示为G,而放大转发中继与用户之间的信道的信道矩阵被表示为h H,W表示放大转发中继进行信号处理的矩阵,n 1表示gNB与放大转发中继之间的信道上的噪声,n 2表示放大转发中继与用户之间的信道上的噪声。因此,用户的接收信号y可以表示为:y=h HW(Gx+n 1)+n 2。放大转发中继需要对接收到的信号进行信号处理,其可以估计信道矩阵G和h H
图6是示出根据本公开的实施例的在使用无源信号反射装置的情况下用户受到干扰的场景的示意图。如图6所示,标号为(1)的箭头示出了gNB与用户A之间的直通链路和gNB与用户B之间的直通链路,其中gNB与用户A之间的直通链路被障碍物阻断。如标号为(2)的箭头所示,gNB通过控制LIS的反射方向,经由LIS的反射向用户A发送信号,该信号也被称为用户A的有效信号。这里,因为用户B距离用户A和LIS都比较近,因此如标号为(3)的箭头所示,用户B也可以接收到来自LIS的反射信号,该信号对于用户B来说是干扰信号。也就是说,图6示出了在使用LIS进行下行传输过程中,用户设备B接收到了LIS向用户设备A反射的信号,从而造成干扰。
图7是示出根据本公开的另一个实施例的在使用无源信号反射装置的情况下用户受到干扰的场景的示意图。如图7所示,标号为(1A)的箭头示出了gNB与用户A之间的直通链路,标号为(1B)的箭头示出了gNB与用户B之间的直通链路。如标号为(2A)的箭头所示,gNB通过控制左侧的LIS的反射方向,经由左侧的LIS的反射向用户A发送信号,该信 号也被称为用户设备A的有效信号。由于用户B距离用户A以及左侧的LIS比较近,因此如标号为(3B)的箭头所示,左侧的LIS反射的信号也可能被用户B接收到,这样的信号对于用户B来说是干扰信号。类似地,如标号为(2B)的箭头所示,gNB通过控制右侧的LIS的反射方向,经由右侧的LIS的反射向用户B发送信号,该信号也被称为用户设备B的有效信号。由于用户A距离用户B以及右侧的LIS比较近,因此如标号为(3A)的箭头所示,右侧的LIS反射的信号也可能被用户A接收到,这样的信号对于用户A来说是干扰信号。也就是说,图7示出了在使用LIS进行下行传输过程中,用户设备B接收到了LIS向用户设备A反射的信号,从而造成干扰,用户设备A也接收到了LIS向用户设备B反射的信号,从而造成干扰。
根据本公开的实施例,由于无源信号反射装置的反射方向可以由gNB控制,因此gNB可以通过合理地选取无源信号反射装置以及无源信号反射装置的反射方向来降低对其他用户的干扰。
本公开针对这样的场景提出了一种无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,以合理地选取无源信号反射装置的反射方向,从而使得在增强通信质量的基础上降低对小区内其他用户的干扰。
根据本公开的干扰主要指的是无源信号反射装置反射的来自gNB的下行信号对其他用户造成的干扰。
根据本公开的无线通信系统可以是5G NR(New Radio,新无线)通信系统。
根据本公开的网络侧设备可以是任何类型的基站设备,例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。
根据本公开的无源信号反射装置可以集成多个反射元件,并可以与智能控制器有线连接,智能控制器控制无源信号反射装置的反射元件的相位,从而可以调整入射信号的相位。优选地,基站设备可以与智能控制器无线连接并控制智能控制器,从而控制位于基站覆盖范围内的无源信号反射装置的反射方向。无源信号反射装置可以根据需要部署在任何位置,例如建筑物的表面上,从而提高无线通信质量。
根据本公开的无源信号反射装置可以是无源信号反射表面,该表面可以是平面,也可以是曲面。进一步,该反射表面的主要材料可以是电磁, 即无源信号反射装置可以是无源电磁信号反射装置。此外,该无源信号反射装置仅能够被动进行反射,因此也被称为被动信号反射表面。例如,根据本公开的无源信号反射装置可以是以下中的至少一种:LIS(Large Intelligent Surface,大规模智能表面)、IRS(Intelligent Reflecting Surface,智能反射表面)、RIS(Reconfiguration Intelligent Surface,重构智能表面)、PIM(Passive Intelligent Mirror,被动智能反射镜面)。本公开对无源信号反射装置的名称不做限定,只要能够被动地且无源地进行信号反射即可。
<2.网络侧设备的配置示例>
图8是示出根据本公开的实施例的电子设备800的配置的示例的框图。这里的电子设备800可以作为无线通信系统中的网络侧设备,具体地可以作为无线通信系统中的基站设备。
如图8所示,电子设备800可以包括干扰用户确定单元810、可用波束对确定单元820、选取单元830、控制单元840和通信单元850。
这里,电子设备800的各个单元都可以包括在处理电路中。需要说明的是,电子设备800既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,干扰用户确定单元810可以根据用户设备的多个可用无源信号反射装置确定干扰用户。这里,干扰用户受到来自至少一个可用无源信号反射装置的干扰。
根据本公开的实施例,用户设备可以是电子设备800覆盖范围内的任意一个用户设备,并且是将要利用无源信号反射装置向其反射信号的用户设备。干扰用户指的是假定利用可用无源信号反射装置向用户设备反射信号,则可能受到干扰的其他用户设备。也就是说,干扰用户可能会收到来自用户设备的可用无源信号反射装置的反射信号,这样的信号对于干扰用户来说属于干扰信号。这里,干扰用户可能有一个或多个。干扰用户确定单元810可以针对电子设备800覆盖范围内的任意一个用户设备确定一个或多个干扰用户。
根据本公开的实施例,可用波束对确定单元820可以根据用户设备的多个可用无源信号反射装置确定可用波束对的集合,其中,每个可用波束对中的两个波束分别是两个可用无源信号反射装置的可用波束。
根据本公开的实施例,可用波束对确定单元820可以针对电子设备800覆盖范围内的任意一个用户设备确定可用波束对的集合,该集合包括多个可用波束对,每个可用波束对包括两个可用波束,这两个可用波束属于两个不同的可用无源信号反射装置。可用无源信号反射装置的可用波束表征了可用无源信号反射装置的反射方向。
根据本公开的实施例,选取单元830可以根据用户设备的接收信号质量以及干扰用户确定单元810确定的一个或多个干扰用户的接收信号质量从可用波束对的集合中选取一个可用波束对。
根据本公开的实施例,控制单元840可以将选取的可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为这两个波束。例如,控制单元840可以通过无线控制与可用无源信号反射装置连接的控制器来控制可用无源信号反射装置的反射方向。
根据本公开的实施例,电子设备800可以通过通信单元850向选取的可用波束对中的两个波束所属的两个可用无源信号反射装置发送信号,从而这两个可用无源信号反射装置可以分别利用选取的可用波束对中的两个波束向用户设备反射来自电子设备800的信号。
如上所述,使用根据本公开的电子设备800,可以根据用户设备的接收信号质量和干扰用户的接收信号质量从多个可用波束对中选取一个合适的波束对,从而使得无源信号反射装置能够利用选取的波束对向用户设备反射信号。这样一来,可以增强用户设备的接收信号质量,并且可以减少对干扰用户的干扰。
如图8所示,根据本公开的实施例,电子设备800还可以包括可用装置确定单元860,用于确定用户设备的多个可用无源信号反射装置。也就是说,电子设备800的覆盖范围内可能存在多个无源信号反射装置,而可用装置确定单元860可以确定针对用户设备的多个可用无源信号反射装置。
根据本公开的实施例,可用装置确定单元860可以根据用户设备的接收信号的范围以及电子设备800的发送信号的范围确定用户设备的多个可用无源信号反射装置。这里,用户设备的接收信号的范围指的是用户设备的接收信号质量大于预定阈值的地理区域,而电子设备800的发送信号的范围指的是电子设备800的发送信号的质量大于预定阈值的地理区域。优选地,可以用以用户设备为圆心、用户设备的有效接收距离为半径 的圆形来表示用户设备的接收信号的范围,用以电子设备800为圆心、电子设备800的有效发送距离为半径的圆形来表示电子设备800的发送信号的范围。
根据本公开的实施例,可用装置确定单元860可以将用户设备的接收信号的范围以及电子设备800的发送信号的范围的交叠区域中的多个无源信号反射装置确定为用户设备的多个可用无源信号反射装置。这里,处于交叠区域中的无源信号反射装置可以很好地接收来自电子设备800的信号,并且用户设备也可以很好地接收来自交叠区域中的无源信号反射装置的信号,因此可以将交叠区域中的无源信号反射装置确定为用户设备的可用无源信号反射装置。
图9是示出根据本公开的实施例的确定可用无源信号反射装置的过程的示意图。在图9中,电子设备800由gNB实现,第k个用户表示希望由无源信号反射装置反射信号的用户设备,正方形区域表示LIS,圆形区域表示用户设备。这里,可以用以gNB为圆心、r 1为半径的圆形来表示gNB的发送信号的范围,r 1为gNB的有效发送距离,用以第k个用户为圆心、R 2,k为半径的圆形来表示第k个用户的接收信号的范围,R 2,k表示第k个用户的有效接收距离。gNB与第k个用户之间的距离为d k。如图9所示,gNB的发送信号的范围与第k个用户的接收信号的范围的交叠区域中存在两个LIS,因此可用装置确定单元860可以将这两个LIS确定为第k个用户的可用无源信号反射装置。
根据本公开的实施例,干扰用户确定单元810可以根据每个可用无源信号反射装置的反射信号的范围以及用户设备的位置确定每个可用无源信号反射装置的干扰范围。
根据本公开的实施例,无源信号反射装置的反射信号的范围可以用无源信号反射装置的反射距离来表示。该反射距离表示在无源信号反射装置的所有的反射波束范围内,反射信号所能到达的最远距离。优选地,无源信号反射装置的反射信号的范围可以是以无源信号反射装置为圆心、无源信号反射装置的反射距离为半径、并且根据无源信号反射装置的所有波束方向确定的扇形(特别地为半圆形)。
干扰用户确定单元810可以根据可用无源信号反射装置的反射距离和/或可用无源信号反射装置与用户设备之间的距离确定可用无源信号反射装置的干扰范围。此外,可用无源信号反射装置的干扰范围可以是矩形、半圆形或者六边形,本公开对此不做限定。
根据本公开的一个实施例,可以将以下半圆形区域作为可用无源信号反射装置的干扰范围:该半圆形以可用无源信号反射装置为圆心、以可用无源信号反射装置与用户设备之间的连线为对称轴、并且以可用无源信号反射装置的反射距离为半径。
根据本公开的另一个实施例,可以将以下矩形区域作为可用无源信号反射装置的干扰范围:该矩形以可用无源信号反射装置与用户设备之间的连线作为对称轴、将可用无源信号反射装置与用户设备之间的距离作为与该对称轴平行的边的长度、将可用无源信号反射装置的反射距离的2倍作为与该对称轴垂直的边的长度。
根据本公开的实施例,干扰用户确定单元810可以确定用户设备的每个可用无源信号反射装置的干扰范围,然后根据每个可用无源信号反射装置的干扰范围确定用户设备的干扰用户。具体地,干扰用户确定单元810可以将位于一个或多个可用无源信号反射装置的干扰范围内的用户确定为干扰用户。也就是说,干扰用户确定单元810将各个可用无源信号反射装置的干扰范围内的用户的并集确定为用户设备的干扰用户。
图10是示出根据本公开的实施例的确定干扰用户的过程的示意图。在图10中,标号为k的圆形区域表示第k个用户,标号为1和2的两个正方形区域表示可用装置确定单元860确定的第k个用户的两个可用LIS。如图10所示,L 2,k表示标号为2的LIS与第k个用户之间的距离,L 2表示标号为2的LIS的反射距离的2倍。以标号为2的LIS与第k个用户之间的连线为对称轴、以L 2,k为与对称轴平行的边的长度、以L 2为与对称轴垂直的边的长度的矩形区域表示标号为2的LIS的干扰范围(以虚线矩形区域示出)。类似地,L 1,k表示标号为1的LIS与第k个用户之间的距离,L 1表示标号为1的LIS的反射距离的2倍。以标号为1的LIS与第k个用户之间的连线为对称轴、以L 1,k为与对称轴平行的边的长度、以L 1为与对称轴垂直的边的长度的矩形区域表示标号为1的LIS的干扰范围(以虚线矩形区域示出)。如图10所示,标号为2的LIS的干扰范围内存在一个用户,即以标号为k+1的圆形示出的第k+1个用户,标号为1的LIS的干扰范围内不存在用户。因此,在图10所示的实施例中,干扰用户确定单元810可以确定第k个用户的干扰用户为第k+1个用户。如上所述,图10以矩形的干扰范围区域为例示出了干扰用户确定单元810确定干扰用户的过程,针对半圆形区域或者其他形状的干扰范围区域确定干扰用户的过程与其类似,本公开不再赘述。
如图8所示,根据本公开的实施例,电子设备800还可以包括可用波束确定单元870,用于确定每个可用无源信号反射装置的可用波束。
根据本公开的实施例,可用波束确定单元870可以将每个可用无源信号反射装置的与其它可用无源信号反射装置的反射信号的范围具有交叠区域的波束确定为该可用无源信号反射装置的可用波束。
图11是示出根据本公开的实施例的确定无源信号反射装置的可用波束的过程的示意图。在图11中,示出了用户设备的两个可用无源信号反射装置:LIS1和LIS2,每个LIS的反射信号的范围为半圆形。例如,LIS1的反射信号的范围为以LIS1为圆心、LIS1的反射距离为半径、以LIS1的阵列表面的方向截取的半圆形,LIS1的所有波束包括波束1、波束2、波束3、…波束6。LIS2的反射信号的范围为以LIS2为圆心、LIS2的反射距离为半径、以LIS2的阵列表面的方向截取的半圆形,LIS2的所有波束包括波束1、波束2、波束3、…波束6。根据本公开的实施例,LIS1的波束3、波束4和波束5与LIS2的反射信号的范围具有交叠区域,因此可用波束确定单元870可以将LIS1的波束3、波束4和波束5确定为LIS1的可用波束。类似地,LIS2的波束1和波束2与LIS1的反射信号的范围具有交叠区域,因此可用波束确定单元870可以将LIS2的波束1和波束2确定为LIS2的可用波束。
图12是示出根据本公开的实施例确定出的两个无源信号反射装置的可用波束的示意图。如图12所示,LIS1的可用波束包括波束3、波束4和波束5,LIS2的可用波束包括波束1和波束2。
值得注意的是,图11和图12示出了用户设备的可用无源信号反射装置包括两个无源信号反射装置的情形。对于可用无源信号反射装置包括三个以上无源信号反射装置的情况,只要一个无源信号反射装置的波束与任意一个或多个其他的无源信号反射装置的反射信号的范围有交叠即可,而无需与所有的无源信号反射装置的反射信号的范围有交叠。
根据本公开的实施例,由于LIS1和LIS2是根据用户设备的接收信号的范围确定出的无源信号反射装置,因此用户设备在LIS1的反射信号的范围和LIS2的反射信号的范围的交叠区域中的可能性很大,因此可用波束确定单元870根据如上所述的方式确定出各个可用无源信号反射装置的可用波束能够更好地契合用户设备的方向,从而电子设备800可以根据各个可用无源信号反射装置的可用波束确定出最终使用的波束,可以很好地提高用户设备的通信质量。
根据本公开的实施例,在可用波束确定单元870确定出各个可用无源信号反射装置的可用波束之后,可用波束对确定单元820可以根据每个可用无源信号反射装置的可用波束确定可用波束对的集合。
根据本公开的实施例,可用波束对确定单元820可以穷举或遍历各个可能的可用波束对,每个可用波束对中的两个可用波束是来自于不同的可用无源信号反射装置的可用波束。例如,在用户设备的可用无源信号反射装置包括两个无源信号反射装置的情况下,假定两个无源信号反射装置分别包括M个和N个可用波束,则可用波束对确定单元820可以确定出M×N个可用波束对。
例如,在图12所示的示例中,LIS1的可用波束包括波束3、波束4和波束5,LIS2的可用波束包括波束1和波束2,则可用波束对确定单元820可以确定出包括以下6个可用波束对(C1-C6)的可用波束对集合:
C1=LIS1的波束3,LIS2的波束1
C2=LIS1的波束3,LIS2的波束2
C3=LIS1的波束4,LIS2的波束1
C4=LIS1的波束4,LIS2的波束2
C5=LIS1的波束5,LIS2的波束1
C6=LIS1的波束5,LIS2的波束2。
如上所述,以用户设备的可用无源信号反射装置包括两个无源信号反射装置为例说明了可用波束对集合。对于用户设备的可用无源信号反射装置包括三个以上的无源信号反射装置的情况,可用波束对集合中的可用波束对仍然只包括两个可用波束,即属于两个不同的可用无源信号反射装置的可用波束即可。这样一来,最终为用户设备服务的无源信号反射装置仅包括两个无源信号反射装置,其他的无源信号反射装置可以为其他用户设备服务,从而在提高用户设备的接收质量的基础上不占用太多的资源。
如上所述,干扰用户确定单元810可以确定出用户设备的一个或多个干扰用户,可用波束对确定单元820可以确定出可用波束对集合,下面将详细描述选取单元830和控制单元840。
根据本公开的实施例,针对可用波束对确定单元820确定出的可用波束对集合中的每一个可用波束对,控制单元840可以将可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为这两 个波束。例如,针对上面的可用波束对:LIS1的波束3,LIS2的波束1,控制单元840可以将LIS1的反射方向调整为波束3,将LIS2的反射方向调整为波束1。进一步,电子设备800可以向这两个可用无源信号反射装置发送下行信号,以分别通过这两个可用无源信号反射装置向用户设备反射下行信号。这里,电子设备800可以通过波束赋形的方式向可用无源信号反射装置发送下行信号,也可以通过全向信号的方式向可用无源信号反射装置发送下行信号。
图13是示出根据本公开的实施例的选取可用波束对的过程的示意图。如图13所示,gNB向LIS1和LIS2发送下行信号,LIS1可以利用波束3向用户设备反射下行信号,LIS2可以利用波束1向用户设备反射下行信号。
根据本公开的实施例,电子设备800可以通过通信单元850从用户设备接收用户设备的接收信号质量。这里,由于用户设备可以接收到来自两个可用无源信号反射装置的反射信号,因此用户设备可以合并这两个反射信号,从而确定出接收信号质量。用户设备可以采用本领域中公知的任何方法来合并两个信号,本公开对此不做限定。此外,可以用各种参数来表征接收信号质量,例如接收信号强度等。
根据本公开的实施例,电子设备800可以通过通信单元850从干扰用户确定单元810确定出的一个或者多个干扰用户中的每个干扰用户接收干扰用户的接收信号质量。同样地,可以用各种参数来表征接收信号质量,例如接收信号强度等。
根据本公开的实施例,选取单元830可以根据用户设备的接收信号质量和每个干扰用户的接收信号质量来选取可用波束对。例如,选取单元830可以计算用户设备的接收信号质量与所有干扰用户的接收信号质量之和的比值。可选地,选取单元830还可以计算用户设备的接收信号质量与所有干扰用户的接收信号质量之和与噪声功率的总和的比值。
如上所述,针对可用波束对集合中的任意一个可用波束对,控制单元840可以将该可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为这两个波束,用户设备和各个干扰用户测量接收信号质量,并且选取单元830可以根据用户设备的接收信号质量和各个干扰用户的接收信号质量计算用户设备的接收信号质量与所有干扰用户的接收信号质量之和的比值。也就是说,针对可用波束对集合中的任意一个可用波束对,选取单元830都可以计算出一个这样的比值。
根据本公开的实施例,选取单元830可以从可用波束对的集合中选取这个比值最大的一个可用波束对。也就是说,对于选取的可用波束对,用户设备的接收信号质量较好,而干扰用户的接收信号质量较差,即干扰用户受到的干扰较小。因此,根据本公开的实施例,电子设备800以这样的方式选取波束对,可以在提高用户设备的信道质量的同时降低对其他用户的干扰。
根据本公开的实施例,选取单元830可以根据以下公式来为第k个用户选取波束对:
Figure PCTCN2021076417-appb-000001
其中,i表示可用波束对集合中的可用波束对的编号,P k,i表示针对第i个可用波束对,第k个用户的接收信号质量,P k′,i表示针对第i个可用波束对,干扰用户k’的接收信号质量,∑ k′≠kP k′,i表示针对第i个可用波束对,所有干扰用户的接收信号质量之和,P N表示噪声功率。i opt表示选取单元830选取的可用波束对的编号,其等于使得比值
Figure PCTCN2021076417-appb-000002
最大的i的值。
根据本公开的实施例,在选取单元830选取了一个可用波束对之后,控制单元840可以将选取的可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为这两个波束。然后,电子设备800可以通过通信单元850向选取的可用波束对中的两个波束所属的两个可用无源信号反射装置发送信号,从而这两个可用无源信号反射装置分别利用选取的可用波束对中的两个波束向用户设备反射来自电子设备800的信号。
根据本公开的实施例,可以由电子设备800确定为用户设备启用无源信号反射装置的模式,即利用无源信号反射装置反射来自电子设备800的信号。例如,电子设备800可以通过用户设备反馈的方式来确定用户设备的接收信号质量,从而在用户设备的接收质量小于预定阈值的情况下确定启用无源信号反射装置的模式。
根据本公开的实施例,还可以根据用户设备的请求来启用无源信号反射装置的模式。例如,电子设备800可以通过通信单元850从用户设备 接收表示启用无源信号反射装置的模式的请求信息,并响应于该请求信息为用户设备启用无源信号反射装置的模式。
根据本公开的实施例,电子设备800可以采集其覆盖范围内的各个无源信号反射装置的配置信息,包括位置、反射表面的大小、反射表面的所有反射波束的角度范围等。这可以通过在部署或者调整各个无源信号反射装置时向电子设备800上报上述信息来实现。进一步,电子设备800可以将其覆盖范围内是否存在无源信号反射装置的信息发送至用户设备。
根据本公开的实施例,在电子设备800的覆盖范围内存在无源信号反射装置的情况下,用户设备可以根据接收信号的质量来确定是否启用无源信号反射装置的模式。具体地,在用户设备的接收信号的质量小于预定阈值的情况下,用户设备可以确定需要启用无源信号反射装置的模式。例如,在下述不等式成立的情况下,第k个用户可以确定启用无源信号反射装置的模式:
log 2(1+p kσ -2)<R min,k
其中,p k表示第k个用户的接收信号功率,σ 2表示干扰信号功率与噪声功率之和,R min,k表示第k个用户的接收信号的质量的预定阈值。
如上所述,根据本公开的实施例,可以由电子设备800或者用户设备来启用无源信号反射装置的模式。在启用无源信号反射装置的模式的情况下,电子设备800可以确定用户设备的多个可用无源信号反射装置以及一个或多个干扰用户,并可以确定各个可用无源信号反射装置的可用波束,从而确定可用波束对集合。进一步,电子设备800可以根据用户设备的接收信号质量和各个干扰用户的接收信号质量从可用波束对集合中选取一个可用波束对,并使得选取的可用波束对包括的两个可用波束所属的两个无源信号反射装置利用这两个可用波束向用户设备反射信号。由此,电子设备800可以合理地选取无源信号反射装置和可用波束,从而在提高用户设备的接收信号质量的同时减少对其他用户的干扰。
图14是示出根据本公开的实施例的选取可用波束对并使得无源信号反射装置利用选取的可用波束对反射信号的过程的信令流程图。在图14中,gNB可以由电子设备800来实现,并且以LIS为例说明无源信号反射装置。在步骤S1401中,UE向gNB发送请求信息,以请求启用无源信号反射装置的模式。接下来,在步骤S1402中,gNB为UE确定多个可用的LIS。接下来,在步骤S1403中,gNB为UE确定一个或多个干扰用户。 接下来,在步骤S1404中,gNB确定每个可用的LIS的可用波束。接下来,在步骤S1405中,gNB根据各个LIS的可用波束确定可用波束对集合。接下来,在步骤S1406中,针对可用波束对集合中的每个可用波束对,gNB控制该可用波束对包括的两个可用波束所属的LIS的反射方向并向这两个LIS发送信号。接下来,在步骤S1407中,LIS根据gNB的控制向UE反射信号。接下来,在步骤S1408中,UE测量接收信号质量。同时,干扰用户也可以测量接收信号质量,接下来,在步骤S1409中,UE向gNB反馈测量的接收信号质量,干扰用户也可以向gNB反馈测量的接收信号质量。接下来,在步骤S1410中,gNB根据UE的接收信号质量和干扰用户的接收信号质量从可用波束对集合中选取一个可用波束对。接下来,在步骤S1411中,gNB将选取的可用波束对包括的两个可用波束所属的两个LIS的反射方向调整为这两个可用波束的方向,并向这两个LIS发送下行信号。接下来,在步骤S1412中,这两个LIS利用选取的可用波束对包括的两个可用波束向UE反射信号。由此,UE可以接收到通过选取的可用波束对反射的信号,从而提高通信质量。
<3.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的作为网络侧设备的电子设备800执行的无线通信方法。
图15是示出根据本公开的实施例的由无线通信系统中的作为网络侧设备的电子设备800执行的无线通信方法的流程图。
如图15所示,在步骤S1510中,根据用户设备的多个可用无源信号反射装置确定干扰用户,其中,干扰用户受到来自至少一个可用无源信号反射装置的干扰。
接下来,在步骤S1520中,根据用户设备的多个可用无源信号反射装置确定可用波束对的集合,其中,每个可用波束对中的两个波束分别是两个可用无源信号反射装置的可用波束。
接下来,在步骤S1530中,根据用户设备的接收信号质量以及干扰用户的接收信号质量从可用波束对的集合中选取一个可用波束对。
接下来,在步骤S1540中,将选取的可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为该两个波束,以使得这两个可用无源信号反射装置分别利用这两个波束向用户设备反射来自电子设备800的信号。
优选地,无线通信方法还包括:根据用户设备的接收信号的范围以及电子设备800的发送信号的范围确定用户设备的多个可用无源信号反射装置。
优选地,确定用户设备的多个可用无源信号反射装置包括:将用户设备的接收信号的范围以及电子设备800的发送信号的范围的交叠区域中的多个无源信号反射装置确定为多个可用无源信号反射装置。
优选地,确定干扰用户包括:根据每个可用无源信号反射装置的反射信号的范围以及用户设备的位置确定每个可用无源信号反射装置的干扰范围;以及根据每个可用无源信号反射装置的干扰范围确定干扰用户。
优选地,确定干扰用户包括:将位于一个或多个可用无源信号反射装置的干扰范围内的用户确定为干扰用户。
优选地,无线通信方法还包括:将每个可用无源信号反射装置的与其它可用无源信号反射装置的反射信号的范围具有交叠区域的波束确定为可用无源信号反射装置的可用波束;以及根据每个可用无源信号反射装置的可用波束确定可用波束对的集合。
优选地,无线通信方法还包括:针对每个可用波束对执行以下操作:将可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为这两个波束,并分别通过这两个可用无源信号反射装置向用户设备发送下行信号;从用户设备接收用户设备的接收信号质量;以及从每个干扰用户接收干扰用户的接收信号质量。
优选地,选取可用波束对包括:针对每个可用波束对,计算用户设备的接收信号质量与所有干扰用户的接收信号质量之和的比值;以及从可用波束对的集合中选取比值最大的一个可用波束对。
优选地,无线通信方法还包括:从用户设备接收表示启用无源信号反射装置的模式的请求信息,其中,启用无源信号反射装置的模式表示由无源信号反射装置反射来自电子设备800的信号。
优选地,无源信号反射装置为无源电磁信号反射表面。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备800,因此前文中关于电子设备800的全部实施例均适用于此。
<4.应用示例>
本公开内容的技术能够应用于各种产品。
例如,网络侧设备也可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图16是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1600包括一个或多个天线1610以及基站设备1620。基站设备1620和每个天线1610可以经由RF线缆彼此连接。
天线1610中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1620发送和接收无线信号。如图16所示,gNB 1600可以包括多个天线1610。例如,多个天线1610可以与gNB 1600使用的多个频带兼容。虽然图16示出其中gNB 1600包括多个天线1610的示例,但是gNB 1600也可以包括单个天线1610。
基站设备1620包括控制器1621、存储器1622、网络接口1623以及无线通信接口1625。
控制器1621可以为例如CPU或DSP,并且操作基站设备1620的较高层的各种功能。例如,控制器1621根据由无线通信接口1625处理的信号中的数据来生成数据分组,并经由网络接口1623来传递所生成的分组。控制器1621可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1621可以具有执行如下控制的逻辑功 能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1622包括RAM和ROM,并且存储由控制器1621执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1623为用于将基站设备1620连接至核心网1624的通信接口。控制器1621可以经由网络接口1623而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1600与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1623还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1623为无线通信接口,则与由无线通信接口1625使用的频带相比,网络接口1623可以使用较高频带用于无线通信。
无线通信接口1625支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1610来提供到位于gNB 1600的小区中的终端的无线连接。无线通信接口1625通常可以包括例如基带(BB)处理器1626和RF电路1627。BB处理器1626可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1621,BB处理器1626可以具有上述逻辑功能的一部分或全部。BB处理器1626可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1626的功能改变。该模块可以为插入到基站设备1620的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1627可以包括例如混频器、滤波器和放大器,并且经由天线1610来传送和接收无线信号。
如图16所示,无线通信接口1625可以包括多个BB处理器1626。例如,多个BB处理器1626可以与gNB 1600使用的多个频带兼容。如图16所示,无线通信接口1625可以包括多个RF电路1627。例如,多个RF电路1627可以与多个天线元件兼容。虽然图16示出其中无线通信接口1625包括多个BB处理器1626和多个RF电路1627的示例,但是无线通信接口1625也可以包括单个BB处理器1626或单个RF电路1627。
(第二应用示例)
图17是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1730包括一个或多个天线1740、基站设备1750和 RRH 1760。RRH 1760和每个天线1740可以经由RF线缆而彼此连接。基站设备1750和RRH 1760可以经由诸如光纤线缆的高速线路而彼此连接。
天线1740中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1760发送和接收无线信号。如图17所示,gNB 1730可以包括多个天线1740。例如,多个天线1740可以与gNB 1730使用的多个频带兼容。虽然图17示出其中gNB 1730包括多个天线1740的示例,但是gNB 1730也可以包括单个天线1740。
基站设备1750包括控制器1751、存储器1752、网络接口1753、无线通信接口1755以及连接接口1757。控制器1751、存储器1752和网络接口1753与参照图16描述的控制器1621、存储器1622和网络接口1623相同。
无线通信接口1755支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1760和天线1740来提供到位于与RRH 1760对应的扇区中的终端的无线通信。无线通信接口1755通常可以包括例如BB处理器1756。除了BB处理器1756经由连接接口1757连接到RRH 1760的RF电路1764之外,BB处理器1756与参照图16描述的BB处理器1626相同。如图17所示,无线通信接口1755可以包括多个BB处理器1756。例如,多个BB处理器1756可以与gNB 1730使用的多个频带兼容。虽然图17示出其中无线通信接口1755包括多个BB处理器1756的示例,但是无线通信接口1755也可以包括单个BB处理器1756。
连接接口1757为用于将基站设备1750(无线通信接口1755)连接至RRH 1760的接口。连接接口1757还可以为用于将基站设备1750(无线通信接口1755)连接至RRH 1760的上述高速线路中的通信的通信模块。
RRH 1760包括连接接口1761和无线通信接口1763。
连接接口1761为用于将RRH 1760(无线通信接口1763)连接至基站设备1750的接口。连接接口1761还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1763经由天线1740来传送和接收无线信号。无线通信接口1763通常可以包括例如RF电路1764。RF电路1764可以包括例如混频器、滤波器和放大器,并且经由天线1740来传送和接收无线信号。如图17所示,无线通信接口1763可以包括多个RF电路1764。例如,多个RF电路1764可以支持多个天线元件。虽然图17示出其中无线通信接 口1763包括多个RF电路1764的示例,但是无线通信接口1763也可以包括单个RF电路1764。
在图16和图17所示的gNB 1600和gNB1730中,通过使用图8所描述的干扰用户确定单元810、可用波束对确定单元820、选取单元830、控制单元840、可用装置确定单元860和可用波束确定单元870可以由控制器1621和/或控制器1751实现。功能的至少一部分也可以由控制器1621和控制器1751实现。例如,控制器1621和/或控制器1751可以通过执行确定干扰用户、确定可用波束对、选取一个可用波束对、控制无源信号反射装置的反射方向、确定用户设备的可用无源信号反射装置以及确定无源信号反射装置的可用波束的功能。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (21)

  1. 一种电子设备,包括处理电路,被配置为:
    根据用户设备的多个可用无源信号反射装置确定干扰用户,其中,所述干扰用户受到来自至少一个可用无源信号反射装置的干扰;
    根据所述用户设备的多个可用无源信号反射装置确定可用波束对的集合,其中,每个可用波束对中的两个波束分别是两个可用无源信号反射装置的可用波束;
    根据所述用户设备的接收信号质量以及干扰用户的接收信号质量从所述可用波束对的集合中选取一个可用波束对;以及
    将选取的可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为所述两个波束,以使得所述两个可用无源信号反射装置分别利用所述两个波束向所述用户设备反射来自所述电子设备的信号。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    根据所述用户设备的接收信号的范围以及所述电子设备的发送信号的范围确定所述用户设备的多个可用无源信号反射装置。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    将所述用户设备的接收信号的范围以及所述电子设备的发送信号的范围的交叠区域中的多个无源信号反射装置确定为所述多个可用无源信号反射装置。
  4. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    根据每个可用无源信号反射装置的反射信号的范围以及所述用户设备的位置确定每个可用无源信号反射装置的干扰范围;以及
    根据每个可用无源信号反射装置的干扰范围确定所述干扰用户。
  5. 根据权利要求4所述的电子设备,其中,所述处理电路还被配置为:
    将位于一个或多个可用无源信号反射装置的干扰范围内的用户确定为所述干扰用户。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    将每个可用无源信号反射装置的与其它可用无源信号反射装置的反射信号的范围具有交叠区域的波束确定为所述可用无源信号反射装置的可用波束;以及
    根据每个可用无源信号反射装置的可用波束确定所述可用波束对的集合。
  7. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为针对每个可用波束对执行以下操作:
    将所述可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为所述两个波束,并分别通过所述两个可用无源信号反射装置向所述用户设备发送下行信号;
    从所述用户设备接收所述用户设备的接收信号质量;以及
    从每个干扰用户接收所述干扰用户的接收信号质量。
  8. 根据权利要求7所述的电子设备,其中,所述处理电路还被配置为:
    针对每个可用波束对,计算所述用户设备的接收信号质量与所有干扰用户的接收信号质量之和的比值;以及
    从所述可用波束对的集合中选取所述比值最大的一个可用波束对。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    从所述用户设备接收表示启用无源信号反射装置的模式的请求信息,其中,启用无源信号反射装置的模式表示由无源信号反射装置反射来自所述电子设备的信号。
  10. 根据权利要求1所述的电子设备,其中,所述无源信号反射装置为无源电磁信号反射表面。
  11. 一种由电子设备执行的无线通信方法,包括:
    根据用户设备的多个可用无源信号反射装置确定干扰用户,其中,所 述干扰用户受到来自至少一个可用无源信号反射装置的干扰;
    根据所述用户设备的多个可用无源信号反射装置确定可用波束对的集合,其中,每个可用波束对中的两个波束分别是两个可用无源信号反射装置的可用波束;
    根据所述用户设备的接收信号质量以及干扰用户的接收信号质量从所述可用波束对的集合中选取一个可用波束对;以及
    将选取的可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为所述两个波束,以使得所述两个可用无源信号反射装置分别利用所述两个波束向所述用户设备反射来自所述电子设备的信号。
  12. 根据权利要求11所述的无线通信方法,其中,所述无线通信方法还包括:
    根据所述用户设备的接收信号的范围以及所述电子设备的发送信号的范围确定所述用户设备的多个可用无源信号反射装置。
  13. 根据权利要求12所述的无线通信方法,其中,确定所述用户设备的多个可用无源信号反射装置包括:
    将所述用户设备的接收信号的范围以及所述电子设备的发送信号的范围的交叠区域中的多个无源信号反射装置确定为所述多个可用无源信号反射装置。
  14. 根据权利要求11所述的无线通信方法,其中,确定所述干扰用户包括:
    根据每个可用无源信号反射装置的反射信号的范围以及所述用户设备的位置确定每个可用无源信号反射装置的干扰范围;以及
    根据每个可用无源信号反射装置的干扰范围确定所述干扰用户。
  15. 根据权利要求14所述的无线通信方法,其中,确定所述干扰用户包括:
    将位于一个或多个可用无源信号反射装置的干扰范围内的用户确定为所述干扰用户。
  16. 根据权利要求11所述的无线通信方法,其中,所述无线通信方法还包括:
    将每个可用无源信号反射装置的与其它可用无源信号反射装置的反射信号的范围具有交叠区域的波束确定为所述可用无源信号反射装置的可用波束;以及
    根据每个可用无源信号反射装置的可用波束确定所述可用波束对的集合。
  17. 根据权利要求11所述的无线通信方法,其中,所述无线通信方法还包括:
    针对每个可用波束对执行以下操作:
    将所述可用波束对中的两个波束所属的两个可用无源信号反射装置的反射方向分别调整为所述两个波束,并分别通过所述两个可用无源信号反射装置向所述用户设备发送下行信号;
    从所述用户设备接收所述用户设备的接收信号质量;以及
    从每个干扰用户接收所述干扰用户的接收信号质量。
  18. 根据权利要求17所述的无线通信方法,其中,选取可用波束对包括:
    针对每个可用波束对,计算所述用户设备的接收信号质量与所有干扰用户的接收信号质量之和的比值;以及
    从所述可用波束对的集合中选取所述比值最大的一个可用波束对。
  19. 根据权利要求11所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述用户设备接收表示启用无源信号反射装置的模式的请求信息,其中,启用无源信号反射装置的模式表示由无源信号反射装置反射来自所述电子设备的信号。
  20. 根据权利要求11所述的无线通信方法,其中,所述无源信号反射装置为无源电磁信号反射表面。
  21. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求11-20中任一项所述的无线通信方法。
PCT/CN2021/076417 2020-02-18 2021-02-10 电子设备、无线通信方法和计算机可读存储介质 WO2021164676A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180009777.2A CN114982137A (zh) 2020-02-18 2021-02-10 电子设备、无线通信方法和计算机可读存储介质
EP21757878.0A EP4099574A4 (en) 2020-02-18 2021-02-10 ELECTRONIC DEVICE, WIRELESS COMMUNICATION METHOD AND COMPUTER READABLE STORAGE MEDIA
US17/790,582 US20230040183A1 (en) 2020-02-18 2021-02-10 Electronic device, wireless communication method and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010100127.6A CN113346917A (zh) 2020-02-18 2020-02-18 电子设备、无线通信方法和计算机可读存储介质
CN202010100127.6 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021164676A1 true WO2021164676A1 (zh) 2021-08-26

Family

ID=77390416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076417 WO2021164676A1 (zh) 2020-02-18 2021-02-10 电子设备、无线通信方法和计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230040183A1 (zh)
EP (1) EP4099574A4 (zh)
CN (2) CN113346917A (zh)
WO (1) WO2021164676A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114268905A (zh) * 2021-12-20 2022-04-01 中国电信股份有限公司 基于波束调节装置的通信方法、装置及系统
WO2022146830A3 (en) * 2021-01-04 2022-10-20 Google Llc Integrated access backhaul with an adaptive phase-changing device
WO2023134526A1 (zh) * 2022-01-12 2023-07-20 索尼集团公司 电子设备、无线通信方法和计算机可读存储介质
WO2023241448A1 (zh) * 2022-06-15 2023-12-21 维沃移动通信有限公司 测量处理方法、终端及网络侧设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230059031A (ko) * 2021-10-25 2023-05-03 삼성전자주식회사 무선 통신 시스템에서 지능형 반사 표면을 동작하는 장치 및 동작 방법
WO2023097596A1 (en) * 2021-12-02 2023-06-08 Qualcomm Incorporated Training of reconfigurable intelligent surfaces through 1 port comb-n reference signals
CN114980146B (zh) * 2021-12-15 2023-05-19 广州市苏纳米实业有限公司 一种基于智能通信箱的波束增强方法、装置及智能通信箱
KR20240021002A (ko) * 2022-08-09 2024-02-16 삼성전자주식회사 무선 통신 시스템에서 ris 제어를 위한 빔 북을 획득하는 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110012547A (zh) * 2019-04-12 2019-07-12 电子科技大学 一种共生网络中用户关联的方法
CN110266352A (zh) * 2019-05-27 2019-09-20 东南大学 一种大规模mimo系统中智能反射面相移矩阵自适应设计方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164925A1 (en) * 2016-03-24 2017-09-28 Intel Corporation Method of positioning for 5g systems
KR101953230B1 (ko) * 2017-06-07 2019-05-17 에스케이텔레콤 주식회사 다중 빔 안테나를 이용한 신호 중계 장치
CN109842437A (zh) * 2017-11-29 2019-06-04 索尼公司 无线通信系统中的电子设备、方法和计算机可读存储介质
CN110034798A (zh) * 2018-01-11 2019-07-19 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN110392438A (zh) * 2018-04-23 2019-10-29 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN110225538B (zh) * 2019-06-21 2021-04-09 电子科技大学 反射面辅助的非正交多址接入通信系统设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110012547A (zh) * 2019-04-12 2019-07-12 电子科技大学 一种共生网络中用户关联的方法
CN110266352A (zh) * 2019-05-27 2019-09-20 东南大学 一种大规模mimo系统中智能反射面相移矩阵自适应设计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099574A4
TAHA ABDELRAHMAN; ALRABEIAH MUHAMMAD; ALKHATEEB AHMED: "Enabling Large Intelligent Surfaces with Compressive Sensing and Deep Learning", IEEE ACCESS, vol. 9, 4 March 2021 (2021-03-04), pages 44304 - 44321, XP011845933, DOI: 10.1109/ACCESS.2021.3064073 *
WU QINGQING; ZHANG RUI: "Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 18, no. 11, 1 November 2019 (2019-11-01), pages 5394 - 5409, XP011754367, ISSN: 1536-1276, DOI: 10.1109/TWC.2019.2936025 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022146830A3 (en) * 2021-01-04 2022-10-20 Google Llc Integrated access backhaul with an adaptive phase-changing device
CN114268905A (zh) * 2021-12-20 2022-04-01 中国电信股份有限公司 基于波束调节装置的通信方法、装置及系统
WO2023134526A1 (zh) * 2022-01-12 2023-07-20 索尼集团公司 电子设备、无线通信方法和计算机可读存储介质
WO2023241448A1 (zh) * 2022-06-15 2023-12-21 维沃移动通信有限公司 测量处理方法、终端及网络侧设备

Also Published As

Publication number Publication date
EP4099574A1 (en) 2022-12-07
CN113346917A (zh) 2021-09-03
EP4099574A4 (en) 2023-07-26
US20230040183A1 (en) 2023-02-09
CN114982137A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2021164676A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
CN110214424B (zh) 优化毫米波波束搜索
WO2016044994A1 (zh) 波束配置方法、基站及用户设备
CN109155659A (zh) 用于波束成形的上行链路传输的系统和方法
CN113316902B (zh) 用于确定相控阵天线的动态波束对应的方法和装置
WO2017045384A1 (en) System and method for fast beamforming setup
US20220045734A1 (en) System and Method for Beam Management with Emissions Limitations
CA3103256C (en) Beam selection priority
WO2018103297A1 (zh) 通信波束选择方法、装置及终端
US11777559B2 (en) Restricting uplink MIMO assignment based on fading in an mmWAVE system
US20240090050A1 (en) Communication control method, wireless terminal, and base station
US20240089744A1 (en) Communication control method, wireless terminal, base station, and ris device
KR102448673B1 (ko) 무선 통신 시스템에서 다중 안테나를 사용한 통신 방법 및 장치
US20220179036A1 (en) Method and apparatus for positioning
WO2023204173A1 (ja) 制御端末、基地局、及び通信方法
WO2024029517A1 (ja) 中継装置
WO2023210421A1 (ja) 通信方法及び制御端末
WO2024032514A1 (zh) 用于信号转发的方法及相关装置
WO2022242346A1 (zh) 空地同频系统干扰抑制方法、装置、电子设备和可读介质
WO2023210422A1 (ja) 移動通信システム及び制御端末
WO2024048212A1 (ja) 通信方法及びネットワークノード
US12010632B2 (en) Optimizing coverage and power usage in a network deploying an unlicensed band
US20240147550A1 (en) Communication control method, wireless terminal, and base station
US20240155379A1 (en) Communication control method, wireless terminal, and base station
WO2023163125A1 (ja) 通信制御方法及び制御端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021757878

Country of ref document: EP

Effective date: 20220828

NENP Non-entry into the national phase

Ref country code: DE