WO2018103297A1 - 通信波束选择方法、装置及终端 - Google Patents

通信波束选择方法、装置及终端 Download PDF

Info

Publication number
WO2018103297A1
WO2018103297A1 PCT/CN2017/089164 CN2017089164W WO2018103297A1 WO 2018103297 A1 WO2018103297 A1 WO 2018103297A1 CN 2017089164 W CN2017089164 W CN 2017089164W WO 2018103297 A1 WO2018103297 A1 WO 2018103297A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
antenna
communication beam
communication
information
Prior art date
Application number
PCT/CN2017/089164
Other languages
English (en)
French (fr)
Inventor
王晓梅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018103297A1 publication Critical patent/WO2018103297A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • the present disclosure relates to the field of communications, and in particular to a communication beam selection method, apparatus, and terminal.
  • the antenna is applied to any radio system as a component that radiates or receives radio waves, and its function is to efficiently convert the high-frequency current (or guided wave) sent from the transmitter into radio waves and transmit it to a specific spatial area; Or the radio waves transmitted from a specific spatial area are effectively converted into high-frequency currents and enter the receiver.
  • the former is called a transmitting antenna, and the latter is called a receiving antenna, depending on the functional requirements of the radio system.
  • the antenna beam pattern is used to describe the relationship between the energy radiated by the antenna and any position in the space.
  • the relative intensity or absolute intensity of the electromagnetic wave radiated by the antenna at each position in the space can be known by the pattern. .
  • the horizontal pattern of the mobile phone antenna is omnidirectional.
  • the beam pattern of the mobile phone antenna is not important, mainly during the use of the mobile phone.
  • the radiation characteristics of the mobile phone antenna and the radiation characteristics of the single antenna It is not the same.
  • the direction of the mobile phone antenna only requires that the horizontal plane be approximately omnidirectional.
  • the transmitting end can concentrate the transmitting energy in a certain direction, and the energy is small or absent in other directions, that is, each beam has its own directivity, and each beam can only cover
  • the transmitting end that is, the base station needs to transmit multiple beams to complete the full coverage.
  • the base station sends the downlink information to the terminal in a certain direction
  • the corresponding beam bearer is adopted, and at the receiving end, the terminal needs to perform beamforming on the receiving end to implement directional reception, thereby improving the receiving antenna gain.
  • the two sides of the communication realize the alignment of the transmitting and receiving beams through the initial beam training process.
  • the initial beam training process is a relatively long process. To obtain the best beam training effect, it is necessary to traverse all the transmitting and receiving beam pairs to find the best performance transmitting and receiving beam.
  • the direction acts as a communication beam.
  • the transceiver beam will change due to the movement of the terminal.
  • the original uplink preferred transmit beam and the downlink preferred receive beam will change due to the rotation of the terminal. If the terminal still uses the original uplink preferred transmit.
  • the beam sends uplink data to the base station, and the base station will not receive the data.
  • the terminal cannot receive the downlink data of the base station through the downlink preferred receive beam. If the related changes cannot be quickly detected and the new preferred transmit and receive beams are identified, the service may be interrupted, which seriously affects the communication quality of the terminal in high-frequency communication.
  • the embodiments of the present disclosure provide a communication beam selection method, apparatus, and terminal, to at least solve the problem that the terminal mobile causes poor communication quality in the related art.
  • a communication beam selection method comprising: acquiring a communication beam set of an antenna in a first state, wherein the communication beam set is used to store the antenna after beam training a communication beam, wherein the antenna transmits data on a first communication beam in the set of communication beams in the first state; and in a case where the antenna transitions from the first state to a second state, determining The state transition information of the antenna, wherein the state transition information is used to indicate a state change of the antenna from the first state to the second state; and the state transition information is used from the communication beam set according to the state transition information A second communication beam is selected, wherein the second communication beam is for the antenna to transmit data in the second state.
  • determining state transition information of the antenna includes: switching from the first state to the second state And acquiring angle conversion information and/or direction transformation information of the antenna; and determining the state transition information according to the angle transformation information and/or the direction transformation information.
  • acquiring angle conversion information and/or the direction transformation information of the antenna includes: recording the antenna in the An angle and/or direction in the first state as a reference angle and/or a reference direction; determining a deviation angle of the antenna relative to the reference angle and/or the reference direction in the second state and/or Deviating from the direction, the angle transformation information and/or the direction transformation information is obtained.
  • selecting the second communication beam from the set of communication beams according to the state transition information includes: determining, according to the state transition information, a second downlink communication beam of the antenna in the second state; Selecting, in the communication beam set, a second uplink communication beam that matches the second downlink communication beam as the second communication beam.
  • the method before acquiring the communication beam set of the antenna in the first state, the method further includes performing beam training on the antenna in the first state to obtain the communication beam. Determining, determining, by the first downlink communication beam of the antenna in the first state, selecting, from the set of communication beams, a first uplink communication beam that matches the first downlink communication beam as the first a communication beam; establishing a communication connection between the antenna and the opposite end by using the first downlink communication beam and the first uplink communication beam.
  • a communication beam selection apparatus comprising: an acquisition module, configured to acquire a communication beam set of an antenna in a first state, wherein the communication beam set is used to store the antenna get on a communication beam obtained after beam training, the antenna transmitting data on the first communication beam in the communication beam set in the first state; a first determining module, configured to: Determining state transition information of the antenna when the state transitions to the second state, wherein the state transition information is used to indicate a state change of the antenna transitioning from the first state to the second state; a selection module, configured to select a second communication beam from the set of communication beams according to the state transition information, wherein the second communication beam is used by the antenna to transmit data in the second state.
  • the first determining module includes: an acquiring unit, configured to acquire angle conversion information and/or direction of the antenna if the antenna is switched from the first state to the second state Transforming information; a first determining unit, configured to determine the state transition information according to the angle transform information and/or the direction transform information.
  • the acquiring unit is configured to: record an angle and/or a direction of the antenna in the first state as a reference angle and/or a reference direction; and determine that the antenna is opposite in the second state.
  • the angle transformation information and/or the direction transformation information is obtained at an off angle and/or an off direction of the reference angle and/or the reference direction.
  • the first selecting module includes: a second determining unit, configured to determine, according to the state transition information, a second downlink communication beam of the antenna in the second state; a selecting unit, configured to A second uplink communication beam that matches the second downlink communication beam is selected as the second communication beam.
  • the device further includes: a training module, configured to perform beam training on the antenna in the first state to obtain the communication beam set; and a second determining module, configured to determine that the antenna is in the a first downlink communication beam in a first state; a second selection module, configured to select, from the set of communication beams, a first uplink communication beam that matches the first downlink communication beam as the first communication And a establishing module, configured to establish a communication connection between the antenna and the peer by using the first downlink communication beam and the first uplink communication beam.
  • a training module configured to perform beam training on the antenna in the first state to obtain the communication beam set
  • a second determining module configured to determine that the antenna is in the a first downlink communication beam in a first state
  • a second selection module configured to select, from the set of communication beams, a first uplink communication beam that matches the first downlink communication beam as the first communication
  • a establishing module configured to establish a communication connection between the antenna and the peer by using the first downlink communication beam and the first
  • a terminal including: an angle direction calculation module, configured to determine a state of an antenna when an antenna in the terminal transitions from a first state to a second state Converting information, wherein the state transition information is used to indicate a state change of the antenna transitioning from the first state to the second state, the state change comprising: an angle change, and/or a change in direction; a beam selection module, configured to acquire a communication beam set of the antenna in the first state, and select a second communication beam from the communication beam set according to the state transition information, where the communication beam set is used a communication beam obtained after storing the antenna for beam training, the antenna transmitting data on a first communication beam in the communication beam set in the first state, the second communication beam being used for the The antenna transmits data in the second state.
  • an angle direction calculation module configured to determine a state of an antenna when an antenna in the terminal transitions from a first state to a second state Converting information, wherein the state transition information is used to indicate a state change of the antenna transitioning from the first state to
  • the angle direction calculation module is configured to: when the antenna is switched from the first state to the second state, acquire angle conversion information and/or direction change information of the antenna; The angle conversion information and/or the direction change information determines the state transition information.
  • the optimal beam selection module is configured to: determine, according to the state transition information, a second downlink communication beam of the antenna in the second state; and select, in the communication beam set, the first The second uplink communication beam matched by the two downlink communication beams serves as the second communication beam.
  • a storage medium for storing program code, the program generation The code is for performing the communication beam selection method according to any of the above.
  • the communication beam set of the antenna in the first state is obtained by the present disclosure, wherein the communication beam set is used to store the communication beam obtained after the beam is trained by the antenna, and the first communication beam in the communication beam set in the first state of the antenna Transmitting data; determining state transition information of the antenna when the antenna is switched from the first state to the second state, wherein the state transition information is used to indicate a state change of the antenna from the first state to the second state; The conversion information selects a second communication beam from the set of communication beams, wherein the second communication beam is used for the antenna to transmit data in the second state, and thus, after the antenna is switched from the first state to the second state, Selecting, according to state transition information of the antenna, a second communication beam for transmitting data in the second state from the communication beam set of the first state to perform data transmission, so that the moved antenna is matched to the moved state. Beam to transmit data, thus improving the communication quality after the terminal moves, thus solving In related art mobile terminals resulting in poor communication quality problems.
  • FIG. 1 is a block diagram showing the hardware structure of a mobile terminal of a communication beam selection method according to an embodiment of the present disclosure
  • FIG. 2 is a flow chart of a communication beam selection method in accordance with an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram 1 of a communication beam selection apparatus according to an embodiment of the present disclosure
  • FIG. 4 is a structural block diagram 2 of a communication beam selection apparatus according to an embodiment of the present disclosure.
  • FIG. 5 is a structural block diagram 3 of a communication beam selection apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a structural block diagram 4 of a communication beam selection apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a communication beam selection method in accordance with an alternative embodiment of the present disclosure.
  • FIG. 9 is a first schematic diagram of communication beam selection in accordance with an alternative embodiment of the present disclosure.
  • FIG. 10 is a second schematic diagram of communication beam selection in accordance with an alternate embodiment of the present disclosure.
  • Embodiment 1 of the present application can be executed in a mobile terminal, a computer terminal or the like.
  • the mobile terminal 10 may include one or more (only in the figure). Show one The processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA), a memory 104 for storing data, and a transmission device 106 for communication functions. It will be understood by those skilled in the art that the structure shown in FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the communication beam selection method in the embodiment of the present disclosure, and the processor 102 executes each by running a software program and a module stored in the memory 104.
  • a functional application and data processing, that is, the above method is implemented.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may also include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is for receiving or transmitting data via a network.
  • the network example described above may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 2 is a flowchart of a communication beam selection method according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps:
  • Step S202 Acquire a communication beam set of the antenna in the first state, where the communication beam set is used to store a communication beam obtained by performing beam training on the antenna, and the antenna is in the first state on the first communication beam in the communication beam set. transfer data;
  • Step S204 determining, when the antenna is switched from the first state to the second state, determining state transition information of the antenna, where the state transition information is used to indicate a state change of the antenna transitioning from the first state to the second state;
  • Step S206 selecting a second communication beam from the communication beam set according to the state transition information, wherein the second communication beam is used for the antenna to transmit data in the second state.
  • the above communication beam selection method may be, but is not limited to, applied to a scenario in which a communication antenna moves.
  • a scenario in which a terminal communicates during a move For example: a scenario in which a terminal communicates during a move.
  • the foregoing communication beam selection method may be, but is not limited to, applied to a mobile communication device, such as a mobile terminal, a mobile base station, a mobile station, or the like.
  • a communication beam set of the antenna in the first state where the communication beam set is used to store a communication beam obtained by performing beam training on the antenna, and the first communication beam in the communication beam set in the first state of the antenna Transmitting data; determining state transition information of the antenna when the antenna is switched from the first state to the second state, wherein the state transition information is used to indicate a state change of the antenna from the first state to the second state; The conversion information selects a second communication beam from the set of communication beams, wherein the second communication beam is used for transmitting the antenna in the second state
  • the data is transmitted, and it can be seen that, after the antenna is switched from the first state to the second state, the antenna is selected from the communication beam set of the first state for transmitting the data in the second state according to the state transition information of the antenna.
  • the second communication beam is used for data transmission, so that the moved antenna is matched with the beam suitable for the moved state to transmit data, thereby improving the communication quality after the terminal moves, thereby solving the terminal
  • the state transition information of the antenna may be determined according to a change in an angle and/or a direction of the antenna. For example, in a case where the antenna is switched from the first state to the second state, angle conversion information and/or direction change information of the antenna is acquired, and state transition information is determined based on the angle conversion information and/or the direction change information.
  • the angle conversion information and/or the direction change information of the antenna may be obtained by, for example, but not limited to, recording the angle and/or direction of the antenna in the first state, as the reference angle and/or the reference direction, determining that the antenna is Angle deviation information and/or direction change information is obtained with respect to the angle of deviation and/or the direction of deviation from the reference angle and/or the reference direction in the second state.
  • the second downlink communication beam for downlink communication may be determined according to the state change of the antenna, and the second downlink communication beam is matched from the communication beam set for uplink of the antenna.
  • the second uplink communication beam of communication thereby enabling selection of the second communication beam.
  • the second downlink communication beam of the antenna in the second state is determined according to the state transition information, and the second uplink communication beam matched with the second downlink communication beam is selected as the second communication beam in the communication beam set.
  • the first communication beam for transmitting data in the first state may be determined, but not limited to, for the antenna, thereby establishing a communication connection for the transmission of the data. For example, performing beam training on the antenna in the first state, obtaining a communication beam set, determining a first downlink communication beam of the antenna in the first state, and selecting a first match with the first downlink communication beam from the communication beam set.
  • the uplink communication beam serves as a first communication beam, and establishes a communication connection between the antenna and the opposite end by using the first downlink communication beam and the first uplink communication beam.
  • a communication beam selection device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram 1 of a communication beam selection apparatus according to an embodiment of the present disclosure. As shown in FIG. 3, the apparatus includes:
  • the obtaining module 32 is configured to obtain a communication beam set of the antenna in the first state, where the communication beam set is used to store a communication beam obtained by performing antenna beam training, and the antenna is first in the communication beam set in the first state. Transmitting data on the communication beam;
  • the first determining module 34 is coupled to the obtaining module 32 for converting the antenna from the first state to the second state Determining state transition information of the antenna, wherein the state transition information is used to indicate a state change of the antenna transitioning from the first state to the second state;
  • the first selection module 36 is coupled to the first determining module 34 for selecting a second communication beam from the communication beam set according to the state transition information, wherein the second communication beam is used for the antenna to transmit data in the second state.
  • the above communication beam selecting means may be, but not limited to, applied to a scenario in which the communication antenna moves.
  • a scenario in which a mobile terminal communicates during a move For example: a scenario in which a mobile terminal communicates during a move.
  • the above communication beam selection device may be, but not limited to, applied to a mobile communication device, such as a mobile terminal, a mobile base station, a mobile station, or the like.
  • the acquiring module acquires the communication beam set of the antenna in the first state, where the communication beam set is used to store the communication beam obtained after the beam is trained by the antenna, and the antenna is the first in the communication beam set in the first state. Transmitting data on the communication beam; the first determining module determines state transition information of the antenna when the antenna is switched from the first state to the second state, wherein the state transition information is used to indicate that the antenna is switched from the first state to the second state a state change; the first selection module selects a second communication beam from the set of communication beams according to the state transition information, wherein the second communication beam is used for the antenna to transmit data in the second state, thereby being visible, using the above scheme in the antenna After the first state transitions to the second state, the second communication beam for transmitting the data by the antenna in the second state is selected from the communication beam set of the first state according to the state transition information of the antenna to perform data transmission, thereby performing The moving antenna matches the beam suitable for the state after the movement to transmit data, thus improving After the communication quality
  • FIG. 4 is a structural block diagram 2 of a communication beam selection apparatus according to an embodiment of the present disclosure.
  • the first determining module 34 includes:
  • the obtaining unit 42 is configured to acquire angle conversion information and/or direction change information of the antenna when the antenna is switched from the first state to the second state;
  • the first determining unit 44 is coupled to the obtaining unit 42 for determining state transition information according to the angle transform information and/or the direction transform information.
  • the acquiring unit is configured to: record an angle and/or a direction of the antenna in the first state as a reference angle and/or a reference direction; determine a deviation of the antenna from the reference angle and/or the reference direction in the second state.
  • Angle transformation information and/or direction change information are obtained by angle and/or off direction.
  • FIG. 5 is a structural block diagram 3 of a communication beam selection apparatus according to an embodiment of the present disclosure.
  • the first selection module 36 includes:
  • a second determining unit 52 configured to determine, according to the state transition information, the second downlink communication beam of the antenna in the second state
  • the selecting unit 54 is coupled to the second determining unit 52 for selecting, in the set of communication beams, a second uplink communication beam that matches the second downlink communication beam as the second communication beam.
  • FIG. 6 is a structural block diagram of a communication beam selection apparatus according to an embodiment of the present disclosure. As shown in FIG. 6, the apparatus further includes:
  • the training module 62 is coupled to the obtaining module 32, configured to perform beam training on the antenna in the first state to obtain a communication beam set.
  • a second determining module 64 coupled to the training module 62, configured to determine a first downlink communication beam of the antenna in the first state
  • the second selection module 66 is coupled to the second determining module 64, configured to select, from the set of communication beams, a first uplink communication beam that matches the first downlink communication beam as the first communication beam;
  • the establishing module 68 is coupled to the second selecting module 66 for establishing a communication connection between the antenna and the peer using the first downlink communication beam and the first uplink communication beam.
  • FIG. 7 is a structural block diagram of a terminal according to an embodiment of the present disclosure. As shown in FIG. 7, the terminal includes:
  • the angle direction calculation module 72 is configured to determine state transition information of the antenna when the antenna in the terminal is switched from the first state to the second state, where the state transition information is used to indicate that the antenna is switched from the first state to the second state.
  • State change of state including: angle change, and/or direction change;
  • An optimal beam selection module 74 is coupled to the angle direction calculation module 72, configured to acquire a communication beam set of the antenna in the first state, and select a second communication beam from the communication beam set according to the state transition information, where the communication beam set is used
  • the communication beam obtained after beam training of the storage antenna, the antenna transmits data on the first communication beam in the communication beam set in the first state, and the second communication beam is used to transmit data in the second state.
  • the angle direction calculation module 72 is configured to: obtain, after the antenna is switched from the first state to the second state, the angle transformation information and/or the direction transformation information of the antenna; and transform the information according to the angle and/or the direction transformation information. Determine state transition information.
  • the optimal beam selection module 74 is configured to: determine, according to the state transition information, the second downlink communication beam of the antenna in the second state; and select, in the communication beam set, the second uplink communication beam that matches the second downlink communication beam. As the second communication beam.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • the antenna is exemplified by an antenna in a terminal, and the antenna is hereinafter referred to as a terminal.
  • An alternative embodiment of the present disclosure provides a method for selecting a communication beam in a terminal to implement high frequency communication.
  • a communication beam for example, an uplink preferred transmit beam and a downlink priority receive beam
  • the terminal actively selects the uplink optimal transmit beam and the downlink preferred receive beam after the rotation according to the calculation of the rotation angle thereof, thereby ensuring the communication quality of the current terminal, avoiding the initial beam training, and avoiding the service. Interrupted.
  • the optimal selection after the rotation is actively selected.
  • the uplink transmit beam and the downlink receive beam maintain the high frequency communication quality of the terminal and the base station.
  • a communication beam set is obtained, and an uplink preferred beam and a downlink preferred beam of the current terminal are recorded as reference reference points. If the terminal moves in the angular direction during the communication process, the angle and direction of the terminal deviation are quickly calculated. According to the value of the angle and direction of the user deviation, in the communication beam set, the new uplink preferred beam and the downlink preferred beam are selected according to the previously recorded uplink preferred beam and the downlink preferred beam reference reference point, and the angle and direction of the current user deviation. . The uplink preferred beam and the downlink preferred beam are simultaneously updated to be new reference datum points.
  • a device for selecting a communication beam in a terminal is also disclosed to implement high frequency communication, and the device includes: an angle direction calculation module, and an optimal beam selection module, where
  • the angle direction calculation module is configured to calculate the current angle and direction and the angular direction of the deviation after the rotation of the terminal; wherein the angle direction calculation module is based on the acceleration, the gyroscope and the like, but is not limited to the acceleration, the gyro sensor. Can be any module that can get direction information.
  • the optimal beam selection module is configured to calculate an adjustment direction of the antenna according to the angle and direction of the rotation of the terminal, and then select an optimal uplink transmit beam and an optimal downlink receive beam.
  • the terminal After the terminal establishes communication with the base station, if the terminal moves, the angular direction of the antenna changes, and the channel quality deteriorates, the terminal automatically adjusts the uplink transmit beam and the downlink receive beam according to the angle and direction of the terminal movement, and completes the antenna beam. Switch to ensure communication quality.
  • the terminal UE selects a current optimal uplink transmission beam by initial preference training, and establishes a communication link during the communication process.
  • the UE moves, and the current uplink transmit beam is no longer the optimal uplink transmit beam, and then switches to the adjacent uplink transmit beam according to the direction and angle of the terminal move. At this time, the adjacent uplink transmit beam is the most Excellent beam.
  • the UE performs uplink data transmission by using a new optimal uplink transmit beam.
  • FIG. 9 is a first schematic diagram of communication beam selection according to an alternative embodiment of the present disclosure.
  • the base station and the UE have selected a second communication beam (shown by the hatching in FIG. 9) through preliminary trial optimization training.
  • the preferred uplink transmit beam establishes the current communication link.
  • FIG. 10 is a second schematic diagram of communication beam selection according to an alternative embodiment of the present disclosure.
  • the original second uplink transmission beam is no longer the optimal uplink transmission beam.
  • the downlink beam of the base station and the base station are no longer matched to be optimal.
  • the third uplink transmission beam (shown in the shaded in FIG. 10) is more matched with the downlink beam on the base station side, so the UE selects the third uplink transmission.
  • the beam performs uplink data transmission and is optimally matched with the current downlink beam to ensure that the communication quality does not decrease.
  • the terminal when the terminal rotates, causing the uplink preferred transmit beam and the downlink priority receive beam to change, the terminal actively selects the uplink optimal transmit beam and the downlink preference after the rotation according to the calculation of the rotation angle.
  • the receiving beam is used to ensure the communication quality of the current terminal, and the initial beam training is avoided, thereby avoiding service interruption.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the method steps recited in the above embodiments:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor executes the method steps described in the foregoing embodiments according to the stored program code in the storage medium.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the communication beam selection method provided by the embodiment of the present disclosure, after the antenna is switched from the first state to the second state, selects, according to the state transition information of the antenna, the antenna for transmitting data in the second state from the communication beam set of the first state.
  • the second communication beam is used for data transmission, so that the moved antenna is matched with the beam suitable for the moved state to transmit data, thereby improving the communication quality after the terminal moves, thereby solving the terminal movement caused by the related art.
  • the problem of poor communication quality is provided by the embodiment of the present disclosure, after the antenna is switched from the first state to the second state, selects, according to the state transition information of the antenna, the antenna for transmitting data in the second state from the communication beam set of the first state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开提供了一种通信波束选择方法、装置及终端,其中,该方法包括:获取天线在第一状态下的通信波束集合,其中,通信波束集合用于存储天线进行波束训练后得到的通信波束,天线在第一状态下在通信波束集合中的第一通信波束上传输数据;在天线从第一状态转换至第二状态的情况下,确定天线的状态转换信息,其中,状态转换信息用于指示天线从第一状态转换至第二状态的状态变化;根据状态转换信息从通信波束集合中选择第二通信波束,其中,第二通信波束用于天线在第二状态下传输数据,采用上述方案,解决了相关技术中终端移动导致通信质量差的问题,提高了终端移动后的通信质量。 (图2)

Description

通信波束选择方法、装置及终端 技术领域
本公开涉及通信领域,具体而言,涉及一种通信波束选择方法、装置及终端。
背景技术
天线作为辐射或接收无线电波的部件而应用于任何一个无线电系统之中,其作用是将发射机送来的高频电流(或导波)有效地转换为无线电波并传送到特定的空间区域;或者将特定的空间区域发送过来的无线电波有效地转换为高频电流而进入接收机。前者称为发射天线,后者称为接收天线,这取决于无线电系统的功能要求。
天线波束方向图是用来描述由天线所辐射出的能量与空间中任意位置的相互关系,藉由方向图可以得知由天线所辐射出来的电磁波在空间中每一个位置的相对强度或绝对强度。毫无疑问,手机天线的水平方向图要求是全向的,实际上手机天线的波束方向图并不重要,主要是在手机的使用过程中,此时手机天线的辐射特性与单天线的辐射特性是不相同的。手机天线的方向图只要求水平面近似为全向即可。
然而随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,传统的商业通信使用的300MHz~3GHz之间频谱资源出现了极为紧张的局面,已经无法满足未来无线通信的需求。
在未来5G无线通信中,将会采用更高的载波频率进行通信,比如28GHz、45GHz等等,这种高频信道具有自由传播损耗较大,容易被氧气吸收,受雨衰影响大等缺点,严重影响了高频通信系统的覆盖性能,与LTE系统相比,相同的覆盖区域可以获得的SINR比不同,前者比后者存在至少20dB的SINR下降,为了保证高频通信与LTE系统覆盖范围内具有近似的SINR,需要保证高频通信的天线增益。由于高频通信对应的载波频率具有更短的波长,所以可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。
采用波束赋形的方法后,发射端可以将发射能量集中在某一方向上,而在其它方向上能量很小或者没有,也就是说,每个波束具有自身的方向性,每个波束只能覆盖到一定方向上的终端,发射端即基站需要发射多个波束才能完成全方位覆盖。当基站为某一方向上的终端发送下行信息时,将采用相应的波束承载,并且在接收端即终端需要进行接收端的波束赋形,实现定向接收,进而提高接收天线增益。通信双方通过初始的波束训练过程实现了收发波束的对准,初始波束训练过程是个相对漫长的过程,要得到最佳的波束训练效果,需要遍历所有收发波束对,以找到性能最优的收发波束方向作为通信波束。
但通信过程中,由于终端的移动,收发波束将会出现变化,典型的如由于终端的旋转,原上行优选发射波束及下行优选接收波束将发生变化,如果终端仍然采用原上行优选发射 波束向基站发送上行数据,基站将无法收到,相对应的,终端通过下行优选接收波束也无法接收到基站的下行数据。如果无法快速的发现相关变化,并识别出新的优选收发波束,将可能导致业务中断,严重影响终端在高频通信中的通信质量。
针对相关技术中终端移动导致通信质量差的问题,目前还没有有效地解决方案。
发明内容
本公开实施例提供了一种通信波束选择方法、装置及终端,以至少解决相关技术中终端移动导致通信质量差的问题。
根据本公开的一个实施例,提供了一种通信波束选择方法,包括:获取天线在第一状态下的通信波束集合,其中,所述通信波束集合用于存储所述天线进行波束训练后得到的通信波束,所述天线在所述第一状态下在所述通信波束集合中的第一通信波束上传输数据;在所述天线从所述第一状态转换至第二状态的情况下,确定所述天线的状态转换信息,其中,所述状态转换信息用于指示所述天线从所述第一状态转换至所述第二状态的状态变化;根据所述状态转换信息从所述通信波束集合中选择第二通信波束,其中,所述第二通信波束用于所述天线在所述第二状态下传输数据。
可选地,在所述天线从所述第一状态转换至第二状态的情况下,确定所述天线的状态转换信息包括:在所述天线从所述第一状态转换至所述第二状态的情况下,获取所述天线的角度变换信息和/或方向变换信息;根据所述角度变换信息和/或所述方向变换信息确定所述状态转换信息。
可选地,在所述天线从所述第一状态转换至所述第二状态的情况下,获取所述天线的角度变换信息和/或所述方向变换信息包括:记录所述天线在所述第一状态下的角度和/或方向,作为参考角度和/或参考方向;确定所述天线在所述第二状态下相对于所述参考角度和/或所述参考方向的偏离角度和/或偏离方向,得到所述角度变换信息和/或所述方向变换信息。
可选地,根据所述状态转换信息从所述通信波束集合中选择所述第二通信波束包括:根据所述状态转换信息确定所述天线在所述第二状态下的第二下行通信波束;在所述通信波束集合中选择与所述第二下行通信波束匹配的第二上行通信波束作为所述第二通信波束。
可选地,在获取所述天线在所述第一状态下的所述通信波束集合之前,所述方法还包括:在所述第一状态下对所述天线进行波束训练,得到所述通信波束集合;确定所述天线在所述第一状态下的第一下行通信波束;从所述通信波束集合中选择与所述第一下行通信波束匹配的第一上行通信波束作为所述第一通信波束;使用所述第一下行通信波束与所述第一上行通信波束建立所述天线与对端的通信连接。
根据本公开的另一个实施例,提供了一种通信波束选择装置,包括:获取模块,用于获取天线在第一状态下的通信波束集合,其中,所述通信波束集合用于存储所述天线进行 波束训练后得到的通信波束,所述天线在所述第一状态下在所述通信波束集合中的第一通信波束上传输数据;第一确定模块,用于在所述天线从所述第一状态转换至第二状态的情况下,确定所述天线的状态转换信息,其中,所述状态转换信息用于指示所述天线从所述第一状态转换至所述第二状态的状态变化;第一选择模块,用于根据所述状态转换信息从所述通信波束集合中选择第二通信波束,其中,所述第二通信波束用于所述天线在所述第二状态下传输数据。
可选地,所述第一确定模块包括:获取单元,用于在所述天线从所述第一状态转换至所述第二状态的情况下,获取所述天线的角度变换信息和/或方向变换信息;第一确定单元,用于根据所述角度变换信息和/或所述方向变换信息确定所述状态转换信息。
可选地,所述获取单元用于:记录所述天线在所述第一状态下的角度和/或方向,作为参考角度和/或参考方向;确定所述天线在所述第二状态下相对于所述参考角度和/或所述参考方向的偏离角度和/或偏离方向,得到所述角度变换信息和/或所述方向变换信息。
可选地,所述第一选择模块包括:第二确定单元,用于根据所述状态转换信息确定所述天线在所述第二状态下的第二下行通信波束;选择单元,用于在所述通信波束集合中选择与所述第二下行通信波束匹配的第二上行通信波束作为所述第二通信波束。
可选地,所述装置还包括:训练模块,用于在所述第一状态下对所述天线进行波束训练,得到所述通信波束集合;第二确定模块,用于确定所述天线在所述第一状态下的第一下行通信波束;第二选择模块,用于从所述通信波束集合中选择与所述第一下行通信波束匹配的第一上行通信波束作为所述第一通信波束;建立模块,用于使用所述第一下行通信波束与所述第一上行通信波束建立所述天线与对端的通信连接。
根据本公开的另一个实施例,提供了一种终端,包括:角度方向计算模块,用于在所述终端中的天线从第一状态转换至第二状态的情况下,确定所述天线的状态转换信息,其中,所述状态转换信息用于指示所述天线从所述第一状态转换至所述第二状态的状态变化,所述状态变化包括:角度变化,和/或,方向变化;最优波束选择模块,用于获取所述天线在所述第一状态下的通信波束集合;根据所述状态转换信息从所述通信波束集合中选择第二通信波束,其中,所述通信波束集合用于存储所述天线进行波束训练后得到的通信波束,所述天线在所述第一状态下在所述通信波束集合中的第一通信波束上传输数据,所述第二通信波束用于所述天线在所述第二状态下传输数据。
可选地,所述角度方向计算模块用于:在所述天线从所述第一状态转换至所述第二状态的情况下,获取所述天线的角度变换信息和/或方向变换信息;根据所述角度变换信息和/或所述方向变换信息确定所述状态转换信息。
可选地,所述最优波束选择模块用于:根据所述状态转换信息确定所述天线在所述第二状态下的第二下行通信波束;在所述通信波束集合中选择与所述第二下行通信波束匹配的第二上行通信波束作为所述第二通信波束。
根据本公开的再一个实施例,提供了一种存储介质,用于存储程序代码,所述程序代 码用于执行如上任一项所述的通信波束选择方法。
通过本公开,获取天线在第一状态下的通信波束集合,其中,通信波束集合用于存储天线进行波束训练后得到的通信波束,天线在第一状态下在通信波束集合中的第一通信波束上传输数据;在天线从第一状态转换至第二状态的情况下,确定天线的状态转换信息,其中,状态转换信息用于指示天线从第一状态转换至第二状态的状态变化;根据状态转换信息从通信波束集合中选择第二通信波束,其中,第二通信波束用于天线在第二状态下传输数据,由此可见,采用上述方案在天线从第一状态转换至第二状态后,根据天线的状态转换信息从第一状态的通信波束集合中选择用于天线在第二状态下传输数据的第二通信波束来进行数据的传输,从而为进行了移动的天线匹配适合移动后的状态的波束来传输数据,因此,提高了终端移动后的通信质量,从而解决了相关技术中终端移动导致通信质量差的问题。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例的一种通信波束选择方法的移动终端的硬件结构框图;
图2是根据本公开实施例的一种通信波束选择方法的流程图;
图3是根据本公开实施例的一种通信波束选择装置的结构框图一;
图4是根据本公开实施例的一种通信波束选择装置的结构框图二;
图5是根据本公开实施例的一种通信波束选择装置的结构框图三;
图6是根据本公开实施例的一种通信波束选择装置的结构框图四;
图7是根据本公开实施例的一种终端的结构框图;
图8是根据本公开可选实施例的通信波束选择方法的示意图;
图9是根据本公开可选实施例的通信波束选择的示意图一;
图10是根据本公开可选实施例的通信波束选择的示意图二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例1所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本公开实施例的一种通信波束选择方法的移动终端的硬件结构框图,如图1所示,移动终端10可以包括一个或多个(图中仅示出一 个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本公开实施例中的通信波束选择方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104还可包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络示例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种通信波束选择方法,图2是根据本公开实施例的一种通信波束选择方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,获取天线在第一状态下的通信波束集合,其中,通信波束集合用于存储天线进行波束训练后得到的通信波束,天线在第一状态下在通信波束集合中的第一通信波束上传输数据;
步骤S204,在天线从第一状态转换至第二状态的情况下,确定天线的状态转换信息,其中,状态转换信息用于指示天线从第一状态转换至第二状态的状态变化;
步骤S206,根据状态转换信息从通信波束集合中选择第二通信波束,其中,第二通信波束用于天线在第二状态下传输数据。
可选地,上述通信波束选择方法可以但不限于应用于通信天线发生移动的场景中。例如:终端在移动过程中通信的场景。
可选地,上述通信波束选择方法可以但不限于应用于移动通信设备,例如:移动终端、移动基站、移动台等。
通过上述步骤,获取天线在第一状态下的通信波束集合,其中,通信波束集合用于存储天线进行波束训练后得到的通信波束,天线在第一状态下在通信波束集合中的第一通信波束上传输数据;在天线从第一状态转换至第二状态的情况下,确定天线的状态转换信息,其中,状态转换信息用于指示天线从第一状态转换至第二状态的状态变化;根据状态转换信息从通信波束集合中选择第二通信波束,其中,第二通信波束用于天线在第二状态下传 输数据,由此可见,采用上述方案在天线从第一状态转换至第二状态后,根据天线的状态转换信息从第一状态的通信波束集合中选择用于天线在第二状态下传输数据的第二通信波束来进行数据的传输,从而为进行了移动的天线匹配适合移动后的状态的波束来传输数据,因此,提高了了终端移动后的通信质量,从而解决了相关技术中终端移动导致通信质量差的问题。
可选地,在上述步骤S204中,可以但不限于根据天线的角度和/或方向的变化确定天线的状态转换信息。例如:在天线从第一状态转换至第二状态的情况下,获取天线的角度变换信息和/或方向变换信息,并根据角度变换信息和/或方向变换信息确定状态转换信息。
可选地,可以但不限于通过以下方式获取天线的角度变换信息和/或方向变换信息,记录天线在第一状态下的角度和/或方向,作为参考角度和/或参考方向,确定天线在第二状态下相对于参考角度和/或参考方向的偏离角度和/或偏离方向,得到角度变换信息和/或方向变换信息。
可选地,在上述步骤S206中,可以但不限于根据天线的状态变化确定其用于下行通信的第二下行通信波束,再从通信波束集合中为第二下行通信波束匹配用于天线的上行通信的第二上行通信波束,从而实现第二通信波束的选择。例如:根据状态转换信息确定天线在第二状态下的第二下行通信波束,并在通信波束集合中选择与第二下行通信波束匹配的第二上行通信波束作为第二通信波束。
可选地,在上述步骤S202之前,可以但不限于为天线确定用于在第一状态下传输数据的第一通信波束,从而为数据的传输建立通信连接。例如:在第一状态下对天线进行波束训练,得到通信波束集合,确定天线在第一状态下的第一下行通信波束,从通信波束集合中选择与第一下行通信波束匹配的第一上行通信波束作为第一通信波束,使用第一下行通信波束与第一上行通信波束建立天线与对端的通信连接。
实施例2
在本实施例中还提供了一种通信波束选择装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本公开实施例的一种通信波束选择装置的结构框图一,如图3所示,该装置包括:
获取模块32,用于获取天线在第一状态下的通信波束集合,其中,通信波束集合用于存储天线进行波束训练后得到的通信波束,天线在第一状态下在通信波束集合中的第一通信波束上传输数据;
第一确定模块34,耦合至获取模块32,用于在天线从第一状态转换至第二状态的情 况下,确定天线的状态转换信息,其中,状态转换信息用于指示天线从第一状态转换至第二状态的状态变化;
第一选择模块36,耦合至第一确定模块34,用于根据状态转换信息从通信波束集合中选择第二通信波束,其中,第二通信波束用于天线在第二状态下传输数据。
可选地,上述通信波束选择装置可以但不限于应用于通信天线发生移动的场景中。例如:移动终端在移动过程中通信的场景。
可选地,上述通信波束选择装置可以但不限于应用于移动通信设备,例如:移动终端、移动基站、移动台等。
通过上述装置,获取模块获取天线在第一状态下的通信波束集合,其中,通信波束集合用于存储天线进行波束训练后得到的通信波束,天线在第一状态下在通信波束集合中的第一通信波束上传输数据;第一确定模块在天线从第一状态转换至第二状态的情况下,确定天线的状态转换信息,其中,状态转换信息用于指示天线从第一状态转换至第二状态的状态变化;第一选择模块根据状态转换信息从通信波束集合中选择第二通信波束,其中,第二通信波束用于天线在第二状态下传输数据,由此可见,采用上述方案在天线从第一状态转换至第二状态后,根据天线的状态转换信息从第一状态的通信波束集合中选择用于天线在第二状态下传输数据的第二通信波束来进行数据的传输,从而为进行了移动的天线匹配适合移动后的状态的波束来传输数据,因此,提高了了终端移动后的通信质量,从而解决了相关技术中终端移动导致通信质量差的问题。
图4是根据本公开实施例的一种通信波束选择装置的结构框图二,如图4所示,可选地,第一确定模块34包括:
获取单元42,用于在天线从第一状态转换至第二状态的情况下,获取天线的角度变换信息和/或方向变换信息;
第一确定单元44,耦合至获取单元42,用于根据角度变换信息和/或方向变换信息确定状态转换信息。
可选地,获取单元用于:记录天线在第一状态下的角度和/或方向,作为参考角度和/或参考方向;确定天线在第二状态下相对于参考角度和/或参考方向的偏离角度和/或偏离方向,得到角度变换信息和/或方向变换信息。
图5是根据本公开实施例的一种通信波束选择装置的结构框图三,如图5所示,可选地,第一选择模块36包括:
第二确定单元52,用于根据状态转换信息确定天线在第二状态下的第二下行通信波束;
选择单元54,耦合至第二确定单元52,用于在通信波束集合中选择与第二下行通信波束匹配的第二上行通信波束作为第二通信波束。
图6是根据本公开实施例的一种通信波束选择装置的结构框图四,如图6所示,可选地,上述装置还包括:
训练模块62,耦合至获取模块32,用于在第一状态下对天线进行波束训练,得到通信波束集合;
第二确定模块64,耦合至训练模块62,用于确定天线在第一状态下的第一下行通信波束;
第二选择模块66,耦合至第二确定模块64,用于从通信波束集合中选择与第一下行通信波束匹配的第一上行通信波束作为第一通信波束;
建立模块68,耦合至第二选择模块66,用于使用第一下行通信波束与第一上行通信波束建立天线与对端的通信连接。
在本实施例中,还提供了一种终端,图7是根据本公开实施例的一种终端的结构框图,如图7所示,该终端包括:
角度方向计算模块72,用于在终端中的天线从第一状态转换至第二状态的情况下,确定天线的状态转换信息,其中,状态转换信息用于指示天线从第一状态转换至第二状态的状态变化,状态变化包括:角度变化,和/或,方向变化;
最优波束选择模块74,耦合至角度方向计算模块72,用于获取天线在第一状态下的通信波束集合;根据状态转换信息从通信波束集合中选择第二通信波束,其中,通信波束集合用于存储天线进行波束训练后得到的通信波束,天线在第一状态下在通信波束集合中的第一通信波束上传输数据,第二通信波束用于天线在第二状态下传输数据。
可选地,角度方向计算模块72用于:在天线从第一状态转换至第二状态的情况下,获取天线的角度变换信息和/或方向变换信息;根据角度变换信息和/或方向变换信息确定状态转换信息。
可选地,最优波束选择模块74用于:根据状态转换信息确定天线在第二状态下的第二下行通信波束;在通信波束集合中选择与第二下行通信波束匹配的第二上行通信波束作为第二通信波束。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
下面结合本公开可选实施例进行详细说明。
在本公开可选实施例中,上述天线以终端中的天线为例,以下将上述天线代称为终端。本公开可选实施例提供了一种终端中通信波束的选择方法以实现高频通信,在本方法中,当终端发生旋转或移动导致通信波束(例如:上行优选发射波束及下行优先接收波束)发生变化时,终端根据自身旋转角度的计算,主动选择旋转后相对最优的上行优选发射波束及下行优选接收波束,从而保证当前终端的通信质量,避免重新进行初始的波束训练,进而避免业务的中断。
在本可选实施例中,检测到终端旋转后,根据终端的旋转角度,主动选择旋转后最优 的上行发射波束以及下行接收波束,使终端和基站的高频通信质量得以保持。
在本可选实施例中,在当前已经完成初始波束训练后,建立了良好的通信链路的情况下,得到通信波束集合,并记录当前终端的上行优选波束以及下行优选波束作为参考基准点。若在通信过程中,终端发生了角度方向的移动,则迅速计算出终端偏离的角度和方向。根据用户偏离的角度和方向的值,在通信波束集合中,根据先前记录的上行优选波束以及下行优选波束参考基准点,和当前用户偏离的角度和方向,选择新的上行优选波束以及下行优选波束。同时更新此上行优选波束以及下行优选波束为新的参考基准点。
在本可选实施例中,还公开了一种终端中通信波束选择的装置以实现高频通信,该装置包括:角度方向计算模块,最优波束选择模块,其中,
角度方向计算模块,用于计算当前的角度和方向以及终端旋转后偏离的角度方向;其中,角度方向计算模块依据于加速度,陀螺仪等传感器,但不限于加速度,陀螺仪传感器。可以是任何能获取到方向信息的模块。
最优波束选择模块,用于根据终端旋转的角度和方向,计算出天线的调整方向,进而选择最优的上行发射波束以及最优的下行接收波束。
当终端与基站建立通信后,若终端发生移动,导致天线的角度方向变化,信道质量变差,则终端根据终端移动的角度和方向变化,自动调整上行发射波束以及下行接收波束,完成天线波束的切换,保证通信质量。
图8是根据本公开可选实施例的通信波束选择方法的示意图,如图8所示,终端UE通过初始优选训练,选择了当前最优的上行发送波束,建立了通信链路,在通信过程中,UE发生了移动,导致当前的上行发送波束已经不再是最优的上行发送波束,进而根据终端移动的方向,角度,切换到临近的上行发送波束,此时临近的上行发送波束为最优波束。UE通过新的最优上行发送波束进行上行数据的发送。
图9是根据本公开可选实施例的通信波束选择的示意图一,如图9所示,基站和UE通过初试优选训练,已经选择了第二个通信波束(如图9中阴影所示)为优选的上行发送波束,建立了当前的通信链路。图10是根据本公开可选实施例的通信波束选择的示意图二,如图10所示,当终端发生移动后,原来的第二个上行发送波束已经不再是最优的上行发送波束,它和基站的下行波束已经不再匹配为最优了,此时,第三个上行发送波束(如图10中阴影所示)与基站侧的下行波束更为匹配,因此UE选择第三个上行发送波束进行上行数据的发送,与当前的下行波束成为最优匹配,以保证通信质量不下降。
在本可选实施例中,当终端发生旋转,导致上行优选发射波束及下行优先接收波束发生变化时,终端根据自身旋转角度的计算,主动选择旋转后相对最优的上行优选发射波束及下行优选接收波束,从而保证当前终端的通信质量,避免重新进行初始的波束训练,进而避免业务的中断。
以上实施例仅用以说明本公开的技术方案而非对其进行限制,本领域的普通技术人员 可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开的精神和范围,本公开的保护范围应以权利要求所述为准。
实施例3
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,获取天线在第一状态下的通信波束集合,其中,通信波束集合用于存储天线进行波束训练后得到的通信波束,天线在第一状态下在通信波束集合中的第一通信波束上传输数据;
S2,在天线从第一状态转换至第二状态的情况下,确定天线的状态转换信息,其中,状态转换信息用于指示天线从第一状态转换至第二状态的状态变化;
S3,根据状态转换信息从通信波束集合中选择第二通信波束,其中,第二通信波束用于天线在第二状态下传输数据。
可选地,存储介质还被设置为存储用于执行上述实施例记载的方法步骤的程序代码:
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例记载的方法步骤。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的通信波束选择方法,在天线从第一状态转换至第二状态后,根据天线的状态转换信息从第一状态的通信波束集合中选择用于天线在第二状态下传输数据的第二通信波束来进行数据的传输,从而为进行了移动的天线匹配适合移动后的状态的波束来传输数据,因此,提高了终端移动后的通信质量,从而解决了相关技术中终端移动导致通信质量差的问题。

Claims (14)

  1. 一种通信波束选择方法,包括:
    获取天线在第一状态下的通信波束集合,其中,所述通信波束集合用于存储所述天线进行波束训练后得到的通信波束,所述天线在所述第一状态下在所述通信波束集合中的第一通信波束上传输数据;
    在所述天线从所述第一状态转换至第二状态的情况下,确定所述天线的状态转换信息,其中,所述状态转换信息用于指示所述天线从所述第一状态转换至所述第二状态的状态变化;
    根据所述状态转换信息从所述通信波束集合中选择第二通信波束,其中,所述第二通信波束用于所述天线在所述第二状态下传输数据。
  2. 根据权利要求1所述的方法,其中,在所述天线从所述第一状态转换至第二状态的情况下,确定所述天线的状态转换信息包括:
    在所述天线从所述第一状态转换至所述第二状态的情况下,获取所述天线的角度变换信息和/或方向变换信息;
    根据所述角度变换信息和/或所述方向变换信息确定所述状态转换信息。
  3. 根据权利要求2所述的方法,其中,在所述天线从所述第一状态转换至所述第二状态的情况下,获取所述天线的角度变换信息和/或所述方向变换信息包括:
    记录所述天线在所述第一状态下的角度和/或方向,作为参考角度和/或参考方向;
    确定所述天线在所述第二状态下相对于所述参考角度和/或所述参考方向的偏离角度和/或偏离方向,得到所述角度变换信息和/或所述方向变换信息。
  4. 根据权利要求1所述的方法,其中,根据所述状态转换信息从所述通信波束集合中选择所述第二通信波束包括:
    根据所述状态转换信息确定所述天线在所述第二状态下的第二下行通信波束;
    在所述通信波束集合中选择与所述第二下行通信波束匹配的第二上行通信波束作为所述第二通信波束。
  5. 根据权利要求1至4中任一项所述的方法,其中,在获取所述天线在所述第一状态下的所述通信波束集合之前,所述方法还包括:
    在所述第一状态下对所述天线进行波束训练,得到所述通信波束集合;
    确定所述天线在所述第一状态下的第一下行通信波束;
    从所述通信波束集合中选择与所述第一下行通信波束匹配的第一上行通信波束作为所述第一通信波束;
    使用所述第一下行通信波束与所述第一上行通信波束建立所述天线与对端的通信连接。
  6. 一种通信波束选择装置,包括:
    获取模块,设置为获取天线在第一状态下的通信波束集合,其中,所述通信波束集合用于存储所述天线进行波束训练后得到的通信波束,所述天线在所述第一状态下在所述通信波束集合中的第一通信波束上传输数据;
    第一确定模块,设置为在所述天线从所述第一状态转换至第二状态的情况下,确定所述天线的状态转换信息,其中,所述状态转换信息用于指示所述天线从所述第一状态转换至所述第二状态的状态变化;
    第一选择模块,设置为根据所述状态转换信息从所述通信波束集合中选择第二通信波束,其中,所述第二通信波束用于所述天线在所述第二状态下传输数据。
  7. 根据权利要求6所述的装置,其中,所述第一确定模块包括:
    获取单元,设置为在所述天线从所述第一状态转换至所述第二状态的情况下,获取所述天线的角度变换信息和/或方向变换信息;
    第一确定单元,设置为根据所述角度变换信息和/或所述方向变换信息确定所述状态转换信息。
  8. 根据权利要求7所述的装置,其中,所述获取单元设置为:
    记录所述天线在所述第一状态下的角度和/或方向,作为参考角度和/或参考方向;
    确定所述天线在所述第二状态下相对于所述参考角度和/或所述参考方向的偏离角度和/或偏离方向,得到所述角度变换信息和/或所述方向变换信息。
  9. 根据权利要求6所述的装置,其中,所述第一选择模块包括:
    第二确定单元,设置为根据所述状态转换信息确定所述天线在所述第二状态下的第二下行通信波束;
    选择单元,设置为在所述通信波束集合中选择与所述第二下行通信波束匹配的第二上行通信波束作为所述第二通信波束。
  10. 根据权利要求6至9中任一项所述的装置,其中,所述装置还包括:
    训练模块,设置为在所述第一状态下对所述天线进行波束训练,得到所述通信波束集合;
    第二确定模块,设置为确定所述天线在所述第一状态下的第一下行通信波束;
    第二选择模块,设置为从所述通信波束集合中选择与所述第一下行通信波束匹配的第一上行通信波束作为所述第一通信波束;
    建立模块,设置为使用所述第一下行通信波束与所述第一上行通信波束建立所述天线与对端的通信连接。
  11. 一种终端,包括:
    角度方向计算模块,设置为在所述终端中的天线从第一状态转换至第二状态的情况下,确定所述天线的状态转换信息,其中,所述状态转换信息用于指示所述天线从所述第一状态转换至所述第二状态的状态变化,所述状态变化包括:角度变化,和/或,方向变化;
    最优波束选择模块,设置为获取所述天线在所述第一状态下的通信波束集合;根据所述状态转换信息从所述通信波束集合中选择第二通信波束,其中,所述通信波束集合用于存储所述天线进行波束训练后得到的通信波束,所述天线在所述第一状态下在所述通信波束集合中的第一通信波束上传输数据,所述第二通信波束用于所述天线在所述第二状态下传输数据。
  12. 根据权利要求11所述的终端,其中,所述角度方向计算模块设置为:
    在所述天线从所述第一状态转换至所述第二状态的情况下,获取所述天线的角度变换信息和/或方向变换信息;
    根据所述角度变换信息和/或所述方向变换信息确定所述状态转换信息。
  13. 根据权利要求11所述的终端,其中,所述最优波束选择模块设置为:
    根据所述状态转换信息确定所述天线在所述第二状态下的第二下行通信波束;
    在所述通信波束集合中选择与所述第二下行通信波束匹配的第二上行通信波束作为所述第二通信波束。
  14. 一种存储介质,用于存储程序代码,所述程序代码用于执行权利要求1至5中任一项所述的通信波束选择方法。
PCT/CN2017/089164 2016-12-06 2017-06-20 通信波束选择方法、装置及终端 WO2018103297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611109150.1A CN108155924A (zh) 2016-12-06 2016-12-06 通信波束选择方法、装置及终端
CN201611109150.1 2016-12-06

Publications (1)

Publication Number Publication Date
WO2018103297A1 true WO2018103297A1 (zh) 2018-06-14

Family

ID=62467690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089164 WO2018103297A1 (zh) 2016-12-06 2017-06-20 通信波束选择方法、装置及终端

Country Status (2)

Country Link
CN (1) CN108155924A (zh)
WO (1) WO2018103297A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976595A (zh) * 2022-05-17 2022-08-30 南昌黑鲨科技有限公司 一种智能天线系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110753388B (zh) * 2018-07-23 2021-08-20 华为技术有限公司 一种波束管理方法和相关设备
EP3890418A4 (en) * 2018-11-29 2022-10-19 Beijing Xiaomi Mobile Software Co., Ltd. METHOD, APPARATUS AND DEVICE FOR DETERMINING BEAM SCAN RANGE AND STORAGE MEDIA
CN110212963B (zh) * 2019-05-24 2022-04-15 Oppo广东移动通信有限公司 波束跟踪方法、装置及计算机存储介质和终端设备
WO2023159505A1 (zh) * 2022-02-25 2023-08-31 北京小米移动软件有限公司 波束管理方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090046010A1 (en) * 2007-08-13 2009-02-19 Samsung Electronics Co., Ltd. System and method for efficient transmit and receive beamforming protocol with heterogeneous antenna configuration
CN102598532A (zh) * 2009-11-04 2012-07-18 日本电气株式会社 无线电通信系统的控制方法、无线电通信系统和无线电通信装置
CN103814529A (zh) * 2011-07-15 2014-05-21 三星电子株式会社 在无线通信系统中用于波束锁定的装置和方法
CN103875191A (zh) * 2011-08-12 2014-06-18 三星电子株式会社 在无线通信系统中自适应性波束成形的装置和方法
CN103986508A (zh) * 2014-05-30 2014-08-13 北京智谷睿拓技术服务有限公司 模式切换方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9516563B2 (en) * 2013-01-21 2016-12-06 Intel Corporation Apparatus, system and method of handover of a beamformed link
US9331760B2 (en) * 2014-05-28 2016-05-03 Qualcomm Incorporated Method and apparatus for leveraging spatial/location/user interaction sensors to aid in transmit and receive-side beamforming in a directional wireless network
WO2015190648A1 (en) * 2014-06-12 2015-12-17 Lg Electronics Inc. Beam scanning method for hybrid beamforming in wireless communication system and apparatus therefor
US20160119958A1 (en) * 2014-10-27 2016-04-28 Nokia Solutions And Networks Oy Random access channel with a grid of beams for communication systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090046010A1 (en) * 2007-08-13 2009-02-19 Samsung Electronics Co., Ltd. System and method for efficient transmit and receive beamforming protocol with heterogeneous antenna configuration
CN102598532A (zh) * 2009-11-04 2012-07-18 日本电气株式会社 无线电通信系统的控制方法、无线电通信系统和无线电通信装置
CN103814529A (zh) * 2011-07-15 2014-05-21 三星电子株式会社 在无线通信系统中用于波束锁定的装置和方法
CN103875191A (zh) * 2011-08-12 2014-06-18 三星电子株式会社 在无线通信系统中自适应性波束成形的装置和方法
CN103986508A (zh) * 2014-05-30 2014-08-13 北京智谷睿拓技术服务有限公司 模式切换方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976595A (zh) * 2022-05-17 2022-08-30 南昌黑鲨科技有限公司 一种智能天线系统

Also Published As

Publication number Publication date
CN108155924A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
US11337226B2 (en) Method and apparatus of receive beam management at terminal
WO2018103297A1 (zh) 通信波束选择方法、装置及终端
US11184057B2 (en) Apparatus and method for selecting cell in wireless communication system
JP5073066B2 (ja) 無線ネットワークにおいてアソシエーションおよび再アソシエーションを実行するための構成
WO2021164676A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
RU2747842C2 (ru) Устройство и способ для выбора соты в системе беспроводной связи
US20210068077A1 (en) Antenna element set selection system
WO2017045384A1 (en) System and method for fast beamforming setup
EP3718235B1 (en) Customizing transmission of a system information message
CN107615820B (zh) 集群管理器、无线电节点和控制节点中使用的方法和设备
JP7132338B2 (ja) ビーム選択優先度
CN106851560B (zh) 一种高频通信链路的建立方法、系统和电子设备
TWI574456B (zh) 階層式波束成型方法及其基地台與使用者設備
WO2023115058A2 (en) Adaptive phase-changing devices for active coordination sets
EP2887562A1 (en) Method to establish mm-wave links with adaptive antennas
US20240072952A1 (en) Apparatus, method, program products for maximizing desired multi-transmission point signal to inter-layer-group-interference via ue beam control
WO2023109947A1 (zh) 上下行非对称通信mimo系统的劈裂波束管理方法及系统
Peng et al. Macro-controlled beam database-based beamforming protocol for LTE-WiGig aggregation in millimeter-wave heterogeneous networks
KR102448673B1 (ko) 무선 통신 시스템에서 다중 안테나를 사용한 통신 방법 및 장치
WO2023273168A1 (zh) 一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备
US9306714B2 (en) Method and apparatuses for configuring a communication channel
US20220179036A1 (en) Method and apparatus for positioning
CN113170386B (zh) 多bss发现辅助
WO2023204173A1 (ja) 制御端末、基地局、及び通信方法
KR101714580B1 (ko) 간섭인지 기반의 d2d 통신 시스템 및 그 전력 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878796

Country of ref document: EP

Kind code of ref document: A1