WO2023273168A1 - 一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备 - Google Patents

一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备 Download PDF

Info

Publication number
WO2023273168A1
WO2023273168A1 PCT/CN2021/136143 CN2021136143W WO2023273168A1 WO 2023273168 A1 WO2023273168 A1 WO 2023273168A1 CN 2021136143 W CN2021136143 W CN 2021136143W WO 2023273168 A1 WO2023273168 A1 WO 2023273168A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
width
downlink beam
location information
threshold value
Prior art date
Application number
PCT/CN2021/136143
Other languages
English (en)
French (fr)
Inventor
史全超
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023273168A1 publication Critical patent/WO2023273168A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching

Definitions

  • This application relates to the field of communication technology, specifically, to a 5G Massive MIMO beam management method and device, storage medium and electronic equipment.
  • the transmitted energy of a multi-antenna array is concentrated in a very narrow area. This means that the more antennas used, the narrower the beamwidth.
  • the advantage of the multi-antenna array is that there is less interference between different beams and different users, because different beams have their own focal areas, and these areas are very small, and the intersection with each other is small.
  • the downside of multi-antenna arrays is that the system has to use very complex algorithms to find the exact location of the user, otherwise the beam cannot be precisely aimed at that user.
  • Massive MIMO can concentrate beams in a narrow range to generate diversity gain and signal multiplexing. Beamforming technology can effectively solve the above problems.
  • the 5G beam management process can be roughly divided into three steps.
  • the P1 process is roughly aligned: at this stage, the base station first sends the SSB beam in all directions, and the user equipment UE scans with a wide beam. After scanning both the UE and the base station, the narrow beam range and The beam of the UE;
  • P2 process base station fine-tuning the base station sends CSI-RS to the UE; the UE reports the best CSI-RS, finds the best beam of the base station, and determines the downlink beam information.
  • the base station needs to perform two-stage scanning to determine the downlink beam.
  • the first stage scans to determine the range of the base station beam, and the second stage determines the azimuth angle of the narrow beam of the base station, which means that the best beam alignment between the base station and the user is to be achieved.
  • the narrower the transmit beam the more scans are required, which requires high baseband processing capability, high cost, and long system delay. Big, which undoubtedly has a great impact on the user experience.
  • the optimal beam will continue to change as the user moves.
  • beam scanning and beam switching need to be performed at any time, but beam switching will undoubtedly bring communication quality to the user. Impact, especially for scenes with fast moving speeds such as high-speed rail, it may bring a certain drop rate, and the faster the speed, the higher the drop rate.
  • the embodiment of the present application provides a 5G Massive MIMO beam management method and device, storage medium, and electronic equipment to at least solve one of the related technical problems to a certain extent, including the problem of the degradation of call quality caused by the beam switching of the base station.
  • a 5G Massive MIMO beam management method including: the base station receives the location information of the user equipment UE; the threshold value of the signal-to-noise ratio of the downlink beam of the base station is less than the preset threshold value , adjusting the width of the downlink beam of the base station according to the position information; wherein, the width of the downlink beam is negatively correlated with the distance between the UE and the base station.
  • a 5G Massive MIMO beam management device including: a sending unit configured to send a positioning reference signal to the aforementioned UE; a receiving unit configured to receive location information sent by the UE; wherein The location information is location information sent by the UE according to the received positioning reference signal.
  • a computer-readable storage medium in which a computer program is stored in the above-mentioned computer-readable storage medium, wherein the above-mentioned computer program is configured to execute any one of the above-mentioned method embodiments when running in the steps.
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute any one of the above method embodiments in the steps.
  • Fig. 1 is the block diagram of the hardware structure of the mobile terminal according to the 5G Massive MIMO beam management method of the embodiment of the present application;
  • Fig. 2 is the flow chart of the 5G Massive MIMO beam management method according to the embodiment of the present application
  • FIG. 3 is a schematic diagram of base station beam adjustment according to a 5G Massive MIMO beam management method according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a beam scanning principle of a 5G Massive MIMO beam management method according to an embodiment of the present application
  • FIG. 5 is a schematic flow diagram of another 5G Massive MIMO beam management method according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a 5G Massive MIMO beam management device according to an embodiment of the present application.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal according to a 5G Massive MIMO beam management method according to an embodiment of the present application.
  • the mobile terminal may include one or more (only one is shown in Figure 1) processors 102 (processors 102 may include but not limited to processing devices such as microprocessor MCU or programmable logic device FPGA, etc.) and a memory 104 for storing data, wherein the above-mentioned mobile terminal may also include a transmission device 106 and an input and output device 108 for communication functions.
  • processors 102 may include but not limited to processing devices such as microprocessor MCU or programmable logic device FPGA, etc.
  • memory 104 for storing data
  • the above-mentioned mobile terminal may also include a transmission device 106 and an input and output device 108 for communication functions.
  • FIG. 1 is only for illustration, and it does not limit the structure of the above mobile terminal.
  • the mobile terminal may also include more or fewer components than those shown in FIG. 1 , or have a different configuration from that shown in FIG. 1 .
  • the memory 104 can be set to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the 5G Massive MIMO beam management method in the embodiment of the present application, the processor 102 runs the computer program stored in the memory 104 program, so as to execute various functional applications and data processing, that is, to realize the above-mentioned method.
  • the memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory that is remotely located relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is arranged to receive or transmit data via a network.
  • the specific example of the above network may include a wireless network provided by the communication provider of the mobile terminal.
  • the transmission device 106 includes a network interface controller (NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • Fig. 2 is a flow chart of the 5G Massive MIMO beam management method according to the embodiment of the present application. As shown in Fig. 2, the process includes the following steps:
  • Step S202 the base station receives the location information of the user equipment UE
  • Step S204 when the threshold value of the signal-to-noise ratio of the downlink beam of the base station is less than a preset threshold value, adjust the width of the downlink beam of the base station according to the location information; wherein, the width of the downlink beam is the same as The distance between the UE and the base station is negatively correlated.
  • the base station obtains the above location information based on the received location information of the user equipment UE, for example, the location information uploaded by the user's mobile phone, mobile electronic device, etc. for the wireless electronic device, and the above location information can be The current location of the user of the mobile electronic device.
  • step S204 in actual application, when the threshold value of the signal-to-noise ratio of the downlink beam of the base station is less than a preset threshold value, the width of the downlink beam of the base station is adjusted according to the location information; that is, The downlink beam of the base station continuously detects the signal-to-noise ratio of the beam during the adjustment process, and adjusts the width of the downlink beam of the base station when the deterioration degree of the signal-to-noise ratio is less than the preset deterioration threshold, and adjusts the width of the downlink beam from the UE to the base station The distance between them is negatively correlated. When the UE is relatively far away from the base station, the width of the downlink beam is adjusted to be narrower; when the UE is relatively close to the base station, the width of the downlink beam is adjusted to be wider.
  • the base station since the base station is used to receive the location information of the user equipment UE; when the threshold value of the signal-to-noise ratio of the downlink beam of the above-mentioned base station is less than the preset threshold value, the downlink of the above-mentioned base station is adjusted according to the above-mentioned location information
  • the width of the beam wherein, the width of the above-mentioned downlink beam is negatively correlated with the distance between the above-mentioned UE and the above-mentioned base station; therefore, the rendering task is dynamically allocated according to the rendering complexity of the 3D image, which can solve the problem caused by the beam switching of the base station
  • the problem of declining call quality has been achieved, and the effect of improving call quality and reducing call drop rate has been achieved.
  • the above-mentioned base station before step S202, sends a positioning reference signal to the above-mentioned UE; the above-mentioned base station receives the location information sent by the UE; location information.
  • the base station sends a positioning reference signal to the UE, and after the UE receives the positioning reference information, the UE sends its location information to the base station.
  • step S204 includes: acquiring the radiation area of the UE in the base station based on the location information; wherein, the radiation area includes the near-field area, handover zone and far-field zone;
  • the width of the downlink beam of the base station is set to be smaller than the preset width.
  • the base station when the UE moves in a circle around the base station, the base station increases the width of the downlink beam.
  • increasing the width of the above-mentioned downlink beam includes:
  • the UE moves in a circle with the base station as the center, and when the UE moves to the right, the position of the left boundary of the downlink beam of the base station remains unchanged, and the base station increases the width of the right boundary of the downlink beam.
  • the 5G Massive MIMO beam management method further includes: when the threshold value of the signal-to-noise ratio of the downlink beam of the base station is greater than or equal to the preset threshold value, the base station stops adjusting the width of the downlink beam.
  • the embodiment of this application is based on the 5G Massive MIMO beam management method.
  • the base station sends a reference signal to the user.
  • the user receives the reference signal sent by the base station and feeds back channel state information to the base station.
  • the user's location information is obtained, and the beam width of the base station is adjusted according to the user's location.
  • the beam width is adjusted without affecting the service quality and user experience, so as to reduce beam scanning and beam switching and improve call quality. , to reduce the call drop rate.
  • the above-mentioned 5G Massive MIMO beam management method further includes:
  • the coverage area of the beam of the base station is divided into three areas according to the distance from the base station, namely the near field area, the handover area and the far field area.
  • the base station uses beams of different widths for users in different areas and can be adjusted in real time. Use a fixed-width beam ⁇ in the handover area, and use a wide beam for users in the near-field area.
  • the beam width is gradually increased on the basis of ⁇ . The closer the user is to the base station, the wider the beam is, ensuring access and reducing beam scanning time.
  • the beam width is gradually reduced on the basis of ⁇ , and the farther away from the base station, the narrower the beam used by users is to ensure beam gain and improve base station coverage.
  • the base station side detects the signal-to-noise ratio of the beam, obtains the signal-to-noise ratio of the beam, and judges whether to continue based on the value of the beam signal-to-noise ratio Adjust the beam width, and compare the deterioration degree of the current beam SNR detected by the base station with the preset beam SNR deterioration threshold; if the deterioration degree of the current beam SNR is lower than the preset SNR deterioration threshold, then Continue to adjust the beam width of the base station.
  • the beam width will be called back to ensure that the current beam SNR deterioration is lower than the deterioration threshold;
  • the signal-to-noise ratio is also detected to ensure the service quality of the base station beam.
  • the beam width is adjusted in each area.
  • the base station transmits a reference signal to the user, and the initial width of the beam is determined by the information fed back to the base station by the user to achieve the best beam matching.
  • adjust the beam boundary in this direction to widen the beam and keep the other boundary position of the beam unchanged. For example, when the user moves to the right, keep the left boundary position of the beam unchanged and adjust the beam The position of the right boundary makes the beam wider.
  • the user moves to the left keep the position of the right boundary of the beam unchanged, and adjust the position of the left boundary of the beam to widen the beam.
  • the beam switching can be reduced as much as possible by increasing the beam width without affecting the service quality of the user at the original location, so as to reduce the degradation of call quality caused by the beam switching.
  • the beam signal-to-noise ratio is detected during the beam adjustment process.
  • the user can choose to continue to adjust or stop the adjustment according to the user's position.
  • the beam adjustment is stopped. At this time, the beam Adjustment can no longer guarantee the quality of service of the base station, and beam switching can be used.
  • the base station use wide beams to cover the entire cell and scan the directions aligned by each wide beam in turn to determine user position information (located in the S1 direction).
  • the wide beam width is ⁇
  • the base station Use multiple narrow beams to scan the range ⁇ that has been covered by the wide beam in the first stage one by one. If the width of the narrow beam is ⁇ , the number of times the base station needs to scan the user is ⁇ / ⁇ . For example, in Figure 2, user 1 needs to be scanned For beams T1-T4, the number of times the base station scans users will decrease as the narrow beam width ⁇ increases.
  • the base station sends a reference signal to the user, the user receives the signal sent by the base station and feeds back to the base station, and the base station obtains the location information of the user through the information fed back by the user.
  • the base station judges after obtaining the location information of the user. If the user is in the handover area, the downlink beam of the base station is a beam with a fixed width; if the user is in the near-field area, increase the beam width; if the user is in the far-field area, then Reduce beamwidth.
  • the signal-to-noise ratio of the beam is continuously detected, and the adjustment is stopped when the deterioration degree of the signal-to-noise ratio exceeds the preset deterioration threshold.
  • the embodiment of the present application provides a beam management method based on 5G Massive MIMO, and the specific implementation method includes the following steps:
  • the base station sends a reference signal to the user, and the user feeds back to the base station after receiving the signal sent by the base station;
  • the base station obtains the location information of the user through the information fed back by the user.
  • the downlink beam of the base station is a fixed-width beam; if the user is in the near-field area, increase the beam width; if If the user is in the far field area, the beam width is reduced.
  • the signal-to-noise ratio of the beam is continuously detected, and when the deterioration degree of the signal-to-noise ratio exceeds a preset deterioration threshold, the adjustment is stopped.
  • the embodiment of the present application can aim at 5G antenna array beamforming, reduce the number of beam scans by adjusting the beam width, improve user experience, and improve system performance. Moreover, the flexible adjustment of the beam width of the base station solves the problem in some technical solutions that the angle of the beam and the switching of the beam need to be adjusted at all times to achieve the best beam alignment.
  • the method according to the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to enable a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the above-mentioned methods in various embodiments of the present application.
  • a 5G Massive MIMO beam management device is also provided, which is used to implement the above embodiments and other implementation manners, and those that have already been explained will not be repeated.
  • the term "module” may be a combination of software and/or hardware that realizes a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementations in hardware, or a combination of software and hardware are also possible and contemplated.
  • Fig. 6 is a structural block diagram of a 5G Massive MIMO beam management device according to an embodiment of the present application. As shown in Fig. 6, the device includes:
  • the receiving unit 602 is configured to receive the location information of the user equipment UE;
  • the adjustment unit 604 is configured to adjust the width of the downlink beam of the base station according to the location information when the threshold value of the signal-to-noise ratio of the downlink beam of the base station is less than a preset threshold value; wherein, the width of the downlink beam is the same as The distance between the UE and the base station is negatively correlated.
  • the base station obtains the above location information based on receiving the location information of the user equipment UE, for example, the location information uploaded by the user's mobile phone, mobile electronic device, etc. for the wireless electronic device, and the above location information can be mobile electronic The current location of the device user.
  • the width of the downlink beam of the above-mentioned base station is adjusted according to the above-mentioned location information; that is, the downlink beam of the base station is in During the adjustment process, the signal-to-noise ratio of the beam is continuously detected, and when the deterioration degree of the signal-to-noise ratio is less than the preset deterioration threshold, the width of the downlink beam of the base station is adjusted, and the width of the adjusted downlink beam is negatively correlated with the distance between the UE and the base station.
  • the width of the downlink beam is adjusted to be narrower; when the UE is relatively close to the base station, the width of the downlink beam is adjusted to be wider.
  • the base station since the base station is used to receive the location information of the user equipment UE; when the threshold value of the signal-to-noise ratio of the downlink beam of the above-mentioned base station is less than the preset threshold value, the downlink of the above-mentioned base station is adjusted according to the above-mentioned location information
  • the width of the beam wherein, the width of the above-mentioned downlink beam is negatively correlated with the distance between the above-mentioned UE and the above-mentioned base station; therefore, the rendering task is dynamically allocated according to the rendering complexity of the 3D image, which can solve the problem caused by the beam switching of the base station
  • the problem of declining call quality has been achieved, and the effect of improving call quality and reducing call drop rate has been achieved.
  • the above-mentioned 5G Massive MIMO beam management device also includes:
  • a sending unit configured to send a positioning reference signal to the aforementioned UE
  • the receiving unit is configured to receive the location information sent by the UE; wherein the location information is the location information of the UE sent by the UE according to the received positioning reference signal.
  • the adjustment unit 604 includes:
  • the acquisition module is configured to acquire the radiation area of the UE in the base station based on the position information; wherein, the radiation area includes a near-field area, a handover area, and a far-field area that are centered on the base station and outward in sequence;
  • the first setting module is configured to set the width of the downlink beam of the base station to a preset width when the UE is located in the handover area;
  • the second setting module is configured to set the width of the downlink beam of the base station to be greater than the preset width when the UE is located in the near-field area;
  • the third setting module is configured to set the width of the downlink beam of the base station to be smaller than the preset width when the UE is located in the far field area.
  • the above-mentioned 5G Massive MIMO beam management device also includes:
  • the adding module is configured to increase the width of the downlink beam by the base station when the UE moves in a circle around the base station.
  • the above added modules include:
  • the first adding subunit is configured to keep the position of the right boundary of the downlink beam of the base station unchanged when the UE moves in a circle with the base station as the center and the UE moves to the left, and the base station increases the left side of the downlink beam. the width of the border;
  • the second adding subunit is configured to keep the left boundary position of the downlink beam of the base station unchanged when the UE moves in a circle around the base station and the UE moves to the right, and the base station increases the right side of the downlink beam.
  • the width of the border is configured to keep the left boundary position of the downlink beam of the base station unchanged when the UE moves in a circle around the base station and the UE moves to the right, and the base station increases the right side of the downlink beam. The width of the border.
  • the above-mentioned 5G Massive MIMO beam management device also includes:
  • the stop adjustment unit is configured to stop adjusting the width of the downlink beam by the base station when the degradation threshold value of the signal-to-noise ratio of the downlink beam of the base station is greater than or equal to the preset degradation threshold value.
  • the above-mentioned modules can be realized by software or hardware. For the latter, it can be realized by the following methods, but not limited to this: the above-mentioned modules are all located in the same processor; or, the above-mentioned modules can be combined in any combination The forms of are located in different processors.
  • Embodiments of the present application also provide a computer-readable storage medium, in which a computer program is stored, wherein the computer program is configured to perform the steps in any one of the above method embodiments when running.
  • the above-mentioned computer-readable storage medium may include but not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM), mobile Various media that can store computer programs, such as hard disks, magnetic disks, or optical disks.
  • An embodiment of the present application also provides an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any one of the above method embodiments.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • the base station since the base station is used to receive the location information of the user equipment UE; when the threshold value of the signal-to-noise ratio of the downlink beam of the above-mentioned base station is less than the preset threshold value, the downlink of the above-mentioned base station is adjusted according to the above-mentioned location information
  • the width of the beam wherein, the width of the above-mentioned downlink beam is negatively correlated with the distance between the above-mentioned UE and the above-mentioned base station; therefore, the rendering task is dynamically allocated according to the rendering complexity of the 3D image, which can solve the problem caused by the beam switching of the base station
  • the problem of declining call quality has been achieved, and the effect of improving call quality and reducing call drop rate has been achieved.
  • each module or each step of the above-mentioned application can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices In fact, they can be implemented in program code executable by a computing device, and thus, they can be stored in a storage device to be executed by a computing device, and in some cases, can be executed in an order different from that shown here. Or described steps, or they are fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation. As such, the present application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备,该方法包括:基站接收用户设备UE的位置信息(S202);在基站的下行波束的信噪比的门限值小于预设门限值时,根据位置信息调整基站的下行波束的宽度;其中,下行波束的宽度与UE到基站之间距离为负相关(S204)。

Description

一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备
相关申请的交叉引用
本申请基于申请号为202110732652.4、申请日为2021年6月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,具体而言,涉及一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备。
背景技术
随着移动通信使用的无线电波频率的提高,路径损耗也随之加大。载波频率提高意味着天线变得越来越小。这就是说,在同样的空间里,我们可以使用越来越多的高频段天线。基于这个事实,我们就可以通过增加天线数量来补偿高频路径损耗,而又不会增加天线阵列的尺寸。在高频场景下,穿过建筑物的穿透损耗也会大大增加。这些因素都会大大增加信号覆盖的难度。特别是对于室内覆盖来说,用室外宏站覆盖室内用户变得越来越不可行。而使用massive MIMO,我们能够生成高增益、可调节的赋形波束,从而明显改善信号覆盖,并且由于其波束非常窄,可以大大减少对周边的干扰。
多天线阵列的发射能量聚集在一个非常窄的区域。这意味着,使用的天线越多,波束宽度越窄。多天线阵列的好处在于,不同的波束之间,不同的用户之间的干扰比较少,因为不同的波束都有各自的聚焦区域,这些区域都非常小,彼此之间交集较小。多天线阵列的不利之处在于,系统必须用非常复杂的算法来找到用户的准确位置,否则就不能精准地将波束对准这个用户。Massive MIMO作为关键技术可以将波束集中在一个很窄范围内,产生分集增益和信号多路复用,波束成形技术可以有效地解决上述问题。
5G波束管理流程大体可以分3个步骤,P1过程粗对齐:在此阶段,首先基站全向发送SSB波束,用户设备UE用宽波束扫描,UE和基站都扫描一遍后确定基站的窄波束范围和UE的波束;P2过程基站精调:基站向UE发送CSI-RS;UE上报最佳的CSI-RS,找到基站的最佳波束,确定下行的波束信息。P3过程UE精调:再此阶段主要对UE侧的接收波束进行调制,实现发射和接收侧窄波束对齐,由此产生一对最佳发射到接收波束。
基站确定下行波束需要进行两个阶段的扫描,第一阶段扫描确定基站波束的范围,第二阶段确定基站的窄波束的方位角,这也就意味着想要实现基站和用户实现最佳波束对对齐,需要对窄波束进行多次扫描来寻找最佳发射接收波束,发射波束越窄需要进行扫描的次数就越多,这对基带处理能力要求很高,需要的成本较高,并且系统时延较大,这无疑对用户体验造成了很大的影响。另一方面考虑到用户可能处于移动状态,最佳波束会随着用户的移动而不断变化,为了保证覆盖,需要随时进行波束扫描和波束切换,但波束切换无疑会给用户带来通信质量上的影响,特别是对于高铁等移动速度较快的场景,可能会带来一定的掉话率,速度越快掉话率越高。
针对上述基站由于波束切换带来的通话质量下降的问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备,以至少在一定程度解决相关的技术问题之一,包括基站由于波束切换带来的通话质量下降的问题。
根据本申请的一个实施例,提供了一种5G Massive MIMO波束管理方法,包括:基站接收用户设备UE的位置信息;在上述基站的下行波束的信噪比的门限值小于预设门限值时,根据上述位置信息调整上述基站的下行波束的宽度;其中,上述下行波束的宽度与上述UE到上述基站之间距离为负相关。
根据本申请的另一个实施例,提供了一种5G Massive MIMO波束管理装置,包括:发送单元,被设置成向上述UE发送定位参考信号;接收单元,被设置成接收UE发送的位置信息;其中,上述位置信息为上述UE根据接收到的上述定位参考信号发送上述UE所在的位置信息。
根据本申请的又一个实施例,还提供了一种计算机可读存储介质,上述计算机可读存储介质中存储有计算机程序,其中,上述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,上述存储器中存储有计算机程序,上述处理器被设置为运行上述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是根据本申请实施例的5G Massive MIMO波束管理方法的移动终端的硬件结构框图;
图2是根据本申请实施例的5G Massive MIMO波束管理方法的流程图;
图3是根据本申请实施例的一种5G Massive MIMO波束管理方法的基站波束调节示意图;
图4是根据本申请实施例的一种5G Massive MIMO波束管理方法的波束扫描原理示意图;
图5是根据本申请实施例的另一种5G Massive MIMO波束管理方法的流程示意图;
图6是根据本申请实施例的5G Massive MIMO波束管理装置的结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请的实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本申请实施例的一种5G Massive MIMO波束管理方法的移动终端的硬件结构框图。如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,其中,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可被设置成存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的5G Massive MIMO波束管理方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106被设置成经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其被设置成通过无线方式与互联网进行通讯。
图2是根据本申请实施例的5G Massive MIMO波束管理方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,基站接收用户设备UE的位置信息;
步骤S204,在所述基站的下行波束的信噪比的门限值小于预设门限值时,根据所述位置信息调整所述基站的下行波束的宽度;其中,所述下行波束的宽度与所述UE到所述基站之间距离为负相关。
在步骤S202中,实际应用时,基站基于接收到用户设备UE的位置信息,例如,通过用户的手机,移动电子设备等为无线电子设备上传的位置信息来获取上述位置信息,上述位置信息可以为移动电子设备使用者当前所处位置。
在步骤S204中,实际应用时,所述基站的下行波束的信噪比的门限值小于预设门限值时,根据所述位置信息调整所述基站的下行波束的宽度;也就是说,基站的下行波束在调节的过程中不断检测波束的信噪比,当信噪比恶化程度小于预设恶化门限时调节基站的下行波束的宽度,调节下行波束的宽度与所述UE到所述基站之间距离为负相关,当UE距离基站相对较远,下行波束的宽度调整为越窄;当UE距离基站相对较近,下行波束的宽度调整为越宽。
通过本申请的技术方案,由于采用了基站接收用户设备UE的位置信息;在上述基站的下行波束的信噪比的门限值小于预设门限值时,根据上述位置信息调整上述基站的下行波束的宽度;其中,上述下行波束的宽度与上述UE到上述基站之间距离为负相关;因此,实现了根据三维图像的渲染复杂度来动态分配渲染任务,可以解决基站由于波束切换带来的通话质量下降的问题,进而达到了提高通话质量,降低掉话率的效果。
在一实施例中,步骤S202之前还包括,上述基站向上述UE发送定位参考信号;上述基站接收UE发送的位置信息;其中,上述位置信息为上述UE根据接收到的上述定位参考信号发送上述UE所在的位置信息。这里,基站通过向UE发送定位参考信号,UE接收到该定位参考信息后,UE发送自身所在的位置信息到基站中。
在一实施例中,如图3所示,步骤S204包括:基于上述位置信息获取上述UE在上述基站的辐射区域;其中,上述辐射区域包括以上述基站为中心依次向外的近场区、切换区和远 场区;
在上述UE位于上述切换区时,将上述基站的下行波束的宽度设置为预设宽度;
在上述UE位于上述近场区时,将上述基站的下行波束的宽度设置为大于与上述预设宽度;
在上述UE位于上述远场区时,将上述基站的下行波束的宽度设置为小于上述预设宽度。
在一实施例中,在上述UE以上述基站为中心做圆周运动时,上述基站增加上述下行波束的宽度。
在一实施例中,上述在上述UE以上述基站为中心做圆周运动时,增加上述下行波束的宽度,包括:
在上述UE以上述基站为中心做圆周运动、且当上述UE向左移动时,保持上述基站的下行波束的右边界位置不变,上述基站增加上述下行波束左边界的宽度;
在上述UE以上述基站为中心做圆周运动、且当上述UE向右移动时,保持上述基站的下行波束的左边界位置不变,上述基站增加上述下行波束右边界的宽度。
在一实施例中,该5G Massive MIMO波束管理方法还包括:在上述基站的下行波束的信噪比的门限值大于等于上述预设门限值时,上述基站停止调整上述下行波束的宽度。
本申请实施例基于5G Massive MIMO的波束管理方法,基站向用户发送参考信号,用户接收基站发送的参考信号,并且向基站反馈信道状态信息,基站得到用户反馈的信道状态信息并且根据用户反馈的信道状态信息为依据,得到用户的位置信息,根据用户的位置对基站波束宽度进行调整,在不影响业务质量和用户体验的前提下调节波束宽度,达到减少波束扫描和波束切换的目的,提高通话质量,降低掉话率。
基于前述实施例,在一应用实施例中,结合图3所示,上述5G Massive MIMO波束管理方法还包括:
将基站波束的覆盖范围按照距离基站远近分成三个区域,分别是近场区和切换区和远场区,基站对于不同区域内的用户使用不同宽度的波束并且可以实时调节。在切换区使用固定宽度的波束α,对于在近场区的用户使用宽波束,在α基础上逐渐增加波束宽度,距离基站越近的用户使用的波束越宽,保证接入,减少波束扫描时间,保证通信的时效性;对于在远场区的用户使用窄波束,在α基础上逐渐减小波束宽度,距离基站越远的用户使用的波束越窄,保证波束增益,提高基站覆盖。在用户从切换区向近场区移动,基站波束逐渐向宽调节的过程中,基站侧对波束的信噪比进行检测,得到波束的信噪比,根据波束信噪比的值来判断是否继续调节波束宽度,将基站检测的当前波束信噪比的恶化程度与预置的波束信噪比恶化门限进行比较;若当前波束信噪比的恶化程度低于预置的信噪比恶化门限,则继续调整基站波束宽度,反之如果当前波束信噪比的恶化程度超过预置的信噪比恶化门限,则将波束宽度进行回调,保证当前波束信噪比恶化低于恶化门限;同理,用户从切换区向远场区移动的过程中也对信噪比进行检测保证基站波束服务质量。
用户在某一个区域内进行移动时,在每个区域内调节波束宽度大小,首先基站发射参考信号给用户,通过用户反馈给基站的信息确定波束的初始化宽度,实现最佳波束匹配,当用 户在某区域内向某一方向移动时,则调整此方向的波束边界使波束变宽,保持波束的另一个边界位置不变,例如当用户向右侧移动时,保持波束左边界位置不变,调整波束右边界的位置使波束变宽,同理当用户向左侧移动时,保持波束右边界位置不变,调整波束左边界的位置使波束变宽。
本申请实施例可以在不影响原有位置用户服务质量的前提下,通过增加波束宽度尽可能的减少波束切换,从而减少由于波束切换带来的通话质量下降。同时在波束调节过程中检测波束信噪比,当信噪比恶化程度低于恶化门限时根据用户的位置选择继续调节还是停止调节,信噪比恶化程度超过恶化门限时停止波束调节,此时波束调节已无法保证基站服务质量,可以使用波束切换。
如图4所示,使用宽波束覆盖整个小区并依次扫描各宽波束对准的方向,确定用户位置信息(位于S1方向),假设宽波束宽度为ω,在第二阶段细扫描过程中,基站利用多个窄波束逐一扫描已在第一阶段中被宽波束覆盖的范围ω,如果窄波束宽度为θ,基站对用户需要进行扫描的次数为ω/θ,例如图2中需要为用户1扫描波束T1-T4,基站对于用户的扫描次数会随着窄波束宽度θ的变大而变少。
S1,基站向用户发送参考信号,用户接收基站发送的信号后向基站进行反馈,基站通过用户反馈的信息得到用户的位置信息。
S2,基站得到用户的位置信息后进行判断,如果用户位于切换区,则基站下行波束为固定宽度的波束;如果用户在近场区内,则增加波束宽度;如果用户在远场区内,则减小波束宽度。波束在调节的过程中不断检测波束的信噪比,当信噪比恶化程度超过预置恶化门限时停止调节。
S3,用户在任意区域内沿基站切向方向移动下,当用户向右侧移动时,保持波束左边界位置不变,调节波束右边界的宽度,当用户向左侧移动时,保持波束右边界位置不变,调节波束左边界的宽度。在调节波束的过程中保证波束信噪比。
在一实施例中,本申请实施例提供的一种基于5G Massive MIMO波束管理方法,具体实施方式包括以下步骤:
S502,初始化基站波束;
S504,基站向用户发送参考信号,用户接收基站发送的信号后向基站进行反馈;
S506基站通过用户反馈的信息得到用户的位置信息。
S508,根据用户位置进行基站波束调节,基站得到用户的位置信息后进行判断,如果用户位于切换区,则基站下行波束为固定宽度的波束;如果用户在近场区内,则增加波束宽度;如果用户在远场区内,则减小波束宽度。
用户在任意区域内沿基站切向方向移动下,当用户向右侧移动时,保持波束左边界位置不变,调节波束右边界的宽度,当用户向左侧移动时,保持波束右边界位置不变,调节波束左边界的宽度。在调节波束的过程中保证波束信噪比。
S510,波束在调节的过程中不断检测波束的信噪比,当信噪比恶化程度超过预置恶化门限时停止调节。
本申请实施例可以针对5G天线阵列波束成形,通过对波束宽度的调节来减少波束扫描次数,提升用户体验,提升系统性能。而且基站波束宽度的灵活调节解决了一些技术方案中需要时刻调整波束的角度以及波束切换以实现最佳波束对准的问题。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例上述的方法。
在本实施例中还提供了一种5G Massive MIMO波束管理装置,该装置用于实现上述实施例及其他实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本申请实施例的5G Massive MIMO波束管理装置的结构框图,如图6所示,该装置包括:
接收单元602,被设置成接收用户设备UE的位置信息;
调整单元604,被设置成在上述基站的下行波束的信噪比的门限值小于预设门限值时,根据上述位置信息调整上述基站的下行波束的宽度;其中,上述下行波束的宽度与上述UE到上述基站之间距离为负相关。
在本申请实施例中,基站基于接收到用户设备UE的位置信息,例如,通过用户的手机,移动电子设备等为无线电子设备上传的位置信息来获取上述位置信息,上述位置信息可以为移动电子设备使用者当前所处位置。
在本申请实施例中,上述基站的下行波束的信噪比的门限值小于预设门限值时,根据上述位置信息调整上述基站的下行波束的宽度;也就是说,基站的下行波束在调节的过程中不断检测波束的信噪比,当信噪比恶化程度小于预设恶化门限时调节基站的下行波束的宽度,调节下行波束的宽度与上述UE到上述基站之间距离为负相关,当UE距离基站相对较远,下行波束的宽度调整为越窄;当UE距离基站相对较近,下行波束的宽度调整为越宽。
通过本申请的技术方案,由于采用了基站接收用户设备UE的位置信息;在上述基站的下行波束的信噪比的门限值小于预设门限值时,根据上述位置信息调整上述基站的下行波束的宽度;其中,上述下行波束的宽度与上述UE到上述基站之间距离为负相关;因此,实现了根据三维图像的渲染复杂度来动态分配渲染任务,可以解决基站由于波束切换带来的通话质量下降的问题,进而达到了提高通话质量,降低掉话率的效果。
在一实施例中,上述的5G Massive MIMO波束管理装置还包括:
发送单元,被设置成向上述UE发送定位参考信号;
接收单元,被设置成接收UE发送的位置信息;其中,上述位置信息为上述UE根据接收到的上述定位参考信号发送上述UE所在的位置信息。
在一实施例中,上述调整单元604包括:
获取模块,被设置成基于上述位置信息获取上述UE在上述基站的辐射区域;其中,上述 辐射区域包括以上述基站为中心依次向外的近场区、切换区和远场区;
第一设置模块,被设置成在上述UE位于上述切换区时,将上述基站的下行波束的宽度设置为预设宽度;
第二设置模块,被设置成在上述UE位于上述近场区时,将上述基站的下行波束的宽度设置为大于与上述预设宽度;
第三设置模块,被设置成在上述UE位于上述远场区时,将上述基站的下行波束的宽度设置为小于上述预设宽度。
在一实施例中,上述的5G Massive MIMO波束管理装置还包括:
增加模块,被设置成在上述UE以上述基站为中心做圆周运动时,上述基站增加上述下行波束的宽度。
在一实施例中,上述增加模块,包括:
第一增加子单元,被设置成在上述UE以上述基站为中心做圆周运动、且当上述UE向左移动时,保持上述基站的下行波束的右边界位置不变,上述基站增加上述下行波束左边界的宽度;
第二增加子单元,被设置成在上述UE以上述基站为中心做圆周运动、且当上述UE向右移动时,保持上述基站的下行波束的左边界位置不变,上述基站增加上述下行波束右边界的宽度。
在一实施例中,上述的5G Massive MIMO波束管理装置,还包括:
停止调整单元,被设置成在上述基站的下行波束的信噪比的恶化门限值大于等于上述预设恶化门限值时,上述基站停止调整上述下行波束的宽度。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本申请的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及其他实施方式中所描述的示例,本实施例在此不再赘述。
通过本申请的技术方案,由于采用了基站接收用户设备UE的位置信息;在上述基站的下 行波束的信噪比的门限值小于预设门限值时,根据上述位置信息调整上述基站的下行波束的宽度;其中,上述下行波束的宽度与上述UE到上述基站之间距离为负相关;因此,实现了根据三维图像的渲染复杂度来动态分配渲染任务,可以解决基站由于波束切换带来的通话质量下降的问题,进而达到了提高通话质量,降低掉话率的效果。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的一些实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种5G Massive MIMO波束管理方法,包括:
    基站接收用户设备UE的位置信息;
    在所述基站的下行波束的信噪比的门限值小于预设门限值时,根据所述位置信息调整所述基站的下行波束的宽度;其中,所述下行波束的宽度与所述UE到所述基站之间距离为负相关。
  2. 根据权利要求1所述的方法,其中,所述基站接收用户设备UE的位置信息之前包括:
    所述基站向所述UE发送定位参考信号;
    所述基站接收UE发送的位置信息;其中,所述位置信息为所述UE根据接收到的所述定位参考信号发送所述UE所在的位置信息。
  3. 根据权利要求1所述的方法,其中,所述根据所述位置信息调整所述基站的下行波束的宽度包括:
    基于所述位置信息获取所述UE在所述基站的辐射区域;其中,所述辐射区域包括以所述基站为中心依次向外的近场区、切换区和远场区;
    在所述UE位于所述切换区时,将所述基站的下行波束的宽度设置为预设宽度;
    在所述UE位于所述近场区时,将所述基站的下行波束的宽度设置为大于与所述预设宽度;
    在所述UE位于所述远场区时,将所述基站的下行波束的宽度设置为小于所述预设宽度。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    在所述UE以所述基站为中心做圆周运动时,所述基站增加所述下行波束的宽度。
  5. 根据权利要求4所述的方法,其中,所述在所述UE以所述基站为中心做圆周运动时,增加所述下行波束的宽度,包括:
    在所述UE以所述基站为中心做圆周运动、且当所述UE向左移动时,保持所述基站的下行波束的右边界位置不变,所述基站增加所述下行波束左边界的宽度;
    在所述UE以所述基站为中心做圆周运动、且当所述UE向右移动时,保持所述基站的下行波束的左边界位置不变,所述基站增加所述下行波束右边界的宽度。
  6. 根据权利要求1至5任一项所述的方法,其中,所述方法还包括:
    在所述基站的下行波束的信噪比的门限值大于等于所述预设门限值时,所述基站停止调整所述下行波束的宽度。
  7. 一种5G Massive MIMO波束管理装置,包括:
    接收单元,被设置成接收用户设备UE的位置信息;
    调整单元,被设置成在基站的下行波束的信噪比的门限值小于预设门限值时,根据所述 位置信息调整所述基站的下行波束的宽度;其中,所述下行波束的宽度与所述UE到所述基站之间距离为负相关。
  8. 根据权利要求7所述的装置,其中,所述装置还包括:
    发送单元,被设置成向所述UE发送定位参考信号;
    接收单元,被设置成接收UE发送的位置信息;其中,所述位置信息为所述UE根据接收到的所述定位参考信号发送所述UE所在的位置信息。
  9. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至6任一项中所述的方法。
  10. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至6任一项中所述的方法。
PCT/CN2021/136143 2021-06-29 2021-12-07 一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备 WO2023273168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110732652.4A CN115549731A (zh) 2021-06-29 2021-06-29 一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备
CN202110732652.4 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023273168A1 true WO2023273168A1 (zh) 2023-01-05

Family

ID=84691027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136143 WO2023273168A1 (zh) 2021-06-29 2021-12-07 一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备

Country Status (2)

Country Link
CN (1) CN115549731A (zh)
WO (1) WO2023273168A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117687013A (zh) * 2024-02-04 2024-03-12 中亿(深圳)信息科技有限公司 基于5g的安防高精度定位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542937A (zh) * 2007-09-28 2009-09-23 韩国科学技术院 用于移动通信系统的束分多址系统和方法
CN110505696A (zh) * 2018-05-18 2019-11-26 中兴通讯股份有限公司 一种波束分配方法、装置、设备及计算机存储介质
US20200077279A1 (en) * 2017-03-31 2020-03-05 Intel Corporation Dynamic beam steering for vehicle communications
CN111163480A (zh) * 2018-11-07 2020-05-15 索尼公司 电子装置、无线通信方法和计算机可读介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542937A (zh) * 2007-09-28 2009-09-23 韩国科学技术院 用于移动通信系统的束分多址系统和方法
US20200077279A1 (en) * 2017-03-31 2020-03-05 Intel Corporation Dynamic beam steering for vehicle communications
CN110505696A (zh) * 2018-05-18 2019-11-26 中兴通讯股份有限公司 一种波束分配方法、装置、设备及计算机存储介质
CN111163480A (zh) * 2018-11-07 2020-05-15 索尼公司 电子装置、无线通信方法和计算机可读介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117687013A (zh) * 2024-02-04 2024-03-12 中亿(深圳)信息科技有限公司 基于5g的安防高精度定位方法
CN117687013B (zh) * 2024-02-04 2024-05-17 中亿(深圳)信息科技有限公司 基于5g的安防高精度定位方法

Also Published As

Publication number Publication date
CN115549731A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US20200322812A1 (en) Method and apparatus for adjusting a reception beam
Kim et al. Fast millimeter-wave beam training with receive beamforming
JP6392120B2 (ja) 移動端末機及びその通信方法、基地局制御装置及びその制御方法、及びそれを利用する多重協力送受信システム及びその方法
US11166172B2 (en) Beam identification for multi-TCI transmission
EP3718235B1 (en) Customizing transmission of a system information message
US10827364B2 (en) Phased array antenna system for fast beam searching
JP2005531987A (ja) セクタ化されたセルのカバレージを効率よく提供するシステム
WO2017045384A1 (en) System and method for fast beamforming setup
US9942778B2 (en) Virtual base station apparatus and communication method
WO2018121540A1 (zh) 一种下行波束调整的方法及装置
WO2018103297A1 (zh) 通信波束选择方法、装置及终端
US11777559B2 (en) Restricting uplink MIMO assignment based on fading in an mmWAVE system
US9451474B2 (en) Multicast aware beamforming for wireless local area networks
WO2023273168A1 (zh) 一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备
US20100284373A1 (en) Mobile Communication System
WO2018049958A1 (zh) 同步波束发送接收方法、网络设备、终端及系统
US11515642B2 (en) Antenna cover with integrated static lens
KR102519357B1 (ko) O-RAN 프론트홀의 5G mmWave 광대역 빔포밍 MIMO 서비스 방법과 그 장치
WO2020238922A1 (zh) 通信方法及装置
WO2023273163A1 (zh) 最优波束的确定方法及装置
EP3932133B1 (en) Transmitter device, and methods for controlling transmitter device
EP4329213A1 (en) Apparatus, method, program products for maximizing desired multi-transmission point signal to inter-layer-group-interference via ue beam control
CN110719636B (zh) 一种波束管理方法及终端设备
CN107508626A (zh) 信号追踪接收方法及系统
CN116193586A (zh) 波束自适应调节方法、装置、基站设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE