WO2023273163A1 - 最优波束的确定方法及装置 - Google Patents

最优波束的确定方法及装置 Download PDF

Info

Publication number
WO2023273163A1
WO2023273163A1 PCT/CN2021/135865 CN2021135865W WO2023273163A1 WO 2023273163 A1 WO2023273163 A1 WO 2023273163A1 CN 2021135865 W CN2021135865 W CN 2021135865W WO 2023273163 A1 WO2023273163 A1 WO 2023273163A1
Authority
WO
WIPO (PCT)
Prior art keywords
target user
position information
base station
vertical
horizontal
Prior art date
Application number
PCT/CN2021/135865
Other languages
English (en)
French (fr)
Inventor
牛凡
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023273163A1 publication Critical patent/WO2023273163A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the embodiments of the present application relate to the field of mobile communications, and in particular, to a method and device for determining an optimal beam.
  • Beam forming is derived from a concept of adaptive antenna.
  • the signal processing at the receiving end can form the required ideal signal by weighting and combining the signals received by the multi-antenna elements. From the perspective of the antenna pattern (pattern), doing so is equivalent to forming a beam with a specified direction. For example, the original all-round receiving pattern is transformed into a lobe pattern with zero point and maximum direction.
  • the same principle also applies to the transmitter. Amplitude and phase adjustments are made to the antenna element feed to form a pattern of the desired shape.
  • multiple-input multiple-output (MIMO) antennas can not only use multiple receive antennas, but also multiple transmit antennas. Due to the use of multiple sets of antennas, the wireless signal from the transmitting end to the receiving end corresponds to the same spatial stream (spatial streams), and is transmitted through multiple paths.
  • Using a certain algorithm at the receiving end to process the signals received by multiple antennas can significantly improve the signal-to-noise ratio at the receiving end. Even when the receiving end is far away, better signal quality can be obtained.
  • the 5G frequency band is higher, especially the millimeter wave frequency band, and the coverage area is smaller.
  • Beamforming technology that is, by adjusting the amplitude and phase of multiple antennas, giving the antenna radiation pattern a specific shape and direction, so that the wireless signal energy is concentrated on a narrower beam to enhance coverage and reduce interference.
  • the beamforming direction is controllable, and the beam direction can be adjusted following the moving terminal.
  • NLOS non-line-of-sight
  • beamforming can also use the reflection or refraction of the beam to allow the signal to reach the terminal.
  • the terminal is often in a mobile state, high-frequency signals (especially millimeter waves) are easily affected by the wireless environment, such as being blocked by buildings, rain, etc., which can easily cause the beam signal to fail to reach the terminal. Therefore, in order to ensure continuous seamless coverage, it is necessary for the base station side to send multiple beams in different directions as much as possible. To manage multiple beams, beam management techniques are required.
  • Beam management mainly includes four steps:
  • a set of beams are sent and received according to predefined time intervals and directions.
  • the evaluation indicators include RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), SINR (Signal-to-Interference-plus-Noise Ratio), etc.
  • the optimal beam (or beam set) is selected based on the beam measurements.
  • Beam reporting Beam reporting
  • the UE reports beam quality and beam decision information to the base station, so as to establish beam-directed communication between the base station and the terminal.
  • the base station generally needs many scans to determine the optimal beam, which leads to low efficiency of the beam management system.
  • Embodiments of the present application provide a method and device for determining an optimal beam to at least solve one of the related technical problems to a certain extent, including the problem that a base station usually requires many scans to determine the optimal beam.
  • a method for determining an optimal beam including: the base station scans the target user in the coverage area in a horizontal omnidirectional direction to obtain the first horizontal position information of the target user; based on the For the first horizontal position information of the target user, the base station scans the horizontal area where the target user is located in the vertical direction to obtain the first vertical position information of the target user; according to the first horizontal position information and the first horizontal position information of the target user A vertical position information to determine the optimal beam between the base station and the target user.
  • a device for determining an optimal beam is provided, the device is located in a base station, and the device includes: a first scanning module, configured to scan targets in the covered area in a horizontal omnidirectional manner user to obtain the first horizontal position information of the target user; the second scanning module is also configured to scan the horizontal area where the target user is located in the vertical direction based on the first horizontal position information of the target user to obtain The first vertical position information of the target user; a determination module configured to determine the optimal beam between the base station and the target user according to the first horizontal position information and the first vertical position information of the target user.
  • a computer-readable storage medium is also provided, and a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to perform any one of the above-mentioned methods when running Steps in the examples.
  • an electronic device including a memory and a processor, wherein a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above Steps in the method examples.
  • FIG. 1 is a flowchart of a method for determining an optimal beam according to an embodiment of the present application
  • FIG. 2 is a structural block diagram of an apparatus for determining an optimal beam according to an embodiment of the present application
  • FIG. 3 is a structural block diagram of an apparatus for determining an optimal beam according to another embodiment of the present application.
  • FIG. 4 is a schematic diagram of scanning in the horizontal direction according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of scanning in the vertical direction according to an embodiment of the present application.
  • Fig. 6 is a flowchart of a method for determining an optimal beam according to an embodiment of the present application.
  • FIG. 1 is a flow chart of a method according to an embodiment of the present application. As shown in FIG. 1 , the process includes the following steps:
  • Step S102 the base station scans the target user in the coverage area in the horizontal omnidirectional direction, so as to obtain the first horizontal position information of the target user;
  • Step S104 based on the first horizontal position information of the target user, the base station scans the horizontal area where the target user is located in the vertical direction to obtain the first vertical position information of the target user;
  • Step S106 determining an optimal beam between the base station and the target user according to the first horizontal position information and the first vertical position information of the target user.
  • the base station scans the target user in the covered area in the horizontal omnidirectional direction to obtain the first horizontal position information of the target user, which may include: the base station scans the target user in the covered area in the horizontal omnidirectional direction
  • the target user sends a first reference signal; the base station receives first channel state information fed back by the target user for the first reference signal; the base station obtains the first channel state information of the target user according to the first channel state information.
  • Horizontal position information may include: the base station scans the target user in the covered area in the horizontal omnidirectional direction
  • the target user sends a first reference signal; the base station receives first channel state information fed back by the target user for the first reference signal; the base station obtains the first channel state information of the target user according to the first channel state information.
  • Horizontal position information may include: the base station scans the target user in the covered area in the horizontal omnidirectional direction
  • the target user sends a first reference signal; the base station receives first channel state information fed back by the target user for the first reference
  • step S104 of this embodiment based on the first horizontal position information of the target user, the base station scans the horizontal area where the target user is located in the vertical direction to obtain the first vertical position information of the target user, which may It includes: the base station sends the second reference signal to the target user at different vertical inclinations by adjusting the vertical inclination of the antenna; the base station receives the second channel state information fed back by the target user for the second reference signal; the The base station determines the first vertical position information of the target user according to the second channel state information.
  • the base station sends the second reference signal to the target user at different vertical inclinations by adjusting the vertical inclination of the antenna, which may include: the base station sends the second reference signal to the target user at the first vertical inclination
  • the second reference signal the base station adjusts the vertical tilt angle of the antenna according to the feedback information of the target user, and sends the second reference signal to the target user at the second vertical tilt angle.
  • step S108 of this embodiment after determining the optimal beam between the base station and the target user, it may further include: the base station re-performs horizontal omni-directional and vertical beam detection on the target user according to a predetermined period. Scanning to obtain the second horizontal position information and the second vertical position information of the target user; according to the second horizontal position information and the second vertical position information of the target user, determine the distance between the base station and the target user new optimal beam
  • the method according to the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to enable a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods described in the various embodiments of the present application.
  • a device for determining an optimal beam is also provided, and the device is used to implement the above embodiment and other implementation manners, and those that have been explained will not be repeated here.
  • the term "module” may be a combination of software and/or hardware that realizes a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementations in hardware, or a combination of software and hardware are also possible and contemplated.
  • Fig. 2 is a structural block diagram of an apparatus for determining an optimal beam according to an embodiment of the present application, and the apparatus 100 is located in a base station.
  • the device may include a first scanning module 10 , a second scanning module 20 and a determination module 30 .
  • the first scanning module 10 is configured to scan the target user in the covered area in a horizontal omnidirectional manner, so as to obtain first horizontal position information of the target user.
  • the second scanning module 20 is configured to, based on the first horizontal position information of the target user, perform a vertical scan on the horizontal area where the target user is located to obtain the first vertical position information of the target user.
  • the determining module 30 is configured to determine an optimal beam between the base station and the target user according to the first horizontal position information and the first vertical position information of the target user.
  • the device for determining the optimal beam provided in this embodiment can accurately scan the target users in the area, quickly match the optimal beam, effectively reduce the number of beam scans, and improve the efficiency of the beam management system.
  • Fig. 3 is a structural block diagram of an optimal beam determining device according to another embodiment of the present application.
  • the optimal beam determining device 100 includes the first
  • the first scanning module 10 further includes a first sending unit 11 , a first receiving unit 12 and an acquiring unit 13 .
  • the first sending unit 11 is configured to send the first reference signal to target users in the covered area in a horizontal omnidirectional direction.
  • the first receiving unit 12 is configured to receive the first channel state information fed back by the target user with respect to the first reference signal.
  • the obtaining unit 13 is configured to obtain the first horizontal position information of the target user according to the first channel state information.
  • the second scanning module 20 may further include a second sending unit 21 , a second receiving unit 22 and a determining unit 23 .
  • the second sending unit 21 is configured to send the second reference signal to the target user at different vertical inclinations by adjusting the vertical inclination of the antenna.
  • the second receiving unit 22 is configured to receive second channel state information fed back by the target user with respect to the second reference signal.
  • the determining unit 23 is configured to determine the first vertical position information of the target user according to the second channel state information.
  • the first scanning module 10 is further configured to re-scan the target user in a horizontal omnidirectional direction according to a predetermined period to acquire the second horizontal position information of the target user.
  • the second scanning module 20 is further configured to re-scan the target user in the vertical direction according to the predetermined period to acquire the second vertical position information of the target user.
  • the determining module 30 is further configured to determine a new optimal beam between the base station and the target user according to the second horizontal position information and the second vertical position information of the target user.
  • the above-mentioned modules can be realized by software or hardware. For the latter, it can be realized by the following methods, but not limited to this: the above-mentioned modules are all located in the same processor; or, the above-mentioned modules can be combined in any combination The forms of are located in different processors.
  • This embodiment provides a method for determining an optimal beam.
  • a 5G system is taken as an example.
  • the omnidirectional antenna or directional antenna of the 5G base station has the characteristics of large-scale full coverage, and follows the location information of the 5G target user in real time, and further controls the appropriate 5G antenna beam within the range to accurately monitor the users in the area. Scanning can quickly match the best transmitting and receiving beams, effectively reducing the number of beam scans and improving the efficiency of the beam management system.
  • beam scan matching management is performed in two stages.
  • the first phase is a quick scan of all target users in horizontal 360 degrees of the base station.
  • Fig. 4 is a schematic diagram of scanning in the horizontal direction according to the present embodiment. As shown in Fig. 4, if the base station uses 120 directional antennas, only three antennas are needed to complete the horizontal coverage of S1, S2, and S3 (blue area), so , the user’s horizontal position information (located in the S3 direction) can be obtained and fed back to the 5G base station control system.
  • the second stage is a fast scan in the vertical direction. That is, a vertical scan of 180 degrees is performed on the target user whose horizontal position has been determined.
  • Fig. 5 is a schematic diagram of scanning in the vertical direction according to the present embodiment, as shown in Fig. 5, in the present embodiment, the scanning in the vertical direction is completed according to the adjustment of the antenna inclination angle, and the operation of adjusting the inclination angle of 60 degrees is realized each time, and only Three inclination adjustments are required to realize the rapid scanning of the target user in the vertical direction, determine the vertical position information of the target user and feed it back to the 5G base station control system, and finally obtain the accurate three-dimensional position information of the target user, so as to quickly determine the base station and target Optimal beam among users.
  • the characteristics of large-scale omnidirectional real-time coverage of 5G base stations are used to effectively reduce the range and times of 5G beam matching traversal scans and reduce waste of resources.
  • there is no specific order requirement for the scanning phase and one of the horizontal and vertical directions can be randomly selected to start scanning. And it is especially obvious when the number of base station and user array antennas is gradually increasing. At the same time, it provides seamless coverage for users, ensures uninterrupted communication and no dropped calls, and improves communication quality.
  • the embodiment of the present application also provides a method for determining an optimal beam, as shown in FIG. 6, the method of this embodiment includes the following steps:
  • step S602 the 5G target users in the coverage area are horizontally and comprehensively scanned by the 5G base station in the communication system.
  • the base station sends a reference signal to the user, the user receives the reference signal sent by the base station, and feeds back information to the base station, the base station obtains the information fed back by the user and based on the channel state information fed back by the user, obtains the horizontal position information of the user, and the obtained user level
  • the location information is transmitted to the base station analysis control system.
  • Step S604 the base station analysis and control system analyzes and processes the obtained user horizontal position information, controls the corresponding antenna to adjust the tilt angle, and completes the rapid scanning of the beam in the vertical direction of the target user.
  • the base station sends reference signals to users at different inclinations, and adjusts the vertical inclination of the base station according to the information fed back by users to determine the best matching beam between the 5G base station and users.
  • step S606 within a preset interval, the base station repeats steps S602 and S604 to determine a new optimal beam. Switch the optimal beam with real-time matching, so as to provide users with seamless coverage, ensure uninterrupted communication, no drop-off, and improve communication quality.
  • Embodiments of the present application also provide a computer-readable storage medium, in which a computer program is stored, wherein the computer program is configured to perform the steps in any one of the above method embodiments when running.
  • the above-mentioned computer-readable storage medium may include but not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM), mobile Various media that can store computer programs, such as hard disks, magnetic disks, or optical disks.
  • An embodiment of the present application also provides an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any one of the above method embodiments.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • each module or each step of the above-mentioned application can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices In fact, they can be implemented in program code executable by a computing device, and thus, they can be stored in a storage device to be executed by a computing device, and in some cases, can be executed in an order different from that shown here. Or described steps, or they are fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation. As such, the present application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种最优波束的确定方法及装置,该方法包括:基站在水平全方位上扫描所覆盖区域内的目标用户,以获得目标用户的第一水平位置信息(S102);基于所述目标用户的第一水平位置信息,所述基站对所述目标用户所处的水平区域进行垂直方向扫描以获得目标用户的第一垂直位置信息(S104);根据所述目标用户的第一水平位置信息和第一垂直位置信息,确定所述基站与所述目标用户之间的最优波束(S106)。

Description

最优波束的确定方法及装置
相关申请的交叉引用
本申请基于申请号为202110729727.3、申请日为2021年6月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及移动通信领域,具体而言,涉及一种最优波束的确定方法及装置。
背景技术
波束赋形(Beam forming),源于自适应天线的一个概念。接收端的信号处理,可以通过对多天线阵元接收到的各路信号进行加权合成,形成所需的理想信号。从天线方向图(pattern)视角来看,这样做相当于形成了规定指向上的波束。例如,将原来全方位的接收方向图转换成了有零点、有最大指向的波瓣方向图。同样原理也适用于发射端。对天线阵元馈电进行幅度和相位调整,可形成所需形状的方向图。
如果要采用波束赋形技术,前提是必须采用多天线系统。例如,多进多出(MIMO)天线,不仅可以采用多接收天线,还可用多发射天线。由于采用了多组天线,从发射端到接收端无线信号对应同一条空间流(spatial streams),是通过多条路径传输的。在接收端采用一定的算法对多个天线收到信号进行处理,就可以明显改善接收端的信噪比。即使在接收端较远时,也能获得较好的信号质量。
5G频段更高,尤其是毫米波频段,覆盖范围更小,为了增强5G覆盖,波束赋形应运而生。波束赋形技术,即通过调整多天线的幅度和相位,赋予天线辐射图特定的形状和方向,使无线信号能量集中于更窄的波束上,来增强覆盖范围和减少干扰。波束赋形方向可控,可跟随移动的终端调整波束方向。在非视距(NLOS)场景下,波束赋形还可利用波束的反射或折射让信号抵达终端。但是,由于终端经常处于移动状态,高频信号(尤其是毫米波)又易受无线环境影响,比如被建筑物、雨水等阻挡,很容易导致波束信号无法抵达终端。因此,为了确保连续的无缝覆盖,需要基站侧尽可能在不同的方向上发送多个波束。要管理多个波束,就需要波束管理技术。
波束管理主要包括四个步骤:
1)波束扫描(Beam sweeping)
在波束覆盖范围内,根据预定义的时间间隔和方向发送和接收一组波束。
2)波束测量(Beam measurement)
评估接收信号的质量,评估指标包括RSRP(参考信号接收功率)、RSRQ(参考信号接收质量)、SINR(信号与干扰加噪声比)等。
3)波束决策(Beam determination)
根据波束测量选择最优波束(或波束组)。
4)波束上报(Beam reporting)
UE向基站上报波束质量和波束决策信息,以建立基站与终端之间的波束定向通信。
但是对于现有的波束管理方式,基站通常需要很多次的扫描才能确定最优波束,从而导致波束管理系统的效率较低。
发明内容
本申请实施例提供了一种最优波束的确定方法及装置方法及装置,以至少在一定程度上解决相关的技术问题之一,包括基站通常需要很多次的扫描才能确定最优波束的问题。
根据本申请的一个实施例,提供了一种最优波束的确定方法,包括:基站在水平全方位上扫描所覆盖区域内的目标用户,以获得目标用户的第一水平位置信息;基于所述目标用户的第一水平位置信息,所述基站对所述目标用户所处的水平区域进行垂直方向扫描以获得目标用户的第一垂直位置信息;根据所述目标用户的第一水平位置信息和第一垂直位置信息,确定所述基站与所述目标用户之间的最优波束。
根据本申请的另一个实施例,提供了一种最优波束的确定装置,该装置位于基站中,该装置包括:第一扫描模块,被设置成在水平全方位上扫描所覆盖区域内的目标用户,以获得目标用户的第一水平位置信息;第二扫描模块,还被设置成基于所述目标用户的第一水平位置信息,对所述目标用户所处的水平区域进行垂直方向扫描以获得目标用户的第一垂直位置信息;确定模块,被设置成根据所述目标用户的第一水平位置信息和第一垂直位置信息,确定基站与所述目标用户之间的最优波束。
根据本申请的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是根据本申请实施例的最优波束的确定方法的流程图;
图2是根据本申请实施例的最优波束的确定装置的结构框图;
图3是根据本申请另一实施例的最优波束的确定装置的结构框图;
图4是根据本申请实施例的水平方向扫描示意图;
图5是根据本申请实施例的垂直方向扫描示意图;
图6是根据本申请实施例的最优波束的确定方法流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请的实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等 是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种运行于基站上的最优波束的确定方法,图1是根据本申请实施例的方法流程图,如图1所示,该流程包括如下步骤:
步骤S102,基站在水平全方位上扫描所覆盖区域内的目标用户,以获得目标用户的第一水平位置信息;
步骤S104,基于所述目标用户的第一水平位置信息,所述基站对所述目标用户所处的水平区域进行垂直方向扫描以获得目标用户的第一垂直位置信息;
步骤S106,根据所述目标用户的第一水平位置信息和第一垂直位置信息,确定所述基站与所述目标用户之间的最优波束。
在本实施例的步骤S102中,基站在水平全方位上扫描所覆盖区域内的目标用户,以获得目标用户的第一水平位置信息,可包括:基站在水平全方位上向所覆盖区域内的目标用户发送第一参考信号;所述基站接收所述目标用户针对所述第一参考信号反馈的第一信道状态信息;所述基站根据所述第一信道状态信息获取所述目标用户的第一水平位置信息。
在本实施例的步骤S104中,基于所述目标用户的第一水平位置信息,所述基站对所述目标用户所处的水平区域进行垂直方向扫描以获得目标用户的第一垂直位置信息,可包括:所述基站通过调整天线垂直倾角,在不同垂直倾角向所述目标用户发送第二参考信号;所述基站接收所述目标用户针对所述第二参考信号反馈的第二信道状态信息;所述基站根据所述第二信道状态信息确定所述目标用户的第一垂直位置信息。
在本实施例的步骤S106中,所述基站通过调整天线垂直倾角,在不同垂直倾角向所述目标用户发送第二参考信号,可包括:所述基站在第一垂直倾角向所述目标用户发送所述第二参考信号;所述基站根据目标用户的反馈信息调整天线的垂直倾角,并在第二垂直倾角向所述目标用户发送第二参考信号。
在本实施例的步骤S108中,确定所述基站与所述目标用户之间的最优波束之后,还可包括:所述基站按照预定周期重新对所述目标用户进行水平全方位和垂直方向的扫描,以获取所述目标用户的第二水平位置信息和第二垂直位置信息;根据所述目标用户的第二水平位置信息和第二垂直位置信息,确定所述基站与所述目标用户之间新的最优波束
通过本实施例提供的上述方法,可以对区域内的目标用户进行精确扫描,快速匹配出最优波束,有效减少波束扫描次数,提高了波束管理系统效率。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在本实施例中还提供了一种最优波束的确定装置,该装置用于实现上述实施例及其他实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本申请实施例的最优波束的确定装置的结构框图,该装置100位于基站中。 如图2所示,该装置可包括第一扫描模块10、第二扫描模块20和确定模块30。
第一扫描模块10,被设置成在水平全方位上扫描所覆盖区域内的目标用户,以获得目标用户的第一水平位置信息。
第二扫描模块20,被设置成基于所述目标用户的第一水平位置信息,对所述目标用户所处的水平区域进行垂直方向扫描以获得目标用户的第一垂直位置信息。
确定模块30,被设置成根据所述目标用户的第一水平位置信息和第一垂直位置信息,确定基站与所述目标用户之间的最优波束。
通过本实施例提供的上述最优波束的确定装置,可以对区域内的目标用户进行精确扫描,快速匹配出最优波束,有效减少波束扫描次数,提高了波束管理系统效率。
图3是根据本申请另一实施例的最优波束的确定装置的结构框图,如图3所示,在本实施例中,该最优波束的确定装置100除包括上述实施例中的第一扫描模块10、第二扫描模块20和确定模块30外,所述第一扫描模块10还包括第一发送单元11、第一接收单元12和获取单元13。
第一发送单元11,被设置成在水平全方位上向所覆盖区域内的目标用户发送第一参考信号。
第一接收单元12,被设置成接收所述目标用户针对所述第一参考信号反馈的第一信道状态信息。
获取单元13,被设置成根据所述第一信道状态信息获取所述目标用户的第一水平位置信息。
在本实施例中,所述第二扫描模块20还可以包括第二发送单元21、第二接收单元22和确定单元23。
第二发送单元21,被设置成通过调整天线垂直倾角,在不同垂直倾角向所述目标用户发送第二参考信号。
第二接收单元22,被设置成接收所述目标用户针对所述第二参考信号反馈的第二信道状态信息。
确定单元23,被设置成根据所述第二信道状态信息确定所述目标用户的第一垂直位置信息。
在本实施例中,所述第一扫描模块10,还被设置成按照预定周期重新对所述目标用户进行水平全方位上的扫描以获取所述目标用户的第二水平位置信息。所述第二扫描模块20,还被设置成按照所述预定周期重新对所述目标用户进行垂直方向扫描以获取所述目标用户的第二垂直位置信息。所述确定模块30,还被设置成根据所述目标用户的第二水平位置信息和第二垂直位置信息,确定所述基站与所述目标用户之间新的最优波束。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
为了便于对本申请所提供的技术方案的理解,下面将结合具体场景对实施例进行详细描述。
本实施例提供了一种最优波束的确定方法,在本实施例中,为了便于说明,以5G系统为例。在本实施例中,考虑了5G基站全向天线或定向天线的大范围全覆盖的特性,实时跟随 5G目标用户的位置信息,进一步控制该范围内合适的5G天线波束对该区域的用户进行精确扫描,快速匹配出最佳发射接收波束,有效减少波束扫描次数,提高波束管理系统效率。
在本实施例中,波束的扫描匹配管理分两个阶段进行。
第一阶段是对基站进行水平360度的所有目标用户进行快速扫描。
图4为根据本实施例的水平方向扫描示意图,如图所示4,如果基站使用120的定向天线,就只需要3个天线可以完成S1、S2、S3(蓝色区域)水平方向覆盖,因此,可以得到用户水平位置信息(位于S3方向上)并反馈给5G基站控制系统。
第二阶段为垂直方向的快速扫描。即,对已经确定水平位置的目标用户进行垂直方向180度的扫描。
图5为根据本实施例的垂直方向扫描示意图,如图所示5,在本实施例中,根据对天线倾角的调整完成垂直方向的扫描,每次实现调整60度的倾角的操作,同样只需进行三次倾角调整就可以实现垂直方向的目标用户的快速扫描,确定目标用户垂直方向的位置信息并反馈给5G基站控制系统,最终可以得到目标用户的精确三维位置信息,从而快速确定基站与目标用户之间的最优波束。
在本实施例中,利用了5G基站大范围全方向实时覆盖的特性,有效减少5G波束匹配遍历扫描的范围和次数,减少资源浪费。在本实施例中,扫描阶段无特定顺序要求,可以在水平与垂直方向任意选择一个方向开始扫描。而且对基站和用户阵列天线数逐渐增多尤为明显,同时为用户提供无缝覆盖,保证通信不中断、不掉线,提高通信质量。
本申请实施例还提供了一种最优波束的确定方法,如图6所示,本实施例的方法包括如下步骤:
步骤S602,通过通信系统中的5G基站水平全方位扫描所覆盖区域内的5G目标用户。
基站向用户发送参考信号,用户接收基站发送的参考信号,并且向基站反馈信息,基站得到用户反馈的信息并且根据用户反馈的信道状态信息为依据,得到用户的水平位置信息,将得到的用户水平位置信息传递到基站分析控制系统。
步骤S604,基站分析控制系统对得到的用户水平位置信息进行分析处理,控制相应的天线进行调整倾角操作,完成波束对目标用户垂直方向上的快速扫描。在本实施例中,基站在不同倾角向用户发送参考信号,并依据用户反馈的信息对基站垂直倾角进行调整,确定5G基站和用户之间的最佳匹配波束。
步骤S606,在预设间隔时间内,基站重复步骤S602和步骤S604,确定出新的最优波束。以实时匹配切换最优波束,从而为用户提供无缝覆盖,保证通信不中断、不掉线,提高通信质量。
本申请的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输 设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及其他实施方式中所描述的示例,本实施例在此不再赘述。
通过本申请的上述实施例,可以对区域内的目标用户进行精确扫描,快速匹配出最优波束,有效减少波束扫描次数,提高了波束管理系统效率。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的一些实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种最优波束的确定方法,包括:
    基站在水平全方位上扫描所覆盖区域内的目标用户,以获得目标用户的第一水平位置信息;
    基于所述目标用户的第一水平位置信息,所述基站对所述目标用户所处的水平区域进行垂直方向扫描以获得目标用户的第一垂直位置信息;
    根据所述目标用户的第一水平位置信息和第一垂直位置信息,确定所述基站与所述目标用户之间的最优波束。
  2. 根据权利要求1所述的方法,其中,基站在水平全方位上扫描所覆盖区域内的目标用户,以获得目标用户的第一水平位置信息,包括:
    基站在水平全方位上向所覆盖区域内的目标用户发送第一参考信号;
    所述基站接收所述目标用户针对所述第一参考信号反馈的第一信道状态信息;
    所述基站根据所述第一信道状态信息获取所述目标用户的第一水平位置信息。
  3. 根据权利要求1所述的方法,其中,基于所述目标用户的第一水平位置信息,所述基站对所述目标用户所处的水平区域进行垂直方向扫描以获得目标用户的第一垂直位置信息,包括:
    所述基站通过调整天线垂直倾角,在不同垂直倾角向所述目标用户发送第二参考信号;
    所述基站接收所述目标用户针对所述第二参考信号反馈的第二信道状态信息;
    所述基站根据所述第二信道状态信息确定所述目标用户的第一垂直位置信息。
  4. 根据权利要求1所述的方法,其中,所述基站通过调整天线垂直倾角,在不同垂直倾角向所述目标用户发送第二参考信号,包括:
    所述基站在第一垂直倾角向所述目标用户发送所述第二参考信号;
    所述基站根据目标用户的反馈信息调整天线的垂直倾角,并在第二垂直倾角向所述目标用户发送第二参考信号。
  5. 根据权利要求1所述的方法,其中,确定所述基站与所述目标用户之间的最优波束之后,还包括:
    所述基站按照预定周期重新对所述目标用户进行水平全方位和垂直方向的扫描,以获取所述目标用户的第二水平位置信息和第二垂直位置信息;
    根据所述目标用户的第二水平位置信息和第二垂直位置信息,确定所述基站与所述目标用户之间新的最优波束。
  6. 一种最优波束的确定装置,位于基站中,包括:
    第一扫描模块,被设置成在水平全方位上扫描所覆盖区域内的目标用户,以获得目标用户的第一水平位置信息;
    第二扫描模块,被设置成基于所述目标用户的第一水平位置信息,对所述目标用户所处的水平区域进行垂直方向扫描以获得目标用户的第一垂直位置信息;
    确定模块,被设置成根据所述目标用户的第一水平位置信息和第一垂直位置信息,确定基站与所述目标用户之间的最优波束。
  7. 根据权利要求6所述的装置,其中,所述第一扫描模块包括:
    第一发送单元,被设置成在水平全方位上向所覆盖区域内的目标用户发送第一参考信号;
    第一接收单元,被设置成接收所述目标用户针对所述第一参考信号反馈的第一信道状态信息;
    第一获取单元,被设置成根据所述第一信道状态信息获取所述目标用户的第一水平位置信息。
  8. 根据权利要求6所述的装置,其中,所述第二扫描模块包括:
    第二发送单元,被设置成通过调整天线垂直倾角,在不同垂直倾角向所述目标用户发送第二参考信号;
    第二接收单元,被设置成接收所述目标用户针对所述第二参考信号反馈的第二信道状态信息;
    确定单元,被设置成根据所述第二信道状态信息确定所述目标用户的第一垂直位置信息。
  9. 根据权利要求6所述的装置,其中,
    所述第一扫描模块,还被设置成按照预定周期重新对所述目标用户进行水平全方位上的扫描以获取所述目标用户的第二水平位置信息;
    所述第二扫描模块,还被设置成按照所述预定周期重新对所述目标用户进行垂直方向扫描以获取所述目标用户的第二垂直位置信息;
    所述确定模块,还被设置成根据所述目标用户的第二水平位置信息和第二垂直位置信息,确定所述基站与所述目标用户之间新的最优波束。
  10. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现所述权利要求1至5任一项中所述的方法的步骤。
  11. 一种电子装置,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现所述权利要求1至5任一项中所述的方法的步骤。
PCT/CN2021/135865 2021-06-29 2021-12-06 最优波束的确定方法及装置 WO2023273163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110729727.3A CN115549730A (zh) 2021-06-29 2021-06-29 最优波束的确定方法及装置
CN202110729727.3 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023273163A1 true WO2023273163A1 (zh) 2023-01-05

Family

ID=84691019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135865 WO2023273163A1 (zh) 2021-06-29 2021-12-06 最优波束的确定方法及装置

Country Status (2)

Country Link
CN (1) CN115549730A (zh)
WO (1) WO2023273163A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080095251A1 (en) * 2004-12-21 2008-04-24 Choong-Il Yeh Method for Selecting Switched Beam Using Pilot Signal and System Thereof
CN105264788A (zh) * 2013-06-28 2016-01-20 英特尔公司 渐进式信道状态信息
CN110098856A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种天线装置及相关设备
CN110149126A (zh) * 2019-05-24 2019-08-20 熊军 一种3d-mimo系统的波束赋形方法及波束赋形装置
CN112217541A (zh) * 2019-07-12 2021-01-12 华为技术有限公司 波束配置方法和装置
CN112332893A (zh) * 2019-08-05 2021-02-05 中国移动通信有限公司研究院 一种天线的波束赋形方法及装置
CN112770394A (zh) * 2019-10-21 2021-05-07 大唐移动通信设备有限公司 一种波束调整方法、装置、基站及介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080095251A1 (en) * 2004-12-21 2008-04-24 Choong-Il Yeh Method for Selecting Switched Beam Using Pilot Signal and System Thereof
CN105264788A (zh) * 2013-06-28 2016-01-20 英特尔公司 渐进式信道状态信息
CN110098856A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种天线装置及相关设备
CN110149126A (zh) * 2019-05-24 2019-08-20 熊军 一种3d-mimo系统的波束赋形方法及波束赋形装置
CN112217541A (zh) * 2019-07-12 2021-01-12 华为技术有限公司 波束配置方法和装置
CN112332893A (zh) * 2019-08-05 2021-02-05 中国移动通信有限公司研究院 一种天线的波束赋形方法及装置
CN112770394A (zh) * 2019-10-21 2021-05-07 大唐移动通信设备有限公司 一种波束调整方法、装置、基站及介质

Also Published As

Publication number Publication date
CN115549730A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
TWI688225B (zh) 具有波束指示之波束管理方法及其裝置
Rebato et al. Study of realistic antenna patterns in 5G mmWave cellular scenarios
US10763941B2 (en) Method and apparatus for line-of-sight antenna array
CN111246494B (zh) Massive MIMO天线波束优化方法及装置
US10944453B2 (en) Object detection for beamforming configuration and coverage optimization
AU2008349583B2 (en) Method and arrangement for assisting in direction adjustment of a directional antenna
CN114026927B (zh) 一种角度定位的方法、装置以及设备
US20200186230A1 (en) Performing receive beamforming in a fifth generation millimeter wave system
US11689265B2 (en) Antenna system and method of operating an antenna system
US11888215B2 (en) Antenna system and method of operating an antenna system
US10879975B2 (en) Beamforming based on adjacent beams systems and methods
CN109698716A (zh) 一种智能天线系统的控制方法及系统
US11943010B2 (en) Composite beam pairing
CN105900493B (zh) 一种发射信号的方法、装置和系统
WO2020258995A1 (zh) 一种基于非独立组网nsa系统的波束管理方法和装置
WO2023273163A1 (zh) 最优波束的确定方法及装置
JP2020536449A (ja) リモート無線ヘッド、ビームフォーミング方法およびプログラム
CN113939017A (zh) 有效全向辐射功率控制方法、装置及存储介质
WO2023273168A1 (zh) 一种5G Massive MIMO波束管理方法和装置、存储介质及电子设备
CN113114308A (zh) 一种天线控制方法和电子设备
CN114650545A (zh) 一种波束参数的确定方法、装置及网络设备
US11664872B2 (en) Beam detection method and device, beam adjusting method and device, antenna module selection method and device, and computer readable storage media
US11469804B1 (en) Sectorized analog beam search system
WO2022134966A1 (zh) 一种天线装置、数据传输方法以及相关设备
KR102193752B1 (ko) 채널 용량 향상을 위한 하이브리드 빔포밍 시스템 기반의 빔 방사 각도 추정 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE