WO2022242346A1 - 空地同频系统干扰抑制方法、装置、电子设备和可读介质 - Google Patents

空地同频系统干扰抑制方法、装置、电子设备和可读介质 Download PDF

Info

Publication number
WO2022242346A1
WO2022242346A1 PCT/CN2022/085304 CN2022085304W WO2022242346A1 WO 2022242346 A1 WO2022242346 A1 WO 2022242346A1 CN 2022085304 W CN2022085304 W CN 2022085304W WO 2022242346 A1 WO2022242346 A1 WO 2022242346A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
interference
ris
signal
weight information
Prior art date
Application number
PCT/CN2022/085304
Other languages
English (en)
French (fr)
Inventor
李斌
吴枫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22803671.1A priority Critical patent/EP4344280A1/en
Publication of WO2022242346A1 publication Critical patent/WO2022242346A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B2001/1045Adjacent-channel interference

Definitions

  • the present disclosure relates to but not limited to the technical field of communication.
  • the disclosure provides an interference suppression method, device, electronic equipment and readable medium for an air-ground co-frequency system.
  • the present disclosure provides a method for suppressing interference of an air-ground co-frequency system, including: determining a base station set of a ground wireless communication system corresponding to a first base station of the ground-air broadband communication ATG system, and the second base station in the base station set and the second base station in the base station set
  • the first base stations interfere with each other; for at least one of the second base stations, determine the position of the reconfigurable intelligent reflector RIS device corresponding to the second base station, and determine the location of the interference signal incident on the RIS device
  • the angle of incidence of the incident beam according to the incident angle of the interference signal and the incident beam of the interference signal, determine the weight information of the reflected beam of the interference cancellation signal, so that the RIS device calculates the interference signal according to the weight information
  • the incident beam is reflected to form a reflected beam of the interference cancellation signal, so as to eliminate the interference signal.
  • the present disclosure also provides an interference suppression device for an air-ground co-frequency system, including a first processing module, a second processing module, and a third processing module, the first processing module is configured to determine the ground-air broadband communication ATG system
  • the base station set of the terrestrial wireless communication system corresponding to the first base station of the base station, the second base station in the base station set and the first base station interfere with each other
  • the second processing module is configured to, for at least one of the second base stations , determine the position of the reconfigurable intelligent reflector RIS device corresponding to the second base station, and determine the incident angle of the incident beam of the interference signal incident on the RIS device
  • the third processing module is configured to, according to the The interference signal and the incident angle of the incident beam of the interference signal, and determine the weight information of the reflected beam of the interference cancellation signal, so that the RIS device reflects the incident beam of the interference signal according to the weight information to form interference The reflected beam of the signal is canceled to cancel the interfering signal.
  • the present disclosure also provides an electronic device, including: one or more processors; a storage device, on which one or more programs are stored; when the one or more programs are stored by the one or more When the processor is executed, the one or more processors are made to implement the method for suppressing interference of the air-ground co-frequency system described herein.
  • the present disclosure also provides a computer-readable medium, on which a computer program is stored, wherein, when the program is executed by a processor, the method for suppressing interference of an air-ground co-frequency system described herein is implemented.
  • Fig. 1 is a schematic diagram of mutual interference between the ATG system and the ground wireless communication system
  • FIG. 2 is a schematic flow chart of an interference suppression method for an air-ground co-frequency system provided by the present disclosure
  • Fig. 3 is a schematic flow chart of determining the base station set of the terrestrial wireless communication system corresponding to the first base station of the ATG system provided by the present disclosure
  • FIG. 4 is a schematic flowchart of establishing a mapping relationship between a first base station identifier and a second base station identifier provided by the present disclosure
  • FIG. 5 is a schematic diagram of the frame structure of the ATG system and the frame structure of the ground NR system provided by the present disclosure
  • FIG. 6 is a schematic diagram of implementing interference suppression by using passive RIS equipment in the LTE system provided by the present disclosure
  • FIG. 7a is a schematic diagram of the implementation of interference suppression between the base station of the ATG system and the base station of the ground NR system by using an active RIS provided by the present disclosure
  • FIG. 7b is a schematic diagram of the implementation of the interference suppression of the base station of the ground NR system to the base station of the ATG system by using an active RIS provided by the present disclosure
  • FIG. 8 is a schematic structural diagram of an interference suppression device for an air-ground co-frequency system provided by the present disclosure.
  • FIG. 9 is a schematic structural diagram of an interference suppression device for an air-ground co-frequency system provided by the present disclosure.
  • Embodiments described herein may be described with reference to plan views and/or cross-sectional views by way of idealized schematic representations of the disclosure. Accordingly, the example illustrations may be modified according to manufacturing techniques and/or tolerances. Therefore, the embodiments are not limited to those shown in the drawings but include modifications of configurations formed based on manufacturing processes. Accordingly, the regions illustrated in the figures have schematic properties, and the shapes of the regions shown in the figures illustrate the specific shapes of the regions of the elements, but are not intended to be limiting.
  • an existing air-ground co-frequency system interference suppression scheme uses physical isolation to isolate the base station of the ATG system from the base station of the ground wireless communication system at a long distance.
  • the base station of the ATG system is located in a relatively remote area , there are problems of high site selection requirements and high construction costs for ATG system base stations.
  • Another existing interference suppression solution for air-ground co-frequency systems uses beam suppression to suppress signal transmission from base stations of the ATG system, but this will be at the cost of reducing the physical performance of the ATG system.
  • RIS Reconfigurable Intelligent Surface
  • the essence of RIS technology is to control the amplitude and/or phase of different components to reflect or transmit incident signals independently, so as to realize passive beamforming for enhancing or nulling signals in cooperation, and realize an intelligent and programmable wireless environment.
  • this disclosure introduces RIS equipment to reduce the wireless communication between the ATG system and the co-frequency ground. Mutual interference between systems, thereby improving system performance.
  • the ATG system and RIS equipment are jointly used to realize the interference suppression of the air-ground co-frequency communication system.
  • the present disclosure provides a method for suppressing interference of an air-ground co-frequency system.
  • the method is applied to a scenario where an ATG system and a terrestrial wireless communication system use the same spectrum resources.
  • the method for suppressing interference of an air-ground co-frequency system includes the following steps S11 to S13.
  • step S11 a base station set of the terrestrial wireless communication system corresponding to the first base station of the ATG system is determined, and the second base station in the base station set interferes with the first base station.
  • the cell coverage radius of the ATG system base station will be far greater than the cell coverage radius of the terrestrial wireless communication system base station, so generally there will be a plurality of terrestrial wireless communication system base stations near each ATG system base station, in this step, from an ATG system base station (ie, the first base station) selects a base station of the terrestrial wireless communication system (ie, the second base station) that interferes more with the base station of the ATG system from a plurality of base stations of the terrestrial wireless communication system corresponding to the base station of the ATG system, to form a base station set.
  • the base station set of the terrestrial wireless communication system with high interference can be determined according to the interference measurement method of the ATG system and the terrestrial wireless communication system, including but not limited to parameters such as measurement angle and time offset estimation. It should be noted that in an actual ATG system, there are many first base stations, and each first base station must go through the above steps to select its corresponding high-interference base station set of the same-frequency terrestrial wireless communication system. The number of base station sites is not necessarily the same.
  • step S12 for at least one second base station, determine the position of the RIS device corresponding to the second base station, and determine the incident angle of the incident beam of the interference signal incident on the RIS device.
  • At least one RIS device may be configured for each second base station.
  • the incident angle of the incident beam of the interference signal incident to the RIS device can be determined.
  • step S13 according to the incident angle of the interference signal and the incident beam of the interference signal, the weight information of the reflected beam of the interference cancellation signal is determined, so that the RIS device reflects the incident beam of the interference signal according to the weight information to form an interference cancellation signal of the reflected beam to cancel the interfering signal.
  • the weight information of the reflected beam of the interference cancellation signal may be determined based on principles such as minimizing interference.
  • the disclosure provides an interference suppression method for an air-ground co-frequency system.
  • the method includes: determining the base station set of the ground wireless communication system corresponding to the first base station of the ATG system, and the second base station in the base station set interferes with the first base station; for At least one of the second base stations determines the position of the reconfigurable intelligent reflector RIS device corresponding to the second base station, and determines the incident angle of the incident beam of the interference signal incident to the RIS device; according to the incident signal of the interference signal and the interference signal The incident angle of the beam determines the weight information of the reflected beam of the interference cancellation signal, so that the RIS device reflects the incident beam of the interference signal according to the weight information to form a reflected beam of the interference cancellation signal to eliminate the interference signal.
  • the disclosure reduces the site selection requirements and costs of the ATG base station, and does not affect the physical performance of the ATG system.
  • the RIS device can be an active device or a passive device.
  • the weight information of its reflected beam is variable, and correspondingly, the reflected beam is also variable;
  • the RIS device once the weight information of the reflected beam is determined, it will be written into the passive RIS device. The weight information cannot be changed, and accordingly, the reflected beam will not change.
  • the method when the RIS device is an active device, after determining the weight information of the reflected beam of the interference cancellation signal, the method further includes: sending the weight information to the RIS device, so that the active The RIS device can form the reflected beam of the interference cancellation signal according to the weight value information, so as to realize the interference suppression.
  • the interference cancellation signal can be adaptively adjusted by adjusting the weight information of the reflected beam, that is, according to the incident direction of the incident beam of different interference signals Adaptively adjust the transmit beam; if it is a passive RIS device, additional new RIS devices need to be added to generate new reflection beams for interference cancellation signals, that is, by deploying more RIS devices to ensure interference suppression in different directions.
  • the information of the second base station in the base station set may also be separately identified.
  • each RIS equipment determines the incident angle of the incident beam of the interference signal, determines the weight information of the reflected beam of the interference cancellation signal, and reflects the incident beam of the interference signal according to the weight information to form interference Eliminate reflected beams from the signal.
  • the determining the weight information of the reflected beam of the interference cancellation signal includes: calculating the weight information of the reflected beam of the interference cancellation signal by using a minimum interference-to-noise ratio algorithm.
  • the ATG system base station generally uses a large-scale multiple-in multiple-out (MIMO) antenna system.
  • MIMO antenna divides the space into multiple grids, and each grid corresponds to a group of antenna weights (expressed in matrix form ), representing different directions of incoming waves in space.
  • the first base station corresponding to the determined ground-air broadband communication ATG system includes the following steps S111 to S113.
  • Step S111 according to the adjacent cell interference and noise signals received by the first base station at each time within the preset time length and the antenna weights corresponding to each grid, calculate the interference of the uplink subframe of the first base station in each grid direction within the preset time length power.
  • the adjacent cell interference and noise signals received by the first base station at a certain moment within the preset time length are multiplied by the antenna weights corresponding to each grid to obtain the weighted interference of each grid at that moment data.
  • Power calculation is then performed on the weighted interference data of each grid at each moment within the preset time length to obtain the interference power of the uplink subframe of the first base station in each grid direction within the preset time length.
  • the received data is the interference and noise signal I(t) of the adjacent cell.
  • the weights of each group of antennas are multiplied by the received data of each antenna to obtain each
  • the received interference data weighted by the grid is then calculated for the power of the weighted received interference data of each grid within the preset time length to obtain the interference power of the uplink subframe of the first base station in each grid direction within the preset time length.
  • the interference power in each grid direction of the uplink subframe of the first base station within the preset time period can be calculated according to the following formula (1):
  • NI i is the interference power of the uplink subframe of the first base station in each grid direction within the preset time length
  • I(t) is the adjacent cell interference and noise signal received by the first base station at time t
  • Q i H is the grid
  • t is the moment within the preset duration
  • i is the identifier of the grid into which the MIMO antenna of the first base station divides the space.
  • the interference direction is determined according to the interference power of the uplink subframes of the first base station in each grid direction within the duration and a preset first threshold.
  • the interference power of the uplink subframe of the first base station in each grid direction within the time length is compared with a preset first threshold (ie, the power threshold value), and the interference power greater than the first threshold is determined
  • a preset first threshold ie, the power threshold value
  • the first threshold may be -100 dBm/RE.
  • step S113 according to the interference direction, the preset second threshold and the location of the first base station, a set of base stations of the terrestrial wireless communication system corresponding to the first base station is determined.
  • a terrestrial wireless communication system base station located in the interference direction and a second threshold away from the first base station is selected as the second base station, and a base station set of the terrestrial wireless communication system corresponding to the first base station is formed according to each second base station.
  • the determining the set of base stations of the terrestrial wireless communication system corresponding to the first base station of the ATG system includes: according to the first base station identifier and the second The mapping relationship between the base station identifiers determines the base station set of the terrestrial wireless communication system corresponding to the first base station of the ATG system.
  • the 5G NR terrestrial wireless communication system it is also possible not to use the method of calculating the interference power in each grid direction of the antenna to determine the high-interference base station of the terrestrial wireless communication system corresponding to the ATG system base station, but directly according to the ATG system base station
  • the mapping relationship with the NR terrestrial wireless communication system base station determines the high-interference base station of the terrestrial wireless communication system corresponding to the ATG system base station.
  • the step of establishing the mapping relationship may include steps S21 and S22.
  • step S21 the first base station identification reported by each second base station of the terrestrial wireless communication system is received. sent in case of a threshold.
  • the base stations of the NR system support the transmission and detection of RIM-RS (Remote Interference Management Reference Signal, remote base station interference management reference signal), so the first base station of the ATG system can detect the RIM-RS to obtain the ground with high interference A collection of base stations.
  • RIM-RS Remote Interference Management Reference Signal, remote base station interference management reference signal
  • the first base station periodically transmits the RIM-RS signal, which contains the identification information of the first base station, and the ground wireless communication system base stations around the first base station receive the RIM-RS signal accordingly, according to the RIM-RS signal
  • the size of the received power is compared with the preset power threshold (that is, the third threshold), and if it is greater than the third threshold, it is considered that the terrestrial wireless communication system base station and the first base station are mutually high-interference base stations, and the terrestrial wireless communication system base station reports the The identity of the first base station.
  • the preset power threshold that is, the third threshold
  • step S22 a mapping relationship between the first base station identifier and the second base station identifier is established, where the second base station identifier is the identifier of the second base station that sends the first base station identifier.
  • a mapping relationship between the identity of the first base station and the identity of the second base station reporting the identity of the first base station is established, and the second base station corresponding to the first base station is counted according to the mapping relationship to form a set of base stations .
  • the determining the position of the RIS device corresponding to the second base station includes: selecting the surrounding position of the second base station or the first base station, and using the selected position as the location corresponding to the second base station The location of the corresponding RIS device. That is to say, the RIS equipment is set near the ATG system base station (ie, the first base station), or the RIS equipment is set near the high-interference terrestrial wireless communication system base station (ie, the second base station), and the first base station, the second base station and the corresponding The RIS devices can be located on the same straight line or have an included angle with each other.
  • the position of the RIS device corresponding to the second base station is on the line-of-sight wireless transmission (Line of Sight, LOS) path between the first base station and the second base station superior.
  • the direction of the reflected beam of the interference cancellation signal may be opposite to the direction of the incident beam of the interference signal.
  • the interference signal includes a first interference signal from the first base station to the second base station and a second interference signal from the second base station to the first base station.
  • the interference cancellation signal includes a first interference cancellation signal from the first base station to the second base station, and a second interference cancellation signal from the second base station to the first base station.
  • the weight information includes first weight information of the first reflected beam of the first interference cancellation signal, and second weight information of the second reflected beam of the second interference cancellation signal.
  • the RIS device when the RIS device is an active device, in order to make the RIS device better reduce the interference suppression between the base station of the ATG system and the base station of the terrestrial wireless communication system, in some implementations, the RIS device can be configured according to the The wireless frame structure is used to determine the timing of the reflected beam of the interference cancellation signal.
  • the sending the weight information to the RIS device, so that the RIS device reflects the incident beam of the interference signal according to the weight information to form a reflected beam of the interference cancellation signal includes: sending the first weight information and the second weight information are sent to the RIS device, so that the RIS device reflects the incident beam of the first interference signal according to the first weight information when the ATG system is the downlink time slot and the terrestrial wireless communication system is the uplink time slot , forming the first reflected beam of the first interference cancellation signal, and, when the terrestrial wireless communication system is a downlink time slot and the ATG system is an uplink time slot, reflect the incident beam of the second interference signal according to the second weight information , forming a second reflection beam of the second interference cancellation signal.
  • the ATG system adopts a wireless frame structure with a period of 20 ms, and each grid in the figure represents a time slot with a time length of 0.5 ms, where D/S/U Indicates downlink, special and uplink time slots respectively.
  • the terrestrial NR system adopts a 2.5ms double-period frame structure. It can be seen that even if the two systems are synchronized, there is still the maximum interference scenario where the downlink base station of one system interferes with the uplink reception of another system.
  • the RIS device when the ATG system is a downlink time slot and the terrestrial NR system is an uplink time slot, enables the first weight information to form the first reflected beam of the first interference cancellation signal; when the terrestrial NR system is a downlink time slot and The ATG system enables the second weight information at the moment of the uplink time slot, and forms the second reflection beam of the second interference cancellation signal.
  • FIG. 6 is a schematic diagram of interference suppression using passive RIS equipment in the LTE system.
  • the ATG system and the terrestrial LTE system are both TDD ((Time Division Duplexing, Time Division Duplexing) systems, sharing the same 2.6G frequency band , because the cell coverage distance is different, there is a maximum interference scenario where the downlink base station transmission of one system interferes with the uplink reception of the other system between the two wireless systems. Based on this situation, a passive RIS device is introduced.
  • TDD Time Division Duplexing, Time Division Duplexing
  • Step 1 For each ATG system base station (ATG eNB), select the base station set of the LTE system that generates high interference with it one by one.
  • the cell coverage radius of the ATG system base station is much larger than the cell coverage radius of the LTE system base station, so generally every There are multiple LTE system base stations near an ATG system base station.
  • the selection method in this embodiment is as follows: the number of MIMO antennas of the ATG eNB is 64, and the space can be divided into 32 grids.
  • Step 2 For each high-interference ground base station eNB1, eNB2, eNB3, and eNB4 selected in the previous step, place a RIS device respectively.
  • the RIS device is placed on the LOS path between the ATG eNB and the second base station, eNB1, eNB2
  • the locations of , eNB3 and eNB4 are shown in FIG. 6 .
  • the incident angle of the incident beam of the interference signal is also determined according to the location of the RIS device, the location of the ATG eNB, and the location of the second base station.
  • Step 3 According to the position of each RIS device and the incident angle of the interference signal and its incident beam, the weight of the passive RIS device only needs to meet the reflection of the reflected beam along the incident direction of the incident beam, thus determining the interference cancellation signal The weight information of the reflected beam.
  • the fixed reflection beam of the RIS equipment is designed to be perpendicular to the RIS equipment panel, and the resulting reflection effect is shown in Figure 6.
  • the dotted line is the incident beam of the interference signal, and the dotted line is the reflection beam of the interference cancellation signal.
  • Step 4 Once the RIS device receives the incident beam of the interference signal, it forms a reflected beam of the interference cancellation signal according to the weight information, and emits the reflected beam according to the incident direction of the incident beam.
  • Figure 7a-7b is a schematic diagram of using active RIS equipment to achieve interference suppression between the ATG system and the terrestrial NR system.
  • Both the ATG system and the terrestrial NR system are TDD systems and share the same 4.9G frequency band.
  • the coverage distances of the two communication systems are different.
  • Different wireless frame structures for example, the wireless frame structure shown in FIG. 5 may be used. It can be seen that even if the two systems are synchronized, there is still a maximum interference scenario where the downlink base station transmission of one system interferes with the uplink reception of the other system. Based on this situation, an active RIS device is introduced.
  • the terrestrial NR system base station gNB supports the transmission and detection of RIM-RS signals, so the set of terrestrial base stations that cause high interference can be obtained by transmitting the RIM-RS signal by the ATG system base station gNB.
  • the specific method is that ATG gNB periodically transmits RIM-RS signal, which contains the ID of ATG gNB, and the surrounding terrestrial NR system base station gNB receives the corresponding RIM-RS signal, according to the size of its received power and the preset power Threshold (that is, the third threshold) is compared, if it is greater than the power threshold, it can be known that it and the ATG gNB are mutually high-interference base stations (that is, the ground NR system base station gNB is the second base station), and the ground NR system base station gNB reports the ATG gNB ID to establish the mapping relationship between the ID of the ATG gNB (i.e.
  • the high-interference base station of the terrestrial NR system corresponding to each ATG gNB can be known gather.
  • an ATG gNB is taken as an example, and gNB1, gNB2, and gNB3 are selected as their corresponding high-interference ground base stations (second base stations) to form a ground NR including gNB1, gNB2, and gNB3.
  • Step 2 for each high-interference ground base station gNB1, gNB2, and gNB3 selected in the previous step, place a RIS device respectively, as shown in Figure 7a, the ATG gNB, each RIS device and its corresponding gNB are not set in the same straight line superior.
  • the incident angle of the incident beam of the interference signal is also determined according to the location of the RIS equipment, the location of the ATG eNB, and the location of the ground base station with high interference.
  • an additional intelligent reflection device RIS4 can be placed to reflect the interference signal, because the The interference signal is an effective signal for the terrestrial NR system.
  • the interference signal is an effective signal for the terrestrial NR system.
  • Step 3 according to the interference signal and the incident angle of the incident beam of the interference signal, using a null trap algorithm including but not limited to the minimum interference-to-noise ratio to determine the weight information of the reflected beam of the interference cancellation signal.
  • a null trap algorithm including but not limited to the minimum interference-to-noise ratio to determine the weight information of the reflected beam of the interference cancellation signal.
  • the weight generated by each RIS device is wherein, the dotted line is the incident beam of the interference signal from the gNB to the ATG gNB, and the dotted line is the reflected beam of the interference cancellation signal generated by the RIS device.
  • Step 4 After sending the weight information to the RIS device, each RIS device enables its weight information when the ATG system is a downlink time slot and the terrestrial NR system is an uplink time slot Form the reflected beams of the respective interference cancellation signals, and when the ground NR system is the downlink time slot and the ATG system is the uplink time slot, each RIS device enables its weight information Outside the above time, the RIS device may not enable the weight information, that is, not reflect the beam, so as to achieve the purpose of energy saving.
  • the weight information and whether to enable the weight information can be transmitted by the ATG system through a transmission link (such as WIFI) installed on the RIS device, or can be obtained by a processing module configured by the RIS.
  • a transmission link such as WIFI
  • the disclosure suppresses mutual interference between the ATG system and the terrestrial wireless communication system by introducing RIS equipment.
  • RIS equipment can be introduced into the existing ATG system, and by optimizing the selection of the placement position of the RIS equipment and the weight information of the reflected beam, the mutual interference between the two wireless systems in the air and the ground can be reduced, thereby further improving the respective systems performance goals.
  • this disclosure also provides an interference suppression device for air-ground co-frequency system. As shown in FIG. processing module 103.
  • the first processing module 101 is configured to determine a base station set of the terrestrial wireless communication system corresponding to the first base station of the ground-air broadband communication ATG system, and a second base station in the base station set interferes with the first base station.
  • the second processing module 102 is configured to, for at least one of the second base stations, determine the position of the reconfigurable intelligent reflector RIS device corresponding to the second base station, and determine the incidence of the interference signal incident on the RIS device The angle of incidence of the beam.
  • the third processing module 103 is configured to, according to the interference signal and the incident angle of the incident beam of the interference signal, determine the weight information of the reflected beam of the interference cancellation signal, so that the RIS device performs The incident beam of the interference signal is reflected to form a reflected beam of the interference cancellation signal, so as to cancel the interference signal.
  • the RIS device is an active device or a passive device.
  • the third processing module 103 is further configured to determine the interference cancellation signal After the weight information of the reflected beam, the weight information is sent to the RIS device.
  • the third processing module 103 is configured to calculate the weight information of the reflected beam of the interference cancellation signal by using a minimum interference to noise ratio algorithm.
  • the terrestrial wireless communication system is a new air interface NR communication system or a long-term evolution LTE communication system
  • the antenna of the first base station divides the space into multiple grids, each of which corresponds to a Group antenna weights
  • the first processing module 101 is configured to calculate the second antenna weight within the preset time length according to the adjacent cell interference and noise signals received by the first base station at each time within the preset time length and the antenna weights corresponding to each grid.
  • the interference power of the uplink subframe of a base station in each grid direction determine the interference direction according to the interference power of the uplink subframe of the first base station in each grid direction within the time length and the preset first threshold; Determine the base station set of the terrestrial wireless communication system corresponding to the first base station based on the interference direction, the preset second threshold and the location of the first base station.
  • the terrestrial wireless communication system is a new air interface NR communication system
  • the first processing module 101 is configured to, according to the mapping relationship between the first base station identifier and the second base station identifier, determine the ground-air broadband communication A set of base stations of the terrestrial wireless communication system corresponding to the first base station of the ATG system.
  • the apparatus for suppressing interference of an air-ground co-frequency system further includes a receiving module 104 and a mapping relationship establishing module 105 .
  • the receiving module 104 is configured to receive a first base station identifier reported by each second base station of the terrestrial wireless communication system, where the first base station identifier is the remote base station identifier sent by the first base station when the second base station receives the first base station.
  • the interference management reference signal RIM-RS is sent when the received power of the RIM-RS is greater than the third threshold.
  • the mapping relationship establishing module 105 is configured to establish a mapping relationship between the first base station identifier and the second base station identifier, where the second base station identifier is the identifier of the second base station that sends the first base station identifier.
  • the second processing module 102 is configured to select a surrounding location of the second base station or the first base station, and use the selected location as the location of the RIS device corresponding to the second base station.
  • the RIS device corresponding to the second base station is located on a line-of-sight transmission path between the first base station and the second base station.
  • the interference signal includes a first interference signal from the first base station to the second base station and a second interference signal from the second base station to the first base station;
  • the interference cancellation signal including a first interference cancellation signal from the first base station to the second base station, and a second interference cancellation signal from the second base station to the first base station;
  • the weight information includes the first interference cancellation signal The first weight information of the first reflection beam of the cancellation signal, and the second weight information of the second reflection beam of the second interference cancellation signal.
  • the RIS device is an active device
  • the third processing module 103 is configured to send the first weight information and the second weight information to the RIS device, so that the RIS device
  • the ATG system is a downlink time slot and the terrestrial wireless communication system is an uplink time slot
  • reflect the incident beam of the first interference signal according to the first weight information to form the first interference Eliminate the first reflected beam of the signal
  • the terrestrial wireless communication system is a downlink time slot and the ATG system is an uplink time slot
  • the second weight value information the incidence of the second interference signal
  • the beam is reflected to form a second reflected beam of the second interference cancellation signal.
  • the present disclosure also provides an electronic device, which includes: one or more processors and a storage device; wherein, one or more programs are stored on the storage device, when the one or more programs are used by the one or more When the two processors are executed, the one or more processors mentioned above realize the method for suppressing the interference of the space-ground co-frequency system as provided in the foregoing embodiments.
  • the present disclosure also provides a computer-readable medium, on which a computer program is stored, wherein, when the computer program is executed by a processor, the method for suppressing interference of an air-ground co-frequency system as provided in the foregoing embodiments is implemented.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种空地同频系统干扰抑制方法,所述方法包括:确定ATG系统的第一基站对应的地面无线通信系统的基站集合,基站集合内的第二基站与第一基站相互产生干扰;针对至少一个所述第二基站,确定与第二基站对应的RIS设备的位置,并确定入射至RIS设备的干扰信号的入射波束的入射角度;根据干扰信号和干扰信号的入射波束的入射角度,确定干扰消除信号的反射波束的权值信息,以使RIS设备根据权值信息对干扰信号的入射波束进行反射,形成干扰消除信号的反射波束,以消除干扰信号。本公开还提供一种空地同频系统干扰抑制装置、电子设备和可读介质。

Description

空地同频系统干扰抑制方法、装置、电子设备和可读介质
相关申请的交叉引用
本申请要求于2021年5月19日提交给中国专利局的第202110547060.5号专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开涉及但不限于通信技术领域。
背景技术
随着无线通信技术高速发展,频谱资源变的越发宝贵,各国政府对频谱资源的授权使用管理越来越严格,频谱资源的授权费用等也日益高昂,在全球很多地区,无线频谱资源相对稀缺且价格昂贵,很多中小运营商无法获得足够多优质且连续的频谱资源,因此加大了对无线通信系统,尤其是一些专用网络(例如面对海洋、高速铁路以及地对空无线通信网络)建设的难度,网络容量也因此受到限制。
在任何地点任何时刻都可以接入互联网已经成了人们最大的需求,相比在地面上广大的网络覆盖,在飞机上的乘客很难享受到如汽车、火车上类似的高速互联网连接体验,这主要是受限于对空覆盖无线网络的缺失,针对飞机这种超高速运动(时速在800-1200Km/h)的终端类型,业界已经研发了基于3G、4G、5G通信系统的ATG(air to ground,地空宽带通信)系统,并且在中国、欧盟、美国等国家和地区都有商用部署和实验飞行。
发明内容
本公开提供一种空地同频系统干扰抑制方法、装置、电子设备和可读介质。
第一方面,本公开提供一种空地同频系统干扰抑制方法,包括:确定地空宽带通信ATG系统的第一基站对应的地面无线通信系统的 基站集合,所述基站集合内的第二基站与所述第一基站相互产生干扰;针对至少一个所述第二基站,确定与所述第二基站对应的可重构智能反射面RIS设备的位置,并确定入射至所述RIS设备的干扰信号的入射波束的入射角度;根据所述干扰信号和所述干扰信号的入射波束的入射角度,确定干扰消除信号的反射波束的权值信息,以使所述RIS设备根据所述权值信息对干扰信号的入射波束进行反射,形成干扰消除信号的反射波束,以消除所述干扰信号。
又一方面,本公开还提供一种空地同频系统干扰抑制装置,包括第一处理模块、第二处理模块和第三处理模块,所述第一处理模块配置为,确定地空宽带通信ATG系统的第一基站对应的地面无线通信系统的基站集合,所述基站集合内的第二基站与所述第一基站相互产生干扰;所述第二处理模块配置为,针对至少一个所述第二基站,确定与所述第二基站对应的可重构智能反射面RIS设备的位置,并确定入射至所述RIS设备的干扰信号的入射波束的入射角度;所述第三处理模块配置为,根据所述干扰信号和所述干扰信号的入射波束的入射角度,确定干扰消除信号的反射波束的权值信息,以使所述RIS设备根据所述权值信息对干扰信号的入射波束进行反射,形成干扰消除信号的反射波束,以消除所述干扰信号。
又一方面,本公开还提供一种电子设备,包括:一个或多个处理器;存储装置,其上存储有一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现本文所述的空地同频系统干扰抑制方法。
又一方面,本公开还提供一种计算机可读介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现本文所述的空地同频系统干扰抑制方法。
附图说明
图1为ATG系统与地面无线通信系统相互干扰的示意图;
图2为本公开提供的空地同频系统干扰抑制方法流程示意图;
图3为本公开提供的确定ATG系统的第一基站对应的地面无线 通信系统的基站集合的流程示意图;
图4为本公开提供的建立第一基站标识与第二基站标识之间映射关系的流程示意图;
图5为本公开提供的ATG系统帧结构和地面NR系统帧结构的示意图;
图6为本公开提供的LTE系统中利用无源RIS设备实现干扰抑制的示意图;
图7a为本公开提供的利用有源RIS实现ATG系统基站对地面NR系统基站的干扰抑制的示意图;
图7b为本公开提供的利用有源RIS实现地面NR系统基站对ATG系统基站的干扰抑制的示意图;
图8为本公开提供的空地同频系统干扰抑制装置的结构示意图;
图9为本公开提供的空地同频系统干扰抑制装置的结构示意图。
具体实施方式
在下文中将参考附图更充分地描述示例实施方式,但是所述示例实施方式可以以不同形式来体现且不应当被解释为限于本文阐述的实施方式。反之,提供这些实施方式的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施方式,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其他特征、整体、步骤、操作、元件、组件和/或其群组。
本文所述实施方式可借助本公开的理想示意图而参考平面图和/或截面图进行描述。因此,可根据制造技术和/或容限来修改示例图示。因此,实施方式不限于附图中所示的实施方式,而是包括基于制 造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不旨在是限制性的。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
因为频率资源对于运营商来说非常珍贵,无法给ATG系统等行业应用分配独立的频率资源,所以在共享频谱上建立与地面无线通信系统使用相同频谱的ATG系统是各方可以接受的综合解决方案。如图1所示,现有的ATG系统等大多都是与地面4G、5G通信系统复用频率,这样就无法避免系统间干扰问题,对各自系统性能都会造成恶化,也需要进一步优化现有的干扰规避策略。
目前,现有的一种空地同频系统干扰抑制方案,是采用物理隔离的方式,将ATG系统基站与地面无线通信系统基站进行远距离隔离,通常会将ATG系统基站选址在较为偏远的地区,存在ATG系统基站选址要求高、构建成本高的问题。另一种现有的空地同频系统干扰抑制方案,采用波束抑制的方式,抑制ATG系统基站的信号发射,但是这样会以降低ATG系统的物理性能为代价。
可重构智能反射面(Reconfigable Intelligent Surface,RIS)技术是一种革命性新技术,通过在平面上集成大量低成本的无源或者有源的反射元件,使其具有智能改变无线传播环境的能力,从而显著提升无线通信网络的性能。RIS技术的实质是控制不同元件的幅度和/或相位来独立的反射或者透射入射信号,从而协同实现用于增强或者零陷信号的无源波束形成,实现智能可编程的无线环境。
为了抑制空地同频系统干扰,并解决ATG系统基站选址要求高及成本高的问题以及ATG系统物理性能受影响的问题,本公开通过引入RIS设备,用来降低ATG系统与同频地面无线通信系统之间的相互干扰,从而提升系统性能。本公开将ATG系统与RIS设备联合 使用,实现空地同频通信系统的干扰抑制,通过部署RIS设备,并通过优化选择RIS设备的放置位置及反射波束的权值信息,达到降低空地两个无线系统的相互干扰,从而进一步提升各自系统性能。
本公开提供一种空地同频系统干扰抑制方法,所述方法应用于ATG系统与地面无线通信系统采用相同频谱资源的场景,如图2所示,所述空地同频系统干扰抑制方法包括以下步骤S11至S13。
在步骤S11,确定ATG系统的第一基站对应的地面无线通信系统的基站集合,基站集合内的第二基站与第一基站相互产生干扰。
通常ATG系统基站的小区覆盖半径要远远大于地面无线通信系统基站的小区覆盖半径,因此一般每个ATG系统基站附近会有多个地面无线通信系统基站,在本步骤中,从一个ATG系统基站(即第一基站)对应的多个地面无线通信系统基站中选择出对该ATG系统基站干扰较大的地面无线通信系统基站(即第二基站),形成基站集合。
在本步骤中,针对ATG系统中的每个第一基站,确定其对应的高干扰地面通信基站的集合,基站集合包括至少一个第二基站。在一些实施方式中,可以根据ATG系统和地面无线通信系统的干扰测量方法,包括但不限于测量角度、时偏估计等参数,确定高干扰的地面无线通信系统的基站集合。需要说明的是,在实际ATG系统中,第一基站的数量很多,每一个第一基站都要通过上述步骤选择其所对应的同频地面无线通信系统的高干扰基站集合,各基站集合中的基站站点数目不一定相同。
在步骤S12,针对至少一个第二基站,确定与第二基站对应的RIS设备的位置,并确定入射至RIS设备的干扰信号的入射波束的入射角度。
在一些实施方式中,可以为每个第二基站配置至少一个RIS设备。在本步骤中,可以根据ATG系统的第一基站的位置、地面无线通信系统的第二基站的位置和RIS设备的位置,确定入射至RIS设备的干扰信号的入射波束的入射角度。
在步骤S13,根据干扰信号和干扰信号的入射波束的入射角度, 确定干扰消除信号的反射波束的权值信息,以使RIS设备根据权值信息对干扰信号的入射波束进行反射,形成干扰消除信号的反射波束,以消除所述干扰信号。
在本步骤中,可以基于最小化干扰等原则确定干扰消除信号的反射波束的权值信息。
本公开提供的空地同频系统干扰抑制方法,所述方法包括:确定ATG系统的第一基站对应的地面无线通信系统的基站集合,基站集合内的第二基站与第一基站相互产生干扰;针对至少一个所述第二基站,确定与第二基站对应的可重构智能反射面RIS设备的位置,并确定入射至RIS设备的干扰信号的入射波束的入射角度;根据干扰信号和干扰信号的入射波束的入射角度,确定干扰消除信号的反射波束的权值信息,以使RIS设备根据权值信息对干扰信号的入射波束进行反射,形成干扰消除信号的反射波束,以消除干扰信号。本公开在实现空地同频系统干扰抑制的前提下,降低了ATG基站选址要求及成本,且对ATG系统物理性能不会造成影响。
本公开中,RIS设备可以是有源设备,也可以是无源设备,对于有源的RIS设备而言,其反射波束的权值信息可变,相应的,反射波束也可变;对于无源的RIS设备而言,其反射波束的权值信息一旦确定就会写入该无源的RIS设备中,该权值信息不能更改,相应的,反射波束不会发生变化。
在一些实施方式中,当RIS设备为有源设备时,在确定干扰消除信号的反射波束的权值信息之后,所述方法还包括:将权值信息发送给所述RIS设备,这样,有源的RIS设备可以根据该权值信息形成干扰消除信号的反射波束,实现干扰抑制。
当干扰信号的入射波束的入射方向发生变化时,如果是有源的RIS设备,可以通过调整反射波束的权值信息对干扰消除信号进行适应性调整,即根据不同的干扰信号入射波束的入射方向自适应调整发射波束;如果是无源的RIS设备,则需要额外增加新的RIS设备产生新的干扰消除信号的反射波束,即通过部署更多的RIS设备来确保不同方向的干扰抑制。
需要说明的是,在RIS设备具有较强性能的情况下,在一些实施方式中,在确定与第二基站对应的RIS设备的位置之后,也可以分别将基站集合内的第二基站的信息别发送给相应的RIS设备,由各RIS设备确定干扰信号的入射波束的入射角度,确定干扰消除信号的反射波束的权值信息,并根据该权值信息对干扰信号的入射波束进行反射,形成干扰消除信号的反射波束。
在一些实施方式中,所述确定干扰消除信号的反射波束的权值信息(即步骤S13),包括:采用最小干噪比算法计算干扰消除信号的反射波束的权值信息。
ATG系统基站一般使用大规模多入多出(multiple-in multiple-out,MIMO)天线系统,MIMO天线将空间划分为多个栅格,每个栅格分别对应一组天线权重(以矩阵方式表示),表示空间的不同来波方向。
当地面无线通信系统为NR(New Radio,新空口)通信系统或LTE(Long Term Evolution,长期演进)通信系统时,如图3所示,所述确定地空宽带通信ATG系统的第一基站对应的地面无线通信系统的基站集合(即步骤S11),包括以下步骤S111至S113。
步骤S111,根据预设时长内各时刻第一基站接收到的邻区干扰和噪声信号和各栅格对应的天线权重,计算所述时长内第一基站的上行子帧在各栅格方向的干扰功率。
在本步骤中,将第一基站在预设时长内某一时刻接收到的邻区干扰和噪声信号分别与各栅格对应的天线权重相乘,分别得到该时刻的各栅格加权后的干扰数据。再对预设时长内各时刻下各栅格加权后的干扰数据进行功率计算,得到预设时长内第一基站的上行子帧在各栅格方向的干扰功率。
在若干个上行子帧上不进行本小区数据调度,接收到的数据都是邻区干扰和噪声信号I(t),此时分别用各组天线权重与各天线的接收数据相乘,得到各栅格加权后的接收干扰数据,再对预设时长内各栅格加权后的接收干扰数据进行功率计算,得到设时长内第一基站的上行子帧在各栅格方向的干扰功率。
在一些实施方式中,可以根据以下公式(1)计算预设时长内第一基站的上行子帧在各栅格方向的干扰功率:
Figure PCTCN2022085304-appb-000001
其中,NI i为预设时长内第一基站的上行子帧在各栅格方向的干扰功率,I(t)为t时刻第一基站接收到的邻区干扰和噪声信号,Q i H为栅格i对应的天线权重的转置矩阵,t为预设时长内的时刻,i为第一基站的MIMO天线将空间划分的栅格的标识。
在步骤S112,根据所述时长内第一基站的上行子帧在各栅格方向的干扰功率和预设的第一阈值确定干扰方向。
在本步骤中,将所述时长内第一基站的上行子帧在各栅格方向的干扰功率与预设的第一阈值(即功率门限值)相比较,确定大于第一阈值的干扰功率所对应的栅格方向,作为高干扰的地面无线通信系统的基站集合的方向,这些方向即为干扰方向。
在一些实施方式中,第一阈值可以为-100dBm/RE。
在步骤S113,根据干扰方向、预设的第二阈值和第一基站的位置,确定第一基站对应的地面无线通信系统的基站集合。
在本步骤中,选择位于干扰方向上,距离第一基站第二阈值的地面无线通信系统基站作为第二基站,并根据各第二基站形成该第一基站对应的地面无线通信系统的基站集合。
在一些实施方式中,当地面无线通信系统为NR通信系统时,所述确定ATG系统的第一基站对应的地面无线通信系统的基站集合(即步骤S11)包括:根据第一基站标识与第二基站标识之间的映射关系,确定ATG系统的第一基站对应的地面无线通信系统的基站集合。也就是说,针对5G的NR地面无线通信系统,也可以不采用计算天线各栅格方向的干扰功率的方式确定ATG系统基站对应的地面无线通信系统的高干扰基站,而是直接根据ATG系统基站与NR地面无线通信系统基站的映射关系确定ATG系统基站对应的地面无线通信系统的高干扰基站。
在一些实施方式中,如图4所示,建立所述映射关系的步骤可以包括步骤S21和S22。
在步骤S21,接收地面无线通信系统的各第二基站上报的第一基站标识,第一基站标识是第二基站在接收到第一基站发送的RIM-RS且RIM-RS的接收功率大于第三阈值的情况下发送的。
NR系统基站都支持RIM-RS(Remote Interference Management Reference Signal,远端基站干扰管理参考信号)的发射和检测,因此ATG系统的第一基站可以通过检测RIM-RS,获取对其产生高干扰的地面基站的集合。
在本步骤中,第一基站周期性的发射RIM-RS信号,其中包含第一基站的标识信息,第一基站周围的地面无线通信系统基站相应接收到RIM-RS信号,根据该RIM-RS信号接收功率的大小与预设功率门限(即第三阈值)比较,若大于第三阈值,则认为该地面无线通信系统基站与该第一基站互为高干扰基站,该地面无线通信系统基站上报该第一基站的标识。
在步骤S22,建立第一基站标识与第二基站标识之间的映射关系,第二基站标识为发送第一基站标识的第二基站的标识。
在本步骤中,建立第一基站标识与上报该第一基站标识的第二基站的标识之间的映射关系,并根据所述映射关系统计该第一基站对应的第二基站,以形成基站集合。
在一些实施方式中,所述确定与第二基站对应的RIS设备的位置(即步骤S12),包括:选择第二基站或第一基站的周边位置,并将选择出的位置作为与第二基站对应的RIS设备的位置。也就是说,在ATG系统基站(即第一基站)附近设置RIS设备,或者,在高干扰的地面无线通信系统基站(即第二基站)附近设置RIS设备,第一基站、第二基站和相应的RIS设备可以位于同一直线上,也可以相互具有夹角。
为了实现更优的干扰抑制效果,在一些实施方式中,与第二基站对应的RIS设备的位置在第一基站与该第二基站之间的视距无线传输(Line of Sight,LOS))路径上。相应的,干扰消除信号的反射波束的方向可以与干扰信号的入射波束的方向相反。
干扰信号包括第一基站对第二基站的第一干扰信号和第二基站 对第一基站的第二干扰信号。干扰消除信号包括第一基站对第二基站的第一干扰消除信号,以及,第二基站对第一基站的第二干扰消除信号。权值信息包括第一干扰消除信号的第一反射波束的第一权值信息,以及,第二干扰消除信号的第二反射波束的第二权值信息。
当RIS设备为有源设备时,为了使RIS设备更好的降低ATG系统基站和地面无线通信系统基站间的干扰抑制,在一些实施方式中,可以使RIS设备根据ATG系统和地面无线通信系统的无线帧结构来确定其干扰消除信号的反射波束的形成时机。
在一些实施方式中,所述将权值信息发送给RIS设备,以使RIS设备根据权值信息对干扰信号的入射波束进行反射,形成干扰消除信号的反射波束,包括:将第一权值信息和第二权值信息发送给RIS设备,以使RIS设备在ATG系统为下行时隙且地面无线通信系统为上行时隙的时刻,根据第一权值信息对第一干扰信号的入射波束进行反射,形成第一干扰消除信号的第一反射波束,以及,在地面无线通信系统为下行时隙且ATG系统为上行时隙的时刻,根据第二权值信息对第二干扰信号的入射波束进行反射,形成第二干扰消除信号的第二反射波束。
以地面无线通信系统为NR系统为例,如图5所示,ATG系统采用20ms周期的无线帧结构,图中的每一格都表示时间长度为0.5ms的时隙,其中D/S/U分别表示下行、特殊和上行时隙。地面NR系统采用2.5ms双周期的帧结构,可以看到即使两个系统采用同步的方式,依然存在某个系统下行基站发射干扰另外系统的上行接收的最大干扰场景,基于此情况,引入有源RIS设备,在ATG系统为下行时隙且地面NR系统为上行时隙的时刻,使能第一权值信息,形成第一干扰消除信号的第一反射波束;在地面NR系统为下行时隙且ATG系统为上行时隙的时刻,使能第二权值信息,形成第二干扰消除信号的第二反射波束。
为清楚说明本公开的方案,以下结合图6和图7a-7b,分别以LTE系统中利用无源RIS设备实现干扰抑制的实例和利用有源RIS设备实现ATG系统与地面NR系统干扰抑制的实例为例,对本公开 的空地同频系统干扰抑制方法进行详细说明。
图6为LTE系统中利用无源RIS设备实现干扰抑制的示意图,如图6所示,ATG系统和地面LTE系统都是TDD((Time Division Duplexing,时分双工)制式,共享相同的2.6G频段,因为小区覆盖距离不同,两个无线系统间都存在某个系统的下行基站发射干扰另外系统的上行接收的最大干扰场景,基于此情况,引入无源的RIS设备。
步骤1、首先对每个ATG系统基站(ATG eNB)逐一选择与其相互产生高干扰的LTE系统的基站集合,通常ATG系统基站的小区覆盖半径要远远大LTE系统基站的小区覆盖半径,所以一般每个ATG系统基站附近会有多个LTE系统基站,这里需要从中选择出对其干扰较大的LTE系统基站,形成基站集合。本实施方式中的选择方法如下:ATG eNB的MIMO天线数目为64根,可将空间分为32个栅格,这些栅格表示空间的不同来波方向(垂直分为4组,水平分为8组),并分别对应32组天线权重:Q i={Q 1,Q 2,…,Q 32},i=1,2,…,32。根据公式(1)计算预设时长内第一基站的上行子帧在各栅格方向的干扰功率NI i,并将干扰功率大于-100dBm/RE的栅格方向确定为干扰方向,干扰方向为图6所示的4个方向,选择位于上述4个干扰方向上,距离第一基站ATG eNB第二阈值的LTE系统基站eNB1、eNB2、eNB3、eNB4作为高干扰的地面基站(第二基站),并形成包括eNB1、eNB2、eNB3、eNB4的该ATG eNB对应的LTE系统的基站集合。
步骤2、针对上一步中选择的每个高干扰的地面基站eNB1、eNB2、eNB3、eNB4,分别放置一个RIS设备,RIS设备放置的位置在ATG eNB和第二基站的LOS路径上,eNB1、eNB2、eNB3、eNB4的位置如图6所示。各RIS设备位置确定之后,干扰信号的入射波束的入射角度也就根据RIS设备的位置、ATG eNB的位置和第二基站的位置确定下来。
步骤3、根据各RIS设备放置的位置和干扰信号及其入射波束的入射角度,无源RIS设备的权值只要满足反射波束沿入射波束的入射方向反射即可,由此确定出干扰消除信号的反射波束的权值信息。 将RIS设备固定反射波束的设计为垂直于RIS设备面板,产生的反射效果如图6中所示,虚线为干扰信号的入射波束,点状线为干扰消除信号的反射波束。
步骤4、RIS设备一旦接收到干扰信号的入射波束,就根据权值信息形成干扰消除信号的反射波束,并按照入射波束的入射方向出射反射波束。
通过上述无源RIS设备的引入和部署,ATG系统与地面LTE系统间的干扰被明显抑制,两个系统的性能都得到进一步的提高。
图7a-7b为利用有源RIS设备实现ATG系统与地面NR系统干扰抑制的示意图,ATG系统和地面NR系统都是TDD制式,共享相同的4.9G频段,两个通信系统小区覆盖距离不同,采用不同的无线帧结构,例如可以采用图5所示的无线帧结构。可以看到即使两个系统采用同步的方式,依然存在某个系统下行基站发射干扰另外系统的上行接收的最大干扰场景,基于此情况,引入有源的RIS设备。
步骤1,地面NR系统基站gNB支持RIM-RS信号的发射和检测,因此可以通过由ATG系统基站gNB发射RIM-RS信号获取对其产生高干扰的地面基站的集合。具体做法是,ATG gNB周期性的发射RIM-RS信号,其中包含ATG gNB的ID,其周围的地面NR系统基站gNB接收到对应的RIM-RS信号,根据其接收功率的大小与预设的功率门限(即第三阈值)比较,若大于功率门限,则可获知其与该ATG gNB互为高干扰基站(即该地面NR系统基站gNB为第二基站),地面NR系统基站gNB上报该ATG gNB的ID,以建立ATG gNB的ID(即第一基站标识)与gNB ID(即第二基站标识)之间的映射关系,经过统计即可知道每个ATG gNB对应的地面NR系统的高干扰基站集合。如图7a所示,本实施方式中以某个ATG gNB为例,选择出gNB1、gNB2、gNB3作为其对应的高干扰的地面基站(第二基站),形成包括gNB1、gNB2、gNB3的地面NR系统的基站集合。
步骤2,针对上一步中选择的每个高干扰的地面基站gNB1、gNB2、gNB3,分别放置一个RIS设备,如图7a所示,ATG gNB、各RIS设备及其相应的gNB未设置在同一直线上。RIS设备位置确 定之后,干扰信号的入射波束的入射角度也就根据RIS设备的位置、ATG eNB的位置和高干扰的地面基站的位置确定下来。
如图7b所示,对于地面NR系统基站下行发射干扰ATG基站上行接收的情况,为了实现更优的干扰抑制,对于gNB3而言,还可以通过额外放置智能反射设备RIS4来反射干扰信号,因为该干扰信号对于地面NR系统来说是有效的信号,通过反射该干扰信号可以增强所覆盖区域的NR系统性能,而原有的RIS3设备用来实现gNB3对于ATG gNB的干扰抑制。
步骤3,根据干扰信号和干扰信号的入射波束的入射角度,采用包括但不限于最小干噪比等零陷算法,确定干扰消除信号的反射波束的权值信息。其中,抑制来自ATG gNB的干扰时(如图7a),各RIS设备对应的权值为
Figure PCTCN2022085304-appb-000002
其中,虚线为ATG gNB到gNB的干扰信号的入射波束,而点状线为RIS设备产生的干扰消除信号的反射波束。抑制来自gNB的干扰时(如图7b),各RIS设备产生的权值为
Figure PCTCN2022085304-appb-000003
其中,虚线为gNB到ATG gNB的干扰信号的入射波束,而点状线为RIS设备产生的干扰消除信号的反射波束。
步骤4,将权值信息发送给所述RIS设备后,在ATG系统为下行时隙且地面NR系统为上行时隙的时刻,各RIS设备使能其权值信息
Figure PCTCN2022085304-appb-000004
形成各自的干扰消除信号的反射波束,以及,在地面NR系统为下行时隙且ATG系统为上行时隙的时刻,各RIS设备使能其权值信息
Figure PCTCN2022085304-appb-000005
在上述时刻之外,RIS设备可以不使能权值信息,即不反射波束,从而达到节能的目的。
在本实施方式中,权值信息及是否使能权值信息可以由ATG系统通过安装在RIS设备上的传输链路(例如WIFI)进行传输,也可以由RIS所配置的处理模块获取。
在ATG系统与地面无线通信采用相同频谱资源的情况下,本公开通过引入RIS设备来抑制ATG系统与地面无线通信系统的相互干扰。采用本公开的方案,可以在现有ATG系统中引入RIS设备,并 通过优化选择RIS设备放置位置及其反射波束的权值信息,达到降低空地两个无线系统的相互干扰,从而进一步提升各自系统性能的目标。
基于相同的技术构思,本公开还提供一种空地同频系统干扰抑制装置,如图8所示,所述空地同频系统干扰抑制装置包括第一处理模块101、第二处理模块102和第三处理模块103。
第一处理模块101配置为,确定地空宽带通信ATG系统的第一基站对应的地面无线通信系统的基站集合,所述基站集合内的第二基站与所述第一基站相互产生干扰。
第二处理模块102配置为,针对至少一个所述第二基站,确定与所述第二基站对应的可重构智能反射面RIS设备的位置,并确定入射至所述RIS设备的干扰信号的入射波束的入射角度。
第三处理模块103配置为,根据所述干扰信号和所述干扰信号的入射波束的入射角度,确定干扰消除信号的反射波束的权值信息,以使所述RIS设备根据所述权值信息对干扰信号的入射波束进行反射,形成干扰消除信号的反射波束,以消除所述干扰信号。
在一些实施方式中,所述RIS设备为有源设备或无源设备,当RIS设备为有源设备时,如图9所示,所述第三处理模块103还配置为,在确定干扰消除信号的反射波束的权值信息之后,将所述权值信息发送给所述RIS设备。
在一些实施方式中,第三处理模块103配置为,采用最小干噪比算法计算干扰消除信号的反射波束的权值信息。
在一些实施方式中,所述地面无线通信系统为新空口NR通信系统或长期演进LTE通信系统,所述第一基站的天线将空间划分为多个栅格,每个所述栅格分别对应一组天线权重,第一处理模块101用于,根据预设时长内各时刻所述第一基站接收到的邻区干扰和噪声信号和各栅格对应的天线权重,计算所述时长内所述第一基站的上行子帧在各栅格方向的干扰功率;根据所述时长内所述第一基站的上行子帧在各栅格方向的干扰功率和预设的第一阈值确定干扰方向;根据 所述干扰方向、预设的第二阈值和所述第一基站的位置,确定所述第一基站对应的地面无线通信系统的基站集合。
在一些实施方式中,所述地面无线通信系统为新空口NR通信系统,第一处理模块101配置为,根据第一基站标识与第二基站标识之间的映射关系,确定所述地空宽带通信ATG系统的第一基站对应的地面无线通信系统的基站集合。
在一些实施方式中,如图9所示,所述空地同频系统干扰抑制装置还包括接收模块104和映射关系建立模块105。
接收模块104配置为,接收所述地面无线通信系统的各第二基站上报的第一基站标识,所述第一基站标识是所述第二基站在接收到所述第一基站发送的远端基站干扰管理参考信号RIM-RS且所述RIM-RS的接收功率大于第三阈值的情况下发送的。
映射关系建立模块105配置为,建立所述第一基站标识与第二基站标识之间的映射关系,所述第二基站标识为发送所述第一基站标识的第二基站的标识。
在一些实施方式中,第二处理模块102配置为,选择所述第二基站或所述第一基站的周边位置,并将选择出的位置作为与所述第二基站对应的RIS设备的位置。
在一些实施方式中,与所述第二基站对应的RIS设备的位置在所述第一基站与所述第二基站之间的视距传输路径上。
在一些实施方式中,所述干扰信号包括所述第一基站对所述第二基站的第一干扰信号和所述第二基站对所述第一基站的第二干扰信号;所述干扰消除信号包括所述第一基站对所述第二基站的第一干扰消除信号,以及,所述第二基站对所述第一基站的第二干扰消除信号;所述权值信息包括所述第一干扰消除信号的第一反射波束的第一权值信息,以及,所述第二干扰消除信号的第二反射波束的第二权值信息。
在一些实施方式中,所述RIS设备为有源设备,第三处理模块103配置为,将所述第一权值信息和第二权值信息发送给所述RIS设备,以使所述RIS设备在所述ATG系统为下行时隙且所述地面无线 通信系统为上行时隙的时刻,根据所述第一权值信息对所述第一干扰信号的入射波束进行反射,形成所述第一干扰消除信号的第一反射波束,以及,在所述地面无线通信系统为下行时隙且所述ATG系统为上行时隙的时刻,根据所述第二权值信息对所述第二干扰信号的入射波束进行反射,形成所述第二干扰消除信号的第二反射波束。
本公开还提供了一种电子设备,该电子设备包括:一个或多个处理器以及存储装置;其中,存储装置上存储有一个或多个程序,当上述一个或多个程序被上述一个或多个处理器执行时,使得上述一个或多个处理器实现如前述各实施方式所提供的空地同频系统干扰抑制方法。
本公开还提供了一种计算机可读介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如前述各实施方式所提供的空地同频系统干扰抑制方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访 问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本文已经公开了示例实施方式,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施方式相结合描述的特征、特性和/或元素,或可与其他实施方式相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本发明的范围的情况下,可进行各种形式和细节上的改变。

Claims (13)

  1. 一种空地同频系统干扰抑制方法,包括:
    确定地空宽带通信ATG系统的第一基站对应的地面无线通信系统的基站集合,所述基站集合内的第二基站与所述第一基站相互产生干扰;
    针对至少一个所述第二基站,确定与所述第二基站对应的可重构智能反射面RIS设备的位置,并确定入射至所述RIS设备的干扰信号的入射波束的入射角度;
    根据所述干扰信号和所述干扰信号的入射波束的入射角度,确定干扰消除信号的反射波束的权值信息,以使所述RIS设备根据所述权值信息对干扰信号的入射波束进行反射,形成干扰消除信号的反射波束,以消除所述干扰信号。
  2. 如权利要求1所述的方法,其中,所述RIS设备为有源设备或无源设备,当RIS设备为有源设备时,在确定干扰消除信号的反射波束的权值信息之后,所述方法还包括:将所述权值信息发送给所述RIS设备。
  3. 如权利要求1或2所述的方法,其中,所述确定干扰消除信号的反射波束的权值信息,包括:
    采用最小干噪比算法计算干扰消除信号的反射波束的权值信息。
  4. 如权利要求1所述的方法,其中,所述地面无线通信系统为新空口NR通信系统或长期演进LTE通信系统,所述第一基站的天线将空间划分为多个栅格,每个所述栅格分别对应一组天线权重,所述确定地空宽带通信ATG系统的第一基站对应的地面无线通信系统的基站集合,包括:
    根据预设时长内各时刻所述第一基站接收到的邻区干扰和噪声信号和各栅格对应的天线权重,计算所述时长内所述第一基站的上行 子帧在各栅格方向的干扰功率;
    根据所述时长内所述第一基站的上行子帧在各栅格方向的干扰功率和预设的第一阈值确定干扰方向;
    根据所述干扰方向、预设的第二阈值和所述第一基站的位置,确定所述第一基站对应的地面无线通信系统的基站集合。
  5. 如权利要求1所述的方法,其中,所述地面无线通信系统为新空口NR通信系统,所述确定地空宽带通信ATG系统的第一基站对应的地面无线通信系统的基站集合,包括:
    根据第一基站标识与第二基站标识之间的映射关系,确定所述地空宽带通信ATG系统的第一基站对应的地面无线通信系统的基站集合。
  6. 如权利要求5所述的方法,还包括建立所述映射关系,所述建立所述映射关系包括:
    接收所述地面无线通信系统的各第二基站上报的第一基站标识,所述第一基站标识是所述第二基站在接收到所述第一基站发送的远端基站干扰管理参考信号RIM-RS且所述RIM-RS的接收功率大于第三阈值的情况下发送的;
    建立所述第一基站标识与第二基站标识之间的映射关系,所述第二基站标识为发送所述第一基站标识的第二基站的标识。
  7. 如权利要求1所述的方法,其中,所述确定与所述第二基站对应的可重构智能反射面RIS设备的位置,包括:
    选择所述第二基站或所述第一基站的周边位置,并将选择出的位置作为与所述第二基站对应的RIS设备的位置。
  8. 如权利要求7所述的方法,其中,与所述第二基站对应的RIS设备的位置在所述第一基站与所述第二基站之间的视距传输路径上。
  9. 如权利要求1、2、4-8任一项所述的方法,其中,所述干扰信号包括所述第一基站对所述第二基站的第一干扰信号和所述第二基站对所述第一基站的第二干扰信号;
    所述干扰消除信号包括所述第一基站对所述第二基站的第一干扰消除信号,以及,所述第二基站对所述第一基站的第二干扰消除信号;
    所述权值信息包括所述第一干扰消除信号的第一反射波束的第一权值信息,以及,所述第二干扰消除信号的第二反射波束的第二权值信息。
  10. 如权利要求9所述的方法,其中,所述RIS设备为有源设备,所述将所述权值信息发送给所述RIS设备,以使所述RIS设备根据所述权值信息对干扰信号的入射波束进行反射,形成干扰消除信号的反射波束,包括:
    将所述第一权值信息和第二权值信息发送给所述RIS设备,以使所述RIS设备在所述ATG系统为下行时隙且所述地面无线通信系统为上行时隙的时刻,根据所述第一权值信息对所述第一干扰信号的入射波束进行反射,形成所述第一干扰消除信号的第一反射波束,以及,在所述地面无线通信系统为下行时隙且所述ATG系统为上行时隙的时刻,根据所述第二权值信息对所述第二干扰信号的入射波束进行反射,形成所述第二干扰消除信号的第二反射波束。
  11. 一种空地同频系统干扰抑制装置,包括第一处理模块、第二处理模块和第三处理模块,
    所述第一处理模块配置为,确定地空宽带通信ATG系统的第一基站对应的地面无线通信系统的基站集合,所述基站集合内的第二基站与所述第一基站相互产生干扰;
    所述第二处理模块配置为,针对至少一个所述第二基站,确定与所述第二基站对应的可重构智能反射面RIS设备的位置,并确定 入射至所述RIS设备的干扰信号的入射波束的入射角度;
    所述第三处理模块配置为,根据所述干扰信号和所述干扰信号的入射波束的入射角度,确定干扰消除信号的反射波束的权值信息,以使所述RIS设备根据所述权值信息对干扰信号的入射波束进行反射,形成干扰消除信号的反射波束,以消除所述干扰信号。
  12. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,其上存储有一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1-10任一项所述的空地同频系统干扰抑制方法。
  13. 一种计算机可读介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1-10任一项所述的空地同频系统干扰抑制方法。
PCT/CN2022/085304 2021-05-19 2022-04-06 空地同频系统干扰抑制方法、装置、电子设备和可读介质 WO2022242346A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22803671.1A EP4344280A1 (en) 2021-05-19 2022-04-06 Air-ground co-frequency system interference suppression method and apparatus, electronic device, and readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110547060.5 2021-05-19
CN202110547060.5A CN115378447A (zh) 2021-05-19 2021-05-19 空地同频系统干扰抑制方法、装置、电子设备和可读介质

Publications (1)

Publication Number Publication Date
WO2022242346A1 true WO2022242346A1 (zh) 2022-11-24

Family

ID=84059194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085304 WO2022242346A1 (zh) 2021-05-19 2022-04-06 空地同频系统干扰抑制方法、装置、电子设备和可读介质

Country Status (3)

Country Link
EP (1) EP4344280A1 (zh)
CN (1) CN115378447A (zh)
WO (1) WO2022242346A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102970256A (zh) * 2012-11-26 2013-03-13 清华大学 基于零空间的多天线d2d通信系统干扰消除方法
US20160277063A1 (en) * 2013-11-29 2016-09-22 Huawei Technologies Co., Ltd. Method for reducing self-interference signal in communications system, and apparatus
US20170077600A1 (en) * 2015-09-15 2017-03-16 Alexander Maltsev Millimeter-wave high-gain steerable reflect array-feeding array antenna in a wireless local area networks
CN105594240B (zh) * 2013-11-29 2019-06-11 华为技术有限公司 减少通信系统自干扰信号的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102970256A (zh) * 2012-11-26 2013-03-13 清华大学 基于零空间的多天线d2d通信系统干扰消除方法
US20160277063A1 (en) * 2013-11-29 2016-09-22 Huawei Technologies Co., Ltd. Method for reducing self-interference signal in communications system, and apparatus
CN105594240B (zh) * 2013-11-29 2019-06-11 华为技术有限公司 减少通信系统自干扰信号的方法和装置
US20170077600A1 (en) * 2015-09-15 2017-03-16 Alexander Maltsev Millimeter-wave high-gain steerable reflect array-feeding array antenna in a wireless local area networks

Also Published As

Publication number Publication date
EP4344280A1 (en) 2024-03-27
CN115378447A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
US10153889B2 (en) Method and apparatus for handling full-duplex interference
WO2021164676A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US9385793B2 (en) Multi-beam co-channel Wi-Fi access point
WO2018171025A1 (zh) 一种干扰最小化的移动组网方法与系统
EP2850743B1 (en) Communication method and apparatus for jointly transmitting and receiving signal in mobile communication system
US10382174B2 (en) Method and apparatus for inter-cell interference cancellation in wireless communication system
US11451995B2 (en) Network-assisted self-measurements to enable full-duplex operation
CN114982190A (zh) 载波聚集的波束相关性
US20210136566A1 (en) Antenna correlation feedback for partial reciprocity
EP4032193B1 (en) Simultaneous uplink and downlink transmission using multiple access points
WO2022242346A1 (zh) 空地同频系统干扰抑制方法、装置、电子设备和可读介质
EP4329211A1 (en) Communication control method, wireless terminal, base station, and ris device
KR102626474B1 (ko) 큰 대역폭 밀리미터파 시스템들에서 대역내 간섭 완화를 위한 빔 성형을 위한 기술들
CN102104880A (zh) 一种中继无线通信网络中的下行小区间干扰协调方法
US20220086820A1 (en) Real time control of an electronically configurable deflector
Wei et al. Optimization of downtilts adjustment combining joint transmission and 3D beamforming in 3D MIMO
Noh et al. System evaluation for millimeter-wave radio access network
WO2024026827A1 (en) Interference mitigation in reflective intelligent surface-based communication systems
US11483037B2 (en) Configurable deflection measurement and reporting
US11929814B2 (en) Beamforming based on virtual images
US20240098743A1 (en) Selecting antenna elements with an l shaped antenna module
EP4329212A1 (en) Communication control method, wireless terminal, and base station
WO2023159465A1 (en) Rotated antenna arrays for wireless communications
WO2023279226A1 (en) Channel estimation based beam determination in holographic multiple-in multiple-out system
Mohjazi et al. RIS-Assisted UAV Communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803671

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18289238

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022803671

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022803671

Country of ref document: EP

Effective date: 20231219