WO2023109244A1 - 小区的干扰协调方法、装置、服务器和存储介质 - Google Patents

小区的干扰协调方法、装置、服务器和存储介质 Download PDF

Info

Publication number
WO2023109244A1
WO2023109244A1 PCT/CN2022/121432 CN2022121432W WO2023109244A1 WO 2023109244 A1 WO2023109244 A1 WO 2023109244A1 CN 2022121432 W CN2022121432 W CN 2022121432W WO 2023109244 A1 WO2023109244 A1 WO 2023109244A1
Authority
WO
WIPO (PCT)
Prior art keywords
strategy
target cell
cell
cycle
interference coordination
Prior art date
Application number
PCT/CN2022/121432
Other languages
English (en)
French (fr)
Inventor
詹勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22905996.9A priority Critical patent/EP4408054A1/en
Publication of WO2023109244A1 publication Critical patent/WO2023109244A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular to a cell interference coordination method, device, server, and storage medium.
  • Frame structure scheduling refers to the technology of dynamically adjusting the proportion of uplink frames and downlink frames in a Time Division Duplex (TDD) network according to the proportion of uplink and downlink loads.
  • TDD Time Division Duplex
  • the frame structure arrangement can dynamically adapt to the changing trend of uplink and downlink loads, and improve the efficiency of spectrum resource usage; on the other hand, it can also improve user experience.
  • DSS orchestration refers to the DSS state in which a cell supports simultaneous deployment of multiple standard wireless access network services (such as 3G/4G/5G DSS) on a single frequency spectrum, and the state that only provides a single standard service (such as pure 5G).
  • the status is dynamically adjusted according to the real-time load ratio changes of users of each system.
  • the use of DSS orchestration can dynamically adapt to the changing trend of different standard services, and on the other hand, it can also significantly improve the efficiency of spectrum resource usage by eliminating the fixed overhead of DSS rate matching.
  • the cell reference signal (Cell Reference Signal, CRS for short) of the same-frequency adjacent DSS 4G will affect the physical downlink shared channel (Physical Downlink Shared Channel) of the local area. Channel, referred to as PDSCH) caused serious interference.
  • CRS Cell Reference Signal
  • the main purpose of the embodiments of the present application is to provide a cell interference coordination method, device, server and storage medium. It aims to realize automatic and precise inter-cell interference coordination under the frame structure arrangement or DSS arrangement scheme, so as to eliminate/weaken the impact of coherent inter-cell interference on user channel quality.
  • an embodiment of the present application provides a cell interference coordination method, including: obtaining a strategy information table of the target cell in the next cycle, the strategy information table including the first cycle preferred strategy of the target cell and the The second cycle optimal strategy of each coherent cell of the target cell; obtain the cluster state of the target cell according to the first cycle optimal strategy and each of the second cycle optimal strategies; according to the first cycle optimal strategy and the The cluster state determines the interference coordination policy of the target cell in the next period.
  • an embodiment of the present application further provides an interference coordination device for a cell, including: a first acquisition module, a second acquisition module, and a policy determination module; the first acquisition module is used to acquire A policy information table, the policy information table includes the first cycle preferred strategy of the target cell and the second cycle preferred strategy of each coherent cell of the target cell; the second acquisition module is configured to according to the first cycle A cycle optimal strategy and each of the second cycle optimal strategies acquire the cluster state of the target cell; the strategy determination module is configured to, based on a preset interference coordination rule, according to the first cycle optimal strategy and the cluster state Determine the interference coordination policy of the target cell in the next period.
  • an embodiment of the present application further provides a server, including: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores information that can be used by the at least one processor Instructions executed by a processor, where the instructions are executed by the at least one processor, so that the at least one processor can execute the above cell interference coordination method.
  • an embodiment of the present application further provides a computer-readable storage medium storing a computer program, and implementing the above cell interference coordination method when the computer program is executed by a processor.
  • the cell interference coordination method proposed in this application in the interference coordination process of the target cell, obtains the strategy information table of the target cell in the next cycle, and the strategy information table contains the first cycle preferred strategy of the target cell and the target cell
  • the second cycle optimal strategy of each coherent cell of the cell obtain the cluster state of the target cell according to the first cycle optimal strategy and each of the second cycle optimal strategies; according to the first cycle optimal strategy and the cluster
  • the state determines the interference coordination policy of the target cell in the next period.
  • the cluster state of the target cell is obtained by combining the target cell and the next cycle optimal strategy of each coherent cell, and then an appropriate interference coordination strategy is determined according to the cluster state of the target cell and the cycle optimal strategy; it can be arranged under the frame structure or DSS arrangement scheme Realize automatic and precise inter-cell interference coordination to eliminate/weaken the impact of coherent inter-cell interference on user channel quality; solve the problem of inter-coherent inter-cell frame structure alignment caused by frame structure arrangement and DSS arrangement. The technical problem of serious interference between coherent cells caused by the inability to align.
  • FIG. 1 is a flowchart of an interference coordination method for a cell using a DSS arrangement scheme provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of deployment of a target cell and coherent cells provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a cluster state of a target cell provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of policy information of a target cell using a DSS arrangement scheme provided by an embodiment of the present application
  • FIG. 5 is a flowchart of a cell interference coordination method using a frame structure arrangement scheme provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of policy information of a target cell using a frame structure arrangement scheme provided by an embodiment of the present application
  • FIG. 7 is a flowchart of a cell interference coordination method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of initialization policy information of a target cell provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an interference coordination device for a cell provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a server provided by an embodiment of the present application.
  • An embodiment of the present application relates to a cell interference coordination method, which is applied to a target cell using a DSS arrangement scheme, as shown in FIG. 1 , including:
  • Step 101 obtain the strategy information table of the target cell in the next cycle, the strategy information table includes the first cycle preferred strategy of the target cell and the second cycle preferred strategy of each related cell of the target cell.
  • any base station cell can be used as the target cell, and the coherent cells of the target cell refer to all co-frequency adjacent cells that overlap with the target cell, as shown in FIG. All co-frequency adjacent cells covered by overlapping are base station cell 40003, base station cell 40007 and base station cell 40009. Therefore, when base station cell 40001 is used as the target cell, the coherent cells are base station cell 40003, base station cell 40007 and base station cell 40009; When the base station cell 40003 is used as the target cell, its related cells are base station cell 40001; Cells, the coherent cells are base station cell 40001 and base station cell 40007; when the base station cell 40011 is used as the target cell, the coherent cells are base station cell 40007.
  • the strategy information table of each target cell is composed of the periodic optional strategy of the next cycle of the cell identifier and the cell, as shown in Figure 4, the strategy information table of each target cell is provided, in the strategy information table
  • the target cell can be set at the first place, or can be distinguished by adding an identifier, or can be distinguished directly according to the cell identifier of each cell; wherein, the cell identifier refers to the number assigned to each cell.
  • the unique arbitrary identification number, its initialization value is the identification number assigned by the system; the cycle is set in advance, so the next cycle refers to the latest cycle in the future, and the next cycle optimization strategy means that each cell is based on its next cycle load Prediction and other related information are strategies selected in the next period, and its initialization value is a pre-defined default strategy that is the same for all cells.
  • the first cycle preference strategy and the second cycle preference strategy are pure 5G state (ie 5G) or 4/5G shared state (ie 4G/5G DSS).
  • Step 102 acquire the cluster state of the target cell according to the first cycle optimal strategy and each second cycle optimal strategy.
  • the cluster state of the target cell is determined according to the first cycle optimal strategy of the target cell and the second cycle optimal strategy of each coherent cell; when the first cycle optimal strategy is consistent with the second cycle optimal strategy , the cluster state of the target cell is considered as an intra-cluster state; and when the first-period optimal strategy is inconsistent with each second-period optimal strategy, the cluster state of the target cell is considered a non-in-cluster state.
  • the cycle preference strategies of the target cell and each coherent cell in the next cycle when the cycle preference strategies of the target cell and each coherent cell in the next cycle are consistent, it indicates that the target cell and each coherent cell are in the same working environment and state in the next cycle. At this time, it is considered that The cluster state of the target cell is the state within the cluster; when the target cell and the coherent cells in the next cycle are inconsistent with the cycle preference strategy, it indicates that the target cell and the coherent cells are in different working environments and states in the next cycle. At this time, the target cell is considered The cluster state of is non-in-cluster state.
  • the target cell 40001 since the cycle preference strategy of the coherent cell 40003 is inconsistent with the cycle preference strategy of the target cell 40001, the target cell 40001 is Non-in-cluster state; for the target cell 40003, because the cycle preference strategy of the coherent cell 40001 is inconsistent with the cycle preference strategy of the target cell 40003, the target cell 40003 is in a non-cluster state; for the target cell 40007, because the cycle preference strategy of the coherent cell 40011
  • the strategy is not consistent with the cycle optimization strategy of the target cell 40007, so the target cell 40007 is in a non-cluster state; for the target cell 40009, since the cycle preference strategies of the coherent cells 40001 and 40007 are consistent with the cycle preference strategy of the target cell 40009, therefore The target cell 40009 is in the cluster state; for the target cell 40011, because the cycle optimization strategy of the coherent cell 40007 is inconsistent with the cycle preference strategy of the target cell 40011, the target cell 40011 is in the
  • Step 103 determine the interference coordination strategy of the target cell in the next cycle according to the preferred strategy of the first cycle and the cluster state.
  • the first cycle preferred strategy of the target cell is a pure 5G state or a 4/5G shared state
  • the cluster state of the target cell is an intra-cluster state or a non-in-cluster state
  • the determination rules of the interference coordination strategy are as follows: (1 ) When the cluster state is intra-cluster state and the first-period preferred strategy is pure 5G state, the interference coordination strategy is no interference coordination; (2) when the cluster state is intra-cluster state and the first-period preferred strategy is 4/5G shared state , the interference coordination strategy is an adaptive switch symbol-level rate matching strategy; (3) when the cluster state is a non-intra-cluster state and the preferred strategy in the first cycle is pure 5G state, the interference coordination strategy is an adaptive switch symbol-level rate matching strategy; ( 4) When the cluster state is non-intra-cluster state and the preferred strategy in the first cycle is 4/5G shared state, the interference coordination strategy is an adaptive switch symbol-level rate matching strategy.
  • the adaptive switch symbol-level rate matching strategy includes: determining whether to perform symbol-level rate matching according to the 4G cell reference signal interference strength of each coherent cell; - Interference Measurement Resource (CSI-IM) for measuring the interference of each resource block, selecting a target resource block from each resource block and scheduling.
  • CSI-IM Interference Measurement Resource
  • the target cell 40001 is in a non-cluster state and the preferred strategy for the first cycle is pure 5G state, and the interference coordination strategy of the target cell 40001 is adaptive Switch symbol-level rate matching strategy; target cell 40003 is in a non-cluster state and the preferred strategy for the first cycle is 4/5G shared state, and the interference coordination strategy of target cell 40003 is an adaptive switch symbol-level rate matching strategy; target cell 40007 is a non-cluster In the internal state and the preferred strategy in the first cycle is pure 5G state, the interference coordination strategy of the target cell 40007 is an adaptive switch symbol-level rate matching strategy; the target cell 40009 is in a non-cluster state and the preferred strategy in the first cycle is pure 5G
  • the 40009 interference coordination strategy is no interference coordination; the target cell 40011 is in a non-in-cluster state and the preferred strategy for the first cycle is 4/5G shared state, and the interference coordination strategy of the target cell 40011 is an adaptive switch
  • the preferred strategy enabled by the target cell in the next period is the preferred strategy for each period shown in FIG. 4 .
  • the strategy information table of the target cell in the next cycle is obtained, and the strategy information table includes the first cycle preferred strategy of the target cell and the related cells of the target cell.
  • the second cycle optimal strategy obtain the cluster state of the target cell according to the first cycle optimal strategy and each of the second cycle optimal strategies; determine the target cell according to the first cycle optimal strategy and the cluster state Interference coordination strategy in the next cycle.
  • the cluster state of the target cell is obtained by combining the target cell and the next cycle optimal strategy of each coherent cell, and then an appropriate interference coordination strategy is determined according to the cluster state of the target cell and the cycle optimal strategy; it can be arranged under the frame structure or DSS arrangement scheme Realize automatic and precise inter-cell interference coordination to eliminate/weaken the impact of coherent inter-cell interference on user channel quality; solve the problem of inter-coherent inter-cell frame structure alignment caused by frame structure arrangement and DSS arrangement. The technical problem of serious interference between coherent cells caused by the inability to align.
  • An embodiment of the present application relates to a cell interference coordination method, which is applied to a target cell using a frame structure arrangement scheme, as shown in FIG. 5 , including:
  • Step 201 obtain the strategy information table of the target cell in the next cycle, the strategy information table includes the first cycle preferred strategy of the target cell and the second cycle preferred strategy of each related cell of the target cell.
  • this step is substantially the same as step 101 in the embodiment of the present application, and details are not repeated here.
  • the first cycle optimal strategy and the second cycle optimal strategy are DDDSU frame structure or DSUUU frame structure, where the DDDSU frame structure means that the base station cell adopts a 30KHz subcarrier spacing and a 2.5ms single cycle frame structure, each cycle
  • the 5 slots are 3 downlink slots, 1 special slot and 1 uplink slot;
  • the DSUUU frame structure means that the base station cell adopts a 30KHz subcarrier spacing and a 2.5ms single-cycle frame structure, and 5 slots in each cycle are 1 Downlink slot, 1 special slot and 3 uplink slots.
  • Step 202 acquire the cluster state of the target cell according to the first cycle optimal strategy and each second cycle optimal strategy.
  • the cluster state of the target cell when the first-period preferred strategy is consistent with each second-period preferred strategy, the cluster state of the target cell is an intra-cluster state; when the first-period preferred strategy is inconsistent with each second-period preferred strategy , the cluster state of the target cell is a non-in-cluster state.
  • the target cell 40001 since the cycle preference strategies of the coherent cells 40003 and 40007 are inconsistent with the cycle preference strategy of the target cell 40001, the target cell 40001 is in a non-in-cluster state; for the target cell 40003, because the cycle preference strategy of the coherent cell 40001 is inconsistent with the cycle preference strategy of the target cell 40003, the target cell 40003 is in a non-cluster state; for the target cell 40007, because the coherent cell 40001 and The cycle selection strategy of 40009 is inconsistent with the cycle selection strategy of the target cell 40007, so the target cell 40007 is in a non-cluster state; for the target cell 40009, since the cycle selection strategy of each coherent cell 40007 is inconsistent with the cycle selection strategy of the target cell 40007, therefore The target cell 40009 is in the non-in-cluster state; for the target cell 40011, since the cycle optimization strategy of the coherent cell 40007 is consistent with the cycle preference strategy of the target cell 40011,
  • Step 203 determine the interference coordination strategy of the target cell in the next cycle according to the preferred strategy of the first cycle and the cluster state.
  • the preferred policy of the first period is a DDDSU frame structure or a DSUUU frame structure
  • the cluster state is an intra-cluster state or a non-in-cluster state
  • the determination rules of the interference coordination strategy are as follows: (1) the cluster state is an intra-cluster state and The preferred strategy for the first period is the DDDSU frame structure, and the interference coordination strategy is no interference coordination; (2) When the cluster state is not in the cluster state and the preferred strategy for the first period is the DDDSU frame structure, the interference coordination strategy is combined with the Coordination switch bitmap for coordination; (3) When the cluster state is an intra-cluster state and the first cycle optimal strategy is DSUUU frame structure, the interference coordination strategy is no interference coordination; (4) the cluster state is a non-in-cluster state and the first When the periodic optimization strategy is a DSUUU frame structure, the interference coordination strategy is to coordinate in combination with the coordination switch bitmap of each coherent cell.
  • the coordination switch bitmap of the coherent cell is coordinated; the target cell 40003 is in a non-cluster state and the first cycle preferred strategy is a DSUUU frame structure, and the interference coordination strategy of the target cell 40003 is coordinated by combining the coordination switch bitmap of each coherent cell; the target cell 40007 is in a non-in-cluster state and the preferred strategy for the first cycle is DSUUU frame structure.
  • the interference coordination strategy of the target cell 40007 is coordinated in combination with the coordination switch bitmap of each coherent cell; the target cell 40009 is in a non-cluster state and the preferred strategy for the first cycle It is a DDDSU frame structure, and the interference coordination strategy of the target cell 40009 is to coordinate with the coordination switch bitmap of each coherent cell; the target cell 40011 is in the cluster state and the first cycle preferred strategy is the DSUUU frame structure, and the interference coordination strategy of the target cell 40011 is not Interference coordination is performed.
  • the preferred strategy enabled by the target cell in the next period is the preferred strategy for each period shown in FIG. 6 .
  • the strategy information table of the target cell in the next cycle is obtained, and the strategy information table includes the first cycle preferred strategy of the target cell and the related cells of the target cell.
  • the second cycle optimal strategy obtain the cluster state of the target cell according to the first cycle optimal strategy and each of the second cycle optimal strategies; determine the target cell according to the first cycle optimal strategy and the cluster state Interference coordination strategy in the next cycle.
  • the cluster state of the target cell is obtained by combining the target cell and the next cycle optimal strategy of each coherent cell, and then an appropriate interference coordination strategy is determined according to the cluster state of the target cell and the cycle optimal strategy; it can be arranged under the frame structure or DSS arrangement scheme Realize automatic and precise inter-cell interference coordination to eliminate/weaken the impact of coherent inter-cell interference on user channel quality; solve the problem of inter-coherent inter-cell frame structure alignment caused by frame structure arrangement and DSS arrangement. The technical problem of serious interference between coherent cells caused by the inability to align.
  • An embodiment of the present application relates to a cell interference coordination method, which is applied to a target cell using a frame structure arrangement scheme or a DSS arrangement scheme, as shown in FIG. 7 , including:
  • Step 301 perform periodic load forecasting on the target cell, and obtain a first-period optimal policy based on the prediction result of the target cell.
  • the load of the target cell includes but not limited to the uplink/downlink PRB utilization rate of the logical cell, the number of RRC users, the number of active users, etc.; the periodic load prediction of the target cell is based on the historical periodic load data of the target cell.
  • This application does not limit the specific forecasting algorithm used, and any periodic load forecasting algorithm can be used.
  • the generation rules of the first cycle optimal strategy of the target cell include: (1) The predicted result is that the 4G load of the target cell is light and the 4G load of the basic cell corresponding to the target cell Light, the preferred strategy in the first cycle is to adopt the pure 5G state; (2) when the prediction result is that the 4G load of the target cell is light and the 4G load of the basic cell corresponding to the target cell is heavy, the preferred strategy in the first cycle is to adopt the 4/5G shared state; ( 3) When the predicted result is that the 4G load of the target cell is heavy, the preferred strategy in the first cycle is to adopt the 4/5G sharing state; where the basic cell for the target cell refers to the base station cell that can accept the 4G service of the target cell.
  • the generation rules of the first cycle optimal strategy of the target cell include: (1) when the prediction result is that the downlink load of the target cell is heavy, the first cycle optimal strategy is to use DDDSU Frame structure; (2) When the prediction result is that the uplink load of the target cell is heavy, the preferred strategy in the first period is to adopt the DSUUU frame structure.
  • the target cell since the target cell itself is also a coherent cell of other base station cells, after the target cell obtains the first cycle preferred strategy, it needs to broadcast to other adjacent cells of the same frequency, and the broadcast information includes the cell identity And the corresponding cycle optimization strategy.
  • Step 302 receiving broadcast information of each coherent cell, where the broadcast information includes a second-period preferred policy and a coherent cell identifier.
  • each coherent cell acquires the second-period preferred policy, it broadcasts the second-period preferred policy together with the identity of the coherent cell, and the target cell can receive the broadcast information of each coherent cell.
  • the target cell since the cycles of the target cell and each coherent cell are consistent, the time for the target cell and each coherent cell to generate a periodic optimal strategy is also consistent, and the target cell may generate the first periodic optimal strategy.
  • the broadcast information of each coherent cell is received within a preset time, and the initialization policy information table is updated after the preset time is over.
  • Step 303 Fill the first-period preferred strategy and each second-period preferred strategy into the preset initialization strategy information table according to the identity of the target cell and the identities of each related cell to generate a strategy information table.
  • the format of the initialization strategy information table is consistent with the format of the strategy information table in Figure 3 or Figure 5, except that the initialization strategy information table only contains the cell identifiers of the target cell and each related The cycle optimal strategy corresponding to the cell is empty.
  • the first cycle optimal strategy and the second cycle optimal strategy are combined according to the target cell ID and each coherent cell ID.
  • the two-period optimal strategy is filled into the corresponding position of the initialization strategy information table, and the strategy information table of the target cell can be formed; wherein, as shown in Figure 8, the initialization strategy information table includes the cell identifier of the target cell and the cells of each related cell Indicates that in the initialization strategy information table, the cycle preference strategy corresponding to the target cell and each coherent cell can be the initial cycle preference strategy (4G/5G DSS or DDDSU), or it can be a null value.
  • Step 304 acquire the cluster state of the target cell according to the first-period preferred strategy and each second-period preferred strategy in the policy information table.
  • this step is substantially the same as step 102 or step 202 in the embodiment of the present application, and details are not repeated here.
  • Step 305 determine the interference coordination strategy of the target cell in the next cycle according to the preferred strategy of the first cycle and the cluster state.
  • this step is substantially the same as step 103 or step 203 in the embodiment of the present application, and details are not repeated here.
  • the strategy information table of the target cell may be updated at intervals, so that the determined interference coordination strategy can be consistent with the service situation of the target cell, so that the interference coordination strategy The interference coordination ability is optimized.
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this application ; Adding insignificant modifications or introducing insignificant designs to the algorithm or process, but not changing the core design of the algorithm and process are all within the scope of protection of this application.
  • FIG. Determine module 403 Another embodiment of the present application relates to an interference coordination device for a cell, which is applied to a target cell using a frame structure arrangement scheme or a DSS arrangement scheme.
  • the details of the interference coordination device for a cell in this embodiment are described in detail below. The following content is only the implementation details provided for the convenience of understanding, and is not necessary for the implementation of this embodiment.
  • FIG. Determine module 403 is only the implementation details provided for the convenience of understanding, and is not necessary for the implementation of this embodiment.
  • the first obtaining module 401 is used to obtain the strategy information table of the target cell in the next cycle, and the strategy information table includes the first cycle preferred strategy of the target cell and the second cycle preferred strategy of each related cell of the target cell.
  • the second acquiring module 402 is configured to acquire the cluster state of the target cell according to the first cycle preference strategy and each second cycle preference strategy.
  • the policy determination module 403 is configured to determine an interference coordination policy of the target cell in the next period based on the preset interference coordination rule and the preferred policy and the cluster state in the first period.
  • this embodiment is a system embodiment corresponding to the above method embodiment, and this embodiment can be implemented in cooperation with the above method embodiment.
  • the relevant technical details and technical effects mentioned in the above embodiments are still valid in this embodiment, and will not be repeated here to reduce repetition.
  • the relevant technical details mentioned in this embodiment can also be applied in the above embodiments.
  • this system embodiment is mainly aimed at the description of the cell interference coordination method provided by the method embodiment at the software implementation level, and its implementation also needs to rely on hardware support.
  • the functions of related modules can be deployed to process In order for the processor to run to realize the corresponding functions, in particular, the relevant data generated by the operation can be stored in the memory for subsequent inspection and use.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • FIG. 10 Another embodiment of the present application relates to a server, as shown in FIG. 10 , including: at least one processor 501; and a memory 502 communicatively connected to the at least one processor 501; Instructions executed by the at least one processor 501, the instructions executed by the at least one processor 501, so that the at least one processor 501 can execute the cell interference coordination method in the foregoing embodiments.
  • the memory and the processor are connected by a bus
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory can be used to store data that the processor uses when performing operations.
  • Another embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • a storage medium includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM), magnetic disk or optical disc, etc. can store program codes. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及通信技术领域,特别涉及一种小区的干扰协调方法、装置、服务器和存储介质。小区的干扰协调方法包括:获取目标小区在下一周期的策略信息表,所述策略信息表包含所述目标小区的第一周期优选策略和所述目标小区的各相干小区的第二周期优选策略;根据所述第一周期优选策略和各所述第二周期优选策略获取所述目标小区的簇状态;根据所述第一周期优选策略和所述簇状态确定所述目标小区在下一周期的干扰协调策略。

Description

小区的干扰协调方法、装置、服务器和存储介质
相关申请
本申请要求于2021年12月17号申请的、申请号为202111551195.5的中国专利申请的优先权。
技术领域
本申请实施例涉及通信技术领域,特别涉及一种小区的干扰协调方法、装置、服务器和存储介质。
背景技术
如何高效使用频谱资源已成为目前移动无线网络领域的研究热点,一系列新兴技术也在持续涌现。其中,帧结构编排和动态频谱共享(Dynamic Spectrum Sharing,简称DSS)编排是其中的代表。帧结构编排是指在时分双工(Time Division Duplex,简称TDD)网络根据上下行负荷的占比动态调整上行帧和下行帧占比的技术。通过帧结构编排一方面可以动态适配上下行负荷的变化趋势,提升频谱资源使用效率;另一方面也可以提升用户体验。DSS编排是指小区在单一频谱上支持同时部署多种制式无线接入网络服务的DSS状态(比如3G/4G/5G DSS),以及仅提供单一制式服务的状态(比如纯5G),而小区实时状态则跟随各个制式用户实时负荷比例变化动态调整。利用DSS编排一方面可以动态适配不同制式业务的变化趋势,另一方面也可以通过消除DSS速率匹配的固定开销,从而显著提升频谱资源使用效率。
然而,对于帧结构编排来说,由于不同小区间上下行负荷比例可能存在显著差异,因此使能帧结构编排后,极大概率相干小区间帧结构无法对齐,如果同频邻区的下行子帧撞到本区上行子帧,则会对本区上行造成严重的干扰。对于DSS编排来说,由于不同小区间不同制式业务比例也可能存在显著差异,因此使能DSS编排后,极大概率相干小区间小区状态无法对齐。如果同频邻区处于4G/5G DSS状态,而本区处于纯5G状态,则同频相邻DSS 4G的小区参考信号(Cell Reference Signal,简称CRS)会对本区物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)造成严重的干扰。
发明内容
本申请实施例的主要目的在于提出一种小区的干扰协调方法、装置、服务器和存储介质。旨在实现在帧结构编排或DSS编排方案下实现自动、精准的小区间干扰协调,以消除/削弱相干小区间干扰对用户信道质量的影响。
为实现上述目的,本申请实施例提供了一种小区的干扰协调方法,包括:获取目标小区在下一周期的策略信息表,所述策略信息表包含所述目标小区的第一周期优选策略和所述目标小区的各相干小区的第二周期优选策略;根据所述第一周期优选策略和各所述第二周期优选策略获取所述目标小区的簇状态;根据所述第一周期优选策略和所述簇状态确定所述目标小区在下一周期的干扰协调策略。
为实现上述目的,本申请实施例还提供一种小区的干扰协调装置,包括:第一获取模块、 第二获取模块和策略确定模块;所述第一获取模块,用于获取目标小区在下一周期的策略信息表,所述策略信息表包含所述目标小区的第一周期优选策略和所述目标小区的各相干小区的第二周期优选策略;所述第二获取模块,用于根据所述第一周期优选策略和各所述第二周期优选策略获取所述目标小区的簇状态;所述策略确定模块,用于基于预设干扰协调规则,根据所述第一周期优选策略和所述簇状态确定所述目标小区在下一周期的干扰协调策略。
为实现上述目的,本申请实施例还提供了一种服务器,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的小区的干扰协调方法。
为实现上述目的,本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的小区的干扰协调方法。
本申请提出的小区的干扰协调方法,在目标小区的干扰协调过程中,获取目标小区在下一周期的策略信息表,所述策略信息表包含所述目标小区的第一周期优选策略和所述目标小区的各相干小区的第二周期优选策略;根据所述第一周期优选策略和各所述第二周期优选策略获取所述目标小区的簇状态;根据所述第一周期优选策略和所述簇状态确定所述目标小区在下一周期的干扰协调策略。通过结合目标小区和各相干小区的下一周期优选策略来获取目标小区的簇状态,之后根据目标小区的簇状态和周期优选策略确定合适的干扰协调策略;能够在帧结构编排或DSS编排方案下实现自动、精准的小区间干扰协调,以消除/削弱相干小区间干扰对用户信道质量的影响;解决了由于帧结构编排导致的相干小区间帧结构无法对齐和DSS编排导致的相干小区间小区状态无法对齐引起的相干小区间干扰严重的技术问题。
附图说明
图1是本申请实施例提供的使用DSS编排方案的小区的干扰协调方法的流程图;
图2是本申请实施例提供的目标小区和各相干小区的部署示意图;
图3是本申请实施例提供的目标小区的簇状态的示意图;
图4是本申请实施例提供的使用DSS编排方案的目标小区的策略信息示意图;
图5是本申请实施例提供的使用帧结构编排方案的小区的干扰协调方法的流程图;
图6是本申请实施例提供的使用帧结构编排方案的目标小区的策略信息示意图;
图7是本申请实施例提供的小区的干扰协调方法的流程图;
图8是本申请实施例提供的目标小区的初始化策略信息示意图;
图9是本申请实施例提供的小区的干扰协调装置的结构示意图;
图10是本申请实施例提供的服务器的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的 前提下可以相互结合相互引用。
本申请的一个实施例涉及一种小区的干扰协调方法,应用在使用DSS编排方案的目标小区中,如图1所示,包括:
步骤101,获取目标小区在下一周期的策略信息表,策略信息表包含目标小区的第一周期优选策略和目标小区的各相干小区的第二周期优选策略。
在一示例实施中,任意一个基站小区均可以作为目标小区,目标小区的各相干小区是指和目标小区存在交叠覆盖的所有同频相邻小区,如图2所示,与基站小区40001在交叠覆盖的所有同频相邻小区为基站小区40003、基站小区40007和基站小区40009,因此当基站小区40001作为目标小区,其各相干小区为基站小区40003、基站小区40007和基站小区40009;同理,当基站小区40003作为目标小区,其各相干小区为基站小区40001;当基站小区40007作为目标小区,其各相干小区为基站小区40001、基站小区40009和基站小区40011;当基站小区40009作为目标小区,其各相干小区为基站小区40001和基站小区40007;当基站小区40011作为目标小区,其各相干小区为基站小区40007。
在一示例实施中,各目标小区的策略信息表由小区标识和小区的下一周期的周期可选策略组成,如图4所示,给出了各目标小区的策略信息表,在策略信息表中为了区分目标小区和各相干小区,可以将目标小区设置于第一位,也可以通过增加标识的方式,也可以直接根据各小区的小区标识来区分;其中,小区标识指为每个小区分配的独一无二的任意标识号,其初始化值即为系统分配的标识号;周期是提前设置好的,因此下一周期指未来最近一个周期,下一周期优选策略指每个小区基于其下一周期负荷预测和其它相关信息为下一周期选择的策略,其初始化值为预先定义好的所有小区均相同的默认策略。
在一示例实施中,第一周期优选策略和第二周期优选策略为纯5G状态(即5G)或4/5G共享状态(即4G/5G DSS)。
步骤102,根据第一周期优选策略和各第二周期优选策略获取目标小区的簇状态。
在一示例实施中,目标小区的簇状态是根据目标小区的第一周期优选策略和各相干小区的第二周期优选策略决定的;当第一周期优选策略与述第二周期优选策略均保持一致时,则认为目标小区的簇状态为簇内状态;而当第一周期优选策略与各第二周期优选策略存在不一致时,则认为目标小区的簇状态为非簇内状态。
在一示例实施中,如图3所示,目标小区与各相干小区在下一周期的周期优选策略一致时,表明目标小区与各相干小区在下一周期的处于相同工作环境和状态,此时,认为目标小区的簇状态为簇内状态;目标小区与各相干小区在下一周期的周期优选策略不一致时,表明目标小区与各相干小区在下一周期处于不同的工作环境和状态,此时,认为目标小区的簇状态为非簇内状态。
在一示例实施中,以图4所给出的目标小区的策略信息表为例:对于目标小区40001,由于相干小区40003的周期优选策略与目标小区40001的周期优选策略不一致,因此目标小区40001为非簇内状态;对于目标小区40003,由于相干小区40001的周期优选策略与目标小区40003的周期优选策略不一致,因此目标小区40003为非簇内状态;对于目标小区40007,由于相干小区40011的周期优选策略与目标小区40007的周期优选策略不一致,因此目标小区40007为非簇内状态;对于目标小区40009,由于各相干小区40001和40007的周期优选策略与目标小区40009的周期优选策略均保持一致,因此目标小区40009为簇内状态;对于 目标小区40011,由于相干小区40007的周期优选策略与目标小区40011的周期优选策略不一致,因此目标小区40011为非簇内状态。
步骤103,根据第一周期优选策略和簇状态确定目标小区在下一周期的干扰协调策略。
在一示例实施中,目标小区的第一周期优选策略为纯5G状态或4/5G共享状态,目标小区的簇状态为簇内状态或非簇内状态;干扰协调策略的确定规则如下:(1)簇状态为簇内状态且第一周期优选策略为纯5G状态时,干扰协调策略为不进行干扰协调;(2)簇状态为簇内状态且第一周期优选策略为4/5G共享状态时,干扰协调策略为自适应开关符号级速率匹配策略;(3)簇状态为非簇内状态且第一周期优选策略为纯5G状态时,干扰协调策略为自适应开关符号级速率匹配策略;(4)簇状态为非簇内状态且第一周期优选策略为4/5G共享状态时,干扰协调策略为自适应开关符号级速率匹配策略。
在一示例实施中,自适应开关符号级速率匹配策略,包括:根据各相干小区的4G小区参考信号干扰强度确定是否进行符号级速率匹配;根据目标小区在信道状态信息干扰测量资源(Channel State Information-Interference Measurement Resource,简称CSI-IM)上测量的各资源块的干扰情况,从各资源块选取目标资源块并进行调度。
在一示例实施中,以图4所给出的目标小区的策略信息表为例:目标小区40001为非簇内状态且第一周期优选策略为纯5G状态,目标小区40001干扰协调策略为自适应开关符号级速率匹配策略;目标小区40003为非簇内状态且第一周期优选策略为4/5G共享状态,目标小区40003干扰协调策略为自适应开关符号级速率匹配策略;目标小区40007为非簇内状态且第一周期优选策略为纯5G状态,目标小区40007干扰协调策略为自适应开关符号级速率匹配策略;目标小区40009为非簇内状态且第一周期优选策略为纯5G状态,目标小区40009干扰协调策略为不进行干扰协调;目标小区40011为非簇内状态且第一周期优选策略为4/5G共享状态,目标小区40011干扰协调策略为自适应开关符号级速率匹配策略。
在一示例实施中,目标小区在下一周期内所使能的优选策略为图4所示的各周期优选策略。
本实施例,在目标小区的干扰协调过程中,获取目标小区在下一周期的策略信息表,所述策略信息表包含所述目标小区的第一周期优选策略和所述目标小区的各相干小区的第二周期优选策略;根据所述第一周期优选策略和各所述第二周期优选策略获取所述目标小区的簇状态;根据所述第一周期优选策略和所述簇状态确定所述目标小区在下一周期的干扰协调策略。通过结合目标小区和各相干小区的下一周期优选策略来获取目标小区的簇状态,之后根据目标小区的簇状态和周期优选策略确定合适的干扰协调策略;能够在帧结构编排或DSS编排方案下实现自动、精准的小区间干扰协调,以消除/削弱相干小区间干扰对用户信道质量的影响;解决了由于帧结构编排导致的相干小区间帧结构无法对齐和DSS编排导致的相干小区间小区状态无法对齐引起的相干小区间干扰严重的技术问题。
本申请的一个实施例涉及一种小区的干扰协调方法,应用在使用帧结构编排方案的目标小区中,如图5所示,包括:
步骤201,获取目标小区在下一周期的策略信息表,策略信息表包含目标小区的第一周期优选策略和目标小区的各相干小区的第二周期优选策略。
在一示例实施中,本步骤与本申请实施例的步骤101大致相同,此处不一一赘述。唯一的区别在于,第一周期优选策略和第二周期优选策略为DDDSU帧结构或DSUUU帧结构, 其中,DDDSU帧结构是指基站小区采用30KHz子载波间隔和2.5ms单周期帧结构,每个周期5个slot分别为3个下行slot,1个特殊slot和1个上行slot;DSUUU帧结构是指基站小区采用30KHz子载波间隔和2.5ms单周期帧结构,每个周期5个slot分别为1个下行slot,1个特殊slot和3个上行slot。
步骤202,根据第一周期优选策略和各第二周期优选策略获取目标小区的簇状态。
在一示例实施中,当第一周期优选策略与各第二周期优选策略均保持一致时,则目标小区的簇状态为簇内状态;当第一周期优选策略与各第二周期优选策略存在不一致时,则目标小区的簇状态为非簇内状态。
在一示例实施中,以图6所给出的目标小区的策略信息表为例:对于目标小区40001,由于相干小区40003和40007的周期优选策略与目标小区40001的周期优选策略不一致,因此目标小区40001为非簇内状态;对于目标小区40003,由于相干小区40001的周期优选策略与目标小区40003的周期优选策略不一致,因此目标小区40003为非簇内状态;对于目标小区40007,由于相干小区40001和40009的周期优选策略与目标小区40007的周期优选策略不一致,因此目标小区40007为非簇内状态;对于目标小区40009,由于各相干小区40007的周期优选策略与目标小区40007的周期优选策略不一致,因此目标小区40009为非簇内状态;对于目标小区40011,由于相干小区40007的周期优选策略与目标小区40011的周期优选策略一致,因此目标小区40011为簇内状态。
步骤203,根据第一周期优选策略和簇状态确定目标小区在下一周期的干扰协调策略。
在一示例实施中,第一周期优选策略为DDDSU帧结构或DSUUU帧结构,簇状态为簇内状态或非簇内状态;干扰协调策略的确定规则如下:(1)簇状态为簇内状态且第一周期优选策略为DDDSU帧结构,干扰协调策略为不进行干扰协调;(2)簇状态为非簇内状态且第一周期优选策略为DDDSU帧结构时,干扰协调策略为结合各相干小区的协调开关位图进行协调;(3)簇状态为簇内状态且第一周期优选策略为DSUUU帧结构时,干扰协调策略为不进行干扰协调;(4)簇状态为非簇内状态且第一周期优选策略为DSUUU帧结构时,干扰协调策略为结合各所述相干小区的协调开关位图进行协调。
在一示例实施中,以图6所给出的目标小区的策略信息表为例:目标小区40001为非簇内状态且第一周期优选策略为DDDSU帧结构,目标小区40001干扰协调策略为结合各相干小区的协调开关位图进行协调;目标小区40003为非簇内状态且第一周期优选策略为DSUUU帧结构,目标小区40003干扰协调策略为结合各相干小区的协调开关位图进行协调;目标小区40007为非簇内状态且第一周期优选策略为DSUUU帧结构,目标小区40007干扰协调策略为结合各相干小区的协调开关位图进行协调;目标小区40009为非簇内状态且第一周期优选策略为DDDSU帧结构,目标小区40009干扰协调策略为结合各相干小区的协调开关位图进行协调;目标小区40011为簇内状态且第一周期优选策略为DSUUU帧结构,目标小区40011干扰协调策略为不进行干扰协调。
在一示例实施中,目标小区在下一周期内所使能的优选策略为图6所示的各周期优选策略。
本实施例,在目标小区的干扰协调过程中,获取目标小区在下一周期的策略信息表,所述策略信息表包含所述目标小区的第一周期优选策略和所述目标小区的各相干小区的第二周期优选策略;根据所述第一周期优选策略和各所述第二周期优选策略获取所述目标小区的簇 状态;根据所述第一周期优选策略和所述簇状态确定所述目标小区在下一周期的干扰协调策略。通过结合目标小区和各相干小区的下一周期优选策略来获取目标小区的簇状态,之后根据目标小区的簇状态和周期优选策略确定合适的干扰协调策略;能够在帧结构编排或DSS编排方案下实现自动、精准的小区间干扰协调,以消除/削弱相干小区间干扰对用户信道质量的影响;解决了由于帧结构编排导致的相干小区间帧结构无法对齐和DSS编排导致的相干小区间小区状态无法对齐引起的相干小区间干扰严重的技术问题。
本申请的一个实施例涉及一种小区的干扰协调方法,应用在使用帧结构编排方案或使用DSS编排方案的目标小区中,如图7所示,包括:
步骤301,对目标小区进行周期性负荷预测,基于目标小区的预测结果获取第一周期优选策略。
在一示例实施中,目标小区的负荷包含但不限于逻辑小区的上行/下行PRB利用率、RRC用户数,激活用户数等;对目标小区进行周期性负荷预测是基于目标小区的历史周期负荷数据进行的,本申请并不对所采用的具体预测算法进行限制,任意一种周期性负荷预测算法均可以使用。
在一示例实施中,当目标小区采用动态共享频谱编排方式时,目标小区的第一周期优选策略的生成规则包括:(1)预测结果为目标小区4G负荷轻且目标小区对应的基础小区4G负荷轻,第一周期优选策略为采用纯5G状态;(2)预测结果为目标小区4G负荷轻且目标小区对应的基础小区4G负荷重时,第一周期优选策略为采用4/5G共享状态;(3)预测结果为目标小区4G负荷重时,第一周期优选策略为采用4/5G共享状态;其中,目标小区对于的基础小区是指可以接纳目标小区4G业务的基站小区。
在一示例实施中,当目标小区采用帧结构编排方式时;目标小区的第一周期优选策略的生成规则包括:(1)预测结果为目标小区下行负荷重时,第一周期优选策略为采用DDDSU帧结构;(2)预测结果为目标小区上行负荷重时,第一周期优选策略为采用DSUUU帧结构。
在一示例实施中,由于目标小区自身也是其他基站小区的相干小区,因此,目标小区在获取到第一周期优选策略之后,需要向其他同频相邻小区进行广播,所广播的信息包含小区标识和对应的周期优选策略。
步骤302,接收各相干小区的广播信息,所述广播信息包含第二周期优选策略和相干小区标识。
在一示例实施中,各相干小区在获取到第二周期优选策略之后,会将第二周期优选策略和相干小区标识一同进行广播,目标小区可以接收到各相干小区的广播信息。
在一示例实施中,由于目标小区和各相干小区的周期都是一致的,因此,目标小区和各相干小区生成周期优选策略的时间也是一致的,目标小区可以在生成第一周期优选策略之后,在预设时间内接收各相干小区的广播信息,且在预设时间结束后开始更新初始化策略信息表。
步骤303,根据目标小区标识和各相干小区标识将第一周期优选策略和各第二周期优选策略填充至预设初始化策略信息表,生成策略信息表。
在一示例实施中,初始化策略信息表的格式与图3或图5的策略信息表的格式一致,只是初始化策略信息表中只包含有目标小区和各相干小区的小区标识,目标小区和各相干小区对应的周期优选策略为空,在获取到目标小区的第一周期优选策略和各相干小区的第二周期优选策略之后,根据目标小区标识和各相干小区标识将第一周期优选策略和各第二周期优选 策略填充至初始化策略信息表的对应位置,就可以形成目标小区的策略信息表;其中,如图8所示,初始化策略信息表中包含有目标小区的小区标识和各相干小区的小区标识,在初始化策略信息表中目标小区和各相干小区对应的周期优选策略可以为初始周期优选策略(4G/5G DSS或DDDSU),也可以为空值。
步骤304,根据策略信息表中的第一周期优选策略和各第二周期优选策略获取目标小区的簇状态。
在一示例实施中,本步骤与本申请实施例的步骤102或步骤202大致相同,此处不一一赘述。
步骤305,根据第一周期优选策略和簇状态确定目标小区在下一周期的干扰协调策略。
在一示例实施中,本步骤与本申请实施例的步骤103或步骤203大致相同,此处不一一赘述。
本申请的实施方式,在其他实施例的基础之上还可以间隔周期对目标小区的策略信息表进行更新,使得确定的干扰协调策略能够与目标小区的业务情况保持一致,从而使得干扰协调策略的干扰协调能力达到最优。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本申请的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该申请的保护范围内。
本申请的另一个实施例涉及一种小区的干扰协调装置,应用在使用帧结构编排方案或使用DSS编排方案的目标小区中,下面对本实施例的小区的干扰协调装置的细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本例的必须,图9是本实施例所述的小区的干扰协调装置的示意图,包括:第一获取模块401、第二获取模块402和策略确定模块403。
其中,第一获取模块401,用于获取目标小区在下一周期的策略信息表,策略信息表包含目标小区的第一周期优选策略和目标小区的各相干小区的第二周期优选策略。
第二获取模块402,用于根据第一周期优选策略和各第二周期优选策略获取目标小区的簇状态。
策略确定模块403,用于基于预设干扰协调规则,根据第一周期优选策略和簇状态确定目标小区在下一周期的干扰协调策略。
不难发现,本实施例为与上述方法实施例对应的系统实施例,本实施例可以与上述方法实施例互相配合实施。上述实施例中提到的相关技术细节和技术效果在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
需要说明的是,本系统实施例主要是针对方法实施例提供的小区的干扰协调方法在软件实现层面上的描述,其实现还需要依托于硬件的支持,如相关模块的功能可以被部署到处理器上,以便处理器运行实现相应的功能,特别地,运行产生的相关数据可以被存储到存储器中以便后续检查和使用。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合 实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请另一个实施例涉及一种服务器,如图10所示,包括:至少一个处理器501;以及,与所述至少一个处理器501通信连接的存储器502;其中,所述存储器502存储有可被所述至少一个处理器501执行的指令,所述指令被所述至少一个处理器501执行,以使所述至少一个处理器501能够执行上述各实施例中的小区的干扰协调方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请另一个实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (11)

  1. 一种小区的干扰协调方法,包括:
    获取目标小区在下一周期的策略信息表,所述策略信息表包含所述目标小区的第一周期优选策略和所述目标小区的各相干小区的第二周期优选策略;
    根据所述第一周期优选策略和各所述第二周期优选策略获取所述目标小区的簇状态;
    根据所述第一周期优选策略和所述簇状态确定所述目标小区在下一周期的干扰协调策略。
  2. 根据权利要求1所述的小区的干扰协调方法,其中,当所述目标小区采用动态共享频谱编排方式时,所述第一周期优选策略为纯5G状态或4/5G共享状态,所述簇状态为簇内状态或非簇内状态;
    所述根据所述第一周期优选策略和所述簇状态确定所述目标小区在下一周期的干扰协调策略,包括:
    当所述簇状态为所述簇内状态且所述第一周期优选策略为所述纯5G状态时,所述干扰协调策略为不进行干扰协调;或者,
    当所述簇状态为所述簇内状态且所述第一周期优选策略为所述4/5G共享状态时,所述干扰协调策略为自适应开关符号级速率匹配策略;或者,
    当所述簇状态为所述非簇内状态且所述第一周期优选策略为所述纯5G状态时,所述干扰协调策略为所述自适应开关符号级速率匹配策略;或者,
    当所述簇状态为所述非簇内状态且所述第一周期优选策略为所述4/5G共享状态时,所述干扰协调策略为所述自适应开关符号级速率匹配策略。
  3. 根据权利要求2所述的小区的干扰协调方法,其中,所述自适应开关符号级速率匹配策略,包括:
    根据各所述相干小区的4G小区参考信号干扰强度确定是否进行符号级速率匹配;
    根据所述目标小区在信道状态信息干扰测量资源上测量的各资源块的干扰情况,从各所述资源块选取目标资源块并进行调度。
  4. 根据权利要求1所述的小区的干扰协调方法,其中,当所述目标小区采用帧结构编排方式时,所述第一周期优选策略为DDDSU帧结构或DSUUU帧结构,所述簇状态为簇内状态或非簇内状态;
    所述根据所述第一周期优选策略和所述簇状态确定所述目标小区在下一周期的干扰协调策略,包括:
    当所述簇状态为所述簇内状态且所述第一周期优选策略为所述DDDSU帧结构时,所述干扰协调策略为不进行干扰协调;或者,
    当所述簇状态为所述非簇内状态且所述第一周期优选策略为所述DDDSU帧结构时,所述干扰协调策略为结合各所述相干小区的协调开关位图进行协调;或者,
    当所述簇状态为所述簇内状态且所述第一周期优选策略为所述DSUUU帧结构时,所述干扰协调策略为所述不进行干扰协调;或者,
    当所述簇状态为所述非簇内状态且所述第一周期优选策略为所述DSUUU帧结构时,所述干扰协调策略为所述结合各所述相干小区的协调开关位图进行协调。
  5. 根据权利要求1至4中任一项所述的小区的干扰协调方法,其中,所述策略信息表还包含所述目标小区的目标小区标识和所述目标小区的各相干小区的相干小区标识;
    所述获取目标小区在下一周期的策略信息表,包括:
    对所述目标小区进行周期性负荷预测,基于所述目标小区的预测结果获取所述第一周期优选策略;
    接收各所述相干小区的广播信息,所述广播信息包含所述第二周期优选策略和所述相干小区标识;
    根据所述目标小区标识和各所述相干小区标识将所述第一周期优选策略和各所述第二周期优选策略填充至预设初始化策略信息表,生成所述策略信息表。
  6. 根据权利要求5所述的小区的干扰协调方法,其中,当所述目标小区采用动态共享频谱编排方式时,所述基于所述目标小区的预测结果获取所述第一周期优选策略,包括:
    当所述预测结果为所述目标小区4G负荷轻且所述目标小区对应的基础小区4G负荷轻时,所述第一周期优选策略为采用纯5G状态;或者,
    当所述预测结果为所述目标小区4G负荷轻且所述目标小区对应的基础小区4G负荷重时,所述第一周期优选策略为采用4/5G共享状态;或者,
    当所述预测结果为所述目标小区4G负荷重时,所述第一周期优选策略为采用4/5G共享状态。
  7. 根据权利要求5所述的小区的干扰协调方法,其中,当所述目标小区采用帧结构编排方式时;
    所述基于所述目标小区的预测结果获取所述第一周期优选策略,包括:
    当所述预测结果为所述目标小区下行负荷重时,所述第一周期优选策略为采用DDDSU帧结构;或者,
    当所述预测结果为所述目标小区上行负荷重时,所述第一周期优选策略为采用DSUUU帧结构。
  8. 根据权利要求1至4中任一项所述的小区的干扰协调方法,其中,所述根据所述第一周期优选策略和各所述第二周期优选策略获取所述目标小区的簇状态,包括:
    当所述第一周期优选策略与各所述第二周期优选策略均保持一致时,则所述目标小区的簇状态为簇内状态;或者,
    当所述第一周期优选策略与各所述第二周期优选策略存在不一致时,则所述目标小区的簇状态为非簇内状态。
  9. 一种小区的干扰协调装置,其中,所述装置包括:第一获取模块、第二获取模块和策略确定模块;
    所述第一获取模块,用于获取目标小区在下一周期的策略信息表,所述策略信息表包含所述目标小区的第一周期优选策略和所述目标小区的各相干小区的第二周期优选策略;
    所述第二获取模块,用于根据所述第一周期优选策略和各所述第二周期优选策略获取所述目标小区的簇状态;
    所述策略确定模块,用于基于预设干扰协调规则,根据所述第一周期优选策略和所述簇状态确定所述目标小区在下一周期的干扰协调策略。
  10. 一种服务器,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至8中任一项所述的小区的干扰协调方法。
  11. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至8中任一项所述的小区的干扰协调方法。
PCT/CN2022/121432 2021-12-17 2022-09-26 小区的干扰协调方法、装置、服务器和存储介质 WO2023109244A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22905996.9A EP4408054A1 (en) 2021-12-17 2022-09-26 Method and apparatus for inter-cell interference coordination, server, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111551195.5A CN116347452A (zh) 2021-12-17 2021-12-17 小区的干扰协调方法、装置、服务器和存储介质
CN202111551195.5 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023109244A1 true WO2023109244A1 (zh) 2023-06-22

Family

ID=86774798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121432 WO2023109244A1 (zh) 2021-12-17 2022-09-26 小区的干扰协调方法、装置、服务器和存储介质

Country Status (3)

Country Link
EP (1) EP4408054A1 (zh)
CN (1) CN116347452A (zh)
WO (1) WO2023109244A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131246A (zh) * 2010-01-14 2011-07-20 电信科学技术研究院 一种进行基站内部各小区动态干扰协调的方法及装置
CN104244256A (zh) * 2013-06-07 2014-12-24 中国移动通信集团公司 一种对小区进行干扰协调控制的方法和设备
CN106954227A (zh) * 2017-02-24 2017-07-14 南京邮电大学 超密集无线网络基于干扰协调的能效资源分配方法
US20170325207A1 (en) * 2016-05-06 2017-11-09 Qualcomm Incorporated Uplink Allocation Echoing
CN110380808A (zh) * 2019-07-24 2019-10-25 南京邮电大学 以用户设备为中心的微小区半分簇干扰协调方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131246A (zh) * 2010-01-14 2011-07-20 电信科学技术研究院 一种进行基站内部各小区动态干扰协调的方法及装置
CN104244256A (zh) * 2013-06-07 2014-12-24 中国移动通信集团公司 一种对小区进行干扰协调控制的方法和设备
US20170325207A1 (en) * 2016-05-06 2017-11-09 Qualcomm Incorporated Uplink Allocation Echoing
CN106954227A (zh) * 2017-02-24 2017-07-14 南京邮电大学 超密集无线网络基于干扰协调的能效资源分配方法
CN110380808A (zh) * 2019-07-24 2019-10-25 南京邮电大学 以用户设备为中心的微小区半分簇干扰协调方法

Also Published As

Publication number Publication date
EP4408054A1 (en) 2024-07-31
CN116347452A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US20200163074A1 (en) Beam selection method and device
RU2732066C2 (ru) Устройство и способ для назначения приоритета произвольного доступа многопользовательской системе беспроводной связи
US11778622B2 (en) Method and apparatus for obtaining information, terminal, and storage medium
JP5104769B2 (ja) 通信システム
JP6612971B2 (ja) セルラ・システムにおけるサブフレーム構成
US20220400402A1 (en) Apparatus and methods for user device buffer management in wireless networks
JP5373925B2 (ja) 協調mimoの複数のenbに同じリソースを割り当てるための方法およびデバイス
US20150173003A1 (en) Method and apparatus for cell search in sensor system
KR101813822B1 (ko) D2d 발견 신호의 송신 방법과 송신 장치
CN108141712B (zh) 用于处理接入信息的方法、网络节点和无线装置
US20160192225A1 (en) Method and apparatus for transmitting channel information report message in cloud radio access network (c-ran) environment
CN106162753B (zh) 一种资源分配方法及装置
JP6851537B2 (ja) サブセット制限を伴う広帯域幅でのueランダム・アクセスのためのシステムおよび方法
Qu et al. Power control based multiuser full-duplex MAC protocol for the next generation wireless networks
WO2014019381A1 (zh) 一种用户调度方法、主基站、用户设备及异构网络
US11876605B2 (en) Mitigating a local interference condition caused by concurrent transmissions in a multi-radio access technology and multi-connectivity environment
WO2021099064A1 (en) Policy-based resource pool allocation for low-latency iiot and other applications
WO2023125256A1 (zh) 调度、参数传输方法、装置、设备、系统及介质
WO2023109244A1 (zh) 小区的干扰协调方法、装置、服务器和存储介质
EP3197221B1 (en) Access method and device
EP4207659A1 (en) Method and device for coordinated communication of multiple access points, and storage medium
EP4091390B1 (en) Coordination of contention based wireless transmissions
US9332555B2 (en) System and method for direct mobile communication
CN106411450B (zh) 一种下行公共数据信道的配置及其数据传输方法
WO2024051155A1 (zh) 数据处理方法、装置、网络设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18703494

Country of ref document: US

Ref document number: 2022905996

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022905996

Country of ref document: EP

Effective date: 20240422

ENP Entry into the national phase

Ref document number: 2024533146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE