WO2022000927A1 - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
WO2022000927A1
WO2022000927A1 PCT/CN2020/128135 CN2020128135W WO2022000927A1 WO 2022000927 A1 WO2022000927 A1 WO 2022000927A1 CN 2020128135 W CN2020128135 W CN 2020128135W WO 2022000927 A1 WO2022000927 A1 WO 2022000927A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature detection
semiconductor device
memory chip
temperature
unit
Prior art date
Application number
PCT/CN2020/128135
Other languages
English (en)
French (fr)
Inventor
寗树梁
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/430,529 priority Critical patent/US20220307908A1/en
Priority to EP20940477.1A priority patent/EP4174461A4/en
Publication of WO2022000927A1 publication Critical patent/WO2022000927A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/028Means for indicating or recording specially adapted for thermometers arrangements for numerical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1932Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
    • G05D23/1934Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces each space being provided with one sensor acting on one or more control means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/2033Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature details of the sensing element
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/2033Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature details of the sensing element
    • G05D23/2034Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature details of the sensing element the sensing element being a semiconductor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • G11C5/025Geometric lay-out considerations of storage- and peripheral-blocks in a semiconductor storage device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2219/00Thermometers with dedicated analog to digital converters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5002Characteristic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to the field of memory, and in particular, to a semiconductor device.
  • Dynamic random access memory (Dynamic Random Access Memory, DRAM) is a semiconductor memory device commonly used in computers, and its memory array area is composed of many repeated memory cells. Each memory cell usually includes a capacitor and a transistor. The gate of the transistor is connected to the word line, the drain is connected to the bit line, and the source is connected to the capacitor. The voltage signal on the word line can control the opening or closing of the transistor, and then through the bit line The data information stored in the capacitor is read, or the data information is written into the capacitor through the bit line for storage.
  • DRAM Dynamic Random Access Memory
  • the technical problem to be solved by the present invention is to provide a semiconductor device, which can prevent the memory chip from starting and running at low temperature, shorten the writing time, and improve the writing stability of the memory chip.
  • the present invention provides a semiconductor device including a memory chip and a temperature detection module, the temperature detection module is used to detect the temperature of the memory chip, when the temperature detected by the temperature detection module reaches a set temperature When the threshold value is reached, the memory chip is activated, and the temperature detection module includes: a temperature detection unit for detecting the temperature of the memory chip and outputting an analog signal corresponding to the temperature; an A/D conversion module with an input terminal and an output end, the input end receives the analog signal output by the temperature detection unit, the output end outputs a digital signal, and the A/D conversion module is used to convert the analog signal output by the temperature detection unit into a digital signal .
  • the temperature detection unit and the memory chip are powered by different power sources.
  • the power supply of the temperature detection unit is earlier than the power supply of the memory chip.
  • the temperature detection unit includes: a fixed-value resistor with a first end and a second end, the first end is electrically connected to a power supply; a diode is connected in series with the fixed-value resistor, and the positive end of the diode is connected to the The second end of the constant-value resistor is connected, and the negative end of the diode is electrically connected to the ground end.
  • the temperature detection unit further includes an adjustable resistor, and the adjustable resistor is connected in parallel with the diode.
  • the A/D conversion module includes: a resistance unit having a first end and a second end, the first end of the resistance unit is electrically connected to the power supply, the second end of the resistance unit is electrically connected to the ground terminal,
  • the resistance unit has a plurality of lead terminals, and the voltage of each lead end is different; a plurality of comparison units, the signal of the input end of the A/D conversion module is used as the input signal of the comparison unit, and the plurality of lead ends of the resistance unit are used as the input signal of the comparison unit.
  • the signals are respectively used as reference signals of a plurality of the comparison units, and the comparison units output digital signals.
  • the A/D conversion module further includes an encoding unit, and the encoding unit receives and encodes the digital signal output by the comparison unit.
  • the resistance unit includes a plurality of sub-resistors connected in series, and the number of the sub-resistors spaced between each lead end of the resistance unit and the second end of the resistance unit is different, so that the voltage of each lead end is different. different.
  • the resistance values of the sub-resistors are the same or different.
  • the number of sub-resistors spaced between each lead end of the resistance unit and the second end of the resistance unit is incremented by a preset value.
  • the A/D conversion module further includes an output unit, the output unit is connected to the comparison unit, and is used for outputting the digital signal.
  • the temperature detection unit is provided in the memory chip.
  • the A/D conversion module is arranged in the memory chip.
  • the temperature detection unit and the memory chip share the same ground terminal.
  • the memory chips are electrically connected to the ground terminal and the power supply through a through silicon via structure.
  • the temperature detection unit is electrically connected to a power source through a through silicon via structure.
  • thermo detection units there are one or more temperature detection units, and the temperature detection units are in one-to-one correspondence with the memory chips.
  • the semiconductor device further includes a control chip, and the memory chip and the temperature detection unit are electrically connected to the control chip.
  • the memory chip is arranged on the control chip.
  • the semiconductor device further includes a circuit substrate, the circuit substrate has connection lines, the memory chip and the control chip are both located on the circuit substrate, and the memory chip and the control chip pass through all the circuit substrates.
  • the connecting lines are electrically connected.
  • control chip is used to heat the memory chip before the memory chip is started, and determine whether the temperature detected by the temperature detection unit reaches a set threshold, and if it reaches the set threshold, control the memory chip to start.
  • the advantage of the present invention is that the temperature of the memory chip is detected by the temperature detection module, when the temperature detected by the temperature detection module reaches a set threshold, the memory chip starts up, and the temperature detected by the temperature detection module is the startup and operation of the memory chip Provide a reference to prevent the memory chip from starting and running at low temperature, shorten the writing time, and improve the writing stability of the memory chip.
  • the temperature detection module of the present invention has a simple circuit structure and is easy to implement, and the temperature detection module occupies a small area without affecting the effective area of the memory chip.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a semiconductor device of the present invention
  • 2A is a circuit diagram of a temperature detection module in the semiconductor device of the present invention.
  • 2B is a schematic diagram of electrical connection of the first embodiment of the semiconductor device of the present invention.
  • FIG. 3 is a schematic structural diagram of a second embodiment of the semiconductor device of the present invention.
  • FIG. 4 is a schematic structural diagram of a third embodiment of the semiconductor device of the present invention.
  • FIG. 5 is a schematic structural diagram of a fourth embodiment of the semiconductor device of the present invention.
  • the present invention provides a semiconductor device, which uses a temperature detection module to detect the temperature of the memory chip, so as to provide a reference for the start-up and operation of the memory chip, thereby preventing the memory chip from starting and operating at low temperature, shortening the writing time, and improving the performance of the memory chip. Stability of memory chip writing.
  • FIG. 1 is a schematic structural diagram of a first embodiment of the semiconductor device of the present invention
  • FIG. 2A is a circuit diagram of a temperature detection module in the semiconductor device of the present invention.
  • the semiconductor device of the present invention includes a memory chip 100 and a temperature detection module 110.
  • the semiconductor device further includes a control chip 120 , the memory chip 100 and the temperature detection module 110 are electrically connected to the control chip 120 .
  • the control chip 120 is used to control the startup and operation of the memory chip 100 and the temperature detection module 110 .
  • the startup of the memory chip 100 includes power-on and self-checking, and the operation of the memory chip 100 includes writing data to the memory chip 100 , reading data from the memory chip 100 , and deleting the data accessed in the memory chip 100 . Wait.
  • the memory chip 100 is an existing memory capable of data writing, data reading and/or data deletion, and the memory chip 100 is formed by a semiconductor integrated manufacturing process.
  • the memory chip 100 may include a memory array and peripheral circuits connected to the memory array.
  • the memory array includes a plurality of memory cells and bit lines, word lines, and metal wirings (metal contact lines) connected to the memory cells. part), the storage unit is used for storing data, and the peripheral circuit is a related circuit when operating the storage array.
  • the memory chip 100 is a DRAM memory chip, and the DRAM memory chip includes a plurality of memory cells.
  • the memory cells generally include capacitors and transistors, the gates of the transistors are connected to the word lines, and the drains are connected to the word lines. It is connected to the bit line, and the source is connected to the capacitor.
  • the memory chip 100 may be other types of memory chips.
  • the temperature detection module 110 is used to detect the temperature of the memory chip 100 and provide a signal to the control chip 120 .
  • the control chip 120 controls the memory chip 100 to start up.
  • the specific size of the set threshold may be set according to actual needs or experience.
  • the temperature detection module 110 includes a temperature detection unit 111 and an A/D conversion module 112 .
  • the temperature detection unit 111 is configured to detect the temperature of the memory chip 100 and output an analog signal corresponding to the temperature.
  • the A/D conversion module 112 is configured to convert the analog signal output by the temperature detection unit 111 into a digital signal, and the digital signal is provided to the control chip 120 as a reference signal for whether the memory chip 100 is activated.
  • the A/D conversion module 112 has an input end and an output end, the input end receives the analog signal output by the temperature detection unit 111 , and the output end outputs a digital signal.
  • the semiconductor device includes one or more memory chips 100 , and the temperature detection module 110 includes one or more temperature detection units 111 .
  • the temperature detection unit 111 can be used to detect the temperature of one or more memory chips 100 .
  • the temperature detection unit 111 and the memory chip 100 may be in a one-to-one relationship or a one-to-many relationship.
  • the temperature detection unit 111 and the memory chip 100 are in a one-to-one relationship, and the temperature detection unit 111 It is only used to detect the temperature of the memory chip 100 .
  • the temperature detection unit 111 and the memory chip 100 are in a one-to-many relationship, and the temperature detection unit 111 has a one-to-many relationship. It is used for detecting the temperature of a plurality of the memory chips 100 .
  • the The temperature detection unit 111 and the memory chip 100 may have a one-to-one relationship and a one-to-many relationship at the same time, or only a one-to-many relationship. That is, there may be a situation in which one temperature detection unit 111 detects the temperature of only one memory chip 100 and one temperature detection unit 100 detects the temperature of a plurality of the memory chips 100 , or only one temperature detection unit 100 detects a plurality of the temperature of the memory chip 100 .
  • the The temperature detection unit 111 is in a one-to-one relationship with the memory chip 100 , and one of the temperature detection units 111 is used to detect the temperature of one of the memory chips 100 .
  • the number of the memory chips 100 is plural, and the number of the temperature detection units 111 is also plural, as shown in FIG. 1 , which is schematically drawn in FIG. 1 .
  • Four memory chips 100 and four temperature detection units 111 are shown, a plurality of the memory chips 100 are stacked and arranged, and the temperature detection units 111 are in one-to-one correspondence with the memory chips 100 .
  • the temperature detection unit 111 includes a constant-value resistor Ra and a diode D.
  • the constant-value resistor Ra has a first end and a second end, and the first end is electrically connected to the power supply Vtemp.
  • the diode D is connected in series with the fixed-value resistor Ra, the positive terminal of the diode D is connected to the second terminal of the fixed-value resistor Ra, and the negative terminal of the diode D is electrically connected to the ground terminal VSS.
  • the diode D is sensitive to temperature, and as the temperature of its surrounding environment changes, its current changes, which can then be used to measure the temperature of the surrounding environment.
  • the temperature detection unit 111 further includes an adjustable resistor Rb, and the adjustable resistor Rb is connected in parallel with the diode D for calibrating the diode D.
  • the resistance value of the adjustable resistor Rb can be changed, for example, the resistance value of the adjustable resistor Rb can be changed through the control of the control chip 120 , so that the calibration of the diode D can be realized.
  • the temperature detection unit 111 may be formed in the memory chip 100 through a semiconductor integrated fabrication process. If the temperature detection unit 111 is only used to detect the temperature of one memory chip 100, it can be formed in the memory chip 100. For example, in this embodiment, as shown in FIG. 1, the temperature detection unit 111 and the memory chip 100 are in one-to-one correspondence, and each memory chip 100 is provided with a temperature detection unit 111 . If the temperature detection unit 111 is used to detect the temperature of a plurality of memory chips 100 , it can be formed in any one of the memory chips 100 of the plurality of memory chips 100 , or formed in the middle or bottommost memory chip 100 . Inside. For example, in the second embodiment of the present invention, please refer to FIG. 3 , which is a schematic structural diagram of the second embodiment of the semiconductor device of the present invention. The temperature detection unit 111 is arranged in the bottommost memory chip 100 and can measure four memory chips. temperature of the chip 100 .
  • the temperature detection unit 111 is not provided in the memory chip 100 , but is provided in the control chip 120 .
  • FIG. 4 is a schematic structural diagram of a third embodiment of the semiconductor device of the present invention.
  • the temperature detection unit 111 is arranged in the control chip 120 and can measure the four memory chips 100 stacked on the control chip 120 . temperature.
  • FIG. 5 is a schematic structural diagram of a semiconductor device according to a fourth embodiment of the present invention.
  • the semiconductor device further includes a circuit substrate 130 with connecting lines (Fig. (not shown), the memory chip 100 and the control chip 120 are both located on the circuit substrate 130 , and the memory chip 100 and the control chip 120 are electrically connected through the connection lines in the circuit substrate 130 .
  • the temperature detection unit 111 is also disposed on the circuit substrate 130 to measure the ambient temperature, which is close to the temperature of the memory chip 100 , which can be approximated as the temperature of the memory chip 100 .
  • the circuit substrate 130 includes but is not limited to a PCB circuit board.
  • the temperature detection unit 111 may not be disposed on the circuit substrate 130 , but is disposed in the memory chip 100 as shown in FIGS. 1 , 3 and 4 . Or in the control chip 120 .
  • control chip 120 in controlling the startup of the memory chip 100 in the embodiment of the present invention can also be realized by setting a control circuit in the memory chip 100.
  • the existence of the control chip 120 is not required, and the art Those skilled in the art should understand that it can be set by themselves as required.
  • the temperature detection unit 111 and the memory chip 100 are powered by different power sources.
  • 2B is a schematic diagram of electrical connection of the semiconductor device according to the first embodiment of the present invention. Please refer to FIG. 2B .
  • the temperature detection unit 111 is powered by the power supply Vtemp
  • the memory chip 100 is powered by the VDD.
  • the ground terminal VSS, the power supply VDD and the power supply Vtemp are provided by the control chip 120 . Since the temperature detection unit 111 and the memory chip 100 are powered by different power sources, the power supply of the temperature detection unit 111 and the memory unit 100 can be independently controlled, so that the temperature detection unit 111 and the storage unit 100 can be independently controlled.
  • the memory chip 100 is not activated at the same time.
  • the present invention can control the activation of the temperature detection unit 111 and the memory chip 100 respectively, that is, the activation of the temperature detection unit 111 is not affected by whether the memory chip 100 is activated, so that the temperature detection of the memory chip 100 is not affected by the memory chip 100.
  • the influence of whether the chip 100 is started can provide a reference for the start and operation of the memory chip 100 , thereby preventing the memory chip 100 from starting or running at a low temperature, and improving the stability of the memory chip 100 .
  • temperature has a great influence on the performance of the memory chip 100 , especially when the memory chip 100 is activated. If the memory chip 100 is started at a low temperature, the time for writing data into the memory chip 100 will change (eg, lengthen), which will affect the stability of the memory chip 100 writing. temperature so that the memory chip 100 can be activated within a suitable temperature.
  • the power supply of the temperature detection unit 111 in the present invention is earlier than the power supply of the memory chip 100 , that is, before the memory chip 100 is started, the temperature detection unit 111 has been started, so that the temperature before the start of the memory chip 100 can be obtained.
  • the temperature provides a reference for the startup of the memory chip 100 .
  • the power supply time difference between the temperature detection unit 111 and the memory chip 100 depends on the temperature change rate of the memory chip 100.
  • the temperature change rate of the memory chip 100 is large, the time for the memory chip 100 to reach the preset temperature is short, the power supply time difference between the temperature detection unit 111 and the memory chip 100 is small, and if the temperature change rate of the memory chip 100 is small and the time for the memory chip 100 to reach the preset temperature is long, the temperature detection The power supply time difference between the unit 111 and the memory chip 100 is large.
  • the temperature detection unit 111 and the memory chip 100 share the same ground terminal VSS.
  • the advantage is that, on the one hand, the leakage current of the memory chip 100 in the non-starting stage will not be increased, and on the other hand, the number of pins will be reduced and space will be saved.
  • a plurality of memory chips 100 are stacked on the control chip 120 , and the control chip 120 is bonded to the bottommost memory chip 100 in the stacked structure.
  • the memory chip 100 is disposed on the control chip 120, and the control chip 120 and the memory chip 100 are bonded together.
  • the memory chip 100 is formed with a through silicon via interconnection structure 101 , and the memory chip 100 and the control chip 120 are electrically connected through the through silicon via interconnection structure 101 , and the temperature detection unit 111 is electrically connected with the control chip 120 . That is, the memory chip 100 is electrically connected to the ground terminal VSS and the power supply VDD through the through silicon via interconnection structure 101 , and the temperature detection unit 111 is electrically connected to the power supply Vtemp and the ground terminal VSS.
  • each memory chip 100 when a plurality of memory chips 100 are stacked and arranged, each memory chip 100 can be connected to the control chip 120 through different through-silicon via interconnect structures; when there are multiple temperature detection units 111, There may be a situation where each temperature detection unit 111 is connected to the control chip 120 through different through silicon via interconnect structures, and there may also be a situation where multiple temperature detection units 111 share a through silicon via interconnect structure to be connected to the control chip 120 . It can be understood that the memory chip 100 and the temperature detection unit 111 are connected to the control chip 120 through different through-silicon via interconnect structures, so that the temperature detection unit 111 and the memory chip 100 can use different Power supply. Further, the power supply of a plurality of the temperature detection units 111 may also share the process through-silicon via interconnection structure.
  • the memory chip 100 and the temperature detection unit may also be electrically connected to the control chip 120 through metal wires (formed by a wire bonding process).
  • the A/D conversion module 112 includes a resistance unit and a plurality of comparison units Px.
  • the resistance unit has a first end and a second end.
  • the first end of the resistance unit is electrically connected to a power source.
  • the resistance unit and the temperature detection unit 111 may use the same power source, or may use different power sources.
  • the A/D conversion module 112 is provided in the memory chip 100, the first end of the resistance unit and the temperature detection unit 111 can use the same power supply Vtemp; if the A/D conversion module 112 is provided with the same power supply Vtemp In the control chip 120, the first end of the resistance unit and the temperature detection unit 111 may use different power supplies, and the resistance unit may use the power supply VDD.
  • the second terminal of the resistance unit is electrically connected to the ground terminal VSS.
  • the resistance unit has a plurality of lead-out terminals Ax, and the voltage of each lead-out terminal Ax is different.
  • the resistance unit includes a plurality of sub-resistors Rx connected in series, and the number of the sub-resistors Rx spaced between each lead end Ax of the resistance unit and the second end of the resistance unit is different, So that the voltage of each terminal Ax is different.
  • a sub-resistor R1 is spaced between the lead-out terminal A1 and the second end of the resistance unit, and sub-resistors R1 and R2 are spaced between the lead-out end A2 and the second end of the resistance unit, so the voltages of the lead-out end A1 and the lead-out end A2 are different.
  • the number of sub-resistors Rx spaced between each lead end Ax of the resistance unit and the second end of the resistance unit is incremented by a preset value.
  • the preset value may be a certain value or a variable value.
  • the number of sub-resistors Rx spaced between each lead end Ax of the resistance unit and the second end of the resistance unit is incremented by a constant value of 1.
  • the fixed value can also be incremented by 2 or the like.
  • the preset value When the preset value is a variable value, the preset value has a changing trend.
  • the resistance values of the sub-resistors Rx are the same or different, so that the voltage increase changes between the lead-out terminals Ax are consistent or inconsistent. Wherein, if the resistance values of the sub-resistors Rx are the same, the difficulty of layout layout can be simplified, which is simple and easy to implement, and convenient for manufacture.
  • the signal at the input end of the A/D conversion module is used as the input signal of the comparison unit Px, that is, the analog signal output by the temperature detection unit is used as the input signal of the comparison unit Px.
  • the signals of the multiple terminals Ax of the resistance unit are respectively used as the reference signals of the multiple comparison units Px.
  • the lead-out terminal Ax corresponds to the comparison unit Px one-to-one.
  • the signal of the lead-out terminal A1 is used as the reference signal of the comparison unit P1
  • the signal of the lead-out terminal A2 is used as the reference signal of the comparison unit P2, and so on, the lead-out terminal Ax and the comparison unit Px are one A correspondence.
  • the comparison unit Px outputs a digital signal. According to the digital signal output by the comparison unit Px, the temperature of the memory chip 100 detected by the temperature detection unit 111 can be obtained.
  • the A/D conversion module 112 further includes an output unit 1120, the output unit 1120 is connected to the comparison unit Px, and is used for outputting the digital signal. Further, in this embodiment, the A/D conversion module 112 further includes an encoding unit EEC, the encoding unit EEC receives the digital signal output by the comparison unit Px, and performs encoding, and the formed signal is input to the output Unit 1120, the output unit 1120 outputs the encoded digital signal.
  • the semiconductor device of the present invention uses the temperature detection module to detect the temperature of the memory chip.
  • the temperature detected by the temperature detection module reaches the set threshold, or after the temperature of the memory chip 100 reaches the set threshold, the memory chip is activated and the temperature
  • the temperature detected by the detection module provides a reference for the startup and operation of the memory chip, thereby preventing the memory chip from starting and operating at low temperature, shortening the writing time, and improving the writing stability of the memory chip.
  • the control chip 120 of the present invention can also be started before the memory chip 100 is started, and the control chip 120 uses the heat generated by itself to heat the memory chip 100 after being started to rapidly increase the temperature of the memory chip 100 .
  • control chip 120 controls the temperature detection unit 111 to be activated to detect the temperature of the memory chip 100 .
  • the temperature detection unit 111 can also transmit the detected temperature to the control chip 120 as data of the control chip 120 .
  • the control chip 120 can determine whether the temperature detected by the temperature detection unit 111 reaches the set threshold, and if the temperature reaches the set threshold, the memory chip 100 is controlled to start up.
  • the control unit 120 determines that the temperature detected by the temperature detection unit 111 reaches the set threshold, Then the control chip 120 controls the memory chip 100 to start up.
  • the control unit 120 determines that the temperature detected by the temperature detection unit 111 reaches the set threshold, then The control unit 120 first controls the memory chip 100 closest to the control chip 120 to start up, and then controls the other memory chips 100 above to start up in sequence.
  • temperature detection units 111 and multiple memory chips 100 there are multiple temperature detection units 111 and multiple memory chips 100, and there may be a temperature detection unit 111 that detects the temperature of only one memory chip 100 and a temperature detection unit 111 that detects the temperature of multiple memory chips 100 situation, or only one temperature detection unit 111 detects the temperature of a plurality of the memory chips 100, when the control unit 120 determines that the temperature detected by a certain temperature detection unit 111 reaches the set threshold, it controls the temperature detection unit 111 corresponding to If the temperature detection unit 111 detects the temperature of multiple memory chips 100, it first controls the memory chip 100 closest to the control chip 120 to start up, and then controls the other memory chips 100 above to start up in sequence.
  • the control unit 110 determines that the temperature detected by a certain temperature detection unit 111 reaches the set threshold
  • the memory chip 100 corresponding to the temperature detection unit 111 is controlled to start up.
  • there are 4 memory chips 100 in the stacked structure shown in FIG. 1 and each memory chip 100 has a corresponding temperature detection unit 111 , so each temperature detection unit 111 can detect the temperature of the corresponding memory chip 100 .
  • the control chip 120 will sequentially determine whether the temperature detected by the four temperature detection units 111 reaches the set threshold value, if the temperature detected by a certain temperature detection unit 111 reaches the set threshold value , then control the memory chip corresponding to the temperature detection unit 111 to start up. For example, when the temperature detected by the temperature detection unit 111 in the bottommost memory chip 100 in the stack structure first reaches the set threshold, the control chip 120 first controls the stack structure. The memory chip 100 at the bottom layer starts up, and then, when the temperature detected by the temperature detection unit 111 corresponding to the memory chip 100 in the penultimate layer in the stack structure also reaches the set threshold, the control unit 301 then controls the temperature in the stack structure. The memory chip 100 in the penultimate layer is activated, and the memory chips 100 in the upper two layers are activated and so on.
  • the aforementioned control structure and control method can further improve the accuracy of the start-up timing of each memory chip 100, and can further reduce the need for each memory chip 100 in a low temperature environment.
  • the writing time during data writing further improves the stability of writing to each memory chip 100 .
  • the temperature of the memory chip 100 can be increased to a set threshold by controlling the chip 120, thereby preventing the bit lines, word lines, and metal connections (metal contacts) in the memory chip 100 from The resistance increases due to the low ambient temperature, thereby reducing the writing time when writing data to the storage chip in a low temperature environment, and improving the writing stability of the storage chip.
  • the set threshold can be set in the control chip 120, and the specific size of the set threshold can be set according to actual needs or experience.
  • control chip 120 may have an additional heating circuit (not shown in the drawings).
  • the heating circuit is used for heating the memory chip 100 .
  • the control chip 120 determines whether the temperature of the memory chip 100 detected by the temperature detection unit 111 reaches the set threshold, and if it does not reach the set threshold, Then, the heating circuit is controlled to heat the memory chip 100 , and if the set threshold is reached, the heating circuit is controlled to stop heating the memory chip 100 . In this way, precise control of the heating process is achieved, so that the temperature of the memory chip 100 can be kept near the set threshold, preventing the temperature of the memory chip 100 from being too high or too low, so that the writing time to the memory can always be kept short.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Remote Sensing (AREA)
  • Dram (AREA)
  • Read Only Memory (AREA)

Abstract

一种半导体装置,其包括存储芯片(100)及温度检测模块(110),温度检测模块(110)用于检测存储芯片(100)的温度,当温度检测模块(110)检测的温度达到设定阈值时,存储芯片(100)启动,温度检测模块(110)包括:温度检测单元(111),用于检测存储芯片(100)的温度,并输出与温度对应的模拟信号;A/D转换模块(112),具有输入端及输出端,输入端接收温度检测单元(111)输出的模拟信号,输出端输出数字信号,A/D转换模块(112)用于将温度检测单元(111)输出的模拟信号转换为数字信号。利用温度检测模块(110)检测存储芯片(100)的温度,为存储芯片(100)启动及运行提供参考,避免存储芯片(100)低温下启动及运行,缩短写入时间,提高存储芯片(100)写入稳定性;温度检测模块(110)电路结构简单,易于实现,占用面积小,不会对存储芯片(100)有效面积产生影响。

Description

半导体装置
相关申请引用说明
本申请要求于2020年06月30日递交的中国专利申请号202010611253.8,申请名为“半导体装置”的优先权,其全部内容以引用的形式附录于此。
技术领域
本发明涉及存储器领域,尤其涉及一种半导体装置。
背景技术
动态随机存取存储器(Dynamic Random Access Memory,DRAM)是计算机中常用的半导体存储器件,其存储阵列区由许多重复的存储单元组成。每个存储单元通常包括电容器和晶体管,晶体管的栅极与字线相连、漏极与位线相连、源极与电容器相连,字线上的电压信号能够控制晶体管的打开或关闭,进而通过位线读取存储在电容器中的数据信息,或者通过位线将数据信息写入到电容器中进行存储。
温度对存储器写入存在较大影响,在低温环境中,对存储器进行写入时,存在写入时间较长,写入的稳定性不高的问题。
发明内容
本发明所要解决的技术问题是,提供一种半导体装置,其能够避免存储芯片在低温下启动及运行,缩短写入时间,提高存储芯片写入的稳定性。
为了解决上述问题,本发明提供了一种半导体装置,其包括存储芯片及温度检测模块,所述温度检测模块用于检测所述存储芯片的温度,当所述温度检测模块检测的温度达到设定阈值时,所述存储芯片启动,所述温度检测模块包括:温度检测单元,用于检测所述存储芯片的温度,并输出与所述温度对应的模拟信号;A/D转换模块,具有输入端及输出端,所述输入端接收所述温度检测单元输出的模拟信号,所述输出端输出数字信号,所述A/D转换模块用于将所述温度检测单元输出的模拟信号转换为数字信号。
进一步,所述温度检测单元与所述存储芯片采用不同的电源供电。
进一步,所述温度检测单元的供电早于所述存储芯片的供电。
进一步,所述温度检测单元包括:定值电阻,具有第一端及第二端,所述第一端与电源电连接;二极管,与所述定值电阻串联,所述二极管的正端与所 述定值电阻的第二端连接,所述二极管的负端与接地端电连接。
进一步,所述温度检测单元还包括可调电阻,所述可调电阻与所述二极管并联。
进一步,所述A/D转换模块包括:电阻单元,具有第一端及第二端,所述电阻单元的第一端与电源电连接,所述电阻单元的第二端与接地端电连接,所述电阻单元具有多个引出端,每一引出端的电压不同;多个比较单元,所述A/D转换模块输入端的信号作为所述比较单元的输入信号,所述电阻单元的多个引出端信号分别作为多个所述比较单元的参考信号,所述比较单元输出数字信号。
进一步,所述A/D转换模块还包括编码单元,所述编码单元接收所述比较单元输出的数字信号,并进行编码。
进一步,所述电阻单元包括多个串联连接的子电阻,所述电阻单元的每一引出端与所述电阻单元的第二端之间间隔的子电阻的数量不同,以使每一引出端的电压不同。
进一步,所述子电阻的电阻值相同或不同。
进一步,所述电阻单元的每一引出端与所述电阻单元的第二端之间间隔的子电阻的数量以预设数值递增。
进一步,所述A/D转换模块还包括输出单元,所述输出单元与所述比较单元连接,用于将所述数字信号输出。
进一步,所述温度检测单元设置在所述存储芯片中。
进一步,所述A/D转换模块设置在所述存储芯片中。
进一步,所述温度检测单元与所述存储芯片共用同一接地端。
进一步,所述存储芯片为一个或者多个,当所述存储芯片为多个时,若干所述存储芯片依次向上堆叠。
进一步,当所述存储芯片为多个时,所述存储芯片通过硅通孔结构与接地端及电源电连接。
进一步,所述温度检测单元通过硅通孔结构与电源电连接。
进一步,所述温度检测单元为一个或者多个,所述温度检测单元与所述存储芯片一一对应。
进一步,所述半导体装置还包括控制芯片,所述存储芯片及所述温度检测单元与所述控制芯片电连接。
进一步,所述存储芯片设置在所述控制芯片上。
进一步,所述半导体装置还包括线路基板,所述线路基板中具有连接线路,所述存储芯片以及控制芯片均位于所述线路基板上,所述存储芯片和控制芯片通过所述线路基板中的所述连接线路电连接。
进一步,所述控制芯片用于在存储芯片启动之前对存储芯片进行加热,并判断所述温度检测单元检测的温度是否达到设定阈值,若达到设定阈值,则控制所述存储芯片启动。
本发明的优点在于,利用温度检测模块检测存储芯片的温度,当所述温度检测模块检测的温度达到设定阈值时,所述存储芯片启动,温度检测模块检测的温度为存储芯片的启动及运行提供参考,从而避免存储芯片在低温下启动及运行,缩短写入时间,提高存储芯片写入的稳定性。另外,本发明温度检测模块电路结构简单,易于实现,且温度检测模块占用面积小,不会对存储芯片有效面积产生影响。
附图说明
图1是本发明半导体装置的第一实施例的结构示意图;
图2A是本发明半导体装置中温度检测模块的电路图;
图2B是本发明半导体装置的第一实施例的电连接示意图;
图3是本发明半导体装置第二实施例的结构示意图;
图4是本发明半导体装置第三实施例的结构示意图;
图5是本发明半导体装置第四实施例的结构示意图。
具体实施方式
下面结合附图对本发明提供的半导体装置的实施例做详细说明。
如背景技术所言,温度对存储器写入存在较大影响,在低温环境中,对存储器进行写入时,存在写入时间较长,写入的稳定性不高的问题。
研究发现,现有的存储器工作在低温环境中时,由于温度下降会使得存储器中的位线、字线、以及金属连线(金属接触部)等的电阻会增大,电阻的增大,会使得向存储器中写入数据时的时间会变化或加长,影响了存储器写入的 稳定性。
因此,本发明提供一种半导体装置,其采用温度检测模块检测所述存储芯片的温度,以为存储芯片的启动及运行提供参考,从而避免存储芯片在低温下启动及运行,缩短写入时间,提高存储芯片写入的稳定性。
图1是本发明半导体装置的第一实施例的结构示意图,图2A是本发明半导体装置中温度检测模块的电路图,请参阅图1及图2A,本发明半导体装置包括存储芯片100及温度检测模块110。
所述半导体装置还包括控制芯片120,所述存储芯片100及所述温度检测模块110与所述控制芯片120电连接。所述控制芯片120用于控制所述存储芯片100及所述温度检测模块110的启动及运行。所述存储芯片100的启动包括上电以及自检测,所述存储芯片100的运行包括向存储芯片100中写入数据,从存储芯片100读取数据,以及将存储芯片100中存取的数据删除等。
所述存储芯片100为现有能进行数据写入、数据读取和/或数据删除的存储器,所述存储芯片100通过半导体集成制作工艺形成。具体的说,所述存储芯片100可以包括存储阵列和与存储阵列连接的外围电路,所述存储阵列包括多个存储单元和与存储单元连接的位线、字线、以及金属连线(金属接触部),所述存储单元用于存储数据,所述外围电路为在对存储阵列进行操作时的相关电路。本实施例中,所述存储芯片100为DRAM存储芯片,所述DRAM存储芯片中包括多个存储单元,所述存储单元通常包括电容器和晶体管,所述晶体管的栅极与字线相连、漏极与位线相连、源极与电容器相连。在其他实施例中所述存储芯片100可以为其他类型的存储芯片。
所述温度检测模块110用于检测所述存储芯片100的温度,并将信号提供给控制芯片120。当所述温度检测模块110检测的温度达到设定阈值时,所述控制芯片120控制所述存储芯片100启动。其中,设定阈值的具体大小可以根据实际需要或者经验进行设定。
其中,所述温度检测模块110包括温度检测单元111及A/D转换模块112。
所述温度检测单元111用于检测所述存储芯片100的温度,并输出与所述温度对应的模拟信号。所述A/D转换模块112用于将所述温度检测单元111输出的模拟信号转换为数字信号,该数字信号作为所述存储芯片100是否启动的 参考信号提供给控制芯片120。所述A/D转换模块112具有输入端及输出端,所述输入端接收所述温度检测单元111输出的模拟信号,所述输出端输出数字信号。
所述半导体装置包括一个或者多个存储芯片100,所述温度检测模块110包括一个或者多个温度检测单元111。所述温度检测单元111可用于检测一个或者多个存储芯片100的温度。其中,所述温度检测单元111与所述存储芯片100可为一对一关系,或者一对多关系。
当所述存储芯片100的个数为一个,所述温度检测单元111的个数也为一个时,所述温度检测单元111与所述存储芯片100为一对一关系,所述温度检测单元111仅用于检测该存储芯片100的温度。
当所述存储芯片100的个数为多个,所述温度检测单元111的个数为一个时,所述温度检测单元111与所述存储芯片100为一对多关系,所述温度检测单元111用于检测多个所述存储芯片100的温度。
当所述存储芯片100的个数为多个,所述温度检测单元111的个数也为多个,但所述温度检测单元111的个数小于所述存储芯片100的个数时,所述温度检测单元111与所述存储芯片100可能同时存在一对一关系及一对多关系,或者仅存在一对多关系。即可能存在一个所述温度检测单元111仅检测一个存储芯片100的温度和一个温度检测单元100检测多个所述存储芯片100的温度的情况,或者仅存在一个温度检测单元100检测多个所述存储芯片100的温度的情况。
当所述存储芯片100的个数为多个,所述温度检测单元111的个数也为多个,且所述温度检测单元100的个数与所述存储芯片100的个数相同时,所述温度检测单元111与所述存储芯片100为一对一关系,一个所述温度检测单元111用于检测一个所述存储芯片100的温度。具体地说,在本实施例中,所述存储芯片100的个数为多个,所述温度检测单元111的个数也为多个,如图1所示,在图1中示意性地绘示四个存储芯片100及四个温度检测单元111,多个所述存储芯片100堆叠设置,所述温度检测单元111与所述存储芯片100一一对应。
进一步,请继续参阅图2A,在本实施例中,所述温度检测单元111包括 定值电阻Ra及二极管D。所述定值电阻Ra具有第一端及第二端,所述第一端与电源Vtemp电连接。所述二极管D与所述定值电阻Ra串联,所述二极管D的正端与所述定值电阻Ra的第二端连接,所述二极管D的负端与接地端VSS电连接。所述二极管D对温度敏感,随着其周围环境温度的变化,其电流发生变化,进而能够用于测量周围环境的温度。
进一步,在本实施例中,所述温度检测单元111还包括可调电阻Rb,所述可调电阻Rb与所述二极管D并联,用于校准所述二极管D。所述可调电阻Rb的电阻值可变化,例如,通过控制芯片120的控制而改变所述可调电阻Rb的电阻值,从而能够实现对二极管D的校准。
进一步,所述温度检测单元111可通过半导体集成制作工艺形成在存储芯片100中。若所述温度检测单元111仅用于检测一个存储芯片100的温度,则其可形成在该存储芯片100中,例如,在本实施例中,如图1所示,温度检测单元111与存储芯片100一一对应,在每一存储芯片100中均设置一个温度检测单元111。若所述温度检测单元111用于检测多个存储芯片100的温度时,其可形成在该多个存储芯片100中的任意一个存储芯片100内,或者形成在居中的或最底层的存储芯片100内。例如,在本发明第二实施例中,请参阅图3,其为本发明半导体装置第二实施例的结构示意图,温度检测单元111设置在最底层的存储芯片100内,其能够测量四个存储芯片100的温度。
在本发明另一实施例中,所述温度检测单元111并未设置在存储芯片100中,而是设置在控制芯片120中。具体地说,请参阅图4,其为本发明半导体装置第三实施例的结构示意图,温度检测单元111设置在控制芯片120内,其能够测量堆叠设置在控制芯片120上的四个存储芯片100的温度。
在本发明另一实施例中,请参阅图5,其为本发明半导体装置第四实施例的结构示意图,所述半导体装置还包括线路基板130,所述线路基板130中具有连接线路(附图中未绘示),所述存储芯片100以及控制芯片120均位于所述线路基板130上,所述存储芯片100和控制芯片120通过所述线路基板130中的所述连接线路电连接。在该实施例中,所述温度检测单元111也设置在所述线路基板130上,以测量环境温度,该环境温度与存储芯片100温度接近,其可近似作为存储芯片100的温度。其中,所述线路基板130包括但不限于 PCB电路板。可以理解的是,在本发明其他实施例中,所述温度检测单元111也可不设置在所述线路基板130上,而是如图1、图3及图4所示,设置在存储芯片100中或者控制芯片120中。
需要注意的是,本发明实施例中控制芯片120在控制存储芯片100启动等方面的功能,也可通过在存储芯片100设置控制电路来实现,此时,可无需控制芯片120的存在,本领域内技术人员应当理解,可根据需要自行设置。
进一步,所述温度检测单元111与所述存储芯片100采用不同的电源供电。图2B是本发明半导体装置的第一实施例的电连接示意图,请参阅图2B,所述温度检测单元111采用电源Vtemp供电,所述存储芯片100采用VDD供电。其中,所述接地端VSS、电源VDD及电源Vtemp由所述控制芯片120提供。由于所述温度检测单元111与所述存储芯片100采用不同的电源供电,因此,可独立地控制所述温度检测单元111及所述存储单元100的供电,从而实现所述温度检测单元111与所述存储芯片100的不同时启动。
因此,本发明可分别控制所述温度检测单元111与所述存储芯片100的启动,即温度检测单元111的启动不受存储芯片100是否启动的影响,使得对存储芯片100温度的检测不受存储芯片100是否启动的影响,从而能够为存储芯片100的启动及运行提供参考,进而能够避免存储芯片100在低温下启动或者运行,提高存储芯片100的稳定性。
如前所述,温度对存储芯片100的性能有很大影响,特别是在存储芯片100启动时。若存储芯片100在低温下启动,会使向存储芯片100中写入数据的时间变化(如加长),影响了存储芯片100写入的稳定性,则在存储芯片100启动之前需要测量存储芯片的温度,以使存储芯片100能够在合适的温度内启动。
因此,本发明所述温度检测单元111的供电早于所述存储芯片100的供电,即在所述存储芯片100启动之前,所述温度检测单元111已经启动,从而可获得存储芯片100启动之前的温度,为存储芯片100的启动提供参考。所述温度检测单元111与所述存储芯片100的供电时间差取决于所述存储芯片100的温度变化速率,若所述存储芯片100的温度变化速率大,所述存储芯片100达到预设温度的时间短,则所述温度检测单元111与所述存储芯片100的供电时间差小,若所述存储芯片100的温度变化速率小,所述存储芯片100达到预设温 度的时间长,则所述温度检测单元111与所述存储芯片100的供电时间差大。
进一步,请参阅图2B,所述温度检测单元111与所述存储芯片100共用同一接地端VSS。其优点在于,一方面不会增加存储芯片100未启动阶段的泄露电流,另一方面,会减少引脚的数目,节省空间。
请继续参阅图1,多个存储芯片100堆叠设置在所述控制芯片120上,所述控制芯片120与堆叠结构中最底层的存储芯片100键合在一起。而在本发明另一实施例中,当只有一个存储芯片100时,所述存储芯片100设置在控制芯片120上,所述控制芯片120与该存储芯片100键合在一起。
所述存储芯片100中形成有硅通孔互连结构101,通过硅通孔互连结构101将存储芯片100与控制芯片120进行电连接,将温度检测单元111与控制芯片120电连接。即通过硅通孔互连结构101将存储芯片100与接地端VSS及电源VDD电连接,将温度检测单元111与电源Vtemp及接地端VSS电连接。具体地说,在本实施例中,多个存储芯片100堆叠设置时,每一个存储芯片100可以通过不同的硅通孔互连结构与控制芯片120连接;当具有多个温度检测单元111时,可能存在每一个温度检测单元111通过不同的硅通孔互连结构与控制芯片120连接的情况,也可能存在多个温度检测单元111共用硅通孔互连结构与控制芯片120连接的情况。可以理解的是,所述存储芯片100与所述温度检测单元111通过不同的硅通孔互连结构与控制芯片120连接,以使所述温度检测单元111及所述存储芯片100能够采用不同的电源供电。进一步,多个所述温度检测单元111的供电也可共用工艺硅通孔互连结构。
在其他实施例中,所述存储芯片100及所述温度检测单元还可以通过金属引线(通过引线键合工艺形成)与所述控制芯片120电连接。
进一步,所述A/D转换模块112包括电阻单元及多个比较单元Px。
所述电阻单元具有第一端及第二端。所述电阻单元的第一端与电源电连接。所述电阻单元可与所述温度检测单元111采用同一电源,也可采用不同电源。例如,若所述A/D转换模块112设置在存储芯片100中,则所述电阻单元的第一端可与所述温度检测单元111采用同一电源Vtemp;若所述A/D转换模块112设置在控制芯片120中,则所述电阻单元的第一端可与所述温度检测单元111采用不同的电源,所述电阻单元可采用电源VDD。所述电阻单元的第 二端与接地端VSS电连接。其中,所述电阻单元具有多个引出端Ax,每一引出端Ax的电压不同。
在本实施例中,所述电阻单元包括多个串联连接的子电阻Rx,所述电阻单元的每一引出端Ax与所述电阻单元的第二端之间间隔的子电阻Rx的数量不同,以使每一引出端Ax的电压不同。例如,引出端A1与电阻单元的第二端之间间隔子电阻R1,引出端A2与电阻单元的第二端之间间隔子电阻R1及R2,则引出端A1与引出端A2的电压不同。
其中,所述电阻单元的每一引出端Ax与所述电阻单元的第二端之间间隔的子电阻Rx的数量以预设数值递增。其中,所述预设数值可为一定值,也可为可变数值。
请参阅图2A,在本实施例中,所述电阻单元的每一引出端Ax与所述电阻单元的第二端之间间隔的子电阻Rx的数量以定值1递增。而在本发明其他实施例中,也可以定值2等数量递增。
当所述预设数值为可变数值时,所述预设数值具有一变化趋势。
进一步,所述子电阻Rx的电阻值相同或不同,以使得所述引出端Ax之间的电压增幅变化一致或不一致。其中,若所述子电阻Rx的电阻值相同,则能够简化版图布局难度,简单易行,便于制造。
所述A/D转换模块输入端的信号作为所述比较单元Px的输入信号,即所述温度检测单元输出的模拟信号作为所述比较单元Px的输入信号。所述电阻单元的多个引出端Ax信号分别作为多个所述比较单元Px的参考信号。所述引出端Ax与所述比较单元Px一一对应。例如,所述引出端A1信号作为所述比较单元P1的参考信号,所述引出端A2信号作为所述比较单元P2的参考信号,依此类推,所述引出端Ax与所述比较单元Px一一对应。所述比较单元Px输出数字信号。根据所述比较单元Px输出的数字信号,可获得所述温度检测单元111检测的存储芯片100的温度。
进一步,所述A/D转换模块112还包括输出单元1120,所述输出单元1120与所述比较单元Px连接,用于将所述数字信号输出。进一步,在本实施例中,所述A/D转换模块112还包括编码单元EEC,所述编码单元EEC接收所述比较单元Px输出的数字信号,并进行编码,其形成的信号输入所述输出单元 1120,所述输出单元1120将编码后的数字信号输出。
本发明半导体装置利用温度检测模块检测存储芯片的温度,当所述温度检测模块检测的温度达到设定阈值时,或者所述存储芯片100的温度达到设定阈值之后,所述存储芯片启动,温度检测模块检测的温度为存储芯片的启动及运行提供参考,从而避免存储芯片在低温下启动及运行,缩短写入时间,提高存储芯片写入的稳定性。
当存储芯片100处于低温环境中,若对其进行加热,则能够迅速提高存储芯片100的温度,从而加快存储芯片100的启动。因此,本发明所述控制芯片120还能够在存储芯片100启动之前先进行启动,控制芯片120利用启动后自身产生的热量对存储芯片100进行加热,以快速提高存储芯片100的温度。
在所述控制芯片120启动后,所述控制芯片120控制所述温度检测单元111启动,以检测所述存储芯片100的温度。所述温度检测单元111还能够将检测的温度传送给控制芯片120,以作为控制芯片120的数据。
所述控制芯片120能够判断所述温度检测单元111检测的温度是否达到设定阈值,若达到设定阈值,则控制所述存储芯片100启动。
若仅有一个温度检测单元111及一个存储芯片100,一个所述温度检测单元111仅用于检测一个存储芯片的温度时,当控制单元120判定该温度检测单元111检测的温度达到设定阈值,则所述控制芯片120控制该存储芯片100启动。
若存在一个温度检测单元111及多个存储芯片100,且一个所述温度检测单元111检测多个存储芯片100的温度,当控制单元120判定该温度检测单元111检测的温度达到设定阈值,则控制单元120先控制离所述控制芯片120最近的存储芯片100启动,然后再控制上面的其他存储芯片100依次启动。
若存在多个温度检测单元111及多个存储芯片100,且可能存在一个所述温度检测单元111仅检测一个存储芯片100的温度和一个温度检测单元111检测多个所述存储芯片100的温度的情况,或者仅存在一个温度检测单元111检测多个所述存储芯片100的温度的情况,当控制单元120判断某一个温度检测单元111检测的温度达到设定阈值,则控制该温度检测单元111对应的存储芯片100启动,若该温度检测单元111检测多个存储芯片100的温度,则先控制 离所述控制芯片120最近的存储芯片100启动,然后再控制上面的其他存储芯片100依次启动。
若存在多个温度检测单元111及多个存储芯片100,且所述温度检测单元111与所述存储芯片100一一对应,当控制单元110判断某一个温度检测单元111检测的温度达到设定阈值,则控制该温度检测单元111对应的存储芯片100启动。具体地说,如图1所示的堆叠结构中有4个存储芯片100,每一个存储芯片100中对应具有一个温度检测单元111,因而每一个温度检测单元111会对对应的存储芯片100的温度进行检测,获得四个温度检测值,所述控制芯片120会依次判断4个所述温度检测单元111检测的温度是否达到设定阈值时,若某一个温度检测单元111检测的温度达到设定阈值,则控制该温度检测单元111对应的存储芯片启动,比如堆叠结构中最底层的存储芯片100中的温度检测单元111检测的温度先达到设定阈值时,则控制芯片120先控制所述堆叠结构最底层的那一个存储芯片100启动,接着,堆叠结构中倒数第二层中那个存储芯片100中对应的温度检测单元111检测的温度也达到设定阈值时,则控制单元301接着控制堆叠结构中倒数第二层的那个存储芯片100启动,上面两层的存储芯片100的启动以此类推。
对于半导体装置存在多个存储芯片100时,前述的这种控制结构和控制方式能使得每一个存储芯片100启动时机的精度进一步提高,并能进一步减小低温环境下的对每一个存储芯片100进行数据写入时的写入时间,进一步提高了对每一个存储芯片100写入的稳定性。
当本发明半导体装置工作在低温环境时,通过控制芯片120可以使得存储芯片100升温到设定阈值,从而可以防止存储芯片100中的位线、字线、以及金属连线(金属接触部)由于环境温度过低带来的电阻的增大,从而减小了低温环境下的对存储芯片进行数据写入时的写入时间,提高了存储芯片写入的稳定性。所述设定阈值可以设定在控制芯片120中,设定阈值的具体大小可以根据实际需要或者经验进行设定。
在另一实施例中,所述控制芯片120中可以具有额外的加热电路(附图中未绘示)。所述加热电路用于对所述存储芯片100进行加热。所述控制芯片120在对所述存储芯片100进行加热之前或之后,所述控制芯片120判断所述温度 检测单元111检测的存储芯片100的温度是否达到设定阈值,若未达到设定阈值,则控制所述加热电路对存储芯片100进行加热,如达到设定阈值,则控制所述加热电路停止对存储芯片100进行加热。从而实现对加热过程的精确控制,使得存储芯片100的温度能保持在设定阈值附近,防止存储芯片100的温度过高或过低,从而使得对存储器的写入时间始终能保持较短。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (22)

  1. 一种半导体装置,其特征在于,包括存储芯片及温度检测模块,所述温度检测模块用于检测所述存储芯片的温度,当所述温度检测模块检测的温度达到设定阈值时,所述存储芯片启动,所述温度检测模块包括:
    温度检测单元,用于检测所述存储芯片的温度,并输出与所述温度对应的模拟信号;
    A/D转换模块,具有输入端及输出端,所述输入端接收所述温度检测单元输出的模拟信号,所述输出端输出数字信号,所述A/D转换模块用于将所述温度检测单元输出的模拟信号转换为数字信号。
  2. 根据权利要求1所述的半导体装置,其特征在于,所述温度检测单元与所述存储芯片采用不同的电源供电。
  3. 根据权利要求2所述的半导体装置,其特征在于,所述温度检测单元的供电早于所述存储芯片的供电。
  4. 根据权利要求1所述的半导体装置,其特征在于,所述温度检测单元包括:
    定值电阻,具有第一端及第二端,所述第一端与电源电连接;
    二极管,与所述定值电阻串联,所述二极管的正端与所述定值电阻的第二端连接,所述二极管的负端与接地端电连接。
  5. 根据权利要求4所述的半导体装置,其特征在于,所述温度检测单元还包括可调电阻,所述可调电阻与所述二极管并联。
  6. 根据权利要求1所述的半导体装置,其特征在于,所述A/D转换模块包括:
    电阻单元,具有第一端及第二端,所述电阻单元的第一端与电源电连接,所述电阻单元的第二端与接地端电连接,所述电阻单元具有多个引出端,每一引出端的电压不同;
    多个比较单元,所述A/D转换模块输入端的信号作为所述比较单元的输入信号,所述电阻单元的多个引出端信号分别作为多个所述比较单元的参考信号,所述比较单元输出数字信号。
  7. 根据权利要求6所述的半导体装置,其特征在于,所述A/D转换模块还包括编码单元,所述编码单元接收所述比较单元输出的数字信号,并进行编码。
  8. 根据权利要求6所述的半导体装置,其特征在于,所述电阻单元包括多个串联连接的子电阻,所述电阻单元的每一引出端与所述电阻单元的第二端之间间隔的子电阻的数量不同,以使每一引出端的电压不同。
  9. 根据权利要求8所述的半导体装置,其特征在于,所述子电阻的电阻值相同或不同。
  10. 根据权利要求8所述的半导体装置,其特征在于,所述电阻单元的每一引出端与所述电阻单元的第二端之间间隔的子电阻的数量以预设数值递增。
  11. 根据权利要求6所述的半导体装置,其特征在于,所述A/D转换模块还包括输出单元,所述输出单元与所述比较单元连接,用于将所述数字信号输出。
  12. 根据权利要求1所述的半导体装置,其特征在于,所述温度检测单元设置在所述存储芯片中。
  13. 根据权利要求12所述的半导体装置,其特征在于,所述A/D转换模块设置在所述存储芯片中。
  14. 根据权利要求12所述的半导体装置,其特征在于,所述温度检测单元与所述存储芯片共用同一接地端。
  15. 根据权利要求8所述的半导体装置,其特征在于,所述存储芯片为一个或者多个,当所述存储芯片为多个时,若干所述存储芯片依次向上堆叠。
  16. 根据权利要求15所述的半导体装置,其特征在于,当所述存储芯片为多个时,所述存储芯片通过硅通孔结构与接地端及电源电连接。
  17. 根据权利要求15所述的半导体装置,其特征在于,所述温度检测单元通过硅通孔结构与电源电连接。
  18. 根据权利要求15所述的半导体装置,其特征在于,所述温度检测单元为一个或者多个,所述温度检测单元与所述存储芯片一一对应。
  19. 根据权利要求1所述的半导体装置,其特征在于,所述半导体装置还包括控制芯片,所述存储芯片及所述温度检测单元与所述控制芯片电连接。
  20. 根据权利要求19所述的半导体装置,其特征在于,所述存储芯片设置在所述控制芯片上。
  21. 根据权利要求19所述的半导体装置,其特征在于,所述半导体装置还包括线路基板,所述线路基板中具有连接线路,所述存储芯片以及控制芯片均位于所述线路基板上,所述存储芯片和控制芯片通过所述线路基板中的所述连接线路电连接。
  22. 根据权利要求19所述的半导体装置,其特征在于,所述控制芯片用于在存储芯片启动之前对存储芯片进行加热,并判断所述温度检测单元检测的温度是否达到设定阈值,若达到设定阈值,则控制所述存储芯片启动。
PCT/CN2020/128135 2020-06-30 2020-11-11 半导体装置 WO2022000927A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/430,529 US20220307908A1 (en) 2020-06-30 2020-11-11 Semiconductor device
EP20940477.1A EP4174461A4 (en) 2020-06-30 2020-11-11 SEMICONDUCTOR COMPONENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010611253.8A CN113945293B (zh) 2020-06-30 2020-06-30 半导体装置
CN202010611253.8 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022000927A1 true WO2022000927A1 (zh) 2022-01-06

Family

ID=79317356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128135 WO2022000927A1 (zh) 2020-06-30 2020-11-11 半导体装置

Country Status (4)

Country Link
US (1) US20220307908A1 (zh)
EP (1) EP4174461A4 (zh)
CN (1) CN113945293B (zh)
WO (1) WO2022000927A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220130826A (ko) * 2020-07-17 2022-09-27 창신 메모리 테크놀로지즈 아이엔씨 반도체 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543941A (zh) * 2010-12-28 2012-07-04 三星电子株式会社 半导体器件、半导体存储器件及其操作方法
CN104115227A (zh) * 2011-12-23 2014-10-22 英特尔公司 使用系统热传感器数据的存储器操作
US20170262198A1 (en) * 2016-03-10 2017-09-14 Kabushiki Kaisha Toshiba Semiconductor device, and information-processing device
CN109547025A (zh) * 2018-11-20 2019-03-29 恒通旺达(深圳)科技有限公司 一种快速模数转换方法和模数转换器
CN110687740A (zh) * 2019-11-19 2020-01-14 四川长虹电器股份有限公司 Dlp投影低温启动的系统
CN210626994U (zh) * 2019-09-27 2020-05-26 恒大智慧充电科技有限公司 启动控制装置及电子设备
CN210742762U (zh) * 2019-08-20 2020-06-12 福建星网智慧科技股份有限公司 一种主板低温启动的控制电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6453218B1 (en) * 1999-03-29 2002-09-17 Intel Corporation Integrated RAM thermal sensor
US20150043266A1 (en) * 2013-08-09 2015-02-12 Samsung Electronics Co., Ltd. Enhanced temperature range for resistive type memory circuits with pre-heat operation
JP6425462B2 (ja) * 2014-08-27 2018-11-21 ルネサスエレクトロニクス株式会社 半導体装置
US9668337B2 (en) * 2015-09-08 2017-05-30 Western Digital Technologies, Inc. Temperature management in data storage devices
US9927986B2 (en) * 2016-02-26 2018-03-27 Sandisk Technologies Llc Data storage device with temperature sensor and temperature calibration circuitry and method of operating same
CN107271878B (zh) * 2017-06-14 2019-07-30 山东阅芯电子科技有限公司 通过电流加热半导体器件的高温特性测试方法及装置
CN107764431B (zh) * 2017-12-06 2023-12-08 西安智多晶微电子有限公司 芯片内核温度检测电路
CN208953151U (zh) * 2018-10-18 2019-06-07 杭州士兰微电子股份有限公司 过温检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543941A (zh) * 2010-12-28 2012-07-04 三星电子株式会社 半导体器件、半导体存储器件及其操作方法
CN104115227A (zh) * 2011-12-23 2014-10-22 英特尔公司 使用系统热传感器数据的存储器操作
US20170262198A1 (en) * 2016-03-10 2017-09-14 Kabushiki Kaisha Toshiba Semiconductor device, and information-processing device
CN109547025A (zh) * 2018-11-20 2019-03-29 恒通旺达(深圳)科技有限公司 一种快速模数转换方法和模数转换器
CN210742762U (zh) * 2019-08-20 2020-06-12 福建星网智慧科技股份有限公司 一种主板低温启动的控制电路
CN210626994U (zh) * 2019-09-27 2020-05-26 恒大智慧充电科技有限公司 启动控制装置及电子设备
CN110687740A (zh) * 2019-11-19 2020-01-14 四川长虹电器股份有限公司 Dlp投影低温启动的系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4174461A4 *

Also Published As

Publication number Publication date
CN113945293A (zh) 2022-01-18
EP4174461A4 (en) 2024-01-17
CN113945293B (zh) 2023-04-18
US20220307908A1 (en) 2022-09-29
EP4174461A1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
CN212303078U (zh) 半导体装置
CN212303079U (zh) 半导体装置
CN212303077U (zh) 半导体装置
US9368188B2 (en) Semiconductor device performing refresh operation
US20240012045A1 (en) Wafer level methods of testing semiconductor devices using internally-generated test enable signals
CN101169968A (zh) 半导体存储装置
WO2022000927A1 (zh) 半导体装置
WO2022011954A1 (zh) 半导体装置
WO2021189887A1 (zh) 半导体结构及其预热方法
US11521661B2 (en) Semiconductor device
WO2022011955A1 (zh) 半导体装置
WO2022000928A1 (zh) 半导体装置
WO2022000926A1 (zh) 半导体装置
WO2022011956A1 (zh) 半导体装置
US11462257B2 (en) Semiconductor device
US11430709B2 (en) Semiconductor device
JP7352750B2 (ja) 半導体装置
US20210407554A1 (en) Semiconductor device
WO2022048240A1 (zh) 存储装置的读写方法及存储装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020940477

Country of ref document: EP

Effective date: 20230130