WO2022000922A1 - 多旋翼无人飞行器的机架、农业植保无人机及控制方法 - Google Patents

多旋翼无人飞行器的机架、农业植保无人机及控制方法 Download PDF

Info

Publication number
WO2022000922A1
WO2022000922A1 PCT/CN2020/127600 CN2020127600W WO2022000922A1 WO 2022000922 A1 WO2022000922 A1 WO 2022000922A1 CN 2020127600 W CN2020127600 W CN 2020127600W WO 2022000922 A1 WO2022000922 A1 WO 2022000922A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerial vehicle
unmanned aerial
frame
angle
rotor unmanned
Prior art date
Application number
PCT/CN2020/127600
Other languages
English (en)
French (fr)
Inventor
赵进
农贵升
周乐
李日照
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2020/099324 external-priority patent/WO2022000277A1/zh
Priority claimed from CN202021255569.XU external-priority patent/CN212766731U/zh
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2022000922A1 publication Critical patent/WO2022000922A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/70Constructional aspects of the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/30Undercarriages detachable from the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/40UAVs specially adapted for particular uses or applications for agriculture or forestry operations

Definitions

  • the invention relates to flying equipment, in particular to a frame of a multi-rotor unmanned aerial vehicle, an unmanned aerial vehicle for agricultural plant protection and a control method.
  • agricultural plant protection drones need to spray a variety of crops. Different spraying objects have different spraying requirements.
  • Traditional agricultural plant protection drones can spray pesticides on field crops such as cotton and corn.
  • the agricultural plant protection drone sprays pesticides on fruit trees, cash crops and other plants, because the growth direction of fruit tree branches is obliquely upward divergent growth, the external leaves will block the internal branches and leaves. Therefore, it is difficult for the pesticides sprayed by traditional agricultural plant protection drones to penetrate the cover of leaves, and there are technical problems of uneven spraying and incomplete spraying.
  • the invention provides a frame of a multi-rotor unmanned aerial vehicle, an unmanned aerial vehicle for agricultural plant protection and a control method, which can improve the uniformity of spraying pesticides on trees.
  • a frame of a multi-rotor unmanned aerial vehicle comprising:
  • the central body The central body;
  • a plurality of rotor power devices arranged on the arms, and the plurality of rotor power devices are used to provide flight power to the multi-rotor unmanned aerial vehicle;
  • An angle adjustment mechanism capable of adjusting the included angle between the spraying direction of at least one nozzle assembly of the plurality of nozzle assemblies and the plane where the central body is located.
  • the angle adjustment mechanism is provided on the machine arm or the central body.
  • the powered propeller rotor power device includes a motor and a blade, the motor drives the blade to rotate, and the axial direction of the rotation axis of the blade is substantially parallel to the spraying direction of the nozzle.
  • the angle adjustment mechanism includes a first adjustment structure, and the first adjustment structure can at least make the part of the machine arm provided with the paddle swing up and down relative to the central body to adjust The included angle between the machine arm and the plane where the center body is located.
  • the first adjustment structure is provided at the connection between the machine arm and the central body.
  • the arm includes a fuselage end fixed on the central body and a blade end for fixing the paddle, and the first adjustment structure is provided on the fuselage end and the blade end. At the connection between the blade ends, the first adjustment structure adjusts the angle between the fuselage end and the blade end.
  • the fuselage end and the central body are integral structures.
  • the first adjustment structure includes a clamping member, and the clamping member is clamped between the fuselage end and the blade end.
  • the clamping member is detachably disposed between the fuselage end and the blade end.
  • the clamping member is a clamping block, and the clamping block is detachably arranged between the end of the fuselage and the end of the blade.
  • the clamping member is provided with a connecting portion, the clamping member is fixed on the fuselage end, and the connecting portion is used for connecting with the blade end;
  • the clamping member is fixed on the blade end, and the connecting portion is used for connecting with the fuselage end.
  • the first adjustment structure further includes a connecting rod, a connecting hole for connecting with the connecting rod is formed on the connecting portion and the arm, and the connecting portion and the machine arm are provided with connecting holes for connecting with the connecting rod. connected by the connecting rod.
  • the fuselage end and/or the blade end is provided with a lug, and the connection hole is opened in the lug.
  • the first adjusting member includes a fixed seat and a stop sleeve, the stop sleeve is rotatably disposed on the fixed seat, and the stop sleeve is used for engaging the machine arm, so The stop sleeve is rotated relative to the fixed seat to adjust the angle between the machine arm and the central body.
  • the stop sleeve is provided with a locking groove, and the locking groove is used for engaging with the machine arm.
  • the stop sleeve and the fixing seat are engaged and limited by an engaging structure.
  • the engaging structure includes a limiting protrusion and a plurality of fixing holes, and the limiting protrusion can be engaged and fixed with the plurality of fixing holes respectively.
  • a plurality of the fixing holes are distributed in an arc shape, and the plurality of the fixing holes respectively correspond to a plurality of included angles between the stop sleeve and the fixing seat.
  • the first adjusting member further includes a locking member, and the locking member fastens the stop sleeve and the machine arm.
  • the locking member is slidably sleeved on the outer side of the stop sleeve, the stop sleeve is provided with an external thread, and the locking member is connected to the stop sleeve through the external thread Fasten the connection, and hoop the stop sleeve and the machine arm.
  • the fixing base is fixedly arranged on the central body
  • the arm includes a fuselage end fixed on the central body and a blade end for fixing the paddle, and one of the fuselage end and the blade end is fixed to the fixing seat connected, and the other one of the fuselage end and the blade end is connected with the stop sleeve in a snap fit.
  • the angle adjustment mechanism includes a second adjustment structure, and the second adjustment structure enables the rotation axis direction of the rotor power device to be rotated relative to the extension direction of the machine arm, so as to adjust the multiple The angle between the spraying direction of at least one of the nozzle assemblies and the plane on which the central body is located.
  • the second adjustment structure is provided at the connection between the arm and the rotor power unit, and the second adjustment structure makes at least one of the plurality of rotor power units move along the The axial rotation of the machine arm adjusts the included angle between the axial direction of the rotating shaft of the rotor power device and the axial direction of the machine arm.
  • the spray angle of at least one of the plurality of nozzle assemblies is substantially perpendicular to the boom.
  • the second adjustment structure makes the rotor power device rotate around the axial direction of the arm, and adjusts the distance between the axial direction of the rotating shaft of the rotor power device and the axial direction of the arm. angle.
  • the rotor power unit includes a base, the second adjustment structure is fixedly connected to the arm, and the second adjustment structure is snap-connected to the base;
  • the second adjustment structure is fixedly connected to the machine base, and the second adjustment structure is connected to the machine arm by engaging.
  • the nozzle assembly includes a bracket and a nozzle, the nozzle is disposed on the bracket, and the bracket is a foldable structure.
  • the rotation state of the rotation axis of the blade relative to the plane where the central body is located includes a tree spraying state and a non-tree spraying state, and the spraying angle of the nozzle is inclined in the tree spraying state The angle is greater than the angle of inclination in the non-tree sprayed state.
  • An agricultural plant protection unmanned aerial vehicle comprising a form acquisition module, a control module and a frame of a multi-rotor unmanned aerial vehicle, the acquisition module is used to collect form information of objects to be sprayed, and the control module is used to collect the form information according to the form information , determine the spraying angle of the nozzle, and control the angle adjustment mechanism according to the spraying angle to adjust the angle between the spraying direction of the nozzle and the plane where the center body is located.
  • a control method for an agricultural plant protection drone comprising:
  • the included angle between the spraying direction of the nozzle and the plane where the central body is located is adjusted.
  • the shape information includes the type of the object to be sprayed, the distance between two adjacent objects to be sprayed, and the height of the object to be sprayed.
  • An agricultural plant protection unmanned aerial vehicle comprising a form acquisition module, a control module and a frame of the above-mentioned multi-rotor unmanned aerial vehicle, the acquisition module is used to collect form information of objects to be sprayed, and the control module is used to collect information according to the form information, determine the spraying angle of the nozzle, and control the angle adjustment mechanism according to the spraying angle to adjust the angle between the spraying direction of the nozzle and the plane where the central body is located.
  • a control method for an agricultural plant protection drone comprising:
  • the included angle between the spraying direction of the nozzle and the plane where the central body is located is adjusted.
  • the frame of the above-mentioned rotor unmanned aerial vehicle can adjust the angle between the spraying direction of at least one nozzle assembly and the plane where the center body is located through the angle adjustment mechanism, and then realize the adjustment of the spraying angle of the nozzles arranged on the arms.
  • the spraying angle of the nozzle faces obliquely downward of the central body, the spraying angle can be directed toward the branch, along the growth direction of the branch.
  • the above-mentioned agricultural plant protection drone is located on one side of the tree, only a few leaves will block the spraying of pesticides at the spraying angle of the nozzle, so as to ensure that more branches and leaves can be sprayed with pesticides and improve the agricultural plant protection unmanned.
  • the above-mentioned agricultural plant protection drone can obtain the spraying angle of the nozzle according to the shape information of the object to be sprayed through the above-mentioned control method, so that the angle between the spraying direction of the nozzle assembly and the center body can be adjusted correspondingly, so that the spraying of the nozzle can be adjusted accordingly.
  • the angle is oriented diagonally downward of the center body. Then the spraying angle of the nozzle can be directed towards the branch, along the growth direction of the branch.
  • 1 is a schematic diagram of the use state of the agricultural plant protection drone of the present embodiment
  • Fig. 2 is a simple schematic diagram of the agricultural plant protection drone shown in Fig. 1;
  • FIG. 3 is a simplified schematic diagram of an embodiment of an angle adjustment mechanism of an agricultural plant protection drone
  • FIG. 4 is a simplified schematic diagram of another embodiment of the angle adjustment mechanism of the agricultural plant protection drone
  • Fig. 5 is the concrete structure schematic diagram of the angle adjustment mechanism shown in Fig. 4;
  • FIG. 6 is a schematic structural diagram of another state of the angle adjustment mechanism shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of another angle of the angle adjustment mechanism shown in FIG. 5;
  • FIG. 8 is a schematic structural diagram of the angle adjustment mechanism shown in FIG. 6 in a use state
  • FIG. 9 is a simplified schematic diagram of another embodiment of the angle adjustment mechanism of the agricultural plant protection drone.
  • FIG. 10 is a schematic structural diagram of the angle adjustment mechanism shown in FIG. 9;
  • FIG. 11 is a simplified schematic diagram of another embodiment of the angle adjustment mechanism of the agricultural plant protection drone.
  • FIG. 12 is a schematic structural diagram of another angle of the angle adjustment mechanism shown in FIG. 11;
  • FIG. 13 is a flowchart of a control method of an agricultural plant protection drone according to an embodiment
  • FIG. 14 is a schematic diagram of an electrical module of an agricultural plant protection drone according to an embodiment.
  • Agricultural plant protection drone 10. Rack; 11. Center body;
  • Rotor power unit 131, Motor; 132, Blade; 133, Machine base;
  • Angle adjustment mechanism 151. First adjustment structure; 152. Rotating member; 153. Driving member;
  • Agricultural plant protection drones are drones used for agricultural and forestry plant protection operations. This type of agricultural plant protection drone uses ground remote control or navigation flight control to achieve spraying operations on the sprayed material.
  • the objects to be sprayed can be trees, crops, etc.
  • Agricultural plant protection drones can spray chemicals, seeds, powders, etc.
  • the agricultural plant protection drone 1 of this embodiment includes a power supply and a frame 10 .
  • the power supply provides electricity for the normal operation of agricultural plant protection drones.
  • the frame is a frame of a multi-rotor unmanned aerial vehicle.
  • a frame 10 of a multi-rotor UAV includes a central body 11 , a plurality of arms 12 , a plurality of rotor power units 13 , a plurality of nozzle assemblies 14 and an angle adjustment mechanism 15 .
  • the center body 11 can serve as the center reference of the frame 10 . Centering on the center body 11 , a plurality of arms 12 are distributed on the outer periphery of the center body 11 .
  • the rotor power unit 13 is arranged on the arm 12 .
  • the plurality of rotor power units 13 can provide flight power for the multi-rotor unmanned aerial vehicle.
  • the plurality of nozzle assemblies 14 are respectively installed below the plurality of arms 12 and are respectively positioned below the rotor power unit 13 .
  • the nozzle assembly 14 is used to spray the medicament.
  • the plane where the center body 11 is located is parallel to the horizontal plane, so as to ensure that the frame 10 can be balanced.
  • the angle adjustment mechanism 15 can adjust the included angle between the spraying direction of at least one nozzle assembly of the plurality of nozzle assemblies 14 and the plane where the center body 11 is located.
  • the angle adjustment mechanism 15 can change the angle between the plane of the arm 12 relative to the center body 11 to make the rotor power unit 13
  • the random arm swings up and down relative to the central body to adjust the axial direction of the rotating shaft of the rotor power device 13 to adjust the spraying direction of the nozzle assembly 14 .
  • the angle adjustment mechanism 15 can also change the spraying direction of the nozzle assembly 14 by changing the direction of the rotation axis of the rotor power unit 13 .
  • the angle adjustment mechanism 15 can adjust the spraying direction of the nozzle assembly 14 by rotating the rotating shaft of the rotor power device 13 around the extending direction of the machine arm 12 .
  • the angle adjustment mechanism 15 can also directly rotate the outlet direction of the nozzle of the nozzle assembly 14, and can also adjust the spraying direction of the nozzle assembly 14. .
  • the above-mentioned agricultural plant protection drone can adjust the spraying angle of the nozzle assembly 14 by using the angle adjustment mechanism 15 according to the shape and spraying requirements of different objects to be sprayed, so as to achieve more accurate spraying of the objects to be sprayed, and improve the unmanned aerial vehicle for agricultural plant protection.
  • the plurality of arms 12 of the above-mentioned machine frame 10 are symmetrically distributed on the outer circumference of the central body 11 .
  • the arms 12 include six.
  • the six arms are symmetrically distributed on the periphery of the central body 11 .
  • the included angle between two adjacent arms 12 is 60 degrees, so that the frame 10 can be smoothly maintained in balance.
  • the machine arm 12 may be in the shape of a long and narrow rod, and the extending direction of the machine arm 12 is the axial direction of the machine arm 12 .
  • a rotor power unit 13 is carried above the arm 12 .
  • the rotor power unit 13 includes a motor (not shown) and a blade 132, and the motor drives the blade 132 to rotate.
  • the axial direction of the drive shaft of the motor is the same as the direction of the rotation axis of the paddle 132 .
  • the rotation axis of the rotor power device 13 is the direction of the rotation axis of its blades 132 .
  • Rotor powerplant 13 also includes a base 133 .
  • the motor is installed in the base 133 .
  • the paddle 132 is arranged on the base and is drivingly connected with the motor.
  • the blades 132 rotate to generate wind force along the axis of rotation.
  • the wind force generated by the blade 132 is the direction of the rotation axis of the blade 132 .
  • a nozzle assembly 14 is provided below the arm 12 , and the nozzle assembly 14 is facing the rotor power unit 13 .
  • the nozzle assembly 14 includes a bracket 141 and a plurality of nozzles 142 .
  • the bracket 141 is detachably disposed on the machine arm 12 , and a plurality of nozzles 142 are respectively disposed on the bracket 141 .
  • the bracket 141 may be a foldable structure. When the multi-rotor unmanned aerial vehicle is in the working state of spraying medicine, the bracket 141 can be in an open state to ensure that the nozzle assembly 14 can be used normally. When the multi-rotor UAV is in the storage and transportation state, the bracket 141 is in the folded state, so as to reduce the occupied space of the bracket and facilitate storage and transportation.
  • the spray sprayed by the nozzle 142 can accelerate the spraying speed of the spraying and the spraying area of the spraying.
  • the wind force of the paddle 132 has a great influence, and the spraying direction of the nozzle 142 is substantially parallel to the axial direction of the rotation axis of the paddle 132 .
  • the spraying direction of the nozzle 142 may also be different from the rotation axis direction of the paddle 132 .
  • the angle adjustment mechanism 15 includes a first adjustment structure 151 , and the first adjustment structure 151 can at least make the part of the arm 12 provided with the paddle 132 swing up and down relative to the center body 11 to adjust the relative center of the arm 12 The angle between the planes on which the body lies.
  • the first adjustment structure 151 can make the rotor power device swing up and down with the random arm 12 relative to the center body by changing the angle between the arm 12 and the plane where the center body is located, so as to adjust the axial direction of the rotation axis of the rotor power device, so as to realize the adjustment of the rotation axis of the rotor power device. Adjustment of the spray direction of the nozzle assembly 14 .
  • the first adjustment structure 151 may be provided at the connection between the machine arm 12 and the central body.
  • the machine arm 12 swings up and down relative to the plane where the center body 11 is located through the first adjustment structure 151 .
  • the first adjustment structure 151 can adjust the angle between the machine arm 12 and the center body 11 .
  • Each of the arms 12 may be provided with the above-mentioned first adjustment structure 151 , or some of the arms 12 may be provided with the first adjustment structure 151 . As long as it can be ensured that the multiple arms 12 are kept symmetrical, the frame 10 can be balanced during the flight.
  • the relationship between the number of the first adjusting structures 151 and the number of the machine arms 12 is not limited here.
  • the first adjusting structure 151 may include a rotating member 152 .
  • the rotating member 152 is connected with the machine arm 12 .
  • the rotating member 152 rotates to adjust the angle between the machine arm 12 and the center body 11 .
  • the rotating member 152 may be a rotating shaft. When the machine arm 12 rotates relative to the rotating shaft, the included angle between the machine arm 12 and the center body 11 is adjusted.
  • the angle adjustment mechanism 15 may further include a locking member (not shown).
  • the locking member is connected with the rotating member 152 to limit the angle between the machine arm 12 and the center body 11 . After the angle between the machine arm 12 and the center body 11 is determined, the angle between the machine arm 12 and the center body 11 is locked by the locking piece.
  • the locking member may be a latch, or a limit engaging member or the like.
  • the angle adjustment mechanism 15 also includes a driving member 153 .
  • the driving member 153 is drivingly connected with the machine arm 12 , and the driving member 153 drives the rotating member 152 to rotate.
  • the driving member 153 rotates to drive the rotating member 152 to rotate.
  • the driving member 153 is directly connected to the rotating member 152 in rotation.
  • the driving member 153 may be a motor or a rotating shaft or the like.
  • the rotating member 152 can be a gear, a bushing or the like.
  • the driving member 153 can drive the rotating member 152 to rotate, and the rotating member 152 can rotate to drive the arm 12 to rotate, so that the included angle between the adjusting arm 12 and the center body 11 can be changed.
  • the telescopic motion of the driving member drives the rotating member to rotate.
  • the telescopic movement of the driving member can be driven.
  • the driving member can be a telescopic rod, a telescopic screw, a telescopic motor, etc. of the telescopic motor.
  • the telescopic end of the driving part is fixedly connected with the machine arm, and the telescopic end is telescopic, so that the angle between the adjustable machine arm and the center body can be changed.
  • the arm 12 may include a fuselage end 121 fixed on the central body 11 and a blade end 122 for fixing the blades.
  • the first adjustment structure 251 is disposed at the connection between the fuselage end 121 and the blade end 122 , and the first adjustment structure 251 adjusts the angle between the fuselage end 121 and the blade end 122 .
  • the first adjusting structure 251 can also be provided at the connection between the central body 11 and the machine arm 12 .
  • the first adjustment structure 251 may include a clamping member 252 .
  • the clamping member 252 is clamped between the fuselage end 121 and the blade end 122 .
  • the clamping member 252 is detachably disposed between the fuselage end 121 and the blade end 122 . Referring to FIG. 5 , when the clamping member 252 is clamped between the fuselage end 121 and the blade end 122 , the fuselage end 121 and the blade end 122 are arranged at a certain angle. Referring to FIG. 6 , when the clamping member 252 is removed from between the fuselage end 121 and the blade end 122 , the size of the included angle between the fuselage end 121 and the blade end 122 is changed. Therefore, it is also possible to adjust the size of the included angle between the machine arm and the center body by removing the clamping member 252 between the fuselage end 121 and the blade end 122 .
  • the clamping member 252 is a clamping block.
  • the clamping block is detachably arranged between the fuselage end 121 and the blade end 122 .
  • the clamping block includes two first connection surfaces 2521 and second connection surfaces 2522 arranged at an angle.
  • the first connecting surface 2521 is used for connecting with the fuselage end 121
  • the second connecting surface 2522 is used for connecting with the blade end 122 .
  • the first connection surface 2521 is provided with screw holes, and the first connection surface 2521 and the fuselage end 121 are fixedly connected by screws.
  • the clamping member 252 is provided with a connecting portion 2523 , the connecting portion 2523 is disposed close to the blade end 122 , and the connecting portion 2523 is used for connecting with the blade end 122 .
  • the clamping member 252 can be connected to the blade end 122 through the connecting portion 2523 .
  • the clamping member 252 can also be used to fix the second connection surface 2522 to the blade end 122 through screws.
  • the connecting portion 2523 is disposed close to the fuselage end 121 , and the connecting portion 2523 is used for connecting with the fuselage end 121 .
  • the first connecting surface 2521 of the clamping member 252 may be connected to the fuselage end 121 through the connecting portion 2523 .
  • the first adjusting structure 251 may further include a connecting rod 253 .
  • the fuselage end 121 or the blade end 122 is provided with lugs 123 .
  • Both the connecting portion 2523 and the lug 123 are provided with connecting holes for connecting with the connecting rod 253 .
  • the connecting rod 253 passes through the connecting portion 2523 and the connecting hole on the lug 123 to realize the connection between the clamping block and the fuselage end 121 or the blade end 122 .
  • the fuselage end 121 and the blade end 122 may also be provided with lugs 123 .
  • Both the first connecting surface 2521 and the second connecting surface 2522 of the clamping block can be connected to the fuselage end 121 and the blade end 122 through the connecting rod 253 .
  • the connection manner between the clamping block and the fuselage end 121 and the blade end 122 is not limited here.
  • the first adjusting member 351 may further include a fixing seat 352 and a stop sleeve 353 .
  • the stop sleeve 353 is rotatably disposed on the fixed seat 352 .
  • the stop sleeve 353 is used for engaging the machine arm 12 .
  • the stop sleeve 353 is rotated relative to the fixed seat 352 to adjust the angle between the machine arm and the center body.
  • the fixing base 352 is provided on the fuselage end 121
  • the stop sleeve 353 is rotatably arranged on the fixing base 352
  • the stop sleeve 353 is used for engagingly connected with the blade end 122 .
  • the stop sleeve 353 is rotated relative to the fixed seat 352 to adjust the angle between the blade end 122 and the fuselage end 121 .
  • the spraying direction of at least one nozzle assembly can also be adjusted.
  • the fixing seat 352 can also be provided on the blade end 122 , and correspondingly, the stop sleeve 353 can be engaged with the fuselage end 121 .
  • the fixing seat 352 can also be directly arranged on the central body 11, and the stop sleeve 353 is used for engagingly connected with the machine arm.
  • the stop sleeve 353 defines a slot for engaging with the machine arm 12 .
  • the shape of the clamping slot is adapted to the shape of the blade end 122 of the machine arm, so as to ensure that the blade end 122 can be stably engaged in the clamping slot.
  • One side of the card slot is open for entering and exiting the machine arm, which is convenient for the machine arm to be engaged.
  • the stop sleeve 353 and the fixed seat 352 can be rotatably adjusted to adjust the angle between the blade end 122 and the fuselage end 121 .
  • the stop sleeve 353 and the fixing seat 352 are locked and limited by the engaging structure 354 , so that the space between the stop sleeve 353 and the fixing seat 352 can be maintained. stable positional relationship.
  • the engaging structure 354 includes a limiting protrusion and a plurality of fixing holes.
  • the limiting protrusions can be respectively clamped and fixed with the plurality of fixing holes.
  • the limiting protrusion and the fixing hole can be respectively disposed on the stop sleeve 353 and the fixing seat 352 , as long as the stop sleeve 353 and the fixing seat 352 can be limited and fixed.
  • the stop sleeve 353 is provided with a plurality of fixing holes 3531 distributed in an arc shape.
  • the fixing base 352 is provided with a limiting protrusion.
  • the plurality of fixing holes 3531 correspond to a plurality of included angles between the stop sleeve 353 and the fixing seat 352 respectively.
  • the stop protrusions correspond to fixing holes at different positions. After the stop sleeve 353 and the fixing seat 352 are adjusted in place, the stop protrusion is engaged with the fixing hole 3531 to stop.
  • the first adjusting member 351 further includes a locking member (not shown).
  • the locking member securely connects the stop sleeve 353 with the machine arm.
  • the locking piece is slidably sleeved on the outer side of the stop sleeve 353 .
  • the stop sleeve 353 is provided with an external thread, and the locking member is fastened and connected with the stop sleeve 353 through the external thread, and hoops the stop sleeve 353 and the machine arm 12 .
  • the locking member can be a nut or a solenoid.
  • the locking piece can strengthen the engaging connection between the stop sleeve 353 and the machine arm 12 to ensure the stability of the structure and position of the machine arm 12 .
  • the fuselage end 121 and the center body 11 may also have an integral structure. Then, the above-mentioned embodiment of the first adjusting member 351 can also be applied to the connection between the fuselage end 121 and the blade end 122.
  • the angle adjustment mechanism includes a second adjustment structure 451 .
  • the second adjusting structure 451 is provided at the connection between the arm and the rotor power unit.
  • the second adjusting structure 451 enables the rotor power unit to rotate relative to the machine arm, so as to adjust the included angle between the spraying direction of at least one of the plurality of nozzle assemblies 14 and the plane where the center body is located.
  • the second adjusting structure 451 can make the rotating shaft of the rotor power device 13 rotate around the extending direction of the machine arm 12 , so that the spraying direction of the nozzle assembly 14 can be adjusted.
  • the direction of the rotation axis of the paddle 132 can be directed to both sides of the extension direction of the machine arm 12 , so that the spraying direction of the nozzle 142 is at the two sides of the machine arm 12 . Adjust the spraying direction on the side.
  • the agricultural quality assurance drone 1 can spray the two rows of trees 2 between two rows of trees 2 at the same time.
  • the agricultural quality assurance drone 1 adjusts the spraying direction of the nozzle 142, and the second adjusting structure 451 enables the spraying direction of the nozzle 142 to be directed toward the branch along the growth direction of the branch. Therefore, in the spraying direction, there are fewer leaves to block the spraying of pesticides, ensuring that more branches and leaves can be sprayed with pesticides, and improving the uniformity of agricultural plant protection drones spraying pesticides on trees.
  • the second adjustment structure 451 makes the nozzle 142 vertically downward, which can ensure that the agricultural quality assurance drone 1 forms a complete spraying surface, and can spray the field evenly and quickly.
  • the second adjustment structure 451 makes at least one of the plurality of rotor power devices 13 rotate along the axial direction of the arm 12, and adjusts the included angle between the axial direction of the rotating shaft of the blade and the axial direction of the arm.
  • the second adjustment structure 451 can adjust the rotating shaft of part of the rotor power unit 13 in the axial direction, so that the spraying direction of the nozzle of part of the arm can be adjusted.
  • the spray angle of at least one of the plurality of nozzle assemblies 14 is substantially perpendicular to the boom.
  • the second adjustment structure 451 makes the rotor power device rotate around the axial direction of the arm, and adjusts the angle between the axial direction of the rotating shaft of the blade and the axial direction of the arm.
  • the rotation of the rotary shaft of the rotor power device 13 around the extending direction of the machine arm 12 may be in the form of: the second adjusting structure 451 is provided on the machine arm 12 .
  • the rotor power unit 13 is rotatably connected to the second adjustment structure 451 , so that the rotor power unit 15 rotates around the extending direction of the arm 12 .
  • the rotor power unit 13 may directly rotatably connect the blades 132 to the second adjustment structure 451 , or may indirectly rotatably connect the second adjustment structure 451 through other elements.
  • the paddle 132 rotates relative to the arm 12 to change the angle of the rotation axis of the paddle 132 .
  • the spraying angle of at least one nozzle 142 of the plurality of nozzle assemblies 14 is substantially perpendicular to the boom 12 .
  • the rotor power device 13 rotates on the outer side wall of the arm 12 , and its axis of rotation is perpendicular to the extending direction of the arm 12 .
  • the direction of the wind force generated by the blades 132 is also perpendicular to the extending direction of the machine arm 12 . Therefore, affected by the wind force, the spraying direction of the nozzle 142 is also substantially perpendicular to the machine arm 12 .
  • the machine base 133 is connected to the machine arm 12 through the second adjusting structure 451 .
  • the second adjusting structure 451 includes a fixing frame 452 and an engaging member 453 .
  • the shape of the fixing frame 452 is annular, and the arm 12 is sleeved in the fixing frame 452 .
  • the inner side wall of the fixing frame 452 is abutted with the outer side wall of the machine arm 12.
  • the engaging member 453 is disposed on the inner side wall of the fixing frame 452 , and a fitting member 454 for engaging with the engaging member 453 is correspondingly provided on the outer side wall of the machine arm 12 .
  • a plurality of fittings 454 may be distributed along the circumference of the machine arm 12 .
  • the fixing frame 452 rotates relative to the machine arm 12. When the direction of the rotation axis of the paddle 132 is adjusted in place, the engaging member 453 is correspondingly engaged with the matching member 454 at this position.
  • the plurality of engaging members 453 are distributed along the axial direction of the fixing frame 452 .
  • the fixing frame 452 rotates relative to the machine arm 12 , and when the direction of the rotation axis of the paddle 132 is adjusted in place, the engaging member 453 at this position is correspondingly engaged with the matching member 454 .
  • the fixing frame 452 is rotated relative to the machine arm 12 , the engaging member 453 and the matching member 454 can be engaged and connected, and the number of the engaging member 453 and the matching member 454 is not limited here.
  • the engaging member 453 can be a positioning hole
  • the matching member 454 can also be a positioning hole opened on the machine arm 12 .
  • the bolts can pass through the fixing frame 452 and the two positioning holes on the machine arm 12 at the same time, so that the fixing frame 452 and the machine arm 12 can be connected.
  • the engaging member 453 and the matching member 454 may be engaging with a slot and a convex point.
  • the engaging member 453 and the matching member 454 are also limited to the above-mentioned structural forms of the slot and the convex point, and the engaging member 453 and the matching member 454 may also be a hook, a buckle, or the like, respectively.
  • the second adjustment structure 451 further includes a fastening portion 455 .
  • the fastening part 455 enables the fixing frame 452 to fasten the hoop to the outside of the machine arm 12 .
  • the fastening portion 455 may include fastening bolts and fastening screw holes. The hole diameter of the fixing frame 452 is reduced by tightening the bolts, so that the fixing frame 452 is fastened to the machine arm 12 .
  • the rotational movement of the rotating shaft of the paddle 132 around the extension direction of the machine arm 12 may be, taking the extension direction of the machine arm 12 as the center of the circle, and moving along the curve of the outer side wall of the machine arm 12 . Its motion path can be circular or spiral.
  • the movement trajectory of the paddle 132 is not limited here.
  • the rotation axis of the paddle 132 can rotate around the extension direction of the machine arm 12 in the form that the second adjusting structure 451 can be connected to the machine arm 12, so that the machine arm 12 can rotate, and the machine arm 12 can rotate around the machine arm 12.
  • the rotation of the extension direction can also change the angle of the rotation axis of the paddle 132 .
  • the rotation of the machine arm 12 can be realized by the structure of the machine arm 12 being relatively self-rotatable.
  • the machine arm 12 may include a plurality of coaxially arranged columns. At least two cylinders are rotatably connected by an angle adjustment mechanism 15, so that one of the cylinders can rotate around the axial direction of the machine arm.
  • the second adjusting structure 451 may be a bearing structure, and the at least two cylinders are rotatably connected through the bearing structure.
  • the second adjusting structure 451 may also be a rotating groove and a connecting piece. The rotation groove is opened on the outer side wall of one cylinder, and the inner side wall of the other adjacent cylinder is provided with a connecting piece. the purpose of turning.
  • the specific structural form of the angle adjustment mechanism 15 is not limited here.
  • the cylinder can rotate around the axial direction of the machine arm, so that the blades on the machine arm can be rotated accordingly, so as to realize the adjustment of the angle of the rotating shaft of the blades, and then realize the adjustment of the spraying direction of the nozzle.
  • the second adjusting structure can also be connected to the central body 11, so that the machine arm 12 is rotatably connected to the central body 11. Then the machine arm 12 can rotate along its axis as a whole.
  • the second adjusting structure may be a bearing structure or a rotating structure or the like.
  • One end of the machine arm 12 is rotatably connected with the central body 11 through the angle adjustment mechanism 15 .
  • the machine arm 12 also rotates along the axial direction of the machine arm 12 .
  • the rack 10 also carries a water tank 17 .
  • the water tank 17 is arranged on the central body 11 .
  • the water tank 17 may be one or more.
  • the rack 10 carries a plurality of water tanks 17 at the same time, which can increase the carrying capacity of the agricultural plant protection drone 1 , so as to improve the spraying efficiency of the agricultural plant protection drone 1 .
  • the nozzle assembly 14 can be communicated with the water tank 17 through a pipeline.
  • a water pump and a control valve are provided on the pipeline to control the communication state of the nozzle assembly 14 .
  • the above-mentioned multi-rotor unmanned aerial vehicle further includes a pump 18 , and there are multiple pumps 18 .
  • Each pump 18 corresponds to the spray heads 142 of the plurality of spray head assemblies 14 .
  • the above-mentioned multi-rotor unmanned aerial vehicle further includes a flow meter 19 , and the flow balance between the multiple pumps 18 is controlled by the flow meter 19 .
  • the flowmeter 19 may be a dual-channel flowmeter.
  • the included angle of the arm 12 relative to the panning axis of the multi-rotor UAV is an acute angle.
  • the angle between the arm 12 and the panning axis of the multi-rotor UAV is 45 degrees to 80 degrees.
  • the arms 12 are all approached toward the yaw axis above the center body 11 , and the arms 12 and the plane where the center body 11 is located are arranged at an included angle.
  • the spraying angle of the nozzles 142 on the machine arm 12 is directed to the obliquely downward direction of the center body 11 .
  • the rotation state of the machine arm 12 relative to the central body 11 includes a tree spraying state and a non-tree spraying state.
  • the machine arm 12 may be provided with a first adjustment structure and/or a second adjustment structure.
  • the machine arm 12 can adjust the spraying angle of the spraying nozzle 142 correspondingly through the first adjusting structure and/or the second adjusting structure according to the spraying angle requirement of the spraying nozzle 142 .
  • the spraying angle of the nozzles 142 is obliquely downward of the central body 11 due to the occlusion of the leaves of the trees.
  • the size of the inclination angle of the machine arm 12 relative to the central body 11 can be approximated with reference to the growth angle of the tree branches, so that the spraying angle of the nozzle 142 is exactly along the growth direction of the branches.
  • the spraying angle of the nozzle 142 only a few leaves block the spraying of the pesticide, which ensures that more branches and leaves can be sprayed with the pesticide, and improves the uniformity of the agricultural plant protection drone 1 spraying the pesticide on the tree.
  • the spraying direction of the nozzle assembly 14 is returned.
  • the arm 12 is parallel to the plane where the center body 11 is located, and the power received by the arm 12 is perpendicular to the direction of the arm 12, and the multi-rotor unmanned aerial vehicle Can fly at high flight speed.
  • the spraying area of the multi-rotor unmanned aerial vehicle is larger, and the spraying flow rate is relatively uniform, and the spraying efficiency is improved.
  • the inclination angle of the nozzle 142 in the tree spraying state is much larger than the inclination angle of the nozzle 142 in the non-tree spraying state. Specifically, the inclination angle of the nozzle 142 in the tree spraying state is greater than twice the inclination angle in the non-tree spraying state.
  • a certain machine arm 12 can adjust the included angle of the machine arm 12 relative to the plane where the center body 11 is located through the first adjustment structure.
  • the arm 12 can also adjust the rotation angle of the rotation axis of the rotor power device relative to the extending direction of the arm 12 through the second adjustment structure. Therefore, the spraying angle of the nozzle 142 of the machine arm 12 can be adjusted at multiple angles. Therefore, the spraying direction of the nozzle 142 can be better aligned with the object to be sprayed, ensuring that more branches and leaves can be sprayed with pesticides, improving the uniformity of pesticide spraying on trees by the agricultural plant protection drone 1, and realizing efficient spraying.
  • Figure 13 also provides a control method of an agricultural plant protection drone.
  • Step S11 collecting the shape information of the object to be sprayed.
  • the form information includes the type of the object to be sprayed, the distance between two adjacent objects to be sprayed, and the height of the object to be sprayed.
  • the collected morphological information can be the distance between two adjacent trees, the distance between the bottom branch and the top branch of the tree, the length information of the bottom branch and the top branch, and the tree branches growth angle, etc.
  • the growth angle of the branch can be determined according to the angle between the growth direction and the vertical direction of the collected branch.
  • step S12 the spraying angle of the nozzle is determined according to the shape information.
  • the branch growth angle of the tree can be obtained. Then the spraying angle of the nozzle 142 is approximately equal to the growth of the branch. Therefore, the spraying angle of the nozzle 142 can be determined according to the growth angle of the branch.
  • Step S13 according to the spraying angle, adjust the angle between the spraying direction of the nozzle and the plane where the central body is located.
  • the included angle between the axial direction of the rotating shaft of the paddle and the plane where the center body is located is controlled and adjusted.
  • the spraying angle of the nozzle 142 is approximately consistent with the growth angle of the branch, so that the spraying direction of the nozzle 142 can spray along the growing direction of the branch.
  • the agricultural plant protection drone includes a shape acquisition module 18 , a control module 19 and an angle adjustment mechanism 15 .
  • the form collecting module 18 is used to collect form information of the object to be sprayed.
  • the form information includes the distance between two adjacent objects to be sprayed and the height of the objects to be sprayed.
  • the collected morphological information can be the distance between two adjacent trees, the distance between the bottom branch and the top branch of the tree, the length information of the bottom branch and the top branch, and the tree branches growth angle, etc.
  • the growth angle of the tree branch is the angle between the growth direction of the branch and the vertical direction. Then the machine arm 12 is inclined relative to the center body 11, and the angle between the machine arm 12 and the yaw axis Z is approximately the same as the growth angle of the branch, so that the spraying direction of the nozzle 142 can be sprayed along the growth direction of the branch.
  • the form acquisition module 18 may be a scanner, a distance sensor, a camera, or the like.
  • the control module 19 is used for receiving form information.
  • the control module 19 determines the spray angle of the acquisition nozzle 142 according to the shape information.
  • the control module 19 can obtain the branch growth angle of the tree according to the above-mentioned morphological information of the tree. In addition, the control module 19 can also control the entire flight process of the agricultural plant protection drone 1 according to the above-mentioned tree shape information.
  • the angle adjustment mechanism 15 is in signal connection with the control module 19 .
  • the control module 19 controls the adjustment angle adjustment mechanism 15 according to the spraying angle, and changes the included angle between the spraying direction of the nozzle assembly 14 and the plane where the center body is located.
  • the angle adjustment mechanism 15 has a drive member 153 .
  • the control module 19 is in control connection with the first regulating structure and the second regulating structure. Then, the control module 19 can control the driving members of the first adjusting structure and the second adjusting structure to rotate or extend, so as to achieve the purpose of controlling the angle between the machine arm 12 and the center body 11 .
  • control module 19 can also control the spraying directions of different nozzle assemblies 14 .
  • the agricultural plant protection drone can automatically select the nozzle assembly 14 at the corresponding position to work according to preset conditions.
  • the agricultural plant protection drone 1 can select the nozzle assembly 14 at the corresponding position to work according to the input information of the user, and the user can select it according to the current conditions.
  • the control module 19 can also control the conduction of the nozzle 142 through the water pump and the control valve.
  • the nozzles at the corresponding positions are selected to carry out the spraying operation, so as to prevent the mist droplets sprayed from the nozzles from falling on the central body 11, so that the central body The electronics on 11 are damaged.
  • the nozzle in the tail direction is selected.
  • the nozzle in the nose direction is selected.
  • the flight direction of the agricultural plant protection drone 1 is up and down flight, and the droplets ejected by the nozzle are not affected by the flight direction and wind direction, the nozzles located in the nose and tail directions can be selected for use.
  • a nozzle suitable for the position is selected to carry out the spraying operation. For example, if it is necessary to increase the penetrating power of spraying, when the agricultural plant protection drone 1 is flying towards the nose, select the nozzle in the direction of the nose, so that the sprayed droplets pass through the flight power of the agricultural plant protection drone 1 Under the action of the airflow generated by the device, it is accelerated and sprayed downward. In order to prevent the spray droplets sprayed from the nozzle from being affected by the airflow, when the agricultural plant protection drone 1 is flying towards the tail direction, select the nozzle in the tail direction, so that the sprayed droplets are affected by the flight of the agricultural plant protection drone 1. The effect of the airflow generated by the power unit.
  • nozzles with suitable positions are selected to implement the spraying operation, so as to minimize errors caused by the drift of sprayed droplets. For example, if the agricultural plant protection drone 1 is flying against the wind, select the nozzle in the direction of the nose. If the agricultural plant protection UAV 1 is flying downwind, select the nozzle in the tail direction.
  • a nozzle with an adapted position is selected to implement the spraying operation. For example, if the agricultural plant protection drone 1 only needs to spray one side of the tree, the agricultural plant protection drone 1 only needs to turn on the nozzle on the right side and spray along the boundary of the operation area of the trees clockwise to avoid Excessive spraying to the outside of the work area. Alternatively, the agricultural plant protection drone 1 only needs to turn on the nozzle on the left to work, and spray counterclockwise along the boundary of the operation area of the tree to avoid excessive spraying to the outside of the operation area.
  • the agricultural plant protection drone 1 can automatically select nozzles at corresponding positions according to preset conditions. Alternatively, the agricultural plant protection drone 1 can select the nozzle at the corresponding position according to the user's input information, and the user can select it according to the current conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种多旋翼无人飞行器的机架(10)、农业植保无人机(1)及控制方法。一种多旋翼无人飞行器的机架(10)包括中心体(11)、多个机臂(12)、多个旋翼动力装置(13)、多个喷嘴组件(14)及角度调节机构(15)。多个所述旋翼动力装置(13)用于提供飞行动力给所述多旋翼无人飞行器。多个喷嘴组件(14)分别安装在多个所述机臂(12)的下方,并且分别位于所述旋翼动力装置(13)的下方。角度调节机构(15)能够调节所述多个喷嘴组件(14)中的至少一个喷嘴组件(14)的喷洒方向与所述中心体(11)所在平面之间的夹角。一种多旋翼无人飞行器的机架(10)、农业植保无人机(1)及控制方法可以提高对树木喷洒农药的均匀度。

Description

多旋翼无人飞行器的机架、农业植保无人机及控制方法 技术领域
本发明涉及一种飞行设备,特别涉及一种多旋翼无人飞行器的机架、农业植保无人机及控制方法。
背景技术
随着农业植保无人机的推广应用,农业植保无人机需要对多种农作物进行喷洒施药。不同的施药对象,喷洒要求不同。传统农业植保无人机可以对大田作物,例如棉花、玉米进行农药喷洒。但是,该农业植保无人机对果树、经济作物等植株进行农药喷洒的时候,由于果树树枝的生长方向为斜向上发散生长,外部的树叶会对内部的树枝、树叶产生遮挡。因此,对于传统的农业植保无人机喷洒的农药很难穿透树叶的遮挡,存在喷洒不均匀、喷洒不透彻技术问题。
因此,传统农业植保无人机不能同时满足多种不同类型施药对象的喷洒需求,兼容性较差,不利于农业植保无人机的推广使用。
发明内容
本发明提供一种能够提高对树木喷洒农药的均匀度的多旋翼无人飞行器的机架、农业植保无人机及控制方法。
一种多旋翼无人飞行器的机架,包括:
中心体;
多个机臂,分布于所述中心体的外周;
多个旋翼动力装置,设于所述机臂上,多个所述旋翼动力装置用于提供飞行动力给所述多旋翼无人飞行器;
多个喷嘴组件,分别安装在多个所述机臂的下方,并且分别位于所述旋翼动力装置的下方;及
角度调节机构,所述角度调节机构能够调节所述多个喷嘴组件中的至少一个喷嘴组件的喷洒方向与所述中心体所在平面之间的夹角。
在其中一实施方式中,所述角度调节机构设于所述机臂或中心体上。
在其中一实施方式中,所述动力桨旋翼动力装置包括电机及桨叶,所述电机驱动所述桨叶转动,所述桨叶的旋转轴轴向与所述喷嘴的喷洒方向基本平行。
在其中一实施方式中,所述角度调节机构包括第一调节结构,所述第一调节结构至少能够使设有所述桨叶的部分所述机臂相对于所述中心体上下摆动,以调节所述机臂相对所述中心体所在的平面之间的夹角。
在其中一实施方式中,所述第一调节结构设于所述机臂与所述中心体的连接处。
在其中一实施方式中,所述机臂包括固定于所述中心体上的机身端及用于固定所述桨叶的桨叶端,所述第一调节结构设于所述机身端与所述桨叶端连接处,所述第一调节结构 调节所述机身端与所述桨叶端之间的夹角。
在其中一实施方式中,所述机身端与所述中心体为一体结构。
在其中一实施方式中,所述第一调节结构包括夹持件,所述夹持件夹持于所述机身端与所述桨叶端之间。
在其中一实施方式中,所述夹持件可拆卸设于所述机身端与所述桨叶端之间。
在其中一实施方式中,所述夹持件为夹块,所述夹块可拆卸设于所述机身端与所述桨叶端之间。
在其中一实施方式中,所述夹持件设有连接部,所述夹持件固定设于所述机身端上,所述连接部用于与所述桨叶端连接;
或者,所述夹持件固定设于所述桨叶端上,所述连接部用于与所述机身端连接。
在其中一实施方式中,所述第一调节结构还包括连杆,所述连接部及所述机臂上开设有用于与所述连杆连接的连接孔,所述连接部与所述机臂通过所述连杆连接。
在其中一实施方式中,所述机身端及\或所述桨叶端设有凸耳,所述连接孔开设于所述凸耳。
在其中一实施方式中,所述第一调节件包括固定座及止位套,所述止位套可转动设于所述固定座上,所述止位套用于卡合所述机臂,所述止位套相对于所述固定座转动以调节所述机臂与所述中心体之间的夹角。
在其中一实施方式中,所述止位套开设有卡槽,所述卡槽用于与所述机臂卡合。
在其中一实施方式中,所述止位套与所述固定座之间通过卡合结构卡合限位。
在其中一实施方式中,所述卡合结构包括限位凸起及多个固定孔,所述限位凸起能够分别与多个所述固定孔卡合固定。
在其中一实施方式中,多个所述固定孔呈弧形分布,多个所述固定孔分别对应所述止位套与所述固定座之间的多个夹角。
在其中一实施方式中,所述第一调节件还包括锁紧件,所述锁紧件使所述止位套与所述机臂紧固连接。
在其中一实施方式中,所述锁紧件可滑动套设于所述止位套外侧,所述止位套设有外螺纹,所述锁紧件通过所述外螺纹与所述止位套紧固连接,并抱箍所述止位套及所述机臂。
在其中一实施方式中,所述固定座固定设于所述中心体;
或者,所述机臂包括固定于所述中心体上的机身端及用于固定所述桨叶的桨叶端,所述机身端与所述桨叶端其中一个与所述固定座固定连接,所述机身端与所述桨叶端中的另一个与所述止位套卡合连接。
在其中一实施方式中,所述角度调节机构包括第二调节结构,所述第二调节结构使所述旋翼动力装置的旋转轴方向可相对所述机臂的延伸方向转动,以调节所述多个喷嘴组件中的至少一个的喷洒方向相对所述中心体所在的平面之间的夹角。
在其中一实施方式中,所述第二调节结构设于所述机臂与所述旋翼动力装置的连接处, 所述第二调节结构使所述多个旋翼动力装置中的至少一个沿所述机臂的轴向转动,调节所述旋翼动力装置的旋转轴轴向与所述机臂的轴向之间的夹角。
在其中一实施方式中,所述多个喷嘴组件中的至少一个的喷洒角度基本垂直于所述机臂。
在其中一实施方式中,所述第二调节结构使所述旋翼动力装置绕所述机臂的轴向转动,调节所述旋翼动力装置的旋转轴轴向与所述机臂的轴向之间的夹角。
在其中一实施方式中,所述旋翼动力装置包括机座,所述第二调节结构与所述机臂固定连接,所述第二调节结构与所述机座卡合连接;
或者,所述第二调节结构与所述机座固定连接,所述第二调节结构与所述机臂卡合连接。
在其中一实施方式中,所述喷嘴组件包括支架及喷嘴,所述喷嘴设于所述支架上,所述支架为可折叠结构。
在其中一实施方式中,所述桨叶的旋转轴轴相对于所述中心体所在平面之间的转动状态包括树木喷洒状态和非树木喷洒状态,所述喷嘴的喷洒角度在树木喷洒状态的倾斜角度大于在所述非树木喷洒状态的倾斜角度。
一种农业植保无人机,包括形态采集模块、控制模块及多旋翼无人飞行器的机架,所述采集模块用于采集待喷洒物的形态信息,所述控制模块用于根据所述形态信息,确定喷嘴的喷洒角度,并根据所述喷洒角度,控制所述角度调节机构,调节所述喷嘴的喷洒方向与所述中心体所在平面之间的夹角。
一种农业植保无人机的控制方法,包括:
采集待喷洒物的形态信息;
根据所述形态信息,确定喷嘴的喷洒角度;
根据所述喷洒角度,调节所述喷嘴的喷洒方向与所述中心体所在平面之间的夹角。
在其中一实施方式中,所述形态信息包括所述待喷洒物的种类、相邻两所述待喷洒物的间距大小、所述待喷洒物的高度。
一种农业植保无人机,包括形态采集模块、控制模块及上述多旋翼无人飞行器的机架,所述采集模块用于采集待喷洒物的形态信息,所述控制模块用于根据所述形态信息,确定喷嘴的喷洒角度,并根据所述喷洒角度,控制所述角度调节机构,调节所述喷嘴的喷洒方向与所述中心体所在平面之间的夹角。
一种农业植保无人机的控制方法,包括:
采集待喷洒物的形态信息;
根据所述形态信息,确定喷嘴的喷洒角度;
根据所述喷洒角度,调节所述喷嘴的喷洒方向与所述中心体所在平面之间的夹角。
上述旋翼无人飞行器的机架通过角度调节机构可以对至少一个喷嘴组件的喷洒方向与中心体所在平面之间的夹角进行调节,进而实现对设于机臂上的喷嘴的喷洒角度进行调 节。当喷嘴的喷洒角度朝向中心体的斜下方的时候,则喷洒角度能够直接朝向树枝,沿树枝的生长方向。当上述农业植保无人机位于树木的一侧的时候,则在喷嘴的喷洒角度上只有较少的树叶对喷洒农药产生遮挡,保证较多的树枝及树叶能够喷洒到农药,提高农业植保无人机对树木喷洒农药的均匀度。
并且,上述农业植保无人机通过上述控制方法,可以根据待喷洒物的形态信息,获取喷嘴的喷洒角度,从而可以对应调节喷嘴组件的喷洒方向与中心体之间的夹角,使喷嘴的喷洒角度朝向中心体的斜下方。则喷嘴的喷洒角度能够直接朝向树枝,沿树枝的生长方向。当上述农业植保无人机位于树木的一侧的时候,则在喷嘴的喷洒角度上只有较少的树叶对喷洒农药产生遮挡,保证较多的树枝及树叶能够喷洒到农药,提高农业植保无人机对树木喷洒农药的均匀度。
附图说明
图1为本实施方式的农业植保无人机使用状态示意图;
图2为图1所示的农业植保无人机的简易示意图;
图3为农业植保无人机的角度调节机构的一实施方式简易示意图;
图4为农业植保无人机的角度调节机构的另一实施方式简易示意图;
图5为图4所示的角度调节机构的具体结构示意图;
图6为图5所示的角度调节机构的另一状态的结构示意图;
图7为图5所示的角度调节机构的另一角度的结构示意图;
图8为图6所示的角度调节机构的使用状态的结构示意图
图9为农业植保无人机的角度调节机构的另一实施方式简易示意图;
图10为图9所示的角度调节机构的结构示意图;
图11为农业植保无人机的角度调节机构的另一实施方式简易示意图;
图12为图11所示的角度调节机构的另一角度的结构示意图;
图13为一实施方式的农业植保无人机的控制方法的流程图;
图14为一实施方式的农业植保无人机的电学模块示意图。
附图标记:
1、农业植保无人机;10、机架;11、中心体;
12、机臂;121、机身端;122、桨叶端;123、凸耳;
13、旋翼动力装置;131、电机;132、桨叶;133、机座;
14、喷嘴;141、支架;142、喷嘴;
15、角度调节机构;151、第一调节结构;152、转动件;153、驱动件;
251、第一调节结构;252、夹持件;2521、第一连接面;2522、第二连接面;2523、连接部;253、连杆;
351、第一调节结构;352、固定座;353、止位套;354、卡合结构;
451、第二调节结构;452、固定架;453、卡合件;454、配合件;455、紧固部;
18、形态采集模块;19、控制模块。
具体实施方式
体现本发明特征与优点的典型实施方式将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施方式上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上是当作说明之用,而非用以限制本发明。
本实施方式提供一种农业植保无人机。农业植保无人机用于农林植物保护作业的无人驾驶飞机。该型农业植保无人机通过地面遥控或导航飞控,来对待喷洒物实现喷洒作业。待喷洒物可以为树木、农作物等。农业植保无人机可以喷洒药剂、种子、粉剂等。
请参阅图1,本实施方式的农业植保无人机1包括电源及机架10。电源为农业植保无人机正常工作提供电量。该机架为一种多旋翼无人飞行器的机架。
具体在本实施方式中,一种多旋翼无人飞行器的机架10包括中心体11、多个机臂12、多个旋翼动力装置13、多个喷嘴组件14及角度调节机构15。
中心体11可以作为机架10的中心基准。以中心体11为中心,多个机臂12分布于中心体11的外周。旋翼动力装置13设于机臂12上。多个旋翼动力装置13可以为多旋翼无人飞行器提供飞行动力。多个喷嘴组件14分别安装在多个机臂12的下方,并且分别位于旋翼动力装置13的下方。喷嘴组件14用于喷洒药剂。
请参阅图2,在上述旋翼无人飞行器飞行的过程中,中心体11所在的平面与水平面平行,以保证机架10能够平衡。
角度调节机构15能够调节多个喷嘴组件14中的至少一个喷嘴组件的喷洒方向与中心体11所在平面之间的夹角。
当喷嘴组件14的喷洒方向与旋翼动力装置13的旋转轴轴向基本平行的时候,角度调节机构15可以通过改变机臂12相对于中心体11所在平面之间的夹角,使旋翼动力装置13随机臂相对于中心体上下摆动,以调节旋翼动力装置13的旋转轴轴向,实现对喷嘴组件14的喷洒方向的调节。或者,角度调节机构15还可以通过改变旋翼动力装置13的旋转轴的方向而改变喷嘴组件14的喷洒方向。角度调节机构15可以通过使旋翼动力装置13的旋转轴绕机臂12的延伸方向转动,实现调节喷嘴组件14的喷洒方向。
另外,当喷嘴组件14的喷洒方向与旋翼动力装置13的旋转轴方向不同的时候,则角度调节机构15还可以直接转动喷嘴组件14的喷嘴的出口方向,也可以实现调节喷嘴组件14的喷洒方向。
因此上述农业植保无人机可以根据不同的待喷洒物的形状及喷洒需求,利用角度调节机构15调节喷嘴组件14的喷洒角度,以实现对待喷洒物较为准确的实施喷洒,并且提高农业植保无人机1对待喷洒物进行喷洒时的均匀度。
具体在本实施方式中,上述机架10的多个机臂12对称分布于中心体11的外周。具体在本实施方式中,机臂12包括六个。六个机臂对称分布于中心体11的外周。相邻两机臂12之间的夹角为60度,则可以保证机架10能够顺利保持平衡。具体地,机臂12可以 为狭长杆状,机臂12的延伸方向即为机臂12的轴向。
请参阅图2,机臂12的上方承载有旋翼动力装置13。旋翼动力装置13包括电机(图未示)及桨叶132,电机驱动桨叶132转动。电机的驱动轴的轴向与桨叶132的旋转轴方向相同。旋翼动力装置13的旋转轴即为其桨叶132的旋转轴方向。
旋翼动力装置13还包括机座133。通常电机设于机座133内。桨叶132设置于机座上,并与电机驱动连接。桨叶132旋转,沿旋转轴轴向产生风力。桨叶132产生的风力即为桨叶132的旋转轴方向。
机臂12的下方设有喷嘴组件14,喷嘴组件14正对旋翼动力装置13。喷嘴组件14包括支架141及多个喷嘴142。支架141可拆卸设于机臂12上,多个喷嘴142分别设于支架141上。支架141可以为可折叠结构。当多旋翼无人飞行器处于喷洒药物的工作状态的时候,则支架141可以处于打开状态,保证喷嘴组件14能够正常使用。当多旋翼无人飞行器处于收纳运输状态的时候,则支架141处于收折状态,以减小支架的占用空间,方便收纳运输。
喷嘴142喷出的喷雾在旋翼动力装置13的风力影响下,可以加快喷雾喷射速度,及喷雾的喷射面积。并且,桨叶132的风力影响较大,喷嘴142的喷洒方向与桨叶132的旋转轴轴向基本平行。
在其他实施方式中,当喷嘴142的喷射压力足够大的时候,则喷嘴142的喷洒方向也可以不同于桨叶132的旋转轴方向。
在一实施方式中,角度调节机构15包括第一调节结构151,第一调节结构151至少能够使设有桨叶132的部分机臂12相对于中心体11上下摆动,以调节机臂12相对中心体所在的平面之间的夹角。第一调节结构151可以通过改变机臂12相对于中心体所在平面之间的夹角,使旋翼动力装置随机臂12相对于中心体上下摆动,以调节旋翼动力装置的旋转轴轴向,实现对喷嘴组件14的喷洒方向的调节。
在一实施方式中,第一调节结构151可以设于机臂12与中心体的连接处。机臂12通过第一调节结构151使机臂12相对于中心体11所在平面上下摆动。第一调节结构151能够调节机臂12与中心体11之间的夹角。每个机臂12上可以均设有上述第一调节结构151,或者,部分机臂12上设有第一调节结构151。只要能够保证多个机臂12之间保持对称设置,机架10在飞行过程中保持平衡即可。此处对第一调节结构151的个数与机臂12的个数之间的关系不做限定。
第一调节结构151可以包括转动件152。转动件152与机臂12连接。转动件152转动,调节机臂12与中心体11之间的夹角。转动件152可以为转轴。机臂12相对于转轴转动,则调节机臂12与中心体11之间的夹角大小。
具体在本实施方式中,角度调节机构15还可以包括锁定件(图未示)。锁定件与转动件152限位连接,以限定机臂12与中心体11之间的夹角。当确定机臂12与中心体11 之间的夹角之后,则通过锁定件将机臂12与中心体11之间的夹角进行锁定。锁定件可以为插销,也可以为限位卡合件等。
角度调节机构15还包括驱动件153。驱动件153与机臂12驱动连接,驱动件153带动转动件152转动。
驱动件153转动带动转动件152转动。驱动件153与转动件152直接转动连接。驱动件153可以为电机或转轴等。转动件152可以为齿轮、轴套等。驱动件153可以驱动转动件152转动,转动件152转动从而带动机臂12转动,从而可以改变调节机臂12与中心体11之间的夹角大小。
在另一实施方式中,驱动件伸缩运动带动转动件转动。驱动件伸缩运动可以带动。驱动件可以为伸缩电机的伸缩杆、伸缩丝杆、伸缩电机等。驱动件的伸缩端与机臂固定连接,则伸缩端伸缩,从而可以改变调节机臂与中心体之间的夹角大小。
请参阅图4及图5,在其他实施方式中,机臂12可以包括固定于中心体11上的机身端121及用于固定桨叶的桨叶端122。
第一调节结构251设于机身端121与桨叶端122连接处,第一调节结构251调节机身端121与桨叶端122之间的夹角。并且,第一调节结构251同样也可以设于中心体11与机臂12的连接处。
具体地,第一调节结构251可以包括夹持件252。夹持件252夹持于机身端121与桨叶端122之间。
夹持件252可拆卸设于机身端121与桨叶端122之间。请参阅图5,当夹持件252夹持与机身端121与桨叶端122之间的时候,机身端121与桨叶端122之间呈一定夹角度数设置。请参阅图6,当将夹持件252从机身端121与桨叶端122之间拆卸下来的时候,机身端121与桨叶端122之间的夹角大小得到改变。因此,通过拆卸机身端121与桨叶端122之间的夹持件252也可以实现调节机臂与中心体之间的夹角大小。
请参阅图4及图7,具体地,夹持件252为夹块。夹块可拆卸设于机身端121与桨叶端122之间。夹块包括两个呈夹角设置的第一连接面2521及第二连接面2522。第一连接面2521用于与机身端121连接,第二连接面2522用于与桨叶端122连接。
具体地,第一连接面2521开设有螺孔,第一连接面2521与机身端121通过螺钉实现固定连接。则夹持件252设有连接部2523,连接部2523靠近桨叶端122设置,连接部2523用于与桨叶端122连接。当夹持件252固定设于机身端121上,为方便第二连接面2522与桨叶端122连接,夹持件252可以通过连接部2523与桨叶端122连接。或者,夹持件252也可以通过螺钉将第二连接面2522与桨叶端122固定连接。连接部2523靠近机身端121设置,连接部2523用于与机身端121连接。夹持件252的第一连接面2521可以通过连接部2523与机身端121连接。
请参阅图8,第一调节结构251还可以包括连杆253。机身端121或桨叶端122设有凸耳123。连接部2523及凸耳123均开设有用于与连杆253连接的连接孔。连杆253穿过连接部2523及凸耳123上的连接孔,可以实现夹块与机身端121或桨叶端122之间的连接。请参阅图5及图6,机身端121及桨叶端122也可以均设有凸耳123。夹块的第一连接面2521及第二连接面2522均可以通过连杆253,实现与机身端121及桨叶端122的连接。此处对夹块与机身端121及桨叶端122之间的连接方式不做限定。
在其他实施方式中,请参阅图9及图10,第一调节件351还可以包括固定座352及止位套353。止位套353可转动设于固定座352上。止位套353用于卡合机臂12。止位套353相对于固定座352转动以调节机臂与中心体之间的夹角。
具体在本实施方式中,固定座352设于机身端121,止位套353可转动设于固定座352上,止位套353用于与桨叶端122卡合连接。止位套353相对于固定座352转动以调节桨叶端122与机身端121之间的夹角。桨叶端122与机身端121之间的夹角改变,也可以实现对至少一喷嘴组件的喷洒方向的调节。可以理解,固定座352还可以设于桨叶端122上,相应的,止位套353可以与机身端121卡合连接。或者,固定座352还可以直接设于中心体11上,止位套353用于与机臂卡合连接。
止位套353开设有用于与机臂12卡合卡槽。具体地,卡槽的形状与机臂的桨叶端122的形状相适配,以保证桨叶端122能够稳定卡合于卡槽内。卡槽的一侧开口,用于进出机臂,方便机臂卡合。
止位套353与固定座352之间可转动调节,以调节桨叶端122与机身端121之间的夹角角度。当止位套353与固定座352之间调节到位的时候,止位套353与固定座352之间通过卡合结构354卡合限位,从而可以使止位套353与固定座352之间保持稳定的位置关系。
具体地,卡合结构354包括限位凸起及多个固定孔。限位凸起能够分别与多个固定孔卡合固定。限位凸起与固定孔可以分别设置于止位套353与固定座352上,只要使止位套353与固定座352实现限位固定即可。
具体地,止位套353上开设有多个呈弧形分布的固定孔3531。固定座352上设有限位凸起。多个固定孔3531分别对应止位套353与固定座352之间的多个夹角。当止位套353与固定座352相对转动的时候,限位凸起对应不同位置的固定孔。当止位套353与固定座352调节到位之后,则限位凸起与固定孔3531卡合限位。
第一调节件351还包括锁紧件(图未示)。锁紧件使止位套353与机臂紧固连接。锁紧件可滑动套设于止位套353外侧。止位套353设有外螺纹,锁紧件通过外螺纹与止位套353紧固连接,并抱箍止位套353及机臂12。锁紧件可以为螺母或螺管等。锁紧件可以加强止位套353与机臂12之间的卡合连接关系,保证机臂12的结构、位置的稳定。
在上述实施方式中,机身端121与中心体11也可以为一体结构。则上述第一调节件 351的实施方式同样也可以适用于机身端121与桨叶端122之间的连接。
请参阅图11及图12,在其他实施方式中,角度调节机构包括第二调节结构451。第二调节结构451设于机臂与旋翼动力装置的连接处。第二调节结构451使旋翼动力装置可相对机臂转动,以调节多个喷嘴组件14中的至少一个的喷洒方向相对中心体所在的平面之间的夹角。第二调节结构451能够使旋翼动力装置13的旋转轴绕机臂12的延伸方向转动,从而可以实现调节喷嘴组件14的喷洒方向。
桨叶132的旋转轴绕机臂12的延伸方向转动之后,使桨叶132的旋转轴方向可以为朝向机臂12的延伸方向的两侧,从而使喷嘴142的喷洒方向在机臂12的两侧的喷洒方向进行调整。
具体在本实施方式中,请参阅图1,该农业质保无人机1可以在两排树木2之间,同时对两排树木2进行喷洒作业。在对树木2进行喷洒的时候,该农业质保无人机1调节喷嘴142的喷洒方向,第二调节结构451使喷嘴142的喷洒方向能够沿树枝的生长方向,直接朝向树枝。因此,在喷洒方向上只有较少的树叶对喷洒农药产生遮挡,保证较多的树枝及树叶能够喷洒到农药,提高农业植保无人机对树木喷洒农药的均匀度。
当该农业质保无人机1对大田进行喷洒的时候,第二调节结构451使喷嘴142垂直向下,可以保证该农业质保无人机1形成一完整的喷洒面,能够对大田均匀、快速喷洒。
第二调节结构451使多个旋翼动力装置13中的至少一个沿机臂12的轴向转动,调节桨叶的旋转轴轴向与机臂的轴向之间的夹角。第二调节结构451可以使部分旋翼动力装置13的旋转轴轴向调整,使部分机臂的喷嘴的喷洒方向得到调节。
多个喷嘴组件14中的至少一个的喷洒角度基本垂直于机臂。
第二调节结构451使旋翼动力装置绕机臂的轴向转动,调节桨叶的旋转轴轴向与机臂的轴向之间的夹角。
旋翼动力装置13的旋转轴绕机臂12的延伸方向转动的形式可以为:第二调节结构451设于机臂12上。旋翼动力装置13可转动连接于第二调节结构451,使旋翼动力装置15绕机臂12的延伸方向转动。旋翼动力装置13可以直接将桨叶132可转动连接于第二调节结构451,也可以通过其他元件间接可转动连接于第二调节结构451上。桨叶132相对于机臂12转动,改变桨叶132的旋转轴的角度。
上述多个喷嘴组件14中的至少一个喷嘴142的喷洒角度基本垂直于机臂12。旋翼动力装置13于机臂12的外侧壁上转动,其旋转轴轴向垂直于机臂12的延伸方向。则桨叶132产生的风力方向也垂直与机臂12的延伸方向,因此受风力影响,喷嘴142的喷洒方向也基本垂直于机臂12。
具体在本实施方式中,机座133通过第二调节结构451与机臂12连接。
请参阅图3及图4,具体地,第二调节结构451包括固定架452及卡合件453。固定架452的形状呈环形,机臂12套设于固定架452内。固定架452的内侧壁与机臂12的外 侧壁相贴合。卡合件453设于固定架452的内侧壁上,则机臂12的外侧壁上对应设有用于与卡合件453相卡合连接的配合件454。
卡合件453可以为一个或多个。当卡合件453为一个的时候,则机臂12的配合件454可以为多个。多个配合件454可以沿机臂12的周向分布。固定架452相对于机臂12转动,当桨叶132的旋转轴方向调节到位的时候,使卡合件453对应与该位置处的配合件454卡合连接。或者,卡合件453还可以为多个。则配合件454也可以为一个。多个卡合件453沿固定架452的轴向分布。固定架452相对于机臂12转动,当桨叶132的旋转轴方向调节到位的时候,使该位置处的卡合件453对应与配合件454卡合连接。只要固定架452相对于机臂12转动后,卡合件453与配合件454能够实现卡合连接即可,此处对卡合件453与配合件454的个数不做限定。
具体地,卡合件453可以为定位孔,则配合件454也可以为开设于机臂12上的定位孔。螺栓可以同时穿过固定架452及机臂12上的两定位孔,使固定架452与机臂12实现连接。
在其他实施方式中,卡合件453与配合件454可以为卡槽与凸点的卡合方式。并且,卡合件453与配合件454也限于上述卡槽与凸点的结构形式,卡合件453与配合件454还可以分别为卡勾、卡扣等。
第二调节结构451还包括紧固部455。紧固部455使固定架452紧固抱箍于机臂12的外侧。紧固部455可以包括紧固螺栓及紧固螺孔。通过紧固螺栓紧固使固定架452的孔径缩小,以使固定架452与机臂12紧固连接。
其中,桨叶132的旋转轴绕机臂12的延伸方向的转动运动可以为,以机臂12的延伸方向为圆心,沿机臂12的外侧壁的曲线运动。其运动路径可以为圆周也可以为螺旋状等。此处对桨叶132的运动轨迹不做限定。
在其他实施方式中,桨叶132的旋转轴绕机臂12的延伸方向转动的形式还可以为:第二调节结构451可以连接于机臂12内,使机臂12能够自转,机臂12绕其延伸方向自转,同样可以改变桨叶132的旋转轴的角度。其中,机臂12自转可以通过机臂12的自身为可相对自转的结构实现。
具体地,机臂12可以包括多个同轴设置的柱体。至少两柱体之间通过角度调节机构15可转动连接,以使其中一柱体能够绕机臂的轴向自转。第二调节结构451可以为轴承结构,则至少两节柱体之间通过轴承结构实现可转动连接。或者,第二调节结构451还可以为旋转槽及连接件。旋转槽开设于一柱体的外侧壁,相邻的另一柱体的内侧壁设有连接件,连接件可沿该旋转槽转动,同样也可以实现两个柱体之间沿机臂的轴向转动的目的。此处对角度调节机构15的具体结构形式不做限定。
柱体能够绕机臂的轴向自转,则可以使机臂上桨叶随之转动,从而实现调节桨叶旋转轴的角度,进而实现了调节喷嘴的喷洒方向。
在其他实施方式中,第二调节结构还可以连接于中心体11上,使机臂12可转动连接 于中心体11上。则机臂12可以整体沿其轴向自转。第二调节结构可以为轴承结构或旋转结构等。机臂12的一端通过角度调节机构15实现与中心体11的可转动连接。机臂12同样沿机臂12的轴向自转。
请参阅图2,机架10上还承载有水箱17。水箱17设置于中心体11上。该水箱17可以为一个或多个。则机架10同时载有多个水箱17可以提高农业植保无人机1的承载药量,以提高农业植保无人机1的喷洒效率。则喷嘴组件14可以通过管路与水箱17连通。并且,管路上设有水泵及控制阀,以控制喷嘴组件14的连通状态。
请参阅图12,上述多旋翼无人飞行器还包括泵18,泵18为多个。每一泵18对应多个喷头组件14的喷头142。
上述多旋翼无人飞行器还包括流量计19,多个泵18之间通过流量计19控制流量均衡。具体地,该流量计19可以为双通道流量计。
请参阅图3,并且,机臂12相对于多旋翼无人飞行器的航向轴的夹角为锐角。机臂12与多旋翼无人飞行器的航向轴的夹角为45度~80度。则机臂12均朝向中心体11的上方的航向轴靠拢,机臂12与中心体11所在平面呈夹角设置。则机臂12上的喷嘴142的喷洒角度朝向中心体11的斜下方。
机臂12相对于中心体11的转动状态包括树木喷洒状态和非树木喷洒状态。当需要对树木进行喷洒的时候,机臂12可以设有第一调节结构及/或第二调节结构。机臂12可以根据对喷嘴142的喷洒角度要求,通过第一调节结构及/或第二调节结构,对应调节喷嘴142的喷洒角度。由于树木的树叶的遮挡,喷嘴142的喷洒角度朝向中心体11的斜下方。在树木喷洒状态下,机臂12相对于中心体11的倾斜角度大小可以近似参考树木树枝的生长角度,使喷嘴142的喷洒角度正好沿树枝的生长方向。则在喷嘴142的喷洒角度上只有较少的树叶对喷洒农药产生遮挡,保证较多的树枝及树叶能够喷洒到农药,提高农业植保无人机1对树木喷洒农药的均匀度。
当不需要对树木进行喷洒的时候,或者对非树木进行喷洒的时候,则喷嘴组件14的喷洒方向返回。机臂12相对于中心体11之间不存在夹角的时候,则机臂12平行于中心体11所在的平面,则机臂12受到的动力为垂直于机臂12方向,多旋翼无人飞行器可以以较高的飞行速度飞行。当上述多旋翼无人飞行器对大田农作物进行喷洒的时候,多旋翼无人飞行器的喷洒面积较大,并且喷洒流量较为均匀,并提高了喷洒效率。
并且,喷嘴142在树木喷洒状态的倾斜角度远大于喷嘴142在非树木喷洒状态的倾斜角度。具体地,喷嘴142在树木喷洒状态的倾斜角度大于在非树木喷洒状态的倾斜角度的2倍。
在一实施方式中,某一机臂12通过第一调节结构实现调节机臂12相对于中心体11所在平面的夹角。并且,该机臂12还可以通过第二调节结构对旋翼动力装置的旋转轴相 对于机臂12的延伸方向的转动角度。因此,该机臂12的喷嘴142的喷洒角度可以实现多角度调节。从而使该喷嘴142的喷射方向能够更好的对准待喷洒物,保证较多的树枝及树叶能够喷洒到农药,提高农业植保无人机1对树木喷洒农药的均匀度,实现高效喷洒。
请参阅图13,还提供一种农业植保无人机的控制方法。
本实施方式的一种农业植保无人机的控制方法包括:
步骤S11,采集待喷洒物的形态信息。
具体地,形态信息包括待喷洒物的种类、相邻两待喷洒物的间距大小、待喷洒物的高度。当待喷洒物是树木的时候,则采集的形态信息可以为,相邻两棵树木之间的间距大小,树木的底部树枝与顶部树枝之间距离,底部树枝与顶部树枝的长度信息及树木树枝的生长角度等。根据采集得到的树枝的生长方向与竖直方向的夹角可以确定树枝的生长角度。
步骤S12,根据形态信息,确定喷嘴的喷洒角度。
根据上述树木的形态信息,可以得到树木的树枝生长角度。则喷嘴142的喷洒角度与树枝的成长近似相等。因此,根据该树枝的生长角度即可确定该喷嘴142的喷洒角度。
步骤S13,根据喷洒角度,调节所述喷嘴的喷洒方向与所述中心体所在平面之间的夹角。
具体地,根据喷洒角度,控制调节桨叶的旋转轴轴向与中心体所在平面之间的夹角。
喷嘴142的喷洒角度与树枝的生长角度大约保持一致,才能使喷嘴142的喷洒方向沿树枝的生长方向进行喷洒。
还提供一种农业植保无人机。请参阅图14,该农业植保无人机包括形态采集模块18、控制模块19及角度调节机构15。
形态采集模块18用于采集待喷洒物的形态信息。形态信息包括相邻两待喷洒物的间距大小、待喷洒物的高度。当待喷洒物是树木的时候,则采集的形态信息可以为,相邻两棵树木之间的间距大小,树木的底部树枝与顶部树枝之间距离,底部树枝与顶部树枝的长度信息及树木树枝的生长角度等。
其中,树木树枝的生长角度为树枝的生长方向与竖直方向的夹角。则机臂12相对于中心体11倾斜设置,机臂12与航向轴Z之间的夹角与树枝的生长角度大约保持一致,才能使喷嘴142的喷洒方向沿树枝的生长方向进行喷洒。
形态采集模块18可以为扫描仪、距离传感器或摄像头等。
控制模块19用于接收形态信息。控制模块19根据形态信息确定获取喷嘴142的喷洒角度。
控制模块19可以根据上述树木的形态信息,可以得到树木的树枝生长角度。并且,控制模块19还可以根据上述树木的形态信息,对农业植保无人机1的整个飞行过程进行控制。
角度调节机构15与控制模块19信号连接。控制模块19根据喷洒角度控制调节角度 调节机构15,改变喷嘴组件14的喷洒方向与中心体所在平面之间的夹角。角度调节机构15具有驱动件153。控制模块19与第一调节结构及第二调节结构控制连接。则控制模块19可以控制第一调节结构及第二调节结构的驱动件转动或伸缩,从而达到控制机臂12与中心体11之间夹角的目的。
并且,控制模块19还可以对不同喷嘴组件14的喷洒方向进行控制。农业植保无人机可以根据预设条件,自动选取相应位置的喷嘴组件14工作。或者,农业植保无人机1可以用户的输入信息选取相应位置的喷嘴组件14工作,并由用户根据当时条件来选择。控制模块19还可以通过水泵、控制阀对喷嘴142的导通工作进行控制。
在其中一些实施例中,根据农业植保无人机1的飞行方向及作业环境的风向,选择对应位置的喷嘴实施喷洒作业,以避免喷嘴喷出的雾滴落到中心体11上,使中心体11上的电子器件受损。在农业植保无人机1朝向机头方向飞行时,或者,如果农业植保无人机1逆风飞行,则选择机尾方向的喷嘴。在农业植保无人机1朝向机尾方向飞行时,或者,如果农业植保无人机1逆风飞行,则选择机头方向的喷嘴。当农业植保无人机1的飞行方向为上下升降飞行时,喷嘴喷出的雾滴不受飞行方向及风向的影响的时候,则位于机头及机尾方向的喷嘴均可以选取使用。
在其中一个实施例中,根据农业植保无人机1的飞行方向,选择适应位置的喷嘴实施喷洒作业。例如,如果需要增大喷洒的穿透力,则在农业植保无人机1朝向机头方向飞行时,选取机头方向的喷嘴,使得喷出的雾滴经过农业植保无人机1的飞行动力装置产生的气流作用下,加速朝向下方喷出。如果为了避免喷嘴喷出的雾滴受到气流影响,则在农业植保无人机1朝向机尾方向飞行时,选取机尾方向的喷嘴,使得喷出的雾滴受到农业植保无人机1的飞行动力装置产生的气流的影响。
在其中一些实施例中,根据农业植保无人机1的作业环境的风向,选择适应位置的喷嘴实施喷洒作业,以尽量减少喷洒的雾滴的漂移产生的误差。例如,如果农业植保无人机1逆风飞行,则选择机头方向的喷嘴。如果农业植保无人机1顺风飞行,则选择机尾方向的喷嘴。
在其中一些实施例中,根据农业植保无人机1相较于作业区域的朝向,选择适应位置的喷嘴实施喷洒作业。例如,如果农业植保无人机1只需要对一侧树木进行喷洒,则农业植保无人机1只需开启右侧的喷嘴工作,并顺时针沿着树木的作业区域的边界进行喷洒,以避免过多的喷洒到作业区域的外部。或者,则农业植保无人机1只需开启左侧的喷嘴工作,并逆时针沿着树木的作业区域的边界进行喷洒,以避免过多的喷洒到作业区域的外部。
在其中一些实施例中,农业植保无人机1可以根据预设条件,自动选取相应位置的喷嘴。或者,农业植保无人机1可以用户的输入信息选取相应位置的喷嘴,并由用户根据当时条件来选择。
虽然已参照几个典型实施方式描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (31)

  1. 一种多旋翼无人飞行器的机架,其特征在于,包括:
    中心体;
    多个机臂,分布于所述中心体的外周;
    多个旋翼动力装置,设于所述机臂上,多个所述旋翼动力装置用于提供飞行动力给所述多旋翼无人飞行器;
    多个喷嘴组件,分别安装在多个所述机臂的下方,并且分别位于所述旋翼动力装置的下方;及
    角度调节机构,所述角度调节机构能够调节所述多个喷嘴组件中的至少一个喷嘴组件的喷洒方向与所述中心体所在平面之间的夹角。
  2. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述角度调节机构设于所述机臂或中心体上。
  3. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述动力桨旋翼动力装置包括电机及桨叶,所述电机驱动所述桨叶转动,所述桨叶的旋转轴轴向与所述喷嘴的喷洒方向基本平行。
  4. 根据权利要求3所述的多旋翼无人飞行器的机架,其特征在于,所述角度调节机构包括第一调节结构,所述第一调节结构至少能够使设有所述桨叶的部分所述机臂相对于所述中心体上下摆动,以调节所述机臂相对所述中心体所在的平面之间的夹角。
  5. 根据权利要求4所述的多旋翼无人飞行器的机架,其特征在于,所述第一调节结构设于所述机臂与所述中心体的连接处。
  6. 根据权利要求4所述的多旋翼无人飞行器的机架,其特征在于,所述机臂包括固定于所述中心体上的机身端及用于固定所述桨叶的桨叶端,所述第一调节结构设于所述机身端与所述桨叶端连接处,所述第一调节结构调节所述机身端与所述桨叶端之间的夹角。
  7. 根据权利要求6所述的多旋翼无人飞行器的机架,其特征在于,所述机身端与所述中心体为一体结构。
  8. 根据权利要求6所述的多旋翼无人飞行器的机架,其特征在于,所述第一调节结构包括夹持件,所述夹持件夹持于所述机身端与所述桨叶端之间。
  9. 根据权利要求8所述的多旋翼无人飞行器的机架,其特征在于,所述夹持件可拆卸设于所述机身端与所述桨叶端之间。
  10. 根据权利要求9所述的多旋翼无人飞行器的机架,其特征在于,所述夹持件为夹块,所述夹块可拆卸设于所述机身端与所述桨叶端之间。
  11. 根据权利要求9所述的多旋翼无人飞行器的机架,其特征在于,所述夹持件设有连接部,所述夹持件固定设于所述机身端上,所述连接部用于与所述桨叶端连接;
    或者,所述夹持件固定设于所述桨叶端上,所述连接部用于与所述机身端连接。
  12. 根据权利要求11所述的多旋翼无人飞行器的机架,其特征在于,所述第一调节 结构还包括连杆,所述连接部及所述机臂上开设有用于与所述连杆连接的连接孔,所述连接部与所述机臂通过所述连杆连接。
  13. 根据权利要求12所述的多旋翼无人飞行器的机架,其特征在于,所述机身端及\或所述桨叶端设有凸耳,所述连接孔开设于所述凸耳。
  14. 根据权利要求4所述的多旋翼无人飞行器的机架,其特征在于,所述第一调节件包括固定座及止位套,所述止位套可转动设于所述固定座上,所述止位套用于卡合所述机臂,所述止位套相对于所述固定座转动以调节所述机臂与所述中心体之间的夹角。
  15. 根据权利要求14所述的多旋翼无人飞行器的机架,其特征在于,所述止位套开设有卡槽,所述卡槽用于与所述机臂卡合。
  16. 根据权利要求14所述的多旋翼无人飞行器的机架,其特征在于,所述止位套与所述固定座之间通过卡合结构卡合限位。
  17. 根据权利要求16所述的多旋翼无人飞行器的机架,其特征在于,所述卡合结构包括限位凸起及多个固定孔,所述限位凸起能够分别与多个所述固定孔卡合固定。
  18. 根据权利要求16所述的多旋翼无人飞行器的机架,其特征在于,多个所述固定孔呈弧形分布,多个所述固定孔分别对应所述止位套与所述固定座之间的多个夹角。
  19. 根据权利要求14所述的多旋翼无人飞行器的机架,其特征在于,所述第一调节件还包括锁紧件,所述锁紧件使所述止位套与所述机臂紧固连接。
  20. 根据权利要求19所述的多旋翼无人飞行器的机架,其特征在于,所述锁紧件可滑动套设于所述止位套外侧,所述止位套设有外螺纹,所述锁紧件通过所述外螺纹与所述止位套紧固连接,并抱箍所述止位套及所述机臂。
  21. 根据权利要求14所述的多旋翼无人飞行器的机架,其特征在于,所述固定座固定设于所述中心体;
    或者,所述机臂包括固定于所述中心体上的机身端及用于固定所述桨叶的桨叶端,所述机身端与所述桨叶端其中一个与所述固定座固定连接,所述机身端与所述桨叶端中的另一个与所述止位套卡合连接。
  22. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述角度调节机构包括第二调节结构,所述第二调节结构使所述旋翼动力装置的旋转轴方向可相对所述机臂的延伸方向转动,以调节所述多个喷嘴组件中的至少一个的喷洒方向相对所述中心体所在的平面之间的夹角。
  23. 根据权利要求22所述的多旋翼无人飞行器的机架,其特征在于,所述第二调节结构设于所述机臂与所述旋翼动力装置的连接处,所述第二调节结构使所述多个旋翼动力装置中的至少一个沿所述机臂的轴向转动,调节所述旋翼动力装置的旋转轴轴向与所述机臂的轴向之间的夹角。
  24. 根据权利要求22所述的多旋翼无人飞行器的机架,其特征在于,所述多个喷嘴 组件中的至少一个的喷洒角度基本垂直于所述机臂。
  25. 根据权利要求24所述的多旋翼无人飞行器的机架,其特征在于,所述第二调节结构使所述旋翼动力装置绕所述机臂的轴向转动,调节所述旋翼动力装置的旋转轴轴向与所述机臂的轴向之间的夹角。
  26. 根据权利要求25所述的多旋翼无人飞行器的机架,其特征在于,所述旋翼动力装置包括机座,所述第二调节结构与所述机臂固定连接,所述第二调节结构与所述机座卡合连接;
    或者,所述第二调节结构与所述机座固定连接,所述第二调节结构与所述机臂卡合连接。
  27. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述喷嘴组件包括支架及喷嘴,所述喷嘴设于所述支架上,所述支架为可折叠结构。
  28. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述桨叶的旋转轴轴相对于所述中心体所在平面之间的转动状态包括树木喷洒状态和非树木喷洒状态,所述喷嘴的喷洒角度在树木喷洒状态的倾斜角度大于在所述非树木喷洒状态的倾斜角度。
  29. 一种农业植保无人机,其特征在于,包括形态采集模块、控制模块及权利要求1-28任一所述的多旋翼无人飞行器的机架,所述采集模块用于采集待喷洒物的形态信息,所述控制模块用于根据所述形态信息,确定喷嘴的喷洒角度,并根据所述喷洒角度,控制所述角度调节机构,调节所述喷嘴的喷洒方向与所述中心体所在平面之间的夹角。
  30. 一种农业植保无人机的控制方法,包括:
    采集待喷洒物的形态信息;
    根据所述形态信息,确定喷嘴的喷洒角度;
    根据所述喷洒角度,调节所述喷嘴的喷洒方向与所述中心体所在平面之间的夹角。
  31. 根据权利要求30所述的农业植保无人机的控制方法,其特征在于,所述形态信息包括所述待喷洒物的种类、相邻两所述待喷洒物的间距大小、所述待喷洒物的高度。
PCT/CN2020/127600 2020-06-30 2020-11-09 多旋翼无人飞行器的机架、农业植保无人机及控制方法 WO2022000922A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/099324 WO2022000277A1 (zh) 2020-06-30 2020-06-30 多旋翼无人飞行器的机架、农业植保无人机及控制方法
CN202021255569.XU CN212766731U (zh) 2020-06-30 2020-06-30 多旋翼无人飞行器的机架及农业植保无人机
CN202021255569.X 2020-06-30
CNPCT/CN2020/099324 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022000922A1 true WO2022000922A1 (zh) 2022-01-06

Family

ID=79317630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127600 WO2022000922A1 (zh) 2020-06-30 2020-11-09 多旋翼无人飞行器的机架、农业植保无人机及控制方法

Country Status (1)

Country Link
WO (1) WO2022000922A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162316A (zh) * 2022-01-13 2022-03-11 沈阳智翔通飞通用航空技术有限公司 一种多功能应急救援多旋翼无人机
CN114532319A (zh) * 2022-02-14 2022-05-27 刘照娟 一种挂载型农业植保喷洒系统
CN114904703A (zh) * 2022-06-21 2022-08-16 塔里木大学 一种适用于高密度栽培机采棉脱叶用的机载对靶施药装置
CN115158646A (zh) * 2022-08-15 2022-10-11 华南农业大学 一种无人机施肥用的自调节喷施装置
CN115176781A (zh) * 2022-06-21 2022-10-14 山东理工大学 一种用于防止农药喷雾漂移的矢量控制装置
US11738613B1 (en) * 2021-04-19 2023-08-29 Christopher Cade Spikes Drone air to ground transition system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205931267U (zh) * 2016-08-02 2017-02-08 上海拓攻机器人有限公司 一种用于植保无人机的喷杆
CN206466179U (zh) * 2017-01-19 2017-09-05 青岛迈安德航空科技有限公司 一种具有新型喷雾杆的农用无人机
KR20170126274A (ko) * 2016-05-09 2017-11-17 김성진 농약 살포용 드론
CN207670668U (zh) * 2017-08-29 2018-07-31 天津航天中为数据系统科技有限公司 一种植保无人机机载喷头方位快速调节机构
CN109050931A (zh) * 2018-09-19 2018-12-21 徐州元亨众利农业服务专业合作联社 一种植保无人机的四轴联动喷洒系统
CN208602684U (zh) * 2018-01-15 2019-03-15 广东金宝农科技有限公司 一种折叠农用无人机
CN209267004U (zh) * 2018-12-31 2019-08-16 中国南方电网有限责任公司超高压输电公司广州局 输电线路异物清除喷火多旋翼无人机
DE102018104827A1 (de) * 2018-03-02 2019-09-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Unbemannter Drehflügler, System und Verfahren zum Ausbringen eines Spritzguts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170126274A (ko) * 2016-05-09 2017-11-17 김성진 농약 살포용 드론
CN205931267U (zh) * 2016-08-02 2017-02-08 上海拓攻机器人有限公司 一种用于植保无人机的喷杆
CN206466179U (zh) * 2017-01-19 2017-09-05 青岛迈安德航空科技有限公司 一种具有新型喷雾杆的农用无人机
CN207670668U (zh) * 2017-08-29 2018-07-31 天津航天中为数据系统科技有限公司 一种植保无人机机载喷头方位快速调节机构
CN208602684U (zh) * 2018-01-15 2019-03-15 广东金宝农科技有限公司 一种折叠农用无人机
DE102018104827A1 (de) * 2018-03-02 2019-09-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Unbemannter Drehflügler, System und Verfahren zum Ausbringen eines Spritzguts
CN109050931A (zh) * 2018-09-19 2018-12-21 徐州元亨众利农业服务专业合作联社 一种植保无人机的四轴联动喷洒系统
CN209267004U (zh) * 2018-12-31 2019-08-16 中国南方电网有限责任公司超高压输电公司广州局 输电线路异物清除喷火多旋翼无人机

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11738613B1 (en) * 2021-04-19 2023-08-29 Christopher Cade Spikes Drone air to ground transition system
CN114162316A (zh) * 2022-01-13 2022-03-11 沈阳智翔通飞通用航空技术有限公司 一种多功能应急救援多旋翼无人机
CN114162316B (zh) * 2022-01-13 2024-01-19 湖南畅兴无人机技术有限公司 一种多功能应急救援多旋翼无人机
CN114532319A (zh) * 2022-02-14 2022-05-27 刘照娟 一种挂载型农业植保喷洒系统
CN114532319B (zh) * 2022-02-14 2023-02-28 刘照娟 一种挂载型农业植保喷洒系统
CN114904703A (zh) * 2022-06-21 2022-08-16 塔里木大学 一种适用于高密度栽培机采棉脱叶用的机载对靶施药装置
CN115176781A (zh) * 2022-06-21 2022-10-14 山东理工大学 一种用于防止农药喷雾漂移的矢量控制装置
CN115176781B (zh) * 2022-06-21 2023-10-20 山东理工大学 一种用于防止农药喷雾漂移的矢量控制装置
CN115158646A (zh) * 2022-08-15 2022-10-11 华南农业大学 一种无人机施肥用的自调节喷施装置
CN115158646B (zh) * 2022-08-15 2024-03-19 华南农业大学 一种无人机施肥用的自调节喷施装置

Similar Documents

Publication Publication Date Title
WO2022000922A1 (zh) 多旋翼无人飞行器的机架、农业植保无人机及控制方法
WO2022000277A1 (zh) 多旋翼无人飞行器的机架、农业植保无人机及控制方法
WO2022095225A1 (zh) 多旋翼无人飞行器的机架及农业植保无人机
CN106394906B (zh) 一种多旋翼农用无人机的喷嘴配置方式及其喷洒系统
WO2019205140A1 (zh) 农业无人机
US20190382116A1 (en) Drug spreading drone
CN208593497U (zh) 一种植保无人机
KR101891595B1 (ko) 드론용 분말 분사장치
KR102274818B1 (ko) 환형보조기구가 장착된 농업용 드론
CN109808890A (zh) 一种用于农业生产的喷洒精准的高效型植保无人机
KR101663058B1 (ko) 농업용 무인비행체
CN212766731U (zh) 多旋翼无人飞行器的机架及农业植保无人机
CN206031791U (zh) 一种适用于多旋翼无人机的喷杆调控装置
CN109819955A (zh) 桨叶组件及航空雾化系统
WO2019205139A1 (zh) 无人机机架和无人机
CN209274907U (zh) 农业无人飞行器
WO2020113445A1 (zh) 农业无人飞行器
CN115176781B (zh) 一种用于防止农药喷雾漂移的矢量控制装置
AU2023270340B1 (en) Atomizer for aerial spraying and control method thereof
CN115349507B (zh) 一种无人机用对靶喷雾装置及无人机
CN112660386B (zh) 一种带矢量控制的可折叠四轴八桨植保无人机
CN110892888A (zh) 基于果树喷洒农药用的无人机喷洒机构
CN207045676U (zh) Y型多旋翼植保无人机
CN215684418U (zh) 一种农业用加压式离心喷灌的植保无人机
KR102273432B1 (ko) 비산 저감을 위한 가이드부재가 장착된 농업용 드론

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942778

Country of ref document: EP

Kind code of ref document: A1