WO2022000277A1 - 多旋翼无人飞行器的机架、农业植保无人机及控制方法 - Google Patents

多旋翼无人飞行器的机架、农业植保无人机及控制方法 Download PDF

Info

Publication number
WO2022000277A1
WO2022000277A1 PCT/CN2020/099324 CN2020099324W WO2022000277A1 WO 2022000277 A1 WO2022000277 A1 WO 2022000277A1 CN 2020099324 W CN2020099324 W CN 2020099324W WO 2022000277 A1 WO2022000277 A1 WO 2022000277A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
rotor
rotor unmanned
arms
Prior art date
Application number
PCT/CN2020/099324
Other languages
English (en)
French (fr)
Inventor
周乐
农贵升
李日照
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/099324 priority Critical patent/WO2022000277A1/zh
Priority to CN202080023536.9A priority patent/CN113631480A/zh
Priority to PCT/CN2020/127600 priority patent/WO2022000922A1/zh
Priority to CN202022568818.7U priority patent/CN213649888U/zh
Publication of WO2022000277A1 publication Critical patent/WO2022000277A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/70Constructional aspects of the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/45UAVs specially adapted for particular uses or applications for releasing liquids or powders in-flight, e.g. crop-dusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/40Undercarriages foldable or retractable

Definitions

  • the invention relates to flying equipment, in particular to a frame of a multi-rotor unmanned aerial vehicle, an unmanned aerial vehicle for agricultural plant protection and a control method.
  • the invention provides a rack capable of improving the uniformity of pesticide spraying on trees.
  • a frame of a multi-rotor unmanned aerial vehicle comprising:
  • the central body The central body;
  • a plurality of rotor power devices arranged on the arms, and the plurality of rotor power devices are used to provide flight power to the multi-rotor unmanned aerial vehicle;
  • a plurality of angle adjustment mechanisms are respectively arranged on a plurality of the arms, and are used to rotatably connect the arms and the central body,
  • the angle adjustment mechanism can adjust the included angle between the machine arm and the center body, so that the spraying angle of the nozzle is oriented obliquely downward of the center body.
  • a frame of a multi-rotor unmanned aerial vehicle comprising:
  • the central body The central body;
  • the plurality of rotor power devices are used to provide flight power to the multi-rotor unmanned aerial vehicle;
  • the plurality of arms includes a pair of front arms and a pair of rear arms
  • the plurality of rotor power devices include a first rotor power device arranged on the front arms and a first rotor power device arranged on the rear arms the second rotor power unit
  • the plurality of nozzles include a first nozzle corresponding to the first rotor power unit and a second nozzle corresponding to the second rotor power unit;
  • a pair of the front arms and a pair of the rear arms are symmetrically arranged relative to the pitch axis of the multi-rotor UAV, and the front arms and the rear arms are relative to the multi-rotor UAV.
  • the pan axis is tilted upwards;
  • the rotation axis of the first rotor power device and the rotation axis of the second rotor power device are symmetrically arranged with respect to the heading axis of the multi-rotor UAV; the first rotor power device and the second rotor power device
  • the rotation axis of the multi-rotor unmanned aerial vehicle is tilted relative to the heading axis of the multi-rotor unmanned aerial vehicle;
  • the spraying angles of the first nozzle and the second nozzle are set obliquely with respect to the panning axis of the multi-rotor unmanned aerial vehicle.
  • An agricultural plant protection unmanned aerial vehicle comprises a power source and the above-mentioned frame, and the power source is electrically connected with the rotor power device.
  • An agricultural plant protection drone comprising:
  • the morphological acquisition module is used to collect morphological information of the object to be sprayed
  • control module for receiving the shape information and obtaining the spraying angle of the nozzle
  • the angle adjustment mechanism is signally connected with the control module, and the angle adjustment mechanism adjusts the angle between the machine arm and the central body according to the spray angle.
  • a control method for an agricultural plant protection drone comprising:
  • the frame of the above-mentioned rotor unmanned aerial vehicle can adjust the angle between the arms relative to the center body through the angle adjustment mechanism, thereby realizing the adjustment of the spraying angle of the nozzles provided on the arms.
  • the spraying angle of the nozzle faces obliquely downward of the central body, the spraying angle can be directed toward the branch, along the growth direction of the branch.
  • the above-mentioned agricultural plant protection drone is located on one side of the tree, only a few leaves will block the spraying of pesticides at the spraying angle of the nozzle, so as to ensure that more branches and leaves can be sprayed with pesticides and improve the agricultural plant protection unmanned.
  • the above-mentioned agricultural plant protection drone can obtain the spraying angle of the nozzle according to the shape information of the object to be sprayed through the above-mentioned control method, so that the angle between the machine arm and the center body can be adjusted correspondingly, so that the spraying angle of the nozzle is toward the center. diagonally below the body. Then the spraying angle of the nozzle can be directed towards the branch, along the growth direction of the branch.
  • the above-mentioned agricultural plant protection drone is located on one side of the tree, only a few leaves will block the spraying of pesticides at the spraying angle of the nozzle, so as to ensure that more branches and leaves can be sprayed with pesticides and improve the agricultural plant protection unmanned.
  • 1 is a schematic diagram of the use state of the agricultural plant protection drone of the present embodiment
  • Fig. 2 is the perspective view of the agricultural plant protection drone shown in Fig. 1;
  • Fig. 3 is the simple structure diagram of the agricultural plant protection drone of the present embodiment
  • FIG. 6 is a simplified structural diagram of another embodiment of the angle adjustment structure shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of the electrical module of the agricultural plant protection drone of the present embodiment.
  • FIG. 9 is another flowchart of the control method of the agricultural plant protection drone shown in FIG. 8 .
  • X roll axis
  • Y pitch axis
  • Z pan axis
  • Rotor power unit 131, First rotor power unit; 132, Second rotor power unit; 133, Third rotor power unit; 1311, 1321, 1331, rotating shaft;
  • Agricultural plant protection drones are drones used for agricultural and forestry plant protection operations. This type of agricultural plant protection drone uses ground remote control or navigation flight control to achieve spraying operations on the sprayed material.
  • the objects to be sprayed can be trees, crops, etc.
  • Agricultural plant protection drones can spray chemicals, seeds, powders, etc.
  • the agricultural quality assurance drone 1 is described by taking the spraying of chemicals as an example.
  • the object to be sprayed is described by taking the tree 2 as an example.
  • the agricultural quality assurance drone 1 can spray two trees 2 between two trees 2 at the same time.
  • the agricultural plant protection drone 1 of the present embodiment includes a power source 9 and a frame 10 .
  • the power supply provides electricity for the normal operation of agricultural plant protection drones.
  • the frame is a frame of a multi-rotor unmanned aerial vehicle.
  • a frame 10 of a multi-rotor unmanned aerial vehicle includes a central body 11 , a plurality of arms 12 , a plurality of rotor power units 13 and a plurality of nozzles 14 .
  • the center body 11 can serve as the center reference of the frame 10 . Centering on the center body 11 , a plurality of arms 12 are distributed on the outer periphery of the center body 11 .
  • the rotor power unit 13 is arranged on the arm 12 .
  • the plurality of rotor power units 13 can provide flight power for the multi-rotor unmanned aerial vehicle.
  • the plurality of nozzles 14 are respectively installed below the plurality of arms 12 and are respectively positioned below the rotor power unit 13 .
  • the nozzle 14 is used to spray the medicament.
  • the angle adjustment mechanism is used to adjust the spraying angle of the nozzle 14, so as to achieve more accurate spraying of the objects to be sprayed, and improve the uniformity of the agricultural plant protection drone 1 when spraying the objects to be sprayed. Spend.
  • the frame of the above-mentioned multi-rotor unmanned aerial vehicle further includes a tripod 16 .
  • the legs 16 are arranged below the center body 11 for supporting the center body 11 , the arms 12 , the rotor power device 13 and the nozzle 14 .
  • the tripod 16 can be folded on the center body 11 to facilitate the storage and transportation of the multi-rotor unmanned aerial vehicle.
  • the plurality of arms 12 of the above-mentioned frame 10 are symmetrically distributed on the outer circumference of the central body 11 .
  • the plane where the center body 11 is located is parallel to the horizontal plane, so as to ensure that the frame 10 can be balanced.
  • the rotary-wing UAV includes 3 motion axes. That is, the roll axis along the direction of the nose and the tail is recorded as X; on the horizontal plane, the pitch axis perpendicular to the roll axis X is recorded as Y; Axis Y is the vertical direction axis, denoted as Z.
  • a rotor power device 13 is carried above the arm 12 , facing the rotor power device 13 , and a nozzle 14 is provided below the arm 12 . Then, under the influence of the wind force of the rotor power device 13, the spray sprayed by the nozzle 14 can accelerate the spraying speed and the spraying area of the spraying.
  • the rack 10 also carries a water tank 15 .
  • the water tank is arranged on the central body 11 .
  • the water tank 15 may be one or more.
  • the rack 10 carries a plurality of water tanks 15 at the same time, which can increase the carrying capacity of the agricultural plant protection drone 1 , so as to improve the spraying efficiency of the agricultural plant protection drone 1 .
  • the nozzle 14 can communicate with the water tank 15 through the pipeline 145 .
  • the pipeline 145 is provided with a water pump and a control valve to control the communication state of the nozzle 14 .
  • the arms 12 include six.
  • the six wings are symmetrically distributed on the periphery of the central body 11 .
  • the included angle between two adjacent wings is 60 degrees, so that the frame 10 can be smoothly maintained in balance.
  • the included angle of the arm 12 relative to the heading axis Z of the multi-rotor UAV is an acute angle.
  • the angle between the arm 12 and the panning axis Z of the multi-rotor UAV is 45 degrees to 80 degrees.
  • the arms 12 are all approached toward the yaw axis Z above the center body 11 , and the arms 12 and the plane where the center body 11 is located are arranged at an included angle.
  • the spraying angle of the nozzles 14 on the machine arm 12 is directed toward the obliquely downward direction of the center body 11 .
  • the angle between the arm 12 and the center body 11 can be adjusted.
  • the rotation state of the machine arm 12 relative to the central body 11 includes a tree spraying state and a non-tree spraying state.
  • the machine arm 12 When the tree needs to be sprayed, the machine arm 12 is rotated relative to the central body 11, and the machine arm 12 is in the tree spraying state.
  • the spraying angle of the nozzles 14 is obliquely downward of the center body 11 due to the occlusion of the leaves of the trees.
  • the size of the inclination angle of the machine arm 12 relative to the central body 11 can be approximated with reference to the growth angle of the tree branches, so that the spraying angle of the nozzle 14 is exactly along the growth direction of the branches.
  • the machine arm 12 When it is not necessary to spray trees, or when spraying non-trees, the machine arm 12 can be rotated back relative to the central body 11, so that the machine arm 12 is in a non-tree spraying state. It can be understood that when the machine arm 12 is in the non-tree spraying state, the included angle between the machine arm 12 and the central body 11 is much smaller than the inclination angle of the machine arm 12 in the tree spraying state. Even, the inclination angle of the nozzle 14 in the tree spraying state may be zero degrees.
  • the inclination angle can increase the spraying area of the nozzle 14, and is beneficial to control the flying state of the multi-rotor unmanned aerial vehicle.
  • the arm 12 is parallel to the plane where the center body 11 is located, and the power received by the arm 12 is perpendicular to the direction of the arm 12, and the multi-rotor has no Human aircraft can fly at high flight speeds.
  • the inclination angle of the nozzle 14 in the tree spraying state is much larger than the inclination angle of the nozzle 14 in the non-tree spraying state. Specifically, the inclination angle of the nozzle 14 in the tree spraying state is greater than twice the inclination angle in the non-tree spraying state. The angle of inclination with respect to the vertical direction,
  • the machine arm 12 includes a pair of front machine arms 121 , a pair of rear machine arms 122 and a pair of auxiliary machine arms 123 .
  • a pair of front arms 121 are close to the direction of the nose.
  • a pair of rear arms 122 are close to the tail direction.
  • An auxiliary arm 123 is arranged between the two front arms 121
  • another auxiliary arm 123 is arranged between the two rear arms 122 .
  • a pair of front arms 121 and a pair of rear arms 122 are symmetrically arranged with respect to the pitch axis Y of the multi-rotor UAV.
  • the pair of auxiliary arms 123 are arranged symmetrically with respect to the pitch axis Y of the multi-rotor UAV. Therefore, the front arm 121 , the rear arm 122 and the auxiliary arm 123 which are symmetrically arranged with respect to the pitch axis Y can ensure that the nose and tail of the multi-rotor UAV remain balanced in the front and rear.
  • the pair of front arms 121 are symmetrically arranged with respect to the roll axis X of the multi-rotor UAV.
  • the pair of rear arms 122 are arranged symmetrically with respect to the roll axis X of the multi-rotor UAV.
  • the vertical projection of the auxiliary arm 123 is along the roll axis X of the multi-rotor UAV.
  • the front arm 121 and the rear arm 122 are both symmetrically arranged with respect to the roll axis X, so that the multi-rotor UAV is ensured to maintain a balance under force on the left and right sides of the frame 10 .
  • the included angle between the front arm 121 and the roll axis X of the multi-rotor UAV is an acute angle.
  • the included angle of the rear arm 122 relative to the roll axis X of the multi-rotor UAV is an acute angle.
  • the included angle between the front arm 121 and the roll axis X is 20 degrees to 70 degrees.
  • the included angle between the rear arm 122 and the roll axis X is 20 degrees to 70 degrees.
  • the included angle between the front arm 121 and the roll axis X is 60 degrees.
  • the included angle between the rear arm 122 and the roll axis X is also 60 degrees.
  • the front arm 121 is inclined upward with respect to the panning axis Z of the multi-rotor UAV. That is, there is an included angle between the front arm 121 and the center body 11 .
  • the front arm 121 is inclined upward with respect to the horizontal plane.
  • the included angle between the front arm 121 and the yaw axis Z is an acute angle. Specifically, the included angle between the front arm 121 and the yaw axis Z ranges from degrees to 45 degrees. It is avoided that the included angle between the front arm 121 and the heading axis Z is too large, which affects the normal balanced flight of the multi-rotor UAV.
  • the rear arm 122 is inclined upward with respect to the panning axis Z of the multi-rotor unmanned aerial vehicle. That is, there is an included angle between the rear arm 122 and the center body 11 .
  • the rear arm 122 is inclined upward with respect to the horizontal plane.
  • the included angle of the rear arm 122 relative to the pan axis Z is an acute angle.
  • the included angle between the rear arm 122 and the yaw axis Z ranges from degrees to 45 degrees. It is avoided that the included angle between the rear arm 122 and the heading axis Z is too large, which affects the normal balanced flight of the multi-rotor UAV.
  • the auxiliary arm 123 is disposed obliquely upward with respect to the heading axis Z of the multi-rotor UAV. That is, there is an included angle between the auxiliary arm 123 and the center body 11 .
  • the auxiliary arm 123 is inclined upward with respect to the horizontal plane.
  • the included angle of the auxiliary arm 123 relative to the pan axis Z is an acute angle. Specifically, the included angle between the auxiliary arm 123 and the yaw axis Z ranges from degrees to 45 degrees. It is avoided that the included angle between the auxiliary arm 123 and the heading axis Z is too large, which affects the normal balanced flight of the multi-rotor unmanned aerial vehicle.
  • the rotor power unit 13 works to provide power for the agricultural plant protection drone 1 .
  • the rotor power device 13 includes a motor 138 and a paddle 139 .
  • the motor 138 drives the paddle 139 to rotate, and the spraying angle of the nozzle 14 is affected by the airflow generated by the rotation of the paddle 139 . Therefore, the spraying angle of the nozzle 14 is substantially parallel to the axis direction of the rotating shaft.
  • the motor 138 is electrically connected to the power source 9, and the power source 9 provides power.
  • the rotor power device 13 includes a first rotor power device 131 carried on a pair of front arms 121 , a second rotor power device 132 carried on a pair of rear arms 122 , and a second rotor power device 132 carried on a pair of rear arms 122 .
  • the third rotor power unit 133 on the auxiliary arm 123 .
  • the rotation axis 1311 of the first rotor power device 131 and the rotation axis 1321 of the second rotor power device 132 are arranged symmetrically with respect to the heading axis Z of the multi-rotor unmanned aerial vehicle.
  • the rotation axes of the first rotor power device 131 and the second rotor power device 132 are inclined relative to the heading axis Z of the multi-rotor UAV.
  • the rotation axes of the first rotor power device 131 and the second rotor power device 132 are inclined relative to the roll axis X of the multi-rotor unmanned aerial vehicle.
  • the rotation axes of the first rotor power unit 131 and the second rotor power unit 132 are inclined downward toward the outside of the center body 11 with respect to the heading axis Z of the multi-rotor unmanned aerial vehicle.
  • the rotation axis 1331 of the third rotor power device 133 is arranged symmetrically with respect to the heading axis Z of the multi-rotor UAV.
  • the power provided by the third rotor power device 133 received by the auxiliary arm 123 may be symmetrically arranged with respect to the heading axis Z, so as to ensure the balance of the frame 10 .
  • the rotation axis 1331 of the third rotor power device 133 is inclined relative to the heading axis Z of the multi-rotor UAV.
  • the vertical projection of the rotation axis 1331 of the third rotor power unit 133 is arranged along the roll axis X of the multi-rotor UAV.
  • the rotation axis 1331 of the third rotor power unit 133 is inclined downward toward the outside of the center body 11 with respect to the heading axis Z of the multi-rotor UAV.
  • the rotation axis 1331 of the third rotor power device 133 is perpendicular to the pitch axis Y of the multi-rotor UAV.
  • the power provided by the third rotor power device 133 is perpendicular to the pitch axis Y of the multi-rotor UAV, so that the pitch angle of the multi-rotor UAV can be easily adjusted.
  • the spraying angle of the nozzle 14 is substantially perpendicular to the machine arm 12 .
  • the first nozzle 141 is correspondingly provided on the front arm 121 .
  • a second nozzle 142 is disposed on the rear arm 122 .
  • a third nozzle 143 is disposed on the auxiliary arm 123 .
  • the first nozzle 141 is provided corresponding to the first rotor power unit 131 .
  • the second nozzle 142 is arranged corresponding to the second rotor dynamic power device.
  • the third nozzle 143 is provided corresponding to the third rotor power unit 133 .
  • the direction of the rotation axis of the first rotor power device 131 is the spray angle of the first nozzle 141 .
  • the direction of the rotation axis of the second rotor power device 132 is the spray angle of the second nozzle 142 .
  • the direction of the rotation axis of the third rotor power unit 133 is the spray angle of the third nozzle 143.
  • the spraying angle of the first nozzle 141 is set obliquely with respect to the heading axis Z of the multi-rotor unmanned aerial vehicle.
  • the spraying angle of the first nozzle 141 is inclined toward the outside of the handpiece.
  • the spraying angle of the second nozzle 142 is set obliquely with respect to the heading axis Z of the multi-rotor UAV.
  • the spraying angle of the second nozzle 142 is inclined toward the outer side of the tail.
  • the spraying angles of the first nozzle 141 and the second nozzle 142 are set obliquely with respect to the roll axis X of the multi-rotor unmanned aerial vehicle.
  • the spraying angles of the first nozzle 141 and the second nozzle 142 are inclined downward toward the outside of the center body 11 with respect to the heading axis Z of the multi-rotor UAV.
  • the above-mentioned agricultural plant protection drone 11 is used to uniformly spray the leaves of the trees 2 up and down. Therefore, the main movement of the agricultural plant protection drone 1 is up and down movement. Therefore, the spray sprayed by the third nozzle 143 is less affected by the flying airflow.
  • the spraying angle of the third nozzle 143 is set obliquely with respect to the heading axis Z of the multi-rotor UAV.
  • the spraying angle of the third nozzle 143 is inclined downward toward the outside of the center body 11 with respect to the heading axis Z of the multi-rotor UAV. Then, the spraying angle of the third nozzle 143 can be along the growth direction of the tree, so as to spray as uniformly as possible.
  • the vertical projection of the spraying angle of the third nozzle 143 is set along the roll axis X of the multi-rotor UAV. Then, the spraying angle of the third nozzle 143 faces the outside of the nose or tail. Therefore, the spraying angle of the third nozzle 143 helps to achieve uniform spraying of tree leaves on the one hand;
  • the third nozzle 143 may also be omitted. Since the auxiliary arms 123 are arranged in the direction of the roll axis X, that is, the two auxiliary arms 123 are located at the nose and the tail respectively. Then the third nozzle 143 is disposed at the nose and the tail of the machine. Then, when the above-mentioned agricultural plant protection drone 1 flies back and forth, the spray sprayed by the third nozzle 143 will be affected by the flying airflow and will fall on the center body 11 . Since electrical components are distributed on the central body 11 , the spray stays on the central body 11 for a long time, which will cause damage to the electrical components.
  • the power provided by the third rotor power unit 133 on the auxiliary arm 123 can assist the frame 10 to maintain a balanced flight.
  • the frame 10 further includes an angle adjustment structure 17 that can adjust the angle between the machine arm 12 and the center body 11 .
  • the plurality of angle adjustment structures 17 are respectively disposed on the plurality of arms 12 and are used to rotatably connect the arms 12 and the central body 11 .
  • the angle adjustment mechanism can adjust the angle between the machine arm 12 and the center body 11 , so that the spraying angle of the nozzle 14 is directed toward the obliquely downward direction of the center body 11 .
  • Each of the machine arms 11 may be provided with the above-mentioned angle adjustment structure 17 , or some of the machine arms 11 may be provided with the above-mentioned angle adjustment structure 17 . As long as it can be ensured that the multiple arms 11 are kept symmetrical, the frame 10 can be balanced during the flight.
  • the relationship between the number of the angle adjustment structures 17 and the number of the machine arms 11 is not limited here.
  • the angle adjustment structure 17 may include a rotating member 171 .
  • the rotating member 171 is connected with the machine arm 12 .
  • the rotating member 171 rotates to adjust the angle between the machine arm 12 and the center body 11 .
  • the angle adjustment structure 17 may further include a locking member (not shown).
  • the locking piece is connected with the rotating piece 171 to limit the angle between the machine arm 12 and the center body 11 . After the angle between the machine arm 12 and the center body 11 is determined, the angle between the machine arm 12 and the center body 11 is locked by the locking member.
  • the rotating member 171 may be a rotating shaft. When the machine arm 12 rotates relative to the rotating shaft, the included angle between the machine arm 12 and the center body 11 is adjusted. When the adjustment is in place, the machine arm 12 is limited and fixed by the locking piece.
  • the locking member may be a latch, or a limit engaging member or the like.
  • the angle adjustment structure 17 further includes a driving member 172 , the driving member 172 is drivingly connected with the machine arm 12 , and the driving member 172 drives the rotating member 171 to rotate.
  • the rotation of the driving member 172 drives the rotation of the rotating member 171 .
  • the driving member 172 is directly rotatably connected with the rotating member 171 .
  • the driving member 172 may be a motor or a rotating shaft, or the like.
  • the rotating member 171 may be a gear, a bushing or the like.
  • the driving member 172 can drive the rotating member 171 to rotate, and the rotating member 171 can rotate to drive the arm 12 to rotate, so that the angle between the adjusting arm 12 and the center body 11 can be changed.
  • the telescopic movement of the driving member 272 drives the rotating member 271 to rotate.
  • the telescopic movement of the driving member 172 can be driven.
  • the driving member 272 can be a telescopic rod of a telescopic motor, a telescopic screw rod, a telescopic motor, or the like.
  • the telescopic end of the driving member 272 is fixedly connected with the machine arm 22 , and the telescopic end is telescopic, so that the size of the included angle between the machine arm 22 and the center body 21 can be changed.
  • the angle adjustment structure 17 may also be omitted.
  • the angle between the arms 12 of the multi-rotor UAV in this embodiment is not adjustable with respect to the center body 11 .
  • the arm 12 is fixedly arranged on the outer circumference of the center body 11 with a fixed inclination angle.
  • the multi-rotor UAV can also realize that the spraying direction of the nozzles 14 on the arms 12 of the multi-rotor unmanned aerial vehicle is toward the obliquely downward direction of the central body 11 .
  • the agricultural plant protection drone 1 including the rack 10 can also ensure that more branches and leaves can be sprayed with pesticides, thereby improving the uniformity of the agricultural plant protection drone 1 spraying pesticides on trees.
  • the frame 10 of the multi-rotor UAV may also omit the auxiliary arm 123 , the third nozzle 143 and the third rotor power unit 133 .
  • the frame 10 of the multi-rotor UAV of this embodiment is a quad-rotor frame.
  • the arms 12 of the rack include a pair of front arms 121 and a pair of rear arms 122 .
  • the plurality of rotor power units 13 include a first rotor power unit 131 provided on the front arm 121 and a second rotor power unit 132 provided on the rear arm 122
  • the plurality of nozzles 14 include a first rotor power unit 131 corresponding to the first rotor power unit 131 .
  • a nozzle 141 and a second nozzle 142 of the second rotor power unit 132 are examples of the second rotor power unit 132 .
  • a pair of front arms 121 and a pair of rear arms 122 are arranged symmetrically with respect to the pitch axis Y of the multi-rotor UAV, and the front arms 121 and the rear arms 122 are arranged inclined upward relative to the yaw axis Z of the multi-rotor UAV .
  • the rotation axis of the first rotor power device 131 and the rotation axis of the second rotor power device 132 are arranged symmetrically with respect to the heading axis Z of the multi-rotor UAV.
  • the rotation axes of the first rotor power device 131 and the second rotor power device 132 are inclined relative to the heading axis Z of the multi-rotor UAV.
  • the spraying angles of the first nozzle 141 and the second nozzle 142 are set obliquely with respect to the heading axis Z of the multi-rotor unmanned aerial vehicle.
  • the spraying angles of the nozzles 14 on the arms 12 of the above-mentioned multi-rotor unmanned aerial vehicles are all directed toward the obliquely downward direction of the central body 11 .
  • the agricultural plant protection drone 1 including the rack can also ensure that more branches and leaves can be sprayed with pesticides, and improve the uniformity of the agricultural plant protection drone 1 spraying pesticides on trees.
  • the agricultural plant protection drone includes a shape acquisition module 18 , a control module 19 and an angle adjustment mechanism 17 .
  • the form collecting module 18 is used to collect form information of the object to be sprayed.
  • the form information includes the distance between two adjacent objects to be sprayed and the height of the objects to be sprayed.
  • the collected morphological information can be the distance between two adjacent trees, the distance between the bottom branch and the top branch of the tree, the length information of the bottom branch and the top branch, and the tree branches growth angle, etc.
  • the growth angle of the tree branch is the angle between the growth direction of the branch and the vertical direction. Then the machine arm 12 is inclined relative to the center body 11, and the angle between the machine arm 12 and the yaw axis Z is approximately the same as the growth angle of the branch, so that the spraying direction of the nozzle 14 can be sprayed along the growth direction of the branch.
  • the form acquisition module 18 may be a scanner, a distance sensor, a camera, or the like.
  • the control module 19 is used for receiving form information.
  • the control module 19 determines and obtains the spraying angle of the nozzle 14 according to the shape information.
  • the control module 19 can obtain the branch growth angle of the tree according to the above-mentioned morphological information of the tree. In addition, the control module 19 can also control the entire flight process of the agricultural plant protection drone 1 according to the above-mentioned tree shape information.
  • the control module 19 can also be used to determine the spraying length of the machine arm 12 according to the form information.
  • the agricultural plant protection drone 1 cannot enter between the two adjacent trees. Then, the agricultural plant protection drone 1 must adjust the length of the arm 12 to reduce the flight diameter, so as to realize the spraying operation on two trees with a small distance.
  • the agricultural plant protection drone of this embodiment further includes an arm telescopic mechanism 125 .
  • the control module 19 is connected in communication with the boom telescopic mechanism 125, and the boom telescopic mechanism 125 adjusts the length of the boom 12 according to the spraying length.
  • the arm 12 may include at least two rod bodies and an arm telescopic mechanism 125 , the two rod bodies are connected by an arm telescopic mechanism 125 , and the arm telescopic mechanism 125 can adjust the length of the arm 12 .
  • the two rod bodies can be set relative to each other, and the telescopic mechanism of the machine arm can extend and retract between the two rod bodies, thereby changing the total length of the two rod bodies.
  • the boom telescopic mechanism 125 may be a rack and pinion, or a telescopic rod or the like.
  • the angle adjustment mechanism is signally connected to the control module 19 .
  • the angle adjustment mechanism adjusts the angle between the machine arm 12 and the center body 11 according to the spraying angle.
  • the angle adjustment mechanism has a drive member 172 .
  • the control module 19 is in control connection with the driver 172 . Then, the control module 19 can control the driving member 172 to rotate or extend, so as to achieve the purpose of controlling the angle between the machine arm 12 and the center body 11 .
  • control module 19 can also control different nozzles 14 .
  • the agricultural plant protection drone can automatically select the nozzle 14 at the corresponding position to work according to the preset conditions.
  • the agricultural plant protection drone 1 can select the nozzle 14 at the corresponding position to work according to the input information of the user, and the user can select it according to the current conditions. It can be understood that the control module 19 can control the conduction of the nozzle 14 through the water pump and the control valve.
  • Step S11 collecting the shape information of the object to be sprayed.
  • the shape information includes the distance between two adjacent objects to be sprayed and the height of the objects to be sprayed.
  • the collected morphological information can be the distance between two adjacent trees, the distance between the bottom branch and the top branch of the tree, the length information of the bottom branch and the top branch, and the tree branches growth angle, etc.
  • the growth angle of the branch can be determined according to the angle between the growth direction and the vertical direction of the collected branch.
  • step S12 the spraying angle of the nozzle is determined according to the shape information.
  • the branch growth angle of the tree can be obtained. Then the spraying angle of the nozzle 14 is approximately equal to the growth of the branch. Therefore, the spraying angle of the nozzle 14 can be determined according to the growth angle of the branch.
  • Step S13 according to the spraying angle, adjust the angle between the machine arm and the center body.
  • the adjustment of the spraying angle of the nozzle 14 is realized by the included angle between the machine arm 12 and the central body 11 .
  • the included angle between the arm 12 and the center body 11 is equal to the included angle between the arm 12 and the yaw axis Z. Therefore, only by adjusting the angle between the arm 12 and the yaw axis Z, the spraying direction of the nozzle 14 and the growth angle of the branch can be approximately consistent, so that the spraying direction of the nozzle 14 can be sprayed along the growing direction of the branch.
  • control method of the agricultural plant protection drone 1 further includes: step S14, when the distance is smaller than the threshold, determine the spraying length of the arm according to the shape information, and adjust the spraying length of the arm.
  • the threshold may be the flight diameter of the agricultural plant protection drone 1 . According to the collected morphological information, the distance between two adjacent trees is obtained. According to this distance, determine the spraying length of the machine arm.
  • the length of the arm 12 of the agricultural plant protection drone 1 is adjusted to reduce the flight diameter of the agricultural plant protection drone 1, so that the The agricultural plant protection drone 1 can fly into between two trees to perform spraying operations.
  • the arm 12 of the agricultural plant protection drone 1 performs the spraying operation with the maximum spraying length.
  • the nozzle 14 at the corresponding position is selected to carry out the spraying operation, so as to prevent the spray droplets sprayed from the nozzle 14 from falling on the central body 11, so that the The electronics on the center body 11 are damaged.
  • the nozzle 14 in the tail direction is selected.
  • the nozzle 14 in the direction of the nose is selected.
  • the nozzle 14 at the suitable position is selected to carry out the spraying operation. For example, if it is necessary to increase the penetrating power of spraying, when the agricultural plant protection drone 1 is flying toward the nose, select the nozzle 14 in the direction of the nose, so that the sprayed droplets pass through the flight of the agricultural plant protection drone 1 Under the action of the airflow generated by the power unit, it is accelerated and ejected downward.
  • the nozzles 14 with suitable positions are selected to implement the spraying operation, so as to minimize errors caused by drift of sprayed droplets. For example, if the agricultural plant protection drone 1 is flying against the wind, the nozzle 14 in the direction of the nose is selected. If the agricultural plant protection drone 1 flies downwind, select the nozzle 14 in the direction of the tail.
  • the nozzle 14 in an adapted position is selected to implement the spraying operation. For example, if the agricultural plant protection drone 1 only needs to spray one side of the tree, the agricultural plant protection drone 1 only needs to open the nozzle 14 on the right side to work, and spray clockwise along the boundary of the work area of the trees , to avoid excessive spraying to the outside of the work area. Alternatively, the agricultural plant protection drone 1 only needs to open the nozzle 14 on the left to work, and spray counterclockwise along the boundary of the working area of the tree to avoid excessive spraying to the outside of the working area.
  • the agricultural plant protection drone 1 can automatically select the nozzle 14 at the corresponding position according to preset conditions. Alternatively, the agricultural plant protection drone 1 can select the nozzle 14 at the corresponding position according to the user's input information, and the user can select it according to the current conditions.

Abstract

一种多旋翼无人飞行器的机架、农业植保无人机及控制方法。多旋翼无人飞行器的机架包括中心体(11)、多个机臂(12)、多个旋翼动力装置(13)、多个喷嘴(14)及多个角度调节机构(17)。旋翼动力装置(13)设于机臂(12)上。多个旋翼动力装置用于提供飞行动力给多旋翼无人飞行器。多个喷嘴(14)分别安装在多个机臂(12)的下方,并且分别位于旋翼动力装置(13)的下方。多个角度调节机构(17)分别设于多个机臂(12)上,且用于将机臂与中心体可转动连接。角度调节机构(17)能够调节机臂与中心体之间的夹角,使喷嘴的喷洒角度朝向中心体的斜下方。该农业植保无人机可以保证较多的树枝及树叶能够喷洒到农药,提高农业植保无人机对树木喷洒农药的均匀度。

Description

多旋翼无人飞行器的机架、农业植保无人机及控制方法 技术领域
本发明涉及一种飞行设备,特别涉及一种多旋翼无人飞行器的机架、农业植保无人机及控制方法。
背景技术
目前,对于传统的农业植保无人机等其他喷洒设备对果树、经济作物等植株进行农药喷洒的时候,由于果树树枝的生长方向为斜向上发散生长,外部的树叶会对内部的树枝、树叶产生遮挡。当农业植保无人机的从上而下对树木进行喷洒的时候,喷洒的农药很难穿透树叶的遮挡,对整个树木的树叶进行均匀喷洒。因此,对于传统的农业植保无人机存在喷洒不均匀、喷洒不透彻技术问题。
发明内容
本发明提供一种能够提高对树木喷洒农药的均匀度的机架。
一种多旋翼无人飞行器的机架,包括:
中心体;
多个机臂,分布于所述中心体的外周;
多个旋翼动力装置,设于所述机臂上,多个所述旋翼动力装置用于提供飞行动力给所述多旋翼无人飞行器;
多个喷嘴,分别安装在多个所述机臂的下方,并且分别位于所述旋翼动力装置的下方;及
多个角度调节机构,分别设于多个所述机臂上,且用于将所述机臂与所述中心体可转动连接,
其中,所述角度调节机构能够调节所述机臂与所述中心体之间的夹角,使所述喷嘴的喷洒角度朝向所述中心体的斜下方。
一种多旋翼无人飞行器的机架,包括:
中心体;
多个机臂,分布于所述中心体的外周;
多个旋翼动力装置,设于所述机臂上,多个所述旋翼动力装置用于提供飞行动力给所述多旋翼无人飞行器;及
多个喷嘴,分别安装在多个所述机臂的下方,并且分别位于多个所述旋翼动力装置的下方;
其中,多个所述机臂包括一对前机臂以及一对后机臂,多个所述旋翼动力装置包括设于所述前机臂的第一旋翼动力装置和设于所述后机臂的第二旋翼动力装置,多个所述喷嘴 包括与所述第一旋翼动力装置对应的第一喷嘴以及与所述第二旋翼动力装置的第二喷嘴;
一对所述前机臂与一对所述后机臂相对于所述多旋翼无人飞行器的俯仰轴对称设置,所述前机臂以及所述后机臂相对于所述多旋翼无人飞行器的航向轴倾斜向上设置;
所述第一旋翼动力装置的旋转轴与所述第二旋翼动力装置的旋转轴相对于所述多旋翼无人飞行器航向轴对称设置;所述第一旋翼动力装置以及所述第二旋翼动力装置的旋转轴相对于所述多旋翼无人飞行器的航向轴倾斜设置;
所述第一喷嘴以及所述第二喷嘴的喷洒角度相对于所述多旋翼无人飞行器的航向轴倾斜设置。
一种农业植保无人机,包括电源及上述机架,所述电源与所述旋翼动力装置电连接。
一种农业植保无人机,包括:
形态采集模块,用于采集待喷洒物的形态信息;
控制模块,用于接收所述形态信息,获取喷嘴的喷洒角度;
角度调节机构,与所述控制模块信号连接,所述角度调节机构根据所述喷洒角度调节机臂与中心体之间的夹角。
一种农业植保无人机的控制方法,包括:
采集待喷洒物的形态信息;
根据所述形态信息,获取喷嘴的喷洒角度;
根据喷洒角度,调节机臂与中心体之间的夹角。
上述旋翼无人飞行器的机架通过角度调节机构可以对机臂相对于中心体之间的夹角进行调节,进而实现对设于机臂上的喷嘴的喷洒角度进行调节。当喷嘴的喷洒角度朝向中心体的斜下方的时候,则喷洒角度能够直接朝向树枝,沿树枝的生长方向。当上述农业植保无人机位于树木的一侧的时候,则在喷嘴的喷洒角度上只有较少的树叶对喷洒农药产生遮挡,保证较多的树枝及树叶能够喷洒到农药,提高农业植保无人机对树木喷洒农药的均匀度。
并且,上述农业植保无人机通过上述控制方法,可以根据待喷洒物的形态信息,获取喷嘴的喷洒角度,从而可以对应调节机臂与中心体之间的夹角,使喷嘴的喷洒角度朝向中心体的斜下方。则喷嘴的喷洒角度能够直接朝向树枝,沿树枝的生长方向。当上述农业植保无人机位于树木的一侧的时候,则在喷嘴的喷洒角度上只有较少的树叶对喷洒农药产生遮挡,保证较多的树枝及树叶能够喷洒到农药,提高农业植保无人机对树木喷洒农药的均匀度。
附图说明
图1为本实施方式的农业植保无人机使用状态示意图;
图2为图1所示的农业植保无人机的立体图;
图3为本实施方式的农业植保无人机的简易结构图;
图4为本实施方式的农业植保无人机的另一简易结构图;
图5为本实施方式的农业植保无人机关于角度调节结构的简易结构图;
图6为图5所示的角度调节结构的另一实施方式的简易结构图;
图7为本实施方式的农业植保无人机的电学模块结构示意图;
图8为本实施方式的农业植保无人机的控制方法的流程图;
图9为图8所示的农业植保无人机的控制方法的另一流程图。
X、横滚轴;Y、俯仰轴;Z、航向轴;
1、农业植保无人机;9、电源;10、机架;11、21、中心体;
12、22、机臂;121、前机臂;122、后机臂;123、辅助机臂;125、机臂伸缩结构;
13、旋翼动力装置;131、第一旋翼动力装置;132、第二旋翼动力装置;133、第三旋翼动力装置;1311、1321、1331、旋转轴;
14、喷嘴;141、第一喷嘴;142、第二喷嘴;143、第三喷嘴;
145、管路;15、水箱;16、脚架;
17、27、角度调节结构;171、271、转动件;172、272、驱动件;18、形态采集模块;19、控制模块。
具体实施方式
体现本发明特征与优点的典型实施方式将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施方式上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上是当作说明之用,而非用以限制本发明。
本实施方式提供一种农业植保无人机。农业植保无人机用于农林植物保护作业的无人驾驶飞机。该型农业植保无人机通过地面遥控或导航飞控,来对待喷洒物实现喷洒作业。待喷洒物可以为树木、农作物等。农业植保无人机可以喷洒药剂、种子、粉剂等。
具体在本实施方式中,请参阅图1,该农业质保无人机1以用于喷洒药剂为例进行说明。并且,待喷洒物以树木2为例进行说明。农业质保无人机1可以在两棵树木2之间,同时对两棵树木2进行喷洒作业。
本实施方式的农业植保无人机1包括电源9及机架10。电源为农业植保无人机正常工作提供电量。该机架为一种多旋翼无人飞行器的机架。
具体在本实施方式中,一种多旋翼无人飞行器的机架10包括中心体11、多个机臂12、多个旋翼动力装置13及多个喷嘴14。
中心体11可以作为机架10的中心基准。以中心体11为中心,多个机臂12分布于中心体11的外周。旋翼动力装置13设于机臂12上。多个旋翼动力装置13可以为多旋翼无人飞行器提供飞行动力。多个喷嘴14分别安装在多个机臂12的下方,并且分别位于旋翼动力装置13的下方。喷嘴14用于喷洒药剂。
根据不同的待喷洒物的形状及喷洒需求,利用角度调节机构调节喷嘴14的喷洒角度, 以实现对待喷洒物较为准确的实施喷洒,并且提高农业植保无人机1对待喷洒物进行喷洒时的均匀度。
并且,上述多旋翼无人飞行器的机架还包括脚架16。该脚架16设于中心体11的下方,用于支撑机中心体11、机臂12、旋翼动力装置13及喷嘴14。并且,该脚架16可折叠设于中心体11上,以方便多旋翼无人飞行器进行收纳运输。
请参阅图2,具体在本实施方式中,上述机架10的多个机臂12对称分布于中心体11的外周。在上述旋翼无人飞行器飞行的过程中,中心体11所在的平面与水平面平行,以保证机架10能够平衡。为方便说明,旋翼无人飞行器包括3个运动轴。即,沿机头与机尾所在的方向的横滚轴,记作X;在水平面上,垂直于横滚轴X的俯仰轴,记作Y;在垂直于水平面,与横滚轴X及俯仰轴Y均垂直的航向轴,记作Z。
机臂12的上方承载有旋翼动力装置13,正对旋翼动力装置13,机臂12的下方设有喷嘴14。则喷嘴14喷出的喷雾在旋翼动力装置13的风力影响下,可以加快喷雾喷射速度,及喷雾的喷射面积。
机架10上还承载有水箱15。水箱设置于中心体11上。该水箱15可以为一个或多个。则机架10同时载有多个水箱15可以提高农业植保无人机1的承载药量,以提高农业植保无人机1的喷洒效率。则喷嘴14可以通过管路145与水箱15连通。并且,管路145上设有水泵及控制阀,以控制喷嘴14的连通状态。
具体在本实施方式中,机臂12包括六个。六个机翼对称分布于中心体11的外周。相邻两机翼之间的夹角为60度,则可以保证机架10能够顺利保持平衡。
请参阅图3,并且,机臂12相对于多旋翼无人飞行器的航向轴Z的夹角为锐角。机臂12与多旋翼无人飞行器的航向轴Z的夹角为45度~80度。则机臂12均朝向中心体11的上方的航向轴Z靠拢,机臂12与中心体11所在平面呈夹角设置。则机臂12上的喷嘴14的喷洒角度朝向中心体11的斜下方。
具体在本实施方式中,机臂12与中心体11之间夹角可以调节。机臂12相对于中心体11的转动状态包括树木喷洒状态和非树木喷洒状态。
当需要对树木进行喷洒的时候,将机臂12相对于中心体11转动,机臂12处于树木喷洒状态。由于树木的树叶的遮挡,喷嘴14的喷洒角度朝向中心体11的斜下方。在树木喷洒状态下,机臂12相对于中心体11的倾斜角度大小可以近似参考树木树枝的生长角度,使喷嘴14的喷洒角度正好沿树枝的生长方向。则在喷嘴14的喷洒角度上只有较少的树叶对喷洒农药产生遮挡,保证较多的树枝及树叶能够喷洒到农药,提高农业植保无人机1对树木喷洒农药的均匀度。
当不需要对树木进行喷洒的时候,或者对非树木进行喷洒的时候,则机臂12可以相对于中心体11返回转动,使机臂12处于非树木喷洒状态。可以理解,当机臂12处于非树木喷洒状态的时候,机臂12相对于中心体11之间的夹角远小于机臂12在树木喷洒状态的倾斜角度。甚至,喷嘴14在树木喷洒状态的倾斜角度可以为零度。在非树木喷洒状 态的时候,机臂12相对于中心体11之间存在较小的倾斜角度,该倾斜角可以加大喷嘴14的喷洒面积,并有利于控制多旋翼无人飞行器的飞行状态。或者,机臂12相对于中心体11之间不存在夹角的时候,则机臂12平行于中心体11所在的平面,则机臂12受到的动力为垂直于机臂12方向,多旋翼无人飞行器可以以较高的飞行速度飞行。
并且,喷嘴14在树木喷洒状态的倾斜角度远大于喷嘴14在非树木喷洒状态的倾斜角度。具体地,喷嘴14在树木喷洒状态的倾斜角度大于在非树木喷洒状态的倾斜角度的2倍。相对于竖直方向的倾斜角度,
请同时参阅图4,具体地,机臂12包括一对前机臂121、一对后机臂122及一对辅助机臂123。一对前机臂121靠近机头方向。一对后机臂122靠近机尾方向。一辅助机臂123设于两前机臂121之间,另一辅助机臂123设于两后机臂122之间。
一对前机臂121与一对后机臂122相对于多旋翼无人飞行器的俯仰轴Y对称设置。一对辅助机臂123相对于多旋翼无人飞行器的俯仰轴Y对称设置。因此,关于俯仰轴Y对称设置的前机臂121、后机臂122及辅助机臂123,可以保证多旋翼无人飞行器的机头与机尾前后保持平衡。
一对前机臂121相对于多旋翼无人飞行器的横滚轴X对称设置。一对后机臂122相对于多旋翼无人飞行器的横滚轴X对称设置。辅助机臂123的竖直投影沿多旋翼无人飞行器的横滚轴X。则前机臂121与后机臂122均关于横滚轴X对称设置,则保证多旋翼无人飞行器在机架10的左右两侧受力保持平衡。
并且,前机臂121相对于多旋翼无人飞行器的横滚轴X的夹角为锐角。后机臂122相对于多旋翼无人飞行器的横滚轴X的夹角为锐角。具体在本实施方式中,前机臂121与横滚轴X之间的夹角为20度-70度。后机臂122与横滚轴X之间的夹角为20度-70度。
具体地,前机臂121与横滚轴X之间的夹角为60度。后机臂122与横滚轴X之间的夹角也为60度。辅助机臂123与横滚轴X之间的夹角为0度。则,相邻两前机臂121、后机臂122及辅助机臂123之间的夹角均为60度,则可以容易保证多旋翼无人飞行器的机架10平衡。
前机臂121相对于多旋翼无人飞行器的航向轴Z倾斜向上设置。即,前机臂121与中心体11之间存在夹角。前机臂121相对于水平面倾斜向上设置。前机臂121相对于航向轴Z的夹角为锐角。具体地,前机臂121与航向轴Z的夹角为度~45度。避免前机臂121相对于航向轴Z之间夹角过大,影响多旋翼无人飞行器正常平衡飞行。
并且,后机臂122相对于多旋翼无人飞行器的航向轴Z倾斜向上设置。即,后机臂122与中心体11之间存在夹角。后机臂122相对于水平面倾斜向上设置。后机臂122相对于航向轴Z的夹角为锐角。具体地,后机臂122与航向轴Z的夹角为度~45度。避免后机臂122相对于航向轴Z之间夹角过大,影响多旋翼无人飞行器正常平衡飞行。
辅助机臂123相对于多旋翼无人飞行器的航向轴Z倾斜向上设置。即,辅助机臂123 与中心体11之间存在夹角。辅助机臂123相对于水平面倾斜向上设置。辅助机臂123相对于航向轴Z的夹角为锐角。具体地,辅助机臂123与航向轴Z的夹角为度~45度。避免辅助机臂123相对于航向轴Z之间夹角过大,影响多旋翼无人飞行器正常平衡飞行。
旋翼动力装置13工作为农业植保无人机1提供动力。旋翼动力装置13包括电机138及桨叶139,电机138驱动桨叶139转动,喷嘴14的喷洒角度受桨叶139转动产生的气流影响。因此,喷嘴14的喷洒角度与转旋转轴轴方向基本平行。电机138与电源9电连接,由电源9提供电量。
具体在本实施方式中,旋翼动力装置13包括承载于一对前机臂121上的第一旋翼动力装置131、承载于一对后机臂122上的第二旋翼动力装置132及承载于一对辅助机臂123上的第三旋翼动力装置133。
第一旋翼动力装置131的旋转轴1311与第二旋翼动力装置132的旋转轴1321相对于多旋翼无人飞行器的航向轴Z对称设置。第一旋翼动力装置131以及第二旋翼动力装置132的旋转轴相对于多旋翼无人飞行器的航向轴Z倾斜设置。
第一旋翼动力装置131以及第二旋翼动力装置132的旋转轴相对于多旋翼无人飞行器的横滚轴X倾斜设置。
第一旋翼动力装置131以及第二旋翼动力装置132的旋转轴相对于多旋翼无人飞行器的航向轴Z朝向中心体11外侧向下倾斜。
第三旋翼动力装置133的旋转轴1331相对于多旋翼无人飞行器的航向轴Z对称设置。辅助机臂123受到的由第三旋翼动力装置133提供的动力,可以相对于航向轴Z对称设置,保证机架10平衡。
第三旋翼动力装置133的旋转轴1331相对于多旋翼无人飞行器的航向轴Z倾斜设置。第三旋翼动力装置133的旋转轴1331的竖直投影沿多旋翼无人飞行器的横滚轴X设置。第三旋翼动力装置133的旋转轴1331相对于多旋翼无人飞行器的航向轴Z朝向中心体11外侧向下倾斜。
在其他实施方式中,第三旋翼动力装置133的旋转轴1331的垂直于多旋翼无人飞行器的俯仰轴Y设置。第三旋翼动力装置133提供的动力垂直于多旋翼无人飞行器的俯仰轴Y,则可以较容易调节多旋翼无人飞行器的俯仰角度。
请同时参阅图2及图3,喷嘴14的喷洒角度基本垂直于机臂12。具体地,前机臂121上对应设置的为第一喷嘴141。后机臂122上对应设置的为第二喷嘴142。辅助机臂123上对应设置的为第三喷嘴143。第一喷嘴141与第一旋翼动力装置131对应设置。第二喷嘴142与第二旋翼动动力装置对应设置。第三喷嘴143与第三旋翼动力装置133对应设置。
第一旋翼动力装置131的旋转轴方向即为即为第一喷嘴141的喷洒角度。第二旋翼动力装置132的旋转轴方向即为第二喷嘴142的喷洒角度。第三旋翼动力装置133的旋转轴 方向即为第三喷嘴143的喷洒角度。
则第一喷嘴141的喷洒角度相对于多旋翼无人飞行器的航向轴Z倾斜设置。第一喷嘴141的喷洒角度朝向机头的外侧倾斜设置。
第二喷嘴142的喷洒角度相对于多旋翼无人飞行器的航向轴Z倾斜设置。第二喷嘴142的喷洒角度朝向机尾的外侧倾斜设置。
第一喷嘴141以及第二喷嘴142的喷洒角度相对于多旋翼无人飞行器的横滚轴X倾斜设置。
第一喷嘴141以及第二喷嘴142的喷洒角度相对于多旋翼无人飞行器的航向轴Z朝向中心体11外侧并向下倾斜。
具体在本实施方式中,上述农业植保无人机11用于对树木2的树叶进行上下均匀喷洒。因此,农业植保无人机1的主要运动为上下升降运动。因此,第三喷嘴143喷出的喷雾受到飞行气流的影响较小。
第三喷嘴143的喷洒角度相对于多旋翼无人飞行器的航向轴Z倾斜设置。第三喷嘴143的喷洒角度相对于多旋翼无人飞行器的航向轴Z朝向中心体11外侧向下倾斜。则第三喷嘴143的喷洒角度可以沿树木的生长方向,以尽量均匀的喷洒。
并且,第三喷嘴143的喷洒角度的竖直投影沿多旋翼无人飞行器的横滚轴X设置。则第三喷嘴143的喷洒角度朝向机头或机尾的外侧。因此,第三喷嘴143的喷洒角度,一方面有助于实现树木树叶的均匀喷洒;另一方面,第三喷嘴143也可以使喷洒的喷雾超远离中心体11的一侧设置。
在其他实施方式中,第三喷嘴143也可以省略。由于辅助机臂123设于横滚轴X方向上,即,两个辅助机臂123分别位于机头及机尾。则第三喷嘴143即设置于机头及机尾位置处。则当上述农业植保无人机1进行前后飞行的时候,第三喷嘴143喷出的喷雾会受到飞行气流的影响,会落在中心体11上。由于中心体11上分布有电学元件,喷雾长时间停留在中心体11上,会造成电学元件的损坏。
并且,辅助机臂123上的第三旋翼动力装置133提供的动力,可以辅助机架10保持平衡飞行。
请参阅图5,具体在本实施方式中,机架10还包括可调节机臂12与中心体11之间夹角的角度调节结构17。多个角度调节结构17分别设于多个机臂12上,且用于将机臂12与中心体11可转动连接。角度调节机构能够调节所述机臂12与中心体11之间的夹角,使喷嘴14的喷洒角度朝向中心体11的斜下方。每个机臂11上可以均设有上述角度调节结构17,或者,部分机臂11上设有上述角度调节结构17。只要能够保证多个机臂11之间保持对称设置,机架10在飞行过程中保持平衡即可。此处对角度调节结构17的个数与机臂11的个数之间的关系不做限定。
角度调节结构17可以包括转动件171。转动件171与机臂12连接。转动件171转动, 调节机臂12与中心体11之间的夹角。
具体在本实施方式中,角度调节结构17还可以包括锁定件(图未示)。锁定件与转动件171限位连接,以限定机臂12与中心体11之间的夹角。当确定机臂12与中心体11之间的夹角之后,则通过锁定件将机臂12与中心体11之间的夹角进行锁定。
转动件171可以为转轴。机臂12相对于转轴转动,则调节机臂12与中心体11之间的夹角大小。当调节到位的时候,则通过锁定件,将机臂12限位固定。锁定件可以为插销,也可以为限位卡合件等。
角度调节结构17还包括驱动件172,驱动件172与机臂12驱动连接,驱动件172带动转动件171转动。
驱动件172转动带动转动件171转动。驱动件172与转动件171直接转动连接。驱动件172可以为电机或转轴等。转动件171可以为齿轮、轴套等。驱动件172可以驱动转动件171转动,转动件171转动从而带动机臂12转动,从而可以改变调节机臂12与中心体11之间的夹角大小。
请参阅图6,在另一实施方式中,驱动件272伸缩运动带动转动件271转动。驱动件172伸缩运动可以带动。驱动件272可以为伸缩电机的伸缩杆、者伸缩丝杆、伸缩电机等。驱动件272的伸缩端与机臂22固定连接,则伸缩端伸缩,从而可以改变调节机臂22与中心体21之间的夹角大小。
在其他实施方式中,角度调节结构17还可以省略。在该实施方式的多旋翼无人飞行器的机臂12相对于中心体11之间的夹角不可调节。则机臂12以固定的倾斜角度固定设置于中心体11的外周。则该多旋翼无人飞行器同样可以实现:其机臂12上的喷嘴14的喷洒方向朝向中心体11的斜下方。含有该机架10的农业植保无人机1同样可以保证较多的树枝及树叶能够喷洒到农药,提高农业植保无人机1对树木喷洒农药的均匀度。
并且,在其他方式中,多旋翼无人飞行器的机架10还可以省略辅助机臂123、第三喷嘴143及第三旋翼动力装置133。
该实施方式的多旋翼无人飞行器的机架10为四旋翼机架。机架的机臂12包括一对前机臂121以及一对后机臂122。多个旋翼动力装置13包括设于前机臂121的第一旋翼动力装置131和设于后机臂122的第二旋翼动力装置132,多个喷嘴14包括与第一旋翼动力装置131对应的第一喷嘴141以及与第二旋翼动力装置132的第二喷嘴142。
一对前机臂121与一对后机臂122相对于多旋翼无人飞行器的俯仰轴Y对称设置,前机臂121以及后机臂122相对于多旋翼无人飞行器的航向轴Z倾斜向上设置。第一旋翼动力装置131的旋转轴与第二旋翼动力装置132的旋转轴相对于多旋翼无人飞行器航向轴Z对称设置。第一旋翼动力装置131以及第二旋翼动力装置132的旋转轴相对于多旋翼无人飞行器的航向轴Z倾斜设置。第一喷嘴141以及第二喷嘴142的喷洒角度相对于 多旋翼无人飞行器的航向轴Z倾斜设置。
因此上述多旋翼无人飞行器的机臂12上的喷嘴14的喷洒角度均朝向中心体11的斜下方。含有该机架的农业植保无人机1同样可以保证较多的树枝及树叶能够喷洒到农药,提高农业植保无人机1对树木喷洒农药的均匀度。
还提供一种农业植保无人机。请参阅图7,该农业植保无人机包括形态采集模块18、控制模块19及角度调节机构17。
形态采集模块18用于采集待喷洒物的形态信息。形态信息包括相邻两待喷洒物的间距大小、待喷洒物的高度。当待喷洒物是树木的时候,则采集的形态信息可以为,相邻两棵树木之间的间距大小,树木的底部树枝与顶部树枝之间距离,底部树枝与顶部树枝的长度信息及树木树枝的生长角度等。
其中,树木树枝的生长角度为树枝的生长方向与竖直方向的夹角。则机臂12相对于中心体11倾斜设置,机臂12与航向轴Z之间的夹角与树枝的生长角度大约保持一致,才能使喷嘴14的喷洒方向沿树枝的生长方向进行喷洒。
形态采集模块18可以为扫描仪、距离传感器或摄像头等。
控制模块19用于接收形态信息。控制模块19根据形态信息确定获取喷嘴14的喷洒角度。
控制模块19可以根据上述树木的形态信息,可以得到树木的树枝生长角度。并且,控制模块19还可以根据上述树木的形态信息,对农业植保无人机1的整个飞行过程进行控制。
控制模块19还可以用于根据形态信息,确定机臂12的喷洒长度。当相邻两树木之间的间距较小的时候,该间距小于机架的飞行直径大小,则该农业植保无人机1不能进入到相邻两树木之间。则该农业植保无人机1必须调整机臂12的长度,以减小飞行直径,从而实现对间距较小的两棵树木进行喷洒作业。
因此,本实施方式的农业植保无人机还包括机臂伸缩机构125。控制模块19与机臂伸缩机构125通信连接,机臂伸缩机构125根据喷洒长度调节机臂12的长度。具体地,机臂12可以包括至少两个杆体及机臂伸缩机构125,两个杆体之间通过机臂伸缩机构125连接,机臂伸缩机构125可调节机臂12的长度。两个杆体可以相对套设设置,在机臂伸缩机构在两个杆体之间伸缩,从而改变两个杆体的总长度。机臂伸缩机构125可以为齿轮齿条、也可以为伸缩杆等。
角度调节机构与控制模块19信号连接。角度调节机构根据喷洒角度调节机臂12与中心体11之间的夹角。角度调节机构具有驱动件172。控制模块19与驱动件172控制连接。则控制模块19可以控制驱动件172转动或伸缩,从而达到控制机臂12与中心体11之间夹角的目的。
并且,控制模块19还可以对不同喷嘴14进行控制。农业植保无人机可以根据预设条 件,自动选取相应位置的喷嘴14工作。或者,所述农业植保无人机1可以用户的输入信息选取相应位置的喷嘴14工作,并由用户根据当时条件来选择。可以理解,控制模块19可以通过水泵、控制阀对喷嘴14的导通工作进行控制。
请参阅图8,还提供一种农业植保无人机的控制方法。
本实施方式的一种农业植保无人机的控制方法包括:
步骤S11,采集待喷洒物的形态信息。
具体地,形态信息包括相邻两待喷洒物的间距大小、待喷洒物的高度。当待喷洒物是树木的时候,则采集的形态信息可以为,相邻两棵树木之间的间距大小,树木的底部树枝与顶部树枝之间距离,底部树枝与顶部树枝的长度信息及树木树枝的生长角度等。根据采集得到的树枝的生长方向与竖直方向的夹角可以确定树枝的生长角度。
步骤S12,根据形态信息,确定喷嘴的喷洒角度。
根据上述树木的形态信息,可以得到树木的树枝生长角度。则喷嘴14的喷洒角度与树枝的成长近似相等。因此,根据该树枝的生长角度即可确定该喷嘴14的喷洒角度。
步骤S13,根据喷洒角度,调节机臂与中心体之间的夹角。
喷嘴14的喷洒角度的调节,通过机臂12与中心体11之间的夹角来实现。并且,机臂12与中心体11之间的夹角,即为机臂12与航向轴Z之间的夹角相等。因此通过机臂12与航向轴Z之间的夹角调节,与喷嘴14的喷洒方向与树枝的生长角度大约保持一致,才能使喷嘴14的喷洒方向沿树枝的生长方向进行喷洒。
并且,请参阅图9,上述农业植保无人机1的控制方法还包括:步骤S14,当间距小于阈值时,根据形态信息,确定机臂的喷洒长度,调节机臂的喷洒长度。
该阈值可以为农业植保无人机1的飞行直径大小。根据采集的形态信息,得到相邻两树木之间的间距。根据该间距大小,确定机臂的喷洒长度。
当两树木之间的间距小于农业植保无人机1的飞行直径的时候,则农业植保无人机1的机臂12长度进行调节,以减小农业植保无人机1的飞行直径,以使农业植保无人机1能够飞行进入两树木之间,实施喷洒作业。
当两树木之间的间距大于农业植保无人机1的飞行直径的时候,则农业植保无人机1的机臂12以最大的喷洒长度进行喷洒作业。
在其中一些实施例中,根据农业植保无人机1的飞行方向及作业环境的风向,选择对应位置的喷嘴14实施喷洒作业,以避免喷嘴14喷出的雾滴落到中心体11上,使中心体11上的电子器件受损。在农业植保无人机1朝向机头方向飞行时,或者,如果农业植保无人机1逆风飞行,则选择机尾方向的喷嘴14。在农业植保无人机1朝向机尾方向飞行时,或者,如果农业植保无人机1逆风飞行,则选择机头方向的喷嘴14。当农业植保无人机1的飞行方向为上下升降飞行时,喷嘴14喷出的雾滴不受飞行方向及风向的影响的 时候,则位于机头及机尾方向的喷嘴14均可以选取使用。
在其中一个实施例中,根据所述农业植保无人机1的飞行方向,选择适应位置的喷嘴14实施喷洒作业。例如,如果需要增大喷洒的穿透力,则在农业植保无人机1朝向机头方向飞行时,选取机头方向的喷嘴14,使得喷出的雾滴经过农业植保无人机1的飞行动力装置产生的气流作用下,加速朝向下方喷出。如果为了避免喷嘴14喷出的雾滴受到气流影响,则在农业植保无人机1朝向机尾方向飞行时,选取机尾方向的喷嘴14,使得喷出的雾滴受到农业植保无人机1的飞行动力装置产生的气流的影响。
在其中一些实施例中,根据农业植保无人机1的作业环境的风向,选择适应位置的喷嘴14实施喷洒作业,以尽量减少喷洒的雾滴的漂移产生的误差。例如,如果农业植保无人机1逆风飞行,则选择机头方向的喷嘴14。如果农业植保无人机1顺风飞行,则选择机尾方向的喷嘴14。
在其中一些实施例中,根据所述农业植保无人机1相较于作业区域的朝向,选择适应位置的喷嘴14实施喷洒作业。例如,如果所述农业植保无人机1只需要对一侧树木进行喷洒,则农业植保无人机1只需开启右侧的喷嘴14工作,并顺时针沿着树木的作业区域的边界进行喷洒,以避免过多的喷洒到作业区域的外部。或者,则农业植保无人机1只需开启左侧的喷嘴14工作,并逆时针沿着树木的作业区域的边界进行喷洒,以避免过多的喷洒到作业区域的外部。
在其中一些实施例中,所述农业植保无人机1可以根据预设条件,自动选取相应位置的喷嘴14。或者,所述农业植保无人机1可以用户的输入信息选取相应位置的喷嘴14,并由用户根据当时条件来选择。
虽然已参照几个典型实施方式描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (48)

  1. 一种多旋翼无人飞行器的机架,其特征在于,包括:
    中心体;
    多个机臂,分布于所述中心体的外周;
    多个旋翼动力装置,设于所述机臂上,多个所述旋翼动力装置用于提供飞行动力给所述多旋翼无人飞行器;
    多个喷嘴,分别安装在多个所述机臂的下方,并且分别位于所述旋翼动力装置的下方;及
    多个角度调节机构,分别设于多个所述机臂上,且用于将所述机臂与所述中心体可转动连接;
    其中,所述角度调节机构能够调节所述机臂与所述中心体之间的夹角,使所述喷嘴的喷洒角度朝向所述中心体的斜下方。
  2. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,多个所述机臂对称分布于所述中心体的外周。
  3. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述喷嘴的喷洒角度基本垂直于所述机臂。
  4. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述旋翼动力装置包括电机及桨叶,所述电机驱动所述桨叶转动,所述喷嘴的喷洒角度与所述桨叶的转旋转轴轴方向基本平行。
  5. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述机臂包括一对前机臂、一对后机臂;所述前机臂及所述后机臂均设有所述喷嘴,一对所述前机臂与一对所述后机臂相对于所述多旋翼无人飞行器的俯仰轴对称设置。
  6. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,一对所述前机臂相对于所述多旋翼无人飞行器的横滚轴对称设置。
  7. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,所述前机臂相对于所述多旋翼无人飞行器的航向轴倾斜向上设置。
  8. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,所述前机臂相对于所述多旋翼无人飞行器的横滚轴的夹角为锐角。
  9. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,所述前机臂对应的所述喷嘴的喷洒角度相对于所述多旋翼无人飞行器的航向轴倾斜设置。
  10. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,所述前机臂对应的所述喷嘴的喷洒角度朝向机头的外侧倾斜设置。
  11. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,一对所述后机臂相对于所述多旋翼无人飞行器的横滚轴对称设置。
  12. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,所述后机臂相对 于所述多旋翼无人飞行器的航向轴倾斜向上设置。
  13. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,所述后机臂相对于所述多旋翼无人飞行器的横滚轴的夹角为锐角。
  14. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,所述后机臂对应的所述喷嘴的喷洒角度相对于所述多旋翼无人飞行器的航向轴倾斜设置。
  15. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,所述后机臂对应的所述喷嘴的喷洒角度朝向机尾的外侧倾斜设置。
  16. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,一对所述前机臂分别承载有第一旋翼动力装置,一对所述后机臂分别承载有第二旋翼动力装置,所述第一旋翼动力装置的旋转轴与所述第二旋翼动力装置的旋转轴相对于所述多旋翼无人飞行器的航向轴对称设置。
  17. 根据权利要求16所述的多旋翼无人飞行器的机架,其特征在于,所述第一旋翼动力装置以及所述第二旋翼动力装置的旋转轴相对于所述多旋翼无人飞行器的航向轴倾斜设置。
  18. 根据权利要求16所述的多旋翼无人飞行器的机架,其特征在于,所述第一旋翼动力装置以及所述第二旋翼动力装置的旋转轴相对于所述多旋翼无人飞行器的航向轴朝向所述中心体外侧向下倾斜。
  19. 根据权利要求16所述的多旋翼无人飞行器的机架,其特征在于,所述第一旋翼动力装置以及所述第二旋翼动力装置的旋转轴相对于所述多旋翼无人飞行器的横滚轴倾斜设置。
  20. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,一对所述前机臂分别承载有第一旋翼动力装置,一对所述后机臂承载分别有第二旋翼动力装置,对应所述第一旋翼动力装置设置第一喷嘴,对应所述第二旋翼动动力装置设置第二喷嘴;
    所述第一喷嘴以及所述第二喷嘴的喷洒角度相对于所述多旋翼无人飞行器的航向轴倾斜设置。
  21. 根据权利要求20所述的多旋翼无人飞行器的机架,其特征在于,所述第一喷嘴以及所述第二喷嘴的喷洒角度相对于所述多旋翼无人飞行器的航向轴朝向所述中心体外侧、向下倾斜。
  22. 根据权利要求20所述的多旋翼无人飞行器的机架,其特征在于,所述第一喷嘴以及所述第二喷嘴的喷洒角度相对于所述多旋翼无人飞行器的横滚轴倾斜设置。
  23. 根据权利要求5所述的多旋翼无人飞行器的机架,其特征在于,所述机臂包括一对辅助机臂,一所述辅助机臂设于两所述前机臂之间,另一所述辅助机臂设于两所述后机臂之间。
  24. 根据权利要求23所述的多旋翼无人飞行器的机架,其特征在于,一对所述辅助机臂相对于所述多旋翼无人飞行器的俯仰轴对称设置。
  25. 根据权利要求23所述的多旋翼无人飞行器的机架,其特征在于,所述辅助机臂相对于所述多旋翼无人飞行器的航向轴倾斜向上设置。
  26. 根据权利要求23所述的多旋翼无人飞行器的机架,其特征在于,所述辅助机臂的竖直投影沿所述多旋翼无人飞行器的横滚轴。
  27. 根据权利要求23所述的多旋翼无人飞行器的机架,其特征在于,所述辅助机臂对应的所述喷嘴的喷洒角度相对于所述多旋翼无人飞行器的航向轴倾斜设置。
  28. 根据权利要求23所述的多旋翼无人飞行器的机架,其特征在于,一对所述辅助机臂分别承载有第三旋翼动力装置,并且一对所述辅助机臂的所述第三旋翼动力装置的旋转轴相对于所述多旋翼无人飞行器的航向轴对称设置。
  29. 根据权利要求28所述的多旋翼无人飞行器的机架,其特征在于,所述第三旋翼动力装置的旋转轴相对于所述多旋翼无人飞行器的航向轴倾斜设置。
  30. 根据权利要求28所述的多旋翼无人飞行器的机架,其特征在于,所述第三旋翼动力装置的旋转轴相对于所述多旋翼无人飞行器的航向轴朝向所述中心体外侧向下倾斜。
  31. 根据权利要求28所述的多旋翼无人飞行器的机架,其特征在于,所述第三旋翼动力装置的旋转轴的竖直投影沿所述多旋翼无人飞行器的横滚轴设置。
  32. 根据权利要求28所述的多旋翼无人飞行器的机架,其特征在于,所述第三旋翼动力装置的旋转轴的垂直于所述多旋翼无人飞行器的俯仰轴设置。
  33. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述角度调节结构包括转动件,所述转动件与所述机臂连接,所述转动件转动,调节所述机臂与所述中心体之间的夹角。
  34. 根据权利要求33所述的多旋翼无人飞行器的机架,其特征在于,所述角度调节结构还包括锁定件,所述锁定件与所述转动件限位连接,以限定所述机臂与所述中心体之间的夹角。
  35. 根据权利要求33所述的多旋翼无人飞行器的机架,其特征在于,所述角度调节结构还包括驱动件,所述驱动件与所述机臂驱动连接,所述驱动件带动所述转动件转动。
  36. 根据权利要求35所述的多旋翼无人飞行器的机架,其特征在于,所述驱动件伸缩运动带动所述转动件转动。
  37. 根据权利要求35所述的多旋翼无人飞行器的机架,其特征在于,所述驱动件转动带动所述转动件转动。
  38. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述机臂包括至少两个杆体及机臂伸缩机构,两个所述杆体之间通过所述机臂伸缩机构连接,所述机臂伸缩机构可调节所述机臂的长度。
  39. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述机臂相对于所述多旋翼无人飞行器的航向轴的夹角为锐角。
  40. 根据权利要求39所述的多旋翼无人飞行器的机架,其特征在于,所述机臂与所 述多旋翼无人飞行器的航向轴的夹角为45度~80度。
  41. 根据权利要求1所述的多旋翼无人飞行器的机架,其特征在于,所述机臂相对于所述中心体的转动状态包括树木喷洒状态和非树木喷洒状态,所述喷嘴在树木喷洒状态的倾斜角度大于在所述非树木喷洒状态的倾斜角度的2倍。
  42. 一种多旋翼无人飞行器的机架,其特征在于,包括:
    中心体;
    多个机臂,分布于所述中心体的外周;
    多个旋翼动力装置,设于所述机臂上,多个所述旋翼动力装置用于提供飞行动力给所述多旋翼无人飞行器;及
    多个喷嘴,分别安装在多个所述机臂的下方,并且分别位于多个所述旋翼动力装置的下方;
    其中,多个所述机臂包括一对前机臂以及一对后机臂,多个所述旋翼动力装置包括设于所述前机臂的第一旋翼动力装置和设于所述后机臂的第二旋翼动力装置,多个所述喷嘴包括与所述第一旋翼动力装置对应的第一喷嘴以及与所述第二旋翼动力装置的第二喷嘴;
    一对所述前机臂与一对所述后机臂相对于所述多旋翼无人飞行器的俯仰轴对称设置,所述前机臂以及所述后机臂相对于所述多旋翼无人飞行器的航向轴倾斜向上设置;
    所述第一旋翼动力装置的旋转轴与所述第二旋翼动力装置的旋转轴相对于所述多旋翼无人飞行器航向轴对称设置;所述第一旋翼动力装置以及所述第二旋翼动力装置的旋转轴相对于所述多旋翼无人飞行器的航向轴倾斜设置;
    所述第一喷嘴以及所述第二喷嘴的喷洒角度相对于所述多旋翼无人飞行器的航向轴倾斜设置。
  43. 一种农业植保无人机,其特征在于,包括电源及权利要求1-42任一所述机架,所述电源与所述旋翼动力装置电连接。
  44. 一种农业植保无人机,其特征在于,包括:
    形态采集模块,用于采集待喷洒物的形态信息;
    控制模块,用于接收所述形态信息,并根据所述形态信息确定喷嘴的喷洒角度;以及
    角度调节机构,与所述控制模块信号连接,所述角度调节机构根据所述喷洒角度调节机臂与中心体之间的夹角。
  45. 根据权利要求44所述的农业植保无人机,其特征在于,所述控制模块还用于根据所述形态信息,确定所述机臂的喷洒长度;
    所述农业植保无人机还包括机臂伸缩机构,所述控制模块与所述机臂伸缩机构通信连接,所述机臂伸缩机构根据所述喷洒长度调节所述机臂的长度。
  46. 一种农业植保无人机的控制方法,包括:
    采集待喷洒物的形态信息;
    根据所述形态信息,确定喷嘴的喷洒角度;
    根据所述喷洒角度,调节机臂与中心体之间的夹角。
  47. 根据权利要求46所述的农业植保无人机的控制方法,其特征在于,所述形态信息包括相邻两所述待喷洒物的间距大小、所述待喷洒物的高度。
  48. 根据权利要求47所述的农业植保无人机的控制方法,其特征在于,还包括:当所述间距小于阈值时,根据所述形态信息,确定机臂的喷洒长度,调节所述机臂的喷洒长度。
PCT/CN2020/099324 2020-06-30 2020-06-30 多旋翼无人飞行器的机架、农业植保无人机及控制方法 WO2022000277A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/099324 WO2022000277A1 (zh) 2020-06-30 2020-06-30 多旋翼无人飞行器的机架、农业植保无人机及控制方法
CN202080023536.9A CN113631480A (zh) 2020-06-30 2020-06-30 多旋翼无人飞行器的机架、农业植保无人机及控制方法
PCT/CN2020/127600 WO2022000922A1 (zh) 2020-06-30 2020-11-09 多旋翼无人飞行器的机架、农业植保无人机及控制方法
CN202022568818.7U CN213649888U (zh) 2020-06-30 2020-11-09 多旋翼无人飞行器的机架及农业植保无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099324 WO2022000277A1 (zh) 2020-06-30 2020-06-30 多旋翼无人飞行器的机架、农业植保无人机及控制方法

Publications (1)

Publication Number Publication Date
WO2022000277A1 true WO2022000277A1 (zh) 2022-01-06

Family

ID=76706618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099324 WO2022000277A1 (zh) 2020-06-30 2020-06-30 多旋翼无人飞行器的机架、农业植保无人机及控制方法

Country Status (2)

Country Link
CN (2) CN113631480A (zh)
WO (1) WO2022000277A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162316A (zh) * 2022-01-13 2022-03-11 沈阳智翔通飞通用航空技术有限公司 一种多功能应急救援多旋翼无人机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229005B (zh) * 2021-12-20 2023-08-29 华南农业大学 一种机载式喷施挡风下移装置及飞行靶标跟随作业方法
CN114532319B (zh) * 2022-02-14 2023-02-28 刘照娟 一种挂载型农业植保喷洒系统
WO2024021135A1 (zh) * 2022-07-29 2024-02-01 深圳市大疆创新科技有限公司 飞行器
CN116605427B (zh) * 2023-07-20 2023-09-26 山东高烽畜牧科技有限公司 一种基于农业植保无人机的雾化喷射装置及其使用方法
CN116873249B (zh) * 2023-09-06 2023-11-07 沈阳迎新网络科技有限公司 一种无人机机臂

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217038A (zh) * 2015-10-23 2016-01-06 吉林省农业机械研究院 一种植保飞机定向喷洒装置及其控制方法
CN107253530A (zh) * 2017-07-19 2017-10-17 陕西腔棘鱼通用设备科技有限责任公司 一种旋翼植保无人机
CN107933920A (zh) * 2017-10-19 2018-04-20 深圳市莲花百川科技有限公司 一种农用植保无人机
CN109050931A (zh) * 2018-09-19 2018-12-21 徐州元亨众利农业服务专业合作联社 一种植保无人机的四轴联动喷洒系统
CN208335015U (zh) * 2018-05-10 2019-01-04 静快省(苏州)智能科技有限公司 基于视觉slam导航技术的无人驾驶植保喷施系统
WO2019048907A1 (en) * 2017-09-08 2019-03-14 Pleatman Andrew ANGLE ADJUSTING SUBASSEMBLY AND AERIAL VEHICLE WITHOUT PILOT AND APPARATUS INCLUDING THE SAME
CN210434710U (zh) * 2019-04-29 2020-05-01 深圳市大疆创新科技有限公司 一种喷头装置、喷洒装置及可移动平台
CN210653628U (zh) * 2019-09-17 2020-06-02 浙江冉弘电子有限公司 一种高精度无人机机臂推柄

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205469800U (zh) * 2016-01-13 2016-08-17 王玉宏 多旋翼农用植保无人机
DE102018104827B4 (de) * 2018-03-02 2022-11-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Unbemannter Drehflügler, System und Verfahren zum Ausbringen eines Spritzguts
CN209274907U (zh) * 2018-12-04 2019-08-20 深圳市大疆创新科技有限公司 农业无人飞行器
CN209267004U (zh) * 2018-12-31 2019-08-16 中国南方电网有限责任公司超高压输电公司广州局 输电线路异物清除喷火多旋翼无人机
CN212766731U (zh) * 2020-06-30 2021-03-23 深圳市大疆创新科技有限公司 多旋翼无人飞行器的机架及农业植保无人机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217038A (zh) * 2015-10-23 2016-01-06 吉林省农业机械研究院 一种植保飞机定向喷洒装置及其控制方法
CN107253530A (zh) * 2017-07-19 2017-10-17 陕西腔棘鱼通用设备科技有限责任公司 一种旋翼植保无人机
WO2019048907A1 (en) * 2017-09-08 2019-03-14 Pleatman Andrew ANGLE ADJUSTING SUBASSEMBLY AND AERIAL VEHICLE WITHOUT PILOT AND APPARATUS INCLUDING THE SAME
CN107933920A (zh) * 2017-10-19 2018-04-20 深圳市莲花百川科技有限公司 一种农用植保无人机
CN208335015U (zh) * 2018-05-10 2019-01-04 静快省(苏州)智能科技有限公司 基于视觉slam导航技术的无人驾驶植保喷施系统
CN109050931A (zh) * 2018-09-19 2018-12-21 徐州元亨众利农业服务专业合作联社 一种植保无人机的四轴联动喷洒系统
CN210434710U (zh) * 2019-04-29 2020-05-01 深圳市大疆创新科技有限公司 一种喷头装置、喷洒装置及可移动平台
CN210653628U (zh) * 2019-09-17 2020-06-02 浙江冉弘电子有限公司 一种高精度无人机机臂推柄

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162316A (zh) * 2022-01-13 2022-03-11 沈阳智翔通飞通用航空技术有限公司 一种多功能应急救援多旋翼无人机
CN114162316B (zh) * 2022-01-13 2024-01-19 湖南畅兴无人机技术有限公司 一种多功能应急救援多旋翼无人机

Also Published As

Publication number Publication date
CN213649888U (zh) 2021-07-09
CN113631480A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2022000277A1 (zh) 多旋翼无人飞行器的机架、农业植保无人机及控制方法
WO2022000922A1 (zh) 多旋翼无人飞行器的机架、农业植保无人机及控制方法
CN212766731U (zh) 多旋翼无人飞行器的机架及农业植保无人机
CN208593497U (zh) 一种植保无人机
CN105537027B (zh) 一种飞行器喷洒控制装置、方法及喷洒系统
US20190382116A1 (en) Drug spreading drone
WO2019205140A1 (zh) 农业无人机
CN204399482U (zh) 一种双旋翼共轴式安全防撞电动无人植保机
JP2017036011A (ja) マルチロータ型ヘリコプター及びこれを使用した薬剤の空中散布方法
WO2021258411A1 (zh) 一种烟草飞行打顶机器人
CN203528819U (zh) 农用无人航空器
CN107215456A (zh) 一种可高效均匀喷洒农药的无人机装置
CN213677142U (zh) 多旋翼无人飞行器的机架及农业植保无人机
CN104554726A (zh) 一种农林业专用智能无人机
CN105151290A (zh) 一种高空姿态稳定四旋翼无人机
US20200324900A1 (en) Unmanned aerial vehicle and control method for unmanned aerial vehicle
CN207536130U (zh) 一种植保无人机
CN113135285A (zh) 一种旋翼无人机的喷气辅助装置
CN110171572A (zh) 一种可变形空陆植保无人机
CN207225662U (zh) 一种横列式多旋翼的宽幅植保无人机
WO2019205139A1 (zh) 无人机机架和无人机
CN207932011U (zh) 一种稳定性强的植保无人机
US20220340278A1 (en) Method of spraying a field with an unmanned aerial vehicle
CN210822753U (zh) 由舵面控制飞行姿态的单桨植保无人机
CN112455665A (zh) 一种水田平衡起降无人机及定点除草回收作业方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942705

Country of ref document: EP

Kind code of ref document: A1