WO2022000304A1 - 微胶囊型聚羧酸超塑化剂及其制备方法 - Google Patents

微胶囊型聚羧酸超塑化剂及其制备方法 Download PDF

Info

Publication number
WO2022000304A1
WO2022000304A1 PCT/CN2020/099413 CN2020099413W WO2022000304A1 WO 2022000304 A1 WO2022000304 A1 WO 2022000304A1 CN 2020099413 W CN2020099413 W CN 2020099413W WO 2022000304 A1 WO2022000304 A1 WO 2022000304A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarboxylic acid
aqueous solution
water
superplasticizer
gelatin
Prior art date
Application number
PCT/CN2020/099413
Other languages
English (en)
French (fr)
Inventor
冉千平
黄振
杨勇
舒鑫
周栋梁
王涛
严涵
刘加平
Original Assignee
江苏苏博特新材料股份有限公司
南京博特新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏苏博特新材料股份有限公司, 南京博特新材料有限公司 filed Critical 江苏苏博特新材料股份有限公司
Priority to US18/013,559 priority Critical patent/US20230287212A1/en
Priority to EP20943101.4A priority patent/EP4163263A4/en
Publication of WO2022000304A1 publication Critical patent/WO2022000304A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • B01J13/046Making microcapsules or microballoons by physical processes, e.g. drying, spraying combined with gelification or coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1022Non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1048Polysaccharides, e.g. cellulose, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/32Superplasticisers

Definitions

  • the application belongs to the technical field of concrete admixtures, and in particular relates to a microcapsule-type polycarboxylic acid superplasticizer and a preparation method thereof.
  • Reactive polymers mainly include polycarboxylic acid slump-retaining agents prepared by carboxyl protection technology and intermolecular crosslinking technology, among which carboxyl protection technology is more mature.
  • Patents CN201210513890.7, CN201510930837.0, EP0931799, US20080295741, US20060266977, etc. all adopt carboxyl protection technology.
  • the density is very low, and it is mainly dissolved in the water phase at the initial stage, and the adsorption is very small.
  • the alkyl ester undergoes a hydrolysis reaction to generate more carboxylate adsorption groups, which are continuously supplemented and adsorbed to the cement particles. surface, providing continuous dispersion.
  • the hydrolysis rate can be controlled by adjusting the proportion of protective groups, the control of molecular weight, etc., and then polymer molecules with different slump retention properties can be obtained.
  • Intermolecular cross-linking technology uses cross-linking monomers containing two or more double bonds to carry out free radical copolymerization with monomers such as polyether macromonomers and unsaturated acids, and micro-crosslinking occurs. Cracks will also occur gradually in the sexual environment, releasing small-molecule water-reducing agents for continuous adsorption of cement particles.
  • Patents CN200510037869.4, CN201010617174.4, CN201480062215.4, EP0619277, US5362324, etc. all adopt this method. Relatively speaking, because the cross-linking reaction is more difficult to control, the performance of the slump-retaining agent prepared by this technology is difficult to control, and this method has been used less and less at present.
  • Patent CN201110199695.7 provides a new idea, which microencapsulates common water reducing agent molecules through miniemulsion inverse polymerization. Due to the existence of the capsule shell, the water reducing agent molecules can be stably stored in the microcapsules. When mixed with cement, the cement concrete is strongly alkaline, the microcapsules swell, the shell layer changes from dense to loose, and the encapsulated water reducing agent molecules are released slowly, so that the cement concrete maintains a high reduction in water. Water agent concentration, in order to improve the fluidity of the water reducing agent with time retention, and prevent the loss of cement concrete slump in actual engineering use.
  • Patent CN201310751918.5 adopts a similar idea.
  • the carrier with pores is stirred and dispersed in a concrete admixture solution, fully soaked, centrifugally filtered, and dried to obtain a slow-release microcapsule type concrete admixture.
  • the carrier with pores is fully soaked in the concrete admixture solution, some of the concrete admixture molecules enter the pores of the pore carrier, and the other part of the concrete admixture molecules are adsorbed on the surface of the carrier particles to form a slow-release microcapsule-type concrete admixture.
  • the polycarboxylate superplasticizer can be released more slowly due to the protective effect of the capsule shell layer and the swelling effect in the cement environment, supplementing the later adsorption, and achieving long-term preservation. collapse effect.
  • the above method also has some defects.
  • the patent CN201110199695.7 uses a large amount of organic solvent in the process of preparing the capsule-type superplasticizer, and the recovery of the solvent increases the extra production cost and environmental cost.
  • Patent CN201310751918.5 adopts the method of drying the carrier after soaking, which has more steps, and more polycarboxylate superplasticizers are adsorbed on the surface of the carrier, which cannot be effectively coated to form a closed capsule, and will also be slowly released in an aqueous solution. , the scope of application is narrow.
  • Patent CN201780010568.3 discloses a method for preparing microcapsules. First, by adding salt to an aqueous system containing a water-soluble polymer, a two-phase system is formed, and then a monomer is added to generate free radical polymerization in the two-phase system.
  • the shell layer embeds the active substances and various enzymes to increase the stability of the enzyme.
  • the synthesized shell layer is generally polymerized by alkyl acrylate or hydroxyalkyl acrylate, which lacks long-term stability in aqueous solution and needs to be added additionally. Stabilizer or spray drying.
  • the present application provides a microcapsule-type polycarboxylic acid superplasticizer and a preparation method thereof in order to solve the requirements of long-term and stable slump protection of concrete in some special projects at present.
  • the preparation method has simple steps, does not use organic solvents, and has high coating efficiency.
  • the microcapsule-type polycarboxylate superplasticizer utilizes the protective effect and swelling effect of the capsule shell layer to slowly release the polycarboxylate superplasticizer to supplement. Later adsorption, so as to achieve the purpose of stable slump protection for a long time.
  • the microcapsule type polycarboxylate superplasticizer described in the present application is an organic/inorganic composite shell layer of sodium alginate or gelatin calcium ion gel and calcium carbonate.
  • the polycarboxylic acid is a polycarboxylic acid with a long-chain polyether, and the concentration of the polycarboxylic acid in the polycarboxylic acid aqueous solution is 15%-25%.
  • the organic/inorganic composite shell is obtained by the diffusion-interface reaction of sodium alginate or gelatin with calcium salt and urea under the catalysis of urease.
  • the diffusion-interfacial reaction in this application refers to the interfacial reaction of the two aqueous phases, and the two aqueous phases refer to the aqueous phase of polycarboxylate superplasticizer molecules and the aqueous inorganic salt phase;
  • Described compound inorganic salt is ammonium sulfate, sodium sulfate, lithium sulfate or ammonium chloride in any several arbitrary proportions and sodium chloride compound, wherein the mass concentration of the former is 25 ⁇ 35%, and the concentration of sodium chloride is 3 ⁇ 35%. 6%.
  • Urease can catalyze the formation of carbonate from urea, and further generate calcium carbonate when it encounters calcium chloride, thereby forming an organic/inorganic complex with the gel of sodium alginate or gelatin to further enhance the strength of the shell.
  • the mass concentration of urease in the polycarboxylic acid aqueous solution is generally 0.1 to 0.3%,
  • the above-mentioned composite inorganic salt generally adopts ammonium sulfate, sodium sulfate, lithium sulfate or ammonium chloride.
  • polycarboxylate superplasticizer contains a large amount of (PEG) polyethylene glycol structure.
  • PEG polyethylene glycol
  • the immiscible two-phase system if high-speed stirring and ultrasonication are carried out in the presence of an appropriate amount of dispersant, can further form a water-in-water with inorganic salt aqueous solution as the continuous phase and superplasticizer molecular aqueous solution as the dispersed phase. lotion.
  • a coating layer can be formed, and the polycarboxylate superplasticizer is sealed inside the capsule to form a capsule-type polycarboxylate superplasticizer.
  • the preparation reaction of the microcapsule-type polycarboxylic acid superplasticizer described in this application comprises the following steps:
  • the polycarboxylate superplasticizer, sodium alginate or gelatin, and urease to be coated are prepared into an aqueous solution.
  • the above-mentioned polycarboxylate superplasticizer to be coated can be general commercial polycarboxylate water reducer or polycarboxylate slump-retaining agent. Phase separation to form a double water phase, and the viscosity of the system is too high if the concentration is too high.
  • Sodium alginate or gelatin is pre-dissolved in the dispersed phase as the precursor of the coating shell layer.
  • calcium chloride When calcium chloride is added, it reacts with calcium ions at the interface of the dispersed phase to form a capsule shell layer and coat the superplasticizer.
  • the mass concentration of sodium alginate in the polycarboxylic acid aqueous solution is generally 2-10%.
  • the preparation concentration is too low to form a shell layer. If the concentration is too high, it is easy to react homogeneously, which affects the coating efficiency and causes waste.
  • the mass concentration of sodium alginate in the polycarboxylic acid aqueous solution is 2-10%, that is, 1-5% of the water-in-water emulsion, and the amount of calcium salt is 0.5-1.5% of the water-in-water emulsion, that is, calcium carbonate
  • the proportion is 1.25% to 3.75%.
  • the dispersant is prepared with reference to patent CN201210491725.6, and its mass concentration is 1-5%.
  • the dispersant and the composite inorganic salt can stably form a water-in-water emulsion.
  • a polycarboxylate water reducer and an inorganic salt are used to form a water-in-water emulsion in the presence of a dispersing agent.
  • a dispersing agent Through sodium alginate or gelatin and calcium salt, under the catalysis of urease, an interface reaction occurs to form an organic/inorganic composite shell with a certain strength, and the polycarboxylic acid is embedded in it to form a stable aqueous dispersion .
  • the method has high coating efficiency, utilizes the protective effect and swelling effect of the capsule shell layer, and slowly releases the polycarboxylate superplasticizer to supplement later adsorption, thereby achieving the purpose of stable slump retention for a long time.
  • the capsule-type superplasticizer of the present application can slowly release superplasticizer molecules, has good long-term slump retention capability, and the fluidity change in the entire process is more stable and controllable.
  • the method of the present application is safe and reliable in the whole preparation process, the steps are simple, no organic solvent is used, it is non-toxic and pollution-free, and it is environmentally friendly.
  • the synthesis example is the synthesis method of the dispersant Dsp used in this application.
  • the Dsp-2-Dsp-4 of the present application was prepared according to the steps of Synthesis Example 1, and the materials were charged according to the proportions described in Table 2.
  • the embodiment is the preparation method of the microcapsule type polycarboxylic acid superplasticizer described in this application.
  • the above solution A and solution B were mixed, sheared at high speed for half an hour, and then ultrasonically emulsified for 15 minutes to obtain a water-in-water emulsion Dispersion-C.
  • Example 2-12 of the present application were prepared, and the feed reaction was carried out according to the proportions described in Table 3.
  • the comparative example adopts the naphthalenesulfonic acid formaldehyde condensate superplasticizer as the coating material, and the specific steps are as follows: dissolve 60 grams of NSF superplasticizer, 7.2 grams of C1 and 0.33 grams of urease in 82.47 grams of deionized water, stir and dissolve The solution is then prepared as Solution-A. Dissolve 38.25 grams of D1, 5.25 grams of sodium chloride and 4.95 grams of Dsp-4 in 101.55 grams of deionized water, stir to dissolve, and prepare solution Solution-B.
  • a total organic carbon analyzer was used to test the adsorption rates of the polycarboxylate water-reducing agents prepared in the test examples and comparative examples at different temperatures.
  • the specific methods were as follows: Weigh 100 grams of cement, 100 grams of deionized water and 0.25 grams of deionized water respectively.
  • the water reducing agent folded and solid was placed in the beaker, the magnet was added, the magnetic stirring was turned on, and the beaker was placed in a water bath of different temperatures, and the samples were centrifuged at different time points (4 minutes/60 minutes/120 minutes/240 minutes) to obtain the above.
  • Comparative Example 1 is the adsorption rate of the polycarboxylate water reducing agent PCE-1 commercially available from Jiangsu Subote New Materials Co., Ltd.
  • Comparative Example 2 is the commercially available carboxyl protection technology of Jiangsu Subote New Materials Co., Ltd. Polycarboxylate slump retention agent PCE-2 adsorption rate.
  • the initial adsorption of the capsule-type polycarboxylic acid prepared in the example is very low, almost no adsorption in the first 30 minutes, and the adsorption gradually increases slowly in 60 minutes, indicating that the polycarboxylic acid superplasticizer gradually begins to absorb
  • the adsorption is exuded from the capsule, and the adsorption rate gradually increases with the passage of time.
  • the capsule-type slump-retaining agent coated with PCE-1 reaches the adsorption equilibrium state in about 240 minutes
  • the capsule-type slump-retaining agent coated with PCE-2 reaches the adsorption equilibrium state at 300 There is still supplemental adsorption going on.
  • the uncoated PCE-1 in Comparative Example 1 is a water-reducing superplasticizer. It can be seen that its initial adsorption is very large, and the adsorption equilibrium is basically reached within 30 minutes, and the increase in adsorption is very small.
  • Comparative Example 2 The uncoated PCE-2 is a slump-preserving superplasticizer, and its initial adsorption is lower than that of the water-reducing PCE-1, but still significantly higher than that of the capsule-type polycarboxylate superplasticizer. , the adsorption rate also gradually increased with the passage of time, reaching the adsorption equilibrium state at about 120 minutes, and it was difficult to continue the adsorption and replenishment after that.
  • the adsorption speed in the early stage can be effectively reduced, and its replenishment ability in the later stage can be enhanced.
  • the application example shows that adding an appropriate amount of capsule-type superplasticizer on the basis of the conventional water-reducing and slump-preserving component compounding technology has little effect on its early dispersing ability, and the dispersing holding ability after 1 hour is improved without It will cause bleeding risk in the early and mid-term, and the slump retention ability of the ultra-long time is significantly improved. It still has excellent fluidity after 5 hours, and has not completely lost fluidity after 6 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

一种微胶囊型聚羧酸超塑化剂及其制备方法。所述的微胶囊型聚羧酸超塑化剂为封闭胶囊包裹的聚羧酸水溶液,所述封闭胶囊为海藻酸钠或明胶的钙离子凝胶与碳酸钙的有机/无机复合物壳层,所述有机/无机复合物壳层通过在脲酶的催化作用下,海藻酸钠或明胶与钙盐和尿素发生扩散-界面反应获得。所述的微胶囊型聚羧酸超塑化剂可解决目前一些特殊工程中混凝土的长时间和平稳保坍的需求。所述制备方法步骤简单,不使用有机溶剂,包覆效率高,所述微胶囊型聚羧酸超塑化剂利用胶囊壳层的保护作用和溶胀作用,缓慢释放聚羧酸超塑化剂补充后期吸附,从而实现长时间平稳保坍目的。

Description

[根据细则37.2由ISA制定的发明名称] 微胶囊型聚羧酸超塑化剂及其制备方法
本申请要求于2020年6月29日提交中国专利局,申请名称为“一种微胶囊型聚羧酸超塑化剂及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于混凝土外加剂技术领域,具体涉及一种微胶囊型聚羧酸超塑化剂及其制备方法。
背景技术
随着我国经济的快速发展,商品混凝土的用量越来越大,近年来为了满足生态环境的要求,混凝土往往需要通过搅拌车从搅拌站运送至施工现场。但随着时间的流逝,水泥会发生水化反应,粒子之间产生絮凝,体系将逐渐失去流动性,给现场施工造成很大不便。
针对这个问题,现在一般采用复配反应性聚合物,即聚羧酸保坍剂的方法。反应性聚合物主要包括采用羧基保护技术和分子间交联技术制备的聚羧酸保坍剂,其中尤以羧基保护技术更为成熟。
专利CN201210513890.7,CN201510930837.0,EP0931799,US20080295741,US20060266977等均采用了羧基保护技术,其主要原理是在聚羧酸分子主链引入丙烯酸羟烷基酯等保护基团,使得其分子吸附基团密度非常低,初期主要溶解在水相中,吸附非常少,继而在水泥孔溶液的碱性环境下,烷基酯发生水解反应,生成更多的羧酸根吸附基团,不断补充吸附到水泥粒子表面,提供持续的分散能力。通过调节保护基团的比例,分子量的控制等可以控制水解速度,进而可以得到不同保坍性能的聚合物分子。
分子间交联技术则是利用含有二个或以上双键的交联单体与聚醚大单体、不饱和酸等单体进行自由基共聚并发生微交联,这种交联点在碱性环境中也会逐渐发生断裂,释放小分子减水剂,供水泥颗粒持续吸附。专利CN200510037869.4,CN201010617174.4,CN201480062215.4,EP0619277,US5362324等均采用了此种方法。相对而言,由于交联反应更难调控,采用这种技术制备的保坍剂性能难以控制,目前采用这种方法已经越来越少。
尽管上述技术目前已经能够满足普通混凝土的坍落度保持要求,但由于上述羟烷基酯等保护基团在强碱性环境中的水解比较容易,并且存在集中释放,之后难以为继的特点,目前的保坍技术对一些特殊工程混凝土的超长时间和平稳保坍需求仍无能为力,市场上急需一种具有长时间平稳保坍能力的聚羧酸保坍剂。
专利CN201110199695.7提供了一种新的思路,其通过细乳液反相聚合使普通减水剂分子微胶囊化。由于胶囊壳层的存在,减水剂分子能稳定存于微胶囊中。当和水泥混合后,水泥混凝土呈强碱性,该微胶囊产生溶胀,壳层由致密变为疏松,所包覆封装的减水剂分子从而缓慢释放,使水泥混凝土中一直保持较高的减水剂浓度,以此达到提高减水剂的流动度经时保持性,防止实际工程使用中水泥混凝土塌落度损失的目的。
专利CN201310751918.5采用类似的思路,将具有孔隙的载体在混凝土外加剂溶液中搅拌分散,充分浸泡,离心过滤,干燥,制得缓释微胶囊型混凝土外加剂。当具有孔隙的载体在混凝土外加剂溶液中充分浸泡时,一部分混凝土外加剂分子进入孔隙载体孔隙内,另一部分混凝土外加剂分子则吸附在载体颗粒表面,形成缓释微胶囊型混凝土外加剂。
由此可见,通过形成胶囊型超塑化剂,由于胶囊壳层的保护作用以及在水泥环境中的溶胀作用,可以更慢地释放聚羧酸超塑化剂,补充后期的吸附,达到长期保坍的效果。但是上述方法也存在一些缺陷,例如专利CN201110199695.7在制备胶囊型超塑化剂的过程中用到大量的有机溶剂,溶剂的回收处理增加了额外的生产成本和环境成本。专利CN201310751918.5采用载体浸泡后干燥的方法,步骤更多,而且还有较多的聚羧酸超塑化剂吸附在载体表面,未能有效包覆形成封闭胶囊,在水溶液中也会缓慢释放,应用范围较窄。
专利CN201780010568.3公开了一种制备微胶囊的方法,首先通过在含有水溶性聚合物的含水体系中加入盐,形成双水相体系,然后加入单体在双水相体系中发生自由基聚合生成壳层,将活性物质各种酶包埋在内,增加酶稳定性,合成的壳层一般采用丙烯酸烷基酯或丙烯酸羟烷基酯聚合而成,缺乏长期在水溶液的稳定性,需要额外加入稳定剂或者喷雾干燥。
申请内容
本申请是为了解决目前一些特殊工程中混凝土的长时间和平稳保坍的需求,提供了一种微胶囊型聚羧酸超塑化剂及其制备方法。所述制备方法步骤简单,不使用有机溶剂,包覆效率高,所述微胶囊型聚羧酸超塑化剂利用胶囊壳层的保护作用和溶胀作用,缓慢释放聚羧酸超塑化剂补充后期吸附,从而实现长时间平稳保坍目的。
本申请所述的微胶囊型聚羧酸超塑化剂所述封闭胶囊为海藻酸钠或明胶的钙离子凝胶与碳酸钙的有机/无机复合物壳层。所述聚羧酸为具有长链聚醚的聚羧酸,所述聚羧酸水溶液中聚羧酸的浓度为15%-25%。
所述有机/无机复合物壳层通过在脲酶的催化作用下,海藻酸钠或明胶与钙盐和尿素发生扩散-界面反应获得。
本申请所述扩散-界面反应是指双水相的界面反应,所述双水相是指聚羧酸超塑化剂分子水溶液相和无机盐水溶液相;
所述复合无机盐是硫酸铵、硫酸钠、硫酸锂或氯化铵中的任意几种任意比例与氯化钠复合,其中前者的质量浓度为25~35%,氯化钠的浓度为3~6%。脲酶可以催化尿素生成碳酸根,遇到氯化钙时进一步生成碳酸钙,从而与海藻酸钠或明胶的凝胶形成有机/无机复合物,进一步增强壳层的强度。脲酶占聚羧酸水溶液的质量浓度一般为0.1~0.3%,
上述复合无机盐一般采用硫酸铵、硫酸钠、硫酸锂或氯化铵的主要作用在于提高聚羧酸水溶液和复合无机盐水溶液相分离程度,促进双水相形成。
经研究发现:聚羧酸超塑化剂分子结构中含有大量的(PEG)聚乙二醇结构,当其在水溶液中达到合适浓度,同时加入特定浓度的某些无机盐溶液,两者会形成互不相溶的双水相体系,如果在适量分散剂存在的条件下进行高速搅拌和超声,则可以进一步形成以无机盐水溶液为连续相,超塑化剂分子水溶液为分散相的水包水乳液。在此基础上通过包覆物在两者界面的固化反应,则可以形成包覆层,将聚羧酸超塑化剂封闭在胶囊内部,形成胶囊型聚羧酸超塑化剂。
具体而言,本申请所述的微胶囊型聚羧酸超塑化剂的制备反应,包括以下步骤:
(1)将需要包覆的聚羧酸超塑化剂、海藻酸钠或明胶、脲酶配成水溶液。
(2)将复合无机盐和自制的分散剂配成水溶液。
(3)将上述两种溶液等质量混合,高速剪切半小时后超声乳化15分钟,获得水包水乳液。
(4)缓慢滴加氯化钙和尿素的水溶液至水包水乳液中,结束后继续反应2小时,即得到所述的微胶囊型聚羧酸超塑化剂
上述需要包覆的聚羧酸超塑化剂为一般商用的聚羧酸减水剂或聚羧酸保坍剂均可,其配制的质量浓度一般为30~50%,配制浓度太低难以产生相分离,形成双水相,浓度过高体系粘度太大。
海藻酸钠或明胶作为包覆壳层的前驱体预先溶解在分散相中,当加入氯化钙时与钙离子在分散相界面处发生凝胶反应,形成胶囊壳层,包覆超塑化剂,海藻酸钠占聚羧酸水溶液的质量浓度一般为2~10%,配制浓度太低不够形成壳层,浓度过高容易均相反应,影响包覆效率,造成浪费。
海藻酸钠占聚羧酸水溶液的质量浓度为2~10%,也即占水包水乳液的1~5%,钙盐的用量为水包水乳液的0.5~1.5%,也即碳酸钙的占比为1.25%~3.75%。
分散剂参照专利CN201210491725.6制备,其质量浓度为1~5%,分散剂和复合无机盐可以稳定形成水包水乳液。
上述钙盐和尿素另外采用少量水配制,并在3-5小时滴入上面形成的水包水乳液中,钙盐的用量为水包水乳液的0.5~1.5%,尿素的用量为水包水乳液的0.25~1.0%,这两者的作用主要是滴入体系后,通过扩散作用迁移至分散相界面,从而与海藻酸钠或明胶、脲酶发生反应,形成胶囊壳层,包覆超塑化剂。
本申请采用聚羧酸减水剂与无机盐在分散剂存在下,生成水包水乳液,聚羧酸减水剂本身既作为相分离剂,同时本身又是被包埋的活性物质,之后,通过海藻酸钠或明胶与钙盐,在脲酶的催化作用下,发生界面反应,形成有具有一定强度的有机/无机复合物壳层,聚羧酸被包埋在内,形成稳定的水分散液。该方法包覆效率高,利用胶囊壳层的保护作用和溶胀作用,缓慢释放聚羧酸超塑化剂补充后期吸附,从而实现长时间平稳保坍目的。
本申请与现有技术相比,具有以下优点:
(1)本申请的胶囊型超塑化剂可以缓慢释放超塑化剂分子,具有较好的长期保坍能力,整个过程流动性变化也更加平稳可控。
(2)本申请的胶囊型超塑化剂释放速度受环境影响小,使用时无需针对不同地 区进行更多的配方调整。
(3)本申请方法在整个制备过程中安全可靠,步骤简单,不使用有机溶剂,无毒无污染,环境友好。
具体实施方式
以下实施例更详细地描述了根据本申请的方法制备聚合产物的过程,并且这些实施例以说明的方式给出,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,但这些实施例绝不限制本申请的范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。
在实施例和比较例中用到原料的代号如表1:
表1合成实施例及比较例原料代号
代号 单体名称 来源
AMPS 2-丙烯酰胺基-2-甲基丙磺酸 商购
A1 丙烯酸 商购
A2 甲基丙烯酸 商购
A3 丙烯酰氧乙基三甲基氯化铵 商购
A4 甲基丙烯酰氧乙基三甲基氯化铵 商购
B1 烯丙基聚醚(n=5) 商购
B2 甲氧基聚乙二醇单甲基丙烯酸酯(n=10) 商购
B3 烯丙基聚醚(n=20) 商购
B4 甲氧基聚乙二醇单丙烯酸酯(n=25) 商购
APS 过硫酸铵 商购
PCE-1 减水型聚羧酸超塑化剂(苏博特新材料股份有限公司) 商购
PCE-2 保坍型聚羧酸超塑化剂(苏博特新材料股份有限公司) 商购
NSF 萘磺酸甲醛缩合物高效减水剂(苏博特新材料股份有限公司) 商购
C1 海藻酸钠 商购
C2 明胶 商购
D1 硫酸铵 商购
D2 硫酸钠 商购
D3 硫酸锂 商购
D4 氯化铵 商购
E1 氯化钙 商购
E2 硝酸钙 商购
合成例为本申请所使用的分散剂Dsp的合成方法。
合成例1(分散剂Dsp-1的合成)
在装有温度计、搅拌器、滴液漏斗、氮气导入管和回流冷凝器的玻璃反应器中,加入100毫升去离子水,一边搅拌一边用氮气吹扫反应容器,并升温至75℃,然后将30克(AMPS)和7克(A-1)和5克(B-1)及水80毫升,制成混合单体水溶液,将其滴入反应器,滴加时间为2小时,并同时滴加10%过硫酸铵(APS)引发剂溶液20克,滴加时间为5小时,滴加完毕后保温反应5小时冷却至室温,得到分散剂Dsp-1,其分子量为15000。
合成例2-4(分散剂Dsp-2-Dsp-4的合成)
按照合成例1的步骤制备本申请的Dsp-2-Dsp-4,按照表2所描述的比例进行投料。
表2分散剂制备的投料比例及分子量
Figure PCTCN2020099413-appb-000001
实施例为本申请所述的微胶囊型聚羧酸超塑化剂的制备方法。
实施例1
将60克PCE-1、7.2克C1和0.33克脲酶溶于82.47克去离子水中,搅拌溶解后配成溶液Solution-A。将38.25克D1、5.25克氯化钠和4.95克Dsp-4溶于101.55克去离子水中,搅拌溶解后配成溶液Solution-B。将上述溶液A和溶液B混合,高速剪切半小时后超声乳化15分钟,得到水包水乳液Dispersion-C。将2.25克E1和1.2克尿素溶解于20克水中,搅拌溶解后配成溶液Solution-C。 将上述Solution-C在在5小时内缓慢滴加到水包水乳液Dispersion-C中,滴加过程中保持搅拌,滴加结束后继续搅拌2小时,即得到所述的微胶囊型聚羧酸超塑化剂。
实施例2-12
按照实施例1的步骤制备本申请的实施例2-12,按照表3所描述的比例进行投料反应。
表3实施例2-12的原材料及用量
Figure PCTCN2020099413-appb-000002
对比实施例
对比实施列采用萘磺酸甲醛缩合物高效减水剂作为被包覆物,具体步骤如下:将60克NSF高效减水剂、7.2克C1和0.33克脲酶溶于82.47克去离子水中,搅拌溶解后配成溶液Solution-A。将38.25克D1、5.25克氯化钠和4.95克Dsp-4溶于101.55克去离子水中,搅拌溶解后配成溶液Solution-B。将上述溶液A和溶液B混合,高速剪切半小时后超声乳化15分钟,发现体系仍为均相水溶液,无法得到水包水乳液。
应用实施例
应用实施例1
采用总有机碳分析仪,测试实施例和对比例所制得的聚羧酸减水剂在不同温度下的吸附率,具体方法如下:分别称取100克水泥,100克去离子水及 0.25克减水剂(折固)于烧杯中,加入磁子,开启磁力搅拌,并将烧杯置于不同温度水浴中,在不同时间点(4分钟/60分钟/120分钟/240分钟)取样离心得到上清液,采用总有机碳分析仪测试碳含量,并与空白样对比,采用差减法得到实际吸附率。对比例1为江苏苏博特新材料股份有限公司市售的聚羧酸减水剂PCE-1的吸附率,对比例2为江苏苏博特新材料股份有限公司市售的采用羧基保护技术的聚羧酸保坍剂PCE-2吸附率。
表4合成实施例的胶囊型聚羧酸及对比例在水泥粒子上不同时间的吸附率
Figure PCTCN2020099413-appb-000003
从上表可以看出,实施例制备的胶囊型聚羧酸初始吸附非常低,在前30分钟内几乎没有吸附,在60分钟时吸附逐渐缓慢增加,说明有聚羧酸超塑化剂逐渐开始从胶囊中渗出吸附,之后随时间流逝,吸附率逐渐增加,包覆PCE-1的胶囊型保坍剂大约在240分钟达到吸附平衡状态,包覆PCE-2的胶囊型保坍剂在300分钟仍有补充吸附进行。
对比例1没有包覆的PCE-1为减水型超塑化剂,可以看到其初始吸附非常大,在30分钟内基本就达到了吸附平衡,之后增加的吸附很少。
对比例2没有包覆的PCE-2为保坍型超塑化剂,其初始吸附较低,低于减水型的PCE-1,但仍明显高于胶囊型的聚羧酸超塑化剂,其吸附率也随着时间流逝逐渐增加,大约在120分钟达到吸附平衡状态,之后也难以继续吸附补充。
可见,通过对聚羧酸超塑化剂进行包覆,形成胶囊型超塑化剂可以有效降低其前期吸附速度,增强其在后期的补充能力。
应用实施例2
为对比本申请制备的胶囊型聚羧酸保坍剂在的分散性能和分散保持性能,参照GB/T8077-2012标准进行了水泥净浆流动度测试,水泥300g,加水量为87g,搅拌4分钟后在平板玻璃上测定水泥净浆流动度,并测试不同时间后的净浆流动度,实验结果见表5。
表5胶囊型聚羧酸合成实施例及对比例的分散性能和分散保持性能
Figure PCTCN2020099413-appb-000004
从上表可以看出,采用常规的减水与保坍组分复配的技术(对比例1)可以在2小时之内得到较好的初始流动性和流动性保持。但若想进一步延长保坍时间,如果增加减水剂用量(对比例2),则初始减水明显变大,早期易出现泌水,影响混凝土工程质量,而且对长期保坍帮助也有限。如果增加保坍剂用量(对比例3)则可以明显延长后期保坍时间,但与加入胶囊型超塑化剂相比仍有不小差距,同时过量保坍剂的加入会造成中期流动性的暴涨,如果泌水则会对施工质量产生严重影响。
应用实施例显示,在常规的减水与保坍组分复配技术的基础上加入适量的胶囊型超塑化剂,对其早期分散能力几乎没有影响,1小时后的分散保持能力提高,不会对早期和中期造成泌水风险,而且超长时间的保坍能力得到显著提升,在5小时后仍具有优异的流动性,在6小时后仍没有完全失去流动性。

Claims (4)

  1. 一种微胶囊型聚羧酸超塑化剂,其特征在于,为封闭胶囊包裹的聚羧酸水溶液;
    所述封闭胶囊为有机/无机复合物壳层,所述有机/无机复合物壳层为海藻酸钠或明胶的钙离子凝胶与碳酸钙的复合物壳层;
    所述聚羧酸为具有长链聚醚的聚羧酸,所述聚羧酸水溶液的浓度为15%-25%。
  2. 根据权利要求1所述的微胶囊型聚羧酸超塑化剂,其特征在于,所述有机/无机复合物壳层由海藻酸钠或明胶与钙盐和尿素,在脲酶的催化作用下,发生扩散-界面反应获得。
    聚羧酸、海藻酸钠或明胶和脲酶三者的质量比为(30-50):(2-10):(0.1~0.3)。
  3. 根据权利要求2所述的微胶囊型聚羧酸超塑化剂,其特征在于,所述扩散-界面反应是指双水相的界面反应,所述双水相是指聚羧酸超塑化剂分子水溶液相和无机盐水溶液相;
    所述复合无机盐是硫酸铵、硫酸钠、硫酸锂或氯化铵中的任意几种任意比例与氯化钠复合,其中前者占无机盐水溶液相的质量浓度为25~35%,氯化钠占无机盐水溶液相的质量浓度为3~6%。
  4. 权利要求1-3中的任一项所述的微胶囊型聚羧酸超塑化剂的制备方法,其特征在于,包括以下步骤:
    (1)将需要包覆的聚羧酸超塑化剂、海藻酸钠或明胶、脲酶配成水溶液;
    (2)将复合无机盐和分散剂配成水溶液;
    (3)将上述两种溶液等质量混合,高速剪切半小时后超声乳化至少15分钟,获得水包水乳液;
    (4)缓慢滴加钙盐和尿素的水溶液至步骤(3)所得的水包水乳液中,结束后继续反应2-10小时,即得到所述的微胶囊型聚羧酸超塑化剂;
    所述聚羧酸水溶液中聚羧酸的浓度为30~50%,海藻酸钠或明胶占聚羧酸水溶液的质量浓度为2~10%,脲酶占聚羧酸水溶液的质量浓度为0.1~0.3%;所述分散剂占复合无机盐水溶液的质量浓度为1~5%;所述钙盐的用量为水包水乳液的0.5~1.5%,尿素的用量为水包水乳液的0.25~1.0%。
PCT/CN2020/099413 2020-06-29 2020-06-30 微胶囊型聚羧酸超塑化剂及其制备方法 WO2022000304A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/013,559 US20230287212A1 (en) 2020-06-29 2020-06-30 Microcapsule type polycarboxylate superplasticizer and preparation method therefor
EP20943101.4A EP4163263A4 (en) 2020-06-29 2020-06-30 MICROCAPSULAR POLYCARBOXYLATE SUPERPLASTICATOR AND PRODUCTION PROCESS THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010611538.1A CN113929342B (zh) 2020-06-29 2020-06-29 一种微胶囊型聚羧酸超塑化剂及其制备方法
CN202010611538.1 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022000304A1 true WO2022000304A1 (zh) 2022-01-06

Family

ID=79273416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099413 WO2022000304A1 (zh) 2020-06-29 2020-06-30 微胶囊型聚羧酸超塑化剂及其制备方法

Country Status (4)

Country Link
US (1) US20230287212A1 (zh)
EP (1) EP4163263A4 (zh)
CN (1) CN113929342B (zh)
WO (1) WO2022000304A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409855A (zh) * 2022-01-17 2022-04-29 科之杰新材料集团(广东)有限公司 一种缓释型保坍剂及其制备方法
CN115403292A (zh) * 2022-09-22 2022-11-29 西南石油大学 一种适用于高温条件下的包裹型早强剂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073043B (zh) * 2022-07-26 2023-07-07 江苏亚琛材料科技有限公司 一种缓释型聚羧酸减水剂及其制备方法
CN115259731A (zh) * 2022-08-17 2022-11-01 博特新材料泰州有限公司 一种缓释型长效引气材料及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619277A1 (en) 1993-04-05 1994-10-12 W.R. Grace & Co.-Conn. Cement dispersant composition for inhibition of slump-loss
US5362324A (en) 1993-02-25 1994-11-08 Mapei S.P.A. Zero slump - loss superplasticizer
EP0931799A2 (en) 1998-01-22 1999-07-28 Nippon Shokubai Co., Ltd. Cement admixture and cement composition
US20060266977A1 (en) 2003-04-11 2006-11-30 Chryso Use of dispersants to improve the retention of fluidity of concrete
US20080295741A1 (en) 2005-10-14 2008-12-04 Jeknavorian Ara A Slump Retention in Cementitious Compositions
CN102351459A (zh) * 2011-07-15 2012-02-15 清华大学 一种缓释型减水剂微胶囊的制备方法
US20120276386A1 (en) * 2009-09-14 2012-11-01 Peppas Nicholas A Protein Imprinting by Means of Alginate-Based Polymers
CN103739223A (zh) * 2013-12-30 2014-04-23 广东红墙新材料股份有限公司 一种缓释微胶囊型混凝土外加剂及其制备方法
CN107789332A (zh) * 2017-08-31 2018-03-13 西南交通大学 一种基于双水相生物矿化技术制备可调药物释放率的碳酸钙/海藻酸钙复合微球

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333789B (zh) * 2020-04-26 2022-03-18 江苏苏博特新材料股份有限公司 一种具有高温长期保坍性能的微胶囊型聚羧酸减水剂的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362324A (en) 1993-02-25 1994-11-08 Mapei S.P.A. Zero slump - loss superplasticizer
EP0619277A1 (en) 1993-04-05 1994-10-12 W.R. Grace & Co.-Conn. Cement dispersant composition for inhibition of slump-loss
EP0931799A2 (en) 1998-01-22 1999-07-28 Nippon Shokubai Co., Ltd. Cement admixture and cement composition
US20060266977A1 (en) 2003-04-11 2006-11-30 Chryso Use of dispersants to improve the retention of fluidity of concrete
US20080295741A1 (en) 2005-10-14 2008-12-04 Jeknavorian Ara A Slump Retention in Cementitious Compositions
US20120276386A1 (en) * 2009-09-14 2012-11-01 Peppas Nicholas A Protein Imprinting by Means of Alginate-Based Polymers
CN102351459A (zh) * 2011-07-15 2012-02-15 清华大学 一种缓释型减水剂微胶囊的制备方法
CN103739223A (zh) * 2013-12-30 2014-04-23 广东红墙新材料股份有限公司 一种缓释微胶囊型混凝土外加剂及其制备方法
CN107789332A (zh) * 2017-08-31 2018-03-13 西南交通大学 一种基于双水相生物矿化技术制备可调药物释放率的碳酸钙/海藻酸钙复合微球

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4163263A4
WANG, JIYUN ET AL.: "Novel Calcium-alginate Capsules with Aqueous Core and Thermo- responsive Membrane", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 353, no. 1, 18 September 2010 (2010-09-18), pages 61 - 68, XP027445035, ISSN: 0021-9979, DOI: 10.1016/j.jcis.2010.09.034 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409855A (zh) * 2022-01-17 2022-04-29 科之杰新材料集团(广东)有限公司 一种缓释型保坍剂及其制备方法
CN115403292A (zh) * 2022-09-22 2022-11-29 西南石油大学 一种适用于高温条件下的包裹型早强剂及其制备方法
CN115403292B (zh) * 2022-09-22 2023-10-10 西南石油大学 一种适用于高温条件下的包裹型早强剂及其制备方法

Also Published As

Publication number Publication date
US20230287212A1 (en) 2023-09-14
EP4163263A4 (en) 2024-07-31
CN113929342A (zh) 2022-01-14
CN113929342B (zh) 2022-11-25
EP4163263A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
WO2022000304A1 (zh) 微胶囊型聚羧酸超塑化剂及其制备方法
CN112724329A (zh) 降粘型聚羧酸混凝土减水剂及其制备方法
WO2014085996A1 (zh) 一种保坍型聚羧酸超塑化剂
CN103044633B (zh) 一种多支化两性聚羧酸高性能减水剂的合成方法
CN111333789B (zh) 一种具有高温长期保坍性能的微胶囊型聚羧酸减水剂的制备方法
CN107793447B (zh) 一种p2o5分散法制备磷酸酯功能单体的方法、用途
CN112552928A (zh) 环保型土壤固化剂
CN112299745A (zh) 一种缓释型混凝土养护剂及其制备方法和应用
CN112897929B (zh) 一种缓释型聚羧酸减水剂微球及其制备方法
CN104497211A (zh) 高效混凝土增稠剂及其制备方法
CN115073043B (zh) 一种缓释型聚羧酸减水剂及其制备方法
CN108675665B (zh) 一种缓释型混凝土用减水剂的制备方法
CN104892856B (zh) 一种聚羧酸减水剂的制备方法
CN108191289B (zh) 一种炭黑改性的聚羧酸减水剂及其制备方法和应用
CN115558062A (zh) 一种易制粉高早强聚羧酸减水剂及其制备方法
CN112707667B (zh) 一种低敏感型减水剂及其制备方法
CN109721271A (zh) 一种自密实高和易性混凝土用聚羧酸减水剂组合物
CN114014996A (zh) 一种缓释抗泥型聚羧酸减水剂及其制备方法和应用
CN117964842B (zh) 一种复合降失水剂的制备方法
CN114085654B (zh) 一种钻井液用改性石墨处理剂及其制备方法
CN117164274B (zh) 大体积混凝土用减水剂、制备方法以及混凝土
CN118421170B (zh) 一种防老化水性涂料及其制备方法
CN116040979B (zh) 抗裂早强型湿拌砂浆增塑剂及其制备方法和湿拌砂浆
CN114455878B (zh) 一种高分散性缓释型钙铝基氯离子固化剂及其制备方法
CN113174019B (zh) 一种水性环氧酯改性的聚羧酸减水剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020943101

Country of ref document: EP

Effective date: 20230104

NENP Non-entry into the national phase

Ref country code: DE