WO2021261866A1 - 고유전 탄화수소 박막 및 이를 이용한 반도체 소자 - Google Patents

고유전 탄화수소 박막 및 이를 이용한 반도체 소자 Download PDF

Info

Publication number
WO2021261866A1
WO2021261866A1 PCT/KR2021/007766 KR2021007766W WO2021261866A1 WO 2021261866 A1 WO2021261866 A1 WO 2021261866A1 KR 2021007766 W KR2021007766 W KR 2021007766W WO 2021261866 A1 WO2021261866 A1 WO 2021261866A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
dielectric
gate
substrate
high dielectric
Prior art date
Application number
PCT/KR2021/007766
Other languages
English (en)
French (fr)
Inventor
이종훈
김의태
정홍식
서준기
임동혁
이석우
Original Assignee
울산과학기술원
충남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원, 충남대학교 산학협력단 filed Critical 울산과학기술원
Publication of WO2021261866A1 publication Critical patent/WO2021261866A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02362Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment formation of intermediate layers, e.g. capping layers or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Definitions

  • the technical field of the present invention relates to a method for manufacturing a high dielectric useful for manufacturing highly integrated devices due to high dielectric constant, low leakage current, and high insulation strength, a high dielectric manufactured by the method, and a semiconductor device using the high dielectric will be.
  • Carbon thin films have attracted a lot of attention in technical and industrial applications due to their excellent electrical and mechanical properties.
  • the carbon-based material constituting the carbon thin film may be classified into diamond, graphene, and amorphous carbon according to bonding.
  • Diamond has no electrical conductivity because carbon atoms are connected by sp3 bonds, but has very high hardness, and graphene has excellent conductivity because it consists only of sp2 bonds.
  • amorphous carbon has both sp3 bonds and sp2 bonds, conductivity is lower than that of graphene.
  • the bonding of carbon materials can be controlled by controlling the deposition temperature during the manufacture of the carbon thin film.
  • CVD chemical vapor deposition
  • high-quality graphene and carbon nanotubes can be manufactured at a high temperature of up to about 1000°C.
  • the deposition temperature is lowered to about 700° C. during deposition by the chemical vapor deposition method, a nano-graphite structure is formed, and at room temperature, amorphous carbon is formed.
  • the amorphous hydrocarbon film has been used as an etch mask from the advantage that it is easy to form a thin film with a uniform thickness, or has been used as a low-k insulator such as an interlayer material of a semiconductor metal wiring to prevent thin film defects and increase interlayer adhesion.
  • nano graphite and amorphous carbon contain a significant proportion of dangling bonds, which mean fixed free radicals, they react with hydrogen and/or HC radicals under appropriate conditions to form a hydrocarbon structure.
  • dangling bonds which mean fixed free radicals
  • attempts to develop and apply materials with new properties by utilizing dangling bonds in nano graphite or amorphous carbon have been limited.
  • the integration of high-density semiconductor devices requires a high dielectric having a high dielectric constant, low leakage current, and high dielectric strength.
  • the gate length of a MOSFET transistor has sharply decreased from 10 ⁇ m to 10 nm in the past several decades, and thus the effectiveness of the SiO 2 thin film used as an insulating film has reached its limit.
  • Materials having a higher dielectric constant than SiO 2 are commonly referred to as high-k materials. Accordingly, the development of a new high-k material having a higher dielectric constant than that of SiO 2 is active.
  • Hf- or Zr-based oxides have recently attracted attention for a node of 100 nm or less.
  • research is being conducted in various directions, such as finding a material to replace the Hf source (eg, Al, Zr, Ta, STO, BST, etc.) or depositing another material by adding another material to the Hf source. .
  • the high-k layer of the metal oxide includes a large number of bulk traps such as oxygen vacancies, increasing C-V hysteresis, and causing instability of the threshold voltage.
  • the equivalent oxide thickness is required to be 1 nm or less, and electron tunneling of Hf- or Zr-based oxides may occur under these conditions.
  • Hf- or Zr-based oxides are easy to crystallize, they exhibit high leakage currents and deteriorate the interfacial properties. Accordingly, development of a new high-k material is required for a technology having a node of 10 nm or less.
  • an object of the present invention is to provide a method of manufacturing a high dielectric useful for manufacturing a highly integrated device due to a high dielectric constant, low leakage current, and high insulation strength.
  • Another object of the present invention is to provide a high dielectric manufactured by the above method and a semiconductor device using the high dielectric.
  • the present invention comprises the steps of placing a substrate in a plasma reactor; injecting hydrocarbon gas and hydrogen gas together into the reactor; and generating plasma in the reactor; it relates to a method for manufacturing a high dielectric hydrocarbon thin film, comprising: controlling the temperature range in the reactor so that the dielectric constant is 20 or more as an amorphous structure.
  • the dielectric constant is significantly higher than that of SiO 2 as well as conventional Hf- or Zr-based oxides, but the leakage current is very low, and it shows high insulation strength characteristics at the 10 nm node It can be more usefully used for the following semiconductors.
  • the high dielectric hydrocarbon thin film of the present invention does not require a catalyst layer, it can be deposited directly on a required substrate without requiring a transfer process, thereby improving the performance of a semiconductor device due to excellent interfacial properties.
  • FIG. 1 shows a schematic diagram and a TEM image of a thin film produced according to the deposition temperature.
  • FIG. 3 shows an XPS spectrum and an EXAFS spectrum of a thin film prepared at 400°C.
  • MIS semiconductor-high dielectric hydrocarbon thin film-metal
  • FIG. 5 is a graph showing the electrical characteristics of the high dielectric hydrocarbon thin film prepared according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating a semiconductor device according to an embodiment of the present invention using a high dielectric hydrocarbon thin film.
  • FIG. 7 shows a gate dielectric film including a high dielectric hydrocarbon thin film.
  • FIG. 8 is a cross-sectional view illustrating a semiconductor device according to an embodiment of the present invention using a high dielectric hydrocarbon thin film.
  • FIG. 9 is a perspective view illustrating a semiconductor device according to an embodiment of the present invention using a high dielectric hydrocarbon thin film.
  • FIG. 10 is a cross-sectional view illustrating a semiconductor device according to an embodiment of the present invention using a high dielectric hydrocarbon thin film.
  • the plasma reactor is to induce a reaction of a reaction gas by generating plasma in the reactor, for example, plasma-assisted chemical vapor deposition (PE-CVD) or inductively coupled plasma chemical vapor deposition (ICP-CVD), electron
  • PE-CVD plasma-assisted chemical vapor deposition
  • ICP-CVD inductively coupled plasma chemical vapor deposition
  • ECR-CVD cyclotron resonance chemical vapor deposition
  • Plasma generates a large amount of highly reactive radicals from the reaction gas, so that a thin film can be formed even at a low temperature.
  • ICP-CVD has been described as an example, but is not limited thereto.
  • any of the substrates generally used for the production of thin films may be used.
  • silicon, glass, metal, or a metal oxide substrate may be used, and a separate catalyst layer is not required.
  • the substrate includes not only a substrate for manufacturing a semiconductor device, but also a substrate on which an active layer is formed.
  • Hydrocarbon gas and hydrogen gas are injected into the reactor as reaction gases.
  • Any hydrocarbon gas may be used as long as it can form a hydrocarbon thin film by plasma, and methane, ethane, propane, ethylene, acetylene, propylene, and benzene that can be used for graphene production by chemical vapor deposition at high temperatures usually One or more selected from may be used. However, other hydrocarbon gases are not excluded.
  • hydrocarbon thin film is formed on the substrate.
  • a mixture of hydrocarbon gas and hydrogen gas is used as a reaction gas to induce bonding of hydrogen and dangling bonds that increase in the thin film as the thin film manufacturing temperature is lowered.
  • an inert gas such as argon or helium may be further included as a transport gas.
  • the volume ratio of hydrocarbon gas and hydrogen gas is preferably about 1:2 to 1:50. If the ratio of hydrogen gas is too low, a hydrocarbon thin film with a rough surface is formed, and if it is too high, the hydrocarbon thin film is not formed well.
  • the properties of the thin film produced were changed according to the temperature.
  • Graphene is formed at a high temperature, and as the temperature is lowered, nano graphite containing nano graphene crystals is formed in the amorphous hydrocarbon thin film, and when the thin film manufacturing temperature is further lowered, the high dielectric hydrocarbon thin film of the present invention is formed.
  • a low-k hydrocarbon thin film was formed.
  • the high dielectric properties of the hydrocarbon thin film prepared at 200° C. to 600° C. are shown, but since it may vary depending on the equipment and reaction conditions used at the reaction temperature, it is meaningless to limit the value to a specific value. Conditions that may affect the reaction temperature include a volume ratio of hydrocarbon gas and hydrogen gas, reaction pressure, and plasma intensity.
  • the pressure in the reactor is preferably 0.5 Torr to 5 Torr so that plasma discharge can be smoothly performed.
  • the pressure is too high, it is difficult to maintain the plasma, so that the hydrocarbon thin film deposition efficiency is lowered, and when the pressure is too low, the process efficiency is lowered.
  • the present invention also relates to a high dielectric hydrocarbon thin film produced by the method.
  • the thickness of the high dielectric hydrocarbon thin film produced by the method of the present invention can be easily controlled by adjusting the reaction time under the corresponding conditions.
  • the high dielectric hydrocarbon thin film prepared by the thin film of the present invention has a smooth surface structure without pinholes.
  • the high dielectric hydrocarbon thin film manufactured by the method of the present invention has a dielectric constant of 20 or more, and in one embodiment below, it exhibits a very high dielectric characteristic of 90, so it is expected to be usefully applied to semiconductors having a node of 10 nm or less. do.
  • the equivalent oxide film thickness is 0.2 nm
  • the leakage current at 1 V is 0.25 A/cm 2 or less
  • the insulation strength is 5 MV/cm or more
  • HfO 2 , ZrO 2 known as a conventional high-k oxide
  • Hf- or Zr-based oxides such as HfAlO x , ZrAlO x , etc.
  • the present invention relates to a semiconductor device using the high dielectric hydrocarbon thin film.
  • the high dielectric hydrocarbon thin film may be used as a gate insulating film requiring a high dielectric material in more detail.
  • the semiconductor device of the present invention may be a memory device or a logic device.
  • a hydrocarbon thin film was deposited on a Si wafer or Si/SiO 2 /Ag substrate by inductively-coupled plasma chemical vapor deposition (ICP-CVD) using CH 4 gas and hydrogen gas under the following conditions. Specifically, 1 sccm of CH 4 gas and 100 sccm of hydrogen and Ar mixed gas (10% hydrogen) were injected into the reactor, and the pressure was fixed at 1 Torr and the plasma power was set at 600 W. The deposition time was varied from 30 seconds to 1 hour.
  • ICP-CVD inductively-coupled plasma chemical vapor deposition
  • FIG. 1 is a TEM image of a thin film deposited at 950° C., showing that carbon atoms have a highly ordered hexagonal arrangement.
  • the inner figure shows a fast Fourier transformed (FFT) digital diffractogram and shows a hexagonal pattern, which is a typical characteristic of high-quality graphene.
  • FFT fast Fourier transformed
  • the resulting thin film When the deposition temperature was lowered to 700° C., the resulting thin film exhibited a nano graphite morphology (see FIG. 1 c ) in which hexagonal lattice nanocrystals were partially present in an amorphous matrix.
  • FFT shows a diffused ring morphology with dark spots (indicated by circles). The spacing between the dots is 0.246 nm, which corresponds to carbon allotrope hexagonite.
  • the thin film lost nanocrystallinity, exhibited an amorphous structure, and showed a halo FFT pattern (see Fig. 1 d and e).
  • the Raman spectrum shown in a of FIG. 2 also showed a typical aspect of the amorphous carbon structure.
  • FIG. 2 b and c are electron energy-loss spectroscopy (EELS) spectra of a low-loss region and a carbon K-edge region, respectively, and the bonding pattern of the hydrocarbon thin film according to the deposition temperature can be confirmed.
  • EELS electron energy-loss spectroscopy
  • FIG. 2 b graphene showed two characteristic peaks.
  • the strong peak at 5 eV is a ⁇ plasmon peak related to the ⁇ * transition by sp2 bonding of carbon, and the broad peak around 15.5 eV is ( ⁇ + ⁇ ) is a plasmon peak.
  • the position of the ( ⁇ + ⁇ ) plasmon peak is proportional to the density of valence electrons, that is, the mass density of the carbon thin film.
  • the presence of ⁇ bonds in the thin film can also be confirmed in the EELS spectrum of the carbon K-edge region shown in FIG. 2c .
  • the first peak is observed at 281 eV in the thin films prepared at 50 °C and 400 °C, which corresponds to a transition (1s ⁇ * transition) from the 1s state to the ⁇ * state above the Fermi level. From the strong peak observed in the corresponding region, it can be confirmed that a significant amount of sp2 bonds exist in the amorphous thin film.
  • the second peak was observed very broadly in the region of 290 eV to 305 eV, which corresponds to the 1s ⁇ * transition.
  • the chemical bonding properties of the hydrocarbon thin film prepared at 400° C. were confirmed by X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS).
  • 3a is the XPS spectrum, 285.3 eV corresponding to the aliphatic hydrocarbon C x H y is observed, and the position of the corresponding peak does not change as the etching is performed using Ar + plasma, so it can be confirmed that the composition of the hydrocarbon thin film is uniform.
  • the peak position shifted from 285.0 eV to 284.4 eV according to the etching of the surface.
  • the graphene surface exposed to air can adsorb various types of hydrocarbons, resulting in a high binding energy of 285.0 eV.
  • graphene itself shows the binding energy of 284.4 eV.
  • 3b is an EXAFS spectrum at the 1s core level
  • c is an EXAFS spectrum near the Fermi level.
  • the strong peak of 285.1 eV in FIG. 2 b corresponds to the 285.3 eV peak of the XPS spectrum.
  • the position of the peak was redshifted to 284.7 eV, indicating that hydrogen was desorbed from the aliphatic hydrocarbon C x H y .
  • the desorbed sample shows that the density of the expanded state increases and the intensity in the region near the Fermi level increases.
  • An MIS device having the structure of FIG. 4 using the hydrocarbon thin film according to the present invention as a dielectric layer was manufactured, and the electrical properties of the hydrocarbon thin film were evaluated.
  • the hydrocarbon thin film was directly grown on a substrate or transferred to prepare an MIS device. More specifically, in order to grow directly on the Si wafer, the Si wafer was immersed in a 10% hydrofluoric acid solution to remove the native oxide film and then washed. After the cleaned substrate was introduced into the ICP-CVD reactor, a hydrocarbon thin film was deposited at 200° C., 250° C., 300° C., 350° C. and 400° C. for 30 minutes, respectively, according to the conditions described in Example 1. For the transfer of the hydrocarbon thin film, the Si/SiO2/Ag substrate was introduced into the ICP-CVD reactor, and then the hydrocarbon thin film was deposited for 5 minutes under the same conditions as for direct growth.
  • the Ag catalyst layer was etched by immersion in FeCl 3 aqueous solution to separate the hydrocarbon/PMMA film.
  • the separated hydrocarbon/PMMA film was transferred onto a Si wafer and then immersed in acetone to remove PMMA.
  • an MIS device was manufactured by forming an Au electrode having a diameter of 100 ⁇ m on a hydrocarbon thin film directly grown or transferred on a Si wafer.
  • the thickness of the hydrocarbon thin film measured from cross-sectional TEM and AFM (Asylum Research, MFP-3D) in this MIS device was 2.6 nm, 2.4 nm, and 3.1 nm at growth temperatures of 200°C, 250°C, 300°C, 350°C, and 400°C, respectively. , 5.0 nm and 6.5 nm.
  • AFM images of hydrocarbons grown on the Si wafer itself without the Ag catalyst layer showed a uniform, pinhole-free, smooth surface.
  • the rms roughness of the hydrocarbon thin film prepared by each method was 3.06 nm and 1.61 nm, respectively.
  • 5 is a graph showing electrical characteristics measured for the manufactured MIS device.
  • 5A is a C-V curve of a hydrocarbon thin film directly grown on a Si wafer, where ⁇ is a value measured from -4V to +4V, and ⁇ is a value measured from +4V to -4V.
  • An important characteristic of the C-V curve is that the hysteresis in the C-V loop for all samples is close to zero with less than 5 mV, which meets the criteria for high-k gate dielectrics (about 30 mV or less).
  • the rapid transition from accumulation and depletion and a very small hysteresis value mean that the thin film and the charge density trapped at the Si interface between the thin film and the thin film are very small.
  • the hydrocarbon thin film transferred to Si exhibited significant hysteresis, and the transition from accumulation and depletion was relatively slow. This is estimated to be due to deterioration of the interface properties during the transfer process and contamination during the etching process of the Ag catalyst thin film during transfer.
  • the flat band voltage of the hydrocarbon thin film slightly shifted toward the -voltage due to the fixed positive charge, whereas the C-V curve showed an ideal shape. The difference in the flat band voltage between the samples was not large, and all of them were in the range of -0.3V to 0.4V.
  • the dielectric constant (k) of the hydrocarbon thin film can be calculated from the following equation.
  • C E/T: where C is the integrated capacitance, E is the dielectric constant of the hydrocarbon thin film, and T is the thickness of the hydrocarbon thin film.
  • 5B is a graph showing the dielectric constant of a thin film prepared at each temperature.
  • the dielectric constant of a hydrocarbon thin film grown directly on a Si wafer is up to 90, and the dielectric constant of Hf- and Zr-based oxides known as high-k gate oxides. It was better than the constant 20 to 30.
  • the dielectric constant gradually increased and showed a maximum of 90 at 350°C, and when the temperature was further increased to 400°C, the dielectric constant decreased to 13.
  • the hydrocarbon thin film transferred on the Si wafer has similar tendencies to the direct grown hydrocarbon thin film and the thin film growth temperature.
  • the dielectric constant also gradually increased, reaching a maximum of 61 at 500 ° C.
  • a high-k dielectric One of the important characteristics of a high-k dielectric is that the leakage current density should be low and the insulation strength should be high.
  • 5c is an I-V curve
  • the thin films prepared at 300° C. and 350° C. with dielectric constants of 82 and 90, respectively had a leakage current of 0.15 A/cm 2 at 1 V for equivalent oxide thicknesses of 0.15 nm and 0.2 nm.
  • the leakage current showed the lowest value in the thin film deposited at 400°C, and the thickness was about 6.5 nm, the thickest among the thin films. All the samples did not show breakdown up to 5V, so it was found that the dielectric strength had a high value of at least 10MV/cm or more.
  • Such leakage current and dielectric strength are at least equal to or superior to those of conventional high-k oxides.
  • FIG. 6 is a cross-sectional view illustrating a semiconductor device according to an embodiment of the present invention using a high dielectric hydrocarbon thin film.
  • a semiconductor device 10 including a substrate 110 , an isolation layer 120 , a gate structure GS, and a source/drain region 160 is provided.
  • the substrate 110 may be a semiconductor substrate.
  • the substrate 110 may include a semiconductor such as silicon (Si) or germanium (Ge), or a compound semiconductor such as SiGe, SiC, GaAs, InAs, InP, etc. .
  • the substrate 110 may have a silicon on insulator (SOI) structure.
  • the device isolation layer 120 may be formed of a single insulating layer, or may include an external insulating layer and an internal insulating layer.
  • the outer insulating layer and the inner insulating layer may be formed of different materials.
  • the outer insulating film may be formed of an oxide film
  • the inner insulating film may be formed of a nitride film.
  • the configuration of the device isolation layer 120 is not limited thereto. Due to the device isolation layer 120 , an active region may be defined in the substrate 110 .
  • the gate structure GS may include a gate dielectric layer 130 , a gate electrode 140 , and a spacer 150 .
  • the gate dielectric layer 130 may be formed using the high dielectric hydrocarbon thin film described above. That is, the gate dielectric layer 130 may have a low leakage current density and high insulation strength.
  • the gate electrode 140 may be formed of a single gate layer or may be formed of multiple layers.
  • the gate electrode 140 may include at least one material selected from a semiconductor doped with an impurity, a metal, a conductive metal nitride, and a metal silicide.
  • Spacers 150 may be formed on sidewalls of the gate dielectric layer 130 and the gate electrode 140 .
  • the spacer 150 may be formed of at least one of silicon oxide, silicon nitride, and silicon oxynitride.
  • the spacer 150 may be formed of a double layer or a triple layer.
  • the source/drain regions 160 are formed in the substrate 110 on both sides of the gate structure GS, and a channel region interposed between the source/drain regions 160 is defined under the gate structure GS. do.
  • FIG. 7 shows a gate dielectric film including a high dielectric hydrocarbon thin film.
  • the gate dielectric layer 130 includes a plurality of dielectric layers, and one dielectric layer of the plurality of dielectric layers includes a high dielectric hydrocarbon thin film (HC).
  • HC high dielectric hydrocarbon thin film
  • the gate dielectric layer 130 includes two dielectric layers, one of which is formed of a high dielectric hydrocarbon thin film (HC).
  • the high dielectric hydrocarbon thin film HC may be disposed on the bottom or on the top.
  • the other dielectric layer 131 may be formed of a material selected from a silicon oxide film, a silicon oxynitride film, a hafnium oxide film, a zirconium oxide film, a tantalum oxide film, and a titanium oxide film.
  • the gate dielectric layer 130 includes three dielectric layers, one of which is formed of a high dielectric hydrocarbon thin film (HC).
  • the high dielectric hydrocarbon thin film HC may be disposed at the bottom, at the middle, or at the top.
  • the other two dielectric layers 131 and 133 may be formed of a material selected from a silicon oxide film, a silicon oxynitride film, a hafnium oxide film, a zirconium oxide film, a tantalum oxide film, and a titanium oxide film, respectively.
  • the other two dielectric layers 131 and 133 may be made of the same material or different materials.
  • the gate dielectric layer 130 may be formed in a stacked structure of at least two dielectric layers having different dielectric constants.
  • FIG. 8 is a cross-sectional view illustrating a semiconductor device according to an embodiment of the present invention using a high dielectric hydrocarbon thin film.
  • a semiconductor device 20 including a substrate 110 , an isolation layer 120 , a gate dielectric layer 130 , a word line 142 , and a buried insulating layer 152 is provided.
  • the substrate 110 and the device isolation layer 120 may be substantially the same as described above with reference to FIG. 6 .
  • a gate dielectric layer 130 , a word line 142 , and a buried insulating layer 152 are sequentially formed in the active region of the substrate 110 .
  • the gate dielectric layer 130 may be formed using the high dielectric hydrocarbon thin film described above. That is, the gate dielectric layer 130 may have a low leakage current density and high insulation strength. Also, the gate dielectric layer 130 may include a plurality of dielectric layers as described above with reference to FIG. 7 .
  • the word line 142 may be formed of at least one material selected from Ti, TiN, Ta, TaN, W, WN, TiSiN, and WSiN.
  • the buried insulating layer 152 may be formed of a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, or a combination thereof.
  • a plurality of word lines 142 extending parallel to each other in the first direction may be disposed in the active region of the substrate 110 .
  • the word lines 142 may be arranged at regular intervals.
  • a width or an interval of the word line 142 may be determined according to a design rule.
  • a plurality of bit lines (not shown) extending parallel to each other in a second direction orthogonal thereto may be disposed on the word line 142 .
  • the bit lines may also be arranged at regular intervals.
  • FIG. 9 is a perspective view illustrating a semiconductor device according to an embodiment of the present invention using a high dielectric hydrocarbon thin film.
  • a semiconductor device 30 including a substrate 110 including a fin-type active region AR, a device isolation layer 120 , a gate dielectric layer 130 , a gate electrode 140 , and a spacer 150 . is provided
  • Materials constituting the substrate 110 and the device isolation layer 120 may be substantially the same as those described above with reference to FIG. 6 . However, it may include a plurality of fin-type active regions AR protruding from the substrate 110 and extending in the first direction. The device isolation layer 120 may expose an upper region of the fin-type active region AR.
  • the gate dielectric layer 130 , the gate electrode 140 , and the spacer 150 may be substantially the same as described above with reference to FIG. 6 .
  • the gate dielectric layer 130 may be formed using the high dielectric hydrocarbon thin film described above. That is, the gate dielectric layer 130 may have a low leakage current density and high insulation strength.
  • the gate dielectric layer 130 may include a plurality of dielectric layers as described above with reference to FIG. 7 .
  • the gate structure GS may extend in a second direction crossing the fin-type active region AR.
  • Source/drain regions 160 may be respectively interposed on the fin-type active region AR on both sides of the gate structure GS.
  • the source/drain regions 160 may be spaced apart from each other with the gate structure GS interposed therebetween.
  • the source/drain region 160 may be a selective epitaxial growth layer formed by using the fin-type active region AR as a seed.
  • FIG. 10 is a cross-sectional view illustrating a semiconductor device according to an embodiment of the present invention using a high dielectric hydrocarbon thin film.
  • a gate electrode 140 including a substrate 110 including a fin-type active region, an isolation layer 120 , a gate dielectric layer 130 , a main gate electrode 140M and a sub-gate electrode 140S. , a spacer 150 , and a contact structure 170 are provided.
  • Materials constituting the substrate 110 and the device isolation layer 120 may be substantially the same as those described above with reference to FIG. 6 . However, it may include a plurality of fin-type active regions protruding from the substrate 110 and extending in the first direction. The device isolation layer 120 may expose an upper region of the fin-type active region.
  • the plurality of semiconductor patterns NS may be disposed to be spaced apart from the top surface of the substrate 110 in a vertical direction on the fin-type active region.
  • the plurality of semiconductor patterns NS may have a shape of, for example, a nanosheet.
  • the gate electrode 140 surrounds the plurality of semiconductor patterns NS and may extend on the fin-type active region and the device isolation layer 120 .
  • the gate electrode 140 may include a main gate electrode 140M and a plurality of sub-gate electrodes 140S.
  • the gate dielectric layer 130 may be disposed between the gate electrode 140 and the plurality of semiconductor patterns NS.
  • the gate dielectric layer 130 may be conformally disposed on top surfaces and sidewalls of the plurality of semiconductor patterns NS.
  • the gate dielectric layer 130 may be formed using the high dielectric hydrocarbon thin film described above. That is, the gate dielectric layer 130 may have a low leakage current density and high insulation strength.
  • the gate dielectric layer 130 may include a plurality of dielectric layers as described above with reference to FIG. 7 .
  • the source/drain region 160 may be a selective epitaxial growth layer formed using the fin-type active region as a seed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

본 발명의 기술적 사상에 따른 반도체 소자는, 활성 영역을 정의하는 기판, 활성 영역 상에 배치되는 게이트 유전막, 게이트 유전막 상에 배치되는 게이트 전극, 게이트 전극의 양측의 활성 영역에 배치되는 소스/드레인 영역을 포함하고, 여기서 게이트 유전막은 고유전 탄화수소 박막을 포함한다.

Description

고유전 탄화수소 박막 및 이를 이용한 반도체 소자
본 발명의 기술분야는 유전 상수가 크고 누설 전류가 낮으며 절연 강도가 높아 고집적 소자의 제조에 유용한 고유전체의 제조 방법과 그 방법에 의해 제조된 고유전체, 그리고 상기 고유전체를 이용하는 반도체 소자에 관한 것이다.
탄소 박막은 우수한 전기적, 기계적 특성으로 인해 기술적, 산업적 응용 분야에서 많은 주목을 받고 있다. 탄소 박막을 구성하는 탄소계 재료는 결합에 따라 다이아몬드, 그래핀, 및 비정질 탄소로 분류될 수 있다. 다이아몬드는 탄소 원자 간이 sp3 결합으로 연결되어 있기 때문에 전기 전도성을 띠지 않지만 경도가 매우 높으며, 그래핀은 sp2 결합으로만 이루어져 있어 전도성이 우수하다. 또한, 비정질 탄소는 sp3 결합과 sp2 결합을 모두 가지므로 그래핀에 비해서는 전도성이 낮다.
탄소 박막의 제조 시 증착 온도를 조절하는 것에 의해 탄소 재료의 결합을 조절할 수 있음이 알려져 있다. 대표적으로, 화학 기상 증착법(CVD)은 탄소 박막 제조에 널리 이용되는 방법으로, 약 1000℃까지의 고온에서 고품질의 그래핀과 탄소 나노 튜브를 제조할 수 있다. 화학 기상 증착법에 의한 증착 시 약 700℃ 정도까지로 증착 온도가 낮아지면 나노 그래파이트 구조가 형성되며, 상온에서는 비정질 탄소가 형성된다.
탄소계 재료에 대한 연구는 특히 높은 전도도 특성과 투명도에 의해 투명 전도체나 차세대 반도체로서의 높은 잠재성을 갖는 그래핀과 탄소 나노 튜브와 같은 고도로 정렬된 구조를 갖는 나노 구조체에 대한 연구에 초점이 맞춰져 있다. 이로 인해, 나노 그래파이트나 비정질 탄소 역시 흥미로운 여러 특성을 나타냄에도 주목을 덜 받았다.
비정질 탄화수소 막은 균일한 두께의 박막 형성이 용이하다는 장점으로부터 식각 마스크로 사용되거나, 반도체 금속 배선의 층간 물질과 같은 저유전 절연체로 박막 결함을 방지하고 층간 밀착도를 증가시키기 위하여 사용되어 왔다.
나노 그래파이트와 비정질 탄소에는 고정된 자유 라디칼을 의미하는 댕글링 본드(dangling bond)가 상당 비율 함유되어 있기 때문에 적절한 조건에서 수소 및/또는 HC 라디칼과 반응하여 탄화수소 구조를 형성한다. 그러나 나노 그래파이트나 비정질 탄소에서의 댕글링 본드를 활용하여 새로운 특성을 갖는 소재를 개발하고, 이를 응용하고자 하는 시도들은 제한적이었다.
한편, 기억 소자나 논리 소자 등 고밀도 반도체 소자의 집적화는 높은 유전 상수와 낮은 누설 전류 및 큰 절연 강도를 갖는 고유전체를 요구하게 되었다. 예를 들어, MOSFET 트랜지스터의 게이트 길이는 과거 수십년 사이에 10㎛ 급에서 10㎚ 급으로 급격히 감소하였으며, 이에 따라 종래 절연막으로 사용되던 SiO2 박막의 효용성은 한계에 도달하였다. SiO2보다 높은 유전 상수를 갖는 물질을 통상적으로 고유전 물질로 지칭한다. 이에 SiO2보다 높은 유전율을 갖는 새로운 고유전 물질의 개발이 활발하다. 고유전 물질로는 최근 100㎚ 이하의 노드에 대해 Hf- 또는 Zr- 기반 산화물들이 주목을 받고 있다. 현재는 Hf 소스(Source)를 대체할 물질(예를 들어, Al, Zr, Ta, STO, BST 등)을 찾거나, Hf 소스에 다른 물질을 추가하여 증착시키는 방법 등 여러 가지 방향으로 연구되고 있다.
이들 고유전 물질들은 대부분 산화물 박막 형태로 소자에 적용이 가능하다. 그러나 금속 산화물의 고유전층은 산소 공공 등의 다수의 벌크 트랩을 포함하여 C-V 히스테리시스를 증가시키며, 문턱 전압의 불안정성 현상을 초래한다. 또한, 소자의 노드 크기가 10㎚ 단위로 감소하면, 등가 산화물 두께(equivalent oxide thickness)는 1㎚ 이하가 요구되며 해당 조건에서 Hf- 또는 Zr- 기반 산화물의 전자 터널링이 일어날 수 있다. 더구나 Hf- 또는 Zr- 기반 산화물은 결정화하기 쉽기 때문에 높은 누설 전류를 나타내며 계면 특성이 열화된다. 이에 10㎚ 이하의 노드를 갖는 기술을 위하여 새로운 고유전 물질의 개발이 요구된다.
본 발명은 종래 기술의 문제점을 해결하기 위하여, 유전 상수가 크고 누설 전류가 낮으며 절연 강도가 높아 고집적 소자의 제조에 유용한 고유전체의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명은 또한, 상기 방법에 의해 제조된 고유전체 및 상기 고유전체를 이용하는 반도체 소자를 제공하는 것을 목적으로 한다.
전술한 목적을 달성하기 위하여 본 발명은, 플라즈마 반응기 내에 기판을 위치시키는 단계; 상기 반응기 내에 탄화수소 가스 및 수소 가스를 함께 주입하는 단계; 및 상기 반응기에 플라즈마를 발생시키는 단계;를 포함하며, 비정질 구조로서 유전 상수가 20 이상이 되도록 반응기 내의 온도 범위를 조절하는 것을 특징으로 하는 고유전 탄화수소 박막의 제조 방법에 관한 것이다.
본 발명의 방법에 의해 제조된 고유전 탄화수소 박막에 의하면, 유전 상수가 SiO2는 물론 종래의 Hf- 또는 Zr- 기반 산화물보다 현저히 높으면서도 누설 전류가 매우 낮고, 높은 절연 강도 특성을 보여 10㎚ 노드 이하의 반도체에 보다 유용하게 사용될 수 있다.
또한, 본 발명의 고유전 탄화수소 박막은 촉매층을 필요로 하지 않으므로, 전사 공정을 요하지 않고 필요로 하는 기판 위에 바로 증착될 수 있어 계면 특성이 우수하여 반도체 소자의 성능을 향상시킬 수 있다.
도 1은 증착 온도에 따라 생성되는 박막의 모식도 및 TEM 이미지를 나타낸다.
도 2는 증착 온도에 따라 생성되는 박막의 라만 스펙트럼 및 EELS 스펙트럼을 나타낸다.
도 3은 400℃에서 제조되는 박막의 XPS 스펙트럼 및 EXAFS 스펙트럼을 나타낸다.
도 4는 본 발명의 일 실시예에 의한 반도체-고유전 탄화수소 박막-금속(MIS)의 모식도를 나타낸다.
도 5는 본 발명의 일 실시예에 의해 제조되는 고유전 탄화수소 박막의 전기적 특성을 보여주는 그래프를 나타낸다.
도 6은 고유전 탄화수소 박막을 이용한 본 발명의 일 실시예에 의한 반도체 소자를 나타내는 단면도이다.
도 7은 고유전 탄화수소 박막을 포함하는 게이트 유전막을 나타낸다.
도 8은 고유전 탄화수소 박막을 이용한 본 발명의 일 실시예에 의한 반도체 소자를 나타내는 단면도이다.
도 9는 고유전 탄화수소 박막을 이용한 본 발명의 일 실시예에 의한 반도체 소자를 나타내는 사시도이다.
도 10은 고유전 탄화수소 박막을 이용한 본 발명의 일 실시예에 의한 반도체 소자를 나타내는 단면도이다.
본 발명에서 플라즈마 반응기란 반응기 내에서 플라즈마를 발생시켜 반응 가스의 반응을 유도하는 것으로, 예를 들어, 플라즈마 보조 화학 기상 증착(PE-CVD) 또는 유도 결합 플라즈마 화학 기상 증착(ICP-CVD), 전자 싸이클로트론 공명 화학 기상 증착(ECR-CVD) 반응기를 예로 들 수 있다. 플라즈마는 반응 가스로부터 반응성이 높은 라디칼을 다량 생성하여 낮은 온도에서도 박막의 형성이 가능하다. 하기 실시예에서는 ICP-CVD를 예로 들어 설명하였으나, 이에 한정되는 것은 아니다.
본 발명에서 기판은 통상 박막의 제조에 사용되는 기판 어느 것을 사용하여도 무방하다. 예를 들어, 실리콘, 유리, 금속, 금속 산화물 기판을 들 수 있으며, 별도의 촉매층을 필요로 하지 않는다. 상기 기판은 통상 반도체 소자의 제조를 위한 기판은 물론, 그 위에 활성층이 형성되어 있는 기판도 포함한다.
반응기 내에는 반응 가스로 탄화수소 가스와 수소 가스를 주입한다. 탄화수소 가스는 플라즈마에 의해 탄화수소 박막을 형성할 수 있는 것이라면 어떤 것이라도 사용할 수 있으며, 통상 고온에서 화학 기상 증착에 의해 그래핀 제조에 사용될 수 있는 메탄, 에탄, 프로판, 에틸렌, 아세틸렌, 프로필렌, 및 벤젠으로부터 선택된 하나 이상을 사용할 수 있다. 다만, 이외의 탄화수소 가스를 제외하는 것은 아니다.
탄화수소 가스와 수소 가스의 혼합 가스의 존재하에서 플라즈마를 가하면 기판 상에 탄화수소 박막이 형성되는데, 이때 고온에서는 고품질의 그래핀 박막이 형성되며 온도가 낮아짐에 따라 그래핀 박막의 결정성이 저하되는 것은 알려져 있다. 본 발명에서는 박막 제조 온도가 낮아짐에 따라 박막 내에 증가하는 댕글링 본드와 수소의 결합을 유도하기 위하여 반응 가스로 탄화수소 가스와 수소 가스의 혼합물을 사용한다. 물론, 탄화수소 가스 및 수소 가스 이외에 수송 가스로서 아르곤이나 헬륨과 같은 비활성 가스를 추가로 포함할 수 있다.
탄화수소 가스와 수소 가스의 체적비는 1:2 내지 1:50 정도의 것이 바람직하다. 수소 가스의 비율이 너무 낮으면 표면이 거친 탄화수소 박막이 형성되고, 너무 높으면 탄화수소 박막 형성이 잘 되지 않았다.
본 발명의 고유전 탄화수소 박막의 제조 시 온도에 따라 생성되는 박막의 특성이 변화하였다. 고온에서는 그래핀이 형성되며, 온도가 낮아짐에 따라 비정질 탄화수소 박막 내에 나노 그래핀 결정이 포함된 나노 그래파이트가 형성되고, 박막 제조 온도를 더 낮추면 본 발명의 고유전 탄화수소 박막이 형성되었다. 그보다 온도가 더 낮아지는 경우에는 저유전(low-k) 탄화수소 박막이 형성되었다. 하기 실시예에서는 200℃ 내지 600℃에서 제조된 탄화수소 박막의 고유전 특성을 나타내었으나, 반응 온도에서 사용하는 장비와 반응 조건에 따라 변동될 수 있으므로, 그 값을 특정 값으로 한정하는 것은 의미가 없다. 반응 온도에 영향을 미칠 수 있는 조건으로는 탄화수소 가스와 수소 가스의 체적비, 반응 압력, 플라즈마의 세기 등을 들 수 있다.
상기 반응기 내 압력은 플라즈마 방전이 원활하게 이루어질 수 있도록 0.5Torr 내지 5Torr인 것이 바람직하다. 압력이 너무 높은 경우에는 플라즈마 유지가 힘들어 탄화수소 박막 증착 효율이 낮아지고, 압력이 너무 낮으면 공정 효율성이 저하된다.
본 발명은 또한 상기 방법에 의해 제조되는 고유전 탄화수소 박막에 관한 것이다. 본 발명의 방법에 의해 제조되는 고유전 탄화수소 박막의 두께는 해당 조건에서 반응 시간을 조절하는 것에 의해 용이하게 제어할 수 있다. 본 발명의 박막에 의해 제조된 고유전 탄화수소 박막은 핀홀이 없이 매끈한 표면 구조를 가진다.
본 발명의 방법에 의해 제조된 고유전 탄화수소 박막은 유전 상수가 20 이상이며, 하기 일 실시예에서는 90의 매우 높은 고유전 특성을 나타내어 10㎚ 이하의 노드를 갖는 반도체에 유용하게 적용될 수 있을 것으로 기대된다. 특히, 매우 높은 고유전 특성 이외에도 등가 산화막 두께가 0.2㎚일 때, 1V에서의 누설 전류는 0.25A/㎠ 이하이고, 절연 강도는 5MV/㎝ 이상으로 종래 고유전 산화물로 알려진 HfO2, ZrO2, HfAlOx, ZrAlOx 등과 같은 Hf- 또는 Zr- 기반 산화물의 특성을 넘어서는 것이다.
본 발명의 또 다른 일 실시예는 상기 고유전 탄화수소 박막을 이용하는 반도체 소자에 관한 것이다. 상기 고유전 탄화수소 박막은 보다 상세하게는 고유전체를 요하는 게이트 절연막으로 사용될 수 있다. 본 발명의 반도체 소자는 기억 소자 또는 논리 소자를 들 수 있다.
이하 첨부된 실시예를 들어 본 발명을 보다 상세히 설명한다. 그러나 이러한 실시예는 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다.
실시예 1: 탄화수소 박막의 제조
Si 웨이퍼 또는 Si/SiO2/Ag 기판 상에 하기 조건에서 CH4 가스와 수소 가스를 사용하여 ICP-CVD(Inductively-coupled plasma chemical vapor deposition)에 의해 탄화수소 박막을 증착하였다. 구체적으로, 반응기 내로 1sccm의 CH4 가스와 100sccm의 수소와 Ar 혼합 가스(수소 10%)를 주입하였고, 압력은 1Torr, 플라즈마 파워는 600W로 고정하였다. 증착 시간은 30초에서 1시간까지 변화시켰다.
실시예 2: 증착 온도에 따른 탄화수소 박막의 특성 평가
증착 온도에 따라 형성된 탄화수소 박막을 일탈 교정 투과 전자 현미경(Aberration-corrected TEM, Titan G2 Cube 60-300kV, FEI)으로 확인하고, 그 결과를 도 1에 도시하였다. 도 1의 b는 950℃에서 증착된 박막의 TEM 이미지로 탄소 원자가 고도로 정렬된 육방정계(hexagonal) 배열을 갖는 것을 보여준다. 내부 도면은 FFT(fast Fourier transformed) digital diffractogram을 나타낸 것으로 고품질 그래핀의 전형적인 특성인 육방정계의 패턴을 나타낸다. 도 2의 a의 라만 스펙트럼에서도 I2D/IG가 약 3 정도로 높은 값을 나타내고, 2D 피크의 최대 반값폭이 32㎝-1로 작아 고품질의 그래핀이 형성되었음을 확인할 수 있었다.
증착 온도가 700℃로 내려가면 생성된 박막은 비정질 매트릭스 내에 부분적으로 육방정계 격자의 나노 결정이 존재하는 나노 그래파이트 모폴로지(도 1의 c 참조)를 나타내었다. FFT는 어두운 점(원으로 표시)을 갖는 확산된 고리 형태를 보여준다. 점들간의 간격은 0.246㎚로 탄소 동소체 헥사고나이트(carbon allotrope hexagonite)에 해당한다. 증착 온도가 400℃ 또는 50℃로 더욱 낮아지면, 박막은 나노 결정성을 상실하고 비정질 구조를 나타내며, halo FFT 패턴(도 1의 d와 e 참조)을 보여주었다. 도 2의 a에 도시된 라만 스펙트럼 역시 비정질 탄소 구조의 전형적인 양상을 보여주었다.
도 2의 b와 c는 각각 저손실(low-loss) 영역 및 탄소 K-edge 영역의 EELS(electron energy-loss spectroscopy) 스펙트럼으로, 증착 온도에 따른 탄화수소 박막의 결합 양상을 확인할 수 있다. 도 2의 b에서 그래핀은 두 개의 특징적인 피크를 보여주었는데, 5eV의 강한 피크는 탄소의 sp2 결합에 의한 π→π* 전이와 관련된 π 플라즈몬 피크이며, 15.5eV 부근의 브로드한 피크는 (π+σ) 플라즈몬 피크이다. (π+σ) 플라즈몬 피크의 위치는 원자가 전자의 밀도, 즉 탄소 박막의 질량 밀도에 비례한다. 증착 온도가 700℃로 낮아지면 π 플라즈몬 피크의 세기는 현저히 감소하여, 이는 비정질 매트릭스 내에 sp2 결합을 갖는 나노 결정성 헥사고나이트가 존재함을 보여주는 TEM 이미지의 결과와 일치하였다. 400℃ 및 50℃에서 제조된 박막에서는 (π+σ) 플라즈몬 피크만이 관측되었다. 50℃, 400℃, 및 700℃에서 제조된 박막에서 (π+σ) 플라즈몬 피크의 에너지는 각각 25.0eV, 24.5eV, 및 25.8eV로 sp3 결합이 다량 함유된 탄소 박막보다는 약 5eV 정도가 낮아, sp3 결합의 비율이 적을 것임을 시사하였다. 700℃에서 제조된 박막에서 에너지가 상대적으로 큰 값을 나타내는 것은 밀도가 높은 결정 상태가 함유되었기 때문으로 해석된다.
박막 내에 π 결합의 존재는 도 2의 c에 도시된 탄소 K-edge 영역의 EELS 스펙트럼에서도 확인할 수 있다. 50℃ 및 400℃에서 제조된 박막은 281eV에서 첫 피크가 관측되며, 이는 1s 상태에서 페르미 레벨 위의 π* 상태로의 전이(1s→π* 전이)에 해당한다. 해당 영역에서 강하게 피크가 관측되는 것으로부터 비정질 박막 내에 상당한 양의 sp2 결합이 존재함을 확인할 수 있다. 두 번째 피크는 290eV 내지 305eV 영역에서 매우 브로드하게 관측되었는데, 이는 1s→σ* 전이에 해당한다. 증착 온도를 700℃로 높이면, 289.5eV까지 첫 번째 피크가 관측되어 나노 결정화에 의해 에너지 밴드가 좁아진 것을 알 수 있었다. 이 피크는 950℃에서 제조된 그래핀에서 더욱 확실히 관측되었다. EELS 스펙트럼에 의하면, 50℃와 400℃에서 제조된 박막은 종래 보고된 비정질 탄화수소와 유사하였다. 산화 그래핀의 EELS 스펙트럼은 탄화수소와는 다른 양상을 나타내었다.
400℃에서 제조된 탄화수소 박막 중 화학 결합 특성을 XPS(X-ray photoelectron spectroscopy)와 EXAFS(extended X-ray absorption fine structure)로 확인하였다. 도 3의 a는 XPS 스펙트럼으로 지방족 탄화수소 CxHy에 해당하는 285.3eV가 관측되며, Ar+ 플라즈마를 사용하여 에칭함에 따라서 해당 피크의 위치가 변하지 않아 탄화수소 박막의 조성이 균일함을 확인할 수 있었다. 도시하지는 않았지만, 그래핀 박막의 XPS 스펙트럼에서는 표면의 에칭에 따라 피크의 위치가 285.0eV에서 284.4eV로 이동하였다. 공기 중에 노출된 그래핀 표면은 다양한 종류의 탄화수소가 흡착될 수 있어, 그 결과 285.0eV의 높은 결합 에너지를 보여준다. 에칭에 따라 표면의 탄화수소가 제거되면 그래핀 그 자체의 결합 에너지인 284.4eV를 보여준다.
도 3의 b는 1s 코어 레벨의 EXAFS 스펙트럼이며, c는 페르미 레벨 근처에서의 EXAFS 스펙트럼이다. 도 2의 b에서 285.1eV의 강한 피크는 XPS 스펙트럼의 285.3eV 피크에 대응된다. 탄화수소 박막 중에 수소가 상당량 함유되어 있는 것을 확인하기 위하여 박막을 제조 후 인시추(in-situ)로 700℃에서 열처리하였다.
열처리 후 피크의 위치는 284.7eV로 적색 편이하여 지방족 탄화수소 CxHy로부터 수소가 탈착되었음을 나타내었다. 그 결과, 탈착된 시료는 확장 상태의 밀도가 높아져 페르미 레벨 근처 영역에서의 강도가 증가하는 것을 나타낸다.
실시예 3 : 탄화수소 박막의 전기적 특성 평가
유전층으로서 본 발명에 의한 탄화수소 박막을 사용한 도 4의 구조를 갖는 MIS 소자를 제조하여 상기 탄화수소 박막의 전기적 특성을 평가하였다.
탄화수소 박막은 기판 상에 직접 성장하거나, 전사하여 MIS 소자를 제조하였다. 보다 구체적으로는, Si 웨이퍼 상에 직접 성장하기 위해서는 Si 웨이퍼를 10% 불산 용액에 침지하여 자연 산화막을 제거한 후 세척하였다. 세척된 기판은 ICP-CVD 반응기에 인입 후 실시예 1에 기술된 조건에 따라 각각 200℃, 250℃, 300℃, 350℃, 400℃에서 탄화수소 박막을 30분간 증착하였다. 탄화수소 박막의 전사를 위해서는 Si/SiO2/Ag 기판을 ICP-CVD 반응기에 인입한 후 직접 성장과 동일한 조건에서 탄화수소 박막을 5분간 증착하였다. 증착된 탄화수소 박막 위에 PMMA를 스핀 코팅한 후 FeCl3 수용액에 침지하여 Ag 촉매층을 식각하여 탄화수소/PMMA 막을 분리하였다. 분리된 탄화수소/PMMA 막을 Si 웨이퍼 상에 전사한 후 아세톤에 침지하여 PMMA를 제거하였다.
전술한 바와 같이, Si 웨이퍼 상에 직접 성장하거나 혹은 전사한 탄화수소 박막 위에 100㎛ 직경의 Au 전극을 형성하여 MIS 소자를 제조하였다.
본 MIS 소자에서 단면 TEM과 AFM(Asylum Research, MFP-3D)으로부터 측정한 탄화수소 박막의 두께는 성장 온도 200℃, 250℃, 300℃, 350℃, 400℃에서 각각 2.6㎚, 2.4㎚, 3.1㎚, 5.0㎚, 6.5㎚이었다. Ag 촉매층이 없는 Si 웨이퍼 그 자체 상에 성장한 탄화수소의 AFM 이미지는 균일하고, 핀홀이 없으며, 매끄러운 표면을 갖는 것을 보여주었다. 각각의 방법에 의해 제조된 탄화수소 박막의 rms 거칠기는 각각 3.06㎚와 1.61㎚였다.
도 5는 제조된 MIS 소자에 대해 측정한 전기적 특성을 보여주는 그래프들이다. 도 5의 a는 Si 웨이퍼 상에 직접 성장한 탄화수소 박막의 C-V 곡선으로, ■은 -4V에서 +4V까지 측정된 값이며, □은 +4V에서 -4V까지 측정된 값이다. C-V 곡선에서 중요한 특성은 모든 시료에 대한 C-V 루프에서 히스테리시스가 5mV 미만으로 거의 0에 가깝다는 것으로, 이는 고유전 게이트 유전체의 기준(약 30mV 이하)에 부합한다. 축적(accumulation)과 공핍(depletion)으로부터의 전이가 빠르고, 히스테리시스 값이 매우 작다는 것은 박막 및 박막과 Si 계면에 트랩된 전하 밀도가 매우 작음을 의미한다. 이에 비해, Si에 전사된 탄화수소 박막은 상당한 히스테리시스를 나타내었으며, 축적과 공핍으로부터의 전이가 상대적으로 느렸다. 이는 전사 과정에서의 계면 특성의 열화와 전사 중 Ag 촉매 박막의 에칭 과정에서의 오염에 기인하는 것으로 평가된다. 도 5의 a의 내부 도면에서 확인할 수 있듯이, C-V 곡선이 이상적인 형태를 나타낸 것에 비하여 탄화수소 박막의 플랫 밴드 전압은 고정된 양 전하로 인하여 - 전압쪽으로 약간 이동하였다. 시료간 플랫 밴드 전압의 차이는 크지 않았으며, 모두 -0.3V 내지 0.4V 범위에 속하였다.
탄화수소 박막의 유전 상수(k)는 하기 수식으로부터 계산될 수 있다.
C=E/T: 여기서, C는 집적 캐패시턴스, E는 탄화수소 박막의 유전율, T는 탄화수소 박막의 두께를 나타낸다.
도 5의 b는 각각의 온도에서 제조된 박막의 유전 상수를 도시한 그래프로, Si 웨이퍼 상에 직접 성장한 탄화수소 박막의 유전율은 최대 90으로 고유전 게이트 산화물로 알려진 Hf- 및 Zr- 기반 산화물의 유전 상수 20 내지 30보다 우수하였다. 박막 성장 온도가 증가할수록 유전 상수는 점차 증가하여 350℃에서 최대 90을 나타내었으며, 온도가 더욱 증가하여 400℃가 되면 유전 상수는 13으로 저하되었다. Si 웨이퍼 상에 전사된 탄화수소 박막은 직접 성장된 탄화수소 박막과 박막 성장 온도에 대한 경향성은 유사하여, 증착 온도의 증가에 따라 유전 상수 역시 점차 증가하여 500℃에서 최대 61에 도달하였으며, 이후 온도가 더욱 증가하여 600℃가 되면 다시 감소하였다. 이는 낮은 온도에서 증착된 탄화수소 박막에서는 무질서하게 배열된 다이폴 모멘트가 서로 상쇄되어 상대적으로 낮은 k 값을 나타내며, 온도가 증가함에 따라 탄소 골격 구조의 구조화가 증가되어 다이폴 모멘트 역시 증가하기 때문에 유전 상수가 증가하는 것으로 볼 수 있다. 임계 온도 이상이 되면, 댕글링 본드에 수소와 탄화수소가 포획되기 어렵게 되어 탄화수소 구조가 붕괴되고 고유전율 유전체로서의 특성을 상실하게 된다.
고유전율 유전체로서의 중요한 특징의 하나는 누설 전류 밀도가 낮고 절연 강도가 높아야 한다는 것이다. 도 5의 c는 I-V 곡선으로 유전 상수가 각각 82 및 90인 300℃ 및 350℃에서 제조된 박막은 등가 산화막 두께 0.15㎚ 및 0.2㎚에 대해 1V에서의 누설 전류가 0.15A/㎠이었다. 누설 전류는 400℃에서 증착된 박막에서 가장 낮은 값을 나타내었는데 그 두께는 약 6.5㎚로 박막 중 가장 두꺼웠다. 모든 시료들은 5V까지 항복 현상(breakdown)을 나타내지 않아 절연 강도가 적어도 10MV/㎝ 이상으로 높은 값을 갖는 것을 알 수 있었다. 이러한 누설 전류 및 절연 강도는 종래 고유전율 산화물과 적어도 동등하거나 이들보다 우수하다.
도 6은 고유전 탄화수소 박막을 이용한 본 발명의 일 실시예에 의한 반도체 소자를 나타내는 단면도이다.
도 6을 참조하면, 기판(110), 소자 분리막(120), 게이트 구조물(GS), 소스/드레인 영역(160)을 포함하는 반도체 소자(10)가 제공된다.
기판(110)은 반도체 기판일 수 있다. 일부 실시예들에서, 상기 기판(110)은 실리콘(Si), 저머늄(Ge) 등과 같은 반도체를 포함할 수 있고, 또는 SiGe, SiC, GaAs, InAs, InP 등과 같은 화합물 반도체를 포함할 수 있다. 다른 실시예들에서, 상기 기판(110)은 SOI(silicon on insulator) 구조를 가질 수 있다.
소자 분리막(120)은 하나의 절연막으로 형성될 수도 있지만, 외부 절연막 및 내부 절연막을 포함할 수도 있다. 외부 절연막 및 내부 절연막은 서로 다른 물질로 형성될 수 있다. 예를 들어, 외부 절연막은 산화막으로 형성되고, 내부 절연막은 질화막으로 형성될 수 있다. 다만, 소자 분리막(120)의 구성이 상기 내용에 한정되는 것은 아니다. 상기 소자 분리막(120)으로 인해, 상기 기판(110)에 활성 영역이 정의될 수 있다.
게이트 구조물(GS)은 게이트 유전막(130), 게이트 전극(140), 및 스페이서(150)를 포함할 수 있다.
게이트 유전막(130)은 앞서 설명한 고유전 탄화수소 박막을 이용하여 형성될 수 있다. 즉, 상기 게이트 유전막(130)은 누설 전류 밀도가 낮고 절연 강도가 높은 특성을 가질 수 있다.
게이트 전극(140)은 하나의 게이트 막으로 이루어질 수 있으며, 다중막으로 형성될 수도 있다. 일부 실시예들에서, 상기 게이트 전극(140)은 불순물이 도핑된 반도체, 금속, 도전성 금속 질화물, 또는 금속 실리사이드 중에서 선택되는 적어도 하나의 물질을 포함할 수 있다.
스페이서(150)가 게이트 유전막(130) 및 게이트 전극(140)의 측벽에 형성될 수 있다. 상기 스페이서(150)는 실리콘 산화물, 실리콘 질화물, 및 실리콘 산화질화물 중 적어도 하나로 형성될 수 있다. 본 실시예에서는 상기 스페이서(150)가 단일층으로 이루어진 경우를 도시하였으나, 본 발명의 기술적 사상은 이에 한정되지 않으며, 스페이서(150)는 이중층 또는 삼중층으로 이루어질 수 있다.
소스/드레인 영역(160)은 상기 게이트 구조물(GS) 양측의 상기 기판(110) 내에 형성되고, 상기 게이트 구조물(GS)의 아래에는 상기 소스/드레인 영역(160) 사이에 개재되는 채널 영역이 정의된다.
도 7은 고유전 탄화수소 박막을 포함하는 게이트 유전막을 나타낸다.
도 7을 참조하면, 게이트 유전막(130)을 복수의 유전층으로 구성하되, 복수의 유전층 중 하나의 유전층은 고유전 탄화수소 박막(HC)을 포함하는 경우를 나타낸다.
도 7의 (a) 및 (b)를 살펴보면, 게이트 유전막(130)은 2개의 유전층으로 구성되고, 이중 하나는 고유전 탄화수소 박막(HC)으로 형성된다. 상기 고유전 탄화수소 박막(HC)은 하단에 배치될 수 있고, 또는 상단에 배치될 수 있다. 다른 1개의 유전층(131)은 실리콘 산화막, 실리콘 산질화막, 하프늄 산화막, 지르코늄 산화막, 탄탈륨 산화막, 및 티타늄 산화막 중에서 선택된 물질로 구성될 수 있다.
도 7의 (c) 내지 (e)를 살펴보면, 게이트 유전막(130)은 3개의 유전층으로 구성되고, 이중 하나는 고유전 탄화수소 박막(HC)으로 형성된다. 상기 고유전 탄화수소 박막(HC)은 최하단에 배치될 수 있고, 중단에 배치될 수 있고, 또는 최상단에 배치될 수 있다. 다른 2개의 유전층(131, 133)은 각각 실리콘 산화막, 실리콘 산질화막, 하프늄 산화막, 지르코늄 산화막, 탄탈륨 산화막, 및 티타늄 산화막 중에서 선택된 물질로 구성될 수 있다. 다른 2개의 유전층(131, 133)은 서로 동일한 물질로 구성되거나, 또는 서로 다른 물질로 구성될 수 있다.
즉, 게이트 유전막(130)은 서로 다른 유전 상수를 가지는 적어도 2개의 유전층의 적층 구조로 형성될 수 있다.
도 8은 고유전 탄화수소 박막을 이용한 본 발명의 일 실시예에 의한 반도체 소자를 나타내는 단면도이다.
도 8을 참조하면, 기판(110), 소자 분리막(120), 게이트 유전막(130), 워드 라인(142), 매몰 절연막(152)을 포함하는 반도체 소자(20)가 제공된다.
기판(110) 및 소자 분리막(120)은 앞서 도 6에서 설명한 바와 실질적으로 동일할 수 있다.
상기 기판(110)의 활성 영역에, 게이트 유전막(130), 워드 라인(142), 및 매몰 절연막(152)을 차례로 형성한다.
게이트 유전막(130)은 앞서 설명한 고유전 탄화수소 박막을 이용하여 형성될 수 있다. 즉, 상기 게이트 유전막(130)은 누설 전류 밀도가 낮고 절연 강도가 높은 특성을 가질 수 있다. 또한, 상기 게이트 유전막(130)은 앞서 도 7에서 설명한 바와 같이 복수의 유전층으로 구성될 수 있다.
워드 라인(142)은 Ti, TiN, Ta, TaN, W, WN, TiSiN, 및 WSiN 중에서 선택되는 적어도 하나의 물질로 형성될 수 있다.
매몰 절연막(152)은 실리콘 산화막, 실리콘 질화막, 실리콘 산질화막, 또는 이들의 조합으로 형성될 수 있다.
상기 기판(110)의 활성 영역에, 제1 방향으로 상호 평행하게 연장하는 복수의 워드 라인(142)이 배치될 수 있다. 상기 워드 라인(142)은 일정한 간격으로 배치될 수 있다. 상기 워드 라인(142)의 폭이나 간격은 디자인 룰에 따라 결정될 수 있다. 상기 워드 라인(142) 상에는 이와 직교하는 제2 방향으로 상호 평행하게 연장하는 복수의 비트 라인(미도시)이 배치될 수 있다. 상기 비트 라인 역시 일정한 간격으로 배치될 수 있다.
도 9는 고유전 탄화수소 박막을 이용한 본 발명의 일 실시예에 의한 반도체 소자를 나타내는 사시도이다.
도 9를 참조하면, 핀형 활성 영역(AR)을 포함하는 기판(110), 소자 분리막(120), 게이트 유전막(130), 게이트 전극(140), 스페이서(150)를 포함하는 반도체 소자(30)가 제공된다.
기판(110) 및 소자 분리막(120)을 구성하는 물질은 앞서 도 6에서 설명한 바와 실질적으로 동일할 수 있다. 다만, 상기 기판(110)으로부터 돌출되고 제1 방향으로 연장하는 복수의 핀형 활성 영역(AR)을 포함할 수 있다. 상기 소자 분리막(120)은 상기 핀형 활성 영역(AR)의 상부 영역을 노출할 수 있다.
게이트 유전막(130), 게이트 전극(140), 스페이서(150)는 앞서 도 6에서 설명한 바와 실질적으로 동일할 수 있다. 상기 게이트 유전막(130)은 앞서 설명한 고유전 탄화수소 박막을 이용하여 형성될 수 있다. 즉, 상기 게이트 유전막(130)은 누설 전류 밀도가 낮고 절연 강도가 높은 특성을 가질 수 있다. 또한, 상기 게이트 유전막(130)은 앞서 도 7에서 설명한 바와 같이 복수의 유전층으로 구성될 수 있다. 게이트 구조물(GS)은 상기 핀형 활성 영역(AR)과 교차하는 제2 방향으로 연장할 수 있다.
소스/드레인 영역(160)이 상기 게이트 구조물(GS)의 양측의 상기 핀형 활성 영역(AR) 상에 각각 개재될 수 있다. 상기 소스/드레인 영역(160)은 상기 게이트 구조물(GS)을 사이에 두고 이격될 수 있다. 상기 소스/드레인 영역(160)은 상기 핀형 활성 영역(AR)을 시드(seed)로 이용하여 형성된, 선택적 에피택셜 성장층일 수 있다.
도 10은 고유전 탄화수소 박막을 이용한 본 발명의 일 실시예에 의한 반도체 소자를 나타내는 단면도이다.
도 10을 참조하면, 핀형 활성 영역을 포함하는 기판(110), 소자 분리막(120), 게이트 유전막(130), 메인 게이트 전극(140M)과 서브 게이트 전극(140S)을 포함하는 게이트 전극(140), 스페이서(150), 컨택 구조물(170)을 포함하는 반도체 소자(40)가 제공된다.
기판(110) 및 소자 분리막(120)을 구성하는 물질은 앞서 도 6에서 설명한 바와 실질적으로 동일할 수 있다. 다만, 상기 기판(110)으로부터 돌출되고 제1 방향으로 연장하는 복수의 핀형 활성 영역을 포함할 수 있다. 상기 소자 분리막(120)은 상기 핀형 활성 영역의 상부 영역을 노출할 수 있다.
복수의 반도체 패턴(NS)은 핀형 활성 영역 상에서 기판(110)의 상면으로부터 수직하는 방향으로 이격되어 배치될 수 있다.
상기 복수의 반도체 패턴(NS)은 예를 들어, 나노시트(nanosheet)의 형상을 가질 수 있다.
게이트 전극(140)은 복수의 반도체 패턴(NS)을 둘러싸며 핀형 활성 영역 및 소자 분리막(120) 상에서 연장될 수 있다. 상기 게이트 전극(140)은 메인 게이트 전극(140M) 및 복수의 서브 게이트 전극(140S)을 포함할 수 있다.
게이트 유전막(130)은 게이트 전극(140)과 복수의 반도체 패턴(NS)의 사이에 배치될 수 있다. 게이트 유전막(130)은 복수의 반도체 패턴(NS)의 상면과 측벽 상에 컨포멀하게 배치될 수 있다. 상기 게이트 유전막(130)은 앞서 설명한 고유전 탄화수소 박막을 이용하여 형성될 수 있다. 즉, 상기 게이트 유전막(130)은 누설 전류 밀도가 낮고 절연 강도가 높은 특성을 가질 수 있다. 또한, 상기 게이트 유전막(130)은 앞서 도 7에서 설명한 바와 같이 복수의 유전층으로 구성될 수 있다.
소스/드레인 영역(160)은 상기 핀형 활성 영역을 시드로 이용하여 형성된, 선택적 에피택셜 성장층일 수 있다.
이상, 첨부된 도면들을 참조하여 본 발명의 기술적 사상의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형상으로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (10)

  1. 플라즈마 반응기 내에 기판을 위치시키는 단계;
    상기 플라즈마 반응기 내에 탄화수소 가스 및 수소 가스를 함께 주입하는 단계;
    상기 플라즈마 반응기 내의 온도는 200℃ 내지 600℃로, 압력은 0.5Torr 내지 5Torr로 설정하는 단계; 및
    상기 플라즈마 반응기에 플라즈마를 발생시켜, 상기 기판 상에 고유전 탄화수소 박막을 형성하는 단계;를 포함하며,
    상기 고유전 탄화수소 박막은 비정질 구조로 유전 상수가 20 이상이 되도록 상기 플라즈마 반응기 내의 온도를 조절하는 고유전 탄화수소 박막의 제조 방법.
  2. 제1항에 있어서,
    상기 고유전 탄화수소 박막의 등가 산화막 두께가 0.2㎚일 때,
    1V에서의 누설 전류는 0.25A/㎠ 이하이고,
    절연 강도는 5MV/㎝ 이상인 것을 특징으로 하는 고유전 탄화수소 박막의 제조 방법.
  3. 활성 영역을 정의하는 기판;
    상기 활성 영역 상에 배치되는 게이트 유전막;
    상기 게이트 유전막 상에 배치되는 게이트 전극;
    상기 게이트 전극의 양측의 상기 활성 영역에 배치되는 소스/드레인 영역;을 포함하고,
    상기 게이트 유전막은 제1항의 방법에 의해 제조된 고유전 탄화수소 박막을 포함하는 것을 특징으로 하는 반도체 소자.
  4. 제3항에 있어서,
    상기 게이트 유전막은 적층된 복수의 유전층으로 구성되고,
    상기 복수의 유전층 중에서 하나의 유전층은 상기 고유전 탄화수소 박막으로 구성되고,
    상기 복수의 유전층 중에서 나머지 유전층은 실리콘 산화막, 실리콘 산질화막, 하프늄 산화막, 지르코늄 산화막, 탄탈륨 산화막, 및 티타늄 산화막 중에서 선택된 물질로 구성되는 것을 특징으로 하는 반도체 소자.
  5. 제4항에 있어서,
    상기 고유전 탄화수소 박막으로 구성되는 유전층은,
    상기 복수의 유전층 중에서 상기 기판에서 가장 먼 것을 특징으로 하는 반도체 소자.
  6. 제4항에 있어서,
    상기 고유전 탄화수소 박막으로 구성되는 유전층은,
    상기 복수의 유전층 중에서 상기 기판에서 가장 가까운 것을 특징으로 하는 반도체 소자.
  7. 활성 영역을 정의하는 기판;
    상기 기판에 매몰되고, 상기 활성 영역을 가로질러 제1 방향으로 연장되는 워드 라인;
    상기 워드 라인을 둘러싸는 게이트 유전막;
    상기 기판 상에서, 상기 워드 라인과 교차하는 제2 방향으로 연장되는 비트 라인;을 포함하고,
    상기 게이트 유전막은 제1항의 방법에 의해 제조된 고유전 탄화수소 박막을 포함하는 것을 특징으로 하는 반도체 소자.
  8. 기판 상에서 제1 방향으로 연장되는 핀형 활성 영역;
    상기 기판 상에서 상기 핀형 활성 영역과 교차하는 제2 방향으로 연장되는 게이트 구조물;
    상기 게이트 구조물의 양측에 배치되는 소스/드레인 영역; 및
    상기 소스/드레인 영역에 전기적으로 연결되는 컨택 구조물;을 포함하고,
    상기 게이트 구조물은 게이트 유전막 및 게이트 전극을 포함하고,
    상기 게이트 유전막은 제1항의 방법에 의해 제조된 고유전 탄화수소 박막을 포함하는 것을 특징으로 하는 반도체 소자.
  9. 기판으로부터 돌출되고 제1 방향으로 연장되는 핀형 활성 영역;
    상기 핀형 활성 영역의 상면으로부터 서로 이격되어 배치되며 채널 영역을 가지는 복수의 반도체 패턴;
    상기 복수의 반도체 패턴을 둘러싸며 상기 제1 방향에 수직한 제2 방향으로 연장되고, 상기 복수의 반도체 패턴의 최상부에 배치되며 상기 제2 방향으로 연장되는 메인 게이트 전극과 상기 복수의 반도체 패턴의 사이에 배치되는 서브 게이트 전극을 포함하는 게이트 전극;
    상기 게이트 전극과 상기 복수의 반도체 패턴의 사이에 배치되는 게이트 유전막;
    상기 메인 게이트 전극의 양 측벽 상에 배치되는 스페이서; 및
    상기 게이트 전극의 양측에 배치되며 상기 복수의 반도체 패턴에 연결되고, 상기 스페이서의 하면과 접촉하는 소스/드레인 영역;을 포함하고,
    상기 게이트 유전막은 제1항의 방법에 의해 제조된 고유전 탄화수소 박막을 포함하는 것을 특징으로 하는 반도체 소자.
  10. 제7항 내지 제9항 중 어느 하나에 있어서,
    상기 게이트 유전막은 적층된 복수의 유전층으로 구성되고,
    상기 복수의 유전층 중에서 하나의 유전층은 상기 고유전 탄화수소 박막으로 구성되고,
    상기 복수의 유전층 중에서 나머지 유전층은 실리콘 산화막, 실리콘 산질화막, 하프늄 산화막, 지르코늄 산화막, 탄탈륨 산화막, 및 티타늄 산화막 중에서 선택된 물질로 구성되는 것을 특징으로 하는 반도체 소자.
PCT/KR2021/007766 2020-06-22 2021-06-21 고유전 탄화수소 박막 및 이를 이용한 반도체 소자 WO2021261866A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0076057 2020-06-22
KR1020200076057A KR102387926B1 (ko) 2020-06-22 2020-06-22 고유전 탄화수소 박막 및 이를 이용한 반도체 소자

Publications (1)

Publication Number Publication Date
WO2021261866A1 true WO2021261866A1 (ko) 2021-12-30

Family

ID=79176887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007766 WO2021261866A1 (ko) 2020-06-22 2021-06-21 고유전 탄화수소 박막 및 이를 이용한 반도체 소자

Country Status (2)

Country Link
KR (1) KR102387926B1 (ko)
WO (1) WO2021261866A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261868A1 (ko) * 2020-06-22 2021-12-30 울산과학기술원 고유전 탄화수소 박막을 이용한 커패시터 및 이를 이용한 반도체 소자
WO2021261867A1 (ko) * 2020-06-22 2021-12-30 울산과학기술원 고유전 탄화수소 박막 및 이를 이용한 반도체 소자

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230169654A (ko) * 2022-06-09 2023-12-18 충남대학교산학협력단 고유전 비정질 불소화 탄소 박막, 이의 제조방법 및 이를 이용한 반도체 또는 커패시터 소자
KR20240037609A (ko) * 2022-09-15 2024-03-22 충남대학교산학협력단 고유전 비정질 불소화 탄소 초박막층을 포함하는 반도체 구조물과 반도체 소자 및 그 제조방법
KR20240037610A (ko) * 2022-09-15 2024-03-22 충남대학교산학협력단 고유전 비정질 불소화 탄소 박막 게이트 유전층을 갖는 반도체 소자 및 그 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010087189A (ko) * 2000-02-17 2001-09-15 조셉 제이. 스위니 비정질 탄소층 증착 방법
JP2002134737A (ja) * 2000-10-25 2002-05-10 Toshiba Corp 電界効果トランジスタ及びその製造方法
KR20030002993A (ko) * 2001-06-29 2003-01-09 학교법인 포항공과대학교 저유전체 박막의 제조방법
KR100960759B1 (ko) * 2006-07-07 2010-06-01 어플라이드 머티어리얼스, 인코포레이티드 플라즈마 처리 방법
KR20170091434A (ko) * 2016-02-01 2017-08-09 삼성전자주식회사 집적회로 소자 및 그 제조 방법
WO2021061868A1 (en) * 2019-09-23 2021-04-01 Kenton Brett Positioning system for object processing
WO2021261867A1 (ko) * 2020-06-22 2021-12-30 울산과학기술원 고유전 탄화수소 박막 및 이를 이용한 반도체 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010087189A (ko) * 2000-02-17 2001-09-15 조셉 제이. 스위니 비정질 탄소층 증착 방법
JP2002134737A (ja) * 2000-10-25 2002-05-10 Toshiba Corp 電界効果トランジスタ及びその製造方法
KR20030002993A (ko) * 2001-06-29 2003-01-09 학교법인 포항공과대학교 저유전체 박막의 제조방법
KR100960759B1 (ko) * 2006-07-07 2010-06-01 어플라이드 머티어리얼스, 인코포레이티드 플라즈마 처리 방법
KR20170091434A (ko) * 2016-02-01 2017-08-09 삼성전자주식회사 집적회로 소자 및 그 제조 방법
WO2021061868A1 (en) * 2019-09-23 2021-04-01 Kenton Brett Positioning system for object processing
WO2021261867A1 (ko) * 2020-06-22 2021-12-30 울산과학기술원 고유전 탄화수소 박막 및 이를 이용한 반도체 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM DONG-OK; HONG HYO-KI; SEO DONG-BUM; TRUNG TRAN NAM; HWANG CHAN-CUK; LEE ZONGHOON; KIM EUI-TAE: "Novel high-k gate dielectric properties of ultrathin hydrocarbon films for next-generation metal-insulator-semiconductor devices", CARBON, ELSEVIER OXFORD, GB, vol. 158, 7 November 2019 (2019-11-07), GB , pages 513 - 518, XP086014599, ISSN: 0008-6223, DOI: 10.1016/j.carbon.2019.11.019 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261868A1 (ko) * 2020-06-22 2021-12-30 울산과학기술원 고유전 탄화수소 박막을 이용한 커패시터 및 이를 이용한 반도체 소자
WO2021261867A1 (ko) * 2020-06-22 2021-12-30 울산과학기술원 고유전 탄화수소 박막 및 이를 이용한 반도체 소자

Also Published As

Publication number Publication date
KR102387926B1 (ko) 2022-04-19
KR20210157796A (ko) 2021-12-29

Similar Documents

Publication Publication Date Title
WO2021261866A1 (ko) 고유전 탄화수소 박막 및 이를 이용한 반도체 소자
US8361853B2 (en) Graphene nanoribbons, method of fabrication and their use in electronic devices
CN110911492B (zh) 电子器件和制造该电子器件的方法
WO2021261867A1 (ko) 고유전 탄화수소 박막 및 이를 이용한 반도체 소자
KR101129930B1 (ko) 반도체 소자 및 그의 형성 방법
US20230272554A1 (en) Boron nitride layer, apparatus including the same, and method of fabricating the boron nitride layer
US11854895B2 (en) Transistors with channels formed of low-dimensional materials and method forming same
US20230275125A1 (en) Transistor and method for fabricating the same
WO2021261868A1 (ko) 고유전 탄화수소 박막을 이용한 커패시터 및 이를 이용한 반도체 소자
Xiao et al. High Performance (V th~ 0 V, SS~ 69 mV/dec, I On/I Off~ 10 10) Thin-Film Transistors Using Ultrathin Indium Oxide Channel and SiO 2 Passivation
WO2021251800A1 (ko) 고유전막 및 이를 포함하는 반도체 또는 커패시터 소자
US11417729B2 (en) Transistors with channels formed of low-dimensional materials and method forming same
WO2024058355A1 (ko) 고유전 비정질 불소화 탄소 박막 게이트 유전층을 갖는 반도체 소자 및 그 제조방법
WO2024058356A1 (ko) 고유전 비정질 불소화 탄소 박막을 이용한 커패시터, 그 제조방법 및 이를 이용한 반도체
WO2024058354A1 (ko) 고유전 비정질 불소화 탄소 초박막층을 포함하는 반도체 구조물과 반도체 소자 및 그 제조방법
KR102559901B1 (ko) 비정질 탄화수소 박막의 패시베이션에 의한 전하 채널층의 전하이동도 향상 방법
WO2020141850A1 (ko) 탄화수소 박막, 탄화수소 박막의 제조방법 및 탄화수소 박막을 포함하는 반도체 소자
WO2023239133A1 (ko) 고유전 비정질 불소화 탄소 박막, 이의 제조방법 및 이를 이용한 반도체 또는 커패시터 소자
KR102314727B1 (ko) 탄화수소 박막, 탄화수소 박막의 제조방법 및 탄화수소 박막을 포함하는 반도체 소자
CN113644109B (zh) 晶体管及其制备方法
Heo et al. Graphene Based Tunable Schottky Diode for High Performance Devices
KR20230156031A (ko) 강유전성 박막의 형성 방법, 이를 구비하는 반도체 장치
KR20030054929A (ko) 원자층 증착을 이용한 커패시터 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828048

Country of ref document: EP

Kind code of ref document: A1