WO2021261501A1 - 電圧制御圧電素子発振器 - Google Patents

電圧制御圧電素子発振器 Download PDF

Info

Publication number
WO2021261501A1
WO2021261501A1 PCT/JP2021/023687 JP2021023687W WO2021261501A1 WO 2021261501 A1 WO2021261501 A1 WO 2021261501A1 JP 2021023687 W JP2021023687 W JP 2021023687W WO 2021261501 A1 WO2021261501 A1 WO 2021261501A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
varicap
mos
electrode
bias
Prior art date
Application number
PCT/JP2021/023687
Other languages
English (en)
French (fr)
Inventor
昌明 神谷
Original Assignee
インターチップ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターチップ株式会社 filed Critical インターチップ株式会社
Publication of WO2021261501A1 publication Critical patent/WO2021261501A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/93Variable capacitance diodes, e.g. varactors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device

Definitions

  • the present invention relates to a voltage controlled piezoelectric element oscillator that can significantly suppress deterioration of phase noise due to flicker noise peculiar to a MOS type varicap.
  • FIG. 2 is an example of a circuit of a voltage controlled piezoelectric element oscillator (VCXO) using a MOS type varicap using a conventional MOS capacitor as a varicap.
  • This circuit has external connection terminals X1 and X2 for connecting a piezoelectric element such as a crystal oscillator arranged externally.
  • the CMOS inverter 31 has a CMOS inverter 31 in which a feedback resistor Rf32 is connected in parallel between an input terminal 45 and an output terminal 46, and these are integrated to form an amplifier circuit.
  • a control resistor Rd33 and a capacitor Cpd35 are arranged in series between the output terminal 46 of the amplifier circuit and the external terminal X2, and a capacitor Cpg34 is connected between the input terminal 45 of the amplifier circuit and the external terminal X1. Will be done.
  • the control voltage VC36 is connected to the X1 terminal via the bias resistor Rv137, and the X1 terminal is further connected to the gate of the MOS type varicap 39.
  • the source and / or drain of the MOS type varicap 39 is connected to the power supply (plus side) via the resistor Rup 41.
  • the control voltage VC36 is connected to the X2 terminal via the bias resistor Rv238, and the X2 terminal is further connected to the gate of the MOS type varicap 40.
  • the source and / or drain of the MOS type varicap 40 is connected to the power supply (plus side) via the resistor Rup42.
  • the P-type semiconductor substrate or P-well on which the MOS-type varicaps 39 and 40 are formed is ground-connected.
  • the output of the CMOS inverter 31 serves as a supply source of a clock signal to the next-stage circuit including, for example, the CMOS inverter 48, the level shifter 49, and the output buffer 50.
  • a regulator 47 which is a regulated power supply, is used as an example of the VDD voltage of the CMOS inverter, but it is not always necessary when a stable power supply with low noise can be used.
  • FIG. 3 is a diagram modeling the flicker noise of the MOS type varicap. This flicker noise is indicated by the power supply Vn inserted in the gate G.
  • the sum of the control voltage of the VC terminal 36 and the power supply Vn is applied to the MOS type varicaps 39 and 40 as an effective control voltage. Therefore, the capacitance of the MOS type varicap fluctuates due to the flicker noise, which causes the frequency fluctuation of the oscillation circuit, which appears as deterioration of the phase noise.
  • FIG. 4 is a diagram showing an equivalent circuit for obtaining a MOS interface voltage fluctuation of a MOS type varicap due to flicker noise in the circuit on the X1 terminal side of FIG. 2. Since the equivalent circuit on the X2 side is the same, the circuit on the X1 side will be described below.
  • the MOS type varicap is represented by a series connection of a capacitor 73 (insulating film capacitance Cox) with an insulating film, a depletion layer capacitor 74 (depletion layer capacitance Cd) due to the depletion layer, and flicker noise Vn.
  • Vch0 V CH0
  • is (noise) frequency
  • Cd0 depletion layer capacitance
  • Cox0 is (gate electrode) insulating film capacitance
  • Vn flicker noise voltage
  • Rv bias resistance
  • the frequency fc which is a guideline for the high and low frequencies
  • FIG. 6 is a diagram (graph) comparing MOS interface voltage fluctuations with respect to MOS gate noise Vn in the conventional and MOS type varicap circuits of the present invention.
  • the horizontal axis shows the noise frequency and the vertical axis shows the MOS interface voltage fluctuation.
  • the curve M is the variation of the MOS interface voltage due to the gate noise Vn in the conventional MOS type varicap circuit, and shows the variation of the interface voltage Vch0 in FIG.
  • the fluctuation of the MOS interface voltage is large (in this example, 80% at about 80 kHz or less), and at high frequencies, the fluctuation of the MOS interface voltage becomes small, and it becomes almost 0 at high frequencies of 10 MHz or higher.
  • flicker noise which is said to be generated by randomly trapping carriers such as electrons and holes in the energy level existing at the MOS interface, is also called (1 / f noise), and at low frequencies.
  • the noise is large and becomes smaller in inverse proportion to the noise frequency as the frequency becomes higher, and the characteristic is that it is buried in the background noise in the frequency region of 10 KHz to 100 KHz.
  • the fluctuation Vch0 of the interface voltage at a low frequency becomes large.
  • the capacitance fluctuation and the oscillation frequency fluctuation become large.
  • FIG. 9 is a diagram showing a phase noise characteristic of a VCXO (voltage controlled piezoelectric element oscillator). The horizontal axis shows the oscillation frequency, and the vertical axis shows the phase noise (phase noise). Phase noise (phase noise) is represented by the amount of phase fluctuation (dBc / Hz) per frequency.
  • the PN diode type varicap utilizes the change in the capacity of the depletion layer that occurs in the PN junction, it is difficult to control the impurity concentration at the junction, and there is a large capacity variation between elements and manufacturing lots. There is. Further, when a CMOS device is used for an oscillation circuit or an IC, there is a problem that the consistency with the CMOS process is poor. On the other hand, since the MOS type varicap uses the capacity of the depletion layer near the MOS interface, it has the advantages that the impurity concentration can be easily controlled and the variation between elements and manufacturing lots is small. Further, since the MOS type varicap is a MOS type, it has excellent consistency with the CMOS process and stable production is possible.
  • the present invention provides a VCXO oscillator circuit that uses a MOS varicap and achieves a phase noise characteristic equivalent to that of a PN diode varicap.
  • the present invention provides a circuit for reducing phase noise caused by flicker noise, which is a drawback of the conventional MOS type varicap, and has the following features.
  • the present invention is a voltage-controlled piezoelectric element oscillator using a MOS-type varicap, wherein the source and / or drain of the MOS transistor structure is one electrode (referred to as the first electrode) of the varicap, and the MOS transistor.
  • a substrate (semiconductor substrate or P-well) of the structure is used as the other electrode (referred to as a second electrode) of the varicap, and in the varicap, a bias sufficient for the MOS interface to strongly invert to the gate electrode of the MOS transistor structure.
  • a voltage (referred to as a first bias voltage) is applied via a bias resistor (referred to as a first bias resistor), and a frequency control voltage is applied via a terminal to which a bias resistor (referred to as a second bias resistor) and a piezoelectric element are connected. It is a voltage-controlled piezoelectric element oscillator characterized by being applied to a first electrode.
  • the output voltage of the booster circuit arranged inside the voltage control piezoelectric element oscillator Made from.
  • the clock input signal used in the booster circuit uses the clock signal of the voltage-controlled piezoelectric element oscillator, and the output capacitance of the booster circuit is smaller than the gate insulating film capacitance constituting the varicap. It is characterized by doing things.
  • the source and / or drain of the MOS varicap is one electrode (first electrode), and the substrate of the MOS varicap (semiconductor substrate) is the other of the varicaps.
  • a bias voltage (called a first bias voltage) sufficient to strongly invert the MOS interface of the MOS varicap is applied to the gate electrode of the MOS varicap, and the frequency control voltage VC is biased. It is applied to the first electrode via a resistor (referred to as a second bias resistor).
  • the MOS type varicap of the present invention is less susceptible to flicker noise caused by the MOS interface state, which is a problem in the conventional MOS type varicap, and has a low phase noise comparable to that of the PN diode type varicap. realizable. Since the MOS type varicap has the same structure as before, it has a structure in which the characteristics are determined by the impurity concentration at the MOS interface, the impurity concentration can be easily controlled, and the variation between elements and manufacturing lots is small. Have. Furthermore, it is highly consistent with the CMOS process, and it is possible to reduce the manufacturing cost of the IC.
  • FIG. 1 is a diagram showing an embodiment of a circuit of the voltage controlled piezoelectric element oscillator (VCXO) of the present invention using a MOS capacitor as a varicap.
  • FIG. 2 is a diagram showing an embodiment of a circuit of a conventional voltage controlled piezoelectric element oscillator (VCXO) using a MOS capacitor as a varicap.
  • FIG. 3 is a diagram showing a circuit model of flicker noise of a MOS type varicap.
  • FIG. 4 is a diagram showing an equivalent circuit for obtaining a MOS interface voltage fluctuation due to flicker noise of a conventional MOS type varicap circuit.
  • FIG. 5 is a diagram showing an equivalent circuit for obtaining a MOS interface voltage fluctuation due to flicker noise of the MOS type varicap circuit of the present invention.
  • FIG. 6 is a diagram comparing MOS interface voltage fluctuations (filtering characteristics for gate noise) due to flicker noise in the conventional and MOS type varicap circuits of the present invention.
  • FIG. 7 is a diagram showing an embodiment of a booster circuit according to the present invention in which the output voltage changes depending on the frequency control voltage.
  • FIG. 8 is a diagram showing the output voltage (Vb) characteristics of the booster circuit according to the present invention in the circuit shown in FIG. 7.
  • FIG. 9 is a diagram showing the phase noise characteristics of the voltage controlled piezoelectric element oscillator.
  • FIG. 1 is a diagram showing an example of a circuit of a voltage controlled piezoelectric element oscillator (VCXO) using a MOS type varicap using the MOS capacitor of the present invention as a varicap. Since it is similar to the conventional embodiment shown in FIG. 2, the same reference numerals are given and detailed description thereof will be omitted. The difference from the conventional embodiment shown in FIG. 2 is the circuit connection of the MOS type varicap. In the conventional MOS type varicap, the (frequency) control voltage VC and the X1 (or X2) terminal are the MOS capacitors.
  • VCXO voltage controlled piezoelectric element oscillator
  • the (frequency) control voltage VC and X1 (or X2) terminals are connected to one or both of the source and drain of the MOS capacitor, and the MOS capacitor is further connected.
  • a bias voltage sufficient to strongly invert the MOS interface of the MOS capacitor is applied to the gate electrode of the above via a bias resistor.
  • the control voltage VC36 is connected to the X1 terminal via the bias resistor Rv137, and the X1 terminal is further connected to the source S and / or the drain D of the MOS type varicap 21.
  • the gate electrode G is connected to the bias voltage connection terminal 26 via the bias resistor Rb123, and the bias voltage connection terminal 26 is connected to the bias voltage generator (DC booster) 25.
  • the DC booster 25 applies a bias voltage Vb sufficient for strongly reversing the MOS gate interface of the MOS type varicap 21.
  • the control voltage VC36 is connected to the X2 terminal via the bias resistor Rv238, and the X2 terminal is further connected to the source S and / or the drain D of the MOS type varicap 22.
  • the gate electrode G is connected to the bias voltage connection terminal 26 via the bias resistor Rb224, and the bias voltage connection terminal 26 is connected to the DC booster 25.
  • the DC booster 25 applies a bias voltage Vb sufficient to strongly invert the MOS interface directly under the gate electrode of the MO type varicap 22.
  • the control voltage Vc is applied to the source / drain of the MOS type varicap, but the control voltage Vc is easily depleted from the source / drain through the strong inversion layer by forming the strong inversion layer. It is applied to the layer (capacitor).
  • FIG. 5 is a diagram showing an equivalent circuit for obtaining a MOS interface voltage fluctuation due to gate noise Vn of the MOS type varicap circuit of the present invention. That is, FIG. 5 can be considered as an equivalent circuit of the circuit including the MOS type varicap 21 or 22 in FIG.
  • Vc Connect to 81.
  • the source and / or drain of the MOS transistor structure is connected to the ground 86 via the strong inversion layer 89 and the depletion layer capacitor 84 of the MOS type varicap.
  • the gate-side terminal of the MOS type varicap is connected to the capacitor 88 via the resistor Rb (same as Rb1 or Rb2 in FIG. 1) 87.
  • the A terminal in FIG. 5 is the same as the bias voltage connection terminal 26 shown in FIG. 1, and the voltage from the voltage amplifier (DC booster) is applied, but in FIG. 5, the capacitor 88 is replaced as an equivalent circuit.
  • the gate noise Vn85 is inserted in series between the insulating film capacitor 83 and the bias resistor Rb87.
  • the MOS interface voltage (also referred to as channel voltage) fluctuation VCH (Vch) due to MOS noise in the MOS type varicap circuit of the present invention shown in FIG. 5 is
  • the MOS type varicap circuit of the present invention can realize a significant noise reduction as compared with the conventional MOS type varicap circuit. Since the real part of VCH is not a function of frequency, it takes the maximum value when the imaginary part becomes zero. The frequency ⁇ p at that time is
  • the noise reduction rate of the high frequency gate noise on the channel voltage is about the ratio of Rv and Rb.
  • the MOS type varicap circuit of the present invention reduces noise even for high frequency noise as compared with the conventional MOS type varicap circuit. Can be done.
  • the flicker noise in the frequency region of 200 KHz or higher is almost buried in the background noise, this reduction effect cannot be said to be large, but it is possible to obtain better noise than the conventional circuit in the entire frequency region.
  • the graph of the MOS interface voltage (channel voltage) fluctuation in the MOS type varicap circuit of the present invention is the N curve in FIG.
  • FIG. 6 is a graph of MOS interface voltage fluctuation when noise Vn has no frequency dependence and is constant. As shown in the N curve, the MOS interface voltage fluctuation in the MOS type varicap circuit of the present invention is considerably smaller than that of the conventional MOS type varicap (M curve). In particular, considering that the flicker noise has a frequency characteristic of 1 / f, it can be seen that the noise reduction effect in the low frequency region of the present invention is extremely large.
  • FIG. 7 is a diagram showing an embodiment of a booster circuit according to the present invention in which the output voltage changes depending on the frequency control voltage.
  • the clock signal 91 is input to the booster circuit including the capacitor 93 and the diodes 94 and 95 via the inverter 92 as a buffer driver. Since the frequency control voltage VC is connected to the diode 94, the sum voltage of VDD and VC is output as the voltage of Vb of the terminal 99. Since there is a voltage drop in the forward direction in an actual diode, the voltage of Vb is the sum of Vdd and VC voltage, and a voltage lower by this voltage drop is output from Vb.
  • FIG. 8 shows this.
  • FIG. 8 is a diagram showing the characteristics of the output voltage (Vb) of the booster circuit with respect to the frequency control voltage VC. That is, the output voltage Vb of the booster circuit increases / decreases in conjunction with Vc.
  • the clock signal 91 in FIG. 7 the clock signal in the stage after the level shifter 49 shown in FIG. 1 is used.
  • the DC booster and the output voltage Vb do not include signals other than the frequency components of the clock signal of the oscillator, the phase noise of the clock output signal is not deteriorated.
  • this Vb increases / decreases in conjunction with the frequency control voltage Vc and is always maintained at a higher voltage than Vc. Therefore, a strong inversion layer can be formed at the interface of the MOS varicap, and the MOS varicap can be formed. Since only the voltage of the voltage difference between Vb and Vc is applied to the gate insulating film, an excessive voltage is not applied to the gate insulating film of the MOS varicap.
  • the gate insulating film is not destroyed and the reliability of the gate insulating film of the MOS varicap is improved. Does not deteriorate.
  • the voltage applied to this gate insulating film is such that the gate voltage is set to be smaller than the gate capacitance Cox if the output capacitance Cup of the DC booster 25 is set to be smaller than the gate capacitance Cox even in the operating state in which X1 or X2 vibrates greatly due to the oscillation signal. Since it moves up and down in conjunction with X1 and X2, there is no concern that it will become excessive.
  • the source and / or drain of the MOS transistor structure is one electrode (first electrode), and the substrate of the MOS transistor structure is the other of the varicaps.
  • a bias voltage (called the first bias voltage) sufficient to strongly invert the MOS interface of the MOS transistor structure is applied to the gate electrode of the MOS transistor structure as an electrode (called the second electrode), and the frequency control voltage is the bias resistance (called the bias resistance). It is applied to the first electrode via a second bias resistor).
  • the MOS type varicap of the present invention is less susceptible to flicker noise caused by the MOS interface state, which is a problem in the conventional MOS type varicap, and has a low phase noise comparable to that of the PN diode type varicap. realizable. It goes without saying that the content can be applied to other parts of the specification without any contradiction even if the contents described and explained in a certain part of the specification are not described without any contradiction. Further, it is needless to say that the embodiment is an example and can be modified in various ways without departing from the gist, and the scope of rights of the present invention is not limited to the embodiment.
  • the MOS type varicap of the present invention can be used not only for a voltage-controlled piezoelectric element oscillator but also for a circuit using a conventional varicap such as a phase-locked loop or a frequency synthesizer.
  • inversion layer 59, 60 ... depletion layer, 71 ... control voltage, 72 ... bias resistance, 73 ... Capacitor, 74 ... Capacitor, 75 ... Flicker noise, 76 ... Ground, 81 ... control voltage, 82 ... resistance, 83 ... insulating film capacitor, 84 ... depletion layer capacitor, 85 ... Flicker noise, 86 ... Ground, 87 ... Resistance, 88 ... Capacitor, 91 ... Clock signal, 92 ... Inverter, 93 ... Capacitor, 94, 95 ... Diode, 97 ... Capacitor,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

【課題】VCXOで使用されるMOS型バリキャップのフリッカノイズを低減する手段を提供する。 【解決手段】本発明は、MOS型バリキャップを用いた電圧制御圧電素子発振器であって、MOSトランジスタ構造のソースおよび/またはドレインを前記バリキャップの一方の電極(第1電極という)とし、MOSトランジスタ構造のサブストレートを前記バリキャップの他方の電極(第2電極という)とし、前記バリキャップにおいて、MOSトランジスタ構造のゲート電極にMOSトランジスタ構造のMOS界面が強反転するのに十分なバイアス電圧(第1バイアス電圧という)がバイアス抵抗(第1バイアス抵抗という)を介して印加されており、周波数制御電圧はバイアス抵抗(第2バイアス抵抗という)および圧電素子が接続する端子を介して前記第1電極に印加されることを特徴とする電圧制御圧電素子発振器である。

Description

電圧制御圧電素子発振器
本発明は、MOS型バリキャップ特有のフリッカノイズによる位相ノイズの劣化を大幅に抑えることを可能にした電圧制御圧電素子発振器に関する。
水晶等の圧電素子を用いた電圧制御圧電素子発振器において、電圧制御キャパシタとして、PNダイオードやMOSキャパシタ等のバリキャップ(可変容量ダイオード)が用いられている。図2は、従来のMOSキャパシタをバリキャップとして使用したMOS型バリキャップを用いた電圧制御圧電素子発振器(VCXO)の回路の実施例である。本回路は、外部に配置される水晶振動子等の圧電素子を接続するための外部接続端子X1およびX2を有する。また、CMOSインバータ31を有し、CMOSインバータ31は、入力端子45と出力端子46の間に帰還抵抗Rf32が並列に接続されており、これら一体で増幅回路を構成する。この増幅回路の出力端子46と外部端子X2の間には、制御抵抗Rd33およびコンデンサCpd35が直列に配置されており、また増幅回路の入力端子45と外部端子X1の間には、コンデンサCpg34が接続される。
制御電圧VC36は、バイアス抵抗Rv137を介してX1端子に接続し、さらにX1端子はMOS型バリキャップ39のゲートに接続する。MOS型バリキャップ39のソースおよび/またはドレインは抵抗Rup41を介して電源(プラス側)に接続する。同様に、制御電圧VC36は、バイアス抵抗Rv238を介してX2端子に接続し、さらにX2端子はMOS型バリキャップ40のゲートに接続する。MOS型バリキャップ40のソースおよび/またはドレインは抵抗Rup42を介して電源(プラス側)に接続する。MOS型バリキャップ39および40が形成されるP型半導体基板またはPウエルはグランド接続する。尚、CMOSインバータ31の出力は、たとえば、CMOSインバータ48、レベルシフタ49、さらには出力バッファ50で構成される次段の回路へのクロック信号の供給源としての役割を果たしている。また、図2では、CMOSインバータのVDD電圧の一例として安定化電源であるレギュレータ47を使用しているが、低ノイズで安定した電源を使用可能な場合は必ずしも必要としない。
図3は、MOS型バリキャップのフリッカノイズをモデル化した図である。このフリッカノイズはゲートGに挿入された電源Vnで示されている。図2における回路においてはMOS型バリキャップ39、40にはVC端子36の制御電圧とこの電源Vnの和が実行的な制御電圧として印加されることになる。従ってフリッカノイズによりMOS型バリキャップの容量が変動し、これにより発振回路の周波数変動を起こすため、位相ノイズの劣化として現れる。
MOS型バリキャップはフリッカノイズVnに伴う界面電圧変動による容量変動は、MOSトランジスタのサイズが大きいほど大きくなる。図4は、図2のX1端子側の回路におけるフリッカノイズによるMOS型バリキャップのMOS界面電圧変動を求めるための等価回路を示す図である。X2側の等価回路も同様であるのでX1側の回路について以下に記述する。MOS型バリキャップは絶縁膜によるキャパシタ73(絶縁膜容量Cox)、空乏層に起因する空乏層キャパシタ74(空乏層容量Cd)及びフリッカノイズVnの直列接続で現わされている。空乏層キャパシタ74(空乏層容量Cd)の1端はグランド76に接続し、絶縁膜キャパシタ73(絶縁膜容量Cox)の他端はX1端子に接続されている。X1端子には抵抗Rv72を介して、Vc端子に接続され、Vc端子には制御電圧71(V=Vc)が印加されている。フリッカノイズVnによる絶縁膜キャパシタ73と空乏層キャパシタ74の空乏層界面の電圧変動をVch0とする。
Vch0(VCH0)は、
Figure JPOXMLDOC01-appb-M000001
で示される。(ωは(ノイズ)周波数、Cd0は空乏層容量、Cox0は(ゲート電極)絶縁膜容量、Vnはフリッカノイズ電圧、Rvはバイアス抵抗)ωが充分低ければ、
Figure JPOXMLDOC01-appb-M000002
また、ωが充分高ければ、
Figure JPOXMLDOC01-appb-M000003
尚、上記において周波数の高低の目安の周波数fcは、
Figure JPOXMLDOC01-appb-M000004
となる。たとえば、Cd0=10pF、Cox=35pF、Rv(抵抗)=150kΩとすると、fc=83kHzである。以上から、これをグラフにすると、MOS型バリキャップ回路におけるMOSゲートノイズによるMOS界面電圧(チャネル電圧とも言う)変動VCH0(Vch0と同じ)は図6のM曲線となる。
特願2016-523405
図6は、従来および本発明のMOS型バリキャップ回路におけるMOSゲートノイズVnに対するMOS界面電圧変動を比較した図(グラフ)である。横軸はノイズ周波数で縦軸はMOS界面電圧変動を示す。曲線Mは、従来のMOS型バリキャップ回路におけるゲートノイズVnによるMOS界面電圧変動であり、図4における界面電圧Vch0の変動を示している。低周波ではMOS界面電圧の変動が大きく(この例では約80kHz以下では80%)、高周波になるに従いMOS界面電圧の変動が小さくなり、10MHz以上の高周波では殆ど0となる。一方、MOS界面に存在するエネルギー準位に電子や正孔等のキャリアがランダムにトラップされることで発生すると言われているフリッカノイズは(1/f雑音)とも呼ばれており、低周波でノイズが大きく、高周波になるに従いノイズ周波数に反比例して小さくなり、10KHzから100KHzの周波数領域ではバックグランドノイズに埋没する特性となっている。ゲートノイズに対し図6の曲線Mで示される周波数特性を有する従来のMOS型バリキャップ回路において、1/f雑音と呼ばれるフリッカノイズが発生すると、低周波での界面電圧の変動Vch0は大きくなり、その結果容量変動ひいては発振周波数変動が大きくなる。
このように従来のMOS型バリキャップは、MOS構造に起因するフリッカノイズ(1/fノイズ)に対し位相ノイズが大きく劣化するため、低位相ノイズの発振器においては、バリキャップとしてフリッカノイズがないPNダイオードバリキャップを用いることが多い。図9は、VCXO(電圧制御圧電素子発振器)の位相ノイズ特性を示す図である。横軸に発振周波数、縦軸に位相雑音(位相ノイズ)を示す。位相ノイズ(位相雑音)はその周波数当たりの位相変動量(dBc/Hz)で表す。VCXOのバリキャップにPNダイオードを用いた場合と従来のMOSを用いた場合を示す。どちらも低周波領域(1kHz~10kHz以下)では位相ノイズが大きくなるが、特にMOSを用いた場合に顕著である。この差はMOS特有のフリッカノイズによる。従って、位相ノイズを下げるには、MOS型バリキャップよりPNダイオード型バリキャップを使用した方が良いことが分かる。
しかし、PNダイオード型バリキャップは、PN接合に生ずる空乏層容量変化を利用しているので、接合部での不純物濃度制御が困難であり、素子間や製造ロット間での容量ばらつきが大きいという問題がある。さらに、発振回路等やICにCMOSデバイスを利用する場合は、CMOSプロセスとの整合性が悪いという問題もある。これに対して、MOS型バリキャップはMOS界面近傍の空乏層容量を用いるため、不純物濃度制御が容易であり、素子間や製造ロット間のばらつきが小さいという利点を持つ。さらに、MOS型バリキャップはMOS型であることからCMOSプロセスとの整合性に優れていて安定生産が可能である。従って、フリッカノイズによる位相ノイズを減少できれば、MOSバリキャップを採用するメリットは大きい。特に近未来通信には5G(第5世代移動体通信システム)~6G(第6世代移動体通信システム)と高速通信が要求されており、位相ノイズの低減が要求されている。このような高速通信用デバイスに対応するために、本発明は、MOSバリキャップを用いて、PNダイオードバリキャップと同等の位相ノイズ特性を達成するVCXO発振回路を提供するものである。
本発明は、従来のMOS型バリキャップの欠点であるフリッカノイズに起因する位相雑音を低減する回路を提供するものであり、以下の特徴を有する。
(1)本発明は、MOS型バリキャップを用いた電圧制御圧電素子発振器であって、MOSトランジスタ構造のソースおよび/またはドレインを前記バリキャップの一方の電極(第1電極という)とし、MOSトランジスタ構造のサブストレート(半導体基板またはPウエル)を前記バリキャップの他方の電極(第2電極という)とし、前記バリキャップにおいて、MOSトランジスタ構造のゲート電極にMOS界面が強反転するのに十分なバイアス電圧(第1バイアス電圧という)がバイアス抵抗(第1バイアス抵抗という)を介して印加されており、周波数制御電圧はバイアス抵抗(第2バイアス抵抗という)および圧電素子が接続する端子を介して前記第1電極に印加されることを特徴とする電圧制御圧電素子発振器である。
(2)本発明は、(1)に加えて、前記第1バイアス電圧は、周波数制御電圧よりも大きくする必要があるため、前記電圧制御圧電素子発振器の内部に配置された昇圧回路の出力電圧から作られている。さらに、本発明は、前記昇圧回路に使用するクロック入力信号は、前記電圧制御圧電素子発振器のクロック信号を用い、前記昇圧回路の出力容量を、前記バリキャップを構成するゲート絶縁膜容量よりも小さくすること等を特徴とする。
本発明のVCXO回路のMOSバリキャップ周りの回路構成は、MOSバリキャップのソースおよび/またはドレインを一方の電極(第1電極)とし、MOSバリキャップのサブストレート(半導体基板)をバリキャップの他方の電極(第2電極という)とし、MOSバリキャップのゲート電極にMOSバリキャップのMOS界面が強反転するのに十分なバイアス電圧(第1バイアス電圧という)が印加され、周波数制御電圧VCはバイアス抵抗(第2バイアス抵抗という)を介して第1電極に印加される。この結果、本発明のMOS型バリキャップでは、従来のMOS型バリキャップで問題となっているMOS界面準位に起因するフリッカノイズの影響を受けにくく、PNダイオード型バリキャップ並みの低い位相雑音を実現できる。MOS型バリキャップは、従来通りの構造であるため、MOS界面の不純物濃度で特性が決まる構造となっていて、不純物濃度の制御が容易であり、素子間や製造ロット間のばらつきが小さいという利点を有する。さらにCMOSプロセスと整合性が高く、ICの製造コストの低減をはかることもできる。
図1は、MOSキャパシタをバリキャップとして使用した本発明の電圧制御圧電素子発振器(VCXO)の回路の実施例を示す図である。 図2は、MOSキャパシタをバリキャップとして使用した従来の電圧制御圧電素子発振器(VCXO)の回路の実施例を示す図である。 図3は、MOS型バリキャップのフリッカノイズの回路モデルを示す図である。 図4は、従来のMOS型バリキャップ回路のフリッカノイズによるMOS界面電圧変動を求める等価回路を示す図である。 図5は、本発明のMOS型バリキャップ回路のフリッカノイズによるMOS界面電圧変動を求める等価回路を示す図である。 図6は、従来および本発明のMOS型バリキャップ回路におけるフリッカノイズによるMOS界面電圧変動(ゲートノイズに対するフィルタリング特性)を比較した図である。 図7は、周波数制御電圧に依存して出力電圧が変化する本発明にかかる昇圧回路の実施例を示す図である。 図8は、図7に示す回路における本発明にかかる昇圧回路の出力電圧(Vb)特性を示す図である。 図9は、電圧制御圧電素子発振器の位相ノイズ特性を示す図である。
図1は、本発明のMOSキャパシタをバリキャップとして使用したMOS型バリキャップを用いた電圧制御圧電素子発振器(VCXO)の回路の実施例を示す図である。図2に示す従来の実施例と類似するので、同じものについては同じ符号を付し詳細な説明を省略する。図2に示す従来の実施例と異なるのは、MOS型バリキャップの回路的な接続であり、従来のMOS型バリキャップでは、(周波数)制御電圧VCおよびX1(またはX2)端子がMOSキャパシタのゲート電極に接続するのに対して、本発明のMOS型バリキャップでは、(周波数)制御電圧VCおよびX1(またはX2)端子がMOSキャパシタのソースとドレインの一方または双方に接続し、さらにMOSキャパシタのゲート電極にはMOSキャパシタのMOS界面が強反転するのに十分なバイアス電圧がバイアス抵抗を介して印加されることである。
図1に示すように、制御電圧VC36は、バイアス抵抗Rv137を介してX1端子に接続し、さらにX1端子はMOS型バリキャップ21のソースSおよび/またはドレインDに接続する。また、ゲート電極Gはバイアス抵抗Rb123を介してバイアス電圧接続端子26に接続し、バイアス電圧接続端子26はバイアス電圧発生器(DCブースター)25に接続する。DCブースター25はMOS型バリキャップ21のMOSゲート界面が強反転するのに十分なバイアス電圧Vbを印加している。また同様に、制御電圧VC36は、バイアス抵抗Rv238を介してX2端子に接続し、さらにX2端子はMOS型バリキャップ22のソースSおよび/またはドレインDに接続する。また、ゲート電極Gはバイアス抵抗Rb224を介してバイアス電圧接続端子26に接続し、バイアス電圧接続端子26はDCブースター25に接続する。DCブースター25はMO型バリキャップ22のゲート電極直下のMOS界面が強反転するのに十分なバイアス電圧Vbを印加している。本発明の回路ではMOS型バリキャップのソース・ドレインに制御電圧Vcが印加されるが、強反転層が形成されることによって、制御電圧Vcはソース・ドレインから強反転層を介して容易に空乏層(キャパシタ)へ印加される。
図5は、本発明のMOS型バリキャップ回路のゲートノイズVnによるMOS界面電圧変動を求める等価回路を示す図である。すなわち、図5は、図1におけるMOS型バリキャップ21または22を含む回路の等価回路と考えることができる。本発明のMOS型バリキャップでは、MOSトランジスタ構造のソースとドレインの一方または双方がX1端子に接続し、さらにバイアス抵抗Rv82を介して、VC端子に接続し、VC端子は周波数制御電圧(V=Vc)81に接続する。MOSトランジスタ構造のソースおよび/またはドレインはMOS型バリキャップの強反転層89及び空乏層キャパシタ84を介してグランド86に接続する。
MOS型バリキャップのゲート側端子は、抵抗Rb(図1における、Rb1またはRb2と同じ)87を介して、キャパシタ88に接続する。図5のA端子は図1に示すバイアス電圧接続端子26と同じであり、電圧増幅器(DCブースター)からの電圧が印加されるが、図5では等価回路としてキャパシタ88で置き換えている。ゲートノイズVn85は、絶縁膜キャパシタ83とバイアス抵抗Rb87の間に直列挿入される。
図5に示す本発明のMOS型バリキャップ回路におけるMOSノイズによるMOS界面電圧(チャネル電圧とも言う)変動VCH(Vch)は、
Figure JPOXMLDOC01-appb-M000005
で示される。(Cupはキャパシタ88の出力容量、Cdは空乏層容量である。)
ここでCはCoxとCupの直列容量で以下の式で計算される。
Figure JPOXMLDOC01-appb-M000006
Cox≫Cupとなるように設計されているとき、
Figure JPOXMLDOC01-appb-M000007
ωが充分小さいとき、
Figure JPOXMLDOC01-appb-M000008
ノイズ周波数が低いとき、1/(ωC)はRより極めて大きな値となるので<数8>が成立する。ゲートノイズのチャネル電圧変動(界面電圧)VCHに及ぼす影響は極めて小さくなる。フリッカノイズは低周波になるほどノイズが大きくなるが、本発明の回路を用いればMOS型バリキャップのフリッカノイズによる容量変動を大幅に低減できることになる。また、<数8>と<数2>から
Figure JPOXMLDOC01-appb-M000009
となるから、周波数の低いノイズにおいて、従来のMOS型バリキャップ回路と比較して、本発明のMOS型バリキャップ回路は大幅なノイズ低減を実現することができる。VCHは、実数部は周波数の関数ではないので、虚数部がゼロとなるときに最大値を取る。そのときの周波数ωpは、
Figure JPOXMLDOC01-appb-M000010
より、
Figure JPOXMLDOC01-appb-M000011
たとえば、Cd=5pF、Cup=2pF、Rv=150kΩ、Rb=300kΩとすると、fp(周波数)=237kHzである。また、最大値は、
Figure JPOXMLDOC01-appb-M000012
ωが充分大きいときは、
Figure JPOXMLDOC01-appb-M000013
従って、<数13>と<数3>より、
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
とすると、
Figure JPOXMLDOC01-appb-M000016
となり、高周波ゲートノイズがチャネル電圧に及ぼすノイズ軽減率はRvとRbの比程度となる。
このことは、第1バイアス抵抗Rbが第2バイアス抵抗Rvより大きければ、本発明のMOS型バリキャップ回路は、従来のMOS型バリキャップ回路よりも、高周波ノイズに対してもノイズを軽減することができる。ただし、200KHz以上の周波数領域におけるフリッカノイズはバックグランドノイズにほぼ埋没しているのでこの軽減効果は大きいとは言えないが、全周波数領域で従来回路より優れたノイズを得ることを可能とする。
以上から、本発明のMOS型バリキャップ回路におけるMOS界面電圧(チャネル電圧)変動をグラフにすると図6のN曲線となる。
図6はノイズVnが周波数依存を持たず一定であるとした場合のMOS界面電圧変動のグラフである。本発明のMOS型バリキャップ回路におけるMOS界面電圧変動はN曲線に示すように、従来のMOS型バリキャップ(M曲線)に比べるとかなり小さい。特にフリッカノイズが1/fの周波数特性を持っていることを考慮すると本発明の低周波領域におけるノイズ低減効果が極めて大きいことがわかる。
図7は、周波数制御電圧に依存して出力電圧が変化する本発明にかかる昇圧回路の実施例を示す図である。図7では、クロック信号91がバッファードライバとしてのインバータ92を介して、キャパシタ93、ダイオード94、95からなる昇圧回路に入力されている。ダイオード94には周波数制御電圧VCが接続されているため、VDDとVCの和の電圧が端子99のVbの電圧として出力される。実際のダイオードでは順方向の電圧降下があるためVbの電圧はVddとVC電圧の和からこの電圧降下分だけ低い電圧がVbから出力される。これを示したものが図8である。図8は、周波数制御電圧VCに対する昇圧回路の出力電圧(Vb)の特性を示す図である。すなわち昇圧回路の出力電圧VbはVcに連動して増減している。
図7のクロック信号91として図1に示すレベルシフタ49より後段のクロック信号を用いる。こうすることで、DCブースター及び出力電圧Vbは発振器のクロック信号が持っている周波数成分以外の信号を含まないため、クロック出力信号の位相ノイズを劣化させない。このVbは図8に示すように周波数制御電圧Vcに連動して増減し、常にVcよりも高電圧に維持されるので、MOSバリキャップの界面に強反転層を形成できるとともに、MOSバリキャップのゲート絶縁膜には、VbとVcの電圧差の電圧が印加されるだけであるから、MOSバリキャップのゲート絶縁膜には過大な電圧は印加されない。すなわち、図8に示すように、VbとVcの電圧差は回路の電源電圧(Vdd)を越えることはないので、ゲート絶縁膜の破壊もなく、またMOSバリキャップのゲート絶縁膜の信頼性を劣化させることがない。このゲート絶縁膜にかかる電圧は、X1あるいはX2が発振信号により大きく振動している動作状態においても、DCブースター25の出力容量Cupがゲート容量Coxに較べて小さく設定されていれば、ゲート電圧がX1及びX2に連動して上下するため、過大となる心配はない。
以上詳細に説明した様に、本発明のMOS型バリキャップは、MOSトランジスタ構造のソースおよび/またはドレインを一方の電極(第1電極)とし、MOSトランジスタ構造のサブストレートを前記バリキャップの他方の電極(第2電極という)とし、MOSトランジスタ構造のゲート電極にMOSトランジスタ構造のMOS界面が強反転するのに十分なバイアス電圧(第1バイアス電圧という)を印加し、周波数制御電圧はバイアス抵抗(第2バイアス抵抗という)を介して第1電極に印加される。この結果、本発明のMOS型バリキャップでは、従来のMOS型バリキャップで問題となっているMOS界面準位に起因するフリッカノイズの影響を受けにくく、PNダイオード型バリキャップ並みの低い位相雑音を実現できる。尚、本明細書において、明細書のある部分に記載し説明した内容について記載しなかった他の部分においても矛盾なく適用できることに関しては、当該他の部分に当該内容を適用できることは言うまでもない。さらに、前記実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施でき、本発明の権利範囲が前記実施形態に限定されないことも言うまでもない。
本発明のMOS型バリキャップは、電圧制御圧電素子発振器だけでなく、位相同期回路や周波数シンセサイザ等の従来のバリキャップを使用する回路に使用することができる。
21、22・・・MOSキャパシタ、23、24・・・バイアス抵抗、25・・・電圧増幅器、
26・・・バイアス電圧接続端子、31・・・CMOSインバータ、32・・・帰還抵抗、
33・・・制御抵抗、34、35・・・コンデンサ、36制御電圧、37、38・・・バイアス抵抗、
39、40・・・MOS型バリキャップ、41、42・・・抵抗、45・・・入力端子、46・・・出力端子、
48・・・CMOSインバータ、49・・・レベルシフタ、50・・・出力バッファ、51・・・P型半導体基板、
53・・・ゲート電極、54・・・ゲート絶縁膜、55、56・・・ソース(S)・ドレイン(D)、
57・・・空乏層領域、58・・・反転層、59、60・・・空乏層、71・・・制御電圧、72・・・バイアス抵抗、
73・・・キャパシタ、74・・・キャパシタ、75・・・フリッカノイズ、76・・・グランド、
81・・・制御電圧、82・・・抵抗、83・・・絶縁膜キャパシタ、84・・・空乏層キャパシタ、
85・・・フリッカノイズ、86・・・グランド、87・・・抵抗、88・・・キャパシタ、91・・・クロック信号、
92・・・インバータ、93・・・キャパシタ、94、95・・・ダイオード、97・・・キャパシタ、

Claims (7)

  1. MOS型バリキャップを用いた電圧制御圧電素子発振器であって、
    MOSトランジスタ構造のソースおよび/またはドレインを前記バリキャップの一方の電極(第1電極という)とし、MOSトランジスタ構造のサブストレートを前記バリキャップの他方の電極(第2電極という)とし、
    前記バリキャップにおいて、MOSトランジスタ構造のゲート電極にMOSトランジスタ構造のMOS界面が強反転するのに十分なバイアス電圧(第1バイアス電圧という)がバイアス抵抗(第1バイアス抵抗という)を介して印加されていることを特徴とする、電圧制御圧電素子発振器。
     
  2. 周波数制御電圧はバイアス抵抗(第2バイアス抵抗という)を介して前記第1電極に印加されることを特徴とする、請求項1に記載の電圧制御圧電素子発振器。
     
  3. 前記第1バイアス抵抗が周波数制御電圧とバリキャップの前記第1電極の間に挿入されるバイアス抵抗(第2バイアス抵抗という)より大きいことを特徴とする、請求項1または2に記載の電圧制御圧電素子発振器。
     
  4. 前記第1バイアス電圧は、前記電圧制御圧電素子発振器の内部に配置された昇圧回路の出力電圧から作られていることを特徴とする、請求項1~3のいずれかの項に記載の電圧制御圧電素子発振器。
     
  5. 前記昇圧回路の出力電圧は、前記周波数制御電圧に連動して増減することを特徴とする、請求項4に記載の電圧制御圧電素子発振器。
     
  6. 前記昇圧回路に使用するクロック入力信号は、前記電圧制御圧電素子発振器のクロック信号を用いていることを特徴とする、請求項4または5に記載の電圧制御圧電素子発振器。
     
  7. 前記昇圧回路の出力容量を、前記バリキャップを構成するゲート絶縁膜容量よりも小さくしたことを特徴とする、請求項4~6のいずれかの項に記載の電圧制御圧電素子発振器。
     
PCT/JP2021/023687 2020-06-25 2021-06-22 電圧制御圧電素子発振器 WO2021261501A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020109358A JP2022006846A (ja) 2020-06-25 2020-06-25 電圧制御圧電素子発振器
JP2020-109358 2020-06-25

Publications (1)

Publication Number Publication Date
WO2021261501A1 true WO2021261501A1 (ja) 2021-12-30

Family

ID=79281261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023687 WO2021261501A1 (ja) 2020-06-25 2021-06-22 電圧制御圧電素子発振器

Country Status (2)

Country Link
JP (1) JP2022006846A (ja)
WO (1) WO2021261501A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220376656A1 (en) * 2021-05-20 2022-11-24 Swaresh Borse Osciclamp - an electronic circuit to increase low voltage levels of electrical sources

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252480A (ja) * 1998-12-28 2000-09-14 Interchip Kk Mos型キャパシタ及び半導体集積回路装置
US20030067026A1 (en) * 2001-07-10 2003-04-10 Constantin Bulucea Gate-enhanced junction varactor
US6628175B1 (en) * 2002-03-27 2003-09-30 Pericom Semiconductor Corp. Voltage-controlled crystal oscillator (VCXO) using MOS varactors coupled to an adjustable frequency-tuning voltage
JP2008135850A (ja) * 2006-11-27 2008-06-12 Seiko Npc Corp 電圧制御saw発振回路
JP2008312269A (ja) * 2007-02-27 2008-12-25 Seiko Epson Corp 発振回路、発振器
JP2011510551A (ja) * 2008-01-18 2011-03-31 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 広い周波数変化範囲を有する電気共振器デバイス
JP2015061264A (ja) * 2013-09-20 2015-03-30 セイコーエプソン株式会社 発振回路、電子機器、移動体および発振回路の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252480A (ja) * 1998-12-28 2000-09-14 Interchip Kk Mos型キャパシタ及び半導体集積回路装置
US20030067026A1 (en) * 2001-07-10 2003-04-10 Constantin Bulucea Gate-enhanced junction varactor
US6628175B1 (en) * 2002-03-27 2003-09-30 Pericom Semiconductor Corp. Voltage-controlled crystal oscillator (VCXO) using MOS varactors coupled to an adjustable frequency-tuning voltage
JP2008135850A (ja) * 2006-11-27 2008-06-12 Seiko Npc Corp 電圧制御saw発振回路
JP2008312269A (ja) * 2007-02-27 2008-12-25 Seiko Epson Corp 発振回路、発振器
JP2011510551A (ja) * 2008-01-18 2011-03-31 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 広い周波数変化範囲を有する電気共振器デバイス
JP2015061264A (ja) * 2013-09-20 2015-03-30 セイコーエプソン株式会社 発振回路、電子機器、移動体および発振回路の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220376656A1 (en) * 2021-05-20 2022-11-24 Swaresh Borse Osciclamp - an electronic circuit to increase low voltage levels of electrical sources
US11973466B2 (en) * 2021-05-20 2024-04-30 Swaresh Borse Osciclamp—an electronic circuit to increase low voltage levels of electrical sources

Also Published As

Publication number Publication date
JP2022006846A (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
US7701301B2 (en) Systems for implementing a temperature and process compensated two-stage ring oscillator
US20070085620A1 (en) Semiconductor integrated circuit device
US8514028B2 (en) Load tolerant voltage controlled oscillator (VCO), IC and CMOS IC including the VCO
US20090128992A1 (en) Mos capacitor structure and linearization method for reduced variation of the capacitance
JP5876368B2 (ja) 改良された帯域幅を備える電圧制御発振器を有する位相同期ループ回路
US20090091380A1 (en) Differential varactor using gated varactor
JP2006211249A (ja) 電圧制御型発振器
JP3774454B2 (ja) 周波数直接変調装置及び通信システム
US20050206465A1 (en) Voltage control oscillator
WO2021261501A1 (ja) 電圧制御圧電素子発振器
US6927643B2 (en) Oscillator topology for very low phase noise operation
US7209010B2 (en) Oscillator with tunable diffusion capacitance as resonant circuit capacitance
US20040108910A1 (en) Voltage-controlled oscillator circuit
US11290059B2 (en) Crystal oscillator interconnect architecture with noise immunity
US7295079B2 (en) Current-controlled oscillator
US7990225B1 (en) Low-jitter phase-locked loop
JP2951128B2 (ja) 電圧制御型発振回路
KR100954021B1 (ko) 압전발진기
US20090189706A1 (en) Inductance-switchable dual-band voltage controlled oscillation circuit
JP5179848B2 (ja) 電圧制御発振器及びpll回路
US7449973B2 (en) Semiconductor circuit for reducing flicker noise
US20130141178A1 (en) Injection Locked Divider with Injection Point Located at a Tapped Inductor
US20100127786A1 (en) Low noise oscillators
Murasov et al. Integrated differential crystal VCO for radio communication systems
TWI239138B (en) BiFET voltage controlled oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828349

Country of ref document: EP

Kind code of ref document: A1