WO2021261382A1 - 生物学的粒子の濃縮デバイス - Google Patents

生物学的粒子の濃縮デバイス Download PDF

Info

Publication number
WO2021261382A1
WO2021261382A1 PCT/JP2021/023113 JP2021023113W WO2021261382A1 WO 2021261382 A1 WO2021261382 A1 WO 2021261382A1 JP 2021023113 W JP2021023113 W JP 2021023113W WO 2021261382 A1 WO2021261382 A1 WO 2021261382A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentrated
membrane
liquid
outlet
film
Prior art date
Application number
PCT/JP2021/023113
Other languages
English (en)
French (fr)
Inventor
真実 幾田
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2021261382A1 publication Critical patent/WO2021261382A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting

Definitions

  • the present invention relates to a concentration device used to concentrate biological particles.
  • Japanese Unexamined Patent Publication No. 11-090184 discloses that a bundle of polyethylene porous hollow fiber membranes coated with an ethylene / vinyl alcohol copolymer on the surface is used for capturing microorganisms.
  • Japanese Patent Application Laid-Open No. 2013-531236 discloses that a filter membrane having a bubble point pore size not exceeding 1.0 ⁇ m is used for capturing microorganisms.
  • Japanese Unexamined Patent Publication No. 2009-183804 discloses a method for producing a hydrophilized polymer microporous membrane in which a hydrophilic monomer is radiation-grafted on the surface of the polymer microporous membrane made of a hydrophobic resin.
  • Japanese Patent Application Laid-Open No. 2003-268152 is obtained by copolymerizing a hydrophilic monomer having one vinyl group and a cross-linking agent having two or more vinyl groups on a polymer microporous film by a graft polymerization method. Hydrophilic microporous membranes are disclosed.
  • Japanese Patent Publication No. 06-057143 discloses that a porous hollow fiber membrane in which a porous hollow fiber substrate of polyolefin is coated with a glycerin fatty acid ester is used as a membrane for concentration and separation of bacterial cells.
  • Japanese Unexamined Patent Publication No. 2004-016930 contains at least one crystalline component made of a polyethylene resin having a viscosity average molecular weight of more than 1 million, a melting peak temperature of 145 ° C. or higher, and a porosity of 20 to 95%.
  • a microporous film having an average pore size of 0.01 to 10 ⁇ m is disclosed.
  • Japanese Patent Application Laid-Open No. 2002-265658 states that it is made of polyethylene resin, has a film thickness of more than 25 ⁇ m and 1 mm or less, an average pore diameter of 0.01 to 10 ⁇ m, and a structural factor F of 1.5 ⁇ 10 7 seconds -2 ⁇ m -1.
  • -A medical separation filter containing a highly permeable microporous membrane having a Pa -2 or higher is disclosed.
  • Japanese Patent Application Laid-Open No. 2016-534748 discloses a method for removing agglomerates present in a fluid containing a biological product through a membrane filter pretreated with a surfactant.
  • Japanese Unexamined Patent Publication No. 2006-71478 discloses a method for capturing and recovering oral microorganisms in a test solution on a filtration membrane.
  • Japanese Unexamined Patent Publication No. 61-271003 discloses a hydrophilic composite porous membrane composed of a porous structural matrix made of polyolefin and an ethylene-vinyl alcohol-based copolymer coating layer covering the pore surface of the matrix. Has been done.
  • viruses or bacteria may be isolated from specimens collected from living organisms.
  • Centrifugal method is one of the methods for separating viruses or bacteria. Centrifugal method repeats centrifugal operation by changing the centrifugal force, puts a sample on a buffer having a density gradient and centrifuges, or performs ultracentrifugation. It is a method that requires equipment, labor and time.
  • there is a method of separating a virus or a bacterium using a porous membrane but the conventional method is only for the purpose of completely removing the virus or the like from the filtrate, or the virus or the like is used as a membrane. It is a complicated method such as adsorbing and taking out the virus or the like by backwashing treatment, and the viewpoint of efficiently concentrating and recovering the virus or the like in the sample is lacking.
  • an embodiment of the present disclosure aims to concentrate biological particles easily, quickly and efficiently, and an object of the present invention is to provide a concentration device for solving the problem.
  • [1] It has an inlet and an outlet, and a liquid to be treated containing biological particles and water is injected from the inlet and discharged from the outlet due to the differential pressure between the inlet and the outlet.
  • It is a hydrophilic porous film provided with a housing so as to separate the inlet and the outlet in the housing and does not adsorb the biological particles, and the surface from the inlet side to the surface on the outlet side is the same.
  • a concentrated film that allows a drainage liquid which is a liquid obtained by reducing the concentration of the biological particles from the liquid to be treated, to permeate, and a space on the upstream side of the concentrated membrane in the housing.
  • the concentrated space for accommodating the concentrated liquid which is a liquid in which the concentration of the biological particles is increased, is located between the concentrated film and the outlet in the housing, and the concentrated film is placed therein.
  • a biological particle enrichment device comprising a support portion provided on the upstream surface with a drainage groove, which is a plurality of radial grooves communicating with the outlet.
  • the housing is composed of two members, an upstream member and a downstream member, the support portion is provided on the upstream side of the downstream member, and the peripheral edge of the concentrated film mounted on the support portion is described above.
  • the biological particle enrichment device according to any one of [1] to [5], which is sandwiched between the upstream member and the downstream member and fixed by welding.
  • a concentration device for easily, quickly and efficiently concentrating biological particles is provided.
  • FIG. 1 It is a perspective view schematically showing an example of the biological particle enrichment device which concerns on this disclosure.
  • Each member constituting the enrichment device of FIG. 1 is shown as a schematic cross-sectional view in a disassembled state.
  • FIG. 3 is a schematic cross-sectional view of another example of a enrichment device.
  • It is a top view of the first example of a support part.
  • It is a top view of the 2nd example of a support part.
  • FIG. 1 It is a bottom view which shows another example of the part where the entrance opens to the enrichment space part.
  • the concentration device of FIG. 1 the state in which the liquid to be treated is supplied from the inlet is schematically shown in a cross-sectional view. From the state of FIG. 11, a state in which a differential pressure is applied between the inlet and the outlet is schematically shown in a cross-sectional view. From the state of FIG. 12, the state in which the concentrated liquid is obtained is schematically shown in a cross-sectional view. The state in which the concentrated liquid is recovered from the state of FIG. 13 is schematically shown in a cross-sectional view.
  • the numerical range indicated by using “-" in the present disclosure indicates a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • process is included in this term not only for an independent process but also for cases where the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • each component may contain a plurality of applicable substances.
  • the amount of each component in the composition in the present disclosure if a plurality of substances corresponding to each component are present in the composition, unless otherwise specified, the plurality of species present in the composition. It means the total amount of substances.
  • (meth) acrylic means at least one of acrylic and methacrylic
  • (meth) acrylate means at least one of acrylate and methacrylate.
  • the "monomer unit” means a component of a polymer, which is a component obtained by polymerizing a monomer.
  • the "machine direction” means the long direction in a film, film or sheet manufactured in a long shape
  • the "width direction” means a direction orthogonal to the “machine direction”.
  • the "machine direction” is also referred to as “MD direction”
  • the "width direction” is also referred to as "TD direction”.
  • the "main surface" of a film, film or sheet means a wide outer surface other than the outer surface extending in the thickness direction among the outer surfaces of the film, film or sheet.
  • the film, film or sheet has two main surfaces.
  • the "side surface” of a film, film or sheet means the outer surface of the film, film or sheet that extends in the thickness direction.
  • upstream the side where the liquid to be treated flows into the concentrated membrane
  • downstream the side where the liquid to be treated flows out
  • the present disclosure provides enrichment devices used to concentrate biological particles.
  • the concentrating device of the present disclosure targets a "liquid to be treated" which is a liquid containing water and may contain biological particles, and concentrates the "concentrated liquid” having an increased concentration of biological particles. do.
  • containing water means that water is used as a solvent or a component, and the content thereof is not particularly limited.
  • containing biological particles means a state in which the biological particles are suspended, suspended or precipitated without being dissolved in the liquid to be treated.
  • the biological particles referred to in the present disclosure include particles possessed by an organism, particles released by an organism, particles parasitized by an organism, minute organisms, vesicles having a lipid as a membrane, and fragments thereof as a concept. included. Specifically, viruses, parts of viruses (eg, enveloped particles deenveloped), bacteriophage, bacteria, follicles, spores, fungi, molds, yeasts, cysts, protozoa, monocellular algae, etc.
  • viruses parts of viruses (eg, enveloped particles deenveloped), bacteriophage, bacteria, follicles, spores, fungi, molds, yeasts, cysts, protozoa, monocellular algae, etc.
  • Plant cells animal cells, cultured cells, hybridomas, tumor cells, blood cells, platelets, cell organs (eg cell nuclei, mitochondria, vesicles), exosomes, apoptotic bodies, lipid double layer particles, lipid single layer particles , Lipbolets, protein aggregates, fragments of these.
  • the biological particles referred to in the present disclosure include not only natural products but also artificial products.
  • the enrichment device 10 for the biological particles 50 (see FIGS. 11-14, the same applies hereinafter) according to the present disclosure has an inlet 21 and an outlet that open into a housing 20 having an internal space, as shown in the schematic perspective view of FIG. Shows the appearance with 22.
  • a luer lock 21A for locking a syringe or the like connected to the inlet 21 is formed at the tip of the inlet 21.
  • the shape may be such that the luer lock 21A is not provided.
  • the housing 20 is composed of two members, an upstream member 20A and a downstream member 20B, both made of polypropylene resin.
  • the material of the housing 20 is not limited to this polypropylene resin. In this figure, an example of a cylindrical shape having a diameter longer than the height is shown as the shape of the housing 20.
  • FIG. 2 is a schematic cross-sectional view showing each member constituting the concentration device 10 of FIG. 1 in a disassembled state.
  • the upstream member 20A constituting the upstream side has a substantially cylindrical shape open downward.
  • an inlet 21 having a luer lock 21A at the tip thereof is formed.
  • the downstream member 20B constituting the downstream side exhibits a substantially cylindrical shape open upward.
  • An outlet 22 is formed at the center of the downstream surface of the downstream member 20B.
  • a support portion 20C which is a circular region, is provided in a slightly recessed region of the upstream surface of the downstream member 20B.
  • a circular concentrating film 30 made of polyethylene resin is placed on the support portion 20C. The material of the concentrated film 30 is not limited to this polyethylene resin.
  • the support portion 20C is located between the concentrating film 30 and the outlet 22 in the housing 20, and the concentrating film 30 is placed and, as will be described later, a plurality of supporting portions 20C communicating with the outlet 22 on the upstream surface.
  • a drainage groove 20E (see FIGS. 5 to 8), which is a radial groove of the above, is provided.
  • the peripheral edge of the concentration film 30 mounted on the support portion 20C is formed. It is in a state of being sandwiched between the upstream member 20A and the downstream member 20B.
  • the concentration device 10 as shown in the schematic cross-sectional view of FIG. 3 is formed.
  • the peripheral edge of the concentrated film 30 may be welded and fixed to the downstream member 20B, and then the upstream member 20A and the downstream member 20B may be fixed.
  • a cylindrical inlet 21 protruding upward is opened on the upstream side, and a cylindrical outlet 22 protruding downward is opened on the downstream side.
  • the concentrating film 30 is provided so as to separate the inlet 21 and the outlet 22.
  • the concentrated membrane 30 is a hydrophilic porous membrane on which the biological particles 50 are not adsorbed, and is formed from the surface on the inlet 21 side to the surface on the outlet 22 side from the liquid to be treated 40 (see FIGS. 11 and 12; the same applies hereinafter).
  • a liquid discharged liquid 42 (see FIG. 12, and so on), which is a liquid obtained by reducing the concentration of the biological particles 50, is permeated.
  • the space on the upstream side of the concentrating film 30 in the housing 20 is the concentrating space portion 24.
  • the concentrated space portion 24 is a space for accommodating the concentrated liquid 41 (see FIGS. 13 and 14, the same applies hereinafter) which is a liquid in which the concentration of the biological particles 50 is increased from the liquid to be treated 40 by the concentrated membrane 30.
  • FIG. 4 is a schematic cross-sectional view showing another example of the enrichment device 10.
  • the upstream member 20A constituting the upstream side of the housing 20 exhibits a substantially cylindrical shape open downward.
  • an inlet 21 having a luer lock 21A at the tip thereof is formed.
  • the downstream member 20B constituting the downstream side exhibits a substantially cylindrical shape open upward.
  • An outlet 22 is formed at the center of the downstream surface of the downstream member 20B.
  • the support portion 20C is integrally configured as a part of the downstream member 20B.
  • FIG. 2 and 3 is integrally configured as a part of the downstream member 20B.
  • a support 20D which is a disk-shaped member formed as a member separate from the housing 20, is provided, and the support 20D is attached to the recessed region on the upstream side of the downstream member 20B.
  • the support portion 20C is configured.
  • the support 20D is made of the same polypropylene resin as the downstream member 20B, but the material is not limited to this.
  • a hole corresponding to the opening of the outlet 22 is provided in the center of the support 20D.
  • the housing 20 has an inlet 21 and an outlet 22 as described above, and the liquid to be treated 40 containing the biological particles 50 and water is injected from the inlet 21 by the differential pressure between the inlet 21 and the outlet 22. Therefore, the discharge liquid 42 is discharged from the outlet 22.
  • FIG. 5 is a plan view of the first example of the support portion 20C.
  • a plurality of drainage grooves 20E which are radial grooves connecting to the outlet 22, are arranged, specifically, a total of 12 or the like.
  • the drainage groove 20E has a structure that guides the drainage liquid that has passed through the concentration film 30 to the outlet 22. Therefore, it is desirable that the bottom surface of the drainage groove 20E is inclined from the edge toward the center.
  • FIG. 6 is a plan view of the second example of the support portion 20C.
  • a plurality of drainage grooves 20E which are radial grooves connecting to the outlet 22, are arranged, specifically, a total of 12 or the like.
  • the drainage groove 20E of this example has a narrower groove width than the drainage groove 20E of the first example.
  • the drainage groove 20E has a structure that guides the drainage liquid that has passed through the concentration film 30 to the outlet 22. Therefore, it is desirable that the bottom surface of the drainage groove 20E is inclined from the edge toward the center.
  • a plurality of, specifically, a total of four concentric grooves 20F are provided around the outlet 22.
  • the connecting groove 20F makes it easy to guide the drained liquid that has passed through the concentrating film 30 to the outlet 22 by connecting the respective drainage grooves 20E.
  • FIG. 7 is a plan view of the third example of the support portion 20C.
  • a plurality of drainage grooves 20E which are radial grooves connecting to the outlet 22, are arranged, specifically, a total of four drainage grooves 20E.
  • a total of four concentric grooves 20F are provided. That is, this example has the same configuration as the second example except that the number of drainage grooves 20E is smaller than that of the second example.
  • FIG. 8 is a plan view of still another example of the support portion 20C.
  • a plurality of, specifically, a total of three concentric grooves centered on the outlet 22 are connected.
  • a groove 20F is provided.
  • the drainage groove 20E (and the connecting groove 20F) as shown in any of FIGS. 5 to 8 is formed on the upstream surface of the support 20D as the support portion 20C. Is formed.
  • the ratio of the area of the portion where the concentrated film 30 contacts the support portion 20C to the total area of the concentrated film 30 is 0.4 or more and 0.9 or less.
  • this ratio is referred to as "contact rate".
  • the contact ratio is 0.4 or more, the concentrated film 30 can be sufficiently supported by the support portion 20C without bending toward the outlet 22. Further, when the contact ratio is 0.9 or less, the discharged liquid permeates the concentrated membrane 30 and easily moves to the outlet 22.
  • the contact rate is 0.57. Further, in the case of the support portion 20C of the second example shown in FIG. 6, the contact rate is 0.74. Further, in the case of the support portion 20C of the third example shown in FIG. 7, the contact rate is 0.77. In the case of the support portion 20C of the fourth example shown in FIG. 8, the contact rate is 0.35.
  • the width of the groove provided on the upstream surface of the support portion 20C is 0.1 mm or more and 5 mm or less.
  • the width of the groove is 0.1 mm or more, the discharged liquid permeates the concentrated membrane 30 and easily moves to the outlet 22.
  • the width of the groove is 5 mm or less, the concentrated film 30 can be sufficiently supported by the support portion 20C without bending toward the outlet 22.
  • the width of the drainage groove 20E is 1.15 mm.
  • the width of the drainage groove 20E is 0.45 mm, and the width of the connecting groove 20F is 0.25 mm.
  • the width of the drainage groove 20E is 0.45 mm, and the width of the connecting groove 20F is 0.25 mm.
  • the width of the drainage groove 20E is 1.15 mm, and the width of the connecting groove 20F is 0.5 mm.
  • a dividing member 20G for dividing the flow path of the liquid to be treated 40 flowing in from the inlet 21 may be provided at a portion where the inlet 21 opens to the concentration space portion 24. .. That is, a "+" -shaped split member 20G is provided at the opening portion of the inlet 21 located at the center of the bottom surface of the upstream member 20A. It is desirable that the split member 20G is integrally molded with the upstream member 20A, but the split member 20G formed as a separate body may be fixed by adhesion or the like after the fact. By providing such a dividing member 20G at the opening portion of the inlet 21, the liquid to be treated 40 flowing from the inlet 21 is divided into four, and it becomes easy to evenly disperse the concentrated film 30.
  • the split member 20G provided at the opening portion of the inlet 21 located at the center of the bottom surface of the upstream member 20A is formed into a "-" shape in bottom view as shown in the bottom view of another example of FIG. It may be that.
  • the liquid to be treated 40 flowing from the inlet 21 is divided into two, and it becomes easy to evenly disperse the concentrated film 30.
  • the concentration device 10 of the present disclosure may be sterilized.
  • the sterilization method include ethylene oxide gas sterilization, gamma sterilization, radiation sterilization, ultraviolet sterilization, and autoclave sterilization.
  • the sterilization process may be performed after the concentrating device has been fitted and assembled, or it may be performed on the upstream member, the downstream member, the support and the individual members of the concentrating membrane.
  • the liquid to be treated 40 injected into the concentration device 10 of the present disclosure includes body fluids of animals (particularly humans) (eg, blood, serum, plasma, spinal fluid, tears, sweat, urine, pus, nasal discharge, sputum); Dilutes of animal (especially human) body fluids; liquid compositions in which animal (especially human) excreta (eg, feces) are suspended in water; animal (especially human) mouthwash; animal (especially human) organs , Buffers containing extracts from tissues, mucous membranes, skin, squeezed specimens, swabs, etc .; fish and shellfish tissue extracts; water collected from fish and shellfish farms; plant surface wipes or tissue extracts; Soil extract; plant extract; food extract; pharmaceutical raw material solution: and the like.
  • body fluids of animals particularly humans
  • animals eg, blood, serum, plasma, spinal fluid, tears, sweat, urine, pus, nasal discharge, sputum
  • Dilutes of animal (especially human) body fluids liquid compositions in which animal (especially human)
  • Method for concentrating and detecting biological particles 50 The method for concentrating the biological particles 50 by the concentrating device 10 of the present disclosure is as follows.
  • a step of supplying the liquid to be treated 40 containing the biological particles 50 and water to the concentration device 10 from the inlet 21 is performed.
  • a step of obtaining the concentrated liquid 41 in the concentrated space portion 24 is carried out by applying a differential pressure between the inlet 21 and the outlet 22.
  • a differential pressure is applied between the inlet 21 and the outlet 22 to the injected liquid 40, so that the discharged liquid 42 that has passed through the concentrated film 30 is the support portion 20C as shown in FIG. It is discharged from the outlet 22 through the drainage groove 20E on the surface of the above.
  • the differential pressure at this time can be generated by pressurizing from the inlet 21, depressurizing from the outlet 22, or both.
  • the concentration of the biological particles 50 is reduced with respect to the liquid to be treated 40.
  • the concentrated liquid 41 is obtained in the concentrated space portion 24.
  • the concentration of the biological particles 50 is increased with respect to the liquid to be treated 40.
  • a step of recovering the concentrated liquid 41 from the concentrated space portion 24 is carried out. That is, as shown in FIG. 14, the concentrated liquid 41 is recovered from the concentrated space portion 24 by using an appropriate tool or device such as a micropipette.
  • a step of detecting the biological particles 50 contained in the recovered concentrate 41 is carried out.
  • the biological particles 50 contained therein are detected by appropriate means according to the type and properties thereof.
  • the detection target of the biological particle 50 is nucleic acid (DNA or RNA)
  • polymerase chain reaction (PCR) polymerase chain reaction
  • Southern blotting Northern blotting and the like are carried out.
  • the detection target of the biological particle 50 is a protein
  • mass spectrometry Western blotting
  • immunochromatography and the like are performed.
  • the detection target of the biological particles 50 is sugar or lipid, mass spectrometry or the like is performed.
  • the volume of the concentrated space portion 24 can be appropriately determined according to the properties and amount of the liquid to be treated 40, but is preferably 0.05 to 5 cm 3 in consideration of convenience of use. ..
  • the inclination angle of the inclined portion of the concentrated space portion with respect to the concentrated film is considered for convenience of use such as maintaining the strength of the housing and evenly contacting the inclined portion of the liquid to be treated on the concentrated film. It is preferably 10 ° to 45 °, more preferably 15 ° to 35 °.
  • the filtration area which is the portion where the concentrated membrane 30 actually comes into contact with the liquid to be treated 40, can be appropriately determined according to the properties and amount of the liquid to be treated 40, but the convenience of use should be taken into consideration.
  • it is preferably 0.7 to 20 cm 2 , and more preferably 1 to 15 cm 2.
  • the ratio of the effective area of the concentrated membrane (effective filtration area) that can substantially participate in filtration, excluding the area that cannot participate in filtration due to fixation to the housing, to the opening area of the outlet is the diameter of the outlet and the strength of the housing. Considering the design and the operability of the above-mentioned method for concentrating biological particles, it is preferably 5 to 40, and more preferably 10 to 25.
  • the concentrated membrane an appropriate material and shape is used depending on the type and properties of the biological particles contained in the liquid to be treated.
  • the biological particle is, for example, a particle formed of a lipid bilayer (eg, a virus, a bacterium or an exosome)
  • the concentrated membrane is a porous substrate and at least one of the main surfaces of the porous substrate.
  • a hydrophilic composite porous membrane comprising a hydrophilic resin covering the inner surface of the pores.
  • the "hydrophilic porous membrane on which biological particles are not adsorbed” means a porous membrane on which biological particles are not adsorbed and which is hydrophilic.
  • the property of "hydrophilicity that does not adsorb biological particles” is not particularly limited because it has a balance with the properties of the target biological particles, but the concentration rate is high when the concentration treatment is performed. If it exceeds 100%, it is concentrated, so it can be said that such a porous film has hydrophilicity to which biological particles are not adsorbed.
  • the concentrated film contains a hydrophilic resin described later, or when the contact angle of water in the concentrated film is 90 degrees or less, it can be said that the concentrated film has "hydrophilicity", but the concentration in the present disclosure.
  • Membranes are not limited to this.
  • the diameter or major axis length of the biological particles is, for example, 1 nm or more, 5 nm or more, 10 nm or more, or 20 nm or more, and, for example, 100 ⁇ m or less, 50 ⁇ m or less, 1000 nm. It is less than or equal to or less than 800 nm.
  • the concentrated membrane of the present disclosure may contain other members other than the hydrophilic composite porous membrane.
  • a member other than the hydrophilic composite porous membrane a sheet-shaped reinforcing member arranged in contact with a part or all of the main surface or the side surface of the hydrophilic composite porous membrane; the concentrated membrane is mounted on the concentration device. Guide member for the purpose; etc.
  • the main surface on the upstream side during the concentration treatment may be coated with a hydrophilic resin, and both main surfaces are coated with the hydrophilic resin.
  • the concentrated membrane may be a porous membrane having a single-layer structure containing a hydrophilic resin.
  • the form of covering the main surface of the porous base material with the hydrophilic resin in the hydrophilic composite porous film is, for example, a form in which a part or all of the main surface of the porous base material is covered with the hydrophilic resin, or porous. Part or all of the opening of the quality substrate is filled with hydrophilic resin, or part of the main surface of the porous substrate is covered with hydrophilic resin and part of the opening is filled with hydrophilic resin.
  • the hydrophilic resin forms a porous structure.
  • the porous structure means a structure having a large number of micropores inside and connecting these micropores so that a gas or a liquid can pass from one side to the other. ..
  • the hydrophilic resin fills a part or all of the pores of the porous base material, or a part of the wall surface of the pores of the porous base material covered with the hydrophilic resin and one of the holes.
  • An example is a form in which the portion is filled with a hydrophilic resin.
  • the hydrophilic resin forms a porous structure.
  • the porous structure means a structure having a large number of micropores inside and connecting these micropores so that a gas or a liquid can pass from one side to the other. ..
  • Concentration of biological particles using the concentrated membrane of the present disclosure is included in the liquid to be treated when the liquid to be treated is passed from one main surface of the hydrophilic composite porous membrane to the other main surface. Part or all of the biological particles do not pass through the hydrophilic composite porous membrane, and the liquid to be treated is at least one of the upstream, upstream main surfaces, and pores of the hydrophilic composite porous membrane. It is done by remaining in. Comparing the liquid to be treated before the concentration treatment with the liquid to be treated recovered from at least one of the upstream and upstream main surfaces of the hydrophilic composite porous film and the pores after the concentration treatment, If the concentration of the biological particles contained in the latter is high, it can be said that the biological particles have been concentrated.
  • the enrichment rate of the biological particles (see Formula 1 below) realized by the concentrated membrane of the present disclosure is more than 100%, preferably 200% or more, and more preferably 300% or more.
  • Concentration rate (Biological particle concentration of the liquid to be treated recovered from at least one of the upstream, upstream main surface, and pores of the hydrophilic composite porous film after the concentration treatment) ⁇ (concentration treatment) Biological particle concentration of the previous liquid to be treated) ⁇ 100 ... (Equation 1)
  • the hydrophilic composite porous membrane provided in the concentrated membrane of the present disclosure has a hydrophilic resin on the main surface on the upstream side and the inner surface of the pores, so that the hydrophilic composite porous membrane has a hydrophilic resin. It is presumed that the biological particles remaining on the main surface on the upstream side of the quality membrane and at least one of the pores will be easily recovered, and the enrichment rate of the biological particles will be improved.
  • the porous base material means a base material having pores or voids inside.
  • the porous substrate include a microporous film; a porous sheet made of a fibrous material such as a non-woven fabric and paper; and the like.
  • a microporous membrane is preferable from the viewpoint of thinning and strength of the concentrated membrane of the present disclosure.
  • a microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected so that a gas or liquid can pass from one surface to the other. do.
  • the material of the porous base material may be either an organic material or an inorganic material.
  • the porous substrate may be either hydrophilic or hydrophobic.
  • the concentrated membrane of the present disclosure exhibits hydrophilicity by coating the porous substrate with a hydrophilic resin even if the porous substrate is hydrophobic.
  • porous substrate is a microporous membrane made of resin.
  • Resins constituting the microporous film include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; heat-resistant resins such as total aromatic polyamides, polyamideimides, polyimides, polyethersulfones, polysulfones, polyetherketones, and polyetherimides. ; And so on.
  • the porous substrate includes a porous sheet made of a fibrous material, and examples thereof include non-woven fabric and paper.
  • the fibrous material constituting the porous sheet polyester fibrous material such as polyethylene terephthalate; fibrous material of polyolefin such as polyethylene and polypropylene; total aromatic polyamide, polyamideimide, polyimide, polyethersulfone, polysulfone, poly Fibrous materials of heat-resistant resins such as ether ketone and polyetherimide; cellulose; and the like can be mentioned.
  • the surface of the porous substrate may be subjected to various surface treatments for the purpose of improving the wettability of the coating liquid used for coating the porous substrate with the hydrophilic resin.
  • Examples of the surface treatment of the porous substrate include corona treatment, plasma treatment, flame treatment, ultraviolet irradiation treatment and the like.
  • the thickness of the porous substrate is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, still more preferably 20 ⁇ m or more, from the viewpoint of increasing the strength of the porous substrate and increasing the residual ratio of biological particles.
  • the thickness of the porous substrate is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, still more preferably 100 ⁇ m or less, from the viewpoint of shortening the treatment time of the liquid to be treated.
  • the method for measuring the thickness of the porous substrate is the same as the method for measuring the thickness t of the hydrophilic composite porous membrane.
  • the average pore size measured by the palm porometer of the porous substrate is from the viewpoint of shortening the treatment time of the liquid to be treated and from the viewpoint of easily recovering the biological particles remaining in the pores of the hydrophilic composite porous film. Therefore, 0.1 ⁇ m or more is preferable, 0.15 ⁇ m or more is more preferable, and 0.2 ⁇ m or more is further preferable.
  • the average pore size measured by the palm poromometer of the porous substrate is preferably 0.8 ⁇ m or less, more preferably 0.7 ⁇ m or less, still more preferably 0.6 ⁇ m or less, from the viewpoint of increasing the residual ratio of biological particles.
  • the average pore size measured by the palm poromator of the porous base material is a value obtained by the half-dry method specified in ASTM E1294-89 using the palm porome, and the details of the measuring method are the hydrophilic composite porous film. It is the same as the measuring method relating to the average pore diameter x of.
  • the bubble point pore diameter measured by the palm poromometer of the porous substrate is from the viewpoint of shortening the treatment time of the liquid to be treated, and recovers the biological particles remaining in the pores of the hydrophilic composite porous membrane. From the viewpoint of ease, it is preferably more than 0.8 ⁇ m, more preferably 0.9 ⁇ m or more, still more preferably 1.0 ⁇ m or more.
  • the bubble point pore diameter measured by the palm poromometer of the porous substrate is preferably 3 ⁇ m or less, more preferably 2.8 ⁇ m or less, still more preferably 2.5 ⁇ m or less, from the viewpoint of increasing the residual ratio of biological particles.
  • the bubble point pore diameter measured by the palm poromator of the porous substrate is a value obtained by the bubble point method specified in ASTM F316-86 and JIS K3832 using the palm porome, and the details of the measurement method are hydrophilic. It is the same as the measuring method relating to the bubble point pore diameter y of the sex composite porous membrane.
  • the water flow rate (mL / (min ⁇ cm 2 ⁇ MPa)) of the porous substrate is preferably 20 or more, more preferably 50 or more, still more preferably 100 or more, from the viewpoint of shortening the treatment time of the liquid to be treated.
  • the water flow rate (mL / (min ⁇ cm 2 ⁇ MPa)) of the porous substrate is preferably 1000 or less, more preferably 800 or less, still more preferably 700 or less, from the viewpoint of increasing the residual ratio of biological particles.
  • the method for measuring the water flow rate of the porous substrate is the same as the method for measuring the water flow rate f of the hydrophilic composite porous membrane.
  • the porous substrate is hydrophobic, use the porous substrate soaked in ethanol and then dried at room temperature as a sample, and use a small amount (0.5 mL) of ethanol for the sample set on the liquid permeable cell. The measurement is performed after wetting.
  • the surface roughness Ra of the porous substrate is preferably 0.3 ⁇ m or more, and more preferably 0.4 ⁇ m or more on one side or both sides. Further, the porous substrate preferably has a surface roughness Ra of 0.7 ⁇ m or less, more preferably 0.6 ⁇ m or less, on one side or both sides.
  • the surface roughness Ra of the porous substrate is the arithmetic mean height of the roughness curve, and the details of the measuring method are the same as the measuring method relating to the surface roughness Ra of the hydrophilic composite porous film.
  • the galley value (seconds / 100 mL ⁇ ⁇ m) per unit thickness of the porous substrate is, for example, 0.001 to 5, preferably 0.01 to 3, and more preferably 0.05 to 1. be.
  • the galley value of the porous substrate is a value measured according to JIS P8117: 2009.
  • the porosity of the porous substrate is, for example, 70% to 90%, preferably 72% to 89%, and more preferably 74% to 87%.
  • the porosity of the porous substrate is determined according to the following calculation method. That is, with respect to the constituent materials 1, the constituent materials 2, the constituent materials 3, ..., And the constituent materials n, the masses of the constituent materials are W 1 , W 2, W 3 , ..., W n (g / cm 2). ), And when the true densities of each constituent material are d 1 , d 2 , d 3 , ..., d n (g / cm 3 ) and the film thickness is t (cm), the porosity ⁇ (%). ) Is calculated by the following formula.
  • the BET specific surface area of the porous substrate is, for example, 1 m 2 / g to 40 m 2 / g, preferably 2 m 2 / g to 30 m 2 / g, and more preferably 3 m 2 / g to 20 m 2 / g. Is.
  • the BET specific surface area of the porous substrate is set by the nitrogen gas adsorption method under the liquid nitrogen temperature using the specific surface area measuring device (model: BELSORP-mini) of Microtrac Bell Co., Ltd., and the relative pressure is 1.0. It is a value obtained by measuring the adsorption isotherm of ⁇ 10 -3 to 0.35 and analyzing it by the BET method.
  • a microporous membrane containing polyolefin As one embodiment of the porous substrate, a microporous membrane containing polyolefin (referred to as a polyolefin microporous membrane in the present disclosure) is desirable.
  • the polyolefin contained in the microporous polyolefin membrane is not particularly limited, and examples thereof include polyethylene, polypropylene, polybutylene, polymethylpentene, and a copolymer of polypropylene and polyethylene.
  • polyethylene is preferable, and high-density polyethylene, a mixture of high-density polyethylene and ultra-high molecular weight polyethylene, and the like are preferable.
  • One embodiment of the polyolefin microporous membrane is a polyethylene microporous membrane containing only polyethylene as a polyolefin.
  • the weight average molecular weight (Mw) of the polyolefin contained in the polyolefin microporous membrane is, for example, 100,000 to 5,000,000. When the Mw of the polyolefin is 100,000 or more, sufficient mechanical properties can be imparted to the microporous membrane. When the Mw of the polyolefin is 5 million or less, it is easy to form a microporous film.
  • a polyolefin composition in the present disclosure, means a mixture of polyolefins containing two or more kinds of polyolefins, and when the contained polyolefin is only polyethylene, it is referred to as a polyethylene composition).
  • a polyethylene composition examples include microporous membranes.
  • the polyolefin composition has the effect of forming a network structure with fibrillation during stretching and increasing the porosity of the polyolefin microporous film.
  • the polyolefin composition the ultra-high molecular weight polyethylene having a weight-average molecular weight is 9 ⁇ 10 5 or more, relative to the total amount of polyolefin, preferably a polyolefin composition comprising 5 wt% to 40 wt%, 10 wt% to 35 wt A polyolefin composition containing% is more preferable, and a polyolefin composition containing 15% by mass to 30% by mass is further preferable.
  • the density polyethylene is a polyolefin composition mixed with a mass ratio of 5:95 to 40:60 (more preferably 10:90 to 35:65, still more preferably 15:85 to 30:70).
  • the polyolefin composition preferably has a weight average molecular weight of 2 ⁇ 10 5 to 2 ⁇ 10 6 as a whole.
  • the polyolefin microporous film is heated and dissolved in o-dichlorobenzene, and gel permeation chromatography (system: Waters Co., Ltd. Alliance GPC 2000 type, column: GMH6-HT and It can be obtained by measuring with GMH6-HTL) under the conditions of a column temperature of 135 ° C. and a flow velocity of 1.0 mL / min.
  • Gel permeation chromatography system: Waters Co., Ltd. Alliance GPC 2000 type, column: GMH6-HT and It can be obtained by measuring with GMH6-HTL
  • Molecular weight monodisperse polystyrene manufactured by Tosoh Corporation is used for molecular weight calibration.
  • a microporous film containing polypropylene can be mentioned from the viewpoint of having heat resistance that does not easily break the film when exposed to a high temperature.
  • polyolefin microporous membrane is a polyolefin microporous membrane containing at least a mixture of polyethylene and polypropylene.
  • polyolefin microporous membrane is a polyolefin microporous membrane having two or more laminated structures, at least one layer containing polyethylene and at least one layer containing polypropylene.
  • the biological particles to be concentrated by the concentrated membrane are nano-order.
  • the size is appropriate.
  • the diameter or major axis length of the biological particles is, for example, 10 nm or more and 20 nm or more, for example, 1000 nm or less, 800 nm or less, and 500 nm or less.
  • the concentrated membrane is suitable for concentrating viruses, bacteria or exosomes.
  • the polyolefin microporous membrane can be produced, for example, by a production method including the following steps (I) to (IV).
  • Step (I) is a step of preparing a solution containing the polyolefin composition and a volatile solvent having a boiling point of less than 210 ° C. at atmospheric pressure.
  • the solution is preferably a thermoreversible sol-gel solution, and the polyolefin composition is dissolved by heating in a solvent to form a sol-gel solution to prepare a thermoreversible sol-gel solution.
  • the volatile solvent having a boiling point of less than 210 ° C. at atmospheric pressure is not particularly limited as long as it can sufficiently dissolve the polyolefin. Examples of the volatile solvent include tetralin (206 ° C.
  • ethylene glycol (197.3 ° C.) decalin (decahydronaphthalene, 187 ° C. to 196 ° C.), toluene (110.6 ° C.), and xylene.
  • diethyltriamine 107 ° C
  • ethylenediamine 116 ° C
  • dimethylsulfoxide 189 ° C
  • hexane 69 ° C
  • decalin or xylene is preferable (the temperature in parentheses is: It is the boiling point at atmospheric pressure.).
  • the volatile solvent may be used alone or in combination of two or more.
  • the polyolefin composition used in the step (I) (in the present disclosure, means a mixture of polyolefins containing two or more kinds of polyolefins, and when the contained polyolefin is only polyethylene, it is referred to as a polyethylene composition) contains polyethylene. It is preferable, and it is more preferable that it is a polyethylene composition.
  • the solution prepared in the step (I) preferably has a concentration of the polyolefin composition of 10% by mass to 40% by mass, preferably 15% by mass to 35% by mass, from the viewpoint of controlling the porous structure of the microporous polyolefin film. Is more preferable.
  • concentration of the polyolefin composition is 10% by mass or more, the occurrence of cutting can be suppressed in the film forming step of the polyolefin microporous film, the mechanical strength of the polyolefin microporous film is increased, and the handleability is improved.
  • the concentration of the polyolefin composition is 40% by mass or less, pores in the microporous polyolefin membrane are likely to be formed.
  • Step (II) is a step of melt-kneading the solution prepared in step (I), extruding the obtained melt-kneaded product from a die, cooling and solidifying to obtain a first gel-like molded product.
  • step (II) for example, the polyolefin composition is extruded from a die in a temperature range of melting point to melting point + 65 ° C. to obtain an extrude, and then the extrude is cooled to obtain a first gel-like molded product.
  • the first gel-like molded product is preferably shaped into a sheet. Cooling may be performed by immersion in water or an organic solvent, by contact with a cooled metal roll, and generally by immersion in the volatile solvent used in step (I). Will be done.
  • Step (III) is a step of stretching the first gel-like molded product in at least one direction (primary stretching) and drying the solvent to obtain a second gel-like molded product.
  • the stretching step of the step (III) is preferably biaxial stretching, and may be sequential biaxial stretching in which longitudinal stretching and transverse stretching are performed separately, or simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are simultaneously performed.
  • the stretching ratio of the primary stretching is preferably 1.1 to 3 times, preferably 1.1 to 2 times, from the viewpoint of controlling the porous structure of the polyolefin microporous membrane. More preferred.
  • the temperature at the time of stretching of the primary stretching is preferably 75 ° C. or lower.
  • the drying step of the step (III) is carried out without particular limitation as long as the temperature at which the second gel-like molded product is not deformed, but it is preferably carried out at 60 ° C. or lower.
  • the stretching step and the drying step of the step (III) may be performed simultaneously or stepwise.
  • the primary stretching may be performed while pre-drying, and then the main drying may be performed, or the primary stretching may be performed between the pre-drying and the main drying.
  • the primary stretching can be performed even in a state where drying is controlled and the solvent remains in a suitable state.
  • Step (IV) is a step of stretching (secondary stretching) the second gel-like molded product in at least one direction.
  • the stretching step of the step (IV) is preferably biaxial stretching.
  • sequential biaxial stretching in which longitudinal stretching and transverse stretching are performed separately; simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are performed simultaneously;
  • a step of stretching in the vertical direction and a step of stretching in the horizontal direction a plurality of times; a step of sequentially biaxially stretching and then further stretching in the vertical direction and / or the horizontal direction once or a plurality of times; may be performed.
  • the stretching ratio (product of the longitudinal stretching ratio and the transverse stretching ratio) of the secondary stretching is preferably 5 to 90 times, more preferably 10 to 60 times, from the viewpoint of controlling the porous structure of the polyolefin microporous membrane. It is double.
  • the stretching temperature of the secondary stretching is preferably 90 ° C to 135 ° C, more preferably 90 ° C to 130 ° C, from the viewpoint of controlling the porous structure of the microporous polyolefin membrane.
  • the heat fixing process may be performed after the step (IV).
  • the heat fixing temperature is preferably 110 ° C. to 160 ° C., more preferably 120 ° C. to 150 ° C. from the viewpoint of controlling the porous structure of the microporous polyolefin membrane.
  • the solvent remaining in the microporous polyolefin membrane may be further extracted and annealed.
  • the residual solvent extraction treatment is performed, for example, by immersing the sheet after the heat fixing treatment in a methylene chloride bath to elute the residual solvent in methylene chloride. It is preferable that the microporous polyolefin membrane immersed in the methylene chloride bath is withdrawn from the methylene chloride bath and then the methylene chloride is removed by drying.
  • the annealing treatment is performed by transporting the microporous polyolefin membrane on a roller heated to, for example, 100 ° C. to 140 ° C. after the extraction treatment of the residual solvent.
  • a polyolefin microporous film having a ratio t / x of the film thickness t ( ⁇ m) and the average pore diameter x ( ⁇ m) of 50 to 630 is produced.
  • the ratio t / x can be controlled to 50 or more by reducing the longitudinal stretching ratio.
  • the ratio t / x can be controlled to 630 or less by increasing the longitudinal stretching ratio.
  • the hydrophilic resin is not particularly limited, and examples thereof include resins having a hydrophilic group such as a hydroxy group, a carboxy group, and a sulfo group.
  • the main chain of the polymer consists only of carbon atoms, and the side chains include hydroxy groups, carboxy groups and sulfo groups from the viewpoint of difficulty in falling off from the porous substrate and the viewpoint of concentration of biological particles. It is preferable that the resin has at least one functional group selected from the group consisting of.
  • hydrophilic resin examples include resins in which not only carbon atoms but also oxygen atoms are contained in the main chain of the polymer (for example, polyethylene glucol, cellulose, etc.), but the hydrophilic resin in which the main chain of the polymer contains oxygen atoms. Is relatively easy to fall off from the porous substrate. From the viewpoint of preventing the polymer from falling off from the porous substrate, a resin in which the main chain of the polymer consists only of carbon atoms is preferable, the main chain of the polymer consists only of carbon atoms, and the side chains consist of hydroxy groups, carboxy groups and sulfo groups. A resin having at least one functional group selected from the group is more preferable.
  • Hydrophilic resins include polyvinyl alcohol, olefin / vinyl alcohol resin, acrylic / vinyl alcohol resin, methacrylic / vinyl alcohol resin, vinylpyrrolidone / vinyl alcohol resin, polyacrylic acid, polymethacrylic acid, and perfluorosulfonic acid. It preferably contains at least one hydrophilic resin selected from the group consisting of resins and polystyrene sulfonic acid. Above all, it is more preferable to contain an olefin / vinyl alcohol-based resin.
  • hydrophilic resin examples include a hydrophilic resin obtained by graft-polymerizing a hydrophilic monomer on the surface of a porous substrate.
  • the hydrophilic resin is in the form of being directly chemically bonded to the surface of the porous substrate.
  • hydrophilic monomer graft-polymerized on the surface of the porous substrate examples include acrylic acid, methacrylic acid, vinyl alcohol, N-vinyl-2-pyrrolidone, vinyl sulfonic acid and the like.
  • the hydrophilic resin is made porous by a coating method or the like, rather than a form in which the hydrophilic resin is directly chemically bonded to the surface of the porous substrate as in graft polymerization.
  • a form adhered to the surface of the base material is preferable.
  • the hydrophilic resin may be one kind or two or more kinds.
  • the hydrophilic resin is an olefin from the viewpoint of less irritation to biological particles and the easy recovery of biological particles remaining in the main surface and pores on the upstream side of the hydrophilic composite porous film. Vinyl alcohol-based resins are preferred.
  • Examples of the olefin constituting the olefin / vinyl alcohol-based resin include ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, and decene.
  • an olefin having 2 to 6 carbon atoms is preferable, an ⁇ -olefin having 2 to 6 carbon atoms is more preferable, an ⁇ -olefin having 2 to 4 carbon atoms is further preferable, and ethylene is particularly preferable.
  • the olefin unit contained in the olefin / vinyl alcohol-based resin may be one kind or two or more kinds.
  • the olefin / vinyl alcohol-based resin may contain a monomer other than olefin and vinyl alcohol as a constituent unit.
  • a monomer other than olefin and vinyl alcohol for example, at least one acrylic monomer selected from the group consisting of (meth) acrylic acid, (meth) acrylic acid salt, and (meth) acrylic acid ester; styrene, metachlorostyrene.
  • Parachlorostyrene parafluorostyrene, paramethoxystyrene, meta-tert-butoxystyrene, para-tert-butoxystyrene, paravinylbenzoic acid, paramethyl- ⁇ -methylstyrene and other styrene-based monomers.
  • These monomer units may be contained in one kind in the olefin / vinyl alcohol-based resin, or may be contained in two or more kinds.
  • the olefin / vinyl alcohol-based resin may contain a monomer other than olefin and vinyl alcohol as a constituent unit, but it remains in the pores of the hydrophilic composite porous film from the viewpoint of less irritation to biological particles.
  • the total ratio of the olefin unit and the vinyl alcohol unit is preferably 85 mol% or more, more preferably 90 mol% or more, and 95 mol% or more. Is more preferable, and 100 mol% is particularly preferable.
  • olefin / vinyl alcohol-based resin a binary copolymer of olefin and vinyl alcohol is preferable (here, the preferred embodiment of the olefin is as described above), and a binary copolymer of ethylene and vinyl alcohol is preferable. Is more preferable.
  • the ratio of the olefin unit in the olefin / vinyl alcohol resin is preferably 20 mol% to 55 mol%.
  • the ratio of the olefin unit is more preferably 23 mol% or more, further preferably 25 mol% or more.
  • the ratio of the olefin unit is 55 mol% or less, the hydrophilicity of the olefin / vinyl alcohol-based resin is higher. From this viewpoint, the ratio of the olefin unit is more preferably 52 mol% or less, further preferably 50 mol% or less.
  • olefin / vinyl alcohol resins examples include "Soanol” (registered trademark) manufactured by Nippon Synthetic Chemical Industry Co., Ltd. and “Eval” (registered trademark) manufactured by Kuraray Co., Ltd.
  • the amount of the hydrophilic resin adhered to the porous substrate is, for example, 0.01 g / m 2 to 5 g / m 2 , 0.02 g / m 2 to 2 g / m 2 , and 0.03 g / m 2 to. It is 1 g / m 2 .
  • the amount of the hydrophilic resin adhered to the porous substrate is the value obtained by subtracting the texture Wb (g / m 2 ) of the porous substrate from the texture Wa (g / m 2 ) of the hydrophilic composite porous membrane (Wa-Wb). ).
  • the method for producing the hydrophilic composite porous membrane is not particularly limited.
  • a coating liquid containing a hydrophilic resin is applied to a porous base material, the coating liquid is dried, and the porous base material is coated with the hydrophilic resin; the porous base material is coated.
  • the coating liquid containing the hydrophilic resin can be prepared by dissolving or dispersing the hydrophilic resin in the solvent by mixing the hydrophilic resin with a solvent heated to a temperature higher than the melting point of the hydrophilic resin and stirring the mixture.
  • the solvent is not particularly limited as long as it is a solvent that is a good solvent for the hydrophilic resin, but specifically, for example, 1-propanol aqueous solution, 2-propanol aqueous solution, N, N-dimethylformamide aqueous solution, dimethylsulfoxide aqueous solution. , Ethanol aqueous solution and the like.
  • the ratio of the organic solvent in these aqueous solutions is preferably 30% by mass to 70% by mass.
  • the concentration of the hydrophilic resin in the coating liquid is preferably 0.01% by mass to 5% by mass.
  • the concentration of the hydrophilic resin in the coating liquid is 0.01% by mass or more, hydrophilicity can be efficiently imparted to the porous substrate.
  • the concentration of the hydrophilic resin in the coating liquid is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more.
  • the concentration of the hydrophilic resin in the coating liquid is 5% by mass or less, the water flow rate in the produced hydrophilic composite porous membrane is large. From this viewpoint, the concentration of the hydrophilic resin in the coating liquid is more preferably 3% by mass or less, further preferably 2% by mass or less.
  • Applying the coating liquid to the porous substrate can be performed by a known coating method.
  • the coating method include a dipping method, a knife coating method, a gravure coating method, a screen printing method, a Meyer bar coating method, a die coating method, a reverse roll coating method, an inkjet method, a spray method, and a roll coating method.
  • the temperature of the coating liquid is not particularly limited, but is preferably in the range of 5 ° C to 40 ° C.
  • the temperature at which the coating liquid is dried is preferably 25 ° C to 100 ° C.
  • the drying temperature is 25 ° C. or higher, the time required for drying can be shortened.
  • the dry concentration is more preferably 40 ° C. or higher, further preferably 50 ° C. or higher.
  • the drying temperature is 100 ° C. or lower, the shrinkage of the porous substrate is suppressed. From this point of view, the drying temperature is more preferably 90 ° C. or lower, further preferably 80 ° C. or lower.
  • the hydrophilic composite porous membrane may contain a surfactant, a wetting agent, a defoaming agent, a pH adjusting agent, a coloring agent and the like.
  • the concentrated film preferably has a water contact angle of 90 degrees or less measured under the following measurement conditions on one side or both sides, and the smaller the water contact angle, the more preferable. It is more preferable that the concentrated membrane is hydrophilic so that when the contact angle of water is to be measured under the following measurement conditions on one side or both sides, water droplets permeate the inside of the membrane and cannot be measured.
  • the contact angle of water is a value measured by the following measuring method. After leaving the concentrated film in an environment with a temperature of 25 ° C and a relative humidity of 60% for 24 hours or more to adjust the humidity, 1 ⁇ L of ion-exchanged water droplets are sprayed on the surface of the concentrated film with a syringe under the same temperature and humidity environment. Drop and measure the contact angle after 30 seconds by the ⁇ / 2 method using a fully automatic contact angle meter (Kyowa Interface Science Co., Ltd., model number Drop Master DM500).
  • the concentrating film used in the concentrating device of the present disclosure is a hydrophilic composite porous film comprising a porous base material and a hydrophilic resin that covers at least one main surface of the porous base material and the inner surface of pores. Including, the ratio t / x between the film thickness t ( ⁇ m) and the average pore diameter x ( ⁇ m) measured by the palm poromometer is 50 to 630.
  • t / x of the concentrated film When t / x of the concentrated film is less than 50, the film thickness t is too thin for the size of the average pore size x, or the average pore size x is too large for the thickness of the film thickness t.
  • Residual rate of biological particles that allow scientific particles to easily pass through the concentrated membrane and remain in at least one of the main surface and pores on the upstream, upstream side of the concentrated membrane hereinafter, simply “residual biological particles"
  • the rate) is inferior, and as a result, the enrichment rate of biological particles is inferior.
  • t / x is 50 or more, preferably 80 or more, and more preferably 100 or more.
  • t / x of the concentrated film is more than 630, the film thickness t is too thick for the size of the average pore size x, or the average pore size x is too small for the thickness of the film thickness t. It is difficult for the treatment liquid to pass through the concentrated membrane, and it takes time for the liquid to be treated to pass through the concentrated membrane (that is, it takes time to concentrate the liquid to be treated). From this point of view, t / x is 600 or less, preferably 500 or less, and more preferably 400 or less.
  • the thickness t of the concentrated film is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, further preferably 20 ⁇ m or more, still more preferably 30 ⁇ m or more, from the viewpoint of increasing the strength of the concentrated film and increasing the residual rate of biological particles. More preferred.
  • the thickness t of the concentrated film is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, from the viewpoint of shortening the time required for the liquid to be treated to pass through the concentrated membrane (hereinafter referred to as the treatment time of the liquid to be treated). 80 ⁇ m or less is more preferable, and 70 ⁇ m or less is further preferable.
  • the thickness t of the concentrated film is obtained by measuring 20 points with a contact-type film thickness meter and averaging them.
  • the average pore size x measured by the palm poromometer of the concentrated membrane is 0.1 ⁇ m from the viewpoint of shortening the treatment time of the liquid to be treated and from the viewpoint of easily recovering the biological particles remaining in the pores of the concentrated membrane.
  • the above is preferable, 0.15 ⁇ m or more is more preferable, and 0.2 ⁇ m or more is further preferable.
  • the average pore size x measured by the palm poromometer of the concentrated membrane is preferably 0.5 ⁇ m or less, more preferably 0.45 ⁇ m or less, still more preferably 0.4 ⁇ m or less, from the viewpoint of increasing the residual rate of biological particles.
  • the average pore size x measured by the palm poromator of the concentrated membrane is, for example, a palm porome meter (PMI, model: CFP-1200-AEXL), and PMI's Galwick (surface tension 15.9dyn) is used for immersion. / Cm) is used to determine by the half-dry method specified in ASTM E1294-89.
  • PMI palm porome meter
  • Galwick surface tension 15.9dyn
  • / Cm is used to determine by the half-dry method specified in ASTM E1294-89.
  • the bubble point pore diameter y measured by the palm poromometer of the concentrated membrane is 0 from the viewpoint of shortening the treatment time of the liquid to be treated and from the viewpoint of easily recovering the biological particles remaining in the pores of the concentrated membrane. More than 8.8 ⁇ m is preferable, 0.9 ⁇ m or more is more preferable, and 1.0 ⁇ m or more is further preferable.
  • the bubble point pore diameter y measured by the palm poromometer of the concentrated membrane is preferably 3 ⁇ m or less, more preferably 2.5 ⁇ m or less, still more preferably 2.2 ⁇ m or less, from the viewpoint of increasing the residual rate of biological particles.
  • the bubble point pore diameter y measured by the palm porome of the concentrated membrane is, for example, the bubble point method (ASTM F316-86, JIS K3832) using a palm porome meter (PMI, model: CFP-1200-AEXL). Asked by. However, it is a value obtained by changing the immersion liquid at the time of the test to Galwick (surface tension 15.9 dyn / cm) manufactured by PMI.
  • the main surface coated with the hydrophilic resin is installed toward the pressurized portion of the palm poromometer, and the measurement is performed.
  • the bubble point pressure of the concentrated film is, for example, 0.01 MPa or more and 0.20 MPa or less, preferably 0.02 MPa to 0.15 MPa.
  • the bubble point pressure of the concentrated film is applied by immersing the microporous polyolefin membrane in ethanol and following the bubble point test method of JIS K3832: 1990, however, changing the liquid temperature during the test to 24 ⁇ 2 ° C. Is a value obtained by performing a bubble point test while boosting the pressure at a boosting speed of 2 kPa / sec.
  • the main surface coated with the hydrophilic resin is installed toward the pressurized portion of the measuring device to perform measurement.
  • the water flow rate f (mL / (min ⁇ cm 2 ⁇ MPa)) of the concentrated membrane is preferably 20 or more, more preferably 50 or more, still more preferably 100 or more, from the viewpoint of shortening the treatment time of the liquid to be treated.
  • the water flow rate f (mL / (min ⁇ cm 2 ⁇ MPa)) of the concentrated membrane is preferably 1000 or less, more preferably 800 or less, still more preferably 700 or less, from the viewpoint of increasing the residual ratio of biological particles.
  • the water flow rate f of the concentrated film is, for example, permeated 100 mL of water at a constant differential pressure (20 kPa) through a sample set in a permeation cell having a constant permeation area (cm 2), and 100 mL of water permeates. The time (sec) required for this is measured and converted into units.
  • water is allowed to permeate from the main surface coated with the hydrophilic resin to the main surface not coated with the hydrophilic resin for measurement. ..
  • the ratio f / y of the water flow rate f (mL / (min ⁇ cm 2 ⁇ MPa)) to the bubble point pore diameter y ( ⁇ m) is 100 or more from the viewpoint of shortening the treatment time of the liquid to be treated. It is preferably 150 or more, more preferably 200 or more, and even more preferably 200 or more.
  • the concentrated film has a ratio f / y of 480 or less, more preferably 400 or less, still more preferably 350 or less, from the viewpoint of increasing the residual rate of biological particles.
  • the concentrated membrane preferably has a surface roughness Ra of 0.3 ⁇ m or more, preferably 0.4 ⁇ m or more, at least on the main surface on the upstream side during the concentration treatment. It is more preferable to have.
  • the concentrated film preferably has a surface roughness Ra of 0.7 ⁇ m or less, preferably 0.6 ⁇ m or less, at least on the main surface on the upstream side during the concentration treatment. It is more preferable to have.
  • the surface roughness Ra of the concentrated film is a non-contact type measurement of the surface of the sample at three points at random using a light wave interferometry surface roughness meter (Zygo, NewView5032), and analysis software for roughness evaluation. Is obtained using.
  • the galley value (seconds / 100 mL ⁇ ⁇ m) per unit thickness of the concentrated film is, for example, 0.001 to 5, preferably 0.01 to 3, and more preferably 0.05 to 1.
  • the galley value of the concentrated film is a value measured according to JIS P8117: 2009.
  • the porosity of the concentrated membrane is, for example, 70% to 90%, preferably 72% to 89%, and more preferably 74% to 87%.
  • the porosity of the concentrated membrane is determined according to the following calculation method. That is, for the constituent materials 1, the constituent materials 2, the constituent materials 3, ..., And the constituent materials n, the masses of the constituent materials are W 1 , W 2, W 3 , ..., W n (g / cm 2 ).
  • the true densities of each constituent material are d 1 , d 2 , d 3 , ..., d n (g / cm 3 ) and the film thickness is t (cm)
  • the porosity ⁇ (%) is It is calculated by the following formula.
  • the concentrated membrane is preferably hard to curl. From the viewpoint of suppressing curling of the concentrated film, it is preferable that both main surfaces of the concentrated film are coated with a hydrophilic resin.
  • the concentration device of the present disclosure uses the concentration membrane as described above, biological particles can be concentrated easily and quickly as compared with the centrifugal method.
  • biological particles can be concentrated quickly and efficiently as compared with the conventional porous membrane.
  • UHMWPE Ultra-high molecular weight polyethylene with a weight average molecular weight of 4.6 million
  • HDPE high-density polyethylene with a weight average molecular weight of 560,000 and a density of 950 kg / m 3
  • a polyethylene composition mixed with 25 parts by mass was prepared.
  • a polyethylene solution was prepared by mixing a polyethylene composition and decalin so that the polymer concentration was 25% by mass.
  • the above polyethylene solution was extruded from a die into a sheet at a temperature of 147 ° C., and then the extruded product was cooled in a water bath having a water temperature of 20 ° C. to obtain a first gel-like sheet.
  • the first gel-like sheet was pre-dried in a temperature atmosphere of 70 ° C. for 10 minutes, then primary stretched 1.8 times in the MD direction, and then the main drying was performed in a temperature atmosphere of 57 ° C. 5
  • a second gel sheet (base tape) was obtained (the residual amount of the solvent in the second gel sheet was less than 1%).
  • the second gel-like sheet (base tape) was stretched in the MD direction at a temperature of 90 ° C. at a magnification of 4 times, then in the TD direction at a temperature of 125 ° C. at a magnification of 9 times, and then.
  • heat treatment heat fixing
  • the sheet after heat fixing was continuously immersed in a methylene chloride bath divided into two tanks for 30 seconds each to extract decalin in the sheet. After removing the sheet from the methylene chloride bath, methylene chloride was dried and removed in a temperature atmosphere of 40 ° C. In this way, a polyethylene microporous membrane was obtained.
  • EVOH Polyethylene microporous membrane hydrophilization treatment
  • a hydrophilic resin an ethylene / vinyl alcohol binary copolymer (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., Soanol DC3203R, ethylene unit 32 mol%) (hereinafter referred to as EVOH) was prepared.
  • the polyethylene microporous membrane fixed to the metal frame was immersed in the coating liquid to impregnate the pores of the polyethylene microporous membrane with the coating liquid, and then pulled up. Then, the excess coating liquid adhering to both main surfaces of the polyethylene microporous membrane was removed and dried at room temperature for 2 hours. Then, the metal frame was removed from the polyethylene microporous membrane. In this way, a hydrophilic composite porous membrane (concentrated membrane 1) in which both the main surfaces of the polyethylene microporous membrane and the inner surface of the pores were coated with the hydrophilic resin was obtained.
  • the concentrated film 2 was prepared as follows.
  • the above polyethylene solution was extruded from a die into a sheet at a temperature of 149 ° C., and then the extruded product was cooled in a water bath having a water temperature of 20 ° C. to obtain a first gel-like sheet.
  • the first gel-like sheet was pre-dried in a temperature atmosphere of 70 ° C. for 10 minutes, then primary stretched 1.8 times in the MD direction, and then the main drying was performed in a temperature atmosphere of 57 ° C. 5
  • a second gel sheet (base tape) was obtained (the residual amount of the solvent in the second gel sheet was less than 1%).
  • the second gel-like sheet (base tape) was stretched in the MD direction at a temperature of 90 ° C. at a magnification of 4 times, then in the TD direction at a temperature of 103 ° C. at a magnification of 9 times, and then.
  • heat treatment heat fixing
  • the sheet after heat fixing was continuously immersed in a methylene chloride bath divided into two tanks for 30 seconds each to extract decalin in the sheet. After removing the sheet from the methylene chloride bath, methylene chloride was dried and removed in a temperature atmosphere of 40 ° C. In this way, a polyethylene microporous membrane was obtained.
  • the polyethylene microporous membrane fixed to the metal frame was immersed in the coating liquid to impregnate the pores of the polyethylene microporous membrane with the coating liquid, and then pulled up. Then, the excess coating liquid adhering to both main surfaces of the polyethylene microporous membrane was removed and dried at room temperature for 2 hours. Then, the metal frame was removed from the polyethylene microporous membrane. In this way, a hydrophilic composite porous membrane (concentrated membrane 2) in which both the main surfaces of the polyethylene microporous membrane and the inner surface of the pores were coated with the hydrophilic resin was obtained.
  • the thickness of the hydrophilic composite porous membrane or the porous membrane was determined by measuring 20 points with a contact-type film thickness meter (manufactured by Mitutoyo Co., Ltd.) and averaging them.
  • a contact-type film thickness meter manufactured by Mitutoyo Co., Ltd.
  • the measured pressure was 0.1 N.
  • the bubble point pore diameter y ( ⁇ m) of the hydrophilic composite porous membrane or the porous membrane is determined by the bubble point method (ASTM F316-86, JIS K3832) using a Palm Polometer (model: CFP-1200-AEXL) manufactured by PMI. ). However, it is a value obtained by changing the immersion liquid at the time of the test to Galwick (surface tension 15.9 dyn / cm) manufactured by PMI. The measurement temperature was 25 ° C., and the measurement pressure was varied in the range of 0 to 600 kPa.
  • the hydrophilic composite porous membrane was cut out in an MD direction of 10 cm and a TD direction of 10 cm, and set in a stainless steel circular liquid permeable cell having a liquid permeable area of 17.34 cm 2.
  • 100 mL of water was permeated with a differential pressure of 20 kPa, and the time (sec) required for 100 mL of water to permeate was measured.
  • the measurement was performed in a temperature atmosphere at room temperature of 24 ° C.
  • the water flow rate f (mL / (min ⁇ cm 2 ⁇ MPa)) was obtained by converting the measurement conditions and the measured values into units.
  • Each concentrated membrane has a diameter of a region that can substantially participate in filtration (hereinafter, the area of this region is referred to as an "effective filtration area"), excluding a region that cannot participate in filtration due to fixing to the housing.
  • an effective filtration area a region that cannot participate in filtration due to fixing to the housing.
  • the housing has a shape as shown in FIG. 4 described above, which is composed of an upstream member and a downstream member, and has a disk-shaped support formed separately from the downstream member as a support portion. Those were used in Examples 1 to 6 and Comparative Example 1. In Comparative Example 2, a commercially available filter holder (Merck Millipore, Swinex 35) was used as it was as a housing.
  • the diameter of the inlet of the upstream member was 4.3 mm in all Examples and Comparative Examples. Further, a "+" -shaped dividing member as shown in FIG. 9 is provided at the entrances of Examples 1 to 4, Example 6 and Comparative Example 1, while the entrances of Examples 5 and 2 are provided. No split member was provided.
  • the average inclination angle of the inclined portion of the concentrated space portion with respect to the concentrated film was 28 ° in Examples 1 to 6 and Comparative Example 1, and 60 ° in Comparative Example 2. Then, the volume of the concentrate space is 0.11 cm 3 in Example 1 to Example 6 and Comparative Example 1, it was 0.17 cm 3 in Comparative Example 2.
  • the diameter of the outlet of the downstream member was 3 mm in Examples 1 to 6 and Comparative Example 1, and 2.3 mm in Comparative Example 2. From this, the ratio of the effective filtration area of the concentrated membrane to the opening area of the outlet (hereinafter referred to as “opening ratio”) is 16 in Examples 1 to 6 and Comparative Example 1, and in Comparative Example 2. It became 19.
  • Example 1 Example 2, and Example 5, a support having a groove having a pattern shown in the second example (see FIG. 6) described above was used.
  • Example 3 a support having a groove of the pattern shown in the first example (see FIG. 5) described above was used.
  • Example 4 a support having a groove having a pattern shown in the third example (see FIG. 7) described above was used.
  • Example 6 a support having a groove having a pattern shown in the fourth example (see FIG. 8) described above was used.
  • Comparative Example 1 a support having only an outlet and no groove on the surface was used.
  • Comparative Example 2 the perforated plate attached to the Swinex 35 was used as it was as a support.
  • Comparative Example 2 is provided with a gap connecting the inlet side and the outlet side, it is radial like a drainage groove or a connecting groove as shown in the first to fourth examples described above. No groove of the pattern or the groove of the concentric pattern is provided.
  • the "contact area ratio” is the area of the portion where the concentrated membrane is in direct contact with the support with respect to the effective filtration area of the concentrated membrane (in other words, from the effective filtration area of the concentrated membrane). , The value obtained by subtracting the total area of the groove in the support).
  • ⁇ Performance evaluation of enrichment device> A virus concentration test was performed on each Example and Comparative Example. The details of the virus concentration test are as follows.
  • a virus suspension in which dengue virus was suspended in a buffer solution was prepared.
  • the virus unit was 1 ⁇ 10 4 FFU / mL.
  • the dengue virus is a spherical virus having an envelope and having a diameter of about 40 nm to 60 nm.
  • processing time The time (seconds) from the time when the plunger was started to be pushed to the time when the plunger was pushed all the way was measured.
  • Example 1 the virus concentration rates in Examples 1 to 6 were as follows. In Example 1, it exceeded 1700%. In Example 2 and Example 3, it exceeded 1900%. In Example 4, it exceeded 1200%. In Example 5 and Example 6, it exceeded 1000%. From the above, the virus enrichment rate of at least 1000% was observed in the enrichment devices of Examples 1 to 6, so that the effect of enriching the biological particles was remarkable.
  • the virus concentration rates in Comparative Example 1 and Comparative Example 2 were as follows. In Comparative Example 2, it was 931%. In Comparative Example 1, the virus concentration rate could not be calculated because the entire amount of the liquid to be treated could not be treated even if the treatment time exceeded 100 seconds. From the above, the virus enrichment could not be performed with the enrichment device of Comparative Example 1, the virus enrichment rate of the enrichment device of Comparative Example 2 was less than 1000%, and the effect of enriching the biological particles was any of the examples. Was inferior to.
  • Example 1 The processing times in Examples 1 to 6 were as follows. In Example 1, it was 37 seconds. In Example 2, it was 28 seconds. In Example 3, it was 25 seconds. In Example 4, it was 34 seconds. In Example 5, it was 27 seconds. In Example 6, it was 23 seconds. From the above, the processing time in the concentration devices of Examples 1 to 6 was less than 40 seconds, and the concentration could be performed quickly.
  • Comparative Example 1 and Comparative Example 2 were as follows. As for Comparative Example 1, as described above, the entire amount of the liquid to be treated could not be treated even if the treatment time exceeded 100 seconds. In Comparative Example 2, it was 40 seconds. From the above, in the concentration device of the comparative example, the processing time was 40 seconds, or the concentration treatment itself could not be performed. Therefore, from the viewpoint of processing time, all the comparative examples were inferior to all the examples.
  • the concentration device of Comparative Example 1 could not perform the concentration treatment itself, and was considered unsuitable for practical use. This is because, in the concentration device of Comparative Example 1, the contact area ratio exceeds 0.94 and 0.9 as shown in Table 3, and the region capable of permeating the concentration membrane is substantially a region corresponding to the outlet of the concentration membrane. It seems that the processing efficiency was extremely poor because it was only. Further, in the concentration device of Comparative Example 2, the virus concentration rate was less than 1000% and the treatment time was 40 seconds, and although it could be put into practical use, it was inferior to each example. As shown in Table 3, the contact area ratio was not inferior to that of the other examples, but as shown in Table 3, the volume of the concentrated space was large, so that the amount of the remaining concentrated liquid was relative. It seems that the virus concentration was not as high as in the examples.
  • the contact area ratio in Table 3 and the processing time in Table 4 are generally proportional to each other. It is considered that this is because the smaller the contact area ratio, the larger the ratio of the area where the concentrated film corresponds to the groove, and the easier it is for the liquid to be treated to permeate the concentrated film.
  • the treatment time was the shortest, but the concentration rate was the worst among the examples. It is presumed that this is because the concentrated film could not be sufficiently supported by the support and the bending of the concentrated film adversely affected the concentration.
  • Example 2 and Example 5 all the conditions were the same except that the former was provided with a dividing member at the entrance, while the latter was not provided.
  • the enrichment rate shown in Table 4 was 1955% for the former and 1075% for the latter. As a result, it is presumed that the concentration efficiency was improved because the split member was provided at the inlet and the liquid to be treated was sprayed on the concentration film in a wider range.
  • the present invention can be used in enrichment devices used to concentrate biological particles.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

入口と出口との差圧により生物学的粒子及び水を含む被処理液が入口から注入されて出口から排出されるようになっているハウジングと、入口と出口とを隔てるように設けられ、生物学的粒子が吸着しない親水性の多孔膜であり、入口側の面から出口側の面に、被処理液から生物学的粒子の濃度を減じた液体である排出液を透過させる濃縮膜と、ハウジング内における濃縮膜の上流側で濃縮膜により生物学的粒子の濃度を増した濃縮液を収容する濃縮空間部と、濃縮膜と出口との間に位置し、濃縮膜が載置されるとともに、出口と連絡する複数の放射状の溝である排液溝が設けられている支持部と、を備えた、生物学的粒子の濃縮デバイス。

Description

生物学的粒子の濃縮デバイス
 本発明は、生物学的粒子を濃縮するために用いる濃縮デバイスに関する。
 特開平11-090184号公報には、エチレン・ビニルアルコール共重合体を表面に被覆したポリエチレン多孔質中空糸膜の束を微生物の捕捉に用いることが開示されている。
 特表2013-531236号公報には、1.0μmを超えないバブルポイント孔径を備えたフィルタ膜を微生物の捕捉に用いることが開示されている。
 特開2009-183804号公報には、疎水性樹脂からなる高分子微多孔膜の表面に親水性モノマーを放射線グラフト反応させる、親水化された高分子微多孔膜の製造方法が開示されている。
 特開2003-268152号公報には、高分子微多孔膜に、1個のビニル基を有する親水性モノマーと2個以上のビニル基を有する架橋剤とをグラフト重合法によって共重合させて得られる親水性微多孔膜が開示されている。
 特公平06-057143号公報には、ポリオレフィンの多孔性中空糸基体がグリセリン脂肪酸エステルで被覆された多孔性中空糸膜を菌体の濃縮分離用膜として使用することが開示されている。
 特開2004-016930号公報には、粘度平均分子量が100万を超えるポリエチレン樹脂からなり、融解ピーク温度が145℃以上である結晶成分を少なくとも1種含み、気孔率が20~95%であり、平均孔径が0.01~10μmである微多孔膜が開示されている。
 特開2002-265658号公報には、ポリエチレン樹脂からなり、膜厚が25μmを超え1mm以下、平均孔径が0.01~10μm、構造ファクターFが1.5×10-2・m-1・Pa-2以上である高透過性微多孔膜を含む医用分離フィルタが開示されている。
 特表2016-534748号公報には、界面活性剤で事前処理した膜フィルタに生物学的生成物を含む流体を通して、該流体中に存在する凝集物を除去する方法が開示されている。
 特開2006-71478号公報には、被検液中の口腔内微生物を濾過膜上に捕捉し回収する方法が開示されている。
 特開昭61-271003号公報には、ポリオレフィンからなる多孔質構造マトリックスと、該マトリックスの細孔表面を被覆するエチレン・ビニルアルコール系共重合体被覆層とからなる親水性複合多孔質膜が開示されている。
 例えば感染症の診断を目的に、生物から採取した検体からウイルス又は細菌の分離を行うことがある。ウイルス又は細菌の分離方法の一つに遠心法があるが、遠心法は、遠心力を変えて遠心操作を繰り返したり、密度勾配を有する緩衝液に試料をのせて遠心したり、超遠心を行ったりと、設備、手間及び時間のかかる方法である。ほかにウイルス又は細菌の分離方法の一つに多孔質膜を用いて分離する方法があるが、従来の手法は濾液からウイルス等を完全に除去することだけを目的としていたり、ウイルス等を膜に吸着させて逆洗処理によりウイルス等を取り出すといった複雑な手法となっていたりして、検体中のウイルス等を効率よく濃縮して回収するという観点は欠落していた。
 本開示の実施形態は上記状況のもとになされた。即ち、本開示の実施形態は、生物学的粒子(biological particle)を簡易に迅速に効率よく濃縮することを目的とし、これを解決する濃縮デバイスを提供することを課題とする。
 前記課題を解決するための具体的手段には、以下の態様が含まれる。
 [1]入口及び出口を有するとともに、前記入口と前記出口との差圧により生物学的粒子及び水を含む被処理液が、前記入口から注入されて前記出口から排出されるようになっているハウジングと、前記ハウジング内において前記入口と前記出口とを隔てるように設けられ、前記生物学的粒子が吸着しない親水性の多孔膜であり、前記入口側の面から前記出口側の面に、前記被処理液から前記生物学的粒子の濃度を減じた液体である排出液を透過させる濃縮膜と、前記ハウジング内における前記濃縮膜の上流側の空間であって、前記濃縮膜により前記被処理液から前記生物学的粒子の濃度を増した液体である濃縮液を収容する濃縮空間部と、前記ハウジング内において前記濃縮膜と前記出口との間に位置し、前記濃縮膜が載置されるとともに、上流側の面に前記出口と連絡する複数の放射状の溝である排液溝が設けられている支持部と、を備えた、生物学的粒子の濃縮デバイス。
 [2]前記濃縮膜の全面積に対する、前記濃縮膜が前記支持部と接触する部分の面積の割合が、0.4以上0.9以下である、[1]に記載の生物学的粒子の濃縮デバイス。
 [3]前記支持部の上流側の面には、前記出口を中心とする複数の同心円状の溝である連絡溝が設けられている、[1]又は[2]に記載の生物学的粒子の濃縮デバイス。
 [4]前記支持部の上流側の面に設けられている溝の幅が0.1mm以上5mm以下である、[1]~[3]のいずれか1つに記載の生物学的粒子の濃縮デバイス。
 [5]前記入口の前記濃縮空間部への開口部位に、前記入口から流入する被処理液の流路を分割するための分割部材が設けられている、[1]~[4]のいずれか1つに記載の生物学的粒子の濃縮デバイス。
 [6]前記ハウジングが上流側部材と下流側部材との2部材により構成され、前記支持部は前記下流側部材の上流側に設けられ、前記支持部に載置された濃縮膜の周縁が前記上流側部材と前記下流側部材とに挟み込まれた状態で、溶着にて固定されている、[1]~[5]のいずれか1つに記載の生物学的粒子の濃縮デバイス。
 [7]前記支持部は、前記ハウジングとは別部材として形成された支持体が、前記下流側部材に装着されて構成される、[6]に記載の生物学的粒子の濃縮デバイス。
 本開示の実施形態によれば、生物学的粒子を簡易に迅速に効率よく濃縮する濃縮デバイスが提供される。
本開示に係る生物学的粒子の濃縮デバイスの一例を模式的に示す斜視図である。 図1の濃縮デバイスを構成する各部材を分解した状態で模式断面図として示す。 図1の濃縮デバイスの模式断面図である。 濃縮デバイスの別の例の模式断面図である。 支持部の第1例の平面図である。 支持部の第2例の平面図である。 支持部の第3例の平面図である。 支持部の第4例の平面図である。 入口が濃縮空間部へ開口する部位の底面図である。 入口が濃縮空間部へ開口する部位の別の例を示す底面図である。 図1の濃縮デバイスにおいて、入口から被処理液が供給される状態を断面図にて模式的に示す。 図11の状態から、入口と出口との間に差圧が付与されている状態を断面図にて模式的に示す。 図12の状態から、濃縮液が得られる状態を断面図にて模式的に示す。 図13の状態から、濃縮液が回収される状態を断面図にて模式的に示す。
 以下に、発明の実施形態を説明する。これらの説明及び実施例は実施形態を例示するものであり、発明の範囲を制限するものではない。本開示において述べる作用機序は推定を含んでおり、その正否は発明の範囲を制限するものではない。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは模式的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を示す。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において各成分は該当する物質を複数種含んでいてもよい。本開示において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
 本開示において「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味する。
 本開示において「モノマー単位」とは、重合体の構成要素であって、単量体が重合してなる構成要素を意味する。
 本開示において、「機械方向」とは、長尺状に製造される膜、フィルム又はシートにおいて長尺方向を意味し、「幅方向」とは、「機械方向」に直交する方向を意味する。本開示において、「機械方向」を「MD方向」ともいい、「幅方向」を「TD方向」ともいう。
 本開示において、膜、フィルム又はシートの「主面」とは、膜、フィルム又はシートが備える外面のうち、厚さ方向に伸びる外面以外の広い外面を意味する。膜、フィルム又はシートは主面を2面備える。本開示において、膜、フィルム又はシートの「側面」とは、膜、フィルム又はシートが備える外面のうち、厚さ方向に伸びる外面をいう。
 本開示において、濃縮膜に対して、被処理液が流入する側を「上流」といい、被処理液が流出する側を「下流」という。
<濃縮デバイス>
 本開示は、生物学的粒子を濃縮するために用いる濃縮デバイスを提供する。本開示の濃縮デバイスは、生物学的粒子を含む可能性のある、水を含む液体である「被処理液」を処理対象とし、生物学的粒子の濃度が高められた「濃縮液」に濃縮する。
 ここで、被処理液について、「水を含む」とは、水を溶媒ないし成分としていることを意味し、その含有率については特に限定されない。また、被処理液について、「生物学的粒子を含む」とは、生物学的粒子が、被処理液中で溶解されずに、浮遊、懸濁又は沈殿している状態をいう。
 本開示でいう生物学的粒子(biological particle)には、生物が有する粒子、生物が放出する粒子、生物に寄生する粒子、微小な生物、脂質を膜とする小胞、これらの断片が概念として含まれる。具体的には、ウイルス、ウイルスの一部(例えば、エンベロープを有するウイルスからエンベロープを除去した粒子)、バクテリオファージ、細菌、芽胞、胞子、菌類、カビ、酵母、シスト、原生動物、単細胞性藻類、植物細胞、動物細胞、培養細胞、ハイブリドーマ、腫瘍細胞、血液細胞、血小板、細胞小器官(例えば、細胞核、ミトコンドリア、小胞)、エクソソーム、アポトーシス小体、脂質二重層の粒子、脂質一重層の粒子、リポソーム、タンパク質の凝集体、これらの断片が含まれる。また、本開示でいう生物学的粒子には、天然物のみならず、人工物も含まれる。
 本開示に係る生物学的粒子50(図11~図14参照、以下同様)の濃縮デバイス10は、図1の模式斜視図に示すように、内部空間を有するハウジング20に開口する入口21及び出口22を備えた外観を呈する。入口21の先端には、入口21に接続されるシリンジ等をロックするためのルアーロック21Aが形成されている。なお、使用用途に応じて、このようなルアーロック21Aを設けない形状としてもよい。ハウジング20は、いずれもポリプロピレン樹脂製の上流側部材20Aと下流側部材20Bとの2部材により構成される。なお、ハウジング20の材質としてはこのポリプロピレン樹脂には限定されない。本図では、ハウジング20の形状として、高さに比べて直径が長い円柱形状の例を示している。
 図2は、図1の濃縮デバイス10を構成する各部材を分解した状態で模式断面図として示したものである。ハウジング20のうち、上流側を構成する上流側部材20Aは、下方に開放した略円筒形状を呈する。上流側部材20Aの上流側の面の中心には、先端にルアーロック21Aが設けられた入口21が形成されている。一方、ハウジング20のうち、下流側を構成する下流側部材20Bは、上方に開放した略円筒形状を呈する。下流側部材20Bの下流側の面の中心には出口22が形成されている。下流側部材20Bの上流側の面のやや陥凹した領域には、円形の領域である支持部20Cが設けられている。この支持部20Cの上に、ポリエチレン樹脂製の円形の濃縮膜30が載置される。なお、濃縮膜30の材質としてはこのポリエチレン樹脂には限定されない。
 換言すると、支持部20Cは、ハウジング20内において濃縮膜30と出口22の間に位置し、濃縮膜30が載置されるとともに、後述するように、上流側の面に出口22と連絡する複数の放射状の溝である排液溝20E(図5~図8参照)が設けられている。
 下流側部材20Bの支持部20Cの上に濃縮膜30を載置した状態で、下流側部材20Bに上流側部材20Aを嵌合させると、支持部20Cに載置された濃縮膜30の周縁が上流側部材20Aと下流側部材20Bとに挟み込まれた状態となる。この状態で上流側部材20Aと下流側部材20Bとを溶着にて固定することで、図3の模式断面図に示すような濃縮デバイス10が形成される。なお、濃縮膜30の周縁を下流側部材20Bと溶着して固定してから、上流側部材20Aと下流側部材20Bとを固定することとしてもよい。ハウジング20の内部空間においては、上流側に上方へ突出した円筒状の入口21が開口し、下流側に下方へ突出した円筒状の出口22が開口している。ハウジング20の内部空間においては、濃縮膜30は、入口21と出口22とを隔てるように設けられている。濃縮膜30は、生物学的粒子50が吸着しない親水性の多孔膜であり、入口21側の面から出口22側の面に、被処理液40(図11及び図12参照。以下同様)から生物学的粒子50の濃度を減じた液体である排出液42(図12参照。以下同様)を透過させる。ハウジング20内における、濃縮膜30の上流側の空間が、濃縮空間部24である。濃縮空間部24は、濃縮膜30により被処理液40から生物学的粒子50の濃度を増した液体である濃縮液41(図13及び図14参照。以下同様)を収容する空間である。
 図4は、濃縮デバイス10の別の例を示す模式断面図である。この別の例でも図2及び図3に示す例と同様に、ハウジング20のうち、上流側を構成する上流側部材20Aは、下方に開放した略円筒形状を呈する。上流側部材20Aの上流側の面の中心には、先端にルアーロック21Aが設けられた入口21が形成されている。一方、ハウジング20のうち、下流側を構成する下流側部材20Bは、上方に開放した略円筒形状を呈する。下流側部材20Bの下流側の面の中心には出口22が形成されている。なお、図2及び図3においては、支持部20Cは下流側部材20Bの一部として一体的に構成されている。しかし、図4の別の例では、ハウジング20とは別部材として形成された円盤状の部材である支持体20Dを設け、これを下流側部材20Bの上流側の陥凹した領域に装着することで、支持部20Cが構成されている。ここで、この支持体20Dは、下流側部材20Bと同じポリプロピレン樹脂にて形成されることが望ましいが、この材質には限定されない。支持体20Dの中心には、出口22の開口と一致する孔が設けられている。
 本開示においては、ハウジング20は上述のように入口21及び出口22を有するとともに、入口21と出口22との差圧により生物学的粒子50及び水を含む被処理液40が、入口21から注入されて、出口22から排出液42が排出されるようになっている。
 図5は、支持部20Cの第1例の平面図である。支持部20Cの上流側の面には、出口22と連絡する放射状の溝である排液溝20Eが複数、具体的には計12本等配されている。排液溝20Eは、濃縮膜30を透過した排出液を出口22に導く構造である。そのため、排液溝20Eの底面には、辺縁から中心に向かって傾斜を設けることが望ましい。
 図6は、支持部20Cの第2例の平面図である。支持部20Cの上流側の面には、出口22と連絡する放射状の溝である排液溝20Eが複数、具体的には計12本等配されている。ただし、本例の排液溝20Eは、第1例の排液溝20Eに比べ、溝の幅は狭くなっている。排液溝20Eは、濃縮膜30を透過した排出液を出口22に導く構造である。そのため、排液溝20Eの底面には、辺縁から中心に向かって傾斜を設けることが望ましい。また、本例ではさらに、出口22を中心とする複数の、具体的には計4本の同心円状の溝である連絡溝20Fが設けられている。連絡溝20Fは、それぞれ各々の排液溝20Eを連絡することで、濃縮膜30を透過した排出液を出口22に導きやすくしている。
 図7は、支持部20Cの第3例の平面図である。支持部20Cの上流側の面には、出口22と連絡する放射状の溝である排液溝20Eが複数、具体的には計4本等配されている。また、本例ではさらに、第2例と同様の、具体的には計4本の同心円状の溝である連絡溝20Fが設けられている。すなわち、本例は、第2例よりも排液溝20Eの数が少ない点を除いて、第2例と同様の構成を有している。
 図8は、支持部20Cのさらに別の例の平面図である。本例では、第1例と同様の、計12本等配されている排液溝20Eに加え、出口22を中心とする複数の、具体的には計3本の同心円状の溝である連絡溝20Fが設けられている。これらの連絡溝20Fが設けられることで、本例では、図5に示す例に比べ、支持部20Cに占める溝の部分の面積が増大している。
 なお、図3に示す例の濃縮デバイス10では、支持部20Cとしての支持体20Dの上流側の面に、図5~図8のいずれかに示すような排液溝20E(及び連絡溝20F)が形成される。
 ここで、濃縮膜30の全面積に対する、濃縮膜30が支持部20Cと接触する部分の面積の割合は、0.4以上0.9以下であることが望ましい。以下、この割合を「接触率」と称する。この接触率が0.4以上であることで、濃縮膜30が出口22の方へ撓むことなく、支持部20Cにより十分に支持されることが可能となっている。また、この接触率が0.9以下であることで、排出液が濃縮膜30を透過し出口22へ移動することが容易となっている。
 具体的には、図5に示す第1例の支持部20Cの場合、接触率は0.57となっている。また、図6に示す第2例の支持部20Cの場合、接触率は0.74となっている。さらに、図7に示す第3例の支持部20Cの場合、接触率は0.77となっている。なお、図8に示す第4例の支持部20Cの場合、接触率は0.35となっている。
 また、支持部20Cの上流側の面に設けられている溝の幅は、0.1mm以上5mm以下であることが望ましい。この溝の幅が0.1mm以上であることで、排出液が濃縮膜30を透過し出口22へ移動することが容易となっている。また、この溝の幅が5mm以下であることで、濃縮膜30が出口22の方へ撓むことなく、支持部20Cにより十分に支持されることが可能となっている。
 具体的には、図5に示す第1例の支持部20Cの場合、排液溝20Eの幅は1.15mmとなっている。また、図6に示す第2例の支持部20Cの場合、排液溝20Eの幅は0.45mmで、連絡溝20Fの幅は0.25mmとなっている。さらに、図7に示す第3例の支持部20Cの場合、排液溝20Eの幅は0.45mmで、連絡溝20Fの幅は0.25mmとなっている。また、図8に示す第4例の支持部20Cの場合、排液溝20Eの幅は1.15mmで、連絡溝20Fの幅は0.5mmとなっている。
 入口21が濃縮空間部24へ開口する部位には、図9の底面図に示すように、入口21から流入する被処理液40の流路を分割するための分割部材20Gを設けることとしてもよい。すなわち、上流側部材20Aの底面の中心に位置する入口21の開口部位に、底面視で「+」形状の分割部材20Gが設けられている。この分割部材20Gは、上流側部材20Aと一体成形することが望ましいが、別体に形成した分割部材20Gを事後的に接着等により固定することとしてもよい。このような分割部材20Gが入口21の開口部位に設けられることで、入口21から流入する被処理液40が四分され、濃縮膜30に均等に散布されやすくなる。
 なお、上流側部材20Aの底面の中心に位置する入口21の開口部位に設けられる分割部材20Gは、図10の別の例の底面図に示すような、底面視で「-」形状に形成することとしてもよい。このような分割部材20Gが入口21の開口部位に設けられることで、入口21から流入する被処理液40が二分され、濃縮膜30に均等に散布されやすくなる。
 本開示の濃縮デバイス10には、滅菌処理が施されていてもよい。滅菌処理の方法としては、例えば、エチレンオキサイドガス滅菌、ガンマ線滅菌、放射線滅菌、紫外線滅菌又はオートクレーブ滅菌、などが挙げられる。滅菌処理は濃縮デバイスが嵌合され組立された後に行われても、あるいは、上流側部材、下流側部材、支持体及び濃縮膜の個々の部材に対して行われてもよい。
 本開示の濃縮デバイス10に注入される被処理液40としては、動物(特にヒト)の体液(例えば、血液、血清、血漿、髄液、涙液、汗、尿、膿、鼻水、喀痰);動物(特にヒト)の体液の希釈物;動物(特にヒト)の排泄物(例えば、糞便)を水に懸濁した液体組成物;動物(特にヒト)のうがい液;動物(特にヒト)の臓器、組織、粘膜、皮膚、搾過検体、スワブ等からの抽出物を含む緩衝液;魚介類の組織抽出液;魚介類の養殖池から採取される水;植物の表面拭い液又は組織抽出液;土壌の抽出液;植物からの抽出液;食品からの抽出液;医薬品の原料液:などが挙げられる。
[生物学的粒子50の濃縮方法及び検出方法]
 本開示の濃縮デバイス10による生物学的粒子50の濃縮方法は以下のとおりである。
 この濃縮デバイス10に、図11に示すように、生物学的粒子50及び水を含む被処理液40が、入口21から供給される工程が実施される。
 次に、入口21と出口22との間に差圧が付与されることにより、濃縮空間部24内に濃縮液41を得る工程が実施される。
 即ち、注入された被処理液40に対し、入口21と出口22との間に差圧が付与されることにより、図12に示すように、濃縮膜30を透過した排出液42が支持部20Cの表面の排液溝20Eを通って出口22から排出される。このときの差圧は、入口21から加圧すること、若しくは、出口22から減圧すること、又はその両方によって生じさせることができる。排出液42は、被処理液40に対して生物学的粒子50の濃度が減じている。
 そして、図13に示すように、濃縮空間部24内に、濃縮液41が得られる。濃縮液41は、被処理液40に対して生物学的粒子50の濃度が増している。
 次いで、濃縮液41を濃縮空間部24から回収する工程が実施される。即ち、図14に示すように、マイクロピペット等の適宜の道具又は装置を用いて、濃縮液41が濃縮空間部24から回収される。
 最後に、回収された濃縮液41に含まれる生物学的粒子50を検出する工程が実施される。回収された濃縮液41からは、これに含まれる生物学的粒子50が、その種類や性状に応じた適宜の手段により検出される。例えば、生物学的粒子50の検出対象が核酸(DNA又はRNA)である場合には、ポリメラーゼ連鎖反応(PCR)、サザンブロッティング、ノーザンブロッティングなどが実施される。生物学的粒子50の検出対象がタンパク質である場合には、質量分析、ウエスタンブロッティング、イムノクロマトグラフィーなどが実施される。生物学的粒子50の検出対象が糖、脂質である場合には、質量分析などが実施される。
 ハウジング20において、濃縮空間部24の体積は、被処理液40の性状や量に応じて適宜に定めることができるが、使用の便宜を考慮すれば、0.05~5cmであることが望ましい。
 また、ハウジング20において、濃縮空間部の傾斜部分の、濃縮膜に対する傾斜角度はハウジングの強度の維持や、被処理液の濃縮膜上へ均等に接触させること等の使用の便宜を考慮すれば、10°~45°であることが望ましく、15°~35°であることがより望ましい。
 ハウジング20において、濃縮膜30が実際に被処理液40と接触する部分である、濾過面積は、被処理液40の性状や量に応じて適宜に定めることができるが、使用の便宜を考慮すれば、0.7~20cmであることが望ましく、1~15cmであることがより望ましい。
 出口の開口面積に対する、ハウジングへの固定により濾過に関与し得ない領域を除いた、実質的に濾過に関与し得る濃縮膜の有効面積(有効濾過面積)の比は出口の直径とハウジングの強度設計、上記の生物学的粒子の濃縮方法の操作性を考慮すれば、5~40であることが望ましく、10~25であることがより望ましい。
<濃縮膜>
 濃縮膜は、被処理液に含まれる生物学的粒子の種類及び性状により適宜の材質及び形状のものが使用される。生物学的粒子が、例えば、脂質二重層で形成される粒子(例えば、ウイルス、細菌又はエクソソーム)である場合、濃縮膜は、多孔質基材と、前記多孔質基材の少なくとも一方の主面及び空孔内表面を被覆する親水性樹脂と、を備えた親水性複合多孔質膜を含むことが望ましい。なお、本開示の濃縮膜において、「生物学的粒子が吸着しない親水性の多孔膜」とは、生物学的粒子が吸着せず、かつ、親水性を有する多孔膜を意味する。「生物学的粒子が吸着しない親水性」という性状は、対象となる生物学的粒子の性状との兼ね合いもあるため、特に限定されるものではないが、濃縮処理を実施した場合に濃縮率が100%を超える場合は濃縮が行われていることから、そのような多孔膜は生物学的粒子が吸着しない親水性を有していると言える。例えば濃縮膜が後述する親水性樹脂を含有している場合や、濃縮膜の水の接触角が90度以下である場合は、「親水性」を有していると言えるが、本開示における濃縮膜はこれに限定されるものではない。
 本開示の濃縮膜が濃縮対象とする生物学的粒子の大きさには制限はない。生物学的粒子の直径又は長軸長は、例えば、1nm以上であり、5nm以上であり、10nm以上であり、又は20nm以上であり、かつ、例えば、100μm以下であり、50μm以下であり、1000nm以下であり、又は800nm以下である。
 本開示の濃縮膜は、親水性複合多孔質膜以外のほかの部材を含んでいてもよい。親水性複合多孔質膜以外のほかの部材としては、親水性複合多孔質膜の主面又は側面の一部又は全部に接して配置されたシート状の補強部材;濃縮膜を濃縮デバイスに搭載するためのガイド部材;などが挙げられる。
 本開示の濃縮膜が備える親水性複合多孔質膜は、少なくとも濃縮処理の際に上流側となる主面が親水性樹脂により被覆されていればよく、両方の主面が親水性樹脂により被覆されていることが好ましい。あるいは、濃縮膜としては、親水性樹脂を含む単層構造の多孔質膜であってもよい。
 親水性複合多孔質膜における親水性樹脂による多孔質基材の主面の被覆形態としては、例えば、多孔質基材の主面の一部若しくは全部を親水性樹脂が被覆している形態、多孔質基材の開口の一部若しくは全部を親水性樹脂が充填している形態、又は多孔質基材の主面の一部を親水性樹脂が被覆し開口の一部を親水性樹脂が充填している形態が挙げられる。多孔質基材の開口を親水性樹脂が充填している場合、当該親水性樹脂は、多孔質構造を形成していることが好ましい。ここで多孔質構造とは、内部に多数の微細孔を有し、これら微細孔が連結されており、一方の側から他方の側へと気体あるいは液体が通過可能となっている構造を意味する。
 親水性複合多孔質膜における親水性樹脂による多孔質基材の空孔内表面の被覆形態としては、例えば、多孔質基材の空孔の壁面の一部若しくは全部を親水性樹脂が被覆している形態、多孔質基材の空孔の一部若しくは全部を親水性樹脂が充填している形態、又は多孔質基材の空孔の壁面の一部を親水性樹脂が被覆し空孔の一部を親水性樹脂が充填している形態が挙げられる。多孔質基材の空孔を親水性樹脂が充填している場合、当該親水性樹脂は、多孔質構造を形成していることが好ましい。ここで多孔質構造とは、内部に多数の微細孔を有し、これら微細孔が連結されており、一方の側から他方の側へと気体あるいは液体が通過可能となっている構造を意味する。
 本開示の濃縮膜を用いた生物学的粒子の濃縮は、親水性複合多孔質膜の一方の主面から他方の主面へと被処理液を通過させた際に、被処理液に含まれる生物学的粒子の一部又は全部が親水性複合多孔質膜を通過せず、親水性複合多孔質膜の上流、上流側の主面、及び空孔内の少なくともいずれかの部位における被処理液に残留することによって行われる。濃縮処理前の被処理液と、濃縮処理後に親水性複合多孔質膜の上流、上流側の主面、及び空孔内の少なくともいずれかの部位から回収される被処理液とを比較して、後者に含まれる生物学的粒子の濃度が高ければ、生物学的粒子の濃縮が行われたといえる。本開示の濃縮膜によって実現される生物学的粒子の濃縮率(下記式1参照)は、100%超であり、200%以上が好ましく、300%以上がより好ましい。
 濃縮率=(濃縮処理後に親水性複合多孔質膜の上流、上流側の主面、及び空孔内の少なくともいずれかの部位から回収される被処理液の生物学的粒子濃度)÷(濃縮処理前の被処理液の生物学的粒子濃度)×100・・・(式1)
 詳細な機序は必ずしも明らかではないが、本開示の濃縮膜が備える親水性複合多孔質膜が、上流側の主面と空孔内表面とに親水性樹脂を有することによって、親水性複合多孔質膜の上流側の主面、及び空孔内の少なくともいずれかに残留した生物学的粒子が回収しやすくなり、生物学的粒子の濃縮率が向上すると推測される。
[多孔質基材]
 本開示において多孔質基材とは、内部に空孔ないし空隙を有する基材を意味する。多孔質基材としては、微多孔膜;繊維状物からなる、不織布、紙等の多孔性シート;などが挙げられる。多孔質基材としては、本開示の濃縮膜の薄膜化及び強度の観点から、微多孔膜が好ましい。微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
 多孔質基材の材料は、有機材料又は無機材料のいずれでもよい。
 多孔質基材は、親水性又は疎水性のいずれでもよい。本開示の濃縮膜は、多孔質基材が疎水性であっても、親水性樹脂が多孔質基材を被覆していることによって親水性を示す。
 多孔質基材の一つの実施形態として、樹脂からなる微多孔膜が挙げられる。微多孔膜を構成する樹脂としては、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱樹脂;などが挙げられる。
 多孔質基材の一つの実施形態として、繊維状物からなる多孔性シートが挙げられ、例えば、不織布、紙が挙げられる。多孔性シートを構成する繊維状物としては、ポリエチレンテレフタレート等のポリエステルの繊維状物;ポリエチレン、ポリプロピレン等のポリオレフィンの繊維状物;全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱樹脂の繊維状物;セルロース;などが挙げられる。
 多孔質基材の表面には、多孔質基材を親水性樹脂で被覆するために用いる塗工液の濡れ性を向上させる目的で、各種の表面処理を施してもよい。多孔質基材の表面処理としては、コロナ処理、プラズマ処理、火炎処理、紫外線照射処理等が挙げられる。
[多孔質基材の物性]
 多孔質基材の厚さは、多孔質基材の強度を高める観点、及び、生物学的粒子の残留率を高める観点から、10μm以上が好ましく、15μm以上がより好ましく、20μm以上が更に好ましい。多孔質基材の厚さは、被処理液の処理時間を短くする観点から、150μm以下が好ましく、120μm以下がより好ましく、100μm以下が更に好ましい。多孔質基材の厚さの測定方法は、親水性複合多孔質膜の厚さtの測定方法と同じである。
 多孔質基材のパームポロメータで測定した平均孔径は、被処理液の処理時間を短くする観点、及び、親水性複合多孔質膜の空孔内に残留した生物学的粒子を回収しやすい観点から、0.1μm以上が好ましく、0.15μm以上がより好ましく、0.2μm以上が更に好ましい。多孔質基材のパームポロメータで測定した平均孔径は、生物学的粒子の残留率を高める観点から、0.8μm以下が好ましく、0.7μm以下がより好ましく、0.6μm以下が更に好ましい。多孔質基材のパームポロメータで測定した平均孔径は、パームポロメータを用いてASTM E1294-89に規定するハーフドライ法にて求める値であり、測定方法の詳細は、親水性複合多孔質膜の平均孔径xに係る測定方法と同じである。
 多孔質基材のパームポロメータで測定したバブルポイント細孔径は、被処理液の処理時間を短くする観点、及び、親水性複合多孔質膜の空孔内に残留した生物学的粒子を回収しやすい観点から、0.8μm超が好ましく、0.9μm以上がより好ましく、1.0μm以上が更に好ましい。多孔質基材のパームポロメータで測定したバブルポイント細孔径は、生物学的粒子の残留率を高める観点から、3μm以下が好ましく、2.8μm以下がより好ましく、2.5μm以下が更に好ましい。多孔質基材のパームポロメータで測定したバブルポイント細孔径は、パームポロメータを用いてASTM F316-86、JIS K3832に規定するバブルポイント法にて求める値であり、測定方法の詳細は、親水性複合多孔質膜のバブルポイント細孔径yに係る測定方法と同じである。
 多孔質基材の水流量(mL/(min・cm・MPa))は、被処理液の処理時間を短くする観点から、20以上が好ましく、50以上がより好ましく、100以上が更に好ましい。多孔質基材の水流量(mL/(min・cm・MPa))は、生物学的粒子の残留率を高める観点から、1000以下が好ましく、800以下がより好ましく、700以下が更に好ましい。多孔質基材の水流量の測定方法は、親水性複合多孔質膜の水流量fの測定方法と同じである。ただし、多孔質基材が疎水性の場合は、エタノールに浸漬したのち室温下で乾燥させた多孔質基材を試料とし、透液セル上にセットした試料を少量(0.5mL)のエタノールで湿潤させた後に測定を行う。
 多孔質基材は、片面又は両面において、表面粗さRaが0.3μm以上であることが好ましく、0.4μm以上であることがより好ましい。また、多孔質基材は、片面又は両面において、表面粗さRaが0.7μm以下であることが好ましく、0.6μm以下であることがより好ましい。多孔質基材の表面粗さRaは、粗さ曲線の算術平均高さであり、測定方法の詳細は、親水性複合多孔質膜の表面粗さRaに係る測定方法と同じである。
 多孔質基材の単位厚さ当たりのガーレ値(秒/100mL・μm)は、例えば、0.001~5であり、望ましくは0.01~3であり、より望ましくは0.05~1である。多孔質基材のガーレ値は、JIS P8117:2009に従って測定した値である。
 多孔質基材の空孔率は、例えば、70%~90%であり、望ましくは72%~89%であり、より望ましくは74%~87%である。多孔質基材の空孔率は、下記の算出方法に従って求める。即ち、多孔質基材の構成材料1、構成材料2、構成材料3、…、構成材料nについて、各構成材料の質量がW、W2、、…、W(g/cm)であり、各構成材料の真密度がd、d、d、…、d(g/cm)であり、膜厚をt(cm)としたとき、空孔率ε(%)は下記の数式により求められる。
Figure JPOXMLDOC01-appb-M000001
 多孔質基材のBET比表面積は、例えば、1m/g~40m/gであり、望ましくは2m/g~30m/gであり、より望ましくは3m/g~20m/gである。多孔質基材のBET比表面積は、マイクロトラック・ベル株式会社の比表面積測定装置(型式:BELSORP-mini)を用い、液体窒素温度下における窒素ガス吸着法にて、設定相対圧:1.0×10-3~0.35の吸着等温線を測定し、BET法で解析して求めた値である。
[ポリオレフィン微多孔膜]
 多孔質基材の一つの実施形態としては、ポリオレフィンを含む微多孔膜(本開示においてポリオレフィン微多孔膜という。)が望ましい。ポリオレフィン微多孔膜に含まれるポリオレフィンとしては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリブチレン、ポリメチルペンテン、ポリプロピレンとポリエチレンとの共重合体等が挙げられる。これらの中でも、ポリエチレンが好ましく、高密度ポリエチレン、高密度ポリエチレンと超高分子量ポリエチレンの混合物等が好適である。ポリオレフィン微多孔膜の一つの実施形態として、含まれるポリオレフィンがポリエチレンのみであるポリエチレン微多孔膜が挙げられる。
 ポリオレフィン微多孔膜に含まれるポリオレフィンの重量平均分子量(Mw)は、例えば、10万~500万である。ポリオレフィンのMwが10万以上であると、微多孔膜に十分な力学特性を付与できる。ポリオレフィンのMwが500万以下であると、微多孔膜の成形がしやすい。
 ポリオレフィン微多孔膜の一つの実施形態として、ポリオレフィン組成物(本開示において、2種以上のポリオレフィンを含むポリオレフィンの混合物を意味し、含まれるポリオレフィンがポリエチレンのみである場合はポリエチレン組成物という。)を含む微多孔膜が挙げられる。ポリオレフィン組成物は、延伸時のフィブリル化に伴ってネットワーク構造を形成し、ポリオレフィン微多孔膜の空孔率を増加させる効用がある。
 ポリオレフィン組成物としては、重量平均分子量が9×10以上である超高分子量ポリエチレンを、ポリオレフィンの総量に対して、5質量%~40質量%含むポリオレフィン組成物が好ましく、10質量%~35質量%含むポリオレフィン組成物がより好ましく、15質量%~30質量%含むポリオレフィン組成物が更に好ましい。
 ポリオレフィン組成物は、重量平均分子量が9×10以上である超高分子量ポリエチレンと、重量平均分子量が2×10~8×10で密度が920kg/m~960kg/mである高密度ポリエチレンとが、質量比5:95~40:60(より好ましくは10:90~35:65、更に好ましくは15:85~30:70)で混合したポリオレフィン組成物であることが好ましい。
 ポリオレフィン組成物は、ポリオレフィン全体の重量平均分子量が2×10~2×10であることが好ましい。
 ポリオレフィン微多孔膜を構成するポリオレフィンの重量平均分子量は、ポリオレフィン微多孔膜をo-ジクロロベンゼン中に加熱溶解し、ゲル浸透クロマトグラフィー(システム:Waters社製 Alliance GPC 2000型、カラム:GMH6-HT及びGMH6-HTL)により、カラム温度135℃、流速1.0mL/分の条件にて測定を行うことで得られる。分子量の校正には分子量単分散ポリスチレン(東ソー株式会社製)を用いる。
 ポリオレフィン微多孔膜の一つの実施形態として、高温に曝されたときに容易に破膜しない耐熱性を備える観点から、ポリプロピレンを含む微多孔膜が挙げられる。
 ポリオレフィン微多孔膜の一つの実施形態として、少なくともポリエチレンとポリプロピレンとが混合して含まれているポリオレフィン微多孔膜が挙げられる。
 ポリオレフィン微多孔膜の一つの実施形態として、2層以上の積層構造を備え、少なくとも1層はポリエチレンを含有し、少なくとも1層はポリプロピレンを含有するポリオレフィン微多孔膜が挙げられる。
 本開示の濃縮膜が備える親水性複合多孔質膜の多孔質基材がポリオレフィン微多孔膜(詳細は後述する。)である場合、当該濃縮膜が濃縮対象とする生物学的粒子はナノオーダーの大きさであることが適切である。この場合、生物学的粒子の直径又は長軸長は、例えば、10nm以上であり、20nm以上であり、例えば、1000nm以下であり、800nm以下であり、500nm以下である。
 本開示の濃縮膜が備える親水性複合多孔質膜の多孔質基材がポリオレフィン微多孔膜である場合、当該濃縮膜は、ウイルス、細菌又はエクソソームの濃縮に好適である。
[ポリオレフィン微多孔膜の製造方法]
 ポリオレフィン微多孔膜は、例えば、下記の工程(I)~(IV)を含む製造方法で製造することができる。
 工程(I):ポリオレフィン組成物と大気圧における沸点が210℃未満の揮発性の溶剤とを含む溶液を調製する工程。
 工程(II):前記溶液を溶融混練し、得られた溶融混練物をダイより押し出し、冷却固化して第一のゲル状成形物を得る工程。
 工程(III):前記第一のゲル状成形物を少なくとも一方向に延伸(一次延伸)し、かつ溶剤の乾燥を行い第二のゲル状成形物を得る工程。
 工程(IV):前記第二のゲル状成形物を少なくとも一方向に延伸(二次延伸)する工程。
 工程(I)は、ポリオレフィン組成物と大気圧における沸点が210℃未満の揮発性の溶剤とを含む溶液を調製する工程である。前記溶液は、好ましくは熱可逆的ゾルゲル溶液であり、ポリオレフィン組成物を溶剤に加熱溶解させることによりゾル化させ、熱可逆的ゾルゲル溶液を調製する。大気圧における沸点が210℃未満の揮発性の溶剤としてはポリオレフィンを十分に溶解できる溶剤であれば特に限定されない。前記揮発性の溶剤としては、例えば、テトラリン(206℃~208℃)、エチレングリコール(197.3℃)、デカリン(デカヒドロナフタレン、187℃~196℃)、トルエン(110.6℃)、キシレン(138℃~144℃)、ジエチルトリアミン(107℃)、エチレンジアミン(116℃)、ジメチルスルホキシド(189℃)、ヘキサン(69℃)等が挙げられ、デカリン又はキシレンが好ましい(括弧内の温度は、大気圧における沸点である。)。前記揮発性の溶剤は、単独で用いても2種以上を組み合わせて用いてもよい。
 工程(I)に使用するポリオレフィン組成物(本開示において、2種以上のポリオレフィンを含むポリオレフィンの混合物を意味し、含まれるポリオレフィンがポリエチレンのみである場合はポリエチレン組成物という。)は、ポリエチレンを含むことが好ましく、ポリエチレン組成物であることがより好ましい。
 工程(I)において調製する溶液は、ポリオレフィン微多孔膜の多孔質構造を制御する観点から、ポリオレフィン組成物の濃度が10質量%~40質量%であることが好ましく、15質量%~35質量%であることがより好ましい。ポリオレフィン組成物の濃度が10質量%以上であると、ポリオレフィン微多孔膜の製膜工程において切断の発生を抑制することができ、また、ポリオレフィン微多孔膜の力学強度が高まりハンドリング性が向上する。ポリオレフィン組成物の濃度が40質量%以下であると、ポリオレフィン微多孔膜の空孔が形成されやすい。
 工程(II)は、工程(I)で調製した溶液を溶融混練し、得られた溶融混練物をダイより押し出し、冷却固化して第一のゲル状成形物を得る工程である。工程(II)は、例えば、ポリオレフィン組成物の融点乃至融点+65℃の温度範囲においてダイより押し出して押出物を得、次いで前記押出物を冷却して第一のゲル状成形物を得る。第一のゲル状成形物はシート状に賦形することが好ましい。冷却は、水又は有機溶媒への浸漬によって行ってもよいし、冷却された金属ロールへの接触によって行ってもよく、一般的には工程(I)に使用した揮発性の溶剤への浸漬によって行われる。
 工程(III)は、第一のゲル状成形物を少なくとも一方向に延伸(一次延伸)し、かつ溶剤の乾燥を行い第二のゲル状成形物を得る工程である。工程(III)の延伸工程は、二軸延伸が好ましく、縦延伸と横延伸とを別々に実施する逐次二軸延伸でもよく、縦延伸と横延伸とを同時に実施する同時二軸延伸でもよい。一次延伸の延伸倍率(縦延伸倍率と横延伸倍率の積)は、ポリオレフィン微多孔膜の多孔質構造を制御する観点から、1.1倍~3倍が好ましく、1.1倍~2倍がより好ましい。一次延伸の延伸時の温度は75℃以下が好ましい。工程(III)の乾燥工程は第二のゲル状成形物が変形しない温度であれば特に制限なく実施されるが、60℃以下で行われることが好ましい。
 工程(III)の延伸工程と乾燥工程とは、同時に行ってもよく、段階的に行ってもよい。例えば、予備乾燥しながら一次延伸し、次いで本乾燥を行ってもよいし、予備乾燥と本乾燥との間に一次延伸を行ってもよい。一次延伸は、乾燥を制御し、溶剤を好適な状態に残存させた状態でも行うことができる。
 工程(IV)は、第二のゲル状成形物を少なくとも一方向に延伸(二次延伸)する工程である。工程(IV)の延伸工程は、二軸延伸が好ましい。工程(IV)の延伸工程は、縦延伸と横延伸とを別々に実施する逐次二軸延伸;縦延伸と横延伸とを同時に実施する同時二軸延伸;縦方向に複数回延伸した後に横方向に延伸する工程;縦方向に延伸し横方向に複数回延伸する工程;逐次二軸延伸した後に更に縦方向及び/又は横方向に1回又は複数回延伸する工程;のいずれでもよい。
 二次延伸の延伸倍率(縦延伸倍率と横延伸倍率の積)は、ポリオレフィン微多孔膜の多孔質構造を制御する観点から、好ましくは5倍~90倍であり、より好ましくは10倍~60倍である。二次延伸の延伸温度は、ポリオレフィン微多孔膜の多孔質構造を制御する観点から、90℃~135℃が好ましく、90℃~130℃がより好ましい。
 工程(IV)に次いで熱固定処理を行ってもよい。熱固定温度は、ポリオレフィン微多孔膜の多孔質構造を制御する観点から、110℃~160℃が好ましく、120℃~150℃がより好ましい。
 熱固定処理の後に更に、ポリオレフィン微多孔膜に残存している溶媒の抽出処理とアニール処理とを行ってもよい。残存溶媒の抽出処理は、例えば、熱固定処理後のシートを塩化メチレン浴に浸漬させて、塩化メチレンに残存溶媒を溶出させることにより行う。塩化メチレン浴に浸漬したポリオレフィン微多孔膜は、塩化メチレン浴から引き揚げた後、塩化メチレンを乾燥によって除去することが好ましい。アニール処理は、残存溶媒の抽出処理の後に、ポリオレフィン微多孔膜を例えば100℃~140℃に加熱したローラー上を搬送することで行う。
 工程(I)~(IV)の各条件を制御することにより、膜厚t(μm)と平均孔径x(μm)との比t/xが50~630であるポリオレフィン微多孔膜を製造することが可能になる。例えば、縦延伸倍率を小さくすることにより、比t/xを50以上に制御することができる。例えば、縦延伸倍率を大きくすることにより、比t/xを630以下に制御することができる。
[親水性樹脂]
 親水性樹脂は、特に制限されるものではないが、例えば、ヒドロキシ基、カルボキシ基、スルホ基等の親水性基を有する樹脂が挙げられる。
 親水性樹脂は、多孔質基材から脱落しにくい観点と生物学的粒子の濃縮率の観点とから、ポリマーの主鎖が炭素原子のみからなり、かつ側鎖にヒドロキシ基、カルボキシ基及びスルホ基からなる群から選ばれる少なくとも1種の官能基を有する樹脂であることが好ましい。
 親水性樹脂としては、ポリマーの主鎖に炭素原子のみならず酸素原子が含まれる樹脂(例えば、ポリエチレングルコール、セルロース等)も挙げられるが、ポリマーの主鎖に酸素原子が含まれる親水性樹脂は多孔質基材から比較的脱落しやすい。多孔質基材から脱落しにくい観点から、ポリマーの主鎖が炭素原子のみからなる樹脂が好ましく、ポリマーの主鎖が炭素原子のみからなり、かつ側鎖にヒドロキシ基、カルボキシ基及びスルホ基からなる群から選ばれる少なくとも1種の官能基を有する樹脂がより好ましい。
 親水性樹脂は、ポリビニルアルコール、オレフィン・ビニルアルコール系樹脂、アクリル・ビニルアルコール系樹脂、メタクリル・ビニルアルコール系樹脂、ビニルピロリドン・ビニルアルコール系樹脂、ポリアクリル酸、ポリメタクリル酸、パーフルオロスルホン酸系樹脂及びポリスチレンスルホン酸からなる群から選ばれる少なくとも1種の親水性樹脂を含むことが好ましい。中でも、オレフィン・ビニルアルコール系樹脂を含むことがより好ましい。
 親水性樹脂としては、多孔質基材の表面に親水性モノマーをグラフト重合してなる親水性樹脂も挙げられる。この場合、親水性樹脂は多孔質基材の表面と直接的に化学結合した形態となる。多孔質基材の表面にグラフト重合する親水性モノマーとしては、アクリル酸、メタクリル酸、ビニルアルコール、N-ビニル-2-ピロリドン、ビニルスルホン酸等が挙げられる。親水性複合多孔質膜の製造性の観点からは、グラフト重合のように親水性樹脂が多孔質基材の表面と直接的に化学結合した形態よりも、塗工法等により親水性樹脂を多孔質基材の表面に付着させた形態(親水性樹脂が多孔質基材の表面と化学結合していない形態)の方が好ましい。
 親水性樹脂は、1種でもよく、2種以上でもよい。
 親水性樹脂としては、生物学的粒子に対する刺激が少ない観点、及び、親水性複合多孔質膜の上流側の主面及び空孔内に残留した生物学的粒子を回収しやすい観点から、オレフィン・ビニルアルコール系樹脂が好ましい。
 オレフィン・ビニルアルコール系樹脂を構成するオレフィンとしては、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン等が挙げられる。オレフィンとしては、炭素数2~6のオレフィンが好ましく、炭素数2~6のα-オレフィンがより好ましく、炭素数2~4のα-オレフィンが更に好ましく、エチレンが特に好ましい。オレフィン・ビニルアルコール系樹脂に含まれるオレフィン単位は、1種でもよく、2種以上でもよい。
 オレフィン・ビニルアルコール系樹脂は、オレフィン及びビニルアルコール以外のモノマーを構成単位に含んでいてもよい。オレフィン及びビニルアルコール以外のモノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸塩、(メタ)アクリル酸エステルからなる群から選ばれる少なくとも1種のアクリル系モノマー;スチレン、メタクロロスチレン、パラクロロスチレン、パラフルオロスチレン、パラメトキシスチレン、メタ-tert-ブトキシスチレン、パラ-tert-ブトキシスチレン、パラビニル安息香酸、パラメチル-α-メチルスチレン等のスチレン系モノマー;などが挙げられる。これらのモノマー単位は、オレフィン・ビニルアルコール系樹脂に1種含まれていてもよく、2種以上含まれていてもよい。
 オレフィン・ビニルアルコール系樹脂は、オレフィン及びビニルアルコール以外のモノマーを構成単位に含んでいてもよいが、生物学的粒子に対する刺激が少ない観点、及び、親水性複合多孔質膜の空孔内に残留した生物学的粒子を回収しやすい観点から、オレフィン単位とビニルアルコール単位とを合わせた割合が、85モル%以上であることが好ましく、90モル%以上であることがより好ましく、95モル%以上であることが更に好ましく、100モル%であることが特に好ましい。オレフィン・ビニルアルコール系樹脂としては、オレフィンとビニルアルコールとの二元共重合体が好ましく(ここで、オレフィンの好ましい態様は先述のとおりである。)、エチレンとビニルアルコールとの二元共重合体がより好ましい。
 オレフィン・ビニルアルコール系樹脂におけるオレフィン単位の割合は、20モル%~55モル%であることが好ましい。オレフィン単位の割合が20モル%以上であると、オレフィン・ビニルアルコール系樹脂が水に溶解しにくい。この観点からは、オレフィン単位の割合は、23モル%以上がより好ましく、25モル%以上が更に好ましい。一方、オレフィン単位の割合が55モル%以下であると、オレフィン・ビニルアルコール系樹脂の親水性がより高い。この観点からは、オレフィン単位の割合は、52モル%以下がより好ましく、50モル%以下が更に好ましい。
 オレフィン・ビニルアルコール系樹脂の市販品としては、日本合成化学工業株式会社製「ソアノール」(登録商標)、株式会社クラレ製「エバール」(登録商標)などが挙げられる。
 多孔質基材に対する親水性樹脂の付着量は、例えば、0.01g/m~5g/mであり、0.02g/m~2g/mであり、0.03g/m~1g/mである。多孔質基材に対する親水性樹脂の付着量は、親水性複合多孔質膜の目付けWa(g/m)から多孔質基材の目付けWb(g/m)を減算した値(Wa-Wb)である。
[親水性複合多孔質膜の製造方法]
 親水性複合多孔質膜の製造方法は、特に制限されない。一般的な製造方法としては、親水性樹脂を含む塗工液を多孔質基材に付与し、塗工液を乾燥させて多孔質基材を親水性樹脂で被覆する方法;多孔質基材に親水性モノマーをグラフト重合させて、多孔質基材を親水性樹脂で被覆する方法;が挙げられる。
 親水性樹脂を含む塗工液は、親水性樹脂の融点以上の温度に昇温した溶媒に親水性樹脂を混合し攪拌することで、親水性樹脂を溶媒に溶解又は分散させて調製することができる。溶媒としては、親水性樹脂に対して良溶媒である溶媒であれば特に限定されないが、具体的には例えば、1-プロパノール水溶液、2-プロパノール水溶液、N,N-ジメチルホルムアミド水溶液、ジメチルスルホキシド水溶液、エタノール水溶液などが挙げられる。これら水溶液における有機溶剤の割合は30質量%~70質量%が好ましい。
 親水性樹脂を含む塗工液を多孔質基材に付与する際の、塗工液における親水性樹脂の濃度は、0.01質量~5質量%であることが好ましい。塗工液における親水性樹脂の濃度が0.01質量%以上であると、多孔質基材に親水性を効率よく付与することができる。この観点からは、塗工液における親水性樹脂の濃度は、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。塗工液における親水性樹脂の濃度が5質量%以下であると、製造された親水性複合多孔質膜における水流量が大きい。この観点からは、塗工液における親水性樹脂の濃度は3質量%以下がより好ましく、2質量%以下が更に好ましい。
 塗工液を多孔質基材に付与することは、公知の塗工方法によって行うことができる。塗工方法としては、例えば、浸漬法、ナイフコート法、グラビアコート法、スクリーン印刷法、マイヤーバーコート法、ダイコート法、リバースロールコート法、インクジェット法、スプレー法、ロールコート法などが挙げられる。塗工時の塗工液の温度を調整することで親水性樹脂の層を安定に形成することができる。塗工液の温度は特に限定されるものではないが、5℃~40℃の範囲が好ましい。
 塗工液を乾燥させる際の温度は、25℃~100℃が好ましい。乾燥温度が25℃以上であると、乾燥に必要な時間を短縮することができる。この観点からは、乾燥濃度は、40℃以上がより好ましく、50℃以上が更に好ましい。乾燥温度が100℃以下であると、多孔質基材の収縮が抑制される。この観点からは、乾燥温度は90℃以下がより好ましく、80℃以下が更に好ましい。
 親水性複合多孔質膜は、界面活性剤、湿潤剤、消泡剤、pH調整剤、着色剤などを含んでいてもよい。
[濃縮膜の物性]
 濃縮膜は、片面又は両面において、下記の測定条件によって測定する水の接触角が、90度以下であることが好ましく、前記水の接触角が小さいほど好ましい。濃縮膜は、片面又は両面において、下記の測定条件によって水の接触角を測定しようとしたとき、水滴が膜内部に浸透して測定できない状態となるほどの親水性であることがより好ましい。
 ここで水の接触角は、次の測定方法によって測定される値である。濃縮膜を温度25℃かつ相対湿度60%の環境に24時間以上放置して調湿した後、同じ温度かつ湿度の環境下にて、濃縮膜の表面に注射器で1μLのイオン交換水の水滴を落とし、全自動接触角計(協和界面科学株式会社、型番Drop Master DM500)を用いてθ/2法により30秒後の接触角を測定する。
 本開示の濃縮デバイスで用いられる濃縮膜は、多孔質基材と当該多孔質基材の少なくとも一方の主面及び空孔内表面を被覆する親水性樹脂とを備えた親水性複合多孔質膜を含み、膜厚t(μm)とパームポロメータで測定した平均孔径x(μm)との比t/xが50~630である。
 濃縮膜のt/xが50未満であると、平均孔径xの大きさの割に膜厚tが薄すぎる故、又は、膜厚tの厚さの割に平均孔径xが大きすぎる故、生物学的粒子が濃縮膜を通過しやすく、濃縮膜の上流、上流側の主面及び空孔内の少なくともいずれかに残留する生物学的粒子の残留率(以下、単に「生物学的粒子の残留率」という。)が劣り、その結果、生物学的粒子の濃縮率が劣る。この観点から、t/xは、50以上であり、好ましくは80以上であり、より好ましくは100以上である。
 濃縮膜のt/xが630超であると、平均孔径xの大きさの割に膜厚tが厚すぎる故、又は、膜厚tの厚さの割に平均孔径xが小さすぎる故、被処理液が濃縮膜を通過しにくく、被処理液が濃縮膜を通過するのに時間がかかる(つまり、被処理液の濃縮処理に時間がかかる。)。この観点から、t/xは、600以下であり、好ましくは500以下であり、より好ましくは400以下である。
 濃縮膜の厚さtは、濃縮膜の強度を高める観点、及び、生物学的粒子の残留率を高める観点から、10μm以上が好ましく、15μm以上がより好ましく、20μm以上が更に好ましく、30μm以上が更に好ましい。濃縮膜の厚さtは、被処理液が濃縮膜を通過するのに要する時間(以下、被処理液の処理時間という。)を短くする観点から、150μm以下が好ましく、100μm以下がより好ましく、80μm以下が更に好ましく、70μm以下が更に好ましい。
 濃縮膜の厚さtは、接触式の膜厚計にて20点を測定し、これを平均することで求める。
 濃縮膜のパームポロメータで測定した平均孔径xは、被処理液の処理時間を短くする観点、及び、濃縮膜の空孔内に残留した生物学的粒子を回収しやすい観点から、0.1μm以上が好ましく、0.15μm以上がより好ましく、0.2μm以上が更に好ましい。濃縮膜のパームポロメータで測定した平均孔径xは、生物学的粒子の残留率を高める観点から、0.5μm以下が好ましく、0.45μm以下がより好ましく、0.4μm以下が更に好ましい。
 濃縮膜のパームポロメータで測定した平均孔径xは、例えば、パームポロメータ(PMI社、型式:CFP-1200-AEXL)を用いて、浸液にPMI社製のガルウィック(表面張力15.9dyn/cm)を用いて、ASTM E1294-89に規定するハーフドライ法によって求める。濃縮膜の一方の主面のみが親水性樹脂で被覆されている場合は、親水性樹脂で被覆されている主面をパームポロメータの加圧部に向けて設置し、測定を行う。
 濃縮膜のパームポロメータで測定したバブルポイント細孔径yは、被処理液の処理時間を短くする観点、及び、濃縮膜の空孔内に残留した生物学的粒子を回収しやすい観点から、0.8μm超が好ましく、0.9μm以上がより好ましく、1.0μm以上が更に好ましい。濃縮膜のパームポロメータで測定したバブルポイント細孔径yは、生物学的粒子の残留率を高める観点から、3μm以下が好ましく、2.5μm以下がより好ましく、2.2μm以下が更に好ましい。
 濃縮膜のパームポロメータで測定したバブルポイント細孔径yとは、例えば、パームポロメータ(PMI社、型式:CFP-1200-AEXL)を用いて、バブルポイント法(ASTM F316-86、JIS K3832)によって求める。ただし、試験時の浸液をPMI社製のガルウィック(表面張力15.9dyn/cm)に変更して求める値である。濃縮膜の一方の主面のみが親水性樹脂で被覆されている場合は、親水性樹脂で被覆されている主面をパームポロメータの加圧部に向けて設置し、測定を行う。
 濃縮膜のバブルポイント圧は、例えば、0.01MPa以上0.20MPa以下であり、望ましくは0.02MPa~0.15MPaである。
 本開示において濃縮膜のバブルポイント圧は、ポリオレフィン微多孔膜をエタノールに浸漬し、JIS K3832:1990のバブルポイント試験方法に従って、ただし、試験時の液温を24±2℃に変更し、印加圧力を昇圧速度2kPa/秒で昇圧しながらバブルポイント試験を行って求める値である。濃縮膜の一方の主面のみが親水性樹脂で被覆されている場合は、親水性樹脂で被覆されている主面を測定装置の加圧部に向けて設置し、測定を行う。
 濃縮膜の水流量f(mL/(min・cm・MPa))は、被処理液の処理時間を短くする観点から、20以上が好ましく、50以上がより好ましく、100以上が更に好ましい。濃縮膜の水流量f(mL/(min・cm・MPa))は、生物学的粒子の残留率を高める観点から、1000以下が好ましく、800以下がより好ましく、700以下が更に好ましい。
 濃縮膜の水流量fは、例えば、一定の透液面積(cm)を有する透液セルにセットした試料に、一定の差圧(20kPa)で水100mLを透過させて、水100mLが透過するのに要する時間(sec)を測定し、単位換算して求める。濃縮膜の一方の主面のみが親水性樹脂で被覆されている場合は、親水性樹脂で被覆されている主面から親水性樹脂で被覆されていない主面へ水を透過させて測定を行う。
 濃縮膜は、水流量f(mL/(min・cm・MPa))とバブルポイント細孔径y(μm)との比f/yが、被処理液の処理時間を短くする観点から、100以上であることが好ましく、150以上であることがより好ましく、200以上であることが更に好ましい。濃縮膜は、上記の比f/yが、生物学的粒子の残留率を高める観点から、480以下であることが好ましく、400以下であることがより好ましく、350以下であることが更に好ましい。
 濃縮膜は、生物学的粒子の回収率を高める観点から、少なくとも濃縮処理の際に上流側となる主面において、表面粗さRaが0.3μm以上であることが好ましく、0.4μm以上であることがより好ましい。濃縮膜は、生物学的粒子の残留率を高める観点から、少なくとも濃縮処理の際に上流側となる主面において、表面粗さRaが0.7μm以下であることが好ましく、0.6μm以下であることがより好ましい。
 濃縮膜の表面粗さRaは、光波干渉式表面粗さ計(Zygo社、NewView5032)を用いて、非接触式で試料の表面を無作為に3箇所測定し、粗さ評価のための解析ソフトを用いて求める。
 濃縮膜の単位厚さ当たりのガーレ値(秒/100mL・μm)は、例えば、0.001~5であり、望ましくは0.01~3であり、より望ましくは0.05~1である。濃縮膜のガーレ値は、JIS P8117:2009に従って測定した値である。
 濃縮膜の空孔率は、例えば、70%~90%であり、望ましくは72%~89%であり、より望ましくは74%~87%である。濃縮膜の空孔率は、下記の算出方法に従って求める。即ち、濃縮膜の構成材料1、構成材料2、構成材料3、…、構成材料nについて、各構成材料の質量がW、W2、、…、W(g/cm)であり、各構成材料の真密度がd、d、d、…、d(g/cm)であり、膜厚をt(cm)としたとき、空孔率ε(%)は下記の数式により求められる。
Figure JPOXMLDOC01-appb-M000002
 濃縮膜は、ハンドリング性の観点から、カールしにくいことが好ましい。濃縮膜のカールを抑制する観点から、濃縮膜は両方の主面が親水性樹脂で被覆されていることが好ましい。
 本開示の濃縮デバイスは、上記のような濃縮膜を用いているので、遠心法に比べて、生物学的粒子を簡易に、かつ迅速に濃縮することができる。本開示の濃縮膜を用いることで、従来の多孔質膜に比べて、生物学的粒子を迅速に、かつ効率よく濃縮することができる。
<実施例及び比較例>
 以下、実施例1~実施例6として実際に作製した本開示の濃縮デバイスにおいて、濃縮率及び処理時間を指標に作用効果を、比較例1及び比較例2との対照で検証した。なお、以下に示す材料、寸法、処理手順等は、本開示の趣旨を逸脱しない限り適宜変更することができる。したがって、本開示の濃縮デバイスの範囲は、以下に示す具体例により限定的に解釈されるべきではない。
<親水性複合多孔質膜の作製>
[濃縮膜1]
 濃縮膜1は、以下のとおり作製した。
-ポリエチレン微多孔膜の作製-
 重量平均分子量460万の超高分子量ポリエチレン(以下「UHMWPE」という。)3.75質量部と、重量平均分子量56万かつ密度950kg/mの高密度ポリエチレン(以下「HDPE」という。)21.25質量部とを混合したポリエチレン組成物を用意した。ポリマー濃度が25質量%となるようにポリエチレン組成物とデカリンとを混合しポリエチレン溶液を調製した。
 上記のポリエチレン溶液を温度147℃でダイからシート状に押出し、次いで押出物を水温20℃の水浴中で冷却し、第一のゲル状シートを得た。
 第一のゲル状シートを70℃の温度雰囲気下にて10分間予備乾燥し、次いで、MD方向に1.8倍で一次延伸をし、次いで、本乾燥を57℃の温度雰囲気下にて5分間行って、第二のゲル状シート(ベーステープ)を得た(第二のゲル状シート中の溶剤の残留量は1%未満とした。)。次いで二次延伸として、第二のゲル状シート(ベーステープ)をMD方向に温度90℃にて倍率4倍で延伸し、続いてTD方向に温度125℃にて倍率9倍で延伸し、その後直ちに144℃で熱処理(熱固定)を行った。
 熱固定後のシートを、2槽に分かれた塩化メチレン浴にそれぞれ30秒間ずつ連続して浸漬させながら、シート中のデカリンを抽出した。シートを塩化メチレン浴から搬出した後、40℃の温度雰囲気下で塩化メチレンを乾燥除去した。こうして、ポリエチレン微多孔膜を得た。
-ポリエチレン微多孔膜の親水化処理-
 親水性樹脂として、エチレン・ビニルアルコール二元共重合体(日本合成化学工業株式会社製、ソアノールDC3203R、エチレン単位32モル%)(以下、EVOHという。)を用意した。EVOHの濃度が0.2質量%となるように、1-プロパノールと水の混合溶媒(1-プロパノール:水=3:2[体積比])にEVOHを溶解させ、塗工液を得た。
 金属枠に固定したポリエチレン微多孔膜を塗工液に浸漬してポリエチレン微多孔膜の空孔内に塗工液を含浸させたのち引き上げた。次いで、ポリエチレン微多孔膜の両方の主面に付着している余分な塗工液を除去し、常温で2時間乾燥させた。次いで、ポリエチレン微多孔膜から金属枠を取り外した。こうして、ポリエチレン微多孔膜の両方の主面及び空孔内表面が親水性樹脂で被覆された親水性複合多孔質膜(濃縮膜1)を得た。
[濃縮膜2]
 濃縮膜2は、以下のとおり作製した。
-ポリエチレン微多孔膜の作製-
 3.75質量部のUHMWPEと、21.25質量部のHDPEとを混合したポリエチレン組成物を用意した。ポリマー濃度が25質量%となるようにポリエチレン組成物とデカリンとを混合しポリエチレン溶液を調製した。
 上記のポリエチレン溶液を温度149℃でダイからシート状に押出し、次いで押出物を水温20℃の水浴中で冷却し、第一のゲル状シートを得た。
 第一のゲル状シートを70℃の温度雰囲気下にて10分間予備乾燥し、次いで、MD方向に1.8倍で一次延伸をし、次いで、本乾燥を57℃の温度雰囲気下にて5分間行って、第二のゲル状シート(ベーステープ)を得た(第二のゲル状シート中の溶剤の残留量は1%未満とした。)。次いで二次延伸として、第二のゲル状シート(ベーステープ)をMD方向に温度90℃にて倍率4倍で延伸し、続いてTD方向に温度103℃にて倍率9倍で延伸し、その後直ちに120℃で熱処理(熱固定)を行った。
 熱固定後のシートを、2槽に分かれた塩化メチレン浴にそれぞれ30秒間ずつ連続して浸漬させながら、シート中のデカリンを抽出した。シートを塩化メチレン浴から搬出した後、40℃の温度雰囲気下で塩化メチレンを乾燥除去した。こうして、ポリエチレン微多孔膜を得た。
-ポリエチレン微多孔膜の親水化処理-
 親水性樹脂として、濃縮膜1と同じEVOHを用意した。EVOHの濃度が0.2質量%となるように、1-プロパノールと水の混合溶媒(1-プロパノール:水=3:2[体積比])にEVOHを溶解させ、塗工液を得た。
 金属枠に固定したポリエチレン微多孔膜を塗工液に浸漬してポリエチレン微多孔膜の空孔内に塗工液を含浸させたのち引き上げた。次いで、ポリエチレン微多孔膜の両方の主面に付着している余分な塗工液を除去し、常温で2時間乾燥させた。次いで、ポリエチレン微多孔膜から金属枠を取り外した。こうして、ポリエチレン微多孔膜の両方の主面及び空孔内表面が親水性樹脂で被覆された親水性複合多孔質膜(濃縮膜2)を得た。
<親水性複合多孔質膜の物性測定>
 濃縮膜1及び2の各親水性複合多孔質膜を試料にして下記の物性測定を行った。
[膜厚]
 親水性複合多孔質膜又は多孔質膜の膜厚は、接触式の膜厚計(株式会社ミツトヨ製)にて20点測定し、これを平均することで求めた。接触端子は底面が直径0.5cmの円柱状の端子を用いた。測定圧は0.1Nとした。
[平均孔径]
 親水性複合多孔質膜又は多孔質膜の平均孔径x(μm)は、PMI社のパームポロメータ(型式:CFP-1200-AEXL)を用い、浸液にPMI社製のガルウィック(表面張力15.9dyn/cm)を用いて、ASTM E1294-89に規定するハーフドライ法により求めた。測定温度は25℃であり、測定圧力は0~600kPaの範囲で変化させた。
[バブルポイント細孔径]
 親水性複合多孔質膜又は多孔質膜のバブルポイント細孔径y(μm)は、PMI社のパームポロメータ(型式:CFP-1200-AEXL)を用い、バブルポイント法(ASTM F316-86、JIS K3832)により求めた。ただし、試験時の浸液をPMI社製のガルウィック(表面張力15.9dyn/cm)に変更して求める値である。測定温度は25℃であり、測定圧力は0~600kPaの範囲で変化させた。
[バブルポイント圧]
 親水性複合多孔質膜又は多孔質膜をエタノールに浸漬し、JIS K3832:1990のバブルポイント試験方法に従って、ただし、試験時の液温を24±2℃に変更し、印加圧力を昇圧速度2kPa/秒で昇圧しながらバブルポイント試験を行って求めた。
[水流量]
 親水性複合多孔質膜をMD方向10cm×TD方向10cmに切り出し、透液面積が17.34cmであるステンレス製の円形透液セルにセットした。20kPaの差圧で水100mLを透過させて、水100mLが透過するのに要する時間(sec)を計測した。測定は室温24℃の温度雰囲気で行った。測定条件及び測定値を単位換算して水流量f(mL/(min・cm・MPa))を求めた。
[表面粗さRa]
 光波干渉式表面粗さ計(Zygo社、NewView5032)を用いて下記の条件での算術平均高さを測定し、表面粗さRaを求めた。
・対物レンズ:20倍ミラウ
・イメージズーム:1.0×
・FDA Res:Normal又はLow
・解析条件:Zygo社の標準アプリケーションであるStich.appを用いて非接触式で各サンプル3箇所のデータを取得した後、粗さ評価のためのオプションアプリケーションであるAdvance Texture.appを用いて表面粗さを解析した。
 以上により測定された濃縮膜1及び濃縮膜2の物性は、下記表1のとおりであった。
Figure JPOXMLDOC01-appb-T000003
 いずれの濃縮膜も、ハウジングへの固定により濾過に関与し得ない領域を除いた、実質的に濾過に関与し得る領域(以下、この領域の面積を「有効濾過面積」とする。)の直径は、実施例1~実施例6及び比較例1では12mmであり、比較例2では10.1mmであった。実施例1及び比較例2では濃縮膜1を使用し、実施例2~実施例6及び比較例1では濃縮膜2を使用した。
<濃縮デバイスの構成>
 ハウジングについては、前記した図4に示すような、上流側部材と下流側部材とで構成され、かつ、下流側部材とは別体に形成された円盤状の支持体を支持部として備える形状のものを、実施例1~実施例6及び比較例1に使用した。なお、比較例2では、市販のフィルターホルダー(メルクミリポア製、スウィネクス35)をハウジングとしてそのまま使用した。
 上流側部材の入口の直径は、全ての実施例及び比較例で4.3mmであった。また、実施例1~実施例4、実施例6及び比較例1の入口には図9に示すような「+」字状の分割部材を設け、一方、実施例5及び比較例2の入口には分割部材は設けなかった。濃縮空間部の傾斜部分の、濃縮膜に対する傾斜角度の平均は、実施例1~実施例6及び比較例1では28°、比較例2では60°であった。そして、濃縮空間部の容積は、実施例1~実施例6及び比較例1では0.11cmであり、比較例2では0.17cmであった。
 下流側部材の出口の直径は、実施例1~実施例6及び比較例1では3mmであり、比較例2では2.3mmであった。これより、出口の開口面積に対する、濃縮膜の有効濾過面積の比(以下、「開口比」と称する。)は、実施例1~実施例6及び比較例1では16、また、比較例2では19となった。
 実施例1、実施例2及び実施例5では、前記した第2例(図6参照)に示すパターンの溝を有する支持体を使用した。実施例3では、前記した第1例(図5参照)に示すパターンの溝を有する支持体を使用した。実施例4では、前記した第3例(図7参照)に示すパターンの溝を有する支持体を使用した。実施例6では、前記した第4例(図8参照)に示すパターンの溝を有する支持体を使用した。比較例1では、出口のみが設けられ表面には一切の溝は有さない支持体を使用した。比較例2では、スウィネクス35に装着されている目皿をそのまま支持体として使用した。なお、比較例2の支持体は、入口側と出口側とを連絡する空隙は設けられているが、前記した第1例~第4例に示すような排液溝又は連絡溝のような放射状のパターンの溝又は同心円状のパターンの溝は設けられていない。
 以上の各実施例及び比較例の性状を、下記表2及び表3に掲げる。なお、下記表3の項目のうち「接触面積比」とは、濃縮膜の有効濾過面積に対する、濃縮膜が支持体と直に接している部分の面積(換言すると、濃縮膜の有効濾過面積から、支持体における溝の総面積を減じた値)の比を意味する。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<濃縮デバイスの性能評価>
 各実施例及び比較例についてウイルス濃縮試験を行った。ウイルス濃縮試験の詳細は次のとおりである。
 被処理液として、緩衝液にデング熱ウイルスを懸濁したウイルス懸濁液を準備した。ウイルス単位は、1×10FFU/mLとした。デング熱ウイルスは、エンベロープを有する直径40nm~60nm程度の球状ウイルスである。
 10mL容量のシリンジ(テルモ製)に被処理液10mLを採取した。そして、シリンジの先端を濃縮デバイスの入口のルアーロック(図1参照)に接続し、濃縮デバイスに被処理液を注入した。プランジャーに印加する圧力は約30Nとした。当該圧力でプランジャーが移動しない場合は、印加圧力を徐々に上げて、プランジャーが移動する最低限の圧力を印加した。
[処理時間]
 プランジャーを押し始めた時点からプランジャーを押し切った時点までの時間(秒)を計測した。
[濃縮率]
 プランジャーを押し切った後、濃縮デバイスを上にしシリンジを下にした状態で、プランジャーを数回往復させ、濃縮膜の上流に残留したウイルス懸濁液を濃縮液として回収した。回収した濃縮液を試料にして、Viral RNA Mini Kit(QIAGEN)を用いてトータルRNAを抽出した。ReverTra Ace(登録商標)(東洋紡株式会社)を用いて、抽出したトータルRNAを逆転写してcDNAを作製した。デング熱ウイルスRNAに特異的に結合するプライマー及びSYBR Green I(タカラバイオ)(SYBRは登録商標)を用いてqRT-PCRを行い、試料中のウイルスRNAを定量した。被処理液のウイルスRNA濃度Caと、濃縮液のウイルスRNA濃度Cbとから、濃縮率(%)=Cb÷Ca×100を算出した。
 ウイルス濃縮試験の結果を、下記表4に示す。
Figure JPOXMLDOC01-appb-T000006
 まず、実施例1~実施例6におけるウイルス濃縮率については、以下のとおりであった。実施例1では1700%を上回った。実施例2及び実施例3では1900%を上回った。実施例4では1200%を上回った。実施例5及び実施例6では1000%を上回った。以上より、実施例1~実施例6の濃縮デバイスでは少なくとも1000%を超えるウイルス濃縮率が認められたため、生物学的粒子の濃縮効果は顕著であった。
 これに対し、比較例1及び比較例2におけるウイルス濃縮率については、以下のとおりであった。比較例2では、931%であった。なお、比較例1では、処理時間100秒を超えても被処理液の全量を処理できなかったため、ウイルス濃縮率は算出できなかった。以上より、比較例1の濃縮デバイスではウイルス濃縮を行うことができず、また、比較例2の濃縮デバイスにおけるウイルス濃縮率は1000%に満たず、生物学的粒子の濃縮効果はいずれの実施例よりも劣っていた。
 実施例1~実施例6における処理時間については、以下のとおりであった。実施例1では37秒であった。実施例2では28秒であった。実施例3では25秒であった。実施例4では34秒であった。実施例5では27秒であった。実施例6では23秒であった。以上より、実施例1~実施例6の濃縮デバイスにおける処理時間は40秒未満であり、迅速に濃縮することができた。
 比較例1及び比較例2における処理時間については、以下のとおりであった。比較例1については上述のとおり、処理時間100秒を超えても被処理液の全量を処理できなかった。比較例2では40秒であった。以上より、比較例の濃縮デバイスでは、処理時間は40秒が、あるいは濃縮処理そのものができなかった。よって、処理時間の観点からも、いずれの比較例も、いずれの実施例よりも劣るという結果となった。
 以上の結果から、実施例1~実施例6の濃縮デバイスはいずれも、ウイルス濃縮率が1000%を上回るとともに、処理時間は40秒未満と、生物学的粒子の高濃縮率と、迅速な処理時間とを兼ね備えており、実用上有用であると思われた。
 一方、比較例1の濃縮デバイスでは濃縮処理そのものができず、実用には適さないと思われた。これは、比較例1の濃縮デバイスでは、表3に示すように接触面積比が0.94と0.9を上回り、濃縮膜を透過し得る領域は事実上、濃縮膜の出口に対応する領域のみであったため、処理効率がきわめて悪かったものと思われた。また、比較例2の濃縮デバイスでは、ウイルス濃縮率が1000%を下回り、かつ処理時間が40秒であり、実用に供することはできるとしても、各実施例よりはいずれも劣っていた。これは、表3に示すように、接触面積比では他の実施例と遜色はなかったものの、表3に示すように、濃縮空間部の容積が大きかったため、残存する濃縮液の液量が相対的に多くなり、ウイルス濃度が実施例ほどには高くならなかったものと思われる。
 ここで、各実施例において、表3の接触面積比と表4の処理時間とは概ね比例する傾向が見られる。これは、接触面積比が小さいほど、濃縮膜が溝と対応する面積の比率が多くなり、被処理液が濃縮膜を透過しやすくなるためと思われる。しかしながら、接触面積比が0.35と0.4を下回った実施例6では、処理時間は最も短かったものの濃縮率は実施例の中で最も劣っていた。これは、濃縮膜が支持体で十分に支持しきれず、濃縮膜が撓むことが濃縮に悪影響を与えたものと推測される。
 また、実施例2と実施例5とは、前者には入口に分割部材が設けられ、一方、後者には設けられていない点以外はすべて同条件であった。そして、表4に示す濃縮率は前者が1955%であったのに対し、後者は1075%であった。これにより、入口に分割部材が設けられることで、濃縮膜への被処理液の散布がより広範囲になったため、濃縮効率が向上したものと推測される。
産業上の利用分野
 本発明は、生物学的粒子を濃縮するために用いる濃縮デバイスに利用可能である。

Claims (7)

  1.  入口及び出口を有するとともに、前記入口と前記出口との差圧により生物学的粒子及び水を含む被処理液が、前記入口から注入されて前記出口から排出されるようになっているハウジングと、
     前記ハウジング内において前記入口と前記出口とを隔てるように設けられ、前記生物学的粒子が吸着しない親水性の多孔膜であり、前記入口側の面から前記出口側の面に、前記被処理液から前記生物学的粒子の濃度を減じた液体である排出液を透過させる濃縮膜と、
     前記ハウジング内における前記濃縮膜の上流側の空間であって、前記濃縮膜により前記被処理液から前記生物学的粒子の濃度を増した液体である濃縮液を収容する濃縮空間部と、
     前記ハウジング内において前記濃縮膜と前記出口との間に位置し、前記濃縮膜が載置されるとともに、上流側の面に前記出口と連絡する複数の放射状の溝である排液溝が設けられている支持部と、
    を備えた、生物学的粒子の濃縮デバイス。
  2.  前記濃縮膜の全面積に対する、前記濃縮膜が前記支持部と接触する部分の面積の割合が、0.4以上0.9以下である、請求項1に記載の生物学的粒子の濃縮デバイス。
  3.  前記支持部の上流側の面には、前記出口を中心とする複数の同心円状の溝である連絡溝が設けられている、請求項1又は請求項2に記載の生物学的粒子の濃縮デバイス。
  4.  前記支持部の上流側の面に設けられている溝の幅が0.1mm以上5mm以下である、請求項1から請求項3までのいずれか1項に記載の生物学的粒子の濃縮デバイス。
  5.  前記入口の前記濃縮空間部への開口部位に、前記入口から流入する被処理液の流路を分割するための分割部材が設けられている、請求項1から請求項4までのいずれか1項に記載の生物学的粒子の濃縮デバイス。
  6.  前記ハウジングが上流側部材と下流側部材との2部材により構成され、
     前記支持部は前記下流側部材の上流側に設けられ、
     前記支持部に載置された濃縮膜の周縁が前記上流側部材と前記下流側部材とに挟み込まれた状態で、溶着にて固定されている、請求項1から請求項5までのいずれか1項に記載の生物学的粒子の濃縮デバイス。
  7.  前記支持部は、前記ハウジングとは別部材として形成された支持体が、前記下流側部材に装着されて構成される、請求項6に記載の生物学的粒子の濃縮デバイス。
PCT/JP2021/023113 2020-06-25 2021-06-17 生物学的粒子の濃縮デバイス WO2021261382A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020109918A JP2022020075A (ja) 2020-06-25 2020-06-25 生物学的粒子の濃縮デバイス
JP2020-109918 2020-06-25

Publications (1)

Publication Number Publication Date
WO2021261382A1 true WO2021261382A1 (ja) 2021-12-30

Family

ID=79281301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023113 WO2021261382A1 (ja) 2020-06-25 2021-06-17 生物学的粒子の濃縮デバイス

Country Status (2)

Country Link
JP (1) JP2022020075A (ja)
WO (1) WO2021261382A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023025509A (ja) * 2021-08-10 2023-02-22 帝人株式会社 積層膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506900A (ja) * 1993-03-05 1996-07-23 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー 加圧下において固相の抽出を行う方法及び器具
JPH09505890A (ja) * 1993-11-24 1997-06-10 アボツト・ラボラトリーズ 液体標本から細胞サンプルを収集する方法及び装置
JPH10510045A (ja) * 1994-10-03 1998-09-29 ジノミクス コーポレーション 放射性廃棄物処理カートリッジ
JP2005337795A (ja) * 2004-05-25 2005-12-08 Tokuyama Corp 抗原又は抗体の抽出液の製造方法
JP2015529797A (ja) * 2012-07-03 2015-10-08 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung サンプル調製装置
JP2016525688A (ja) * 2013-07-23 2016-08-25 パーティクル・メージャーリング・システムズ・インコーポレーテッド プレートを伴う微生物空気サンプラ
US20170059455A1 (en) * 2015-05-12 2017-03-02 Parker Isaac Instruments, Llc Pathologic staging compression apparatus and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506900A (ja) * 1993-03-05 1996-07-23 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー 加圧下において固相の抽出を行う方法及び器具
JPH09505890A (ja) * 1993-11-24 1997-06-10 アボツト・ラボラトリーズ 液体標本から細胞サンプルを収集する方法及び装置
JPH10510045A (ja) * 1994-10-03 1998-09-29 ジノミクス コーポレーション 放射性廃棄物処理カートリッジ
JP2005337795A (ja) * 2004-05-25 2005-12-08 Tokuyama Corp 抗原又は抗体の抽出液の製造方法
JP2015529797A (ja) * 2012-07-03 2015-10-08 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung サンプル調製装置
JP2016525688A (ja) * 2013-07-23 2016-08-25 パーティクル・メージャーリング・システムズ・インコーポレーテッド プレートを伴う微生物空気サンプラ
US20170059455A1 (en) * 2015-05-12 2017-03-02 Parker Isaac Instruments, Llc Pathologic staging compression apparatus and methods

Also Published As

Publication number Publication date
JP2022020075A (ja) 2022-02-01

Similar Documents

Publication Publication Date Title
CN115487695B (zh) 一种除病毒用不对称的pes滤膜及其制备方法
KR0173995B1 (ko) 용액으로부터의 바이러스 단리용 막
DE60212965T2 (de) Vernetzte multipolymere beschichtung
EP2891515B1 (en) Membrane with zones of different charge
JP5879631B2 (ja) 粗面を有する高スループットの膜
WO2020183955A1 (ja) 生物学的粒子の濃縮膜、濃縮デバイス、濃縮システム及び濃縮方法、並びに生物学的粒子の検出方法
JP5845513B2 (ja) 孔が大きいポリマー膜
WO2021261382A1 (ja) 生物学的粒子の濃縮デバイス
JP2006272067A (ja) 分離膜及び水処理装置
KR102599250B1 (ko) 친수성 복합 다공질막
JP7351065B2 (ja) 生物学的粒子の濃縮デバイス、濃縮システム及び濃縮方法並びに生物学的粒子の検出方法
EP2803404B1 (en) High throughput membrane with channels formed by leaching
KR101515056B1 (ko) 다중 크기 섬유를 갖는 막
JP2023502732A (ja) 親水性膜
JP7351064B2 (ja) 濃縮膜
CN116943442B (zh) 一种湿度感应小孔层厚度可控超滤膜的制备方法和超滤设备
CN112334219A (zh) 用于聚合物平片膜的uv接枝方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829016

Country of ref document: EP

Kind code of ref document: A1