WO2021261065A1 - 旋回作業機 - Google Patents

旋回作業機 Download PDF

Info

Publication number
WO2021261065A1
WO2021261065A1 PCT/JP2021/016126 JP2021016126W WO2021261065A1 WO 2021261065 A1 WO2021261065 A1 WO 2021261065A1 JP 2021016126 W JP2021016126 W JP 2021016126W WO 2021261065 A1 WO2021261065 A1 WO 2021261065A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
coil
power transmission
coils
swivel
Prior art date
Application number
PCT/JP2021/016126
Other languages
English (en)
French (fr)
Inventor
健佑 金田
Original Assignee
ヤンマーホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマーホールディングス株式会社 filed Critical ヤンマーホールディングス株式会社
Publication of WO2021261065A1 publication Critical patent/WO2021261065A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices

Definitions

  • the present invention relates to a turning work machine such as a construction machine in which an upper turning body is mounted on a lower device such as a lower traveling body.
  • a construction machine such as an excavation work machine
  • a turning work machine having a lower traveling body as a lower device and an upper turning body mounted so as to be able to turn with respect to the lower traveling body.
  • Some such swivel work machines have an electric drive source such as an electric motor.
  • the electric motor may be, for example, a traveling electric motor for traveling the lower traveling body, or a motor for driving a hydraulic pump for operating an excavating device provided on the upper rotating body.
  • Patent Document 1 in a hydraulic excavator having a traveling electric motor in a lower traveling body, electric power is supplied from a power supply device mounted on the upper rotating body to a traveling electric motor via a rotary connecting device for power transmission.
  • the configuration to supply is disclosed.
  • the rotary connecting device has a slip ring that rotates with the rotation of the upper swivel body, and a brush that contacts the outer periphery of the slip ring.
  • Patent Document 2 discloses an electric excavator provided with a turning joint for transmitting the electric power of the electric energy storage device installed in the upper swivel body to the lower traveling body.
  • the turning joint has an upper coil wound around the upper swing body and a lower coil wound around the lower traveling body, and is configured to transmit electric power from the upper coil to the lower coil by electromagnetic induction.
  • Patent Document 1 there are the following problems according to the configuration in which electric power is transmitted by using a slip ring and a brush. That is, since the slip ring and the brush are energized by rotating relative to each other in a state of being in physical contact with each other, deterioration of these members due to wear becomes a problem.
  • Patent Document 2 As disclosed in Patent Document 2, according to the configuration in which electric power is transmitted by utilizing electromagnetic induction between the coils of the upper coil and the lower coil, power is supplied in a non-contact state between the coils. Therefore, it is considered that deterioration due to wear does not occur between the coils.
  • the configuration in which electric power is transmitted by a pair of coils of the upper coil wound around the upper swing body and the lower coil wound around the lower traveling body there are the following problems.
  • the size of the coil is determined according to the size of the swivel work machine, it is necessary to design the coil for each model, and there is a problem that the degree of freedom in designing the coil is low and the versatility is poor. ..
  • the electric resistance value tends to be large, the energy loss becomes large.
  • the present invention has been made in view of the above-mentioned problems, and it is possible to obtain high versatility in a configuration for transmitting electric power and to stably supply electric power, resulting in energy loss. It is an object of the present invention to provide a turning work machine capable of reducing the amount of energy and improving the production efficiency.
  • the swivel work machine is a swivel work machine including a lower device and an upper swivel body provided so as to be swivelable about a predetermined rotation axis with respect to the lower device, and supplies electric power.
  • An electric drive source that receives and drives, a power storage device that is provided in either the lower device or the upper swivel body and stores electric power supplied to the drive source, and the lower device and the upper swivel body. It is provided on either the other side, is arranged with the central axis parallel to the rotation axis, along the circumference centered on the rotation axis, with a first interval, and is supplied to the drive source.
  • the first spacing along the circumference of a plurality of power receiving coils provided on either the lower device or the upper swivel body in a direction in which the central axis is parallel to the rotation axis. It is provided with a plurality of transmission coils which are arranged at a distance of a second interval different from the above and send electric power from the power storage device to the plurality of power receiving coils by electromagnetic induction.
  • the power receiving coil and the power transmission coil have substantially the same or the same coil diameter as each other in the swivel work machine.
  • the plurality of power transmission coils include a pair of power transmission coils adjacent to each other in the circumferential direction of the circumference, and the first power transmission coil is included.
  • the interval and the second interval are among the pair of power transmission coils when the amount of displacement of one of the pair of power transmission coils in the circumferential direction with respect to the power receiving coil is the minimum.
  • the other side of the power transmission coil is set so that the amount of misalignment with respect to the power receiving coil is maximized.
  • the swivel work machine is the swivel work machine in which the plurality of power receiving coils are connected in parallel in a power feeding circuit for the drive source.
  • the swivel work machine is provided on either one of the lower device and the upper swivel body in the swivel work machine, and the plurality of power receiving coils and the drive source in the power feeding circuit are provided. It is provided with a power storage device that is connected to and stores the electric power supplied to the drive source.
  • the present invention it is possible to obtain high versatility in a configuration for transmitting electric power, to stably supply electric power, to reduce energy loss, and to improve production efficiency. Can be done.
  • a plurality of coils are provided in each of the lower device and the upper swing body so that electric power is transmitted by electromagnetic induction along with the swing operation of the upper swing body.
  • an excavation work machine which is a kind of construction machine
  • the swivel work machine according to the present invention is not limited to the excavation work machine, and can be widely applied to other construction machines such as crane work machines and industrial machines, for example.
  • the excavation work machine 1 includes a traveling device 2 as a self-propellable traveling vehicle body, an excavating device 3 as a working unit attached to the traveling device 2, and an earth removal device 4. Be prepared.
  • the traveling device 2 is a part forming the machine of the excavation work machine 1, and is a pair of left and right crawler type traveling portions 5, 5 and a track frame 6 supporting the left and right traveling portions 5, 5 and on the track frame 6. It has a swivel frame 7 provided in the.
  • the traveling unit 5 has a configuration in which a track is wound around a plurality of rotating bodies such as sprockets supported by a predetermined frame.
  • the track frame 6 has a center frame portion 6a located at the center between the left and right traveling portions 5 and 5, and side frame portions 6b provided on both the left and right sides of the center frame portion 6a.
  • the swivel frame 7 is provided so as to be swivelable in either the left or right direction around the swivel shaft 10 which is an axis in the vertical direction with respect to the track frame 6.
  • a driving unit 8 is provided on the swivel frame 7.
  • the driving unit 8 is for operating and operating the traveling device 2, the excavating device 3, and the soil discharging device 4, and is provided in a substantially box-shaped cabin 9 provided for the swivel frame 7. ..
  • the cabin 9 has an opening / closing door 9a on the left side surface portion that opens and closes the entrance / exit of the operator with respect to the driving unit 8.
  • the driver's seat support pedestal is provided on the floor, and the driver's seat 8a is provided on the driver's seat support pedestal.
  • a travel operation unit such as a travel lever and a work operation unit such as a work operation lever for operating the excavation device 3 and the soil removal device 4 are arranged around the driver's seat 8a. ..
  • the base end portion of the excavator 3 is attached to the left and right center portions of the front end of the swivel frame 7.
  • a soil removal device 4 is attached to the front side of the truck frame 6 via between the left and right traveling portions 5 and 5.
  • the excavator 3 has a boom 12 constituting the base end portion thereof, an arm 13 connected to the tip end side of the boom 12, and a bucket 14 attached to the tip end portion of the arm 13. Further, the excavator 3 has a boom cylinder 15 that rotates the boom 12, an arm cylinder 16 that rotates the arm 13, and a bucket cylinder 17 that rotates the bucket 14. All of these cylinders are configured as hydraulic cylinders.
  • the soil removal device 4 includes a support frame 18 including a pair of left and right arms extending in the front-rear direction between the left and right traveling portions 5 and 5, a blade 19 which is a soil removal plate provided on the tip end side of the support frame 18. It has a blade cylinder 20 that raises and lowers the blade 19 via a support frame 18.
  • the support frame 18 rotatably supports the left and right arms with respect to the support bracket provided at the front portion of the track frame 6 with the left-right direction as the rotation axis direction, and can move up and down with respect to the track frame 6. It is attached to.
  • the blade 19 is provided integrally with the support frame 18 on the front side of the support frame 18.
  • the blade cylinder 20 is provided in a state of being erected in the front-rear direction between the track frame 6 and the back side of the blade 19.
  • the operator seated in the driver's seat 8a appropriately operates the traveling lever, the work operation lever, and the like to perform the desired operation and work. Specifically, for example, by operating the traveling lever, the traveling device 2 travels straight forward and backward and turns left and right. Further, by operating the work operation lever, excavation work by the excavation device 3 or soil removal work or ground leveling work by the soil removal device 4 is performed.
  • the excavation work machine 1 is an electric construction machine having an electric drive source such as an electric motor.
  • the excavation work machine 1 has a pair of left and right traveling electric motors 30 and 30 as an electric drive source.
  • the traveling electric motor 30 rotates and drives a driving rotating body such as a drive sprocket in a state of being attached to a predetermined support member such as a side frame portion 6b of the truck frame 6 in each traveling portion 5. It is provided in.
  • the left and right traveling electric motors 30 and 30 each drive the traveling unit 5, so that the traveling device 2 travels straight forward and backward and turns left and right.
  • the traveling electric motor 30 is, for example, a three-phase AC motor.
  • the swivel frame 7 is provided with a battery unit 31 as a power storage device for storing electric power supplied to the traveling electric motor 30.
  • the excavation work machine 1 includes a configuration for sending the electric power of the battery unit 31 to the traveling electric motor 30 (hereinafter referred to as “swivel support unit power transmission configuration”) in the swivel support portion of the swivel frame 7 with respect to the truck frame 6. ..
  • the excavation work machine 1 as a turning work machine is mounted on a lower traveling body 21 as a lower device and a lower running body 21 as a turning configuration, and is predetermined with respect to the lower running body 21. It is provided with an upper swivel body 22 provided so as to be swivelable around a swivel shaft 10 which is a swivel shaft.
  • the lower traveling body 21 has a left and right traveling portions 5, 5 and a truck frame 6 for locating a center frame portion 6a between the traveling portions 5, 5 and a truck frame 6. It is a part including the earth removal device 4 provided on the front side of the above.
  • the upper swivel body 22 is a portion including a swivel frame 7, a cabin 9 provided on the swivel frame 7, and an excavator 3 provided on the front side of the swivel frame 7.
  • the excavation work machine 1 is provided with the left and right traveling electric motors 30 and 30 provided in the lower traveling body 21 as an electric drive source to be driven by receiving electric power, and is provided in the upper turning body 22.
  • a battery unit 31 is provided as a power storage device for storing electric power supplied to the traveling electric motor 30. The electric power of the battery unit 31 is transmitted to the lower traveling body 21 by the turning support portion transmission configuration, and is supplied to the left and right traveling electric motors 30 and 30.
  • the excavation work machine 1 has a swivel bearing 25 which is a swivel bearing device as a swivel support device for the upper swivel body 22 with respect to the lower traveling body 21. That is, the upper swivel body 22 is rotatably supported by the lower traveling body 21 via the swivel bearing 25.
  • the swivel bearing 25 is provided on the upper side of the center frame portion 6a of the track frame 6 which is the upper part of the lower traveling body 21, and is formed in an annular shape with the swivel shaft 10 as the rotation center line.
  • the swivel bearing 25 has an annular inner ring and an outer ring that are concentrically arranged with each other and are provided so as to rotate relative to each other via a large number of rolling elements such as steel balls.
  • One of the inner ring and the outer ring is fixed to the lower traveling body 21 side, and the other is fixed to the upper turning body 22 side.
  • An annular mounting surface portion 7b for mounting the swivel bearing 25 is provided on the horizontal lower surface 7a of the swivel frame 7 which is the bottom surface of the upper swivel body 22.
  • the upper swivel body 22 turns with respect to the lower traveling body 21 due to the relative rotation of the inner ring and the outer ring around the swivel shaft 10.
  • the configuration of the turning support device between the lower traveling body 21 and the upper turning body 22 is not particularly limited.
  • the excavation work machine 1 is provided with a swivel motor (not shown) as a drive source for the swivel support device.
  • the swivel motor is engaged with the inner ring or the outer ring via a gear or the like, and rotationally drives the swivel bearing 25.
  • the upper swivel body 22 makes a swivel operation by the driving force of the swivel motor.
  • the turning motor is, for example, an electric motor or a hydraulic motor.
  • the excavation work machine 1 includes a pump drive motor 32 for operating the excavation device 3 and the like in the upper swivel body 22.
  • the pump drive motor 32 is installed, for example, at the rear portion on the swivel frame 7 (see FIG. 1).
  • the pump drive motor 32 drives a plurality of hydraulic pumps provided on the upper swing body 22.
  • the hydraulic pump driven by the pump drive motor 32 applies hydraulic oil for operation to various hydraulic actuators (boom cylinder 15, arm cylinder 16, bucket cylinder 17, swivel motor (in the case of a hydraulic motor), etc.). Supply.
  • the pump drive motor 32 is, for example, a three-phase AC motor.
  • the upper swivel body 22 is provided with a feeding port (not shown) at a predetermined location.
  • a power supply cable for an external power source such as a commercial power source is connected to this power supply port, and the battery unit 31 is charged.
  • the excavation work machine 1 having the above configuration has a plurality of power receiving coils 40 provided on the lower traveling body 21 side and a pair of power transmission coils provided on the upper turning body 22 side as a turning support portion power transmission configuration. It has 50 (50A, 50B).
  • the power receiving coil 40 and the power transmission coil 50 are both circular coils in which a wire rod as a conducting wire is spirally wound so as to form a substantially cylindrical outer shape with a predetermined central shaft 41, 51 as a winding center (winding shaft). Yes, it forms a circular shape when viewed in the direction of the central axis.
  • the power receiving coil 40 and the power transmitting coil 50 have substantially the same or the same coil diameter as each other.
  • the same coil diameter means that the coil outer diameter, which is the outer diameter of the coil, is the same as each other, the coil inner diameter, which is the inner diameter of the coil, is the same as each other, and the average of the coil outer diameter and the coil inner diameter. That is, either the coil average diameter, which is the diameter of the circle drawn by the center of the wire, is the same. Therefore, when the power receiving coil 40 and the power transmitting coil 50 are made of the same wire, any one of the coil outer diameter, the coil inner diameter, and the coil average diameter is the same for both coils.
  • the power receiving coil 40 constitutes a coil unit 45 together with a columnar core material 42 around which a coil body is wound.
  • the power transmission coil 50 constitutes a coil unit 55 together with a columnar core material 52 around which the coil body is wound, for example, as shown in FIG.
  • the coil units 45 and 55 are detachably provided via a connector or the like in a circuit configuration in which the power receiving coil 40 and the power transmitting coil 50 are connected to each other.
  • the power receiving coil 40 is installed on the upper surface of the lower traveling body 21. Specifically, in the power receiving coil 40, the lower coil is installed around the swivel shaft 10 with the horizontal surface portion inside the swivel bearing 25 as the lower coil installation surface portion 26 on the upper side of the center frame portion 6a of the track frame 6. It is provided in a fixed state on the surface portion 26.
  • the power receiving coil 40 is detachably provided as, for example, a coil unit 45 with respect to the lower coil installation surface portion 26.
  • the power receiving coil 40 can be provided by providing a fitting recess for mounting the coil unit 45 as a lower coil mounting portion on the lower coil installation surface portion 26 and fitting the coil unit 45 into the fitting recess. It can be easily positioned and installed.
  • the lower coil mounting portion is not limited to the concave portion, but may be a protruding portion, a holding portion, a groove portion, or the like, and may be a portion on the lower coil installation surface portion 26 where the action of engaging and positioning the coil unit 45 can be obtained. Just do it.
  • the power receiving coil 40 is installed on the lower coil installation surface portion 26 in a direction in which the central shaft 41 is parallel to the swivel shaft 10, that is, in a vertical direction with the central shaft 41. That is, the power receiving coil 40 is installed so as to have a circular shape when viewed from above.
  • the plurality of power receiving coils 40 are arranged at equal intervals along the circumference centered on the swivel shaft 10 in the axial direction of the swivel shaft 10. Specifically, as shown in FIGS. 3 and 4, the plurality of power receiving coils 40 are arranged along the first virtual circle 61 which is a circle centered on the turning center point O1 corresponding to the turning shaft 10. There is. That is, the plurality of power receiving coils 40 are arranged so that the central axis 41 is positioned on the first virtual circle 61, respectively. The plurality of power receiving coils 40 are provided so as to have a common position in the vertical direction.
  • the plurality of power receiving coils 40 are arranged at equal intervals, that is, at equal pitches, with a first interval ⁇ 1 which is a predetermined interval.
  • the first spacing ⁇ 1 is the spacing between the central axes 41 along the circumferential direction between the power receiving coils 40 adjacent to each other in the circumferential direction of the first virtual circle 61. That is, the first interval ⁇ 1 is the length of the arc in the angle range centered on the turning center point O1 for the first virtual circle 61, and is represented in the same angle range.
  • the first interval ⁇ 1 is the length of the arc in the angle range of about 16 ° in the first virtual circle 61.
  • the number of power receiving coils 40 and the like are not particularly limited.
  • the power transmission coil 50 is installed on the lower surface of the upper swing body 22. Specifically, the power transmission coil 50 is placed on the lower surface 7a of the swivel frame 7 around the swivel shaft 10 with the horizontal surface portion inside the mounting surface portion 7b to which the swivel bearing 25 is mounted as the upper coil installation surface portion 27. It is provided in a fixed state on the coil installation surface portion 27.
  • the power transmission coil 50 is detachably provided on the upper coil installation surface portion 27, for example, as a coil unit 55.
  • the power transmission coil 50 can be provided by providing a fitting recess for mounting the coil unit 55 on the upper coil installation surface portion 27 as an upper coil mounting portion and fitting the coil unit 55 into the fitting recess. It can be easily positioned and installed.
  • the upper coil mounting portion is not limited to the concave portion, but may be a protruding portion, a holding portion, a groove portion, or the like, and may be a portion on the upper coil installation surface portion 27 where the action of engaging and positioning the coil unit 55 can be obtained. Just do it.
  • the power transmission coil 50 is installed on the upper coil installation surface portion 27 in a direction in which the central shaft 51 is parallel to the swivel shaft 10, that is, in a vertical direction with the central shaft 51. That is, the power transmission coil 50 is installed so as to have a circular shape when viewed from the bottom.
  • the pair of power transmission coils 50 are arranged along the circumference around the swivel shaft 10 in the axial direction of the swivel shaft 10. Specifically, as shown in FIGS. 3 and 5, the pair of power transmission coils 50 are arranged along a second virtual circle 62 which is a circle centered on the turning center point O2 corresponding to the turning shaft 10. There is. That is, each of the pair of power transmission coils 50 is arranged so that the central axis 51 is located on the second virtual circle 62.
  • the second virtual circle 62 is a circle having the same diameter as the first virtual circle 61, and both virtual circles coincide with each other in the axial direction of the swivel shaft 10.
  • the pair of power transmission coils 50 are provided so as to have a common position in the vertical direction.
  • the pair of power transmission coils 50 are arranged so as to be spaced apart from each other by a second interval ⁇ 2 which is a predetermined interval.
  • the second interval ⁇ 2 is an interval different from the first interval ⁇ 1, and the interval between the central axes 51 along the circumferential direction between the transmission coils 50 adjacent to each other in the circumferential direction of the second virtual circle 62.
  • the second interval ⁇ 2 is the length of the arc in the angle range centered on the turning center point O2 for the second virtual circle 62, and is represented in the same angle range.
  • the second distance ⁇ 2 between the pair of power transmission coils 50 is set to be larger than the first distance ⁇ 1.
  • the magnitude ⁇ 2 of the second interval ⁇ 2 is the magnitude of the first interval ⁇ 1. It is set to be larger than ⁇ 1 and smaller than twice the size ⁇ 1 of the first interval ⁇ 1 (so that ⁇ 1 ⁇ 2 ⁇ 2 ⁇ ⁇ 1).
  • the second interval ⁇ 2 is, for example, the length of an arc in an angle range of about 24 ° in the second virtual circle 62 in relation to the first interval ⁇ 1.
  • the number of power transmission coils 50, the arrangement interval, and the like are not particularly limited.
  • the pair of power transmission coils 50 provided on the upper swivel body 22 move along the second virtual circle 62 around the swivel shaft 10 as the upper swivel body 22 swivels. That is, in the axial view of the swivel shaft 10, the trajectory of the central shaft 51 of the power transmission coil 50 coincides with the second virtual circle 62. Therefore, the pair of power transmission coils 50 are positioned above the plurality of power receiving coils 40 in the fixed state in the axial direction of the swivel shaft 10 as the upper swivel body 22 swivels with respect to the lower traveling body 21. , The plurality of power receiving coils 40 move along the first virtual circle 61 along which the power receiving coils 40 are aligned.
  • the power transmission coil 50 is in a state of vertically facing one of the power receiving coils 40 depending on the position on the second virtual circle 62, that is, the turning position (swing angle) of the upper swivel body 22.
  • the state in which the power receiving coil 40 and the power transmission coil 50 face each other vertically is a state in which the central axes 41 and 51 are aligned with each other.
  • the power receiving coil 40 and the power transmitting coil 50 are arranged close to each other in the vertical direction so that the action of electromagnetic induction can be obtained between the two coils. That is, the upper end portion 40a forming the virtual end face of the power receiving coil 40 and the lower end portion 50a forming the virtual end face of the lower side of the power transmission coil 50 obtain the action of electromagnetic induction (mutual induction) between the two coils. It is close enough to be used.
  • the vertical distance between the power receiving coil 40 and the power transmission coil 50 that is, the distance between the upper end portion 40a of the power receiving coil 40 and the lower end portion 50a of the power transmitting coil 50 in a state where the central axes 41 and 51 are aligned with each other is particularly limited. Although it is not a thing, for example, it is an interval of a dimension about the coil diameter from the coil radius (half of the coil diameter).
  • the power transmission coil 50 is a coil for power transmission that sends electric power from the battery unit 31 provided in the upper swing body 22 to a plurality of power receiving coils 40 by electromagnetic induction.
  • the power receiving coil 40 is a power receiving coil that receives electric power from the power transmitting coil 50 as electric power supplied to the traveling electric motor 30.
  • the magnetic flux 39 penetrating the power transmission coil 50 and the power receiving coil 40 changes with the change of the current flowing through the power transmission coil 50, and the induced electromotive force is generated in the power receiving coil 40 by this magnetic flux change. As a result, a current flows through the power receiving coil 40. In this way, electric power is transmitted from the power transmission coil 50 to the power reception coil 40.
  • the circuit configuration including the power receiving coil 40 and the power transmitting coil 50 will be described with reference to FIG.
  • the circuit configuration shown in FIG. 6 is a circuit configuration for supplying power to the traveling electric motor 30, and is provided in the excavation work machine 1 as a power supply system 70 including a battery unit 31.
  • the power supply system 70 is connected to the battery unit 31 via the battery unit 31, the inverter 71 connected to the battery unit 31, and the inverter 71 as a configuration provided in the upper swing body 22. It includes a pair of power transmission coils 50 (50A, 50B). In the example shown in FIG. 6, the pair of power transmission coils 50 are connected in series. Further, a pump drive motor 32 is connected to the battery unit 31 via an inverter 72. These elements provided in the upper swivel body 22 constitute a power transmission circuit 82, which is a circuit configuration on the upper swivel body 22 side in the power supply system 70.
  • the power supply system 70 is configured to be provided in the lower traveling body 21, and is connected to a plurality of power receiving coils 40, a converter 73 connected to these power receiving coils 40, an inverter 74 connected to the converter 73, and an inverter 74. It is provided with an electric motor 30 for traveling. A plurality of (22 in this embodiment) power receiving coils 40 are connected in parallel. These elements provided in the lower traveling body 21 constitute a feeding circuit 81 which is a circuit configuration on the lower traveling body 21 side in the power supply system 70. As described above, the plurality of power receiving coils 40 included in the excavation work machine 1 according to the present embodiment are connected in parallel in the power feeding circuit 81 for the traveling electric motor 30.
  • the AC power supplied from an external power source such as a commercial power source to the upper swing body 22 via the power supply cable is converted into DC power by a power supply device (not shown), and the battery. It is supplied to the unit 31. As a result, the battery unit 31 is charged.
  • the battery unit 31 supplies DC power to the inverter 71.
  • the inverter 71 converts the DC power (DC voltage) supplied from the battery unit 31 into AC power (AC voltage) and supplies it to the pair of power transmission coils 50.
  • the power transmission coil 50 sends AC power to the power reception coil 40.
  • the power receiving coil 40 receives AC power sent from the power transmitting coil 50.
  • the converter 73 converts the AC power input from the power receiving coil 40 into DC power having an appropriate voltage and supplies the AC power to the inverter 74.
  • the inverter 74 supplies the DC power supplied from the converter 73 to the traveling electric motor 30 as AC power having a voltage and a frequency corresponding to command values related to control of the rotation speed and torque of the traveling electric motor 30.
  • the power supply system 70 includes a traveling battery 75 as a power storage device (second power storage device) provided in the lower traveling body 21. That is, the traveling battery 75 is provided in the lower traveling body 21 and is connected between the plurality of power receiving coils 40 in the power feeding circuit 81 for the traveling electric motor 30 and the traveling electric motor 30, and is connected to the traveling electric motor 30. Store the supplied power.
  • a traveling battery 75 as a power storage device (second power storage device) provided in the lower traveling body 21. That is, the traveling battery 75 is provided in the lower traveling body 21 and is connected between the plurality of power receiving coils 40 in the power feeding circuit 81 for the traveling electric motor 30 and the traveling electric motor 30, and is connected to the traveling electric motor 30. Store the supplied power.
  • the traveling battery 75 is connected as a power storage circuit 76 between the converter 73 and the inverter 74.
  • the traveling battery 75 is supplied with electric power from the battery unit 31 received by the power receiving coil 40 and is stored. That is, the traveling battery 75 receives power from the battery unit 31 via the power transmission coil 50 and the power receiving coil 40.
  • the AC power input from the power receiving coil 40 is converted into DC power by the converter 73, and the traveling battery 75 is charged.
  • the DC power from the traveling battery 75 is converted into AC power by the inverter 74 and supplied to the traveling electric motor 30.
  • the power supply system 70 includes, as a plurality of power transmission coils 50, a pair of power transmission coils 50A and 50B adjacent to each other in the circumferential direction of the second virtual circle 62. Further, as described above, the plurality of power receiving coils 40 are arranged with the first interval ⁇ 1 spaced apart, and the pair of power transmission coils 50 are arranged with the second interval ⁇ 2 spaced apart.
  • the first interval ⁇ 1 and the second interval ⁇ 2 are set so as to satisfy the following conditions. That is, the first interval ⁇ 1 and the second interval ⁇ 2 are a pair of power transmission coils when the amount of displacement of one of the pair of power transmission coils 50 in the circumferential direction with respect to the power receiving coil 40 is the minimum. The amount of misalignment of the other transmission coil 50 of the 50 with respect to the power receiving coil 40 is set to be maximum.
  • the magnitude of the deviation amount (hereinafter referred to as "coil position deviation amount”) changes periodically depending on the position in the circumferential direction.
  • the coil position deviation amount is the deviation amount between the central axes 41 and 51 of the power transmission coil 50 with respect to the power receiving coil 40 in the circumferential direction in the axial direction of the swivel shaft 10 which is the movement direction of the power transmission coil 50. ..
  • the power transmission coil 50 has its central axis 51 aligned with the position of the central axis 41 of either power receiving coil 40, that is, the power transmission coil 50 has the same in the circumferential orbit with respect to any power receiving coil 40.
  • the state of being in phase is the state in which the amount of coil misalignment is the minimum (zero) for the power transmission coil 50.
  • the power transmission coil 50 has its central axis 51 positioned at the center between the central axes 41 and 41 of the adjacent power receiving coils 40 and 40 in the circumferential orbit, that is, the power transmission coils 50 are adjacent to each other.
  • the state of being located in the central phase between the coils 40 and 40 is the state in which the amount of coil misalignment is maximum for the power transmission coil 50.
  • the amount of coil misalignment can be replaced with the size of the overlapping area of the coil surfaces of the power receiving coil 40 and the power transmission coil 50 in the axial direction of the swivel shaft 10. That is, the state in which the transmission coil 50 completely matches the coil surfaces with respect to any of the power receiving coils 40 in the axial view of the swivel shaft 10, that is, the state in which the overlapping area of the coil surfaces is maximum is the power transmission. With respect to the coil 50, the amount of coil misalignment is minimized. Then, as the overlapping area of the coil surfaces gradually decreases, the amount of coil position deviation gradually increases.
  • the interval ⁇ 2 of 2 is defined.
  • the first interval ⁇ 1 and the second interval ⁇ 2 are set as follows.
  • the other power transmission coil 50B has the amount of coil misalignment. It is the maximum.
  • the power receiving coil 40X located in the same phase as the power transmitting coil 50A (with the smallest amount of coil misalignment) is located next to the power receiving coil 40X (right in the figure).
  • the other (maximum coil misalignment) transmission coil 50B is located.
  • the size of the second spacing ⁇ 2 between the pair of power transmission coils 50 is 1.5 times the size of the first spacing ⁇ 1 between the adjacent power receiving coils 40.
  • FIG. 7A shows a state in which the power receiving coil 40 and the power transmitting coil 50 are arranged so that the circumferential direction around the swivel shaft 10 is the left-right direction in the figure. Therefore, the left-right direction in FIG. 7A is the moving direction of the power transmission coil 50 with respect to the power receiving coil 40.
  • the power transmission coil 50A having the minimum amount of coil misalignment maximizes the amount of magnetic flux penetrating the coil in relation to the opposing power receiving coil 40 (40X), and power is supplied from the power transmission coil 50 to the power receiving coil 40. Is the most efficient state (a state in which power can be supplied) (see arrow E1).
  • the power transmission coil 50B having the maximum amount of coil misalignment minimizes the amount of magnetic flux penetrating the coil in relation to the power receiving coil 40, and power is supplied from the power transmission coil 50 to the power receiving coil 40. It becomes a state in which power supply is practically impossible (a state in which power supply is practically impossible) (see arrow E2).
  • FIG. 7B from the state shown in FIG. 7A, the pair of power transmission coils 50 move to the right in the figure by half the amount (half pitch) of the first interval ⁇ 1 due to the turning operation of the upper swing body 22 (arrow M1). (See), showing a state in which the position of the power transmission coil 50 is displaced.
  • one power transmission coil 50A is the power transmission coil 50 having the maximum coil misalignment amount
  • the other power transmission coil 50B is the power transmission coil 50 having the minimum coil misalignment amount. ..
  • the power transmission coil 50A is in a state in which power supply to the power receiving coil 40 is substantially impossible (see arrow F1), and the power transmission coil 50B is in a state in which power can be supplied to the power receiving coil 40 (see arrow F2). ).
  • the size of the second spacing ⁇ 2 for the power transmission coil 50 is 1.5 times the size of the first spacing ⁇ 1 for the power receiving coil 40, but is limited to this. is not it.
  • the size of the second interval ⁇ 2 may be, for example, 2.5 times or 3.5 times the size of the first interval ⁇ 1. That is, the magnitude relationship between the first interval ⁇ 1 and the second interval ⁇ 2 is that when the coil misalignment amount of one of the transmission coils 50 is the minimum, the coil misalignment of the other transmission coil 50 The magnitude relationship may be such that the other power transmission coil 50 is located at the center between two adjacent power receiving coils 40 other than the corresponding power receiving coil 40 so that the amount is maximized.
  • the amount of coil misalignment it is known that the amount of coil misalignment is about half the coil diameter (for example, about 40%), so that the power supply between the coils becomes substantially zero. There is.
  • the configuration for transmitting electric power from the upper swivel body 22 to the lower traveling body 21, that is, the swivel support portion power transmission configuration is highly versatile. In addition to being able to obtain it, it is possible to stably supply electric power, reduce energy loss, and improve production efficiency.
  • the power receiving coil 40 and the power transmission coil are used according to the size of the excavation work machine 1 and the like.
  • the size and number of 50 can be easily changed. This eliminates the need to design coils for each model, increases the degree of freedom in designing the size and number of coils, and provides high versatility. Further, for example, the electric resistance value can be reduced and the energy loss can be reduced as compared with the configuration in which one relatively large coil is used in each of the lower traveling body 21 and the upper swivel body 22.
  • the lower traveling body 21 and the upper swivel body 22 are relatively easily coiled by unitizing them as coil units 45, 55, for example. Can be installed. As a result, good assembleability can be obtained, production efficiency can be improved, and cost reduction and parts management burden can be reduced by sharing parts.
  • the turning support unit power transmission configuration since a plurality of (pair) power transmission coils 50 are provided for the plurality of power receiving coils 40, it is possible to stably supply electric power. It becomes possible and energy loss can be reduced.
  • the power transmission coil 50 is in a state where the coil misalignment amount is set to the maximum position.
  • a state occurs in which power transmission from the 50 to the power receiving coil 40 becomes substantially impossible, and the power supply becomes unstable.
  • the other power transmission coil 50 by providing a plurality of power transmission coils 50, even if power transmission from any one power transmission coil 50 is impossible, power transmission can be performed by the other power transmission coil 50. This makes it possible to stably supply electric power.
  • the plurality of power receiving coils 40 and the pair of power transmission coils 50 are provided so as to make the first interval ⁇ 1 and the second interval ⁇ 2 different from each other. According to such a configuration, it is possible to stably supply electric power from the power transmission coil 50 to the power reception coil 40.
  • the arrangement interval of the power receiving coil 40 and the arrangement interval of the power transmission coil 50 are the same, that is, if the first distance ⁇ 1 and the second distance ⁇ 2 are the same, all the power transmission coils 50 are simultaneously used. In some cases, power transmission becomes impossible, and the power supply becomes unstable.
  • the first interval ⁇ 1 and the second interval ⁇ 2 different from each other, it is possible to prevent all the power transmission coils 50 from being unable to transmit power at the same time, and the power transmission coil 50 can be used. It is possible to stabilize the amount of power transmitted to the power receiving coil 40 and reduce energy loss.
  • the pair of power transmission coils 50 when the coil misalignment amount of one power transmission coil 50 is maximum, the power is received so that the coil misalignment amount of the other power transmission coil 50 is minimized.
  • the coil 40 and the power transmission coil 50 are arranged. According to such a configuration, even if one of the power transmission coils 50 cannot transmit power, the other power transmission coil 50 can supply power with the maximum power transmission amount, so that the turning position of the upper swivel body 22 Regardless of this, the total power transmission amount by the pair of power transmission coils 50 can be stabilized. As a result, the power supply can be effectively stabilized and the energy loss can be reduced as much as possible. Therefore, for example, even when the area of the coil surface of the power transmission coil 50 cannot be sufficiently secured with respect to the area of the coil surface of the power receiving coil 40, stable power supply can be enabled.
  • the power receiving coil 40 and the power transmitting coil 50 have substantially the same or the same coil diameter as each other. According to such a configuration, the magnetic flux generated by the power transmission coil 50 can be efficiently transmitted to the power receiving coil 40. As a result, efficient power transmission from the power transmission coil 50 to the power reception coil 40 becomes possible, and energy loss can be effectively reduced.
  • the configuration uses the magnetic field coupling by the plurality of power receiving coils 40 and the power transmission coils 50, between the lower traveling body 21 and the upper swivel body 22. It is possible to supply power by non-contact. This makes it possible to eliminate wear between the members for power transmission, unlike the configuration in which power transmission is performed by members that are in contact with each other, such as a slip ring and a brush. As a result, it is possible to eliminate the replacement of parts due to deterioration of the member due to wear.
  • a plurality of power receiving coils 40 are connected in parallel. According to such a configuration, even when a plurality of power receiving coils 40 are simultaneously supplied with electric power, electric power can be stably supplied to the traveling electric motor 30.
  • the plurality of power receiving coils 40 may be connected in series in the power feeding circuit 81 for the traveling electric motor 30, but from the viewpoint of reducing the resistance in the circuit and performing efficient power feeding, the plurality of power receiving coils 40 may be connected in series.
  • the traveling battery 75 is provided in the circuit configuration on the lower traveling body 21 side. According to such a configuration, the electric power of the traveling battery 75 consumed by the traveling electric motor 30 can be replenished by the electric power supplied from the battery unit 31, so that the amount of power supplied by the power receiving coil 40 and the power transmission coil 50 can be increased. It can be kept low. As a result, the power receiving coil 40 and the power transmitting coil 50 can be designed to be compact, and the manufacturing cost of these coils can be reduced.
  • the amount of electricity stored in the power supply system 70 can be increased, so that the battery unit 31 can be used efficiently. Further, by providing the traveling battery 75, when a relatively large amount of electric power is consumed in a short time, for example, at the start of traveling of the traveling device 2, in addition to the electric power transmitted by the power receiving coil 40 and the power transmitting coil 50. , The electric power can be supplemented by the traveling battery 75. This makes it possible to cope with instantaneous large power consumption while suppressing the amount of power supplied by the power receiving coil 40 and the power transmitting coil 50.
  • the swivel working machine according to the present invention described using the embodiment as described above is not limited to the above-described embodiment, and various aspects can be adopted within the scope of the gist of the present invention.
  • a pair of power transmission coils 50 are provided as the plurality of power transmission coils 50, but the number of power transmission coils 50 is not particularly limited, and three or more power transmission coils 50 are provided. May be good. Further, for example, as shown in FIG. 8, a plurality of pairs of adjacent power transmission coils 50 (three sets in the example shown in the figure) may be provided as the plurality of power transmission coils 50.
  • the coil diameters of the power receiving coil 40 and the power transmission coil 50 are the same as each other, but the coil diameters of these coils may be different. However, as described above, from the viewpoint of efficient power transmission from the power transmission coil 50 to the power reception coil 40, it is preferable that the coil diameters of the power reception coil 40 and the power transmission coil 50 are substantially the same or the same as each other.
  • the pair of power transmission coils 50 are connected in series to the inverter 71, but the pair of power transmission coils 50 may be connected in parallel to the inverter 71.
  • the power receiving coil 40 and the power transmission coil 50 are arranged at different height positions in the vertical direction so that the power receiving coil 40 is the lower coil and the power transmission coil 50 is the upper coil.
  • the power receiving coil 40 and the power transmitting coil 50 may be arranged at the same height position as each other.
  • one of the plurality of power receiving coils 40 and the plurality of power transmission coils 50 is arranged on the inner peripheral side and the other is arranged on the outer peripheral side with respect to the circumference centered on the swivel shaft 10.
  • the traveling electric motor 30 is adopted as an electric drive source for receiving the electric power of the battery unit 31 by the power receiving coil 40 and the power transmission coil 50.
  • the traveling motor is a hydraulic motor
  • the lower traveling body 21 is provided with an electric pump driving motor as an electric drive source to receive electric power of the battery unit 31 by the power receiving coil 40 and the transmitting coil 50.
  • the provided configuration may be adopted.
  • the hydraulic pump is driven by the pump driving motor, and the driving pressure oil is supplied to the traveling motor.
  • the pump drive motor may be used to drive a hydraulic actuator such as a turning motor or a boom cylinder 15 which is a hydraulic motor.
  • a hydraulic pump driven by a pump drive motor 32 drives a hydraulic actuator such as a turning motor or a boom cylinder 15 which is a hydraulic motor, but the turning motor is electrically operated.
  • a hydraulic actuator such as a turning motor or a boom cylinder 15 which is a hydraulic motor, but the turning motor is electrically operated.
  • all the various hydraulic actuators may be electrified.
  • the transmission coil 50 is provided in the upper swing body 22, the power receiving coil 40 is provided in the lower traveling body 21, and the electric power of the battery unit 31 mounted on the upper swing body 22 is used for traveling the lower traveling body 21.
  • the electric motor 30 it may be configured to supply electric power from the lower traveling body 21 to the upper turning body 22.
  • a battery unit may be provided in the lower traveling body 21, a plurality of power transmission coils may be provided in the upper part of the lower traveling body 21, and a power receiving coil may be provided in the lower part of the upper rotating body 22. ..
  • the power receiving side is a large number of power receiving coils 40 and the power transmission side is a pair of power transmission coils 50, but the magnitude relationship between the number of these coils is not particularly limited.
  • the power receiving side may be a pair of power receiving coils 40, and the power transmission side may be a large number of power transmission coils 50.
  • the number of coils on the power transmission side is smaller than the number of coils on the power reception side.
  • the excavation work machine 1 is a lower traveling body 21 that rotatably supports the upper swivel body 22 as an example of the lower device according to the present invention. It is not limited to the traveling body. That is, the lower device according to the present invention may be configured to support the upper swivel body so as to be able to swivel, and may not have a traveling configuration such as the traveling unit 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

下部装置と上部旋回体との間で電力を伝達するための構成について高い汎用性を得ることを可能とするとともに、電力の安定した供給を可能としてエネルギーロスを低減し、生産効率を向上させる。 下部走行体21と上部旋回体22とを備える掘削作業機1であって、走行用電動モータ30と、上部旋回体22に設けられ、走行用電動モータ30に供給される電力を蓄える蓄電装置と、下部走行体21に設けられ、中心軸を上部旋回体22の旋回軸10と平行とする向きで、旋回軸10を中心とした円周に沿うように第1の間隔を隔てて配置され、走行用電動モータ30に供給される電力を受け取る複数の受電コイル40と、上部旋回体22に設けられ、中心軸を旋回軸10と平行とする向きで、前記円周に沿うように第2の間隔を隔てて配置され、蓄電装置からの電力を電磁誘導により複数の受電コイル40に送る複数の送電コイル50とを備える。

Description

旋回作業機
 本発明は、下部走行体等の下部装置上に上部旋回体を搭載した建設機械等の旋回作業機に関する。
 従来、例えば掘削作業機等の建設機械として、下部装置としての下部走行体と、下部走行体に対して旋回可能に搭載された上部旋回体とを有する旋回作業機がある。このような旋回作業機において、例えば電動モータ等の電動式の駆動源を有するものがある。電動モータは、例えば、下部走行体を走行させるための走行用電動モータであったり、上部旋回体に設けられた掘削装置を動作させるための油圧ポンプの駆動用のモータであったりする。
 特許文献1には、下部走行体に走行用電動モータを有する油圧ショベルにおいて、上部旋回体に搭載された電源装置から、電力伝達用の回転式接続装置を介して、走行用電動モータに電力を供給する構成が開示されている。回転式接続装置は、上部旋回体の旋回にともなって回転するスリップリングと、スリップリングの外周に接触するブラシとを有する。
 特許文献2には、上部旋回体に設置された電気エネルギー貯蔵装置の電力を下部走行体に伝達するためのターニングジョイントを備えた電気式掘削機が開示されている。ターニングジョイントは、上部旋回体に巻き付けられた上部コイルと、下部走行体に巻き付けられた下部コイルとを有し、上部コイルから電磁誘導により下部コイルに電力を伝達するように構成されている。
特開2008-66235号公報 特表2014-505185号公報
 特許文献1に開示されているように、スリップリングおよびブラシを用いて電力を伝達する構成によれば、次のような問題がある。すなわち、スリップリングとブラシは、互いに物理的に接触した状態で相対回転することで通電を行うため、これらの部材について摩耗による劣化が問題となる。
 この点、特許文献2に開示されているように、上部コイルおよび下部コイルのコイル間における電磁誘導を利用して電力を伝達する構成によれば、コイル間において非接触の状態で給電が行われることから、コイル間で摩耗による劣化は生じないと考えられる。しかしながら、上部旋回体に巻き付けられた上部コイル、および下部走行体に巻き付けられた下部コイルの一対のコイルにより電力の伝達を行う構成によれば、次のような問題がある。
 すなわち、コイルの大きさが旋回作業機のサイズ等に応じて決まってくるため、機種毎にコイルを設計する必要が生じ、コイルについての設計の自由度が低く、汎用性に乏しいという問題がある。また、電気抵抗値が大きくなりやすいため、エネルギーロスが大きくなってしまう。また、下部走行体に対する上部旋回体の旋回支持部分において、上部旋回体および下部走行体のそれぞれに対して大型のコイルを所定の位置に巻き付ける必要があるため、組立て性が悪く、生産効率の面で改善の余地がある。
 本発明は、上記のような問題点に鑑みてなされたものであり、電力を伝達するための構成について高い汎用性を得ることができるとともに、電力を安定して供給することができてエネルギーロスを低減することができ、生産効率を向上させることができる旋回作業機を提供することを目的とする。
 本発明に係る旋回作業機は、下部装置と、前記下部装置に対して所定の回転軸を中心として旋回可能に設けられた上部旋回体と、を備える旋回作業機であって、電力の供給を受けて駆動する電動式の駆動源と、前記下部装置および前記上部旋回体のいずれか一方に設けられ、前記駆動源に供給される電力を蓄える蓄電装置と、前記下部装置および前記上部旋回体のいずれか他方に設けられ、中心軸を前記回転軸と平行とする向きで、前記回転軸を中心とした円周に沿うように第1の間隔を隔てて配置され、前記駆動源に供給される電力を受け取る複数の受電コイルと、前記下部装置および前記上部旋回体のいずれか一方に設けられ、中心軸を前記回転軸と平行とする向きで、前記円周に沿うように前記第1の間隔と異なる第2の間隔を隔てて配置され、前記蓄電装置からの電力を電磁誘導により前記複数の受電コイルに送る複数の送電コイルと、を備えるものである。
 また、本発明の他の態様に係る旋回作業機は、前記旋回作業機において、前記受電コイルおよび前記送電コイルは、互いに略同一または同一のコイル径を有するものである。
 また、本発明の他の態様に係る旋回作業機は、前記旋回作業機において、前記複数の送電コイルは、前記円周の周方向に隣り合った一対の前記送電コイルを含み、前記第1の間隔および前記第2の間隔は、前記一対の前記送電コイルのうちの一方の前記送電コイルの前記受電コイルに対する前記周方向についての位置ずれ量が最小のときに、前記一対の前記送電コイルのうちの他方の前記送電コイルの前記受電コイルに対する前記位置ずれ量が最大となるように設定されているものである。
 また、本発明の他の態様に係る旋回作業機は、前記旋回作業機において、前記複数の受電コイルは、前記駆動源に対する給電回路において並列接続されているものである。
 また、本発明の他の態様に係る旋回作業機は、前記旋回作業機において、前記下部装置および前記上部旋回体のいずれか他方に設けられ、前記給電回路における前記複数の受電コイルと前記駆動源との間に接続され、前記駆動源に供給される電力を蓄える蓄電装置を備えるものである。
 本発明によれば、電力を伝達するための構成について高い汎用性を得ることができるとともに、電力を安定して供給することができてエネルギーロスを低減することができ、生産効率を向上させることができる。
本発明の一実施形態に係る掘削作業機の左側面図である。 本発明の一実施形態に係る掘削作業機を下部走行体と上部旋回体に分解した状態を示す斜視図である。 本発明の一実施形態に係る送電コイルおよび受電コイルの配置構成を示す斜視図である。 本発明の一実施形態に係る受電コイルの配置構成を示す図である。 本発明の一実施形態に係る送電コイルの配置構成を示す図である。 本発明の一実施形態に係る電源システムの構成を示すブロック図である。 本発明の一実施形態に係る送電コイルおよび受電コイルの作用についての説明図である。 本発明の一実施形態に係る送電コイルの配置構成の変形例を示す図である。
 本発明は、下部装置上に上部旋回体を搭載した構成において、上部旋回体の旋回動作にともなって電磁誘導により電力が伝達されるように、下部装置および上部旋回体のそれぞれに複数のコイルを設けることで、下部装置および上部旋回体の間における非接触で効率の良い給電構成を実現しようとするものである。以下、本発明の実施の形態について図面を参照して説明する。
 本実施形態では、本発明に係る旋回作業機として、建設機械の一種である掘削作業機を例にとって説明する。ただし、本発明に係る旋回作業機は、掘削作業機に限らず、例えば、クレーン作業機等の他の建設機械、産業機械に広く適用可能である。
 本実施形態に係る掘削作業機1の全体構成について、図1および図2を用いて説明する。図1および図2に示すように、掘削作業機1は、自走可能な走行車体としての走行装置2と、走行装置2に取り付けられた作業部としての掘削装置3および排土装置4とを備える。
 走行装置2は、掘削作業機1の本機をなす部分であり、左右一対のクローラ式の走行部5,5と、左右の走行部5,5を支持するトラックフレーム6と、トラックフレーム6上に設けられた旋回フレーム7とを有する。
 走行部5は、所定のフレームに支持された複数のスプロケット等の回転体に履帯を巻回した構成を有する。トラックフレーム6は、左右の走行部5,5間の中央部に位置するセンターフレーム部6aと、センターフレーム部6aの左右両側に設けられたサイドフレーム部6bとを有する。旋回フレーム7は、トラックフレーム6に対して、上下方向の軸線である旋回軸10回りに左右いずれの方向にも旋回可能に設けられている。
 旋回フレーム7上には、運転部8が設けられている。運転部8は、走行装置2、掘削装置3、および排土装置4を運転・操作するためのものであり、旋回フレーム7に対して設けられた略箱状のキャビン9内に設けられている。キャビン9は、左側の側面部に、運転部8に対するオペレータの乗降口を開閉させる開閉扉9aを有する。
 運転部8においては、床部上に運転席支持台が設けられており、運転席支持台上に運転席8aが設けられている。運転部8において、運転席8aの周囲には、走行レバー等の走行操作部や、掘削装置3や排土装置4を操作するための作業操作レバー等の作業操作部等が配設されている。
 旋回フレーム7の前端の左右中央部には、掘削装置3の基端部が取り付けられている。トラックフレーム6の前側には、左右の走行部5,5間を介して、排土装置4が取り付けられている。
 掘削装置3は、その基端部を構成するブーム12と、ブーム12の先端側に連結されたアーム13と、アーム13の先端部に取り付けられたバケット14とを有する。また、掘削装置3は、ブーム12を回動動作させるブームシリンダ15と、アーム13を回動動作させるアームシリンダ16と、バケット14を回動動作させるバケットシリンダ17とを有する。これらのシリンダは、いずれも油圧シリンダとして構成されている。
 排土装置4は、左右の走行部5,5間において前後方向に伸延する左右一対のアームを含む支持フレーム18と、支持フレーム18の先端側に設けられた排土板であるブレード19と、支持フレーム18を介してブレード19を昇降させるブレードシリンダ20とを有する。
 支持フレーム18は、左右のアームを、トラックフレーム6の前部に設けられた支持ブラケットに対して左右方向を回動軸方向として回動可能に支持させ、トラックフレーム6に対して昇降回動可能に取り付けられている。ブレード19は、支持フレーム18の前側に、支持フレーム18と一体的に設けられている。ブレードシリンダ20は、トラックフレーム6とブレード19の裏側との間に前後に架設された状態で設けられている。
 以上のような構成を備えた掘削作業機1においては、運転席8aに着座したオペレータにより走行レバーや作業操作レバー等が適宜操作されることで、所望の動作・作業が行われる。具体的には、例えば、走行レバーの操作により、走行装置2の前後直進走行や左右旋回走行が行われる。また、作業操作レバーの操作により、掘削装置3による掘削作業、あるいは排土装置4による排土作業や整地作業が行われる。
 本実施形態に係る掘削作業機1は、電動モータ等の電動式の駆動源を有する電動式建設機械である。掘削作業機1は、電動式の駆動源として、左右一対の走行用電動モータ30,30を有する。走行用電動モータ30は、各走行部5において、トラックフレーム6のサイドフレーム部6b等の所定の支持部材に対して取り付けられた状態で、駆動スプロケット等の駆動用の回転体を回転駆動させるように設けられている。左右の走行用電動モータ30,30がそれぞれ走行部5を駆動させることで、走行装置2の前後直進走行や左右旋回走行が行われる。走行用電動モータ30は、例えば三相交流モータである。
 一方、旋回フレーム7においては、走行用電動モータ30に供給される電力を蓄える蓄電装置としてのバッテリユニット31が設けられている。掘削作業機1は、トラックフレーム6に対する旋回フレーム7の旋回支持部分において、バッテリユニット31の電力を走行用電動モータ30へと送るための構成(以下「旋回支持部送電構成」という。)を備える。
 旋回作業機としての掘削作業機1は、旋回構成として、図2に示すように、下部装置としての下部走行体21と、下部走行体21上に搭載され、下部走行体21に対して所定の回転軸である旋回軸10を中心として旋回可能に設けられた上部旋回体22とを備える。本実施形態に係る掘削作業機1において、下部走行体21は、左右の走行部5,5と、これら走行部5,5の間にセンターフレーム部6aを位置させるトラックフレーム6と、トラックフレーム6の前側に設けられた排土装置4とを含む部分である。また、上部旋回体22は、旋回フレーム7と、旋回フレーム7上に設けられたキャビン9と、旋回フレーム7の前側に設けられた掘削装置3とを含む部分である。
 そして、掘削作業機1は、電力の供給を受けて駆動する電動式の駆動源として、下部走行体21に設けられた左右の走行用電動モータ30,30を備え、上部旋回体22に設けられ走行用電動モータ30に供給される電力を蓄える蓄電装置として、バッテリユニット31を備える。バッテリユニット31の電力が、旋回支持部送電構成によって下部走行体21へと伝達され、左右の走行用電動モータ30,30に供給される。
 掘削作業機1は、下部走行体21に対する上部旋回体22の旋回支持装置として、旋回軸受装置である旋回ベアリング25を有する。すなわち、上部旋回体22は、下部走行体21に対して、旋回ベアリング25を介して旋回可能に支持されている。旋回ベアリング25は、下部走行体21の上部となるトラックフレーム6のセンターフレーム部6aの上側に設けられており、旋回軸10を回転中心線として円環状に構成されている。
 旋回ベアリング25は、互いに同心配置されるとともに鋼球等の多数の転動体を介して相対回転するように設けられた円環状の内輪および外輪を有する。内輪および外輪のうち一方が下部走行体21側に固定され、他方が上部旋回体22側に固定される。上部旋回体22の底面となる旋回フレーム7の水平状の下面7aには、旋回ベアリング25を取り付けるための円環状の取付面部7bが設けられている。
 このような構成により、旋回軸10を中心とした内輪および外輪の相対回転により、下部走行体21に対して上部旋回体22が旋回する。なお、下部走行体21と上部旋回体22との間における旋回支持装置の構成は、特に限定されるものではない。
 掘削作業機1は、旋回支持装置の駆動源として、旋回用モータ(図示せず)を備える。旋回用モータは、歯車等を介して内輪または外輪に係合しており、旋回ベアリング25を回転駆動させる。旋回用モータの駆動力により、上部旋回体22が旋回動作を行う。旋回用モータは、例えば電動モータや油圧モータである。
 また、掘削作業機1は、上部旋回体22において、掘削装置3等を動作させるためのポンプ駆動用モータ32を備える。ポンプ駆動用モータ32は、例えば、旋回フレーム7上の後部に設置される(図1参照)。ポンプ駆動用モータ32は、上部旋回体22に設けられた複数の油圧ポンプを駆動させる。ポンプ駆動用モータ32により駆動する油圧ポンプは、各種の油圧アクチュエータ(ブームシリンダ15、アームシリンダ16、バケットシリンダ17、旋回用モータ(油圧モータである場合)等)に対して作動用の圧油を供給する。ポンプ駆動用モータ32は、例えば三相交流モータである。
 上部旋回体22には、所定の場所に給電口(図示せず)が設けられている。この給電口に商用電源等の外部電源の給電ケーブルが接続され、バッテリユニット31が充電される。
 以上のような構成を備えた掘削作業機1は、旋回支持部送電構成として、下部走行体21側に設けられた複数の受電コイル40と、上部旋回体22側に設けられた一対の送電コイル50(50A,50B)を有する。受電コイル40および送電コイル50は、いずれも所定の中心軸41,51を巻回中心(巻き軸)として略円筒状の外形をなすように導線としての線材を螺旋状に巻回した円形コイルであり、中心軸方向視で円形状をなす。
 受電コイル40および送電コイル50は、互いに略同一または同一のコイル径を有する。ここで、コイル径が同一とは、コイルの外径であるコイル外径が互いに同一であること、コイルの内径であるコイル内径が互いに同一であること、コイル外径とコイル内径との平均、つまり線材の中心が描く円の直径であるコイル平均径が同一であることのいずれかである。したがって、受電コイル40および送電コイル50が同じ線材により形成されたものである場合、コイル外径、コイル内径、およびコイル平均径のいずれかが両コイル同士で同一となる。
 受電コイル40は、例えば、図6に示すように、コイル本体を巻回させる円柱状の芯材42とともにコイルユニット45を構成する。同様に、送電コイル50は、例えば、図6に示すように、コイル本体を巻回させる円柱状の芯材52とともにコイルユニット55を構成する。コイルユニット45,55は、受電コイル40および送電コイル50それぞれが接続される回路構成において、コネクタ等を介して着脱可能に設けられる。
 受電コイル40は、下部走行体21の上面に設置されている。具体的には、受電コイル40は、トラックフレーム6のセンターフレーム部6aの上側において、旋回ベアリング25の内側の水平状の面部を下コイル設置面部26として、旋回軸10の周りに、下コイル設置面部26上に固定された状態で設けられている。
 受電コイル40は、下コイル設置面部26に対して、例えばコイルユニット45として着脱可能に設けられる。例えば、下コイル設置面部26に、下コイル取付部として、コイルユニット45を装着するための嵌合凹部を設け、この嵌合凹部にコイルユニット45を嵌め込む構成とすることで、受電コイル40を容易に位置決めして設置することが可能となる。なお、下コイル取付部は、凹部に限らず突起部や挟持部や溝部等であってもよく、下コイル設置面部26上においてコイルユニット45を係合させて位置決めさせる作用が得られる部分であればよい。
 受電コイル40は、下コイル設置面部26上において、中心軸41を旋回軸10と平行とする向き、つまり中心軸41と上下方向とする向きで設置されている。つまり、受電コイル40は、上面視で円形状となるように設置されている。
 複数の受電コイル40は、旋回軸10の軸方向視で旋回軸10を中心とした円周に沿うように等間隔で配置されている。具体的には、図3および図4に示すように、複数の受電コイル40は、旋回軸10に対応した旋回中心点O1を中心とした円である第1仮想円61に沿って配置されている。つまり、複数の受電コイル40は、それぞれ中心軸41を第1仮想円61上に位置させるように配置されている。なお、複数の受電コイル40は、上下方向の位置を共通とするように設けられている。
 複数の受電コイル40は、所定の間隔である第1の間隔α1を隔てて等間隔で、つまり等ピッチで配置されている。ここで、第1の間隔α1は、第1仮想円61の円周方向に隣り合う受電コイル40間における同円周方向に沿う中心軸41間の間隔である。つまり、第1の間隔α1は、第1仮想円61についての旋回中心点O1を中心とした角度範囲の円弧の長さとなり、同角度範囲で表される。
 本実施形態では、22個の受電コイル40が配置されている。このため、第1の間隔α1は、第1仮想円61における約16°の角度範囲の円弧の長さとなる。ただし、受電コイル40の個数等は特に限定されるものではない。
 送電コイル50は、上部旋回体22の下面に設置されている。具体的には、送電コイル50は、旋回フレーム7の下面7aにおいて、旋回ベアリング25が取り付けられる取付面部7bの内側の水平状の面部を上コイル設置面部27として、旋回軸10の周りに、上コイル設置面部27上に固定された状態で設けられている。
 送電コイル50は、上コイル設置面部27に対して、例えばコイルユニット55として着脱可能に設けられる。例えば、上コイル設置面部27に、上コイル取付部として、コイルユニット55を装着するための嵌合凹部を設け、この嵌合凹部にコイルユニット55を嵌め込む構成とすることで、送電コイル50を容易に位置決めして設置することが可能となる。なお、上コイル取付部は、凹部に限らず突起部や挟持部や溝部等であってもよく、上コイル設置面部27上においてコイルユニット55を係合させて位置決めさせる作用が得られる部分であればよい。
 送電コイル50は、上コイル設置面部27上において、中心軸51を旋回軸10と平行とする向き、つまり中心軸51と上下方向とする向きで設置されている。つまり、送電コイル50は、下面視で円形状となるように設置されている。
 一対の送電コイル50は、旋回軸10の軸方向視で旋回軸10を中心とした円周に沿うように配置されている。具体的には、図3および図5に示すように、一対の送電コイル50は、旋回軸10に対応した旋回中心点O2を中心とした円である第2仮想円62に沿って配置されている。つまり、一対の送電コイル50は、それぞれ中心軸51を第2仮想円62上に位置させるように配置されている。第2仮想円62は、第1仮想円61と同径の円であり、両仮想円は、旋回軸10の軸方向視で互いに一致する。なお、一対の送電コイル50は、上下方向の位置を共通とするように設けられている。
 一対の送電コイル50は、所定の間隔である第2の間隔α2を隔てて配置されている。ここで、第2の間隔α2は、第1の間隔α1と異なる間隔であり、第2仮想円62の円周方向に隣り合う送電コイル50間における同円周方向に沿う中心軸51間の間隔である。つまり、第2の間隔α2は、第2仮想円62についての旋回中心点O2を中心とした角度範囲の円弧の長さとなり、同角度範囲で表される。
 本実施形態では、一対の送電コイル50間の第2の間隔α2は、第1の間隔α1よりも大きく設定されている。具体的には、第1の間隔α1の大きさをθ1とし、第2の間隔α2の大きさをθ2とした場合、第2の間隔α2の大きさθ2は、第1の間隔α1の大きさθ1よりも大きく、かつ、第1の間隔α1の大きさθ1の2倍の値よりも小さくなるように(θ1<θ2<2・θ1となるように)設定されている。
 本実施形態では、第2の間隔α2は、第1の間隔α1との関係において、例えば、第2仮想円62における約24°の角度範囲の円弧の長さとなる。ただし、送電コイル50の個数や配置間隔等は特に限定されるものではない。
 以上のように上部旋回体22に設けられた一対の送電コイル50は、上部旋回体22の旋回動作にともなって、旋回軸10を中心として第2仮想円62に沿って移動することになる。つまり、旋回軸10の軸方向視において、送電コイル50の中心軸51の軌道が、第2仮想円62に一致する。したがって、一対の送電コイル50は、下部走行体21に対する上部旋回体22の旋回動作にともない、固定状態の複数の受電コイル40に対して、その上方の位置で、旋回軸10の軸方向視で、複数の受電コイル40が沿う第1仮想円61に沿って移動することになる。
 送電コイル50は、第2仮想円62上の位置によって、つまり上部旋回体22の旋回位置(旋回角度)によって、いずれかの受電コイル40に対して上下に対向した状態となる。ここで、上下に対向した状態は、受電コイル40および送電コイル50が、中心軸41,51同士を一致させた状態である。
 受電コイル40および送電コイル50は、上下方向について、両コイル間で電磁誘導の作用が得られる程度に近接配置されている。つまり、受電コイル40の上側の仮想の端面をなす上端部40aと、送電コイル50の下側の仮想の端面をなす下端部50aとが、両コイル間で電磁誘導(相互誘導)の作用が得られる程度に近接している。受電コイル40と送電コイル50の上下方向の間隔、つまり互いに中心軸41,51を一致させた状態における受電コイル40の上端部40aと送電コイル50の下端部50aとの間隔は、特に限定されるものではないが、例えば、コイル半径(コイル径の半分)からコイル径程度の寸法の間隔となる。
 送電コイル50は、上部旋回体22に設けられたバッテリユニット31からの電力を電磁誘導により複数の受電コイル40に送る送電用のコイルである。受電コイル40は、走行用電動モータ30に供給される電力として、送電コイル50からの電力を受け取る受電用のコイルである。
 図3に示すように、送電コイル50を流れる電流の変化にともない、送電コイル50および受電コイル40を貫く磁束39が変化し、この磁束変化によって受電コイル40に誘導起電力が生じる。その結果、受電コイル40に電流が流れる。このようにして、送電コイル50から受電コイル40への電力の伝達が行われる。
 図6を用いて、受電コイル40および送電コイル50を含む回路構成について説明する。図6に示す回路構成は、走行用電動モータ30に対する給電用の回路の構成であり、バッテリユニット31を含む電源システム70として掘削作業機1に備えられる。
 図6に示すように、電源システム70は、上部旋回体22に設けられる構成として、バッテリユニット31と、バッテリユニット31に接続されたインバータ71と、インバータ71を介してバッテリユニット31に接続された一対の送電コイル50(50A,50B)とを備える。図6に示す例では、一対の送電コイル50は、直列接続されている。また、バッテリユニット31には、インバータ72を介して、ポンプ駆動用モータ32が接続されている。上部旋回体22に設けられたこれらの要素は、電源システム70において、上部旋回体22側の回路構成である送電回路82を構成している。
 電源システム70は、下部走行体21に設けられる構成として、複数の受電コイル40と、これらの受電コイル40に接続されたコンバータ73と、コンバータ73に接続されたインバータ74と、インバータ74に接続された走行用電動モータ30とを備える。複数(本実施形態では22個)の受電コイル40は、並列接続されている。下部走行体21に設けられたこれらの要素は、電源システム70において、下部走行体21側の回路構成である給電回路81を構成している。このように、本実施形態に係る掘削作業機1が備える複数の受電コイル40は、走行用電動モータ30に対する給電回路81において並列接続されている。
 以上のような構成を備えた電源システム70において、商用電源等の外部電源から給電ケーブルを介して上部旋回体22に供給された交流電力は、図示せぬ給電器により直流電力に変換され、バッテリユニット31に供給される。これにより、バッテリユニット31が充電される。
 バッテリユニット31は、インバータ71に直流電力を供給する。インバータ71は、バッテリユニット31から供給された直流電力(直流電圧)を交流電力(交流電圧)に変換し、一対の送電コイル50に供給する。送電コイル50は、受電コイル40に対して交流電力を送る。
 受電コイル40は、送電コイル50から送られる交流電力を受ける。コンバータ73は、受電コイル40から入力された交流電力を、適切な電圧の直流電力に変換し、インバータ74に供給する。インバータ74は、コンバータ73から供給された直流電力を、走行用電動モータ30の回転数やトルク等の制御に関する指令値に応じた電圧、周波数の交流電力として走行用電動モータ30に供給する。
 また、電源システム70は、図6に示すように、下部走行体21に設けられた蓄電装置(第2の蓄電装置)としての走行用バッテリ75を備える。すなわち、走行用バッテリ75は、下部走行体21に設けられ、走行用電動モータ30に対する給電回路81における複数の受電コイル40と走行用電動モータ30との間に接続され、走行用電動モータ30に供給される電力を蓄える。
 走行用バッテリ75は、コンバータ73とインバータ74との間において、蓄電回路76として接続されている。走行用バッテリ75には、受電コイル40が受けたバッテリユニット31からの電力が供給されて蓄電される。つまり、走行用バッテリ75は、送電コイル50および受電コイル40を介して、バッテリユニット31からの電力の供給を受ける。受電コイル40から入力された交流電力が、コンバータ73によって直流電力に変換され、走行用バッテリ75に充電される。走行用バッテリ75からの直流電力は、インバータ74によって交流電力に変換され、走行用電動モータ30に供給される。
 以上のような構成を備えた電源システム70において、複数の受電コイル40および複数の送電コイル50それぞれの配置間隔について説明する。本実施形態に係る電源システム70は、複数の送電コイル50として、第2仮想円62の周方向に隣り合った一対の前記送電コイル50A,50Bを含む。また、上述のとおり、複数の受電コイル40は、第1の間隔α1を隔てて配置されており、一対の送電コイル50は、第2の間隔α2を隔てて配置されている。
 そこで、本実施形態において、第1の間隔α1および第2の間隔α2は、次のような条件を満たすように設定されている。すなわち、第1の間隔α1および第2の間隔α2は、一対の送電コイル50のうちの一方の送電コイル50の受電コイル40に対する周方向についての位置ずれ量が最小のときに、一対の送電コイル50のうちの他方の送電コイル50の受電コイル40に対する位置ずれ量が最大となるように設定されている。
 上部旋回体22の旋回動作にともない、複数の受電コイル40および一対の送電コイル50がそれぞれ周方向の間隔を保持した状態で周方向に相対移動する構成において、受電コイル40に対する送電コイル50の位置ずれ量(以下「コイル位置ずれ量」という。)の大きさは、周方向の位置によって周期的に変化することになる。ここで、コイル位置ずれ量は、送電コイル50の移動方向となる旋回軸10の軸方向視における円周方向についての、受電コイル40に対する送電コイル50の中心軸41,51同士のずれ量である。
 したがって、送電コイル50が、その中心軸51を、いずれかの受電コイル40の中心軸41の位置に一致させた状態、つまり送電コイル50がいずれかの受電コイル40に対して円周軌道における同位相に位置する状態が、その送電コイル50について、コイル位置ずれ量が最小(ゼロ)の状態となる。これに対し、送電コイル50が、その中心軸51を、円周軌道において、隣り合う受電コイル40,40の中心軸41,41間の中央に位置させた状態、つまり送電コイル50が隣り合う受電コイル40,40間の中央の位相に位置する状態が、その送電コイル50について、コイル位置ずれ量が最大の状態となる。
 コイル位置ずれ量は、旋回軸10の軸方向視における受電コイル40と送電コイル50のコイル面の重複面積の大きさに置き換えることができる。すなわち、送電コイル50が、いずれかの受電コイル40に対して、旋回軸10の軸方向視において、コイル面を完全に一致させた状態、つまりコイル面の重複面積が最大の状態が、その送電コイル50について、コイル位置ずれ量が最小の状態となる。そして、コイル面の重複面積が徐々に小さくなることにともない、コイル位置ずれ量が徐々に大きくなる。
 以上のようなコイル位置ずれ量に関し、一方の送電コイル50のコイル位置ずれ量が最小のときに、他方の送電コイル50のコイル位置ずれ量が最大となるように、第1の間隔α1および第2の間隔α2が定められている。本実施形態では、第1の間隔α1および第2の間隔α2は、次のように設定されている。
 すなわち、図7Aに示すように、一対の送電コイル50のうちの一方の送電コイル50Aが、受電コイル40に対するコイル位置ずれ量を最小とするとき、他方の送電コイル50Bは、コイル位置ずれ量を最大としている。図7Aに示す例では、複数の受電コイル40のうち、一方の(コイル位置ずれ量が最小の)送電コイル50Aと同位相に位置する受電コイル40Xに対し、受電コイル40Xの隣(図における右隣)に位置する受電コイル40Yと、その受電コイル40Yの隣(図における右隣)に位置する受電コイル40Zとの間の中央の位相に、他方の(コイル位置ずれ量が最大の)送電コイル50Bが位置している。
 図7Aに示す例の場合、一対の送電コイル50間の第2の間隔α2の大きさは、隣り合う受電コイル40間の第1の間隔α1の大きさの1.5倍の大きさとなっている。なお、図7Aは、受電コイル40および送電コイル50の配置に関し、旋回軸10を中心とした円周方向を図における左右方向として展開した状態を示している。したがって、図7Aにおける左右方向が、受電コイル40に対する送電コイル50の移動方向となる。
 図7Aに示す例において、コイル位置ずれ量が最小の送電コイル50Aは、対向する受電コイル40(40X)との関係で、コイルを貫く磁束量を最大とし、送電コイル50から受電コイル40に対する給電が最も効率的に行われる状態(給電が可能な状態)となる(矢印E1参照)。これに対し、図7Aに示す例において、コイル位置ずれ量が最大の送電コイル50Bは、受電コイル40との関係で、コイルを貫く磁束量を最小とし、送電コイル50から受電コイル40に対する給電が実質的に行われない状態(給電が実質的に不可能な状態)となる(矢印E2参照)。
 図7Bは、図7Aに示す状態から、上部旋回体22の旋回動作によって、一対の送電コイル50が、図における右方向に第1の間隔α1の半分の量(半ピッチ)移動し(矢印M1参照)、送電コイル50の位置がずれた状態を示す。図7Bに示す状態においては、一方の送電コイル50Aが、コイル位置ずれ量を最大とする送電コイル50となり、他方の送電コイル50Bが、コイル位置ずれ量を最小とする送電コイル50となっている。つまり、送電コイル50Aは、受電コイル40に対する給電が実質的に不可能な状態となり(矢印F1参照)、送電コイル50Bは、受電コイル40に対する給電が可能な状態でとなっている(矢印F2参照)。
 本実施形態では、送電コイル50についての第2の間隔α2の大きさは、受電コイル40についての第1の間隔α1の大きさの1.5倍となっているが、これに限定されるものではない。第2の間隔α2の大きさは、例えば、第1の間隔α1の大きさの2.5倍や3.5倍の大きさであってもよい。つまり、第1の間隔α1と第2の間隔α2の大小関係は、一対の送電コイル50のうち一方の送電コイル50のコイル位置ずれ量が最小のときに、他方の送電コイル50のコイル位置ずれ量が最大となるように、他方の送電コイル50が、一方の送電コイル50が対応する受電コイル40以外の隣り合う2つの受電コイル40間の中央に位置するような大小関係であればよい。なお、コイル位置ずれ量に関しては、コイル位置ずれ量が、コイル径の略半分程度(例えば約40%程度)となることで、コイル間の給電電力が実質的にゼロになることが知られている。
 以上のような構成を備えた本実施形態に係る掘削作業機1によれば、上部旋回体22から下部走行体21に電力を伝達するための構成、つまり旋回支持部送電構成について高い汎用性を得ることができるとともに、電力を安定して供給することができてエネルギーロスを低減することができ、生産効率を向上させることができる。
 すなわち、本実施形態に係る旋回支持部送電構成によれば、複数の受電コイル40および送電コイル50を用いた構成であるため、掘削作業機1のサイズ等に応じて、受電コイル40および送電コイル50の大きさと個数を容易に変更することができる。これにより、機種毎にコイルを設計すること等が不要となり、コイルの大きさ・個数等についての設計の自由度を高くすることができ、高い汎用性を得ることができる。また、例えば下部走行体21および上部旋回体22のそれぞれにおいて比較的大型の1つのコイルを用いた構成と比べて、電気抵抗値を小さくすることができ、エネルギーロスを低減することができる。
 また、複数の受電コイル40および送電コイル50を用いた構成によれば、下部走行体21および上部旋回体22に対して、例えばコイルユニット45,55としてユニット化すること等により比較的容易にコイルを設置することが可能となる。これにより、良好な組立て性を得ることができ、生産効率を向上させることができるとともに、部品の共用化によるコスト削減や部品の管理負担の軽減等を達成することができる。
 また、本実施形態に係る旋回支持部送電構成によれば、複数の受電コイル40に対して、複数の(一対の)送電コイル50が設けられているため、電力を安定して供給することが可能となり、エネルギーロスを低減することができる。
 すなわち、仮に、複数の受電コイル40に対して、1つの送電コイル50のみを設けた構成によれば、その送電コイル50がコイル位置ずれ量を最大の位置とする状態となることで、送電コイル50から受電コイル40への送電が実質的に不可能な状態が生じ、電力の供給が不安定となる。これに対し、送電コイル50を複数設けることで、いずれか1つの送電コイル50からの送電が不可能な状態であっても、他の1つの送電コイル50により送電を行うことができる構成とすることで、電力を安定して供給することが可能となる。
 そこで、複数の受電コイル40および一対の送電コイル50は、第1の間隔α1と第2の間隔α2同士を異ならせるように設けられている。このような構成によれば、送電コイル50から受電コイル40に対して電力を安定して供給することが可能となる。
 すなわち、仮に、受電コイル40の配置間隔と送電コイル50の配置間隔が同じであった場合、つまり第1の間隔α1と第2の間隔α2が同じであった場合、すべての送電コイル50が同時的に送電不可能な状態となることがあり、電力の供給が不安定となる。これに対し、第1の間隔α1と第2の間隔α2を互いに異ならせることで、すべての送電コイル50が同時的に送電不可能な状態となることを回避することができ、送電コイル50から受電コイル40への送電量を安定させることが可能となり、エネルギーロスを低減することができる。
 特に、本実施形態においては、一対の送電コイル50に関し、一方の送電コイル50のコイル位置ずれ量が最大となるときに、他方の送電コイル50のコイル位置ずれ量が最小となるように、受電コイル40および送電コイル50が配置されている。このような構成によれば、一方の送電コイル50が送電不可能な状態であっても、他方の送電コイル50により最大の送電量での給電が可能となるため、上部旋回体22の旋回位置にかかわらず、一対の送電コイル50による合計の送電量を安定させることができる。これにより、電力の供給を効果的に安定させることができ、エネルギーロスを可及的に低減することができる。したがって、例えば受電コイル40のコイル面の面積に対して送電コイル50のコイル面の面積を十分に確保できない場合等においても、安定した電力の供給を可能にすることができる。
 また、本実施形態においては、受電コイル40および送電コイル50が、互いに略同一または同一のコイル径を有する。このような構成によれば、受電コイル40に対し、送電コイル50で生じた磁束を効率的に貫かせることができる。これにより、送電コイル50から受電コイル40への効率的な送電が可能となり、エネルギーロスを効果的に低減することができる。
 また、本実施形態に係る旋回支持部送電構成によれば、複数の受電コイル40および送電コイル50による磁界結合を用いた構成であるため、下部走行体21と上部旋回体22との間で、非接触による給電を行うことが可能となる。これにより、例えばスリップリングとブラシ等のように互いに接触した部材同士による送電を行う構成と異なり、送電のための部材間において摩耗が生じることを無くすことができる。これにより、摩耗による部材の劣化にともなう部品交換を無くすことができる。
 また、本実施形態に係る旋回支持部送電構成においては、複数の受電コイル40が並列接続されている。このような構成によれば、複数の受電コイル40が同時的に電力の供給を受けた場合であっても、走行用電動モータ30に対して安定的に電力を供給することができる。なお、複数の受電コイル40は、走行用電動モータ30に対する給電回路81において直列接続されてもよいが、回路における抵抗を小さくして効率的な給電を行う観点からは、複数の受電コイル40の接続形態としては、本実施形態のように並列接続を用いることが好ましい。
 また、本実施形態に係る旋回支持部送電構成においては、下部走行体21側の回路構成に走行用バッテリ75を備える。このような構成によれば、走行用電動モータ30が消費した走行用バッテリ75の電力をバッテリユニット31から供給される電力により補充することができるため、受電コイル40および送電コイル50による給電量を少なく抑えることができる。これにより、受電コイル40および送電コイル50を小型に設計することができるので、これらのコイルの製造コストを下げることができる。
 また、走行用バッテリ75を備えた構成によれば、電源システム70における蓄電量を増やすことができるため、バッテリユニット31を効率的に使うことができる。また、走行用バッテリ75を備えることにより、例えば走行装置2の走行の開始時等、比較的大きな電力が短時間に消費される際、受電コイル40および送電コイル50により送電される電力に加えて、走行用バッテリ75によって電力を補うことができる。これにより、受電コイル40および送電コイル50による給電量を抑えつつ、瞬間的な大電力の消費に対応することが可能となる。
 以上のように実施形態を用いて説明した本発明に係る旋回作業機は、上述した実施形態に限定されず、本発明の趣旨に沿う範囲で、種々の態様を採用することができる。
 上述した実施形態では、複数の送電コイル50として、一対の送電コイル50が設けられているが、送電コイル50の個数は特に限定されるものではなく、3個以上の送電コイル50が設けられてもよい。また、例えば図8に示すように、複数の送電コイル50として、隣り合う一対の送電コイル50が複数組(図に示す例では3組)設けられてもよい。
 また、上述した実施形態では、受電コイル40および送電コイル50のコイル径が互いに同一であるが、これらのコイルのコイル径は異なっていてもよい。ただし、上述のとおり送電コイル50から受電コイル40への効率的な送電を行う観点からは、受電コイル40および送電コイル50のコイル径は互いに略同一または同一であることが好ましい。
 また、上述した実施形態では、一対の送電コイル50は、インバータ71に対して直列接続されているが、一対の送電コイル50はインバータ71に対して並列接続されてもよい。
 また、上述した実施形態では、受電コイル40を下側コイルとし、送電コイル50を上側コイルとするように、受電コイル40および送電コイル50は、上下方向について互いに異なる高さ位置に配置されているが、受電コイル40および送電コイル50は、互いに同じ高さ位置に配置されてもよい。この場合、旋回軸10を中心とした円周について、複数の受電コイル40および複数の送電コイル50のいずれか一方が内周側に配置され、いずれか他方が外周側に配置される。
 また、上述した実施形態では、受電コイル40および送電コイル50によってバッテリユニット31の電力の供給を受ける電動式の駆動源として、走行用電動モータ30が採用されているが、同駆動源は、これに限定されるものではない。例えば、走行用のモータを油圧モータとするとともに、受電コイル40および送電コイル50によってバッテリユニット31の電力の供給を受ける電動式の駆動源として、下部走行体21に電動式のポンプ駆動用モータを設けた構成が採用されてもよい。かかる構成においては、ポンプ駆動用モータにより油圧ポンプが駆動され、走行用モータに対して駆動用の圧油が供給される。また、このポンプ駆動用モータを用いて、油圧モータである旋回用モータやブームシリンダ15等の油圧アクチュエータを駆動させてもよい。
 また、上述した実施形態では、ポンプ駆動用モータ32により駆動した油圧ポンプによって油圧モータである旋回用モータやブームシリンダ15等の油圧アクチュエータを駆動させる構成が採用されているが、旋回用モータを電動モータとするとともに、各種油圧アクチュエータをすべて電動化した構成であってもよい。
 また、上述した実施形態では、送電コイル50を上部旋回体22に設けるとともに受電コイル40を下部走行体21に設け、上部旋回体22に搭載したバッテリユニット31の電力を下部走行体21の走行用電動モータ30に供給する構成であるが、下部走行体21から上部旋回体22へと電力を供給する構成であってもよい。具体的には、例えば、下部走行体21にバッテリユニットを設けるとともに、下部走行体21の上部に複数の送電コイルを、上部旋回体22の下部に受電コイルをそれぞれ設けた構成であってもよい。このような構成においては、下部走行体21のバッテリユニットから、送電コイルおよび受電コイルによって上部旋回体22へと送電され、上部旋回体22に搭載されたポンプ駆動用モータ32等の電動式の駆動源に対して電力が供給される。
 また、上述した実施形態では、受電側が多数の受電コイル40であり、送電側が一対の送電コイル50であるが、これらのコイルの個数の大小関係は特に限定されない。例えば、受電側を一対の受電コイル40とし、送電側を多数の送電コイル50とした構成であってもよい。ただし、エネルギーロスを低減する観点からは、送電側のコイルの数が受電側のコイルの数よりも少ない構成が好ましい。
 また、上述した実施形態に係る掘削作業機1は、本発明に係る下部装置の一例として、上部旋回体22を旋回可能に支持する下部走行体21であるが、本発明に係る下部装置は、走行体に限定されるものではない。つまり、本発明に係る下部装置は、上部旋回体を旋回可能に支持する構成であればよく、走行部5等の走行用の構成を備えないものであってもよい。
 1   掘削作業機(旋回作業機)
 10  旋回軸
 21  下部走行体(下部装置)
 22  上部旋回体
 30  走行用電動モータ(駆動源)
 31  バッテリユニット(蓄電装置)
 40  受電コイル
 41  中心軸
 45  コイルユニット
 50  送電コイル
 50A 送電コイル
 50B 送電コイル
 51  中心軸
 55  コイルユニット
 61  第1仮想円
 62  第2仮想円
 75  走行用バッテリ(第2の蓄電装置)
 81  給電回路
 82  送電回路
 α1  第1の間隔
 α2  第2の間隔

Claims (5)

  1.  下部装置と、前記下部装置に対して所定の回転軸を中心として旋回可能に設けられた上部旋回体と、を備える旋回作業機であって、
     電力の供給を受けて駆動する電動式の駆動源と、
     前記下部装置および前記上部旋回体のいずれか一方に設けられ、前記駆動源に供給される電力を蓄える蓄電装置と、
     前記下部装置および前記上部旋回体のいずれか他方に設けられ、中心軸を前記回転軸と平行とする向きで、前記回転軸を中心とした円周に沿うように第1の間隔を隔てて配置され、前記駆動源に供給される電力を受け取る複数の受電コイルと、
     前記下部装置および前記上部旋回体のいずれか一方に設けられ、中心軸を前記回転軸と平行とする向きで、前記円周に沿うように前記第1の間隔と異なる第2の間隔を隔てて配置され、前記蓄電装置からの電力を電磁誘導により前記複数の受電コイルに送る複数の送電コイルと、を備える
     ことを特徴とする旋回作業機。
  2.  前記受電コイルおよび前記送電コイルは、互いに略同一または同一のコイル径を有する
     ことを特徴とする請求項1に記載の旋回作業機。
  3.  前記複数の送電コイルは、前記円周の周方向に隣り合った一対の前記送電コイルを含み、
     前記第1の間隔および前記第2の間隔は、
     前記一対の前記送電コイルのうちの一方の前記送電コイルの前記受電コイルに対する前記周方向についての位置ずれ量が最小のときに、前記一対の前記送電コイルのうちの他方の前記送電コイルの前記受電コイルに対する前記位置ずれ量が最大となるように設定されている
     ことを特徴とする請求項1または請求項2に記載の旋回作業機。
  4.  前記複数の受電コイルは、前記駆動源に対する給電回路において並列接続されている
     ことを特徴とする請求項1~3のいずれか1項に記載の旋回作業機。
  5.  前記下部装置および前記上部旋回体のいずれか他方に設けられ、前記給電回路における前記複数の受電コイルと前記駆動源との間に接続され、前記駆動源に供給される電力を蓄える第2の蓄電装置を備える
     ことを特徴とする請求項4に記載の旋回作業機。
PCT/JP2021/016126 2020-06-23 2021-04-21 旋回作業機 WO2021261065A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020108257A JP7343448B2 (ja) 2020-06-23 2020-06-23 旋回作業機
JP2020-108257 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021261065A1 true WO2021261065A1 (ja) 2021-12-30

Family

ID=79247246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016126 WO2021261065A1 (ja) 2020-06-23 2021-04-21 旋回作業機

Country Status (2)

Country Link
JP (1) JP7343448B2 (ja)
WO (1) WO2021261065A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528068A (ja) * 2002-04-12 2005-09-15 ヴァンプラー アクチエンゲゼルシャフト 電磁誘導によって移動体に電力を供給し、移動体をガイドする装置
JP5873703B2 (ja) * 2011-12-12 2016-03-01 株式会社竹内製作所 油圧装置
JP2019533104A (ja) * 2016-11-14 2019-11-14 ハム アーゲーHamm AG 建設機械
JP6636350B2 (ja) * 2016-02-08 2020-01-29 住友重機械工業株式会社 永久磁石モータおよびそれを用いた電動旋回ショベル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528068A (ja) * 2002-04-12 2005-09-15 ヴァンプラー アクチエンゲゼルシャフト 電磁誘導によって移動体に電力を供給し、移動体をガイドする装置
JP5873703B2 (ja) * 2011-12-12 2016-03-01 株式会社竹内製作所 油圧装置
JP6636350B2 (ja) * 2016-02-08 2020-01-29 住友重機械工業株式会社 永久磁石モータおよびそれを用いた電動旋回ショベル
JP2019533104A (ja) * 2016-11-14 2019-11-14 ハム アーゲーHamm AG 建設機械

Also Published As

Publication number Publication date
JP7343448B2 (ja) 2023-09-12
JP2022003210A (ja) 2022-01-11

Similar Documents

Publication Publication Date Title
US9764633B1 (en) Electric drivetrain system and method having a single speed ratio direct drive
JP5702719B2 (ja) 偏心ロータを備えたモータ
CN102639903B (zh) 无级变速器
CN110670882B (zh) 移动式操作机的驱动设备和包括驱动设备的移动式操作机
JP5342000B2 (ja) 旋回駆動装置
EP3947110A1 (en) Lift steering systems and methods
CN104553831B (zh) 采矿车辆和用于采矿车辆的能量供给的方法
WO2020129525A1 (ja) 電動式建設機械
JP2008069516A (ja) 電動式建設機械
WO2021261065A1 (ja) 旋回作業機
WO2020129524A1 (ja) 電動式建設機械
CN216098959U (zh) 一种焊接机器人
JP2021088834A (ja) 建設機械
CN101109400A (zh) 燃油电动两用特种工程机械
JP2010065423A (ja) 建設機械の走行装置
JP5937534B2 (ja) 電動式建設機械
JP5778922B2 (ja) 作業車
JP2014163190A (ja) 旋回式建設機械
JP7300537B2 (ja) ウィンチ装置、とりわけ建設装置アセンブリ用のウィンチ装置
JP5816108B2 (ja) 旋回式建設機械
CN220684497U (zh) 起重机及联合作业的工程机械
CN108406795B (zh) 一种机器人及其线控颈部关节
JP2016117482A (ja) 自己推進型作業機械
JP6163458B2 (ja) 電動式作業機械
CN217457566U (zh) 一种钢制管道流水线运输用转向车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829001

Country of ref document: EP

Kind code of ref document: A1