WO2021256158A1 - 高清浄度鋼の製造方法 - Google Patents

高清浄度鋼の製造方法 Download PDF

Info

Publication number
WO2021256158A1
WO2021256158A1 PCT/JP2021/019198 JP2021019198W WO2021256158A1 WO 2021256158 A1 WO2021256158 A1 WO 2021256158A1 JP 2021019198 W JP2021019198 W JP 2021019198W WO 2021256158 A1 WO2021256158 A1 WO 2021256158A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
concentration
steel
mgo
Prior art date
Application number
PCT/JP2021/019198
Other languages
English (en)
French (fr)
Inventor
章敏 松井
晃史 原田
由枝 中井
裕計 近藤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2021549982A priority Critical patent/JP7028376B1/ja
Priority to CN202180041574.1A priority patent/CN115917014A/zh
Publication of WO2021256158A1 publication Critical patent/WO2021256158A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing high-cleanliness steel with few non-metal inclusions by using a ladle refining facility and a vacuum degassing facility.
  • non-metal inclusions in steel to be reduced include deoxidized products, products obtained by the reaction between molten steel-slag-refractory, carbides, nitrides, charcoal / nitride and the like.
  • the non-metal inclusions immediately after deoxidation hereinafter, also simply referred to as “inclusions”) are basically Al 2 O 3 .
  • MgO-Al 2 O 3 inclusions are magnesium in steel (Mg) is produced aluminum in the molten steel reacts with MgO of MgO and refractory in the slag, Al 2 O of this magnesium in the steel It is believed to be produced by reacting with 3.
  • the MgO-Al 2 O 3 system inclusions are hard, so that they have a large effect on the rolling fatigue life, and the high cleanliness steel reduces the MgO-Al 2 O 3 system inclusions. That is a particularly important issue.
  • Patent Document 1 in ladle refining in which molten steel in a ladle is agitated together with slag on the molten steel surface, arc heating and gas agitation are used in combination, and the aluminum concentration in the ladle is 0.005% by mass.
  • arc heating and gas agitation are used in combination, and the aluminum concentration in the ladle is 0.005% by mass.
  • Patent Document 2 describes the slag composition after ladle refining when a high-cleanliness steel is produced by performing vacuum degassing refining with an RH vacuum degassing device after performing ladle refining with a ladle refining facility.
  • FeO + MnO, defined CaO / SiO 2, MgO, CaO / Al 2 O 3, a TiO 2) in a range discloses a further technique for defining the molten steel ring flow rate during vacuum degassing.
  • Patent Document 3 the concentration of dissolved magnesium in molten steel after reduction refining is used when reducing refining by arc heating and gas stirring or electromagnetic stirring is carried out in a ladle refining facility to produce high-cleanliness steel.
  • Disclosed is a technique that defines the refractory composition of a ladle and the slag composition in a ladle after reduction refining to a certain extent.
  • the composition of the slag during the heat-stirring treatment and after the heat-stirring treatment in the heat-stirring treatment step in the pan smelting facility is 3.0 ⁇ (mass% CaO) / (mass%).
  • SiO 2) ⁇ 5.0,1.0 ⁇ (wt% CaO) / (mass% Al 2 O 3) ⁇ 2.0 , ( wt% MgO) ⁇ 3.0 wt%, + (wt% FeO) ( The refining method specified in mass% MnO) ⁇ 1.5 mass% is disclosed.
  • Patent Document 1 defines the molten steel in the aluminum concentration and slag MgO concentration as a generation source of MgO-Al 2 O 3 inclusions.
  • MgO elutes from the MgO-based refractory material applied to the ladle as the lining refractory material to the ladle slag, and the MgO concentration in the slag increases.
  • the elution of MgO from the MgO refractory is closely related to the composition of the ladle slag in contact with the MgO refractory and therefore the composition of the ladle slag to control the MgO concentration in the slag. It is important to control.
  • Patent Document 1 does not describe the conditions for the ladle slag for controlling the MgO concentration in the slag within an appropriate range, and it is said that the conditions for carrying out the technique are sufficiently disclosed. It's hard.
  • Patent Document 2 defines the slag composition after ladle refining, but the basicity of slag (mass% CaO / mass% SiO 2 ) is 6.5 or more, which is relatively high. I'm in control.
  • the basicity of slag mass% CaO / mass% SiO 2
  • Si silicon
  • the aluminum concentration in the molten steel increases.
  • MgO in the slag is reduced, magnesium produced is reduced and the Al 2 O 3 inclusions are reacted, generation of MgO-Al 2 O 3 inclusions are concerned To.
  • Patent Document 3 defines the concentration of dissolved magnesium in molten steel after reduction refining, the composition of refractory products in a ladle, and the composition of slag after reduction refining by the absolute value (% by mass) of each component composition.
  • the SiO 2 activity and Al 2 O 3 activity in slag it is important to control by the mass ratio of the components constituting the slag, such as CaO / SiO 2 and CaO / Al 2 O 3 , instead of defining by the absolute value of the component composition. Accordingly, only by controlling the slag component ranges described in Patent Document 3, it may not be sufficiently suppress the formation of MgO-Al 2 O 3 inclusions.
  • Patent Document 4 Since the technique of Patent Document 4 makes the basicity of slag ((mass% CaO) / (mass% SiO 2 )) lower than that of Patent Document 2, the oxygen potential of slag is high. It becomes high, and the reduction reaction of MgO in the slag due to the aluminum in the molten steel is likely to occur. Therefore, in Patent Document 4, the reduction reaction of MgO in slag by aluminum in molten steel is performed by not deoxidizing the molten steel with aluminum during the heating and stirring treatment, or by setting the aluminum concentration in the molten steel to 0.003% by mass or less. Is suppressed.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to produce high-cleanliness steel using a ladle refining facility and a vacuum degassing facility, and slag during ladle refining. It is an object of the present invention to provide a method for producing highly clean steel by controlling the composition and stirring conditions within an optimum range.
  • the gist of the present invention for solving the above problems is as follows.
  • Ladle refining is performed on the molten steel discharged from a converter or electric furnace with a ladle refining facility, and then vacuum degassing refining is performed with a vacuum degassing facility to produce high-cleanliness steel. It is a manufacturing method of cleanliness steel.
  • the slag composition from the treatment in the pan smelting to the end of the treatment is in the range of 4.0 to 6.3 for (mass% CaO) / (mass% SiO 2 ), and (mass% CaO) / (mass% Al).
  • is the stirring power (W / ton)
  • Q g is the flow rate of the stirring gas (Nm 3 / min)
  • TL is the molten steel temperature (K)
  • W is the molten steel amount (ton).
  • H is the bath depth (m) of the molten steel in the ladle
  • P 0 is the atmospheric pressure (Pa).
  • MgO concentration of the high cleanliness MgO-Al 2 O 3 inclusions found in steels is 5 mass% or more MgO -
  • the high-cleanliness steel has a carbon concentration of 0.60% by mass or more and 1.20% by mass or less, a silicon concentration of 0.15% by mass or more and 0.70% by mass or less, and a manganese concentration of 0. .20% by mass or more and 0.80% by mass or less, phosphorus concentration is 0.020% by mass or less, sulfur concentration is 0.0050% by mass or less, aluminum concentration is 0.005% by mass or more and 0.040% by mass or less, chromium concentration
  • the high-cleanliness steel is a bearing specified by at least one of 100Cr6 in the ISO683-17 standard, SUJ2 in the JIS G4805 standard, GCr15 in the GB standard, 52100 in the ASTM A295 standard, and 100Cr6 in the DIN standard.
  • the slag composition at the time of ladle refining and the stirring conditions of the molten steel are controlled in the optimum range. inclusions, in particular, low MgO-Al 2 O 3 inclusions are realized to manufacture a high cleanliness high cleanliness steels, as a result, to produce such excellent bearing steel rolling contact fatigue life Is achieved.
  • FIG. 1 is a schematic diagram of a general ladle refining facility.
  • FIG. 2 shows the calculation of the effect of (mass% CaO) / (mass% SiO 2 ) and (mass% CaO) / (mass% Al 2 O 3 ) on the MgO activity in the slag during ladle refining. It is a figure which shows the result.
  • FIG. 3 shows MgO-Al 2 O 3 inclusions of (mass% CaO) / (mass% SiO 2 ) and (mass% CaO) / (mass% Al 2 O 3) in the slag composition during ladle refining. It is a figure which shows the calculation result of the influence on the production amount.
  • the present inventors are represented by bearing steel, which is manufactured by performing ladle refining with a ladle refining facility for molten steel discharged from a converter and then performing vacuum degassing refining with a vacuum degassing facility.
  • Various investigation tests on the rolling fatigue life of the high-cleanliness steel were carried out. As a result, from the observation of cracks unit that occurred during the test of the rolling fatigue life, the presence of MgO-Al 2 O 3 based inclusions was observed at the origin of cracks.
  • MgO-Al 2 O 3 system inclusions are hard and the deformation characteristics are different from those of the steel material, so that voids are likely to occur around the MgO-Al 2 O 3 system inclusions. , It turned out that cracks occur.
  • MgO-Al 2 O 3 inclusions MgO concentration in the inclusions is 5 mass% or more was also found to be hard.
  • MgO-Al 2 O 3 inclusions based on this consideration, a calculation model that can predict the generation of MgO-Al 2 O 3 based inclusions (inclusions composition We decided to build a change prediction model).
  • inclusions composition We decided to build a change prediction model.
  • MgO-Al 2 O 3 inclusions is formed by the reaction of (3) and (4) below.
  • the magnesium in the molten steel It should not be generated.
  • it is considered effective to reduce the activity of MgO in the slag (A) and to reduce the activity of aluminum in the molten steel (B).
  • the optimum aluminum concentration range is determined from the viewpoint of the material properties required for the steel material as a product, so it is difficult to change the aluminum concentration unnecessarily. .. Therefore, the present inventors focused on (A). This is an index that can be controlled by properly designing the slag composition.
  • the molten steel discharged from the converter is taken as an example, but in the method for producing high-cleanliness steel according to the present invention, the molten steel melting process is not limited to the converter. It is also possible to use, for example, an electric furnace. Further, as the vacuum degassing equipment, equipment suitable for vacuum degassing refining such as an RH vacuum degassing device or a VOD furnace may be selected.
  • FIG. 1 shows a schematic vertical cross-sectional view of a general ladle refining facility.
  • reference numeral 1 is a ladle refining facility
  • 2 is a ladle
  • 3 is a top lid
  • 4 is an electrode
  • 5 is an iron skin
  • 6 is a lining refractory
  • 7 is a permanent refractory
  • 8 is a bottom blowing plug
  • 9 is.
  • Molten steel 10 is slag.
  • the ladle 2 that houses the molten steel 9 has an outer shell of iron skin 5, and a refractory material is installed inside the iron skin 5 in the order of a permanent refractory material 7 and a lining refractory material 6, and the lining refractory material 6 has a refractory material. At least a part (mainly slag line) is constructed with MgO refractory material. Further, a bottom blowing plug 8 is installed at the bottom of the ladle 2.
  • a stirring gas such as argon gas is blown into the molten steel 9 in the ladle from the bottom blowing plug 8, and the refining flux and alloy material are added while stirring the molten steel 9.
  • the components and temperature of the molten steel 9 are adjusted to the target values by applying electric heating by the electrode 4. Further, the added refining flux is melted to form a slag 10 having a desired composition, and the reaction between the slag 10 and the molten steel 9 causes morphological control of inclusions in the molten steel and desulfurization reaction of the molten steel.
  • the reason why the slag line lining refractory 6 of the ladle 2 is an MgO-based refractory is based on the fact that the MgO-based refractory has high corrosion resistance to the slag 10.
  • the stirring gas is blown from the bottom blowing plug 8 in FIG. 1, the stirring gas may be blown through an injection lance (not shown) immersed in the molten steel 9.
  • the phenomena to be considered when predicting the inclusion behavior are the following phenomena (1) to (7).
  • the present inventors used the composition of inclusions change prediction model constructed, was examined slag composition for suppressing the generation of MgO-Al 2 O 3 inclusions.
  • slag composition for suppressing the generation of MgO-Al 2 O 3 inclusions.
  • A "reducing the activity of MgO in the slag" was examined.
  • the study as the influence factors on the activity of the slag MgO, focused on the slag composition (wt% CaO) / (wt% SiO 2) and (wt% CaO) / (mass% Al 2 O 3).
  • the slag composition in the ladle refining (mass% CaO) / (wt% SiO 2) and (wt% CaO) / (mass% Al 2 O 3) were changed variously, effect on the activity of these slag MgO was calculated using the constructed inclusion composition change prediction model.
  • An example of the calculation result is shown in FIG.
  • the smaller the (mass% CaO) / (mass% SiO 2 ) and (mass% CaO) / (mass% Al 2 O 3 ) of the slag composition the smaller the activity of MgO in the slag. I found that I could do it.
  • the activity of MgO in slag is represented by the product of the concentration of MgO in slag and the activity coefficient.
  • FIG. 3 the MgO-Al 2 O 3 system interposition of (mass% CaO) / (mass% SiO 2 ) and (mass% CaO) / (mass% Al 2 O 3) of the slag composition in the ladle refining
  • the calculation result of the influence on the production amount of the thing is shown.
  • the MgO-Al 2 O 3 system It was found that the amount of inclusions produced was reduced.
  • the vertical axis of FIG. 3 is an overall of inclusions produced amount ratio of the amount of MgO-Al 2 O 3 based inclusions for (number) (number) (percentage).
  • the slag composition at the time of ladle refining is (mass% CaO) / (mass% SiO 2 ) and (mass% CaO) / (mass) of the slag composition so as to satisfy the following equation (1). It was found that by controlling% Al 2 O 3 ), the activity of MgO in the slag becomes 0.048 or less, and molten steel with high cleanliness can be stably melted.
  • the above-mentioned slag composition needs to satisfy the above-mentioned conditions during the period from the process of ladle refining to the end of the process. Further, it is preferable that the above-mentioned slag composition satisfies the above-mentioned conditions in at least the latter half 40% or more of the total treatment time scheduled for ladle refining. That is, it is preferable to control the slag composition within the above range from the time point of at least 60% of the planned total processing time of the ladle refining to the end of the ladle refining.
  • the present inventors focused on the stirring power of molten steel in ladle refining.
  • ladle refining in general, while gas stirring of molten steel with a rare gas is performed, the composition of the molten steel is adjusted by adding a refining flux and an alloy material, the morphology of oxide-based inclusions is controlled, and energization heating is performed at the electrodes. The temperature of the molten steel is adjusted.
  • the stirring power applied to the molten steel also affects the formation behavior of inclusions such as entrainment of slag existing on the molten steel and aggregation / floating of inclusions in the molten steel.
  • physical properties such as slag viscosity and interfacial tension are also important factors, so it is considered that there is optimum stirring power according to the slag composition.
  • the first half of the process from the start of the ladle refining process to an arbitrary time during the process is the first period
  • the second half of the process from the arbitrary time to the end of the process is the second period.
  • the processing time in the first period is preferably 30% or more and 60% or less of the planned total processing time.
  • the processing time in the first period is preferably 30% or more and 60% or less of the planned total processing time.
  • the stirring power ⁇ calculated by the following equation (2) is set to more than 55 W / ton and 105 W / ton or less in the first period, and 25 W / ton or more and 55 W / ton or less in the second period. It was confirmed that the cleanliness of the molten steel and the rolling fatigue life of the steel material were improved.
  • is the stirring power (W / ton)
  • Q g is the flow rate of the stirring gas (Nm 3 / min)
  • TL is the molten steel temperature (K)
  • W is the molten steel amount (ton).
  • H is the bath depth (m) of the molten steel in the ladle
  • P 0 is the atmospheric pressure (Pa).
  • the molten steel temperature TL is a temperature measured by immersing a temperature measuring probe (thermocouple) in the molten steel in a pan (immersion depth of 20 cm or more).
  • the stirring power ⁇ in the first period was 55 W / ton or less, the stirring power was too weak to efficiently adjust the components and temperature, and the melting of the slag was delayed.
  • the stirring power ⁇ in the first period exceeds 105 W / ton, the stirring power is too strong and the vibration of the molten steel bath surface becomes violent, which may cause a problem in operational safety.
  • the stirring force is too strong, the slag covering the surface of the molten steel is unevenly distributed, and the electrode and the molten steel come into direct contact with each other to cause carbonation from the electrode (increased carbon concentration of the molten steel), or slag entrainment increases. In some cases, the cleanliness of the molten steel deteriorated.
  • the present inventors focused on the composition of inclusions and proceeded with the investigation.
  • those having an MgO concentration of 5% by mass or more in the inclusions are hard and reduce the rolling fatigue life.
  • MgO-Al 2 O 3 inclusions are MgO concentration of 5 mass% or more. Only the MgO-Al 2 O 3 inclusions having an MgO concentration of 5% by mass or more are targeted, and the average value of the MgO concentration of the MgO-Al 2 O 3 inclusions having an MgO concentration of 5% by mass or more and the steel material thereof. The relationship with rolling fatigue life was investigated.
  • Carbon (C) is effective for strengthening martensite, and can secure strength after quenching and tempering and improve rolling fatigue life. If the carbon concentration is less than 0.60% by mass, the effect cannot be obtained, while if it exceeds 1.20% by mass, coarse carbides are generated during casting, which may actually shorten the rolling fatigue life.
  • Phosphorus (P) reduces the toughness of steel and the rolling fatigue life, so it is desirable to be as low as possible.
  • the allowable upper limit is 0.020% by mass, more preferably 0.015% by mass or less.
  • Sulfur (S) combines with manganese during solidification or heat treatment to form MnS. Further, it is known to form CaS reacts with CaO in CaO-Al 2 O 3 inclusions. MnS around oxide-based inclusions and sulfide-containing oxide-based inclusions is mainly formed with oxides as nuclei in the cooling process during billet rolling, and at that time, a manganese-deficient layer is formed around these inclusions. Is generated and becomes vulnerable. As a result, the strength decreases when the steel ball is crushed. Therefore, it is necessary to suppress MnS precipitation around these inclusions as much as possible, and for that purpose, it is desirable to reduce the sulfur concentration in the steel.
  • the allowable upper limit is 0.0050% by mass, and more preferably 0.0020% by mass or less.
  • Aluminum (Al) is a deoxidizing element and is an important element for reducing oxide-based inclusions and sulfide-containing oxide-based inclusions.
  • the aluminum concentration needs to be 0.005% by mass or more, and more preferably 0.010% by mass or more.
  • the oxygen concentration in the steel does not decrease so much, and there is a concern that the rolling fatigue life may decrease due to the formation of AlN. Therefore, the upper limit of the aluminum concentration is 0.040. It is mass%.
  • Nitrogen (N) forms hard TiN and AlN and reduces rolling fatigue life. Therefore, the allowable upper limit is 0.0080% by mass.
  • any one or two of molybdenum (Mo), nickel (Ni), copper (Cu), vanadium (V), and niobium (Nb) are used.
  • Mo molybdenum
  • Ni nickel
  • Cu copper
  • V vanadium
  • Nb niobium
  • the above may be contained as long as it is 0.30% by mass or less. Naturally, it does not have to contain these elements.
  • tin (Sn) is 0.003% by mass or less and arsenic (As) is 0.005% by mass or less. If the concentrations of tin and arsenic exceed the above-mentioned preferable range, hot cracking is likely to occur, and the yield of non-defective products during product processing may decrease.
  • auxiliary raw materials such as iron scrap and ferroalloy used in the manufacturing process, it is possible to control the tin concentration and the arsenic concentration so as not to exceed the upper limit values. Naturally, these elements do not have to be contained.
  • the rest other than the above components are iron (Fe) and unavoidable impurities.
  • the method for manufacturing high-cleanliness steel according to the present invention is suitable as a method for manufacturing a material for bearing steel.
  • bearing steel bearing steel specified as 100Cr6 in ISO (International Organization for Standardization) 683-17 standard, bearing steel specified as SUJ2 in JIS (Japanese Industrial Standard) G4805, and GCr15 specified in GB (China National Standard).
  • the component range of the bearing steel specified as 100Cr6 in the ISO (International Standardization Organization) 683-17 standard is that the carbon concentration is 0.95% by mass or more and 1.10% by mass or less, and the silicon concentration is 0.15% by mass or more. 0.35% by mass or less, manganese concentration is 0.25% by mass or more and 0.45% by mass or less, phosphorus concentration is 0.030% by mass or less, sulfur concentration is 0.025% by mass or less, and chromium concentration is 1.35% by mass. % Or more and 1.65% by mass or less.
  • the component range of the bearing steel specified as SUJ2 in JIS (Japanese Industrial Standard) G4805 is that the carbon concentration is 0.95% by mass or more and 1.10% by mass or less, and the silicon concentration is 0.15% by mass or more and 0.35. Mass% or less, manganese concentration 0.50% by mass or less, phosphorus concentration 0.025% by mass or less, sulfur concentration 0.025% by mass or less, chromium concentration 1.30% by mass or more and 1.60% by mass or less, The molybdenum concentration is 0.08% by mass or less, the nickel concentration is 0.25% by mass or less, and the copper concentration is 0.25% by mass or less.
  • the component range of the bearing steel specified as GCr15 in GB is that the carbon concentration is 0.95% by mass or more and 1.05% by mass or less, and the silicon concentration is 0.15% by mass or more and 0.35. Mass% or less, manganese concentration 0.25% by mass or more and 0.45% by mass or less, phosphorus concentration 0.025% by mass or less, sulfur concentration 0.025% by mass or less, chromium concentration 1.40% by mass or more 1
  • the molybdenum concentration is 0.10% by mass or less, the nickel concentration is 0.30% by mass or less, and the copper concentration is 0.25% by mass or less.
  • the component range of the bearing steel specified as 52100 in the ASTM (American Test Materials Association) A295 standard is that the carbon concentration is 0.98% by mass or more and 1.10% by mass or less, and the silicon concentration is 0.15% by mass or more and 0. .35% by mass or less, manganese concentration 0.25% by mass or more and 0.45% by mass or less, phosphorus concentration 0.025% by mass or less, sulfur concentration 0.025% by mass or less, chromium concentration 1.30% by mass
  • the molybdenum concentration is 0.10% by mass or less, the nickel concentration is 0.25% by mass or less, and the copper concentration is 0.35% by mass or less.
  • the component range of the bearing steel specified as 100Cr6 in the DIN (German Standards Association) standard is that the carbon concentration is 0.93% by mass or more and 1.05% by mass or less, and the silicon concentration is 0.15% by mass or more and 0. 35% by mass or less, manganese concentration is 0.25% by mass or more and 0.45% by mass or less, phosphorus concentration is 0.025% by mass or less, sulfur concentration is 0.015% by mass or less, aluminum concentration is 0.050% by mass or less.
  • the chromium concentration is 1.35% by mass or more and 1.60% by mass or less, and the copper concentration is 0.30% by mass or less.
  • the slag composition in ladle refining is adjusted by adding a refining flux.
  • refining flux used to adjust the slag composition the CaO source, using lime, limestone, hydrated lime and the like, as the SiO 2 source, silica, using, for example, silica sand, as the Al 2 O 3 source, Use bauxite, fused bauxite, calcined alumina, etc.
  • the present invention is a technique for controlling the slag composition so that the activity of MgO in the slag is 0.048 or less, and for that purpose, the lower the MgO concentration in the slag, the more preferable. Therefore, as the refining flux added for adjusting the slag composition, one that does not contain MgO is used unless it contains MgO as an unavoidable impurity.
  • the slag composition at the time of ladle refining and the stirring conditions of the molten steel are optimized. and controls the range, inclusions, especially, MgO-Al 2 O 3 based inclusions is small, it is possible to manufacture a highly cleanliness high cleanliness steels, so that excellent bearing steel rolling contact fatigue life Etc. are achieved to be manufactured.
  • bearing steel that is listed as a representative of high-cleanliness steel Manufactured the material.
  • the bearing steel to be manufactured is JIS G4805-SUJ2 steel (C: 1.01% by mass, Si: 0.20% by mass, Mn: 0.40% by mass, Al: 0.020% by mass, Cr: 1.55. Mass%, Mo: 0.05 mass%, P: 0.015 mass%, S: 0.003 mass%).
  • the method for producing high-cleanliness steel according to the present invention is applied to ladle refining in a ladle refining facility, molten steel is melted through an RH vacuum degassing device, and this molten steel is cast by a bloom continuous casting machine to bloom.
  • a slab cross section; thickness 300 mm, width 400 mm
  • a method other than the present invention is applied to ladle refining, molten steel is melted through an RH vacuum degassing device, and this molten steel is cast by a bloom continuous casting machine to bloom slabs (cross section).
  • Thiickness 300 mm, width 400 mm were manufactured (Comparative Examples 1-33).
  • the tin concentration and the arsenic concentration of iron scrap and ferroalloy used in the manufacturing process were controlled and selected.
  • the tin concentration was in the range of less than the lower limit of analysis (0.001% by mass) to 0.003% by mass.
  • the arsenic concentration was in the range of the lower limit of analysis (0.001% by mass) to 0.005% by mass.
  • the stirring power ⁇ of the molten steel in the ladle refining equipment is that the flow rate Q g of the stirring gas is 0.3 to 2.0 Nm 3 / min, the molten steel temperature TL is 1840 to 1860 K, and the molten steel amount W is 195 to 205 ton. It was calculated using the above equation (2) under the conditions that the bath depth h of the molten steel in the pot was 3.0 to 3.3 m and the atmospheric pressure P 0 was 101325 Pa.
  • the cast bloom slabs were heat-treated and then hot-rolled into round billets with a diameter of 215 mm.
  • This round billet was further hot-rolled into a steel bar having a diameter of 60 mm, and annealed to obtain a round bar steel as a product.
  • Inclusions were observed by the microscopic method on the vertical cross section in the rolling direction in the 1/4 thick part of this product round bar steel.
  • the area to be inspected by the microscopic examination method was 3000 mm 2 .
  • the composition of the inclusions was specified by SEM (scanning electron microscope) and EDX (energy dispersive X-ray spectroscopy) in addition to the inclusion measurement by the microscopic method, and the MgO-Al 2 O 3 system was used. Cleanliness was evaluated by measuring the number of inclusions.
  • MgO concentration in the inclusions is evaluated more than 5 mass% as MgO-Al 2 O 3 inclusions, the MgO concentration in the inclusions of less than 5 wt%, and other oxide-based Evaluated as an inclusion.
  • Other oxide inclusions include Al 2 O 3 inclusions. Inclusions were assessed at maximum length on the speculum surface.
  • a rolling fatigue life test was conducted to evaluate the fatigue life of the product round bar steel.
  • the round bar steel of the above product was sliced into round slices, roughly machined into a disk shape, subjected to normal quenching and low-temperature tempering heat treatment, and then the surface was machine-finished to produce a test piece.
  • a rolling fatigue life test was performed using this test piece.
  • This rolling fatigue life test was carried out using a Mori-type thrust type rolling fatigue tester under the conditions of Hertz maximum contact stress; 5260 MPa, repeated stress number: 30 Hz, lubricating oil; # 68 turbine oil.
  • Tables 1 and 2 show the slag composition conditions, total treatment time, first period treatment time, second period treatment time, and stirring conditions in ladle refining in Examples 1 to 15 and Comparative Examples 1 to 33 of the present invention. , MgO-Al 2 O 3 system inclusions, B10 lifetime.
  • the values of the ladle refining slag composition shown in Table 1 at the end of the ladle refining process are the same as those of the same slag composition during at least the latter half of the total processing time of the heating and stirring treatment step of 50% or more. I have confirmed that it is.
  • the maximum length of MgO-Al 2 O 3 inclusions number of more than 3 ⁇ m 22 to 29/1000 mm 2 the maximum length is more than 10 ⁇ m MgO-Al 2 O 3 inclusions number is 0.1-0.2 units / 1000 mm 2 and low, B10 life was very high and 9.0 ⁇ 10.5 ⁇ 10 7 times.
  • the time ratio in the first period is in the range of 30 to 60%, and in this case, the number of MgO-Al 2 O 3 system inclusions of 3 ⁇ m or more is 22 to 25.
  • the number of MgO-Al 2 O 3 system inclusions of / 1000 mm 2 , 10 ⁇ m or more was as low as 0.1 / 1000 mm 2. Further, B10 life becomes 9.2 ⁇ 10.5 ⁇ 10 7 times, it was possible to produce a very stable high-quality products.
  • the number of MgO-Al 2 O 3 system inclusions of 3 ⁇ m or more is 68 to 122/1000 mm 2 , 10 ⁇ m or more.
  • the number of MgO-Al 2 O 3 system inclusions was as high as 1.9 to 3.8 / 1000 mm 2.
  • B10 life is 0.7 ⁇ 4.4 ⁇ 10 7 times was lower as compared to the present invention Examples 1-15.
  • Comparative Examples 14 to 25 in which the Ar gas flow rate of the stirring gas was constant over the entire treatment period, MgO-Al 2 of 3 ⁇ m or more was used. O 3 inclusions number 30 to 57 / 1000mm 2, MgO-Al 2 O 3 inclusions number of more than 10 ⁇ m 0.2 to 0.9 / 1000 mm 2, B10 life 6.9 1-8. It was 6 ⁇ 10 7 times. Comparative Examples 14 to 25 were better than Comparative Examples 1 to 13, but the results were not as good as those of Examples 1 to 15.
  • Comparative Examples 26 to 29 are operations in which the stirring power in the first period does not satisfy the conditions of the present invention
  • Comparative Examples 30 to 33 are operations in which the stirring power in the second period does not satisfy the conditions of the present invention. be.
  • the number of MgO-Al 2 O 3 inclusions of 3 ⁇ m or more is 33 to 43/1000 mm 2
  • the number of MgO-Al 2 O 3 inclusions of 10 ⁇ m or more is 0.3 to 0.7. pieces / 1000 mm 2
  • B10 life was 6.9 ⁇ 8.2 ⁇ 10 7 times.
  • Comparative Examples 26 to 33 were better than Comparative Examples 1 to 13, but the results were not as good as those of Examples 1 to 15 of the present invention.
  • Example 1 Similar to Example 1, in an actual machine with a molten steel amount of about 200 tons per charge, in the process order of converter-ladle refining equipment-RH vacuum degassing equipment-bloom continuous casting machine, high-cleanliness steel Manufactured materials for bearing steel, which is a typical example.
  • the slag composition was controlled to satisfy the present invention, and the stirring of the molten steel in the first period and the second period was set to the stirring conditions satisfying the present invention (Examples 16 to 25 of the present invention).
  • the stirring conditions for the molten steel in the ladle refining facility were the same as in Example 1.
  • the evaluation method of the cleanliness and the B10 life of the product round bar steel is the same as that of the first embodiment.
  • Example 2 the tin concentration and arsenic concentration of iron scrap and ferroalloy used in the manufacturing process were controlled and sorted in the same manner as in Example 1.
  • the tin concentration in all the slabs was in the range of less than the lower limit of analysis (0.001% by mass) to 0.003% by mass.
  • the arsenic concentration was in the range of the lower limit of analysis (0.001% by mass) to 0.005% by mass.
  • Tables 3 and 4 show the slag composition conditions, the total treatment time, the treatment time in the first period, the treatment time in the second period, the stirring conditions, the number of MgO-Al 2 O 3 system inclusions, and MgO-Al in the ladle refining. mean MgO concentration in 2 O 3 inclusions, shows a B10 life.
  • the term "MgO-Al 2 O 3 based average MgO concentration of inclusions" were detected in the test area 3000 mm 2, MgO concentration of 5 mass% or more MgO-Al 2 O 3 based inclusions It is a value which averaged the MgO concentration of the thing.
  • the ladle refining slag composition in Table 3 shows the value at the end of the treatment as in Example 1, but is equivalent in the period of at least the latter half 50% or more of the total treatment time of the heating and stirring treatment step. It has been confirmed that the composition is slag.
  • Examples 16 to 23 of the present invention having an "average MgO concentration in MgO-Al 2 O 3 system inclusions" of less than 10% by mass have a B10 lifetime of 9.4 to 10.5. It was very good with ⁇ 10 7 times.
  • Example 24 and 25 "MgO-Al 2 O 3 based average MgO concentration of inclusions" is 10 wt% or more, B10 life is 9.1 ⁇ 10 7 times, and is slightly lower However, these were also at a level that sufficiently satisfied the product characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

取鍋精錬設備と真空脱ガス設備とを用いて高清浄度鋼を製造するにあたり、取鍋精錬のスラグ組成と撹拌条件とを制御して、清浄性の高い鋼を製造する。 溶鋼に対して取鍋精錬設備で取鍋精錬を行い、その後、真空脱ガス設備で真空脱ガス精錬を行って高清浄度鋼を製造するにあたり、取鍋精錬での処理中から処理終了までのスラグ組成が、(質量%CaO)/(質量%SiO)が4.0~6.3の範囲、(質量%CaO)/(質量%Al)が1.8~2.3の範囲、(質量%CaO)/(質量%SiO)と(質量%CaO)/(質量%Al)とが所定の関係を満たす範囲であり、取鍋精錬の処理開始から処理中の任意の時間までの期間を第1期間、その後の期間を第2期間とし、溶鋼の撹拌動力が、第1期間では55W/ton超105W/ton以下、第2期間では25W/ton以上55W/ton以下である。

Description

高清浄度鋼の製造方法
 本発明は、取鍋精錬設備と真空脱ガス設備とを用いて、非金属介在物の少ない高清浄度鋼を製造する方法に関する。
 軸受鋼に代表されるように、優れた転動疲労寿命や静粛性が求められる鋼材、つまり高清浄度鋼においては、鋼中の非金属介在物を極力低減することが必要である。低減すべき鋼中の非金属介在物としては、脱酸生成物、溶鋼-スラグ-耐火物間の反応による生成物、炭化物、窒化物、炭・窒化物などが挙げられる。軸受鋼などのアルミニウム(Al)で脱酸を行う鋼種では、脱酸直後の非金属介在物(以下、単に「介在物」とも記す)は基本的にはAlである。
 しかし、例えば、鋼中のAlとスラグ中のCaOとの反応によりCaO-Al系介在物になったり、また、MgO-Al系介在物になったりすることが知られている。MgO-Al系介在物は、溶鋼中のアルミニウムがスラグ中のMgOや耐火物中のMgOと反応して鋼中にマグネシウム(Mg)が生成され、このマグネシウムが鋼中のAlと反応することによって生成すると考えられている。
 これらの介在物のなかでも、MgO-Al系介在物は硬質であるので、転動疲労寿命に及ぼす影響が大きく、高清浄度鋼ではMgO-Al系介在物を低減することが、特に重要な課題となっている。
 このような高清浄度鋼の製造過程における介在物低減技術として、以下の技術が開示されている。特許文献1には、取鍋内の溶鋼を溶鋼湯面上のスラグとともに撹拌して処理する取鍋精錬において、アーク加熱とガス撹拌とを併用し、溶鋼中のアルミニウム濃度が0.005質量%以上の状態で、スラグ中のMgO濃度と溶鋼撹拌時間とが所定の関係を満たす条件で処理する技術が開示されている。
 特許文献2には、取鍋精錬設備で取鍋精錬を行った後、RH真空脱ガス装置で真空脱ガス精錬を行って高清浄度鋼を製造する際に、取鍋精錬後のスラグ組成(FeO+MnO、CaO/SiO、MgO、CaO/Al、TiO)を或る範囲に規定し、更に真空脱ガス精錬時の溶鋼環流量を規定する技術が開示されている。
 また、特許文献3には、アーク加熱とガス撹拌または電磁撹拌による還元精錬を取鍋精錬設備で実施して高清浄度鋼を製造する際に、還元精錬後の溶鋼中溶存マグネシウム濃度、使用する取鍋の耐火物組成、及び、還元精錬後の取鍋内のスラグ組成を或る範囲に規定した技術が開示されている。
 また更に、特許文献4には、取鍋精錬設備での加熱撹拌処理工程において、加熱撹拌処理中及び当該加熱撹拌処理後のスラグの組成を、3.0≦(質量%CaO)/(質量%SiO)≦5.0、1.0≦(質量%CaO)/(質量%Al)≦2.0、(質量%MgO)≦3.0質量%、(質量%FeO)+(質量%MnO)≦1.5質量%に規定した精錬方法が開示されている。
特開2003-286515号公報 特開2008-303406号公報 特開2007-84838号公報 特開2012-132094号公報
 しかしながら、上記従来技術には以下の問題点がある。
 即ち、特許文献1では、MgO-Al系介在物の生成要因となる溶鋼中アルミニウム濃度とスラグ中MgO濃度とを規定している。ここで、取鍋に内張り耐火物として施工されたMgO系耐火物から取鍋スラグへMgOが溶出し、スラグ中MgO濃度が上昇することが知られている。MgO系耐火物からのMgOの溶出は、MgO系耐火物と接触している取鍋スラグの組成と密接な関係にあり、したがって、スラグ中MgO濃度を制御するためには、取鍋スラグの組成を制御することが重要である。しかしながら、特許文献1は、スラグ中MgO濃度を適切な範囲に制御するための取鍋スラグの条件を記載しておらず、当該技術を実施するための条件が十分に開示されているとはいいがたい。
 特許文献2では、取鍋精錬後のスラグ組成を規定しているが、なかでもスラグの塩基度(質量%CaO/質量%SiO)を6.5以上としており、比較的、高塩基度に制御している。このような高塩基度スラグの場合には、スラグ中SiOの活量が小さいために、溶鋼中珪素(Si)によってAlが還元され、溶鋼中のアルミニウム濃度が上昇する。溶鋼中アルミニウム濃度の増加に伴い、スラグ中のMgOが還元され、還元されて生成したマグネシウムとAl系介在物とが反応し、MgO-Al系介在物の生成が懸念される。
 特許文献3では、還元精錬後の溶鋼中溶存マグネシウム濃度、取鍋耐火物組成、還元精錬後のスラグ組成を各成分組成の絶対値(質量%)で規定している。溶鋼中アルミニウムによるスラグ中MgOの還元反応を制御するためには、理論的には、スラグ中のSiO活量やAl活量などを制御する必要がある。つまり、成分組成の絶対値で規定するのではなく、CaO/SiOやCaO/Alといった、スラグを構成する成分の質量比で制御することが肝要である。したがって、特許文献3に記載されるスラグ成分範囲に制御しただけでは、MgO-Al系介在物の生成を十分に抑制できないおそれがある。
 特許文献4の技術は、スラグの塩基度((質量%CaO)/(質量%SiO))を、上記特許文献2に比較して低塩基度の条件にしているので、スラグの酸素ポテンシャルは高くなり、溶鋼中アルミニウムによるスラグ中MgOの還元反応が生じやすくなる。このため、特許文献4では、加熱撹拌処理中に溶鋼をアルミニウムで脱酸しない、または、溶鋼中のアルミニウム濃度を0.003質量%以下とすることで、溶鋼中アルミニウムによるスラグ中MgOの還元反応を抑制している。しかしながら、この条件で加熱撹拌を行なう場合は、撹拌が強すぎると、溶鋼面が大気に露出するなどして鉄酸化物が生じやすくなり、所望のスラグ組成が得られず、その結果、高い清浄度が得られない場合がある。
 本発明はこのような事情に鑑みてなされたもので、その目的とするところは、取鍋精錬設備と真空脱ガス設備とを用いて高清浄度鋼を製造するにあたり、取鍋精錬時のスラグ組成と撹拌条件とを最適範囲に制御することによって、清浄性の高い鋼を製造する方法を提供することである。
 上記課題を解決するための本発明の要旨は以下のとおりである。
 [1]転炉または電気炉から出鋼された溶鋼に対して取鍋精錬設備で取鍋精錬を行い、その後、真空脱ガス設備で真空脱ガス精錬を行って高清浄度鋼を製造する高清浄度鋼の製造方法であって、
 前記取鍋精錬での処理中から処理終了までのスラグ組成が、(質量%CaO)/(質量%SiO)が4.0~6.3の範囲、(質量%CaO)/(質量%Al)が1.8~2.3の範囲、(質量%CaO)/(質量%SiO)と(質量%CaO)/(質量%Al)とが下記の(1)式を満たす範囲であり、
 前記取鍋精錬の処理開始から処理中の任意の時刻までの期間を第1期間、前記任意の時刻から処理終了までの期間を第2期間とし、下記の(2)式で算出される溶鋼の撹拌動力εが、前記第1期間では55W/ton超105W/ton以下、前記第2期間では25W/ton以上55W/ton以下である、高清浄度鋼の製造方法。
0.0059×(質量%CaO)/(質量%SiO2)+0.028×(質量%CaO)/(質量%Al2O3)≦0.088……(1)
ε=6.18×(Qg×TL/W)×[ln{1+h/(1.46×10-5×P0)}+0.06×(1-298/TL)]……(2)
 ここで、(2)式において、εは撹拌動力(W/ton)、Qは撹拌用ガスの流量(Nm/min)、Tは溶鋼温度(K)、Wは溶鋼量(ton)、hは取鍋内溶鋼の浴深さ(m)、Pは雰囲気圧力(Pa)である。
 [2]前記第1期間の処理時間が、取鍋精錬の予定された総処理時間の30%以上60%以下である、上記[1]に記載の高清浄度鋼の製造方法。
 [3]前記取鍋精錬の処理中のスラグ量を、取鍋に収容された溶鋼質量1トンあたり10kg以上30kg以下とする、上記[1]または上記[2]に記載の高清浄度鋼の製造方法。
 [4]前記高清浄度鋼は、被検面積が3000mmのときに、当該高清浄度鋼で検出されたMgO-Al系介在物のうちでMgO濃度が5質量%以上のMgO-Al系介在物のMgO濃度の平均値が10質量%未満である、上記[1]から上記[3]のいずれかに記載の高清浄度鋼の製造方法。
 [5]前記高清浄度鋼は、化学成分組成の炭素濃度が0.60質量%以上1.20質量%以下、珪素濃度が0.15質量%以上0.70質量%以下、マンガン濃度が0.20質量%以上0.80質量%以下、燐濃度が0.020質量%以下、硫黄濃度が0.0050質量%以下、アルミニウム濃度が0.005質量%以上0.040質量%以下、クロム濃度が0.50質量%以上2.00質量%以下、窒素濃度が0.0080質量%以下である軸受鋼の素材である、上記[1]から上記[4]のいずれかに記載の高清浄度鋼の製造方法。
 [6]前記高清浄度鋼は、ISO683-17規格における100Cr6、JIS G4805規格におけるSUJ2、GB規格におけるGCr15、ASTM A295規格における52100及びDIN規格における100Cr6のうちの少なくとも一つの規格で規定された軸受鋼の素材である、上記[1]から上記[4]のいずれかに記載の高清浄度鋼の製造方法。
 本発明によれば、取鍋精錬設備と真空脱ガス設備とを用いて高清浄度鋼を製造する際に、取鍋精錬時のスラグ組成と溶鋼の撹拌条件とを最適範囲に制御するので、介在物、特に、MgO-Al系介在物の少ない、清浄性の高い高清浄度鋼を製造することが実現され、その結果、転動疲労寿命に優れた軸受鋼などを製造することが達成される。
図1は、一般的な取鍋精錬設備の模式図である。 図2は、取鍋精錬時のスラグ組成の(質量%CaO)/(質量%SiO)及び(質量%CaO)/(質量%Al)のスラグ中MgO活量に及ぼす影響の計算結果を示す図である。 図3は、取鍋精錬時のスラグ組成の(質量%CaO)/(質量%SiO)及び(質量%CaO)/(質量%Al)のMgO-Al系介在物の生成量に及ぼす影響の計算結果を示す図である。
 以下、本発明に係る高清浄度鋼の製造方法を詳細に説明する。
 本発明者らは、転炉から出鋼された溶鋼に対して取鍋精錬設備で取鍋精錬を行い、その後、真空脱ガス設備で真空脱ガス精錬を行って製造される、軸受鋼に代表される高清浄度鋼での転動疲労寿命の調査試験を種々実施した。その結果、転動疲労寿命の試験時に発生した割れ部の観察から、割れの起点にMgO-Al系介在物の存在が確認された。更に調査を進めた結果、MgO-Al系介在物は硬質であり、変形特性が鋼材とは異なるために、MgO-Al系介在物の周囲に空隙が生じやすく、これにより、亀裂が発生することがわかった。特に、MgO-Al系介在物のなかでも、介在物中のMgO濃度が5質量%以上であるMgO-Al介在物が硬質であることもわかった。したがって、鋼材の転動疲労寿命向上のためには、このようなMgO-Al系介在物の生成を抑止することが重要であることがわかった。
 そこで、本発明者らは、MgO-Al系介在物の生成メカニズムを考察し、この考察に基づいて、MgO-Al系介在物の生成を予測できる計算モデル(介在物組成変化予測モデル)を構築することとした。ここで、MgO-Al系介在物は、下記の(3)式及び(4)式の反応によって形成される。
 3(MgO)+2[Al]=3[Mg]+(Al)……(3)
 3[Mg]+4(Al)=3(MgO・Al)+2[Al] ……(4)
 ここで、(3)式及び(4)式において、(MgO)、(Al)、(MgO・Al)は、スラグ中或いは介在物中の成分を表し、[Al]、[Mg]は、溶鋼中の成分を表す。
 これらの反応を熱力学的に進行させない、つまり、MgO-Al系介在物を生成させないためには、(3)式及び(4)式からも明らかなように、溶鋼中にマグネシウムを生成させないようにすればよい。そのためには、(A);スラグ中MgOの活量を小さくすること、(B);溶鋼中アルミニウムの活量を小さくすることが、有効と考えられる。この中で、(B)の溶鋼中アルミニウム活量については、製品としての鋼材に要求される材質性状の観点から、最適なアルミニウム濃度範囲が定められるので、むやみにアルミニウム濃度を変化させることは難しい。そこで、本発明者らは(A)に着目した。これはスラグ組成を適切に設計することで制御可能な指標である。
 介在物組成変化予測モデルを構築するにあたり、MgO-Al系介在物の生成に及ぼすスラグ組成の影響を理論的及び定量的に評価するために、本発明者らは、取鍋精錬設備での取鍋精錬において、種々の試験を繰り返して実施した。
 尚、上記説明においては、転炉から出鋼された溶鋼を例に挙げたが、本発明に係る高清浄度鋼の製造方法において、溶鋼の溶製プロセスは、転炉に限定されるものではなく、例えば電気炉を利用することも可能である。また、真空脱ガス設備としては、RH真空脱ガス装置やVOD炉などの真空脱ガス精錬に適した設備を選択すればよい。
 図1に、一般的な取鍋精錬設備の縦断面模式図を示す。図1において、符号1は取鍋精錬設備、2は取鍋、3は上蓋、4は電極、5は鉄皮、6は内張り耐火物、7は永久耐火物、8は底吹きプラグ、9は溶鋼、10はスラグである。溶鋼9を収容する取鍋2は、外殻を鉄皮5とし、鉄皮5の内側に、永久耐火物7、内張り耐火物6の順で耐火物が施工されており、内張り耐火物6の少なくとも一部(主にスラグライン)はMgO系耐火物で施工されている。また、取鍋2の底部には、底吹きプラグ8が設置されている。
 取鍋精錬設備1では、取鍋内の溶鋼9に対して、底吹きプラグ8からアルゴンガスなどの撹拌用ガスを吹き込み、溶鋼9を撹拌しながら、精錬用フラックス及び合金材の添加、並びに、電極4による通電加熱を施し、溶鋼9の成分及び温度を目標値に調整する。また、添加した精錬用フラックスが溶融して所望する組成のスラグ10が形成され、このスラグ10と溶鋼9との反応により、溶鋼中介在物の形態制御や溶鋼の脱硫反応が行われる。取鍋2のスラグラインの内張り耐火物6をMgO系耐火物とする理由は、MgO系耐火物はスラグ10に対する耐蝕性が高いことに基づく。尚、図1では、底吹きプラグ8から撹拌用ガスを吹き込んでいるが、溶鋼9に浸漬させたインジェクションランス(図示せず)を介して撹拌用ガスを吹き込んでもよい。
 この取鍋精錬において、介在物生成挙動を予測する際に考慮すべき現象は、次の(1)~(7)の現象である。
 (1)MgO系耐火物で形成される内張り耐火物からスラグへのMgOの溶出
 (2)スラグと溶鋼との反応
 (3)溶鋼中のスラグ系介在物と溶鋼との反応
 (4)アルミニウムなどの脱酸用合金材の添加時に生成する溶鋼中の介在物(脱酸生成物)
 (5)スラグからの巻込みによる溶鋼中の介在物
 (6)溶鋼中の介在物同士の凝集合体
 (7)溶鋼中の各介在物の浮上
 本発明者らは、熱力学及び速度論に基づいて、上記(1)~(7)の現象を総括的に考慮し、かくして、取鍋精錬時の介在物の組成変化を計算するためのモデルを構築した。また、その計算結果が実測値と一致するように、種々の試験と計算モデルとのチューニングを行い、介在物組成変化予測モデルを完成させた。尚、本明細書では、構築した介在物組成変化予測モデルの内容の詳細な説明は省略する。
 次に、本発明者らは、構築した介在物組成変化予測モデルを用いて、MgO-Al系介在物の生成を抑制するためのスラグ組成を検討した。その際に、MgO-Al系介在物の生成抑止のための条件のうち、まず、上記(A)の「スラグ中MgOの活量を小さくすること」について検討した。検討では、スラグ中MgOの活量に及ぼす影響因子として、スラグ組成の(質量%CaO)/(質量%SiO)及び(質量%CaO)/(質量%Al)に着目した。
 取鍋精錬におけるスラグ組成の(質量%CaO)/(質量%SiO)及び(質量%CaO)/(質量%Al)を種々変更し、これらのスラグ中MgOの活量に及ぼす影響を、構築した介在物組成変化予測モデルを用いて計算した。計算結果の一例を図2に示す。図2から明らかなように、スラグ組成の(質量%CaO)/(質量%SiO)及び(質量%CaO)/(質量%Al)が小さくなるほど、スラグ中MgOの活量を小さくできることがわかった。スラグ中MgOの活量は、スラグ中MgOの濃度と活量係数との積で表される。
 また、図3には、取鍋精錬におけるスラグ組成の(質量%CaO)/(質量%SiO)及び(質量%CaO)/(質量%Al)のMgO-Al系介在物の生成量に及ぼす影響の計算結果を示す。図3から明らかなように、スラグ組成の(質量%CaO)/(質量%SiO)及び(質量%CaO)/(質量%Al)の低下に伴い、MgO-Al系介在物の生成量が低下することがわかった。尚、図3の縦軸は、全体の介在物生成量(個数)に対するMgO-Al系介在物の生成量(個数)の比率(百分率)である。
 このような計算結果に基づき、取鍋精錬において様々な組成のフラックスを用いた試験操業を行った。その結果、スラグ中MgOの活量が0.048以下となるようなスラグ組成に制御することで、鋼材の機械試験特性に有害なMgO-Al系介在物を低減でき、鋼材の転動疲労寿命が向上することを本発明者らは見出した。具体的には、取鍋精錬時のスラグ組成を、下記の(1)式を満足するように、スラグ組成の(質量%CaO)/(質量%SiO)及び(質量%CaO)/(質量%Al)を制御することで、スラグ中MgOの活量が0.048以下となり、清浄度の高い溶鋼を安定して溶製できることを見出した。
 0.0059×(質量%CaO)/(質量%SiO2)+0.028×(質量%CaO)/(質量%Al2O3)≦0.088……(1)
 また、更なる試験調査から、取鍋精錬時のスラグ組成の(質量%CaO)/(質量%SiO)及び(質量%CaO)/(質量%Al)にも適切な範囲があることがわかった。
 つまり、スラグの(質量%CaO)/(質量%Al)については、この値が1.8未満では、スラグの粘性が高くなり、電極による通電加熱不良を引き起こすことや、スラグのAl系介在物の吸収能が低下して溶鋼清浄性を悪化させることがわかった。一方、(質量%CaO)/(質量%Al)が2.3を超える場合には、後述する(質量%CaO)/(質量%SiO)の範囲を考慮した場合に、(1)式を満たすことが難しくなる。したがって、スラグ組成の(質量%CaO)/(質量%Al)は1.8~2.3の範囲で制御する必要がある。
 また、スラグ組成の(質量%CaO)/(質量%SiO)については、この値が4.0未満になると、MgO系内張り耐火物からのMgOの溶出が顕著になることや、溶鋼が再酸化によって汚染される懸念があることがわかった。一方、(質量%CaO)/(質量%SiO)が6.3を超える場合には、先述した(質量%CaO)/(質量%Al)の範囲内で(1)式を満足することができない。したがって、スラグ組成の(質量%CaO)/(質量%SiO)は4.0~6.3の範囲で制御する必要がある。
 上述のスラグ組成は、取鍋精錬での処理中から処理終了までの期間で上記の条件を満足する必要がある。また、上述のスラグ組成は、取鍋精錬の予定された総処理時間のうちの少なくとも後半40%以上の期間において、上記の条件を満足することが好ましい。つまり、取鍋精錬の予定された総処理時間の少なくとも60%の時点から取鍋精錬の終了までの期間で、スラグ組成を上記範囲に制御することが好ましい。
 更に、本発明者らは、取鍋精錬における溶鋼の撹拌動力に着目した。取鍋精錬では、一般的に、希ガスによる溶鋼のガス撹拌を行いつつ、精錬用フラックス及び合金材の添加による溶鋼の成分調整及び酸化物系介在物の形態制御と、電極での通電加熱による溶鋼の温度調整とを行っている。溶鋼に付与される撹拌動力は、例えば、溶鋼上に存在するスラグの巻込みや溶鋼中介在物の凝集・浮上など、介在物の生成挙動にも影響を及ぼす。なかでも、溶鋼上に存在するスラグの巻込みについては、スラグの粘性や界面張力などの物性値も重要な因子となるため、スラグ組成に応じた最適な撹拌動力があると考えられる。
 そこで、本発明において提案したスラグ組成の条件下で、撹拌用ガス流量を変化させて、溶鋼の清浄度及び鋼材の転動疲労寿命を評価する試験を行った。その結果、取鍋精錬の処理の前半では、比較的強い撹拌力を与えてスラグの溶融を促進させて、直ちに目的のスラグ組成を造り込むことが必要であることがわかった。一方、処理の後半では、必要最低限の撹拌力として溶鋼上に存在するスラグの巻き込みを防止することが、溶鋼の清浄度の向上及び鋼材の転動疲労寿命の向上に効果的であることが明らかとなった。
 具体的には、取鍋精錬の処理開始から処理中の任意の時刻までの処理前半を第1期間、前記任意の時刻から処理終了までの処理後半を第2期間とする。ここで、前記第1期間の処理時間は、予定された総処理時間の30%以上60%以下であることが好ましい。第1期間の処理時間を予定された総処理時間の30%以上とすることにより、目的のスラグ組成を造り込むのに十分な時間が確保できる。また、第1期間の処理時間を予定された総処理時間の60%以下とすることで、第1期間で溶鋼内に巻き込んだスラグを、第2期間中に溶鋼上面まで再浮上させて、溶鋼上のスラグに取り込むのに必要な時間が確保できる。
 この場合に、下記の(2)式で算出される撹拌動力εを、前記第1期間では55W/ton超105W/ton以下、前記第2期間では25W/ton以上55W/ton以下とすることで、溶鋼の清浄度の向上及び鋼材の転動疲労寿命の向上が認められた。
 ε=6.18×(Qg×TL/W)×[ln{1+h/(1.46×10-5×P0)}+0.06×(1-298/TL)]……(2)
 ここで、(2)式において、εは撹拌動力(W/ton)、Qは撹拌用ガスの流量(Nm/min)、Tは溶鋼温度(K)、Wは溶鋼量(ton)、hは取鍋内溶鋼の浴深さ(m)、Pは雰囲気圧力(Pa)である。溶鋼温度Tは、測温用プローブ(熱電対)を取鍋内の溶鋼に浸漬(浸漬深さ20cm以上)させて測定される温度である。
 第1期間での撹拌動力εが55W/ton以下のときには、撹拌力が弱すぎて成分調整や温度調整が効率的に行えず、また、スラグの溶融が遅くなる場合が発生した。一方、第1期間での撹拌動力εが105W/tonを超えたときには、撹拌力が強すぎて、溶鋼浴面の振動が激しくなり、操業安全性に問題が生じる場合が発生した。また、撹拌力が強すぎて、溶鋼表面を覆うスラグが偏在し、電極と溶鋼とが直接接触して電極からの加炭(溶鋼の炭素濃度の上昇)が生じる場合や、スラグ巻き込みが増大して溶鋼清浄性が悪化する場合が発生した。
 第2期間での撹拌動力εが25W/ton未満のときには、撹拌力が弱すぎて成分調整や温度調整が効率的に行えない場合が発生した。一方、第2期間での撹拌動力εが55W/tonを超えたときには、撹拌力が強すぎてスラグの巻き込みが多くなり、溶鋼清浄性が悪化する場合が見られた。
 また、取鍋精錬中のスラグ量は、取鍋に収容された溶鋼質量1トンあたり10kg以上30kg以下とすると上記の撹拌条件に適合し、より好適である。スラグ量が溶鋼質量1トンあたり10kg(10kg/ton)未満では、スラグ量が少ないことにより溶鋼面が露出しやすくなるなどにより溶鋼の清浄性が低下する。スラグ量が溶鋼質量1トンあたり30kg(30kg/ton)を超えると、スラグ量が多すぎることによりスラグの滓化に時間を要し、処理時間が長くなる。その結果、取鍋耐火物耐火物からのMgOの溶出が顕著になり、溶鋼の清浄性が低下する。
 更に、本発明者らは介在物組成に着目して調査を進めた。転動疲労寿命に影響を及ぼすMgO-Al系介在物のなかでも、介在物中のMgO濃度が5質量%以上のものが硬質であり、転動疲労寿命を低下させる。
 そこで、取鍋精錬条件を種々変更して製造した複数チャージの鋼材において、被検面積を3000mmとし、MgO濃度が5質量%以上であるMgO-Al系介在物を調査した。MgO濃度が5質量%以上であるMgO-Al系介在物のみを対象とし、MgO濃度が5質量%以上のMgO-Al系介在物のMgO濃度の平均値と、その鋼材の転動疲労寿命との関係を調査した。その結果、MgO濃度が5質量%以上であるMgO-Al系介在物のMgO濃度の平均値と鋼材の転動疲労寿命とに相関があることがわかった。つまり、MgO-Al系介在物中のMgO濃度の平均値が高いほど転動疲労寿命が低下することが明らかとなった。
 これは、MgO濃度が高いほどMgO-Al系介在物が硬質になるためと考えられる。この結果から、転動疲労寿命を向上させるためには、MgO濃度が5質量%以上であるMgO-Al系介在物のMgO濃度の平均値を10質量%未満に制御することが好ましいことがわかった。
 ところで、本発明は清浄性要求の高い鋼種の溶製全般に適用することができるが、特に、厳格な転動疲労寿命が要求されることから、高レベルの清浄性を必要とする軸受鋼の素材の溶製に適用することで大きなメリットを得ることができる。軸受鋼の好適な化学成分組成は、炭素濃度が0.60質量%以上1.20質量%以下、珪素濃度が0.15質量%以上0.70質量%以下、マンガン濃度が0.20質量%以上0.80質量%以下、燐濃度が0.020質量%以下、硫黄濃度が0.0050質量%以下、アルミニウム濃度が0.005質量%以上0.040質量%以下、クロム濃度が0.50質量%以上2.00質量%以下、窒素濃度が0.0080質量%以下である。以下にその理由を示す。
 炭素(C)は、マルテンサイト強化に有効であり、焼入れ焼き戻し後の強度確保及び転動疲労寿命向上を図ることができる。炭素濃度が0.60質量%未満ではその効果が得られず、一方、1.20質量%を超えると鋳造時に粗大な炭化物が生成するため、かえって転動疲労寿命が低下するおそれがある。
 珪素(Si)は、鋼中に固溶し、焼き戻し軟化抵抗の増大により焼入れ焼き戻し後の強度向上及び転動疲労寿命の向上を図ることができる。珪素濃度が0.15質量%未満ではその効果が得られず、一方、0.70質量%を超えると脱スケール性が悪化する懸念がある。
 マンガン(Mn)は、鋼の焼入れ性向上に有効である。マルテンサイトの靭性及び硬度を向上させ、転動疲労寿命向上を図ることができる。このような作用に対しては、マンガン濃度が0.20質量%以上であれば十分である。一方、マンガンを、0.80質量%を超えて添加しても転動疲労寿命の向上効果はさほど顕著にはならず、かえって溶製の際の合金材コストの悪化を招く。
 燐(P)は、鋼の靭性及び転動疲労寿命を低下させるので、可能な限り低いことが望ましい。その許容上限は0.020質量%であり、更に望ましくは0.015質量%以下である。
 硫黄(S)は、凝固時或いは熱処理時にマンガンと結合してMnSを形成する。また、CaO-Al系介在物のCaOと反応してCaSを形成することが知られている。酸化物系介在物及び硫化物含有酸化物系介在物の周囲のMnSは、主にビレット圧延時の冷却過程において酸化物を核として生成するが、その際にこれら介在物の周囲にマンガン欠乏層が生成し脆弱となる。その結果、鋼球の圧砕時に強度が低下する。したがってこれら介在物の周囲でのMnS析出は極力抑制することが必要であり、そのためには鋼中硫黄濃度を低くすることが望ましい。その許容上限は0.0050質量%であり、更に望ましくは0.0020質量%以下である。
 アルミニウム(Al)は脱酸元素であり、酸化物系介在物及び硫化物含有酸化物系介在物を低減するのに重要な元素である。このためには、アルミニウム濃度を0.005質量%以上とする必要があり、更には0.010質量%以上が望ましい。但し、0.040質量%を超えて添加しても鋼中酸素濃度はさほど大きく低減せず、かえってAlNの生成による転動疲労寿命の低下が懸念されるので、アルミニウム濃度の上限は0.040質量%である。
 クロム(Cr)は、焼入れ性向上及び安定した炭化物の形成により、強度及び耐磨耗性を向上させ、転動疲労寿命を向上させる。クロム濃度が0.50質量%未満ではその効果が十分でなく、一方、2.00質量%を超えて添加しても、その効果はさほど顕著にならず溶製時の合金材コストを悪化させる。
 窒素(N)は、硬質なTiNやAlNを形成し、転動疲労寿命を低下させる。したがって、その許容上限は0.0080質量%である。
 また、軸受け鋼の好適な成分組成として、上記の元素の他に、モリブデン(Mo)、ニッケル(Ni)、銅(Cu)、バナジウム(V)、ニオブ(Nb)のいずれか1種または2種以上を、各々0.30質量%以下であれば、含有してもよい。当然ではあるが、これらの元素を含有しなくともよい。
 また更に、軸受け鋼の好適な成分組成として、スズ(Sn)を0.003質量%以下、ヒ素(As)を0.005質量%以下とすることが、更に好ましい。スズ及びヒ素の濃度が上記の好適範囲を超えると、熱間割れが生じやすくなり、製品加工時の良品歩留まりが低下するおそれがある。製造工程において利用する鉄スクラップや合金鉄などの副原料のスズ濃度及びヒ素濃度を管理・選別することで、スズ濃度及びヒ素濃度が上限値を超えないように管理することが可能となる。当然ではあるが、これらの元素は含有しなくともよい。
 いずれの場合も、上記の成分以外の残部は鉄(Fe)及び不可避的不純物である。
 本発明に係る高清浄度鋼の製造方法は、軸受鋼の素材の製造方法として好適である。軸受け鋼として、ISO(国際標準化機構)683-17規格で100Cr6として規定された軸受鋼、JIS(日本産業規格)G4805でSUJ2として規定された軸受鋼、GB(中国国家標準規格)でGCr15として規定された軸受鋼、ASTM(米国試験材料協会)A295規格で52100として規定された軸受鋼、及び、DIN(ドイツ規格協会)規格で100Cr6として規定された軸受鋼などが存在する。これらの軸受鋼を本発明に係る高清浄度鋼の製造方法を用いて製造することで、転動疲労寿命に優れた軸受鋼を安定して製造することが実現される。
 因みに、ISO(国際標準化機構)683-17規格で100Cr6として規定された軸受鋼の成分範囲は、炭素濃度が0.95質量%以上1.10質量%以下、珪素濃度が0.15質量%以上0.35質量%以下、マンガン濃度が0.25質量%以上0.45質量%以下、燐濃度が0.030質量%以下、硫黄濃度が0.025質量%以下、クロム濃度が1.35質量%以上1.65質量%以下である。
 また、JIS(日本産業規格)G4805でSUJ2として規定された軸受鋼の成分範囲は、炭素濃度が0.95質量%以上1.10質量%以下、珪素濃度が0.15質量%以上0.35質量%以下、マンガン濃度が0.50質量%以下、燐濃度が0.025質量%以下、硫黄濃度が0.025質量%以下、クロム濃度が1.30質量%以上1.60質量%以下、モリブデン濃度が0.08質量%以下、ニッケル濃度が0.25質量%以下、銅濃度が0.25質量%以下である。
 また、GB(中国国家標準規格)でGCr15として規定された軸受鋼の成分範囲は、炭素濃度が0.95質量%以上1.05質量%以下、珪素濃度が0.15質量%以上0.35質量%以下、マンガン濃度が0.25質量%以上0.45質量%以下、燐濃度が0.025質量%以下、硫黄濃度が0.025質量%以下、クロム濃度が1.40質量%以上1.65質量%以下、モリブデン濃度が0.10質量%以下、ニッケル濃度が0.30質量%以下、銅濃度が0.25質量%以下である。
 また、ASTM(米国試験材料協会)A295規格で52100として規定された軸受鋼の成分範囲は、炭素濃度が0.98質量%以上1.10質量%以下、珪素濃度が0.15質量%以上0.35質量%以下、マンガン濃度が0.25質量%以上0.45質量%以下、燐濃度が0.025質量%以下、硫黄濃度が0.025質量%以下、クロム濃度が1.30質量%以上1.60質量%以下、モリブデン濃度が0.10質量%以下、ニッケル濃度が0.25質量%以下、銅濃度が0.35質量%以下である。
 また更に、DIN(ドイツ規格協会)規格で100Cr6として規定された軸受鋼の成分範囲は、炭素濃度が0.93質量%以上1.05質量%以下、珪素濃度が0.15質量%以上0.35質量%以下、マンガン濃度が0.25質量%以上0.45質量%以下、燐濃度が0.025質量%以下、硫黄濃度が0.015質量%以下、アルミニウム濃度が0.050質量%以下、クロム濃度が1.35質量%以上1.60質量%以下、銅濃度が0.30質量%以下である。
 本発明では、取鍋精錬におけるスラグ組成の調整を、精錬用フラックスの添加により実施する。スラグ組成の調整に使用する精錬用フラックスのうち、CaO源としては、生石灰、石灰石、消石灰などを使用し、SiO源としては、珪石、珪砂などを使用し、Al源としては、ボーキサイト、電融ボーキサイト、仮焼アルミナなどを使用する。本発明は、スラグ中のMgOの活量が0.048以下となるようにスラグ組成を制御する技術であり、そのためには、スラグ中のMgO濃度は低いほど好ましい。したがって、スラグ組成調整用として添加する精錬用フラックスは、不可避的不純物としてMgOを含有する場合を除き、MgOを含有しないものを使用する。
 以上説明したように、本発明によれば、取鍋精錬設備と真空脱ガス設備とを用いて高清浄度鋼を製造する際に、取鍋精錬時のスラグ組成と溶鋼の撹拌条件とを最適範囲に制御するので、介在物、特に、MgO-Al系介在物が少ない、清浄性の高い高清浄度鋼を製造することができ、その結果、転動疲労寿命に優れた軸受鋼などを製造することが達成される。
 1チャージの溶鋼量が約200トン規模の実機にて、転炉-取鍋精錬設備-RH真空脱ガス装置-ブルーム連続鋳造機の工程順で、高清浄度鋼の代表として挙げられる軸受鋼の素材を製造した。製造対象の軸受鋼は、JIS G4805-SUJ2鋼(C:1.01質量%、Si:0.20質量%、Mn:0.40質量%、Al:0.020質量%、Cr:1.55質量%、Mo:0.05質量%、P:0.015質量%、S:0.003質量%)である。
 本発明に係る高清浄度鋼の製造方法を取鍋精錬設備での取鍋精錬に適用し、RH真空脱ガス装置を経て溶鋼を溶製し、この溶鋼をブルーム連続鋳造機で鋳造してブルーム鋳片(横断面;厚み300mm、幅400mm)を製造した(本発明例1~15)。また、比較のために、本発明以外の方法を取鍋精錬に適用し、RH真空脱ガス装置を経て溶鋼を溶製し、この溶鋼をブルーム連続鋳造機で鋳造してブルーム鋳片(横断面;厚み300mm、幅400mm)を製造した(比較例1~33)。
 本発明例及び比較例では、製造工程で使用する鉄スクラップや合金鉄などのスズ濃度及びヒ素濃度を管理・選別して行なった。その結果、いずれのブルーム鋳片においても、スズ濃度は、分析下限値(0.001質量%)未満~0.003質量%の範囲内であった。また、ヒ素濃度は、分析下限値(0.001質量%)~0.005質量%の範囲内であった。
 取鍋精錬では、電極によるアーク加熱を施しつつ、精錬用フラックス、脱酸用金属アルミニウム、成分調整用の合金材を投入し、溶鋼成分及び溶鋼温度の調整を実施した。取鍋精錬時のスラグ量は20kg/tonを目標として、取鍋精錬開始前の取鍋内残留スラグ量を考慮して精錬用フラックスの投入量を調整した。スラグ量の実績値では14kg/tonから26kg/tonの範囲であった。取鍋精錬中、取鍋の底部に設けた底吹きプラグから、撹拌用ガスのアルゴンガス(Arガス)を吹き込んで溶鋼の撹拌を行った。
 取鍋精錬設備での溶鋼の撹拌動力εは、撹拌用ガスの流量Qが0.3~2.0Nm/min、溶鋼温度Tが1840~1860K、溶鋼量Wが195~205ton、取鍋内溶鋼の浴深さhが3.0~3.3m、雰囲気圧力Pが101325Paの各条件下において、上記の(2)式を用いて算出した。
 鋳造したブルーム鋳片に対して熱処理を施し、その後、直径215mmの丸ビレットに熱間圧延した。この丸ビレットを更に熱間圧延によって直径60mmの棒鋼とし、焼鈍処理を経て、製品の丸棒鋼とした。
 この製品丸棒鋼の1/4厚部における圧延方向の縦断面で、検鏡法によって介在物観察を実施した。検鏡法の被検面積は3000mmとした。その際に、検鏡法での介在物測定と併せて、SEM(走査型電子顕微鏡)及びEDX(エネルギー分散型X線分光法)により介在物の組成を特定し、MgO-Al系介在物の個数を測定して清浄性を評価した。ここで、介在物中のMgO濃度が5質量%以上のものをMgO-Al系介在物として評価し、介在物中のMgO濃度が5質量%未満のものは、その他の酸化物系介在物として評価した。その他の酸化物系介在物には、Al系介在物が含まれる。介在物は、検鏡面における最大長で評価した。
 また、製品丸棒鋼の疲労寿命を評価するために、転動疲労寿命試験を実施した。転動疲労寿命試験は、上記製品丸棒鋼を輪切りにして円盤状に粗加工し、通常の焼入れ及び低温焼戻しの熱処理を施した後に、表面を機械仕上げ加工して試験片を製作した。この試験片を用いて転動疲労寿命試験を行った。この転動疲労寿命試験には森式スラスト型転動疲労試験機を用い、ヘルツ最大接触応力;5260MPa、繰り返し応力数;30Hz、潤滑油;#68タービン油の条件で行った。試験は、試験片が剥離するまでの負荷回数を測定し、その試験結果がワイブル分布に従うものとして、試験片数の10%が疲労破壊する寿命(B10寿命)をワイブル確率紙により求めた。
 表1及び表2に、本発明例1~15及び比較例1~33での、取鍋精錬におけるスラグ組成条件、総処理時間、第1期間の処理時間、第2期間の処理時間、撹拌条件、MgO-Al系介在物個数、B10寿命を示す。尚、表1の取鍋精錬スラグ組成は、取鍋精錬の処理終了時点の値を記載しているが、加熱撹拌処理工程の総処理時間の少なくとも後半50%以上の期間で同等のスラグ組成となっていることを確認している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、本発明例1~15においては、最大長が3μm以上のMgO-Al系介在物個数が22~29個/1000mm、最大長が10μm以上のMgO-Al系介在物個数が0.1~0.2個/1000mmと低位であり、B10寿命は9.0~10.5×10回と非常に高位であった。
 更には、本発明例1~11においては第1期間の時間比率が30~60%の範囲であり、この場合には、3μm以上のMgO-Al系介在物個数が22~25個/1000mm、10μm以上のMgO-Al系介在物個数が0.1個/1000mmと低位であった。また、B10寿命は9.2~10.5×10回となり、極めて安定的に高品質の製品を製造することができた。
 一方、取鍋精錬でのスラグ組成が本発明の条件を満たさない比較例1~13においては、3μm以上のMgO-Al系介在物個数が68~122個/1000mm、10μm以上のMgO-Al系介在物個数が1.9~3.8個/1000mmと高位であった。また、B10寿命は0.7~4.4×10回であり、本発明例1~15に比較して低位であった。
 また、取鍋精錬でのスラグ組成は本発明の条件を満たしているが、撹拌用ガスのArガス流量を処理全期間にわたって一定とした比較例14~25においては、3μm以上のMgO-Al系介在物個数が30~57個/1000mm、10μm以上のMgO-Al系介在物個数が0.2~0.9個/1000mm、B10寿命は6.9~8.6×10回であった。比較例14~25は、比較例1~13よりは良好であったが、本発明例1~15には及ばない結果であった。
 また、比較例26~29は、第1期間の撹拌動力が本発明の条件を満たさない操業であり、比較例30~33は、第2期間の撹拌動力が本発明の条件を満たさない操業である。比較例26~33では、3μm以上のMgO-Al系介在物個数が33~43個/1000mm、10μm以上のMgO-Al系介在物個数が0.3~0.7個/1000mm、B10寿命は6.9~8.2×10回であった。比較例26~33は、比較例1~13よりは良好であったが、本発明例1~15には及ばない結果であった。
 実施例1と同様に、1チャージの溶鋼量が約200トン規模の実機にて、転炉-取鍋精錬設備-RH真空脱ガス装置-ブルーム連続鋳造機の工程順で、高清浄度鋼の代表として挙げられる軸受鋼の素材を製造した。取鍋精錬設備では、本発明を満足する条件のスラグ組成に制御し、第1期間及び第2期間の溶鋼の撹拌は、本発明を満足する撹拌条件とした(本発明例16~25)。取鍋精錬設備での溶鋼の撹拌条件は実施例1と同等とした。また、製品丸棒鋼の清浄性及びB10寿命の評価方法は、実施例1と同じである。
 実施例2では、実施例1と同様に、製造工程で使用する鉄スクラップや合金鉄などのスズ濃度、ヒ素濃度を管理・選別した。その結果、いずれの鋳片においても、スズ濃度は、分析下限値(0.001質量%)未満~0.003質量%の範囲内であった。また、ヒ素濃度は、分析下限値(0.001質量%)~0.005質量%の範囲内であった。
 表3及び表4に、取鍋精錬におけるスラグ組成条件、総処理時間、第1期間の処理時間、第2期間の処理時間、撹拌条件、MgO-Al系介在物個数、MgO-Al系介在物中の平均MgO濃度、B10寿命を示す。尚、表4において、「MgO-Al系介在物中の平均MgO濃度」とは、被検面積3000mmで検出した、MgO濃度が5質量%以上のMgO-Al系介在物のMgO濃度を平均した値である。また、表3の取鍋精錬スラグ組成は、実施例1と同様に、処理終了時点の値を記載しているが、加熱撹拌処理工程の総処理時間の少なくとも後半50%以上の期間で同等のスラグ組成となっていることを確認している。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3及び表4に示すように、「MgO-Al系介在物中の平均MgO濃度」が10質量%を下回る本発明例16~23は、B10寿命が9.4~10.5×10回と非常に良好であった。一方、「MgO-Al系介在物中の平均MgO濃度」が10質量%以上である本発明例24、25では、B10寿命は9.1×10回であり、若干低下はしたが、これらも十分に製品特性を満足する水準であった。
 1 取鍋精錬設備
 2 取鍋
 3 上蓋
 4 電極
 5 鉄皮
 6 内張り耐火物
 7 永久耐火物
 8 底吹きプラグ
 9 溶鋼
 10 スラグ

Claims (6)

  1.  転炉または電気炉から出鋼された溶鋼に対して取鍋精錬設備で取鍋精錬を行い、その後、真空脱ガス設備で真空脱ガス精錬を行って高清浄度鋼を製造する高清浄度鋼の製造方法であって、
     前記取鍋精錬での処理中から処理終了までのスラグ組成が、(質量%CaO)/(質量%SiO)が4.0~6.3の範囲、(質量%CaO)/(質量%Al)が1.8~2.3の範囲、(質量%CaO)/(質量%SiO)と(質量%CaO)/(質量%Al)とが下記の(1)式を満たす範囲であり、
     前記取鍋精錬の処理開始から処理中の任意の時刻までの期間を第1期間、前記任意の時刻から処理終了までの期間を第2期間とし、下記の(2)式で算出される溶鋼の撹拌動力εが、前記第1期間では55W/ton超105W/ton以下、前記第2期間では25W/ton以上55W/ton以下である、高清浄度鋼の製造方法。
     0.0059×(質量%CaO)/(質量%SiO2)+0.028×(質量%CaO)/(質量%Al2O3)≦0.088……(1)
     ε=6.18×(Qg×TL/W)×[ln{1+h/(1.46×10-5×P0)}+0.06×(1-298/TL)]……(2)
     ここで、(2)式において、εは撹拌動力(W/ton)、Qは撹拌用ガスの流量(Nm/min)、Tは溶鋼温度(K)、Wは溶鋼量(ton)、hは取鍋内溶鋼の浴深さ(m)、Pは雰囲気圧力(Pa)である。
  2.  前記第1期間の処理時間が、取鍋精錬の予定された総処理時間の30%以上60%以下である、請求項1に記載の高清浄度鋼の製造方法。
  3.  前記取鍋精錬の処理中のスラグ量を、取鍋に収容された溶鋼質量1トンあたり10kg以上30kg以下とする、請求項1または請求項2に記載の高清浄度鋼の製造方法。
  4.  前記高清浄度鋼は、被検面積が3000mmのときに、当該高清浄度鋼で検出されたMgO-Al系介在物のうちでMgO濃度が5質量%以上のMgO-Al系介在物のMgO濃度の平均値が10質量%未満である、請求項1から請求項3のいずれか1項に記載の高清浄度鋼の製造方法。
  5.  前記高清浄度鋼は、化学成分組成の炭素濃度が0.60質量%以上1.20質量%以下、珪素濃度が0.15質量%以上0.70質量%以下、マンガン濃度が0.20質量%以上0.80質量%以下、燐濃度が0.020質量%以下、硫黄濃度が0.0050質量%以下、アルミニウム濃度が0.005質量%以上0.040質量%以下、クロム濃度が0.50質量%以上2.00質量%以下、窒素濃度が0.0080質量%以下である軸受鋼の素材である、請求項1から請求項4のいずれか1項に記載の高清浄度鋼の製造方法。
  6.  前記高清浄度鋼は、ISO683-17規格における100Cr6、JIS G4805規格におけるSUJ2、GB規格におけるGCr15、ASTM A295規格における52100及びDIN規格における100Cr6のうちの少なくとも一つの規格で規定された軸受鋼の素材である、請求項1から請求項4のいずれか1項に記載の高清浄度鋼の製造方法。
PCT/JP2021/019198 2020-06-16 2021-05-20 高清浄度鋼の製造方法 WO2021256158A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021549982A JP7028376B1 (ja) 2020-06-16 2021-05-20 高清浄度鋼の製造方法
CN202180041574.1A CN115917014A (zh) 2020-06-16 2021-05-20 高洁净度钢的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020103492 2020-06-16
JP2020-103492 2020-06-16

Publications (1)

Publication Number Publication Date
WO2021256158A1 true WO2021256158A1 (ja) 2021-12-23

Family

ID=79267771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019198 WO2021256158A1 (ja) 2020-06-16 2021-05-20 高清浄度鋼の製造方法

Country Status (3)

Country Link
JP (1) JP7028376B1 (ja)
CN (1) CN115917014A (ja)
WO (1) WO2021256158A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116479309A (zh) * 2023-04-04 2023-07-25 福建鼎盛钢铁有限公司 一种基于电炉薄板坯无头轧制生产400MPa级耐候钢的工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621538A (zh) * 2004-12-10 2005-06-01 宝钢集团上海五钢有限公司 减少和细化高碳铬轴承钢d类夹杂物的生产方法
WO2008149733A1 (ja) * 2007-06-05 2008-12-11 Kabushiki Kaisha Kobe Seiko Sho 高清浄度鋼の製造方法
JP2016222953A (ja) * 2015-05-28 2016-12-28 Jfeスチール株式会社 高清浄度鋼の製造方法
JP2017106076A (ja) * 2015-12-10 2017-06-15 山陽特殊製鋼株式会社 転動疲労寿命に優れた機械部品用鋼の製造方法
JP2018141221A (ja) * 2017-02-28 2018-09-13 Jfeスチール株式会社 高清浄度鋼の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621538A (zh) * 2004-12-10 2005-06-01 宝钢集团上海五钢有限公司 减少和细化高碳铬轴承钢d类夹杂物的生产方法
WO2008149733A1 (ja) * 2007-06-05 2008-12-11 Kabushiki Kaisha Kobe Seiko Sho 高清浄度鋼の製造方法
JP2016222953A (ja) * 2015-05-28 2016-12-28 Jfeスチール株式会社 高清浄度鋼の製造方法
JP2017106076A (ja) * 2015-12-10 2017-06-15 山陽特殊製鋼株式会社 転動疲労寿命に優れた機械部品用鋼の製造方法
JP2018141221A (ja) * 2017-02-28 2018-09-13 Jfeスチール株式会社 高清浄度鋼の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116479309A (zh) * 2023-04-04 2023-07-25 福建鼎盛钢铁有限公司 一种基于电炉薄板坯无头轧制生产400MPa级耐候钢的工艺

Also Published As

Publication number Publication date
CN115917014A (zh) 2023-04-04
JP7028376B1 (ja) 2022-03-02
JPWO2021256158A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
JP6314911B2 (ja) 高清浄度鋼の製造方法
KR101263102B1 (ko) 내마모성 및 인성이 우수한 펄라이트계 레일
JP6872616B2 (ja) 耐水素誘起割れ性に優れた圧力容器用鋼材及びその製造方法
JP5935944B2 (ja) 低酸素清浄鋼及び低酸素清浄鋼製品
RU2723307C1 (ru) Высокопрочный лист нержавеющей стали, обладающий превосходными усталостными характеристиками, а также способ его производства
JP5803824B2 (ja) 浸炭軸受鋼鋼材の溶製方法
KR101082649B1 (ko) 단조용 강 및 이것을 사용하여 얻어지는 단조품
JP5803815B2 (ja) 軸受鋼鋼材の溶製方法
KR101022068B1 (ko) 신선성과 피로 특성이 우수한 고탄소강 선재용 강의 제조 방법
JP6652226B2 (ja) 転動疲労特性に優れた鋼材
JP6569694B2 (ja) 高清浄度鋼の製造方法
WO2021106936A1 (ja) ホットスタンプ成形品及びホットスタンプ用鋼板
JP5845784B2 (ja) 軸受材料及び軸受材料の製造方法
JP2012241229A (ja) 高疲労強度鋼鋳片の製造方法
WO2021256158A1 (ja) 高清浄度鋼の製造方法
JP4799392B2 (ja) 疲労特性に優れた鋼線材の製造方法
JP5443331B2 (ja) 鍛鋼品及び組立型クランク軸
JP5736990B2 (ja) 軸受材料
JP4280923B2 (ja) 浸炭部品又は浸炭窒化部品用の鋼材
KR20230010244A (ko) 내피로 특성이 뛰어난 석출 경화형 마르텐사이트계 스테인리스 강판
JP4160103B1 (ja) 鍛造用鋼塊
JP4586648B2 (ja) 加工性に優れた鋼板およびその製造方法
JP6984803B1 (ja) 高疲労強度鋼の素材となる鋳片の製造方法
JP4243852B2 (ja) 浸炭部品又は浸炭窒化部品用の鋼材、浸炭部品又は浸炭窒化部品の製造方法
WO2021256159A1 (ja) 高疲労強度鋼の素材となる鋳片の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021549982

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825582

Country of ref document: EP

Kind code of ref document: A1