WO2021255972A1 - 伸縮性コンデンサ - Google Patents

伸縮性コンデンサ Download PDF

Info

Publication number
WO2021255972A1
WO2021255972A1 PCT/JP2021/001881 JP2021001881W WO2021255972A1 WO 2021255972 A1 WO2021255972 A1 WO 2021255972A1 JP 2021001881 W JP2021001881 W JP 2021001881W WO 2021255972 A1 WO2021255972 A1 WO 2021255972A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
stretchable
capacitor
conductive laminate
cover layer
Prior art date
Application number
PCT/JP2021/001881
Other languages
English (en)
French (fr)
Inventor
翔太 森本
祐輔 清水
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2021255972A1 publication Critical patent/WO2021255972A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge

Definitions

  • the present invention relates to a removable elastic capacitor that detects elongation strain or elongation displacement from a change in capacitance due to tensile deformation of a capacitor element.
  • Patent Document 1 has a sheet-like dielectric layer made of an elastomer composition, and a first electrode layer and a second electrode layer formed so as to partially face the front surface and the back surface of the dielectric layer.
  • Capacitance type characterized by being provided with a sensor body that is reversibly deformed so that the area of the front and back surfaces of the layer changes, and a stretchable cloth material that is integrated with the sensor body and has stretch resistance. Sensor sheets have been proposed.
  • Patent Document 2 includes a stretchable sheet-like cloth and a strain sensor having a resistor laminated in a predetermined area on one surface side of the cloth, and the cloth is provided in at least a part of the predetermined area.
  • a fabric with a strain sensor has been proposed, characterized in that the surface layer on one surface side has a composite layer containing fibers and resins that contribute to the adhesion of the strain sensor.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to accurately detect deformation that is originally desired to be detected while ensuring free body movement when applied to a clothing-type sensing device. Since it can be easily attached and detached, it is an object of the present invention to provide a detachable elastic capacitor in which the sensor is less likely to be damaged even when a load more than expected is applied to the sensor.
  • the present invention has the following configuration.
  • a conductive laminate containing a first elastic cover layer, a first elastic conductive layer, an elastic dielectric layer, a second elastic conductive layer, and a second elastic cover layer in this order is contained, and the conductive material is contained.
  • a detachable elastic capacitor characterized in that the sex laminate is detachably engaged with an elastic base material at two or more points, and the disengagement force of the engaging portion is 1 N or more and 10 N or less.
  • the first elastic cover layer and / or the second elastic cover layer and a type III polyester load cloth (specified in Annex H of JIS L 1930 (home washing test method for textile products)).
  • the difference between the capacitance value when the detachable elastic capacitor is extended by 15% in the longitudinal direction and the capacitance value when the removable elastic capacitor is extended by 17% in the longitudinal direction is 2.5 pF or more.
  • the elongation rate of the stretchable base material in the longitudinal direction is in the range of 5% to 20%
  • the elongation rate of the conductive laminate with respect to the elongation rate of the stretchable base material in the direction is 60% to 95%.
  • the elongation rate of the conductive laminate with respect to the elongation rate of the stretchable base material in the direction is The removable stretchable capacitor according to any one of [1] to [5], which is characterized in the range of 0% to 20%.
  • a conductive laminate containing a first elastic cover layer, a first elastic conductive layer, an elastic dielectric layer, a second elastic conductive layer, and a second elastic cover layer in this order is contained, and the conductivity is described.
  • the conductive laminate is detachably engaged with the elastic base material at three or more points, the conductive laminate is deformed two-dimensionally, and the capacitance when the area of the conductive laminate changes by 15%.
  • the detachable elastic capacitor according to any one of [1] to [3], wherein the difference between the value of 1 and the value of the capacitance when changed by 17% is 2.5 pF or more.
  • the conductive laminate and the elastic base material are detached by a predetermined load or more, the conductive laminate is not loaded more than expected, and the sensor is damaged due to overstretching. Does not occur.
  • the stretchable base material does not need to have remarkable stretch anisotropy, the body movement is not hindered when the stretchable base material is used, and the materials that can be used as the stretchable base material are not limited. Further, it is possible to accurately detect the deformation in the direction to be sensed while suppressing the influence of the body movement other than the direction to be sensed, and it is possible to achieve both the degree of freedom of the body movement and the measurement accuracy.
  • FIG. 1 is a schematic view showing the structure of the conductive laminate used in the present invention.
  • FIG. 2 is a schematic view showing an example of forming a detachable elastic capacitor by detachably engaging a conductive laminate and an elastic base material at two places.
  • FIG. 3 is a schematic diagram illustrating the desorption force of the present invention.
  • FIG. 4 is a schematic view illustrating a deformation direction of the removable elastic capacitor in the present invention.
  • FIG. 5 is a bird's-eye view of an example of the removable elastic capacitor of the present invention from the second elastic cover layer side.
  • FIG. 6 is a bird's-eye view from the second elastic cover layer side illustrating the shape of the third embodiment of the present invention.
  • the conductive laminate 10 of the removable elastic capacitor 22 includes a first elastic cover layer 12, a first elastic conductive layer 13, an elastic dielectric layer 14, and a second elastic conductive layer. 15.
  • the second elastic cover layer 16 is included in this order.
  • the configuration may be included in a part of the conductive laminate 10.
  • the conductive laminate 10 preferably further includes a detection portion 17, a waterproof cover layer 19, and an engagement portion 20.
  • the first elastic conductive layer 13 and the second elastic conductive layer 15 penetrate through the first elastic cover layer 12 and conduct with the detection unit 17, respectively, and the detection unit 17 corresponding to the first elastic conductive layer 13
  • the detection unit 17 corresponding to the second elastic conductive layer 15 is insulated from each other.
  • the through hole 18 of the first elastic cover layer 12 for the first elastic conductive layer 13 and the second elastic conductive layer 15 to penetrate is sealed with the waterproof cover layer 19. Further, as shown in FIG. 2, the conductive laminate 10 is detachably engaged with the elastic base material 11 at two or more engaging portions 20 located on the opposite surface to the detection portion 17.
  • the elastic base material 11 in the present invention is not particularly limited as a material, and is rubber, elastomer, nylon, polyester, polyolefin, wool, etc., and the structure is not particularly limited, and has a member having a knit structure and a woven fabric structure.
  • a member, a member having a braided structure, a member having a cut paper structure, a member having a spiral structure, a belt member using a metal spring, and the like are shown.
  • the stretchable base material 11 in the present invention preferably has a stress of 20 N or less when stretched by 20%.
  • the stress when stretched by 20% is more preferably 12N or less, further preferably 8N or less, still more preferably 5N or less, still more preferably 3N or less, because the feeling of discomfort when worn on the body is reduced.
  • the lower limit of the stress when stretched by 20% is preferably 0.1 N, more preferably 0.3 N.
  • the material used for engaging the conductive laminate 10 and the elastic base material 11 is not particularly limited, and the hook-and-loop fastener, buttons, magnets, self-adhesive tape, hot melt adhesive, and the like.
  • the hook-and-loop fastener buttons, magnets, self-adhesive tape, hot melt adhesive, and the like.
  • surface fasteners and self-adhesive tapes are particularly preferable.
  • the first elastic cover layer 12 and the second elastic cover layer 16 in the present invention (hereinafter, the first elastic cover layer and the second elastic cover layer are collectively referred to simply as "elastic cover layer”).
  • it contains a resin material having elasticity, that is, a polymer material, and it is more preferable that it is made of a polymer material (resin material) having elasticity.
  • the stretchable cover layer used in the present invention is preferably made of a stretchable insulating polymer having a tensile yield elongation of 70% or more.
  • the tensile yield elongation is preferably 85% or more, more preferably 120% or more, still more preferably 150% or more.
  • the upper limit is not particularly limited, but is preferably 300% or less, and more preferably 250% or less.
  • the tensile yield elongation in the present invention is a curve (SS) obtained by a general tensile test when the vertical axis is weighted (or strength) and the horizontal axis is strain (or elongation or elongation).
  • SS curve
  • the yield point is regarded as a point that roughly indicates the boundary that changes from elastic deformation to plastic deformation.
  • the polymer material used for the elastic cover layer is preferably flexible.
  • the flexible polymer material include an elastomer, a thermoplastic resin, a thermosetting resin, and rubber having an elastic modulus of 1 to 1000 MPa.
  • rubber include urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydride nitrile rubber, isoprene rubber, sulfide rubber, styrene rubber, styrene-butadiene rubber, butyl rubber, and chlorosulfonated polyethylene.
  • examples include rubber, ethylene-propylene rubber, vinylidene fluoride copolymer, and the like.
  • the elastic modulus is preferably 2 to 480 MPa, more preferably 3 to 240 MPa, and even more preferably 4 to 120 MPa.
  • the materials and structures of the first stretchable cover layer and the second stretchable cover layer may be the same or different, but are preferably industrially the same.
  • Examples of the flexible polymer material preferably used in the present invention include urethane rubber containing a polyether polyol or a polyester polyol as a polyol component and an HDI-based polyisocyanate as an isocyanate component.
  • the urethane rubber of the present invention has a high elongation rate and has a small tensile permanent strain and a small residual strain, so that it is a stretchable adhesive layer having excellent reliability when repeatedly deformed.
  • a hot melt adhesive may be used in the elastic cover layer of the present invention.
  • a polymer material having a softening temperature of about 30 ° C. to 150 ° C. can be used, and preferably, it has the same degree of elasticity as the elastic dielectric layer 14.
  • Flexible polymer materials can be used.
  • a hot melt adhesive those using an ethylene-based copolymer, a styrene-based block copolymer, a polyurethane-based, an acrylic-based copolymer, an olefin-based (co) polymer, or the like as a base polymer can be used.
  • a hot melt sheet obtained by processing a polyester urethane resin, a polyether urethane resin, or the like having a softening temperature of 40 ° C to 120 ° C into a sheet can be preferably used.
  • the first stretchable conductive layer 13 and the second stretchable conductive layer 15 in the present invention (hereinafter, the first stretchable conductive layer 13 and the second stretchable conductive layer 15 are also simply referred to as "stretchable conductive layer"). It is preferable that the specific resistance at the time of non-stretching is 3 ⁇ 10 -3 ⁇ cm or less. It is more preferably 1 ⁇ 10 -3 ⁇ cm or less, further preferably 3 ⁇ 10 -4 ⁇ cm or less, and even more preferably 1 ⁇ 10 -4 ⁇ cm or less.
  • the specific resistance is not more than this range, the variation in the resistance distribution in the conductive layer is not remarkable, the time constant of the element is small, so that the responsiveness is good, and the high frequency characteristics and the pulse responsiveness are also good.
  • the lower limit of the specific resistance depends on the conductive material used in principle, and is, for example, 1 ⁇ 10 -6 ⁇ cm or more.
  • the elastic conductive layer of the removable elastic capacitor 22 used in the present invention preferably has a specific resistance at 100% elongation of 100 times or less, more preferably 50 times or less, and further 30 times. It is preferably within twice, and more preferably within 15 times.
  • the lower limit of the specific resistance depends on the conductive material used in principle, and is, for example, 1 times or more.
  • the stretchable conductive layer of the removable stretchable capacitor 22 used in the present invention is preferably composed of at least metal particles and a flexible resin having a tensile elastic modulus of 1 MPa or more and 1000 MPa or less.
  • the blending amount of the flexible resin is preferably 7 to 35% by mass, more preferably 10 to 30% by mass, based on the total amount of the metal particles and the flexible resin.
  • the elastic conductive layer can be obtained by kneading and mixing metal particles and a flexible resin and molding them into a film or a sheet.
  • the stretchable conductive layer is preferably processed into a sheet or film by coating and drying after being made into a paste or slurry for forming a stretchable conductor by adding a solvent or the like to metal particles and a flexible resin. Can be done. Further, it is also possible to give a predetermined shape by printing after making a paste.
  • the metal particles are preferably conductive metal particles (hereinafter, also referred to as conductive particles).
  • the conductive particles are preferably made of a substance having a specific resistance of 1 ⁇ 10 -1 ⁇ cm or less, and more preferably made of a substance having a specific resistance of 1 ⁇ 10 ⁇ 2 ⁇ cm or less. Further, the particles having a particle diameter of 100 ⁇ m or less are preferable, and particles having a particle diameter of 50 ⁇ m or less are more preferable. Further, the particles are preferably 1 ⁇ m or more, and more preferably 5 ⁇ m or more. Examples of the substance having a specific resistance of 1 ⁇ 10 -1 ⁇ cm or less include metals, alloys, carbons, doped semiconductors, and conductive polymers.
  • the conductive particles preferably used in the present invention include metals such as silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead and tin, alloy particles such as brass, bronze, white copper and solder, and silver-coated copper.
  • metals such as silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead and tin, alloy particles such as brass, bronze, white copper and solder, and silver-coated copper.
  • Hybrid grains, as well as metal-plated polymer particles, metal-plated glass particles, metal-coated ceramic particles, and the like can be used.
  • the term "used mainly” here means that 90% by mass or more of the conductive particles are used.
  • the amorphous agglomerated powder is a three-dimensional aggregate of spherical or amorphous primary particles.
  • Amorphous agglomerated powder and flake-like powder have a larger specific surface area than spherical powder and the like, and are preferable because they can form a conductive nate work even with a low filling amount. Since the amorphous agglomerated powder is not in the form of monodisperse, it is more preferable because the particles are in physical contact with each other and easily form a conductive nate work.
  • Examples of the flexible resin used for the elastic conductive layer in the present invention include a thermoplastic resin, a thermosetting resin, and rubber having an elastic modulus of 1 to 1000 MPa.
  • Urethane resin or rubber is preferable in order to develop the elasticity of the film.
  • Examples of rubber include urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydride nitrile rubber, isoprene rubber, sulfide rubber, styrene rubber, styrene-butadiene rubber, butyl rubber, and chlorosulfonated polyethylene.
  • Examples include rubber, ethylene-propylene rubber, vinylidene fluoride copolymer, and the like.
  • nitrile group-containing rubber chloroprene rubber, and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
  • the range of the elastic modulus preferable in the present invention is 2 to 480 MPa, more preferably 3 to 240 MPa, still more preferably 4 to 120 MPa.
  • the stretchable dielectric layer in the present invention preferably contains a stretchable resin material, that is, a polymer material, and more preferably a stretchable polymer material (resin material).
  • the stretchable dielectric layer used in the present invention is preferably made of a stretchable insulating polymer having a tensile yield elongation of 70% or more.
  • the tensile yield elongation is preferably 85% or more, more preferably 120% or more, still more preferably 150% or more.
  • the lower limit is not particularly limited, but is preferably 300% or less, and more preferably 250% or less.
  • the polymer material used for the stretchable dielectric layer is preferably flexible.
  • the flexible polymer material include an elastomer, a thermoplastic resin, a thermosetting resin, and rubber having an elastic modulus of 1 to 1000 MPa.
  • rubber include urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydride nitrile rubber, isoprene rubber, sulfide rubber, styrene-butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, and ethylene.
  • Examples thereof include propylene rubber and vinylidene fluoride copolymer.
  • the elastic modulus is preferably 2 to 480 MPa, more preferably 3 to 240 MPa, and even more preferably 4 to 120 MPa.
  • the average thickness of the stretchable dielectric layer 14 of the present invention is 0.3 from the viewpoint of increasing the capacitance C to improve the detection sensitivity and improving the followability to the object to be measured. It is preferably in the range of ⁇ 1000 ⁇ m, preferably in the range of 0.4 to 100 ⁇ m from the viewpoint of sensitivity, further preferably in the range of 0.5 to 70 ⁇ m, and further preferably in the range of 0.6 to 50 ⁇ m.
  • the elastic dielectric layer 14 used in the present invention preferably has a relative permittivity of 2.2 or more when no load is applied, more preferably 2.8 or more, still more preferably 3.4 or more, and 3.8 or more. The above is still preferable.
  • the upper limit of the relative permittivity is about 500, preferably 150 or less, and more preferably 80 or less.
  • the elastic dielectric layer 14 has a high relative permittivity, but in general, a polymer material having elasticity often has an alkyl group in the flexible chain component and is relatively low. It has a relative permittivity. In the present invention, it is preferable to increase the relative permittivity by introducing a polar group into the molecular chain.
  • a nitrile group, a ketone group, an ester group, a halogen substituent, a hydroxyl group, a carboxyl group, a nitro group, a halogen group and the like are functional groups effective for increasing the relative permittivity of a polymer.
  • the relative permittivity of the stretchable dielectric layer 14 by adding a filler having a high relative permittivity, preferably an inorganic filler such as titanate, to the stretchable dielectric layer 14.
  • the relative permittivity of the inorganic filler is preferably less than 5.
  • the relative permittivity of the inorganic filler is high. It is more preferably 4 or less, still more preferably 3 or less.
  • the content of the inorganic filler in the stretchable dielectric layer 14 is preferably 10% by mass or more, more preferably 20% by mass or more.
  • the content of the inorganic filler having a relative permittivity of 5 or more in the stretchable dielectric layer 14 is preferably 10% by mass or less.
  • the content of the inorganic filler having a relative permittivity of 5 or more is preferably 3% by mass or less, more preferably 1% by mass or less, still more preferably 0.3% by mass or less.
  • Durability may be problematic, such as peeling and formation of voids. Further, if the amount of the inorganic filler contained in the stretchable dielectric layer 14 is large, the Poisson's ratio of the stretchable dielectric layer 14 becomes low, the change in capacitance during stretching becomes small, and the sensitivity when applied as a sensor is lowered. I have something to do.
  • the disengagement force between the conductive laminate 10 and the engaging portion 20 of the elastic base material 11 in the present invention is 1N or more and 10N or less, preferably 2N or more and 8N or less, and more preferably 3N or more and 6N or less. Is.
  • the disengagement force of the engaging portion 20 is 1N or more, the conductive laminate can be sensed without being disengaged from the elastic base material by a slight impact or operation.
  • the desorption force is 10 N or less
  • the elastic base material is stretched more than expected, the conductive laminate is stretched following without desorption, and the conductive layer is damaged by overstretching. It can be prevented from occurring.
  • the number of engaging portions may be two or more.
  • the number of engaging portions is preferably 3 points or more, and more preferably 4 points or more, because it is easy to prevent disengagement due to a slight impact or operation.
  • the upper limit is not particularly limited, but is preferably 20 points or less, more preferably 10 points or less, and further preferably 5 points or less from the viewpoint of cost.
  • the desorption force is shown in FIG. 3 when 180 degree peeling specified in JIS K6854-2 (1999) is performed on the engaging portion between the conductive laminate and the elastic base material.
  • maximum test force In the engaging part between the conductive laminate and the stretchable base material, the conductive base material and the stretchable base material are set on the chuck of the tensile tester, and the chuck is moved at 100 mm / min to obtain the maximum test force. Continues to grow. If the conductive laminate or elastic substrate breaks before the maximum test force is obtained, reinforce it with a hot melt sheet, double-sided tape, gum tape, etc., if necessary.
  • the disengagement force of the engaging portion means the disengagement force of all the engaging portions.
  • the first elastic cover layer 12 and / or the second elastic cover layer 16 in the present invention is a type III polyester load cloth (specified in Annex H of JIS L 1930 (home washing test method for textile products)).
  • the average coefficient of friction of the above is preferably 2 or less in a dry state. Since the first elastic cover layer 12 is located on the outermost layer of the conductive laminate 10, the stickiness is small in consideration of ease of handling.
  • the average friction coefficient in a dry state is more preferably 1.5 or less, and more preferably 1 or less, because stickiness is small and handling and storage are easy when the average friction coefficient is 2 or less. It is more preferable.
  • the lower limit is not particularly limited, but if it is 0.1 or more, no stickiness is felt, and 0.2 or more may be used.
  • the average coefficient of friction of either the first stretchable cover layer 12 or the second stretchable cover layer 16 is preferably within the above range, and more preferably both are within the above range.
  • the type III polyester load cloth is specified in Annex H of JIS L 1930 (2014) (Home washing test method for textile products), but it is replenished to be added to the washing machine together with the sample so as to have the specified weight.
  • It is a cloth and is a knitted fabric made of 100% polyester.
  • the average coefficient of friction is when two types of samples are in contact with each other with a constant load, one sample is fixed, and the other sample is moved at a constant speed for a certain distance, the sample is hung on the fixed sample side. It is calculated from the integrated value of the load.
  • the dry state is preferably a state in which the water content of each layer is 20% by mass or less, more preferably 15% by mass or less, and further preferably 12% by mass in an environment of a temperature of 20 ° C. and a humidity of 65% RH. It is in the following state.
  • the load at 20% elongation of the conductive laminate 10 in the present invention is 5 times or more and 20 times or less of the 20% elongation load of the elastic base material 11. It is more preferably 6 times or more, and further preferably 7 times or more. Further, it is more preferably 19 times or less, and further preferably 18 times or less.
  • the difference between the capacitance value when the detachable elastic capacitor 22 in the present invention is extended by 15% in the longitudinal direction and the capacitance value when the removable elastic capacitor 22 is extended by 17% in the longitudinal direction is 2.5 pF or more. Is preferable, and 3 pF or more is more preferable.
  • FIGS. 4A and 4B when the conductive laminate 10 and the elastic base material 11 have two engaging portions 20, the longitudinal direction connects the centers of gravity of the engaging members to each other. The direction.
  • FIG. 4C when the conductive laminate 10 and the elastic base material 11 have three or more engaging portions 20 and the conductive laminate 10 is two-dimensionally deformed, the conductive laminate 10 is deformed two-dimensionally.
  • the change in the capacitance value when the area of the body 10 changes by 15% and when the area changes by 17% is 2.5 pF or more. Since the capacitance value is easily affected by noise depending on the measurement environment, it is required to increase the S / N ratio, especially when measuring minute deformation such as respiration of the human body. By setting the capacitance value to 2.5 pF or more within the range of the elongation rate, the change in capacitance due to minute deformation is not buried in the change in capacitance due to noise. Therefore, the sensing ability can be maintained.
  • the upper limit of the difference between the capacitance values is not particularly limited, but is preferably 10 times or less, more preferably 8 times or less, and particularly preferably 5 times or less.
  • the elongation rate of the stretchable base material 11 in the longitudinal direction in the present invention is in the range of 5% to 20%
  • the elongation rate of the conductive laminate 10 with respect to the elongation rate of the stretchable base material 11 in the direction is 60% to 95%. It is preferably in the range of.
  • the elongation response of the conductive laminate 10 to the stretchable base material 11 is good, and the performance of sensing deformation is also good. Therefore, it is more preferably 65% or more, still more preferably 70% or more.
  • it while improving the elongation response of the conductive laminate 10 to the elastic base material 11, it suppresses the detection of signals that are not originally desired like other body movements during the respiration measurement of the human body, and has good detection accuracy. Therefore, it is more preferably 90% or less, and further preferably 85% or less.
  • the elongation rate in the direction perpendicular to the longitudinal direction of the stretchable base material 11 in the present invention is in the range of 5% to 20%
  • the elongation of the conductive laminate 10 with respect to the elongation rate of the stretchable base material 11 in the direction concerned is preferably in the range of 0% to 20%.
  • a more preferable range of the upper limit is 19% or less, still more preferably 18% or less. Since it becomes difficult to detect noise, it is preferable that the elongation rate is low, and the lower limit is not particularly limited, but industrially, it may be 1% or more, and may be 2% or more.
  • the detection of deformation other than the originally desired direction is suppressed, and the measurement accuracy is improved.
  • the purpose is to measure the respiration of the human body
  • only the deformation of the chest and abdomen due to respiration can be detected, and other body movements that cause noise are not detected.
  • the removable elastic capacitor 22 of the present invention causes a change in capacitance due to tensile deformation, it is possible to detect pressure, strain, displacement, degree of deformation, etc. by utilizing this.
  • By attaching the removable telescopic condenser 22 to the chest or abdomen it is possible to measure respiration from the displacement of the chest and abdomen, and by attaching it to joints such as elbows and knees, it is also possible to apply it to motion capture. ..
  • the stretchable capacitor 22 in the present invention since the conductive laminate 10 and the stretchable base material 11 are separated from each other by a predetermined load or more, the conductive laminate 10 is not loaded more than expected, and the conductive laminate 10 is not overstretched. No sensor damage occurs.
  • the elastic base material 11 and the conductive laminate 10 are separated and stretched, it is possible to suppress effects other than stretching in the direction to be detected. Further, at this time, since the stretchable base material does not need to have a remarkable stretch anisotropy, the body movement is not hindered when the stretchable base material is used, and it is possible to achieve both the degree of freedom of body movement and the measurement accuracy. ..
  • ⁇ Elastic modulus> The sample to be measured was formed into a sheet having an arbitrary thickness in the range of 20 ⁇ m to 200 ⁇ m, and then punched into a dumbbell mold specified by ISO 527-2-1A to obtain a test piece. A tensile test was performed by the method specified in ISO 527-1 to obtain a stress-strain diagram of the resin material, and the elastic modulus was calculated by a conventional method.
  • ⁇ Tension yield elongation> The sample to be measured was formed into a sheet having an arbitrary thickness in the range of 20 ⁇ m to 200 ⁇ m, and then punched into a dumbbell mold specified by ISO 527-2-1A to obtain a test piece. Then, the SS curve was obtained using a tensile tester, and the elongation at the yield point was defined as the tensile yield elongation.
  • Test piece Measure the resistance value [ ⁇ ] of the part with a width of 10 mm and a length of 80 mm using a milliohm meter manufactured by Agilent Technologies, and multiply by the aspect ratio (1/8) of the test piece to obtain the sheet resistance value “ ⁇ ]. ⁇ ”was asked. Further, the resistivity value [ ⁇ ] was multiplied by the cross-sectional area (width 1 [cm] mm ⁇ thickness [cm]) and divided by the length (8 cm) to obtain the specific resistance [ ⁇ cm].
  • Type III polyester load cloth (specified in Annex H of JIS L 1930 (home washing test method for textile products)) was cut to a width of 10 mm and a length of 20 mm.
  • KES-SE manufactured by Kato Tech
  • a type III polyester load cloth attached to the grinder is placed on the sample to be measured, and a type III polyester load cloth attached to the grinder is brought into contact with the sample to be measured, and a load of 25 gf is applied.
  • the average friction coefficient MMD was obtained from the measurement results of 20 mm excluding 5 mm at both ends after moving 30 mm at a sensitivity H and a sample moving speed of 1 mm / s.
  • ⁇ Extended load> The conductive laminate and elastic base material were sandwiched between chucks at a distance of 50 mm between chucks, the chucks were moved at a speed of 300 mm / min, and the load when extended to 60 mm was measured and used as the 20% extended load. .. If the distance between chucks cannot be 50 mm depending on the sample, there is no need to be particular about this. In that case, the chuck was chucked at a possible distance, and the load when extended by 20% with respect to the distance was defined as the load when extended by 20%.
  • Test piece Measure the resistance value [ ⁇ ] of the part with a width of 10 mm and a length of 80 mm using a milliohm meter manufactured by Agilent Technologies, and multiply by the aspect ratio (1/8) of the test piece to obtain the sheet resistance value “ ⁇ ]. ⁇ ”was asked. Further, the resistivity value [ ⁇ ] was multiplied by the cross-sectional area (width 1 [cm] mm ⁇ thickness [cm]) and divided by the length (8 cm) to obtain the specific resistance [ ⁇ cm].
  • ⁇ Relative permittivity> The relative permittivity of the stretchable conductor sheet was measured under the conditions of a temperature of 23 ° C. and a frequency of 1 GHz by a cavity resonator perturbation method (network analyzer (manufactured by Anritsu)).
  • Sensing was judged by the following evaluation criteria. ⁇ : 80% or more of the total expansion / contraction operation can be detected by the change in capacitance. ⁇ : 60% or more and less than 80% of the total expansion / contraction operation can be detected by the change in capacitance. X: Of all the expansion and contraction operations, less than 60% could be detected by the change in capacitance.
  • ⁇ Uncomfortable wearing> The feeling of discomfort in wearing was judged by the following evaluation criteria.
  • X A five-level subjective evaluation was performed on the feeling of tightening and the feeling of tension, and the evaluation was 2 or less when no discomfort was set to 5.
  • ⁇ Sensor damage> Sensor damage was determined by the following evaluation criteria. ⁇ : No abnormality occurs in the change in capacitance at the time of 50% elongation. ⁇ : When the elongation is 30% or more and less than 50%, the linearity of the change in capacitance with respect to the elongation is impaired. X: When the elongation is 10% or more and less than 30%, the linearity of the change in capacitance with respect to the elongation is impaired.
  • Example 1 12 parts by mass of nitrile butadiene rubber having 40% by mass of nitrile, 46 parts by mass of Mooney viscosity 46, 30 parts by mass of isophorone, and 58 parts by mass of fine flake-shaped silver powder [trade name Ag-XF301 manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.] with an average particle diameter of 6 ⁇ m.
  • the paste AG1 for forming an elastic conductive layer was obtained by uniformly mixing and dispersing with a three-roll mill.
  • the obtained stretchable conductive layer forming paste AG1 was applied and dried in the form of a release PET film by a screen printing method to obtain a stretchable conductor sheet having a thickness of 22 ⁇ m.
  • the obtained stretchable conductor sheet was cut into a width of 10 mm and a length of 200 mm, and the specific resistance was obtained from the resistance value and the thickness in the length direction. As a result, the resistivity was 1.0 ⁇ 10 -4 ⁇ cm.
  • clip both ends of the stretchable conductor sheet in the length direction between the clips of the pull tester pull it to 320 mm with an effective length of 160 mm, and determine the resistivity at both ends, the width and thickness of the narrowest part of the test piece. It was used to calculate the specific resistance at 100% elongation. As a result, the resistivity at 100% elongation was 48 ⁇ 10 -4 ⁇ cm.
  • NBR nitrile butadiene rubber
  • Mooney viscosity of 46 was dissolved in 40 parts by mass of isophorone to obtain a stretchable dielectric layer forming paste CC1.
  • NBR nitrile butadiene rubber
  • NBR nitrile butadiene rubber
  • Mooney viscosity of 46 was dissolved in 40 parts by mass of isophorone to obtain a second stretchable cover layer forming paste CC3.
  • the previously obtained paste CC2 for the first elastic cover layer was applied and dried to obtain a first elastic cover layer having a width of 30 mm, a length of 200 mm and a thickness of 35 ⁇ m. ..
  • the paste AG1 for forming the elastic conductive layer was applied and dried on the first elastic cover layer by a screen printing method to obtain a first elastic conductive layer having a thickness of 30 ⁇ m.
  • a rectangular portion having a width of 10 mm and a length of 150 mm and a bent portion of 10 mm square were provided.
  • the stretchable dielectric layer forming paste CC1 was applied and dried on the first stretchable conductive layer by a screen printing method to obtain a stretchable dielectric layer having a width of 30 mm, a length of 200 mm and a thickness of 35 ⁇ m.
  • the stretchable conductive layer forming paste AG1 was applied and dried on the stretchable dielectric layer by a screen printing method to obtain a second stretchable conductive layer having a thickness of 30 ⁇ m. Similar to the first conductive layer, it has a rectangular part with a width of 10 mm and a length of 120 mm and a bent part of 10 mm square. I tried not to overlap.
  • the paste CC3 for forming the second elastic cover layer was applied and dried on the second elastic conductive layer by a screen printing method to obtain a second elastic cover layer having a width of 30 mm, a length of 200 mm and a thickness of 35 ⁇ m. rice field.
  • a spring hook button was driven into each of the bent portions of the first elastic conductive layer and the second elastic conductive layer, and a detection unit capable of detecting a signal from above the second elastic cover layer was provided.
  • male members (two) of hook-and-loop fasteners were attached to both ends of the first elastic cover layer with a hot melt adhesive to obtain a conductive laminate.
  • a knit fabric made of nylon / polyester was selected as the elastic base material, and a tensile test was performed on it.
  • Table 1 shows the results of calculating the 20% elongation load of the conductive laminate with respect to the 20% elongation load of the stretchable base material. Further, in the elastic base material, a female hook-and-loop fastener was attached at a position corresponding to the hook-and-loop fastener position of the conductive laminate.
  • the conductive laminate and the elastic base material were engaged at the position of the hook-and-loop fastener, and the disengagement force of the engaging portion was measured and shown in Table 1.
  • the conductive laminate and the elastic base material are engaged at the position of the surface fastener, and while being stretched by the tensile tester, the first elastic conductive layer and the second elastic conductive layer are used by the LCR high tester manufactured by Hioki Electric Co., Ltd.
  • a lead wire was connected to the detection unit corresponding to each layer, and the capacitance was measured at a measurement frequency of 1 GHz.
  • the elastic base material 5 mm outside the engaging part of the conductive laminate is chucked and stretched at a chuck distance of 210 mm, an elongation rate of 0% to 25%, and an elongation rate of 10 mm / s, the elongation rate is 15%.
  • the difference in capacitance value at 17% was calculated and shown in Table 1.
  • the extension direction at this time is the direction in which the centers of gravity of the engaging members are connected to each other.
  • the conductive laminate and the stretchable base material are engaged with each other at the position of the hook-and-loop fastener, and while the stretchable base material is stretched by a tensile tester, the stretchable base material is stretched by 5% or 20%.
  • the elongation rate with respect to the above was calculated and shown in Table 1.
  • the extension direction at this time is the direction in which the centers of gravity of the engaging members are connected to each other.
  • the conductive laminate and the stretchable base material are engaged with each other at the position of the hook-and-loop fastener, and while the stretchable base material is stretched by a tensile tester, the stretchable base material is stretched by 5% or 20%.
  • the elongation rate with respect to the above was calculated and shown in Table 1.
  • the extension direction at this time is a direction perpendicular to the direction in which the centers of gravity of the engaging members are connected to each other.
  • a compression type garment was made from an elastic base material, and a female hook-and-loop fastener was attached to the chest position so that the conductive laminate could be engaged.
  • a 30-year-old healthy man was made to wear this garment with a conductive laminate engaged, and the respiratory state when performing radio calisthenics first was measured.
  • the respiratory state the change in chest circumference was captured as a change in capacitance with a removable elastic capacitor.
  • a small measuring instrument was attached to the detection unit installed in the conductive laminate, and the measurement results were wirelessly transmitted to the android terminal and stored.
  • the subject exercised without feeling any discomfort, and was able to accurately measure the respiratory waveform while there was physical movement in radio calisthenics.
  • stickiness did not occur and the handling was good.
  • Example 2 A removable stretchable capacitor was obtained by operating in the same manner as in Example 1 except that a urethane resin was used as the stretchable cover layer and a magnet was used for the engaging portion between the conductive laminate and the stretchable base material.
  • the evaluation results are shown in Table 1.
  • the obtained removable elastic capacitor was attached to the chest of a short-sleeved shirt using a stretch material, and sensing wear was obtained in the same manner.
  • the obtained sensing wear was worn by a healthy 30-year-old man, and the respiratory state when the first radio exercise was performed by the same method as in Example 1 was measured.
  • the subject exercise was without feeling any discomfort, and was able to accurately measure the respiratory waveform while there was physical movement in radio calisthenics.
  • stickiness did not occur and the handling was good.
  • Example 3 A detachable elastic capacitor was obtained by operating in the same manner as in Example 1 except for the shape of the conductive laminate.
  • the shape is shown in detail in FIG. 6, and the first elastic cover layer, the elastic dielectric layer, and the second elastic cover layer have a square shape of 40 mm square.
  • a 20 mm square shaped portion overlaps in the thickness direction, and a 5 mm square protruding portion does not overlap in the thickness direction.
  • the evaluation results are shown in Table 1.
  • the obtained detachable elastic capacitor was engaged with the elbow joint of a shirt made of stretch material, and was worn by a healthy 30-year-old man to sense the movement of the arm when the first radio exercise was performed. As a result, the subject was able to measure the angle when the elbow was bent without feeling any discomfort.
  • stickiness did not occur and the handling was good.
  • Example 4 A detachable elastic capacitor was obtained by operating in the same manner as in Example 1 except for the portion where natural rubber was used for the first elastic cover layer. The evaluation results are shown in Table 1.
  • the obtained removable elastic capacitor was attached to the chest of a short-sleeved shirt using a stretch material to obtain sensing wear.
  • the obtained sensing wear was worn by a healthy 30-year-old man, and the respiratory state when the first radio exercise was performed by the same method as in Example 1 was measured.
  • the subject felt a little uncomfortable with the detachable elastic capacitor part, but there was almost no problem, and the measurement accuracy of the respiratory waveform was also almost no problem.
  • the cover layer was slightly sticky, but the phenomenon such as sticking between the cover layers did not occur, and there was no problem in handling.
  • Example 1 An acrylic resin was used for the stretchable dielectric layer, and a detachable stretchable capacitor was obtained by operating in the same manner as in Example 1 except for the portion where the spring hook button was used for the engaging member.
  • the evaluation results are shown in Table 1.
  • the obtained removable elastic capacitor was attached to the chest of a short-sleeved shirt using a stretch material to obtain sensing wear.
  • the obtained sensing wear was worn by a healthy 30-year-old man, and the respiratory state when successful at 16 km / h was measured using a treadmill. As a result, the respiratory waveform could not be distinguished from noise, and accurate sensing could not be performed.
  • the detachable elastic capacitor of the present invention accurately detects the deformation that is originally desired to be detected while ensuring free movement, and even when the sensor is loaded more than expected, the sensor is used. Since it is less likely to be damaged, it is useful as a sensor element to be attached to clothing or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Laminated Bodies (AREA)

Abstract

衣服型としたときに体動が妨げられることもなく、過伸長時にセンサ損傷が生じない着脱式伸縮性コンデンサを提供すること。 第一伸縮性カバー層、第一伸縮性導電層、伸縮性誘電体層、第二伸縮性導電層、第二伸縮性カバー層をこの順に含む導電性積層体を含有し、前記導電性積層体は伸縮性基材と2点以上で着脱可能に係合し、前記係合部の脱離力が1N以上10N以下であることを特徴とする着脱式伸縮性コンデンサ。

Description

伸縮性コンデンサ
 本発明はコンデンサ素子の引っ張り変形による静電容量変化から伸長歪みないし伸長変位を検出する脱着式伸縮性コンデンサ関する。
 従来より、変形可能な素子の変形による電気的特性変化から、変位、歪み、圧力などを検出するセンサ素子が知られている。例えば特許文献1には、エラストマー組成物からなるシート状の誘電層と、誘電層の表面及び裏面に一部が対向するよう形成された第1電極層及び第2電極層とを有し、誘電層の表裏面の面積が変化するように可逆的に変形するセンサ本体と、センサ本体に一体化された伸縮異方性を有する伸縮性を有する布生地を備えることを特徴とする静電容量型センサシートが提案されている。
 特許文献2には、伸縮可能なシート状の布帛と、この布帛の一方の面側において所定領域に積層される抵抗体を備えた歪みセンサとを備え、布帛が、所定領域の少なくとも一部において一方の面側の表層に歪みセンサの接着に寄与する繊維及び樹脂を含む複合層を有することを特徴とする歪みセンサ付き布帛が提案されている。
特開2016-197087号公報 特開2015-078967号公報
 しかしながら、以上例示したセンサを、衣服型のセンシング装置に適用した場合、伸縮異方性を有する布生地で衣服を仕立てると、難伸長方向への体動が阻害されることが問題となった。また布帛と歪みセンサを、繊維と樹脂の複合層を有する形で接着すると、布帛の伸びが直接的に歪みセンサに伝わり、本来検知したい伸び方向以外の伸びを検知し、ノイズとなることが問題となった。またセンサ自体に想定以上の変形が生じた時、その変形を制御することができず、センサが損傷するといったことも問題となった。すなわち、衣服型のセンシング装置に適用した場合、従来の変形を検知する素子においては、体動の自由度と検出精度の両立が考慮されていなかったものと考えられる。
 本発明は、このような事情に鑑みてなされたものであり、その目的は、衣服型のセンシング装置に適用した場合、自由な体動を確保しながら、本来検知したい変形を精度よく検出し、容易に着脱可能であるため、センサに想定以上の荷重がかかった場合においても、センサ損傷が発生しにくい着脱式伸縮性コンデンサを提供することにある。
 すなわち本発明は以下の構成を有する。
[1]第一伸縮性カバー層、第一伸縮性導電層、伸縮性誘電体層、第二伸縮性導電層、第二伸縮性カバー層をこの順に含む導電性積層体を含有し、前記導電性積層体は伸縮性基材と2点以上で着脱可能に係合し、前記係合部の脱離力が1N以上10N以下であることを特徴とする着脱式伸縮性コンデンサ。
[2]前記第一伸縮性カバー層および/または第二伸縮性カバー層と、III型ポリエステル負荷布((JIS L 1930(繊維製品の家庭洗濯試験方法)の附属書H に規定する)との平均摩擦係数が乾燥状態で2以下であることを特徴とする[1]に記載の着脱式伸縮性コンデンサ。
[3]前記導電性積層体の20%伸長時荷重が、前記伸縮性基材の20%伸長荷重の20倍以下であることを特徴とする[1]または[2]に記載の着脱式伸縮性コンデンサ。
[4]前記着脱式伸縮性コンデンサを長手方向に15%伸長したときの静電容量の値と、長手方向に17%伸長したときの静電容量の値の差が2.5pF以上であることを特徴とする[1]から[3]のいずれかに記載の着脱式伸縮性コンデンサ。
[5]前記伸縮性基材の長手方向における伸長率が5%から20%の範囲において、当該方向の前記伸縮性基材の伸長率に対する前記導電性積層体の伸長率が60%から95%の範囲であることを特徴とする[1]から[4]のいずれかに記載の着脱式伸縮性コンデンサ。
[6]前記伸縮性基材の長手方向に対して垂直方向における伸長率が5%から20%の範囲において、当該方向の前記伸縮性基材の伸長率に対する前記導電性積層体の伸長率が0%から20%の範囲であることを特徴とする[1]から[5]のいずれかに記載の着脱式伸縮性コンデンサ。
[7]第一伸縮性カバー層、第一伸縮性導電層、伸縮性誘電体層、第二伸縮性導電層、第二伸縮性カバー層をこの順に含む導電性積層体を含有し、前記導電性積層体は伸縮性基材と3点以上で着脱可能に係合し、前記導電性積層体は二次元的に変形し、前記導電性積層体の面積が15%変化したときの静電容量の値と、17%変化したときの静電容量の値の差が2.5pF以上であることを特徴とする[1]から[3]のいずれかに記載の着脱式伸縮性コンデンサ。
 本発明の着脱式伸縮性コンデンサは、導電性積層体と伸縮性基材が所定荷重以上で脱離するため、導電性積層体に想定以上の荷重がかかることがなく、過伸長によるセンサ損傷が発生しない。また伸縮性基材に顕著な伸縮異方性は必要ではないため、衣服型としたときに体動が妨げられることもなく、さらに伸縮性基材として使用できる素材も制限されることはない。さらに、センシングしたい方向以外の体動の影響をおさえながらも、センシングしたい方向の変形を精度よく検知することができ、体動の自由度と測定精度の両立が可能である。
図1は、本発明に用いられる導電性積層体の構成を示す概略図である。 図2は、導電性積層体と伸縮性基材が2か所で着脱可能に係合されることにより着脱式伸縮性コンデンサを構成した一例を示す概略図である。 図3は、本発明の脱離力を説明する概略図である。 図4は、本発明における着脱式伸縮性コンデンサの変形方向を説明する概略図である。 図5は、本発明の着脱式伸縮性コンデンサの一例の第二伸縮性カバー層側からの俯瞰図である。 図6は、本発明における実施例3の形状を説明する第二伸縮性カバー層側からの俯瞰図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、各図において同一の符号を付されたものは同様の要素を示しており、適宜、説明が省略される。図1に示すように、着脱式伸縮性コンデンサ22の導電性積層体10は、第一伸縮性カバー層12、第一伸縮性導電層13、伸縮性誘電体層14、第二伸縮性導電層15、第二伸縮性カバー層16をこの順に含むものである。前記構成は導電性積層体10の一部に含んでいれば良い。導電性積層体10は、さらに検出部17、防水カバー層19および係合部20を有していることが好ましい。第一伸縮性導電層13と第二伸縮性導電層15はそれぞれ第一伸縮性カバー層12を突き抜けて検出部17と導通しており、第一伸縮性導電層13に対応する検出部17と、第二伸縮性導電層15に対応する検出部17はそれぞれ絶縁されている。第一伸縮性導電層13および第二伸縮性導電層15が突き抜けるための第一伸縮性カバー層12のスルーホール18は防水カバー層19で封止されている。さらに図2に示すように、導電性積層体10は、検出部17とは反対面に位置する2か所以上の係合部20にて、伸縮性基材11に着脱可能に係合する。
 本発明における伸縮性基材11とは、特に素材限定されず、ゴム、エラストマー、ナイロン、ポリエステル、ポリオレフィン、ウールなどであり、構造も特に限定されず、ニット構造を有する部材、織布構造を有する部材、組紐構造を有する部材、切り紙構造を有する部材、螺旋構造を有する部材、金属バネを併用したベルト部材、などを示す。
 本発明における伸縮性基材11は、20%伸張した際の応力は20N以下である事が好ましい。身体に着用した際に違和感小さくなることから、20%伸張した際の応力は12N以下である事がより好ましく、さらに8N以下が好ましく、5N以下がなお好ましく、3N以下が、なおさらに好ましい。また、20%伸張した際の応力の下限は0.1Nであることが好ましく、より好ましくは0.3Nである。応力を前記下限値以上とすることで、センシングウェアの身体へのフィッティングが良好となり、姿勢にかかわらず測定が安定し、センサ位置のずれなどの問題が生じない。
 本発明において導電性積層体10と伸縮性基材11の係合に使用する係合部材は、特に素材は限定されず、面ファスナ、ボタン類、マグネット、自着式テープ、ホットメルト接着剤、などを示すが、特に好ましくは面ファスナ、自着テープである。
 本発明における第一伸縮性カバー層12および第二伸縮性カバー層16(以下、第一伸縮性カバー層と第二伸縮性カバー層を合わせて、単に「伸縮性カバー層」ともいう。)は、伸縮性を有する樹脂材料すなわち高分子材料を含むものであることが好ましく、伸縮性を有する高分子材料(樹脂材料)からなるものであることがより好ましい。本発明に用いられる伸縮性カバー層は引張降伏伸度が70%以上の伸縮性絶縁高分子により構成されていることが好ましい。引張降伏伸度は85%以上であることが好ましく、120%以上である事がなお好ましく、150%以上である事がなお好ましい。上限は特に限定されないが、300%以下であることが好ましく、より好ましくは250%以下である。
 本発明における引張降伏伸度とは、一般的な引張試験にて得られる、縦軸に加重(ないし強度)、横軸に歪み(ないし伸度あるいは伸び)をとったときの曲線(S-Sカーブ)において、加重の増加なしに伸びの増加が認められる最初の点、すなわち降伏点における伸度である。一般的に降伏点は弾性変形から塑性変形に推移をする境界を概略的に示す地点と捉えられている。
 前記伸縮性カバー層に用いられる高分子材料は柔軟性を有するものであることが好ましい。柔軟性を有する高分子材料としては、例えば、弾性率が、1~1000MPaの、エラストマー、熱可塑性樹脂、熱硬化性樹脂、ゴムなどが挙げられる。ゴムとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレンゴム、スチレン-ブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。前記弾性率は2~480MPaであることが好ましく、3~240MPaであることがより好ましく、4~120MPaであることがさらに好ましい。第一伸縮性カバー層と第二伸縮性カバー層の素材および構造は同一でも異なっていても良いが、工業的には同一であることが好ましい。
 本発明において好ましく用いられる柔軟性を有する高分子材料として、ポリエーテルポリオール、またはポリエステルポリオールをポリオール成分とし、HDI系ポリイソシアネートをイソシアネート成分とするウレタンゴムを例示することができる。
 本発明のウレタンゴムは、高い伸長率を有し、かつ、引張永久ひずみ及び残留ひずみが小さいため繰り返し変形させた際の信頼性に優れる伸縮性接着層となる。
 本発明における伸縮性カバー層においては、ホットメルト接着材を用いても良い。本発明に於けるホットメルト系接着材とは、軟化温度が30℃~150℃程度の高分子材料を使用する事ができ、好ましくは、伸縮性誘電体層14と同程度の伸縮性を有する柔軟性を備える高分子材料を使用することができる。このようなホットメルト接着剤としては、エチレン系共重合体、スチレン系ブロック共重合体、ポリウレタン系、アクリル系共重合体およびオレフィン系(共)重合体などをベースポリマーとしたものが使用できる。
 本発明では伸縮性カバー層として、軟化温度が40℃~120℃のポリエステルウレタン樹脂、ポリエーテルウレタン樹脂などをシート状に加工したホットメルトシートを好ましく用いることができる。
 本発明における第一伸縮性導電層13および第二伸縮性導電層15(以下、第一伸縮性導電層13および第二伸縮性導電層15合わせて、単に「伸縮性導電層」ともいう。)は、非伸張時の比抵抗は3×10-3Ωcm以下で有ることが好ましい。1×10-3Ωcm以下であることがより好ましく、3×10-4Ωcm以下であることがさらに好ましく、1×10-4Ωcm以下であることが、なお好ましい。比抵抗がこの範囲以下であることで、導電層内の抵抗分布のばらつきが顕著にはならず、素子の時定数が小さいため応答性が良好となり、高周波特性やパルス応答性も良好となる。比抵抗の下限は原理的に用いられる導電材料に依存し、例えば、1×10-6Ωcm以上である。
 本発明に用いられる着脱式伸縮性コンデンサ22の伸縮性導電層は100%伸張時の比抵抗が非伸張時の100倍以内であることが好ましく、さらに50倍以内である事が好ましく、さらに30倍以内である事が好ましく、15倍以内である事がさらに好ましい。100%伸張時の比抵抗がこの範囲以下であることで、導電層内の抵抗分布が顕著にはならず、素子の時定数が小さいため応答性が良好となり、高周波特性やパルス応答性も良好となる。比抵抗の下限は原理的に用いられる導電材料に依存し、例えば、1倍以上である。
 本発明に用いられる着脱式伸縮性コンデンサ22の伸縮性導電層は、少なくとも金属粒子、引張弾性率が1MPa以上1000MPa以下の柔軟性樹脂、から構成されるものであることが好ましい。また柔軟性樹脂の配合量は、金属粒子と柔軟性樹脂の合計に対して7~35質量%であることが好ましく、より好ましくは10~30質量%である。前記伸縮性導電層は、金属粒子と柔軟性樹脂を混練混合し、フィルム状ないしシート状に成型することにより得ることができる。前記伸縮性導電層は、好ましくは金属粒子と柔軟性樹脂に溶剤などを加えて伸縮性導体形成用ペースト化、ないしスラリー化した状態を経て、塗布、乾燥によりシート状ないしフィルム状に加工することが出来る。また、ペースト化した後、印刷することにより所定の形状を与えることもできる。
 前記金属粒子は、導電性を有する金属粒子(以下、導電性粒子ともいう。)であることが好ましい。前記導電性粒子は、比抵抗が1×10-1Ωcm以下の物質からなるものであることが好ましく、より好ましくは1×10-2Ωcm以下の物質からなるものであることが好ましい。また、粒子径が100μm以下の粒子であることが好ましく、50μm以下の粒子であることがより好ましい。また1μm以上の粒子であることが好ましく、5μm以上の粒子であることがより好ましい。比抵抗が1×10-1Ωcm以下の物質としては、金属、合金、カーボン、ドーピングされた半導体、導電性高分子などを例示することができる。本発明で好ましく用いられる導電性粒子は銀、金、白金、パラジウム、銅、ニッケル、アルミニウム、亜鉛、鉛、錫などの金属、黄銅、青銅、白銅、半田などの合金粒子、銀被覆銅のようなハイブリッド粒、さらには金属メッキした高分子粒子、金属メッキしたガラス粒子、金属被覆したセラミック粒子などを用いることができる。
 本発明では導電性粒子として、フレーク状銀粒子ないし不定形凝集銀粉を主体に用いることが好ましい。なお、ここに主体に用いるとは導電性粒子の90質量%以上用いることである。不定形凝集粉とは球状もしくは不定形状の1次粒子が3次元的に凝集したものである。不定形凝集粉およびフレーク状粉は球状粉などよりも比表面積が大きいことから低充填量でも導電性ネートワークを形成できるので好ましい。不定形凝集粉は単分散の形態ではないので、粒子同士が物理的に接触していることから導電性ネートワークを形成しやすいので、さらに好ましい。
 本発明における伸縮性導電層に用いられる柔軟性樹脂とは、例えば、弾性率が、1~1000MPaの、熱可塑性樹脂、熱硬化性樹脂、ゴムなどが挙げられる。膜の伸縮性を発現させるためには、ウレタン樹脂ないしゴムが好ましい。ゴムとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレンゴム、スチレン-ブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。この中でも、ニトリル基含有ゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。本発明で好ましい弾性率の範囲は2~480MPaであり、さらに好ましく3~240MPa、なお好ましくは4~120MPaの範囲である。
 本発明における伸縮性誘電体層は、伸縮性を有する樹脂材料すなわち高分子材料を含むものであることが好ましく、伸縮性を有する高分子材料(樹脂材料)からなるものであることがより好ましい。本発明に用いられる伸縮性誘電体層は引張降伏伸度が70%以上の伸縮性絶縁高分子により構成されていることが好ましい。引張降伏伸度は85%以上であることが好ましく、120%以上である事がなお好ましく、150%以上である事がなお好ましい。下限は特に限定されないが、300%以下であることが好ましく、より好ましくは250%以下である。
 前記伸縮性誘電体層に用いられる高分子材料は柔軟性を有するものであることが好ましい。柔軟性を有する高分子材料としては、例えば、弾性率が、1~1000MPaの、エラストマー、熱可塑性樹脂、熱硬化性樹脂、ゴムなどが挙げられる。ゴムとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレン-ブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。前記弾性率は2~480MPaであることが好ましく、3~240MPaであることがより好ましく、4~120MPaであることがさらに好ましい。
 本発明の伸縮性誘電体層14の平均厚さは、静電容量Cを大きくして検出感度の向上を図る観点、及び、測定対象物への追従性の向上を図る観点から、0.3~1000μmであることが好ましく、感度の点からは0.4~100μmの範囲が好ましく、さらに0.5~70μmが好ましく、さらに0.6~50μmの範囲が好ましい。
 本発明に用いられる伸縮性誘電体層14の、無負荷時の比誘電率は2.2以上であることが好ましく、2.8以上がより好ましく、3.4以上がさらに好ましく、3.8以上がなお好ましい。比誘電率の上限は500程度で有り、好ましくは150以下、さらに好ましくは80以下である。本発明の目的からして、伸縮性誘電体層14の比誘電率は高い方が好ましいが、一般に伸縮性を有する高分子材料は、柔軟鎖成分にアルキル基を有する事が多く、比較的低い比誘電率を有している。本発明では分子鎖に極性基を導入することにより比誘電率を高めることが好ましい。ニトリル基、ケトン基、エステル基、ハロゲン置換基、水酸基、カルボキシル基、ニトロ基、ハロゲン基などは、高分子の比誘電率を高めるために有効な官能基である。
 高い比誘電率を有するフィラー、好ましくはチタン酸塩などの無機フィラーを伸縮性誘電体層14に添加することにより伸縮性誘電体層14の比誘電率を高めることが可能である。前記無機フィラーの比誘電率は5未満であることが好ましい。伸縮性誘電体層14が伸張、ないし圧縮された際に、伸縮性高分子部分への応力集中度合いを低くし、無機フィラーと樹脂界面に剥離を生じないことから、無機フィラーの比誘電率は4以下であることがより好ましく、さらに好ましくは3以下である。また、伸縮性誘電体層14における前記無機フィラーの含有量は10質量%以上であることが好ましく、より好ましくは20質量%以上である。また80質量%以下であることが好ましく、より好ましくは70質量%以下である。一方、当該伸縮性誘電体層14における、比誘電率が5以上の無機フィラーの含有量は10%質量以下であることが好ましい。比誘電率が5以上の無機フィラーの含有率は3質量%以下が好ましく、1質量%以下がなお好ましく、0.3質量%以下がなお好ましい。比誘電率が5以上の無機フィラーの含有量が多いと、伸縮性誘電体層14が伸張、ないし圧縮された際に、伸縮性高分子部分への応力集中度合いが高くなり、フィラーと樹脂界面に剥離が生じてボイドが形成される等、耐久性に問題が生じる場合がある。また、伸縮性誘電体層14に含まれる無機フィラーが多いと、伸縮性誘電体層14のポアソン比が低くなり、伸張時の静電容量変化が小さくなり、センサーとして応用した場合の感度が低下することがある。
 本発明における導電性積層体10と伸縮性基材11の係合部20の脱離力は1N以上10N以下であることが必須であり、好ましくは2N以上8N以下、より好ましくは3N以上6N以下である。係合部20の脱離力が1N以上であることで、少しの衝撃や動作で導電性積層体が伸縮性基材から脱離することなく、センシングすることができる。一方で、脱離力が10N以下であることで、伸縮性基材が想定を上回って伸長した際、導電性積層体が脱離することなく追従して伸び、過伸長によって導電層に損傷が発生することを防ぐことができる。係合部は2点以上あれば良い。少しの衝撃や動作での脱離を防ぎやすくなることから、係合部は好ましくは3点以上であり、さらに好ましくは4点以上である。また上限は特に限定されないが、コスト面から20点以下であることが好ましく、より好ましくは10点以下であり、さらに好ましくは5点以下である。
 ここに脱離力とは、導電性積層体と伸縮性基材の係合部に対して、JIS K6854-2(1999)に定められている180度はく離を実施した場合に、図3に示すような最大試験力と定義する。導電性積層体と伸縮性基材の係合部において、導電性基材と伸縮性基材をそれぞれ引張試験機のチャックにセットし、100mm/分でチャックを移動させ、最大試験力が得られるまで伸長し続ける。最大試験力が得られる前に、導電性積層体もしくは伸縮性基材が破断する場合、必要に応じてホットメルトシート、両面テープ、ガムテープなどで補強する。前記係合部の脱離力は各係合部すべての脱離力をいう。
 本発明における第一伸縮性カバー層12および/または第二伸縮性カバー層16は、III型ポリエステル負荷布((JIS L 1930(繊維製品の家庭洗濯試験方法)の附属書H に規定する)との平均摩擦係数が乾燥状態で2以下であることが好ましい。第一伸縮性カバー層12は導電性積層体10の最外層に位置するため、取り扱いしやすさを考慮した場合にべたつきが小さことが求められる。当該平均摩擦係数が2以下であるとべたつきが小さく取り扱いや保管が容易となることから、乾燥状態での平均摩擦係数は1.5以下であることがより好ましく、1以下であることがさらに好ましい。乾燥状態での平均摩擦係数は小さい方が好ましいため、下限は特に限定されないが、0.1以上であればべたつきを感じることはなく、0.2以上であっても差し支えない。第一伸縮性カバー層12および第二伸縮性カバー層16のいずれか一方の平均摩擦係数が前記範囲内であることが好ましく、両方が前記範囲内であることがさらに好ましい。
 ここにIII型ポリエステル負荷布とは、JIS L 1930(2014)(繊維製品の家庭洗濯試験方法)の附属書Hに規定されているが、規定の重量となるように試料とともに洗濯機に加える補充布であり、ポリエステル100%の編物である。
 平均摩擦係数とは、2種類の試料を一定荷重で接触させた状態において、一方の試料を固定し、もう一方の試料を一定速度で一定距離動かしたときに、固定していた試料側に掛かった荷重の積分値から算出するものである。前記乾燥状態とは、温度20℃湿度65%RHの環境下で、各層の水分が20質量%以下の状態であることが好ましく、より好ましくは15質量%以下であり、さらに好ましくは12質量%以下の状態である。
 本発明における導電性積層体10の20%伸長時荷重が、伸縮性基材11の20%伸長荷重の5倍以上20倍以下であることが好ましい。より好ましくは6倍以上であり、さらに好ましくは7倍以上である。また19倍以下であることがより好ましく、さらに好ましくは18倍以下である。前記範囲内とすることで、衣服型において計測したい部分に着脱式伸縮性コンデンサ20を配置した際、導電性積層体の収縮方向にかかる力を小さくすることができ、導電性積層体に相当する部分の着用違和感を抑えることができる。
 本発明における着脱式伸縮性コンデンサ22を長手方向に15%伸長したときの静電容量の値と、長手方向に17%伸長したときの静電容量の値の差が2.5pF以上であることが好ましく、3pF以上がより好ましい。図4(a)および(b)に示すように、導電性積層体10と伸縮性基材11の係合部20が2か所の場合、長手方向とは、係合部材の重心同士を結ぶ方向である。図4(c)に示すように、導電性積層体10と伸縮性基材11の係合部20が3か所以上で、導電性積層体10が二次元的に変形する場合、導電性積層体10の面積が15%変化したときと、17%変化したときの静電容量の値の変化が2.5pF以上であることが好ましい。静電容量値は測定する環境によってノイズの影響を受けやすいため、特に人体の呼吸などの微小変形を計測する場合、S/N比を高くすることが求められる。当該伸長率の範囲で静電容量値を2.5pF以上とすることで、微小変形による静電容量変化がノイズによる静電容量変化に埋もれることがない。そのためセンシング能力を維持することができる。静電容量の値の差の上限は特に限定されないが、10倍以下であることが好ましく、より好ましくは8倍以下であり、特に好ましくは5倍以下である。
 本発明における伸縮性基材11の長手方向における伸長率が5%から20%の範囲において、当該方向の伸縮性基材11の伸長率に対する導電性積層体10の伸長率が60%から95%の範囲であることが好ましい。伸縮性基材11に対する導電性積層体10の伸長応答性が良好であり、変形をセンシングする性能も良好となることから、より好ましくは65%以上であり、さらに好ましくは70%以上である。また、伸縮性基材11に対する導電性積層体10の伸長応答性を向上しながら、人体の呼吸測定中における他の体動のように、本来望んでいない信号の検出を抑え、検出精度を良好とできることから、より好ましくは90%以下であり、さらに好ましくは85%以下である。
 本発明における伸縮性基材11の長手方向に対して垂直方向における伸長率が5%から20%の範囲において、当該方向の前記伸縮性基材11の伸長率に対する前記導電性積層体10の伸長率が0%から20%の範囲であることが好ましい。上限のより好ましい範囲は19%以下であり、さらに好ましくは18%以下である。ノイズを検知しにくくなることから、伸長率は低い方が好ましく、下限は特に限定されないが、工業的には1%以上であれば良く、2%以上であっても差し支えない。前記範囲内とすることで、本来検出したい方向以外の変形の検知を抑え、測定精度が良好となる。例えば、人体の呼吸測定を用途とした場合、呼吸による胸部や腹部の変形のみを検出することができ、ノイズとなるその他の体動を検知することはない。
 本発明の着脱式伸縮性コンデンサ22は、引っ張り変形による静電容量変化を生じるため、これを利用して、圧力、歪み、変位、変形度合いなどを検出することができる。着脱式伸縮コンデンサ22を胸部や腹部に取り付けることで、胸腹部変位から呼吸を計測することが可能であり、また肘や膝などの関節部に取り付けることでモーションキャプチャーに適用することも可能である。さらに本発明における伸縮性コンデンサ22は、導電性積層体10と伸縮性基材11が所定荷重以上で脱離するため、導電性積層体10に想定以上の荷重がかかることがなく、過伸長によるセンサ損傷が発生しない。伸縮性基材11と導電性積層体10が分離して伸長するため、検出したい方向の伸び以外の影響を抑えることができる。さらにこの時、伸縮性基材に顕著な伸縮異方性は必要ではないため、衣服型としたときに体動が妨げられることもなく、体動の自由度と測定精度の両立が可能である。
 以下実施例を示し、本発明を具体的に説明する。
<弾性率>
 被測定試料を厚さ20μmから200μmの範囲の任意の厚さにてシート状に成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。ISO 527-1に規定された方法で引っ張り試験を行って、樹脂材料の応力-歪み線図を求め、常法により弾性率を算出した。
<引張降伏伸度>
 被測定試料を厚さ20μmから200μmの範囲の任意の厚さにてシート状に成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。ついで、引っ張り試験器を用いてS-Sカーブを求め、降伏点の伸度を引張降伏伸度とした。
<比抵抗率>
 導体シートの大きさが十分にある場合には、ISO 527-2-1Aにて規定されるダンベル型に打ち抜き、ダンベル型試験片の中央部にある幅10mm、長さ80mmの部分を試験片として用いた。導体シートの成型が可能な場合には厚さ200±20μmのシート状に加熱圧縮成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、同様に試験片とした。導体シートの大きさが小さく、規定されたダンベル形を得られない場合には、採取可能な幅および長さの矩形を切り取り、試験片とし、測定を行った幅、厚さを用いて換算した。
 試験片:幅10mm、長さ80mmの部分の抵抗値[Ω]を、アジレントテクノロージ社製ミリオームメーターを用いて測定し、試験片の縦横比(1/8)を乗じてシート抵抗値「Ω□」を求めた。また、抵抗値[Ω]に断面積(幅1[cm]mm×厚さ[cm])を乗じ、長さ(8cm)にて除して、比抵抗[Ωcm]を求めた。
<平均摩擦係数>
 III型ポリエステル負荷布((JIS L 1930(繊維製品の家庭洗濯試験方法)の附属書H に規定する)は幅10mm、長さ20mmに切り取った。KES-SE(カトーテック社製)の試料台に被測定試料を設置し、摩擦子側にIII型ポリエステル負荷布を貼り付けた状態で、被測定試料上に摩擦子に貼り付けたIII型ポリエステル負荷布を接触させ、25gfの荷重をかけ、感度H、試料移動速度1mm/sにて30mm移動させ、そのうち両端5mmを除く20mmの測定結果から平均摩擦係数MMDを求めた。
<伸張荷重>
 導電性積層体、伸縮性基材を引張試験機にチャック間距離50mmで挟み、300mm/分の速度でチャックを移動させ、60mmまで伸長したときの荷重を計測し、20%伸長時荷重とした。試料によって、チャック間距離50mmが取れない場合、これにこだわる必要はない。その場合、可能な距離でチャックし、その距離に対して20%伸長した時の荷重を20%伸長時荷重とした。
<伸長率>
 着脱式伸縮性コンデンサの係合部より外側において、伸縮性基材を引張試験機のチャックに挟み、300mm/分の速度でチャックを移動させた。チャック間距離に対して5%、20%伸長したときの、導電性積層体の長さを計測し、未伸長時点の導電性積層体の長さに対する伸長率を求めた。
<比抵抗>
 導体シートの大きさが十分にある場合には、ISO 527-2-1Aにて規定されるダンベル型に打ち抜き、ダンベル型試験片の中央部にある幅10mm、長さ80mmの部分を試験片として用いた。導体シートの成型が可能な場合には厚さ200±20μmのシート状に加熱圧縮成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、同様に試験片とした。導体シートの大きさが小さく、規定されたダンベル形状を得られない場合には、採取可能な幅および長さの矩形を切り取り、試験片とし、測定を行った幅、厚さ、長さを用いて換算した。
 試験片:幅10mm、長さ80mmの部分の抵抗値[Ω]を、アジレントテクノロージ社製ミリオームメーターを用いて測定し、試験片の縦横比(1/8)を乗じてシート抵抗値「Ω□」を求めた。
 また、抵抗値[Ω]に断面積(幅1[cm]mm×厚さ[cm])を乗じ、長さ(8cm)にて除して、比抵抗[Ωcm]を求めた。
<比誘電率>
 空洞共振器摂動法(ネットワークアナライザー(アンリツ社製))により、温度23℃、周波数1GHzの条件で伸縮性導体シートの比誘電率を測定した。
<センシング>
 センシングは以下の評価基準により判定した。
 ◎:全伸縮動作のうち80%以上を静電容量変化にて検出することができる。
 ○:全伸縮動作のうち60%以上80%未満を静電容量変化で検出することができる。
 ×:全伸縮動作のうち、静電容量変化で検出できたものが60%未満である。
<装着違和感>
 装着違和感は以下の評価基準により判定した。
 ◎:締め付け感、突っ張り感について5段階の主観評価を実施し、違和感なしを5とした時の評価が4以上である。
 ○:締め付け感、突っ張り感について5段階の主観評価を実施し、違和感なしを5とした時の評価が3である。
 ×:締め付け感、突っ張り感について5段階の主観評価を実施し、違和感なしを5とした時の評価が2以下である。
<保管・取り扱い性>
 保管・取り扱い性は以下の評価基準により判定した。
 ◎:室温にて2本以上の着脱式伸縮性コンデンサを積層保管後もべたつき、および貼りつきが発生しない。
 ○:室温にて2本以上の着脱式伸縮性コンデンサを積層保管後、べたつきはあるものの、貼りつきは発生しない。
 ×:室温にて2本以上の着脱式伸縮性コンデンサを積層保管後、べたつき、および貼りつきが発生する。
<センサ損傷>
 センサ損傷は以下の評価基準により判定した。
 ◎:50%伸長時において、静電容量変化に異常が発生しない。
 ○:30%以上50%未満に伸長した際、伸長に対する静電容量変化の直線性が損なわれる。
 ×:10%以上30%未満に伸長した際、伸長に対する静電容量変化の直線性が損なわれる。
[実施例1]
 ニトリル量40質量%、ムーニー粘度46のニトリルブタジエンゴム12質量部、イソホロン30質量部、平均粒子径6μmの微細フレーク状銀粉[福田金属箔粉工業社製 商品名Ag-XF301]58質量部、を均一に混合し、三本ロールミルにて分散することにより伸縮性導電層形成用ペーストAG1を得た。得られた伸縮性導電層形成用ペーストAG1を離型PETフィルム状にスクリーン印刷法を用いて、塗布乾燥し、厚さ22μmの伸縮性導体シートを得た。
 得られた伸縮性導体シートを10mm幅、200mm長にカットし、長さ方向の抵抗値と厚さから比抵抗を求めた。結果、比抵抗は1.0×10-4Ωcmであった。ついで、伸縮性導体シートの長さ方向の両端を引っ張り試験器のクリップに挟み、有効長を160mmとして320mmまで引っ張り、両端の抵抗値と、試験片の最狭部の幅、および、厚さを用いて100%伸張時の比抵抗を算出した。結果、100%伸張時の比抵抗は48×10-4Ωcmであった。
 ニトリル量40質量%、ムーニー粘度46のNBR(ニトリルブタジエンゴム)30質量部を、イソホロン40質量部、に溶解させ、伸縮性誘電体層形成用ペーストCC1を得た。
 ニトリル量40質量%、ムーニー粘度46のNBR(ニトリルブタジエンゴム)30質量部を、イソホロン40質量部、に溶解させ、第一伸縮性カバー層形成用ペーストCC2を得た。
 ニトリル量40質量%、ムーニー粘度46のNBR(ニトリルブタジエンゴム)30質量部を、イソホロン40質量部、に溶解させ、第二伸縮性カバー層形成用ペーストCC3を得た。
 離型PETフィルム上にスクリーン印刷法を用いて、先に得られた第一伸縮性カバー層用ペーストCC2を塗布乾燥し、幅30mm長さ200mm厚さ35μmの第一伸縮性カバー層を得た。次いで、第一伸縮性カバー層の上に、スクリーン印刷法を用いて伸縮性導電層形成用ペーストAG1を塗布乾燥し、厚さ30μmの第一伸縮性導電層を得た。形状については、図5に示す通り、幅10mm長さ150mmの長方形部分と、10mm四方の折れ曲がり部分を備える形状とした。次いで第一伸縮性導電層の上に、スクリーン印刷法を用いて伸縮性誘電体層形成用ペーストCC1を塗布乾燥し、幅30mm長さ200mm厚さ35μmの伸縮性誘電体層を得た。次いで、伸縮性誘電体層の上に、スクリーン印刷法を用いて伸縮性導電層形成用ペーストAG1を塗布乾燥し、厚さ30μmの第二伸縮性導電層を得た。形状は第一導電層と同じく、幅10mm長さ120mmの長方形部分と、10mm四方の折れ曲がり部分を備え、長方形部分は第一導電層と厚み方向で重なり、折れ曲がり部分は第一導電層と厚み方向で重ならないようにした。次いで、第二伸縮性導電層の上に、スクリーン印刷法を用いて第二伸縮性カバー層形成用ペーストCC3を塗布乾燥し、幅30mm長さ200mm厚さ35μmの第二伸縮性カバー層を得た。次に、第一伸縮性導電層と第二伸縮性導電層の折れ曲がり部分にそれぞれバネホックボタンを打ち込み、第二伸縮性カバー層の上からシグナルを検知できるような検出部を設けた。さらに第一伸縮性カバー層の両端に面ファスナの雄部材(2個)をホットメルト接着剤にて貼り付け、導電性積層体を得た。
 導電性積層体の第一伸縮性カバー層および第二伸縮性カバー層とIII型ポリエステル負荷布((JIS L 1930(繊維製品の家庭洗濯試験方法)の附属書H に規定する)との平均摩擦係数を計測し、表1に記載した。
 導電性積層体の第一伸縮性導電層および第二伸縮性導電層の長方形部分において引張試験を行い、チャック間距離50mm、伸長率0%から25%、伸長速度10mm/sにて伸長したときの20%伸長時の荷重を計測した。
 伸縮性基材として、ナイロン/ポリエステルからなるニット生地を選定し、これの引張試験を行った。伸縮性基材の20%伸長時荷重に対する導電性積層体の20%伸長時荷重を算出した結果を表1に記載した。さらに伸縮性基材において、導電性積層体の面ファスナ位置と対応する位置に雌の面ファスナを取り付けた。
 導電性積層体と伸縮性基材を面ファスナの位置で係合し、係合部の脱離力を測定し、表1に記載した。
 導電性積層体と伸縮性基材を面ファスナの位置で係合し、引張試験機にて伸長しながら、日置電機社製LCRハイテスターを用いて第一伸縮性導電層と第二伸縮性導電層それぞれに対応する検出部に、リード線を接続し、測定周波数1GHzにて静電容量を測定した。導電性積層体の係合部から5mm外側の伸縮性基材のみをチャックし、チャック間距離210mm、伸長率0%から25%、伸長速度10mm/sにて伸長した際、伸長率15%と17%時点の静電容量値の差を求め、表1に記載した。この時の伸長方向は、係合部材の重心同士を結んだ方向である。
 導電性積層体と伸縮性基材を面ファスナの位置で係合し、引張試験機にて伸長しながら、伸縮性基材が5%、20%伸長時の導電性積層体の伸長性基材に対する伸長率を求め、表1に記載した。この時、導電性積層体の係合部から5mm外側の伸縮性基材のみをチャックし、チャック間距離210mm、伸長率0%から25%、伸長速度10mm/sにて伸長した。この時の伸長方向は、係合部材の重心同士を結んだ方向である。
 導電性積層体と伸縮性基材を面ファスナの位置で係合し、引張試験機にて伸長しながら、伸縮性基材が5%、20%伸長時の導電性積層体の伸長性基材に対する伸長率を求め、表1に記載した。この時、導電性積層体の係合部から5mm外側の伸縮性基材のみをチャックし、チャック間距離40mm、伸長率0%から25%、伸長速度10mm/sにて伸長した。この時の伸長方向は、係合部材の重心同士を結んだ方向に対して垂直方向である。
 伸縮性基材にてコンプレッションタイプの衣服を作成し、胸部位置に導電性積層体を係合できるように雌の面ファスナを取り付けた。この衣類に導電性積層体を係合したものを、30才の健康な男性に着用させ、ラジオ体操第一を行ったときの呼吸状態を計測した。呼吸状態は胸部周囲長変化を着脱式伸縮性コンデンサにて静電容量の変化としてとらえた。静電容量の検出には、導電性積層体に設置した検出部に小型の計測器を取り付け、計測結果を無線でandroid端末に送信、保存する形で計測した。結果、被験者は特に違和感を感じることなく運動を行い、ラジオ体操における体動がある中で、呼吸波形を正確に計測することができた。またその後着脱式伸縮性コンデンサを保管し、再度計測に使用する場合もべたつきなどが発生せず、取り扱い性も良好であった。
[実施例2]
 伸縮性カバー層としてウレタン樹脂を用い、導電性積層体と伸縮性基材の係合部にマグネットを用いたこと以外は、実施例1と同様に操作して着脱式伸縮性コンデンサを得た。各評価結果を表1に示す。
 得られた着脱式伸縮性コンデンサをストレッチ素材を用いた半袖シャツの胸部に貼り付け、同様にセンシングウェアを得た。得られたセンシングウェアを30才の健康な男性に着用させ、実施例1と同様の方法でラジオ体操第一を行ったときの呼吸状態を計測した。結果、被験者は特に違和感を感じることなく運動を行い、ラジオ体操における体動がある中で、呼吸波形を正確に計測することができた。またその後着脱式伸縮性コンデンサを保管し、再度計測に使用する場合もべたつきなどが発生せず、取り扱い性も良好であった。
[実施例3]
 導電性積層体の形状以外は、実施例1と同様に操作して着脱式伸縮性コンデンサを得た。形状については、図6に詳細に示すが、第一伸縮性カバー層、伸縮性誘電体層、第二伸縮性カバー層は40mm角の正方形の形状とした。第一伸縮性導電層と第二伸縮性導電層は20mm角の正方形の形状部分が厚み方向に重なり、5mm角の突起部分は厚み方向に重ならない構成とした。各評価結果を表1に示す。
 得られた着脱式伸縮性コンデンサをストレッチ素材のシャツの肘関節部に係合し、30才の健康な男性に着用させラジオ体操第一をさせたときの腕の動きをセンシングした。結果、被験者は特に違和感を感じることなく、肘を曲げた時の角度を計測することができた。またその後着脱式伸縮性コンデンサを保管し、再度計測に使用する場合もべたつきなどが発生せず、取り扱い性も良好であった。
[実施例4]
 第一伸縮性カバー層に天然ゴムを用いた部分以外は、実施例1と同様に操作して着脱式伸縮性コンデンサを得た。各評価結果を表1に示す。
 得られた着脱式伸縮性コンデンサをストレッチ素材を用いた半袖シャツの胸部に貼り付け、センシングウェアを得た。得られたセンシングウェアを30才の健康な男性に着用させ、実施例1と同様の方法でラジオ体操第一を行ったときの呼吸状態を計測した。結果、被験者は着脱式伸縮性コンデンサ部分にやや違和感を覚えたものの概ね問題なく、呼吸波形の測定精度も概ね問題なかった。またその後着脱式伸縮性コンデンサを保管し、再度計測に使用した場合、カバー層にややべたつきがあったが、カバー層同士でくっつくなどの現象は発生せず、取り扱い性にも問題なかった。
[比較例1]
 伸縮性誘電体層にアクリル樹脂を用いて、係合部材にはバネホックボタンを用いた部分以外は、実施例1と同様に操作して着脱式伸縮性コンデンサを得た。各評価結果を表1に示す。
 得られた着脱式伸縮性コンデンサをストレッチ素材を用いた半袖シャツの胸部に貼り付け、センシングウェアを得た。得られたセンシングウェアを30才の健康な男性に着用させ、トレッドミルを用いて16km/hにて奏功したときの呼吸状態を計測した。結果、呼吸波形はノイズとの区別ができず、正確なセンシングができなかった。またその後着脱式伸縮性コンデンサにて再度計測を試みたが、静電容量値が異常値となる傷傾向を示した。これは、導電性積層体と伸縮性基材の係合部の脱離力が高いため、導電性積層体に想定を超える力が加わっていたにもかかわらず、伸縮性基材からの脱離が起こらず、導電性積層体が過伸長となって起こった損傷であると考えられる。
[比較例2]
 第一伸縮性カバー層にウレタン樹脂、第二伸縮性カバー層にアクリル樹脂を用いて、係合部材には磁力の弱いマグネットを用いた部分以外は、実施例1と同様に操作して着脱式伸縮性コンデンサを得た。各評価結果を表1に示す。
 得られた着脱式伸縮性コンデンサをストレッチ素材を用いた半袖シャツの胸部に貼り付け、センシングウェアを得た。得られたセンシングウェアを30才の健康な男性に着用させ、実施例1と同様の方法でラジオ体操第一を行ったときの呼吸状態を計測した。結果、呼吸波形はラジオ体操の体動の影響を受けて、一部の呼吸を検出できず、正確なセンシングができなかった。また導電性積層体と伸縮性基材の脱離力が低いため、ラジオ体操の途中で頻繁に脱離が起こり、計測の中断がたびたび発生した。
Figure JPOXMLDOC01-appb-T000001
 以上述べてきたように、本発明の着脱式伸縮性コンデンサは、自由な体動を確保しながらも本来検知したい変形を精度よく検出し、センサに想定以上の荷重がかかった場合においても、センサ損傷が発生しにくいため、衣類等に取り付けるセンサ素子として有用である。
10.導電性積層体
11.伸縮性基材
12.第一伸縮性カバー層
13.第一伸縮性導電層
14.伸縮性誘電体層
15.第二伸縮性導電層
16.第二伸縮性カバー層
17.検出部
18.スルーホール
19.防水カバー層
20.係合部
21.第一伸縮性導電層と第二伸縮性導電層が厚み方向に重なる部分
22.脱着式伸縮性コンデンサ
 

Claims (7)

  1.  第一伸縮性カバー層、第一伸縮性導電層、伸縮性誘電体層、第二伸縮性導電層、第二伸縮性カバー層をこの順に含む導電性積層体を含有し、前記導電性積層体は伸縮性基材と2点以上で着脱可能に係合し、前記係合部の脱離力が1N以上10N以下であることを特徴とする着脱式伸縮性コンデンサ。
  2.  前記第一伸縮性カバー層および/または第二伸縮性カバー層と、III型ポリエステル負荷布((JIS L 1930(繊維製品の家庭洗濯試験方法)の附属書H に規定する)との平均摩擦係数が乾燥状態で2以下であることを特徴とする請求項1に記載の着脱式伸縮性コンデンサ。
  3.  前記導電性積層体の20%伸長時荷重が、前記伸縮性基材の20%伸長荷重の20倍以下であることを特徴とする請求項1または2に記載の着脱式伸縮性コンデンサ。
  4.  前記着脱式伸縮性コンデンサを長手方向に15%伸長したときの静電容量の値と、長手方向に17%伸長したときの静電容量の値の差が2.5pF以上であることを特徴とする請求項1から3のいずれかに記載の着脱式伸縮性コンデンサ。
  5.  前記伸縮性基材の長手方向における伸長率が5%から20%の範囲において、当該方向の前記伸縮性基材の伸長率に対する前記導電性積層体の伸長率が60%から95%の範囲であることを特徴とする請求項1から4のいずれかに記載の着脱式伸縮性コンデンサ。
  6.  前記伸縮性基材の長手方向に対して垂直方向における伸長率が5%から20%の範囲において、当該方向の前記伸縮性基材の伸長率に対する前記導電性積層体の伸長率が0%から20%の範囲であることを特徴とする請求項1から5のいずれかに記載の着脱式伸縮性コンデンサ。
  7.  第一伸縮性カバー層、第一伸縮性導電層、伸縮性誘電体層、第二伸縮性導電層、第二伸縮性カバー層をこの順に含む導電性積層体を含有し、前記導電性積層体は伸縮性基材と3点以上で着脱可能に係合し、前記導電性積層体は二次元的に変形し、前記導電性積層体の面積が15%変化したときの静電容量の値と、17%変化したときの静電容量の値の差が2.5pF以上であることを特徴とする請求項1から3のいずれかに記載の着脱式伸縮性コンデンサ。
     
     
PCT/JP2021/001881 2020-06-16 2021-01-20 伸縮性コンデンサ WO2021255972A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-103635 2020-06-16
JP2020103635A JP6863509B1 (ja) 2020-06-16 2020-06-16 伸縮性コンデンサ

Publications (1)

Publication Number Publication Date
WO2021255972A1 true WO2021255972A1 (ja) 2021-12-23

Family

ID=75520939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001881 WO2021255972A1 (ja) 2020-06-16 2021-01-20 伸縮性コンデンサ

Country Status (2)

Country Link
JP (4) JP6863509B1 (ja)
WO (1) WO2021255972A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000579A (ja) * 2018-06-29 2020-01-09 株式会社三洋物産 遊技機
JP2020000578A (ja) * 2018-06-29 2020-01-09 株式会社三洋物産 遊技機
JP2020000577A (ja) * 2018-06-29 2020-01-09 株式会社三洋物産 遊技機
JP2020000581A (ja) * 2018-06-29 2020-01-09 株式会社三洋物産 遊技機
WO2023013249A1 (ja) * 2021-08-04 2023-02-09 東洋紡株式会社 生体情報計測用衣類

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174086A (ja) * 2008-01-25 2009-08-06 Kureha Ltd 低摩擦伸縮性不織布
JP2013136405A (ja) * 2011-12-28 2013-07-11 Showa Denko Packaging Co Ltd 自動包装適性に優れた無塵包装袋
JP2017198621A (ja) * 2016-04-28 2017-11-02 バンドー化学株式会社 回転角度計測装置、及び、静電容量型センサシート
WO2018037855A1 (ja) * 2016-08-25 2018-03-01 グンゼ株式会社 人体動作検出用装着具及び人体動作監視装置
WO2018056062A1 (ja) * 2016-09-21 2018-03-29 東洋紡株式会社 伸縮性コンデンサ、変形センサ、変位センサ、呼吸状態のセンシング方法およびセンシングウェア
JP2018174053A (ja) * 2017-03-31 2018-11-08 東洋紡株式会社 ウェアラブルスマートデバイス
JP2019092544A (ja) * 2017-11-17 2019-06-20 東洋紡株式会社 生体情報計測用衣類
US20200022431A1 (en) * 2018-07-23 2020-01-23 Cornerstone Research Group, Inc. Health monitoring garment and system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389968B2 (ja) * 1997-11-26 2003-03-24 東洋紡績株式会社 潜在捲縮発現性を有する湿式不織布用ポリエステル短繊維とその製造方法
JP5838447B2 (ja) * 2012-06-08 2016-01-06 株式会社槌屋 呼吸計測方法および呼吸計測装置
JP2014219214A (ja) * 2013-05-01 2014-11-20 バンドー化学株式会社 静電容量型センサシート及び静電容量型センサ
WO2014204323A1 (en) 2013-06-17 2014-12-24 Stretchsense Limited Stretchable fabric sensors
KR20170009823A (ko) * 2014-03-10 2017-01-25 엘.아이.에프.이. 코포레이션 에스.에이. 생리학적 모니터링 의복들
CN106163395B (zh) * 2014-04-09 2019-06-18 阪东化学株式会社 传感装置
JP6667199B2 (ja) * 2015-01-31 2020-03-18 山崎産業株式会社 パイル保持体及びその製法
JP6325482B2 (ja) * 2015-04-06 2018-05-16 バンドー化学株式会社 静電容量型センサシート及びセンサ装置
US20180010902A1 (en) * 2015-09-21 2018-01-11 Figur8, Inc. Fabric with stretchable sensors for shape measurement
JP2019509147A (ja) * 2016-01-13 2019-04-04 スペシャルバンデージャー.ディーケー エー/エス 浮腫治療およびその監視
US10959644B2 (en) 2016-03-24 2021-03-30 Bend Labs Inc. Compliant sensors for force sensing
JP6960725B2 (ja) * 2016-07-29 2021-11-05 グンゼ株式会社 姿勢検出衣料
JP2018054590A (ja) * 2016-09-21 2018-04-05 東洋紡株式会社 伸縮性コンデンサおよび変形センサ
JP2018096870A (ja) * 2016-12-14 2018-06-21 国立大学法人神戸大学 動作計測装置、及び、動作計測用部材
US10701987B2 (en) * 2017-08-31 2020-07-07 Nike, Inc. Sense-enabled apparel
DE102019113628A1 (de) * 2018-06-05 2019-12-05 Dyconex Ag Dehnungssensor, insbesondere für ein medizinisches Gerät

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174086A (ja) * 2008-01-25 2009-08-06 Kureha Ltd 低摩擦伸縮性不織布
JP2013136405A (ja) * 2011-12-28 2013-07-11 Showa Denko Packaging Co Ltd 自動包装適性に優れた無塵包装袋
JP2017198621A (ja) * 2016-04-28 2017-11-02 バンドー化学株式会社 回転角度計測装置、及び、静電容量型センサシート
WO2018037855A1 (ja) * 2016-08-25 2018-03-01 グンゼ株式会社 人体動作検出用装着具及び人体動作監視装置
WO2018056062A1 (ja) * 2016-09-21 2018-03-29 東洋紡株式会社 伸縮性コンデンサ、変形センサ、変位センサ、呼吸状態のセンシング方法およびセンシングウェア
JP2018174053A (ja) * 2017-03-31 2018-11-08 東洋紡株式会社 ウェアラブルスマートデバイス
JP2019092544A (ja) * 2017-11-17 2019-06-20 東洋紡株式会社 生体情報計測用衣類
US20200022431A1 (en) * 2018-07-23 2020-01-23 Cornerstone Research Group, Inc. Health monitoring garment and system

Also Published As

Publication number Publication date
JP7047957B2 (ja) 2022-04-05
JP6863509B1 (ja) 2021-04-21
JP7047956B2 (ja) 2022-04-05
JP2021196339A (ja) 2021-12-27
JP2022091854A (ja) 2022-06-21
JP2021196340A (ja) 2021-12-27
JP2021196286A (ja) 2021-12-27

Similar Documents

Publication Publication Date Title
WO2021255972A1 (ja) 伸縮性コンデンサ
US20210007223A1 (en) Garment-type electronic device and method for producing same
JP6607273B2 (ja) 電極と配線を備える衣類の製造方法
JP7060847B2 (ja) 伸縮性コンデンサ、変形センサ、変位センサ、呼吸状態のセンシング方法およびセンシングウェア
WO2017122639A1 (ja) 伸縮性導体組成物、伸縮性導体形成用ペースト、伸縮性導体組成物からなる配線を有する衣服、およびその製造方法
JP6874382B2 (ja) 身体測定用器具および身体サイズの測定方法、着衣選択システム、オーダーメイド着衣設計システム
CN114007492A (zh) 产前监测设备
WO2020138477A2 (ja) 伸縮性導体形成用導電ペースト、伸縮性導体層、伸縮性導体層の製造方法、伸縮性電気配線構成体および生体情報計測装置
JP2018086227A (ja) 衣服型電子機器
JP2017198621A (ja) 回転角度計測装置、及び、静電容量型センサシート
JP2018054590A (ja) 伸縮性コンデンサおよび変形センサ
JP2017144239A (ja) 衣服型電子機器
JP6996214B2 (ja) 着用型生体情報計測装置および生体情報計測方法
WO2018181681A1 (ja) ウェアラブルスマートデバイスおよびコネクタ変換アダプタ
JP7306519B2 (ja) 伸縮性コンデンサ
KR102346390B1 (ko) 생체 정보 측정용 의류
WO2023013299A1 (ja) 生体情報測定用部材、及び生体情報測定用衣服
WO2023013300A1 (ja) 生体情報測定用部材、及び生体情報測定用衣服
JP2023046022A (ja) 呼吸情報計測システム
JP2021088802A (ja) 身体測定用器具および身体サイズの測定方法、着衣選択システム、オーダーメイド着衣設計システム
JP2021088801A (ja) 身体測定用器具および身体サイズの測定方法、着衣選択システム、オーダーメイド着衣設計システム
JPS62290442A (ja) 体動検知センサ−素子
WO2022054487A1 (ja) 伸縮性コンデンサおよびセンシングウェア
JP2023104812A (ja) 下衣
JP2023104811A (ja) 下衣

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21827105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21827105

Country of ref document: EP

Kind code of ref document: A1