WO2021255935A1 - Sway estimation system - Google Patents

Sway estimation system Download PDF

Info

Publication number
WO2021255935A1
WO2021255935A1 PCT/JP2020/024233 JP2020024233W WO2021255935A1 WO 2021255935 A1 WO2021255935 A1 WO 2021255935A1 JP 2020024233 W JP2020024233 W JP 2020024233W WO 2021255935 A1 WO2021255935 A1 WO 2021255935A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
vibration
shaking
abdomen
estimation unit
Prior art date
Application number
PCT/JP2020/024233
Other languages
French (fr)
Japanese (ja)
Inventor
然一 伊藤
郷平 山中
誠治 渡辺
健 宮川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/024233 priority Critical patent/WO2021255935A1/en
Priority to JP2022531235A priority patent/JP7276611B2/en
Priority to CN202080101571.8A priority patent/CN115867773A/en
Publication of WO2021255935A1 publication Critical patent/WO2021255935A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table

Definitions

  • This disclosure relates to a shaking estimation system.
  • Patent Document 1 discloses an example of an elevator device.
  • the elevator device includes an acceleration sensor and a control unit.
  • the accelerometer is provided on a counterweight or the like.
  • the control unit determines whether or not the elevator device can be diagnostically operated based on the detection result of the acceleration sensor.
  • the present disclosure provides a shaking estimation system that can accurately estimate the shaking of a building while reducing the number of sensors.
  • the vibration estimation system includes a plurality of vibration sensors provided in the building, each of which detects vibration, and a building vibration estimation unit that estimates the vibration of the building based on the detection results of each of the plurality of vibration sensors.
  • the plurality of vibration sensors are a first vibration sensor provided in the first abdomen, which is the abdomen of the basic vibration mode of the building, and a plurality of higher-order vibration modes of the building, which is a vibration mode higher than the basic vibration mode. It includes a second vibration sensor provided in the second abdomen, which is the abdomen farthest from the first abdomen in the abdomen.
  • the shaking estimation system it is possible to accurately estimate the shaking of a building while reducing the number of sensors.
  • FIG. 1 It is a block diagram of the building to which the shaking estimation system which concerns on Embodiment 1 is applied. It is a block diagram of the shaking estimation system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the vibration mode of the building to which the vibration estimation system which concerns on Embodiment 1 is applied. It is a figure which shows the example of the vibration detected in the vibration estimation system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the vibration detected in the vibration estimation system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the shaking amount of each floor estimated in the shaking estimation system which concerns on Embodiment 1.
  • FIG. It is a flow chart which shows the example of the operation of the shaking estimation system which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the main part of the shaking estimation system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the vibration detected in the vibration estimation system which concerns on Embodiment 2.
  • FIG. It is a block diagram of the shaking estimation system which concerns on Embodiment 3.
  • FIG. It is a figure which shows the example of the weighting coefficient which concerns on Embodiment 3.
  • FIG. It is a figure which shows the example of the estimation of the shaking of a building by the building shaking estimation part which concerns on Embodiment 4.
  • FIG. 1 is a block diagram of a building 2 to which the shaking estimation system 1 according to the first embodiment is applied.
  • the shaking estimation system 1 is applied to the building 2.
  • the shaking estimation system 1 is a system for estimating the shaking of the applied building 2.
  • Building 2 has multiple floors.
  • An elevator 3 is provided in the building 2.
  • the hoistway 4 of the elevator 3 is provided.
  • the hoistway 4 is a space that spans a plurality of floors.
  • the machine room 5 of the elevator 3 is provided above the hoistway 4.
  • the elevator 3 includes a hoisting machine 6, a suspension body 7, a deflecting wheel 8, a basket 9, a balance weight 10, and a control device 11.
  • the hoisting machine 6 is provided in the machine room 5.
  • the hoisting machine 6 includes a drive sheave 12, a hoisting machine motor 13, and a hoisting machine brake 14.
  • the drive sheave 12 is a pulley of the elevator 3.
  • the hoisting machine motor 13 is a device that rotates the drive sheave 12.
  • the hoist brake 14 is a device that brakes the rotation of the drive sheave 12.
  • the hoist brake 14 is, for example, an electromagnetic brake.
  • the hoist brake 14 includes a brake wheel, a brake shoe, a brake spring, and an electromagnetic magnet.
  • the brake vehicle is a brake drum or a brake disc coaxially coupled to the drive sheave 12.
  • the brake shoe is a member that comes into contact with the brake vehicle when braking the rotation of the drive sheave 12.
  • the brake spring is a spring that presses the brake shoe against the brake wheel by an elastic force.
  • the electromagnetic magnet is a device that pulls the brake shoe away from the brake vehicle against the elastic force of the brake spring when releasing the braking of the rotation of the drive sheave 12.
  • the suspension body 7 is, for example, a plurality of ropes or a plurality of belts.
  • the suspension body 7 is wound around the drive sheave 12.
  • the deflecting wheel 8 is provided in the machine room 5.
  • the deflecting wheel 8 is a pulley around which the suspension body 7 is wound. Both ends of the suspension body 7 are lowered from the machine room 5 to the hoistway 4.
  • One end of the suspension body 7 is connected to the car 9 in the hoistway 4.
  • the other end of the suspension body 7 is connected to the counterweight 10 in the hoistway 4.
  • the car 9 and the counterweight 10 are suspended in the hoistway 4 by the suspension body 7.
  • the car 9 and the counterweight 10 move up and down the hoistway 4 in opposite directions by the hoisting machine 6.
  • the basket 9 is a device for transporting users of the elevator 3 and the like between a plurality of floors.
  • the counterweight 10 is a device that balances the load applied to both ends of the suspension body 7 with the car 9.
  • the control device 11 is provided in the machine room 5.
  • the control device 11 is a device that controls the operation of the elevator 3.
  • the control device 11 controls the rotation of the hoist 6 to move the car 9 up and down in the hoistway 4 at a preset speed.
  • the elevator 3 includes a pair of car guide rails 15 and a pair of counterweight guide rails 16.
  • Each car guide rail 15 and each counterweight guide rail 16 are provided in the hoistway 4.
  • the pair of car guide rails 15 are arranged on the left and right sides of the car 9, for example.
  • Each car guide rail 15 guides the car 9 to move up and down.
  • the pair of counterweight guide rails 16 are arranged on the left and right sides of the counterweight, for example.
  • Each balance weight guide rail 16 guides the balance weight 10 to move up and down.
  • the elevator 3 includes a car shock absorber 17 and a counterweight shock absorber 18.
  • the car shock absorber 17 and the counterweight shock absorber 18 are provided at the bottom of the hoistway 4.
  • the car shock absorber 17 is provided below the car 9.
  • the car shock absorber 17 is a device that cushions an impact when the car 9 collides with the bottom of the hoistway 4.
  • the counterweight shock absorber 18 is provided below the counterweight weight 10.
  • the counterweight shock absorber 18 is a device that cushions the impact when the counterweight 10 collides with the bottom of the hoistway 4.
  • the elevator 3 includes a P wave detector 19 (P wave: Primary wave) and an S wave detector 20 (S wave: Secondary wave).
  • P wave Primary wave
  • S wave Secondary wave
  • the P wave detector 19 and the S wave detector 20 are devices that detect seismic waves.
  • the P wave detector 19 is provided at the bottom of the hoistway 4.
  • the P wave detector 19 senses the P wave.
  • the S wave detector 20 is provided in the machine room 5.
  • the S wave detector 20 senses the S wave.
  • the control device 11 shifts the operation of the elevator 3 from the normal operation to the seismic control operation when the seismic wave detected by the P wave detector 19 or the like has a vibration exceeding a preset threshold value. ..
  • the control device 11 stops the running car 9 on the nearest floor. After that, the user in the car 9 is notified to get off the car 9.
  • the control device 11 returns the operation of the elevator 3 to the normal operation.
  • FIG. 2 is a configuration diagram of the shaking estimation system 1 according to the first embodiment.
  • the shaking estimation system 1 is a system that estimates the shaking of the building 2.
  • the shaking of the building 2 estimated by the shaking estimation system 1 is, for example, the distribution of the amount of shaking with respect to the height of the building 2.
  • the amount of sway is, for example, the maximum acceleration, maximum velocity, or maximum displacement of sway.
  • the shaking estimation system 1 estimates the shaking of the building 2 due to the earthquake, for example, when an earthquake occurs.
  • the shaking estimation system 1 estimates the shaking of the building 2 in the horizontal direction, for example.
  • the vibration estimation system 1 includes a plurality of vibration sensors 21 and a vibration estimation device 22.
  • Each vibration sensor 21 is provided in the building 2.
  • each vibration sensor 21 is fixed to the building 2.
  • a part or all of the plurality of vibration sensors 21 are arranged, for example, in the hoistway 4.
  • Each vibration sensor 21 is a device that detects vibration.
  • Each vibration sensor 21 outputs vibration acceleration, velocity, displacement, or the like as a vibration detection value.
  • Each vibration sensor 21 is arranged at different heights in the building 2.
  • Each vibration sensor 21 is arranged on different floors, for example.
  • the shaking estimation device 22 is, for example, a server computer provided in the building 2.
  • the shaking estimation device 22 may be integrally mounted on the hardware of the elevator 3 such as the control device 11.
  • the shaking estimation device 22 may be a server computer or the like provided at a base outside the building 2.
  • the external base is, for example, an information center that collects information on the elevator 3.
  • the shaking estimation device 22 may be, for example, a virtual server on a cloud service.
  • the shaking estimation device 22 includes a building shaking estimation unit 23 and an elevator shaking estimation unit 24.
  • the building shaking estimation unit 23 is a part that estimates the shaking of the building 2 based on the detection results of each vibration sensor 21.
  • the building shake estimation unit 23 outputs the estimated shake of the building 2 to the elevator shake estimation unit 24.
  • the elevator shake estimation unit 24 is a part that estimates the shake of the equipment of the elevator 3 based on the shake of the building 2 estimated by the building shake estimation unit 23.
  • the device of the elevator 3 in which the shaking is estimated is, for example, a basket 9 or a counterweight 10.
  • the elevator shake estimation unit 24 may estimate the shake of a non-moving device such as a control device 11.
  • the shaking of the equipment of the elevator 3 estimated by the elevator shaking estimation unit 24 is, for example, the amount of shaking of the equipment of the elevator 3.
  • the amount of sway is, for example, the maximum acceleration, maximum velocity, or maximum displacement of sway.
  • FIG. 3 is a diagram showing a vibration mode of the building 2 to which the vibration estimation system 1 according to the first embodiment is applied.
  • the vertical axis represents the height of the building 2.
  • the horizontal axis represents the amplitude of vibration in each vibration mode.
  • the graph on the left side of FIG. 3 represents a primary vibration mode.
  • the graph in the center of FIG. 3 represents a quadratic vibration mode.
  • the graph on the right side of FIG. 3 represents a third-order vibration mode.
  • the vibration estimation system 1 includes three vibration sensors 21 on the middle floor.
  • the three vibration sensors 21 are arranged at positions set by using the vibration mode of the building 2.
  • building 2 When building 2 receives forced vibration from the ground surface due to an earthquake, building 2 can be modeled as a one-dimensional continuous elastic body.
  • the vibration mode of building 2 represents relative vibration relative to the lowest floor.
  • the top floor which is the upper end of the building 2
  • the lowest floor which is the lower end of the building 2
  • the shaking of the building 2 is represented by the superposition of the vibration modes of the building 2 modeled as a continuous elastic body. Therefore, each vibration sensor 21 is arranged at any position on the abdomen of the vibration mode so that the vibration information of the vibration mode of the building 2 can be acquired.
  • the abdomen is a portion where the amplitude of vibration is maximized in the vibration mode.
  • the abdomen may be, for example, the upper end of the building 2.
  • the nth order vibration mode has, for example, n abdomen.
  • the n-th order vibration mode has, for example, n nodes.
  • the node portion is a portion where the vibration amplitude becomes 0 in the vibration mode.
  • the knot may be, for example, the lower end of the building 2.
  • the lower end of the building 2 corresponds to, for example, the lowest floor.
  • the vibration estimation system 1 further includes a vibration sensor 21 arranged at a position that serves as a reference for vibration in the vibration mode.
  • the vibration sensor 21 is arranged, for example, on the lowest floor of the building 2.
  • the arrangement of the three vibration sensors 21 on the middle floor will be described using an example in which the waveform of the vibration mode of the building 2 is represented by a sine and cosine waveform. Even in the general case where the waveform of the vibration mode of the building 2 is not represented by a sine and cosine waveform, the arrangement of the plurality of vibration sensors 21 is set by the same procedure.
  • the waveform of the vibration mode of the building 2 for example, a waveform calculated in advance based on the structure of the building 2 or the like is used.
  • the waveform ⁇ n (x) of the nth-order vibration mode is represented by a sinusoidal waveform as shown in the following equation (1).
  • x is a variable representing the height of the building 2.
  • the origin of the height x is set to be 0, for example, on the lowest floor above the ground.
  • the height x is standardized so as to be 1 on the top floor of the building 2.
  • the arrangement of the three vibration sensors 21 is set by using the vibration modes of the building 2 in ascending order of order.
  • the waveform ⁇ 1 (x) of the first-order vibration mode of the building 2 is shown by the following equation (2).
  • the primary vibration mode is the lowest vibration mode.
  • the primary vibration mode is the basic vibration mode.
  • the first vibration sensor 21a which is the first of the three vibration sensors 21, is arranged in the abdomen of the primary vibration mode.
  • the abdomen is the first abdomen.
  • x 1 is the position of the first abdomen.
  • the waveform ⁇ 2 (x) of the second-order vibration mode of the building 2 is shown by the following equation (3).
  • the second-order vibration mode is an example of a higher-order vibration mode higher than the basic vibration mode.
  • the waveform ⁇ 3 (x) of the third-order vibration mode of the building 2 is shown by the following equation (4).
  • the third-order vibration mode is an example of a higher-order vibration mode than the higher-order vibration mode.
  • the third vibration sensor 21c which is the third of the three vibration sensors 21, is arranged in any of the abdomen of the third vibration mode.
  • each vibration sensor 21 is arranged over the entire height of the building 2 so as to suppress a decrease in the accuracy of estimating the vibration of the building 2 at a position where the vibration sensor 21 is not provided. .. Therefore, the vibration sensors 21 are arranged at positions as far apart from each other as possible.
  • the third vibration sensor 21c is arranged in the abdomen where the distance from the near side of the first abdomen and the second abdomen is the largest. The distance between the two abdomen is, for example, the difference in height between the two abdomen.
  • the abdomen is the third abdomen.
  • x 3 is the position of the third abdomen.
  • the vibration estimation system 1 includes four or more vibration sensors 21, the arrangement of the vibration sensors 21 is set by the same procedure.
  • the vibration sensor 21 arranged in any of the abdomen of the nth-order vibration mode is the abdomen in which the vibration sensor 21 is arranged using, for example, a vibration mode lower than the nth-order vibration mode among the abdomen of the n-th order vibration mode. It is placed in the abdomen with the greatest distance from the nearest abdomen.
  • FIG. 4 is a diagram showing an example of vibration detected in the vibration estimation system 1 according to the first embodiment.
  • the horizontal axis represents time.
  • the vertical axis represents the vibration at the position where the vibration sensor 21 is provided in the building 2.
  • the upper graph of FIG. 4 shows the vibration in the first abdomen.
  • the lower graph of FIG. 4 shows the vibration in the second abdomen.
  • the middle graph of FIG. 4 shows the vibration in the third abdomen.
  • the vibration of the reference vibration sensor 21 provided on the lowest floor of the ground surface is obtained from the detected value of the vibration of the vibration sensor 21 arranged in the abdomen corresponding to each graph.
  • the relative value is shown after subtracting the detected value of.
  • the detected value of vibration is the acceleration of vibration. Even when the detected value of vibration in each vibration sensor 21 is velocity or displacement, the shaking of the building 2 is estimated by the same processing.
  • the vibration estimation system 1 acquires the maximum value of the vibration detection value so that the maximum value such as the displacement, velocity, or acceleration of the vibration can be estimated as the vibration amount.
  • the maximum value acquired here is, for example, the maximum value in the entire time domain during the occurrence of an earthquake.
  • the detection values of the respective vibration sensors 21 at the same time are acquired so that the shaking of the building 2 can be estimated based on the vibration mode of the building 2. Therefore, the times in each vibration sensor 21 are synchronized with each other, for example.
  • the building shaking estimation unit 23 estimates the shaking of the building 2 when, for example, an earthquake occurs.
  • the occurrence and termination of an earthquake may be sensed by, for example, a P wave detector 19 or an S wave detector 20.
  • the occurrence and termination of an earthquake may be sensed based on the detection value of any of the vibration sensors 21.
  • the building shaking estimation unit 23 performs the vibration sensor 21.
  • the maximum value of vibration is, for example, the maximum value in a relative value obtained by subtracting the value detected by the reference vibration sensor 21.
  • the maximum value is indicated by a circle symbol in FIG.
  • the building shaking estimation unit 23 also stores the detected values of the vibrations of all the other vibration sensors 21 at the same time.
  • the detected value stored here is, for example, a relative value obtained by subtracting the detected value by the reference vibration sensor 21.
  • the relative value is indicated by a square symbol in FIG. In this example, since there are three vibration sensors 21 arranged in the abdomen, each vibration sensor at three times t 1 , t 2 , and t 3 where the relative value of the detected value of each vibration sensor 21 becomes maximum.
  • the detected value of 21 is stored.
  • a 11 represents a relative value to a reference of the vibration sensor 21 for the detection value of the first vibration sensor 21a which is detected at time t 1.
  • a 21 represents a relative value to a reference of the vibration sensor 21 for the detection value of the second vibration sensor 21b detected at time t 1.
  • a 31 represents the reference value relative to the vibration sensor 21 for the detection value of the third vibration sensor 21c that is detected at time t 1.
  • q 1 (t) represents the mode amplitude of the first-order vibration mode at time t.
  • q 2 (t) represents the mode amplitude of the second-order vibration mode at time t.
  • q 3 (t) represents the mode amplitude of the third-order vibration mode at time t.
  • the mode amplitude is an example of the components of each vibration mode.
  • the building shake estimation unit 23 uses the mode amplitude q 1 (t 1 ), q 2 at time t 1 based on equation (5). (t 1), and q 3 (t 1) is calculated. Building shake estimation unit 23 based on the calculated mode amplitude can be calculated shake amount of the building 2 at time t 1 for any position x of the building 2, including the position at which vibration sensor 21 is not provided. In this example, the building shaking estimation unit 23 calculates the amount of shaking for the position corresponding to each floor. Similarly, building shake estimation unit 23, the position corresponding to each floor, and calculates the shake amount of the building 2 at time t 2 and t 3.
  • FIG. 5 is a diagram showing an example of vibration detected in the vibration estimation system 1 according to the first embodiment.
  • FIG. 6 is a diagram showing an example of the amount of shaking of each floor estimated by the shaking estimation system 1 according to the first embodiment.
  • the horizontal axis represents time.
  • the vertical axis represents the acceleration of vibration at the position where the vibration sensor 21 is provided in the building 2.
  • the solid line graph in FIG. 5 represents the vibration in the first abdomen.
  • the dashed graph in FIG. 5 represents the vibration in the second abdomen.
  • the dashed line graph in FIG. 5 represents vibration in the third abdomen.
  • the building 2 has 20 floors.
  • the first abdomen, the second abdomen, and the third abdomen are the 20th, 7th, and 12th floors of the building 2.
  • the first vibration sensor 21a is arranged on the 20th floor, which is the first abdomen.
  • the second vibration sensor 21b is arranged on the seventh floor, which is the second abdomen.
  • the third vibration sensor 21c is arranged on the 12th floor, which is the third abdomen.
  • the detected value of the first vibration sensor 21a becomes maximum at a time around 12.5 seconds.
  • FIG. 6 based on the vibration detection result shown in FIG. 5, the vibration of the building 2 estimated by the building vibration estimation unit 23 at the time when the detection value of the first vibration sensor 21a becomes maximum is shown.
  • the horizontal axis represents the floor of the building 2.
  • the vertical axis shows the acceleration as the amount of shaking of the building 2.
  • the solid line graph shows the estimated value by the shaking estimation unit.
  • the square symbol indicates the amount of shaking of each floor of the building 2 at the time when the detected value of the first vibration sensor 21a is maximum.
  • the estimated value by the shaking estimation unit almost corresponds to the shaking amount of each floor of the building 2.
  • the amount of shaking of the entire building 2 is estimated with high accuracy by a small number of vibration sensors 21. Therefore, the influence of shaking on the equipment provided in the building 2 can be diagnosed based on the shaking amount of the building 2.
  • FIG. 7 is a flow chart showing an example of the operation of the shaking estimation system 1 according to the first embodiment.
  • the control device 11 shifts the operation of the elevator 3 from the normal operation to the earthquake control operation.
  • the elevator 3 when a vibration larger than the preset vibration is detected by, for example, the S wave detector 20, it is determined whether or not the diagnostic operation is possible.
  • the diagnostic operation is an operation in which the influence of shaking is diagnosed by checking the presence or absence of an abnormality in the elevator 3.
  • Whether or not the diagnostic operation is possible is determined based on, for example, the shaking of the building 2 estimated by the shaking estimation system 1 based on the detection results of each vibration sensor 21.
  • the building shake estimation unit 23 outputs the shake estimation result of the building 2 to the elevator shake estimation unit 24.
  • the elevator sway estimation unit 24 acquires the sway estimation result of the building 2 from the building sway estimation unit 23.
  • the elevator shake estimation unit 24 acquires the position of the device of the elevator 3 from, for example, the control device 11.
  • the position of the equipment of the elevator 3 is, for example, the position of the car 9 or the counterweight 10.
  • the elevator shake estimation unit 24 estimates the shake of the equipment of the elevator 3 based on the estimation result of the shake of the building 2 and the position of the equipment of the elevator 3.
  • the elevator shake estimation unit 24 estimates, for example, the shake of the building 2 at the position of the acquired device as the shake of the device.
  • the elevator shaking estimation unit 24 compares the estimated shaking amount of the equipment of the elevator 3 with a preset threshold value.
  • the threshold value is a value stored in advance by, for example, the elevator shake estimation unit 24 or the like as a criterion for determining whether or not the elevator 3 can be diagnostically operated.
  • the elevator sway estimation unit 24 determines that diagnostic operation is possible when the estimated sway amount is below the threshold value.
  • the elevator sway estimation unit 24 determines that the diagnostic operation is impossible when the estimated sway amount is equal to or greater than the threshold value.
  • the elevator shake estimation unit 24 outputs the determination result of whether or not the diagnostic operation is possible to the control device 11.
  • the control device 11 When the determination result that enables the diagnostic operation is received from the elevator shake estimation unit 24, the control device 11 starts the diagnostic operation of the elevator 3. When no abnormality is detected in the diagnostic operation, the control device 11 returns the operation of the elevator 3 to the normal operation.
  • the control device 11 suspends the operation of the elevator 3 and makes it wait until the inspection by the maintenance staff.
  • the vibration estimation system 1 may include four or more vibration sensors 21 provided in the abdomen of the vibration mode. Further, the vibration estimation system 1 may include only two vibration sensors 21 provided in the abdomen of the vibration mode. At this time, the building shaking estimation unit 23 estimates the shaking of the building 2 based on, for example, a primary vibration mode and a secondary vibration mode.
  • the P wave detector 19 or the S wave detector 20 when the P wave detector 19 or the S wave detector 20 has a function of outputting a vibration waveform, the P wave detector 19 or the S wave detector 20 functions as a vibration sensor 21. May also serve as.
  • the P wave detector 19 arranged at the bottom of the hoistway 4 may function as a reference vibration sensor 21 arranged at the bottom floor of the building 2.
  • the S wave detector 20 arranged in the machine room 5 may function as a vibration sensor 21 arranged in the abdomen of the basic vibration mode.
  • the machine room 5 may not be provided at the upper part of the hoistway 4.
  • the elevator 3 provided in the building 2 may be a machine roomless elevator.
  • the elevator 3 provided in the building 2 is not limited to the types exemplified here.
  • the elevator 3 provided in the building 2 may be a type of elevator such as a 2: 1 roping elevator with a hoist or a self-propelled elevator without a hoist.
  • a plurality of elevators 3 may be provided in the building 2. At this time, the operation of each elevator 3 may be managed by, for example, a group management device.
  • the shaking estimation system 1 does not have to have the elevator shaking estimation unit 24.
  • the shaking estimation system 1 may output the estimated shaking information of the building 2 to, for example, an external system for diagnosing the influence of the shaking of the elevator 3.
  • the vibration estimation system 1 includes a plurality of vibration sensors 21 and a building vibration estimation unit 23.
  • Each vibration sensor 21 is provided in the building 2.
  • Each vibration sensor 21 detects vibration.
  • the building shaking estimation unit 23 estimates the shaking of the building 2 based on the detection results of the respective vibration sensors 21.
  • the plurality of vibration sensors 21 include a first vibration sensor 21a and a second vibration sensor 21b.
  • the first vibration sensor 21a is provided on the first abdomen.
  • the first abdomen is the abdomen of the building 2 in the basic vibration mode.
  • the second vibration sensor 21b is provided on the second abdomen.
  • the second abdomen is the abdomen farthest from the first abdomen among the plurality of abdomens in the higher vibration mode of the building 2.
  • the higher-order vibration mode is a higher-order vibration mode than the basic vibration mode.
  • the plurality of vibration sensors 21 are arranged at the positions of the building 2 including the first abdomen and the second abdomen.
  • the vibration of the first abdomen well represents the vibration by the basic vibration mode.
  • the vibration of the second abdomen well represents the vibration due to the higher vibration mode. Since the vibration of the building 2 is represented by the superposition of vibration modes such as the basic vibration mode and the higher-order vibration mode, the information characterizing the vibration of the building 2 is detected by a small number of vibration sensors 21. As a result, the building shake estimation unit 23 can accurately estimate the shake of the building 2 while suppressing the number of vibration sensors 21.
  • the vibration of the building 2 is estimated accurately, even if a large number of devices for diagnosing the influence of the shaking are provided in the building 2, it is not necessary to provide a sensor for detecting the vibration in each of the devices. Therefore, an increase in the number of sensors such as the vibration sensor 21 used for diagnosing the influence of shaking can be suppressed.
  • the building shaking estimation unit 23 estimates the components of each vibration mode of the building 2 based on the detection results of the respective vibration sensors 21.
  • the building shaking estimation unit 23 estimates the shaking of the building 2 using the estimated vibration mode component.
  • the building shaking estimation unit 23 can accurately estimate the amount of shaking based on the waveform of the vibration mode even at a position where the vibration sensor 21 is not provided.
  • the building shaking estimation unit 23 estimates the shaking of the building 2 based on the vibration detection values of each of the plurality of vibration sensors 21 at the time when the maximum value of the vibration is detected by at least one of the vibration sensors 21.
  • the building shaking estimation unit 23 can uniquely and accurately estimate the components of the vibration mode.
  • the estimated vibration is a vibration that well reflects the vibration mode corresponding to the abdomen where the vibration is maximized. Therefore, the shaking estimation system 1 can accurately diagnose the influence of shaking due to each vibration mode.
  • the plurality of vibration sensors 21 include the third vibration sensor 21c.
  • the third vibration sensor 21c is provided on the third abdomen.
  • the third abdomen is the abdomen having the greatest distance from the closer side of the first abdomen and the second abdomen among the plurality of abdomens having a higher vibration mode than the higher vibration mode corresponding to the second abdomen.
  • the building shake estimation unit 23 can estimate the shake of the building 2 with higher accuracy. Further, the vibration sensors 21 are arranged apart from each other over the entire building 2. Therefore, the building shake estimation unit 23 can estimate the shake of the entire building 2 with higher accuracy.
  • the shaking estimation system 1 includes an elevator shaking estimation unit 24.
  • the elevator shake estimation unit 24 estimates the shake of the equipment of the elevator 3 provided in the building 2 based on the shake of the building 2 estimated by the building shake estimation unit 23.
  • the effect of shaking on the equipment of the elevator 3 can be accurately diagnosed. Further, it is not necessary to provide the vibration sensor 21 in the equipment of the elevator 3 that moves in the building 2 such as the counterweight 10. Therefore, it is not necessary to perform wiring such as power supply or signal communication to the balance weight 10 or the like. Therefore, it is not necessary to take measures against the wiring being caught in the counterweight 10 or the like. Further, even when a plurality of elevators 3 are provided in the building 2, it is not necessary to provide a vibration sensor 21 for each elevator 3. Therefore, an increase in the number of sensors such as the vibration sensor 21 used for diagnosing the influence of shaking can be suppressed. Further, the elevator shake estimation unit 24 accurately determines whether or not the elevator 3 can be diagnostically operated.
  • the diagnostic operation can be performed more reliably, so that the number of elevators 3 that can be restored to the normal operation in the event of an earthquake can be increased. Further, since the diagnostic operation is suppressed when the diagnostic operation is impossible, the occurrence of secondary damage such as damage to the equipment of the elevator 3 in the diagnostic operation can be suppressed.
  • FIG. 8 is a hardware configuration diagram of a main part of the shaking estimation system 1 according to the first embodiment.
  • the processing circuit includes at least one processor 100a and at least one memory 100b.
  • the processing circuit may include at least one dedicated hardware 200 with or as a substitute for the processor 100a and the memory 100b.
  • each function of the shaking estimation system 1 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 100b. The processor 100a realizes each function of the shaking estimation system 1 by reading and executing the program stored in the memory 100b.
  • the processor 100a is also referred to as a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • the memory 100b is composed of, for example, a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
  • the processing circuit includes the dedicated hardware 200
  • the processing circuit is realized by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Each function of the shaking estimation system 1 can be realized by a processing circuit. Alternatively, each function of the shaking estimation system 1 can be collectively realized by a processing circuit. For each function of the shaking estimation system 1, a part may be realized by the dedicated hardware 200, and the other part may be realized by software or firmware. As described above, the processing circuit realizes each function of the shaking estimation system 1 by the dedicated hardware 200, software, firmware, or a combination thereof.
  • Embodiment 2 The differences between the second embodiment and the examples disclosed in the first embodiment will be described in particular detail. As for the features not described in the second embodiment, any of the features disclosed in the first embodiment may be adopted.
  • FIG. 9 is a diagram showing an example of vibration detected in the vibration estimation system 1 according to the second embodiment.
  • the horizontal axis represents time.
  • the vertical axis represents the vibration at the position where the vibration sensor 21 is provided in the building 2.
  • the graph of FIG. 9 represents the vibration in the first abdomen.
  • the building shaking estimation unit 23 divides the period during which the building 2 is shaking into a plurality of time widths.
  • the period during which the building 2 is shaken is, for example, the period from the occurrence of an earthquake that forcibly vibrates the building 2 to the end of the earthquake.
  • the length of each time width is, for example, a constant time T.
  • the building shaking estimation unit 23 estimates the shaking of the building 2 for each time width. In FIG. 9, each time width is shown by a dotted frame.
  • the building shaking estimation unit 23 estimates the shaking of the building 2 for each time width.
  • the building shaking estimation unit 23 stores the maximum value of each of the vibration sensors 21 arranged in the abdomen of the vibration mode in each time width.
  • the building shaking estimation unit 23 stores the detected values of all the other vibration sensors 21 at the time when the maximum value is detected by any of the vibration sensors 21.
  • the building shaking estimation unit 23 estimates the amount of shaking for each of the times when the detected values are stored, for example, by calculating the mode amplitude of each vibration mode.
  • the shaking estimation system 1 includes three vibration sensors 21 arranged in the abdomen, the building shaking estimation unit 23 calculates the mode amplitude at three times for each time width.
  • the building shaking estimation unit 23 of the shaking estimation system 1 according to the second embodiment of the building 2 has a plurality of time widths obtained by dividing the period in which the shaking of the building 2 is occurring. Estimate the shaking.
  • the shaking of the building 2 is estimated at more times. Therefore, oversight when the amount of shaking is large at a position where the vibration sensor 21 of the building 2 is not provided is suppressed.
  • the building shaking estimation unit 23 sets the maximum value of the time width data in which the detected value is already stored so that the data capacity of the detected value of the vibration sensor 21 can be suppressed when the duration of the earthquake is long.
  • the data may be overwritten and stored in order from the data having the smallest time width.
  • Embodiment 3 The differences between the third embodiment and the examples disclosed in the first embodiment or the second embodiment will be described in particular detail. As for the features not described in the third embodiment, any of the features disclosed in the first embodiment or the second embodiment may be adopted.
  • FIG. 10 is a configuration diagram of the shaking estimation system 1 according to the third embodiment.
  • the shaking estimation device 22 includes a weighting coefficient storage unit 25.
  • the weighting coefficient storage unit 25 is a portion that stores a weighting coefficient calculated in advance.
  • the weighting coefficient is a coefficient used for estimating the shaking of the equipment of the elevator 3.
  • the weighting factor is preset according to each vibration mode of the building 2.
  • the weighting factor corresponds to the vibration mode of the building 2 through the relationship between the natural frequency of the equipment of the elevator 3 and the natural frequency of each vibration mode of the building 2. For example, when the equipment of the elevator 3 is a car 9, the natural frequency of the car 9 is calculated by modeling the mechanical interlocking between the car 9 and the car guide rail 15 as a coupling by a spring or the like. .. Similarly, when the equipment of the elevator 3 is the counterweight 10, the natural frequency of the counterweight 10 is calculated by modeling the mechanical interlocking between the counterweight 10 and the counterweight guide rail 16. Ru.
  • FIG. 11 is a diagram showing an example of a weighting coefficient according to the third embodiment.
  • the horizontal axis represents the frequency.
  • the vertical axis represents the weighting factor.
  • the graph of FIG. 11 shows the relationship between the weighting factor and the natural frequency of the vibration mode of the building 2.
  • the natural frequencies of the primary, secondary, and tertiary vibration modes of the building 2 are ⁇ 1 , ⁇ 2 , and ⁇ 3. Further, it is assumed that the natural frequency of the equipment of the elevator 3 is ⁇ 0.
  • the weighting coefficient is set by, for example, a function in which the natural frequency of the vibration mode of the building 2 becomes larger as it approaches ⁇ 0.
  • the elevator sway estimation unit 24 calculates a value obtained by multiplying the mode amplitude of each vibration mode of the building 2 estimated by the building sway estimation unit 23 by a weighting coefficient.
  • the elevator shake estimation unit 24 estimates the shake y (t 1 , x) of the equipment of the elevator 3 at the position x at the time t 1 by the following equation (6) using the calculated value.
  • the shaking estimation system 1 includes a weighting coefficient storage unit 25 and an elevator shaking estimation unit 24.
  • the weighting coefficient storage unit 25 stores the weighting coefficient preset for each vibration mode of the building 2.
  • the elevator sway estimation unit 24 is provided in the building 2 using the result of multiplying the component of each vibration mode of the building 2 estimated by the building sway estimation unit 23 by the weight coefficient stored in the weight coefficient storage unit 25. Estimate the shaking of the equipment of the elevator 3.
  • the shaking of the equipment of the elevator 3 is estimated with higher accuracy.
  • the elevator 3 can be more reliably restored by the diagnostic operation.
  • the occurrence of secondary damage due to diagnostic operation can be suppressed more reliably.
  • Embodiment 4 In the fourth embodiment, the differences from the examples disclosed in the first to third embodiments will be described in particular detail. As for the features not described in the fourth embodiment, any of the features disclosed in the first to third embodiments may be adopted.
  • FIG. 12 is a configuration diagram of the shaking estimation system 1 according to the fourth embodiment.
  • the shaking estimation device 22 includes a floor response storage unit 26.
  • the floor response storage unit 26 is a portion that stores the floor response of the building 2 calculated in advance.
  • the floor response of the building 2 is data in which the maximum value for the amount of shaking of each floor is stored by giving a plurality of seismic waves normalized by the maximum value to the vibration model of the building 2.
  • the floor response of the building 2 is stored corresponding to the position of the building 2 including the abdomen of the vibration mode in which the vibration sensor 21 is arranged.
  • FIG. 13 is a diagram showing an example of estimation of the shaking of the building 2 by the building shaking estimation unit 23 according to the fourth embodiment.
  • the vertical axis represents the height x of the building 2.
  • the horizontal axis represents the amount of shaking of the building 2.
  • the solid line graph represents the floor response of the building 2 stored in the floor response storage unit 26.
  • the square symbol represents the detected value of vibration by each vibration sensor 21.
  • the vibration detection value is, for example, a relative value obtained by subtracting the vibration detection value of the reference vibration sensor 21 provided on the lowest floor of the ground surface. Alternatively, the vibration detection value may be the detection value itself by each vibration sensor 21.
  • the broken line graph represents the shaking of the building 2 estimated by the building shaking estimation unit 23.
  • the building shaking estimation unit 23 acquires the maximum value of the detected value for each vibration sensor 21 over the time when the earthquake is occurring.
  • the maximum values acquired for the first vibration sensor 21a, the second vibration sensor 21b, and the third vibration sensor 21c are indicated by square symbols.
  • the building shaking estimation unit 23 calculates the difference between the acquired maximum value and the floor response of the building 2 stored by the floor response storage unit 26 regarding the position of the vibration sensor 21 corresponding to the maximum value.
  • the difference calculated here may be, for example, a difference or a ratio.
  • the building shake estimation unit 23 calculates a correction coefficient for the floor response of the building 2 based on the calculated difference.
  • the correction coefficient in the abdomen where the vibration sensor 21 is arranged is, for example, the ratio of the maximum value acquired for the vibration sensor 21 to the floor response of the building 2.
  • the correction coefficient ⁇ 1 is a correction coefficient at the position x 1.
  • the correction coefficient ⁇ 2 is a correction coefficient at the position x 2.
  • the correction coefficient ⁇ 3 is a correction coefficient at the position x 3.
  • the building shaking estimation unit 23 calculates the correction coefficient for the entire height of the building 2 by interpolating the correction coefficient in the abdomen where the vibration sensor 21 is arranged.
  • the building shake estimation unit 23 uses, for example, linear interpolation to calculate the correction coefficient.
  • the building shake estimation unit 23 performs linear interpolation using the correction coefficient values 1 and ⁇ 2 at both ends of the section. Further, for the section of height x (x 2 , x 3 ), the building shake estimation unit 23 performs linear interpolation using the correction coefficient values ⁇ 2 and ⁇ 3 at both ends of the section. Further, for the section of height x (x 3 , x 1 ), the building shake estimation unit 23 performs linear interpolation using the correction coefficient values ⁇ 3 and ⁇ 1 at both ends of the section.
  • the building shake estimation unit 23 calculates a value obtained by superimposing the correction coefficient calculated over the entire height of the building 2 on the floor response of the building 2 stored in the floor response storage unit 26 and multiplying it. In FIG. 13, the calculated value is shown by a broken line. The building shake estimation unit 23 estimates the shake of the building 2 based on the calculated value.
  • the shaking estimation system 1 includes a floor response storage unit 26.
  • the floor response storage unit 26 stores a preset floor response of the building 2.
  • the building shaking estimation unit 23 is based on the floor response of the building 2 stored in the floor response storage unit 26 and the maximum value of each of the detection values of the first vibration sensor 21a and the second vibration sensor 21b. Estimate the shaking of.
  • the shaking of the building 2 is estimated using the information of the maximum value of the detected values of each vibration sensor 21. Therefore, even when the time is not synchronized in each vibration sensor 21, the shaking of the building 2 can be estimated accurately. Further, since the detection value of each vibration sensor 21 at the same time is not required, the data capacity of the detection result of the vibration sensor 21 can be saved. Therefore, even when the storage capacity of the shaking estimation system 1 is limited, the shaking of the building 2 can be estimated accurately.
  • the building shaking estimation unit 23 is among the floor response of the building 2 stored by the floor response storage unit 26 for the position where each vibration sensor 21 is provided and the detection value of the vibration sensor 21 provided at the position. Calculate the difference in maximum value.
  • the building shaking estimation unit 23 calculates a correction coefficient obtained by interpolating the difference calculated for the position where each vibration sensor 21 is provided for the position of the building 2.
  • the building shaking estimation unit 23 estimates the shaking of the building 2 using the result of multiplying the calculated correction coefficient by the floor response of the building 2 stored in the floor response storage unit 26.
  • the building shake estimation unit 23 can estimate the amount of shake at the position where the vibration sensor 21 is not provided by the interpolated correction coefficient based on the known floor response. Further, the building shake estimation unit 23 can estimate the shake of the building 2 by using a simple and robust method such as linear interpolation.
  • the shaking estimation system according to the present disclosure can be applied to a building having multiple floors.
  • 1 shaking estimation system 2 building, 3 elevator, 4 hoistway, 5 machine room, 6 hoisting machine, 7 suspension body, 8 distorting car, 9 basket, 10 balancing weight, 11 control device, 12 drive sheave, 13 hoisting Machine motor, 14 hoist brake, 15 car guide rail, 16 balanced weight guide rail, 17 basket shock absorber, 18 balanced weight shock absorber, 19 P wave detector, 20 S wave detector, 21 vibration sensor, 21a 1st Vibration sensor, 21b 2nd vibration sensor, 21c 3rd vibration sensor, 22 vibration estimation device, 23 building vibration estimation unit, 24 elevator vibration estimation unit, 25 weight coefficient storage unit, 26 floor response storage unit, 100a processor, 100b memory, 200 dedicated hardware

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

A sway estimation system is provided which can accurately estimate the sway of a building while keeping the number of sensors down. This sway estimation system (1) is provided with multiple vibration sensors (21) and a building sway estimation unit (23). The vibration sensors (21) are provided on the building (2). The vibration sensors (21) detect vibration. The building sway estimation unit (23) estimates sway of the building (2) on the basis of the detection results of the vibration sensors (21). The vibration sensors (21) include first vibration sensors (21a) and second vibration sensors (21b). The first vibration sensors (21a) are provided on first antinode sections. The first antinode sections are antinode sections of the fundamental vibration mode of the building (2). The second vibration sensors (21b) are provided on second antinode sections. The second antinode sections are those antinode sections of higher vibration modes of the building 2 that are farthest from the first antinode sections. The higher vibration modes are the vibration modes that are higher than the fundamental vibration mode.

Description

揺れ推定システムShake estimation system
 本開示は、揺れ推定システムに関する。 This disclosure relates to a shaking estimation system.
 特許文献1は、エレベーター装置の例を開示する。エレベーター装置は、加速度センサと、制御ユニットと、を備える。加速度センサは、釣合い錘などに設けられる。制御ユニットは、加速度センサの検出結果に基づいてエレベーター装置の診断運転の可否を判断する。 Patent Document 1 discloses an example of an elevator device. The elevator device includes an acceleration sensor and a control unit. The accelerometer is provided on a counterweight or the like. The control unit determines whether or not the elevator device can be diagnostically operated based on the detection result of the acceleration sensor.
日本特開2019-104568号公報Japanese Patent Application Laid-Open No. 2019-104568
 しかしながら、釣合い錘に電力供給などができないエレベーター装置において、特許文献1の加速度センサなどによる建物の揺れの影響の診断ができない。このため、エレベーター装置などを含む建物に設けられる機器に対して、建物の揺れの情報に基づいて揺れの影響の診断を行う場合がある。ここで、建物の揺れの情報を直接計測する場合に、例えば建物の各々の階床にセンサなどを設ける必要がある。 However, in an elevator device that cannot supply power to the counterweight, it is not possible to diagnose the effect of building shaking using the acceleration sensor of Patent Document 1. For this reason, there are cases where the influence of shaking is diagnosed on the equipment installed in the building, including the elevator device, based on the information on the shaking of the building. Here, when directly measuring the shaking information of the building, for example, it is necessary to provide a sensor or the like on each floor of the building.
 本開示は、このような課題の解決に係るものである。本開示は、センサの数を抑えつつ建物の揺れを精度よく推定できる揺れ推定システムを提供する。 This disclosure relates to the solution of such problems. The present disclosure provides a shaking estimation system that can accurately estimate the shaking of a building while reducing the number of sensors.
 本開示に係る揺れ推定システムは、建物に設けられ、各々が振動を検出する複数の振動センサと、複数の振動センサの各々の検出結果に基づいて建物の揺れを推定する建物揺れ推定部と、を備え、複数の振動センサは、建物の基本振動モードの腹部である第1腹部に設けられる第1振動センサと、基本振動モードより高次の振動モードである建物の高次振動モードの複数の腹部のうち第1腹部から最も遠い腹部である第2腹部に設けられる第2振動センサと、を含む。 The vibration estimation system according to the present disclosure includes a plurality of vibration sensors provided in the building, each of which detects vibration, and a building vibration estimation unit that estimates the vibration of the building based on the detection results of each of the plurality of vibration sensors. The plurality of vibration sensors are a first vibration sensor provided in the first abdomen, which is the abdomen of the basic vibration mode of the building, and a plurality of higher-order vibration modes of the building, which is a vibration mode higher than the basic vibration mode. It includes a second vibration sensor provided in the second abdomen, which is the abdomen farthest from the first abdomen in the abdomen.
 本開示に係る揺れ推定システムであれば、センサの数を抑えつつ建物の揺れを精度よく推定できる。 With the shaking estimation system according to the present disclosure, it is possible to accurately estimate the shaking of a building while reducing the number of sensors.
実施の形態1に係る揺れ推定システムが適用される建物の構成図である。It is a block diagram of the building to which the shaking estimation system which concerns on Embodiment 1 is applied. 実施の形態1に係る揺れ推定システムの構成図である。It is a block diagram of the shaking estimation system which concerns on Embodiment 1. FIG. 実施の形態1に係る揺れ推定システムが適用される建物の振動モードを示す図である。It is a figure which shows the vibration mode of the building to which the vibration estimation system which concerns on Embodiment 1 is applied. 実施の形態1に係る揺れ推定システムにおいて検出された振動の例を示す図である。It is a figure which shows the example of the vibration detected in the vibration estimation system which concerns on Embodiment 1. FIG. 実施の形態1に係る揺れ推定システムにおいて検出された振動の例を示す図である。It is a figure which shows the example of the vibration detected in the vibration estimation system which concerns on Embodiment 1. FIG. 実施の形態1に係る揺れ推定システムにおいて推定された各階の揺れ量の例を示す図である。It is a figure which shows the example of the shaking amount of each floor estimated in the shaking estimation system which concerns on Embodiment 1. FIG. 実施の形態1に係る揺れ推定システムの動作の例を示すフロー図である。It is a flow chart which shows the example of the operation of the shaking estimation system which concerns on Embodiment 1. 実施の形態1に係る揺れ推定システムの主要部のハードウェア構成図である。It is a hardware block diagram of the main part of the shaking estimation system which concerns on Embodiment 1. FIG. 実施の形態2に係る揺れ推定システムにおいて検出された振動の例を示す図である。It is a figure which shows the example of the vibration detected in the vibration estimation system which concerns on Embodiment 2. FIG. 実施の形態3に係る揺れ推定システムの構成図である。It is a block diagram of the shaking estimation system which concerns on Embodiment 3. FIG. 実施の形態3に係る重み係数の例を示す図である。It is a figure which shows the example of the weighting coefficient which concerns on Embodiment 3. 実施の形態4に係る揺れ推定システムの構成図である。It is a block diagram of the shaking estimation system which concerns on Embodiment 4. FIG. 実施の形態4に係る建物揺れ推定部による建物の揺れの推定の例を示す図である。It is a figure which shows the example of the estimation of the shaking of a building by the building shaking estimation part which concerns on Embodiment 4. FIG.
 本開示を実施するための形態について添付の図面を参照しながら説明する。各図において、同一または相当する部分には同一の符号を付して、重複する説明は適宜に簡略化または省略する。 The mode for implementing this disclosure will be explained with reference to the attached drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and duplicate description will be appropriately simplified or omitted.
 実施の形態1.
 図1は、実施の形態1に係る揺れ推定システム1が適用される建物2の構成図である。
Embodiment 1.
FIG. 1 is a block diagram of a building 2 to which the shaking estimation system 1 according to the first embodiment is applied.
 揺れ推定システム1は、建物2に適用される。揺れ推定システム1は、適用される建物2の揺れを推定するシステムである。 The shaking estimation system 1 is applied to the building 2. The shaking estimation system 1 is a system for estimating the shaking of the applied building 2.
 建物2は、複数の階床を有する。建物2において、エレベーター3が設けられる。建物2において、エレベーター3の昇降路4が設けられる。昇降路4は、複数の階床にわたる空間である。建物2において、昇降路4の上部にエレベーター3の機械室5が設けられる。 Building 2 has multiple floors. An elevator 3 is provided in the building 2. In the building 2, the hoistway 4 of the elevator 3 is provided. The hoistway 4 is a space that spans a plurality of floors. In the building 2, the machine room 5 of the elevator 3 is provided above the hoistway 4.
 エレベーター3は、巻上機6と、懸架体7と、そらせ車8と、かご9と、釣合い錘10と、制御装置11と、を備える。 The elevator 3 includes a hoisting machine 6, a suspension body 7, a deflecting wheel 8, a basket 9, a balance weight 10, and a control device 11.
 巻上機6は、機械室5に設けられる。巻上機6は、駆動シーブ12と、巻上機モータ13と、巻上機ブレーキ14と、を備える。駆動シーブ12は、エレベーター3の滑車である。巻上機モータ13は、駆動シーブ12を回転させる機器である。巻上機ブレーキ14は、駆動シーブ12の回転を制動する装置である。巻上機ブレーキ14は、例えば電磁ブレーキである。巻上機ブレーキ14は、ブレーキ車と、ブレーキシューと、ブレーキばねと、電磁マグネットと、を備える。ブレーキ車は、駆動シーブ12と同軸に結合されたブレーキドラムまたはブレーキディスクなどである。ブレーキシューは、駆動シーブ12の回転を制動するときにブレーキ車に接触する部材である。ブレーキバネは、ブレーキシューをブレーキ車に弾性力によって押し付けるバネである。電磁マグネットは、駆動シーブ12の回転の制動を解除するときにブレーキバネの弾性力に抗してブレーキシューをブレーキ車から引き離す機器である。 The hoisting machine 6 is provided in the machine room 5. The hoisting machine 6 includes a drive sheave 12, a hoisting machine motor 13, and a hoisting machine brake 14. The drive sheave 12 is a pulley of the elevator 3. The hoisting machine motor 13 is a device that rotates the drive sheave 12. The hoist brake 14 is a device that brakes the rotation of the drive sheave 12. The hoist brake 14 is, for example, an electromagnetic brake. The hoist brake 14 includes a brake wheel, a brake shoe, a brake spring, and an electromagnetic magnet. The brake vehicle is a brake drum or a brake disc coaxially coupled to the drive sheave 12. The brake shoe is a member that comes into contact with the brake vehicle when braking the rotation of the drive sheave 12. The brake spring is a spring that presses the brake shoe against the brake wheel by an elastic force. The electromagnetic magnet is a device that pulls the brake shoe away from the brake vehicle against the elastic force of the brake spring when releasing the braking of the rotation of the drive sheave 12.
 懸架体7は、例えば複数本のロープまたは複数本のベルトなどである。懸架体7は、駆動シーブ12に巻き掛けられる。そらせ車8は、機械室5に設けられる。そらせ車8は、懸架体7が巻き掛けられる滑車である。懸架体7の両端は、機械室5から昇降路4に下げられる。懸架体7の一端は、昇降路4においてかご9に接続される。懸架体7の他端は、昇降路4において釣合い錘10に接続される。 The suspension body 7 is, for example, a plurality of ropes or a plurality of belts. The suspension body 7 is wound around the drive sheave 12. The deflecting wheel 8 is provided in the machine room 5. The deflecting wheel 8 is a pulley around which the suspension body 7 is wound. Both ends of the suspension body 7 are lowered from the machine room 5 to the hoistway 4. One end of the suspension body 7 is connected to the car 9 in the hoistway 4. The other end of the suspension body 7 is connected to the counterweight 10 in the hoistway 4.
 かご9および釣合い錘10は、懸架体7によって昇降路4において吊り下げられている。かご9および釣合い錘10は、巻上機6によって昇降路4を互いに反対方向に昇降する。かご9は、エレベーター3の利用者などを複数の階床の間で輸送する機器である。釣合い錘10は、懸架体7の両端側に掛かる荷重のバランスをかご9との間でとる機器である。 The car 9 and the counterweight 10 are suspended in the hoistway 4 by the suspension body 7. The car 9 and the counterweight 10 move up and down the hoistway 4 in opposite directions by the hoisting machine 6. The basket 9 is a device for transporting users of the elevator 3 and the like between a plurality of floors. The counterweight 10 is a device that balances the load applied to both ends of the suspension body 7 with the car 9.
 制御装置11は、機械室5に設けられる。制御装置11は、エレベーター3の動作を制御する装置である。制御装置11は、巻上機6の回転を制御することで、予め設定された速度でかご9を昇降路4において昇降させる。 The control device 11 is provided in the machine room 5. The control device 11 is a device that controls the operation of the elevator 3. The control device 11 controls the rotation of the hoist 6 to move the car 9 up and down in the hoistway 4 at a preset speed.
 エレベーター3は、一対のかごガイドレール15と、一対の釣合い錘ガイドレール16と、を備える。各々のかごガイドレール15および各々の釣合い錘ガイドレール16は、昇降路4に設けられる。一対のかごガイドレール15は、例えばかご9の左右に配置される。各々のかごガイドレール15は、かご9の昇降を案内する。一対の釣合い錘ガイドレール16は、例えば釣合い錘10の左右に配置される。各々の釣合い錘ガイドレール16は、釣合い錘10の昇降を案内する。 The elevator 3 includes a pair of car guide rails 15 and a pair of counterweight guide rails 16. Each car guide rail 15 and each counterweight guide rail 16 are provided in the hoistway 4. The pair of car guide rails 15 are arranged on the left and right sides of the car 9, for example. Each car guide rail 15 guides the car 9 to move up and down. The pair of counterweight guide rails 16 are arranged on the left and right sides of the counterweight, for example. Each balance weight guide rail 16 guides the balance weight 10 to move up and down.
 エレベーター3は、かご緩衝器17と、釣合い錘緩衝器18と、を備える。かご緩衝器17および釣合い錘緩衝器18は、昇降路4の底部に設けられる。かご緩衝器17は、かご9の下方に設けられる。かご緩衝器17は、かご9が昇降路4の底部に衝突する場合の衝撃を緩和する機器である。釣合い錘緩衝器18は、釣合い錘10の下方に設けられる。釣合い錘緩衝器18は、釣合い錘10が昇降路4の底部に衝突する場合の衝撃を緩和する機器である。 The elevator 3 includes a car shock absorber 17 and a counterweight shock absorber 18. The car shock absorber 17 and the counterweight shock absorber 18 are provided at the bottom of the hoistway 4. The car shock absorber 17 is provided below the car 9. The car shock absorber 17 is a device that cushions an impact when the car 9 collides with the bottom of the hoistway 4. The counterweight shock absorber 18 is provided below the counterweight weight 10. The counterweight shock absorber 18 is a device that cushions the impact when the counterweight 10 collides with the bottom of the hoistway 4.
 エレベーター3は、P波感知器19(P波:Primary wave)と、S波感知器20(S波:Secondary wave)と、を備える。P波感知器19およびS波感知器20は、地震波を感知する機器である。P波感知器19は、昇降路4の底部に設けられる。P波感知器19は、P波を感知する。S波感知器20は、機械室5に設けられる。S波感知器20は、S波を感知する。 The elevator 3 includes a P wave detector 19 (P wave: Primary wave) and an S wave detector 20 (S wave: Secondary wave). The P wave detector 19 and the S wave detector 20 are devices that detect seismic waves. The P wave detector 19 is provided at the bottom of the hoistway 4. The P wave detector 19 senses the P wave. The S wave detector 20 is provided in the machine room 5. The S wave detector 20 senses the S wave.
 エレベーター3において、制御装置11は、例えばP波感知器19などにおいて感知された地震波が予め設定された閾値を超える揺れであったときに、エレベーター3の運行を通常運転から地震管制運転に移行する。地震管制運転において、制御装置11は、走行中のかご9を最寄りの階床に停止させる。その後、かご9に乗車している利用者に対してかご9から降車するように通知が行われる。予め設定された揺れより大きな揺れがS波感知器20において感知されなかった場合に、制御装置11は、エレベーター3の運行を通常運転に復帰する。 In the elevator 3, the control device 11 shifts the operation of the elevator 3 from the normal operation to the seismic control operation when the seismic wave detected by the P wave detector 19 or the like has a vibration exceeding a preset threshold value. .. In the seismic control operation, the control device 11 stops the running car 9 on the nearest floor. After that, the user in the car 9 is notified to get off the car 9. When the S wave detector 20 does not detect the shaking larger than the preset shaking, the control device 11 returns the operation of the elevator 3 to the normal operation.
 図2は、実施の形態1に係る揺れ推定システム1の構成図である。 FIG. 2 is a configuration diagram of the shaking estimation system 1 according to the first embodiment.
 揺れ推定システム1は、建物2の揺れを推定するシステムである。ここで、揺れ推定システム1が推定する建物2の揺れは、例えば建物2の高さについての揺れ量の分布などである。揺れ量は、例えば揺れの最大加速度、最大速度、または最大変位などである。揺れ推定システム1は、例えば地震が発生したときに当該地震による建物2の揺れを推定する。揺れ推定システム1は、例えば水平方向における建物2の揺れを推定する。揺れ推定システム1は、複数の振動センサ21と、揺れ推定装置22と、を備える。 The shaking estimation system 1 is a system that estimates the shaking of the building 2. Here, the shaking of the building 2 estimated by the shaking estimation system 1 is, for example, the distribution of the amount of shaking with respect to the height of the building 2. The amount of sway is, for example, the maximum acceleration, maximum velocity, or maximum displacement of sway. The shaking estimation system 1 estimates the shaking of the building 2 due to the earthquake, for example, when an earthquake occurs. The shaking estimation system 1 estimates the shaking of the building 2 in the horizontal direction, for example. The vibration estimation system 1 includes a plurality of vibration sensors 21 and a vibration estimation device 22.
 各々の振動センサ21は、建物2に設けられる。この例において、各々の振動センサ21は、建物2に対して固定されている。複数の振動センサ21の一部または全部は、例えば昇降路4に配置される。各々の振動センサ21は、振動を検出する機器である。各々の振動センサ21は、振動の加速度、速度、または変位などを振動の検出値として出力する。各々の振動センサ21は、建物2において互いに異なる高さに配置される。各々の振動センサ21は、例えば互いに異なる階床に配置される。 Each vibration sensor 21 is provided in the building 2. In this example, each vibration sensor 21 is fixed to the building 2. A part or all of the plurality of vibration sensors 21 are arranged, for example, in the hoistway 4. Each vibration sensor 21 is a device that detects vibration. Each vibration sensor 21 outputs vibration acceleration, velocity, displacement, or the like as a vibration detection value. Each vibration sensor 21 is arranged at different heights in the building 2. Each vibration sensor 21 is arranged on different floors, for example.
 揺れ推定装置22は、例えば建物2に設けられるサーバコンピュータなどである。あるいは、揺れ推定装置22は、例えば制御装置11などのエレベーター3のハードウェアに一体に搭載されていてもよい。あるいは、揺れ推定装置22は、建物2の外部の拠点などに設けられるサーバコンピュータなどであってもよい。外部の拠点は、例えばエレベーター3の情報を収集する情報センターなどである。あるいは、揺れ推定装置22は、例えばクラウドサービス上の仮想サーバなどであってもよい。揺れ推定装置22は、建物揺れ推定部23と、エレベーター揺れ推定部24と、を備える。 The shaking estimation device 22 is, for example, a server computer provided in the building 2. Alternatively, the shaking estimation device 22 may be integrally mounted on the hardware of the elevator 3 such as the control device 11. Alternatively, the shaking estimation device 22 may be a server computer or the like provided at a base outside the building 2. The external base is, for example, an information center that collects information on the elevator 3. Alternatively, the shaking estimation device 22 may be, for example, a virtual server on a cloud service. The shaking estimation device 22 includes a building shaking estimation unit 23 and an elevator shaking estimation unit 24.
 建物揺れ推定部23は、各々の振動センサ21の検出結果に基づいて建物2の揺れを推定する部分である。建物揺れ推定部23は、推定した建物2の揺れをエレベーター揺れ推定部24に出力する。 The building shaking estimation unit 23 is a part that estimates the shaking of the building 2 based on the detection results of each vibration sensor 21. The building shake estimation unit 23 outputs the estimated shake of the building 2 to the elevator shake estimation unit 24.
 エレベーター揺れ推定部24は、建物揺れ推定部23が推定した建物2の揺れに基づいてエレベーター3の機器の揺れを推定する部分である。揺れが推定されるエレベーター3の機器は、例えばかご9または釣合い錘10などである。エレベーター揺れ推定部24は、例えば制御装置11などの移動しない機器の揺れを推定してもよい。ここで、エレベーター揺れ推定部24が推定するエレベーター3の機器の揺れは、例えばエレベーター3の機器の揺れ量などである。揺れ量は、例えば揺れの最大加速度、最大速度、または最大変位などである。 The elevator shake estimation unit 24 is a part that estimates the shake of the equipment of the elevator 3 based on the shake of the building 2 estimated by the building shake estimation unit 23. The device of the elevator 3 in which the shaking is estimated is, for example, a basket 9 or a counterweight 10. The elevator shake estimation unit 24 may estimate the shake of a non-moving device such as a control device 11. Here, the shaking of the equipment of the elevator 3 estimated by the elevator shaking estimation unit 24 is, for example, the amount of shaking of the equipment of the elevator 3. The amount of sway is, for example, the maximum acceleration, maximum velocity, or maximum displacement of sway.
 続いて、図3を用いて、揺れ推定システム1における振動センサ21の配置の例を説明する。
 図3は、実施の形態1に係る揺れ推定システム1が適用される建物2の振動モードを示す図である。
Subsequently, an example of the arrangement of the vibration sensor 21 in the vibration estimation system 1 will be described with reference to FIG.
FIG. 3 is a diagram showing a vibration mode of the building 2 to which the vibration estimation system 1 according to the first embodiment is applied.
 図3において、縦軸は建物2の高さを表す。図3において、横軸は各々の振動モードにおける振動の振幅を表す。図3の左側のグラフは、1次の振動モードを表す。図3の中央のグラフは、2次の振動モードを表す。図3の右側のグラフは、3次の振動モードを表す。 In FIG. 3, the vertical axis represents the height of the building 2. In FIG. 3, the horizontal axis represents the amplitude of vibration in each vibration mode. The graph on the left side of FIG. 3 represents a primary vibration mode. The graph in the center of FIG. 3 represents a quadratic vibration mode. The graph on the right side of FIG. 3 represents a third-order vibration mode.
 この例において、揺れ推定システム1は、中間階において3つの振動センサ21を備える。3つの振動センサ21は、建物2の振動モードを用いて設定された位置に配置される。 In this example, the vibration estimation system 1 includes three vibration sensors 21 on the middle floor. The three vibration sensors 21 are arranged at positions set by using the vibration mode of the building 2.
 建物2が地震によって地表面から強制加振を受けるときに、建物2は、一次元の連続弾性体としてモデル化できる。この例において、建物2の振動モードは、最下階を基準とする相対的な振動を表す。このモデルにおいて、建物2の上端部である最上階は自由端である。また、建物2の下端部である最下階は固定端である。このとき、建物2の揺れは、連続弾性体としてモデル化した建物2の振動モードの重ね合わせによって表される。このため、各々の振動センサ21は、建物2のいずれかの振動モードの振動の情報を取得しうるように、当該振動モードの腹部のいずれかの位置に配置される。ここで、腹部は、振動モードにおいて振動の振幅が極大となる部分である。腹部は、例えば建物2の上端部であってもよい。nを自然数として、n次の振動モードは、例えばn個の腹部を有する。また、n次の振動モードは、例えばn個の節部を有する。節部は、振動モードにおいて振動の振幅が0となる部分である。節部は、例えば建物2の下端部であってもよい。建物2の下端部は、例えば最下階に対応する。一般に、地震による建物2の揺れは、1次、2次、および3次の3つの振動モードによってよく再現される。このため、3つの振動センサ21は、3次までの3つの振動モードの腹部のうちのいずれかの位置に配置される。また、揺れ推定システム1は、振動モードの振動の基準となる位置に配置される振動センサ21をさらに備える。当該振動センサ21は、例えば建物2の最下階に配置される。 When building 2 receives forced vibration from the ground surface due to an earthquake, building 2 can be modeled as a one-dimensional continuous elastic body. In this example, the vibration mode of building 2 represents relative vibration relative to the lowest floor. In this model, the top floor, which is the upper end of the building 2, is a free end. Further, the lowest floor, which is the lower end of the building 2, is a fixed end. At this time, the shaking of the building 2 is represented by the superposition of the vibration modes of the building 2 modeled as a continuous elastic body. Therefore, each vibration sensor 21 is arranged at any position on the abdomen of the vibration mode so that the vibration information of the vibration mode of the building 2 can be acquired. Here, the abdomen is a portion where the amplitude of vibration is maximized in the vibration mode. The abdomen may be, for example, the upper end of the building 2. With n as a natural number, the nth order vibration mode has, for example, n abdomen. Further, the n-th order vibration mode has, for example, n nodes. The node portion is a portion where the vibration amplitude becomes 0 in the vibration mode. The knot may be, for example, the lower end of the building 2. The lower end of the building 2 corresponds to, for example, the lowest floor. In general, the shaking of a building 2 due to an earthquake is well reproduced by three vibration modes: primary, secondary, and tertiary. Therefore, the three vibration sensors 21 are arranged at any position of the abdomen of the three vibration modes up to the third order. Further, the vibration estimation system 1 further includes a vibration sensor 21 arranged at a position that serves as a reference for vibration in the vibration mode. The vibration sensor 21 is arranged, for example, on the lowest floor of the building 2.
 簡単のため、建物2の振動モードの波形が正弦波形で表される例を用いて、中間階における3つの振動センサ21の配置を説明する。建物2の振動モードの波形が正弦波形で表されない一般の場合においても、同様の手順によって複数の振動センサ21の配置が設定される。建物2の振動モードの波形は、例えば建物2の構造などに基づいて予め算出されたものが用いられる。 For the sake of simplicity, the arrangement of the three vibration sensors 21 on the middle floor will be described using an example in which the waveform of the vibration mode of the building 2 is represented by a sine and cosine waveform. Even in the general case where the waveform of the vibration mode of the building 2 is not represented by a sine and cosine waveform, the arrangement of the plurality of vibration sensors 21 is set by the same procedure. As the waveform of the vibration mode of the building 2, for example, a waveform calculated in advance based on the structure of the building 2 or the like is used.
 n次の振動モードの波形φ(x)は、次の式(1)に示されるように正弦波形で表される。ここで、xは建物2の高さを表す変数である。高さxの原点は、例えば地上の最下階において0となるように設定される。高さxは、建物2の最上階において1となるように規格化される。 The waveform φ n (x) of the nth-order vibration mode is represented by a sinusoidal waveform as shown in the following equation (1). Here, x is a variable representing the height of the building 2. The origin of the height x is set to be 0, for example, on the lowest floor above the ground. The height x is standardized so as to be 1 on the top floor of the building 2.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 3つの振動センサ21の配置は、建物2の振動モードを次数の低い順に用いて設定される。 The arrangement of the three vibration sensors 21 is set by using the vibration modes of the building 2 in ascending order of order.
 建物2の1次の振動モードの波形φ(x)は、次の式(2)に示される。1次の振動モードは、最低次の振動モードである。1次の振動モードは、基本振動モードである。 The waveform φ 1 (x) of the first-order vibration mode of the building 2 is shown by the following equation (2). The primary vibration mode is the lowest vibration mode. The primary vibration mode is the basic vibration mode.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 3つの振動センサ21のうちの1つ目である第1振動センサ21aは、1次の振動モードの腹部に配置される。1次の振動モードの腹部は、x=1となる上端の部分のみである。このため、第1振動センサ21aは、x=x=1となる上端の腹部に配置される。当該腹部は、第1腹部である。xは、第1腹部の位置である。 The first vibration sensor 21a, which is the first of the three vibration sensors 21, is arranged in the abdomen of the primary vibration mode. The abdomen of the primary vibration mode is only the upper end portion where x = 1. Therefore, the first vibration sensor 21a is arranged in the abdomen at the upper end where x = x 1 = 1. The abdomen is the first abdomen. x 1 is the position of the first abdomen.
 建物2の2次の振動モードの波形φ(x)は、次の式(3)に示される。2次の振動モードは、基本振動モードより高次の高次振動モードの例である。 The waveform φ 2 (x) of the second-order vibration mode of the building 2 is shown by the following equation (3). The second-order vibration mode is an example of a higher-order vibration mode higher than the basic vibration mode.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 2つの振動センサ21のうちの2つ目である第2振動センサ21bは、2次の振動モードの腹部のいずれかに配置される。2次の振動モードの腹部は、x=1/3となる部分、およびx=1となる上端の部分の2つである。x=1となる上端の部分において既に第1振動センサ21aが配置されているため、第2振動センサ21bは、x=x=1/3となる腹部に配置される。当該腹部は、第2腹部である。xは、第2腹部の位置である。 The second vibration sensor 21b, which is the second of the two vibration sensors 21, is arranged in any of the abdomen of the secondary vibration mode. There are two abdomen in the secondary vibration mode, a portion where x = 1/3 and a portion at the upper end where x = 1. Since the first vibration sensor 21a is already arranged at the upper end portion where x = 1, the second vibration sensor 21b is arranged at the abdomen where x = x 2 = 1/3. The abdomen is the second abdomen. x 2 is the position of the second abdomen.
 建物2の3次の振動モードの波形φ(x)は、次の式(4)に示される。3次の振動モードは、高次振動モードよりさらに高次の振動モードの例である。 The waveform φ 3 (x) of the third-order vibration mode of the building 2 is shown by the following equation (4). The third-order vibration mode is an example of a higher-order vibration mode than the higher-order vibration mode.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 3つの振動センサ21のうちの3つ目である第3振動センサ21cは、3次の振動モードの腹部のいずれかに配置される。3次の振動モードの腹部は、x=1/5となる部分、x=3/5となる部分、およびx=1となる上端の部分の3つである。x=1となる上端の部分において既に第1振動センサ21aが配置されているため、第3振動センサ21cは、x=1/5となる部分、またはx=3/5となる部分のいずれか一方に配置される。 The third vibration sensor 21c, which is the third of the three vibration sensors 21, is arranged in any of the abdomen of the third vibration mode. The abdomen of the third-order vibration mode is a portion where x = 1/5, a portion where x = 3/5, and a portion at the upper end where x = 1. Since the first vibration sensor 21a is already arranged at the upper end portion where x = 1, the third vibration sensor 21c is either a portion where x = 1/5 or a portion where x = 3/5. Placed on one side.
 ここで、振動センサ21が設けられていない位置における建物2の揺れの推定の精度の低下を抑えうるように、各々の振動センサ21は、建物2の高さの全域にわたって配置されることが好ましい。このため、各々の振動センサ21は、できるだけ互いに離れた位置に配置される。この例において、第3振動センサ21cは、第1腹部および第2腹部の近い方からの遠さが最も大きい腹部に配置される。2つの腹部の間の遠さは、例えば2つの腹部の間の高さの差である。 Here, it is preferable that each vibration sensor 21 is arranged over the entire height of the building 2 so as to suppress a decrease in the accuracy of estimating the vibration of the building 2 at a position where the vibration sensor 21 is not provided. .. Therefore, the vibration sensors 21 are arranged at positions as far apart from each other as possible. In this example, the third vibration sensor 21c is arranged in the abdomen where the distance from the near side of the first abdomen and the second abdomen is the largest. The distance between the two abdomen is, for example, the difference in height between the two abdomen.
 この例において、x=1となる第1腹部からのx=1/5となる部分の遠さΔxは、Δx=4/5である。x=1/3となる第2腹部からのx=1/5となる部分の遠さΔxは、Δx=2/15である。このため、第1腹部および第2腹部の近い方からのx=1/5となる部分の遠さは、2/15である。同様に、第1腹部および第2腹部の近い方からのx=3/5となる部分の遠さは、4/15である。このため、第1腹部および第2腹部の近い方からの遠さが最も大きい3次の振動モードの腹部は、x=3/5となる部分である。したがって、第3振動センサ21cは、x=x=3/5となる腹部に配置される。当該腹部は、第3腹部である。xは、第3腹部の位置である。 In this example, the distance Δx of the portion where x = 1/5 from the first abdomen where x = 1 is Δx = 4/5. The distance Δx of the portion where x = 1/5 from the second abdomen where x = 1/3 is Δx = 2/15. Therefore, the distance of the portion where x = 1/5 from the closer side of the first abdomen and the second abdomen is 2/15. Similarly, the distance of the portion where x = 3/5 from the closer side of the first abdomen and the second abdomen is 4/15. Therefore, the abdomen of the third-order vibration mode in which the distance from the near side of the first abdomen and the second abdomen is the largest is the portion where x = 3/5. Therefore, the third vibration sensor 21c is arranged in the abdomen where x = x 3 = 3/5. The abdomen is the third abdomen. x 3 is the position of the third abdomen.
 揺れ推定システム1が4つ以上の振動センサ21を含む場合においても、同様の手順によって振動センサ21の配置が設定される。n次の振動モードの腹部のいずれかに配置される振動センサ21は、n次の振動モードの腹部のうち、例えばn次より低次の振動モードを用いて振動センサ21が配置された腹部のうち最も近い腹部からの遠さが最も大きい腹部に配置される。 Even when the vibration estimation system 1 includes four or more vibration sensors 21, the arrangement of the vibration sensors 21 is set by the same procedure. The vibration sensor 21 arranged in any of the abdomen of the nth-order vibration mode is the abdomen in which the vibration sensor 21 is arranged using, for example, a vibration mode lower than the nth-order vibration mode among the abdomen of the n-th order vibration mode. It is placed in the abdomen with the greatest distance from the nearest abdomen.
 続いて、図4を用いて、揺れ推定システム1における建物2の揺れの推定の例を説明する。
 図4は、実施の形態1に係る揺れ推定システム1において検出された振動の例を示す図である。
Subsequently, an example of estimating the shaking of the building 2 in the shaking estimation system 1 will be described with reference to FIG.
FIG. 4 is a diagram showing an example of vibration detected in the vibration estimation system 1 according to the first embodiment.
 図4において、横軸は時間を表す。図4において、縦軸は建物2において振動センサ21が設けられる位置の振動を表す。図4の上段のグラフは、第1腹部における振動を表す。図4の下段のグラフは、第2腹部における振動を表す。図4の中段のグラフは、第3腹部における振動を表す。図4の上段から下段までの3つのグラフにおいて、各々のグラフに対応する腹部に配置された振動センサ21の振動の検出値から、地表の最下階に設けられた基準の振動センサ21の振動の検出値を差し引いた相対値が示される。この例において、振動の検出値は、振動の加速度である。なお、各々の振動センサ21において振動の検出値が速度または変位である場合においても、同様の処理によって建物2の揺れが推定される。 In FIG. 4, the horizontal axis represents time. In FIG. 4, the vertical axis represents the vibration at the position where the vibration sensor 21 is provided in the building 2. The upper graph of FIG. 4 shows the vibration in the first abdomen. The lower graph of FIG. 4 shows the vibration in the second abdomen. The middle graph of FIG. 4 shows the vibration in the third abdomen. In the three graphs from the upper row to the lower row of FIG. 4, the vibration of the reference vibration sensor 21 provided on the lowest floor of the ground surface is obtained from the detected value of the vibration of the vibration sensor 21 arranged in the abdomen corresponding to each graph. The relative value is shown after subtracting the detected value of. In this example, the detected value of vibration is the acceleration of vibration. Even when the detected value of vibration in each vibration sensor 21 is velocity or displacement, the shaking of the building 2 is estimated by the same processing.
 例えば地震などが発生している間、各々の振動センサ21が設けられる位置の振動の検出値である変位、速度、または加速度などは、時間とともに変化する。このため、揺れ推定システム1は、揺れ量として振動の変位、速度、または加速度などの最大値を推定しうるように、振動の検出値の最大値を取得する。ここで取得される最大値は、例えば地震が発生している間の全時間領域における最大値である。揺れ推定システム1において、建物2の振動モードに基づいて建物2の揺れを推定しうるように、同一の時刻における各々の振動センサ21の検出値が取得される。このため、各々の振動センサ21における時刻は、例えば互いに同期されている。 For example, while an earthquake or the like is occurring, the displacement, velocity, acceleration, etc., which are the detected values of vibration at the position where each vibration sensor 21 is provided, change with time. Therefore, the vibration estimation system 1 acquires the maximum value of the vibration detection value so that the maximum value such as the displacement, velocity, or acceleration of the vibration can be estimated as the vibration amount. The maximum value acquired here is, for example, the maximum value in the entire time domain during the occurrence of an earthquake. In the shaking estimation system 1, the detection values of the respective vibration sensors 21 at the same time are acquired so that the shaking of the building 2 can be estimated based on the vibration mode of the building 2. Therefore, the times in each vibration sensor 21 are synchronized with each other, for example.
 建物揺れ推定部23は、例えば地震が発生するときに建物2の揺れを推定する。揺れ推定システム1において、地震の発生および終了は、例えばP波感知器19またはS波感知器20などによって感知されてもよい。あるいは、地震の発生および終了は、いずれかの振動センサ21の検出値に基づいて感知されてもよい。 The building shaking estimation unit 23 estimates the shaking of the building 2 when, for example, an earthquake occurs. In the shaking estimation system 1, the occurrence and termination of an earthquake may be sensed by, for example, a P wave detector 19 or an S wave detector 20. Alternatively, the occurrence and termination of an earthquake may be sensed based on the detection value of any of the vibration sensors 21.
 いずれかの振動モードの腹部に配置される振動センサ21の振動の検出値について、地震が発生してからの振動の最大値が更新されるときに、建物揺れ推定部23は、当該振動センサ21の最大値を記憶する。ここで、振動の最大値は、例えば基準の振動センサ21による検出値を差し引いた相対値における最大値である。当該最大値は、図4において丸記号によって示される。このとき、建物揺れ推定部23は、同一の時刻における他の全ての振動センサ21の振動の検出値をあわせて記憶する。ここで記憶される検出値は、例えば基準の振動センサ21による検出値を差し引いた相対値である。当該相対値は、図4において四角記号によって示される。この例において、腹部に配置される振動センサ21は3つあるので、各々の振動センサ21の検出値の相対値が最大となる3つの時刻t、t、およびtにおける各々の振動センサ21の検出値が記憶される。 When the maximum value of vibration after the occurrence of an earthquake is updated with respect to the detected value of vibration of the vibration sensor 21 arranged in the abdomen of any of the vibration modes, the building shaking estimation unit 23 performs the vibration sensor 21. Memorize the maximum value of. Here, the maximum value of vibration is, for example, the maximum value in a relative value obtained by subtracting the value detected by the reference vibration sensor 21. The maximum value is indicated by a circle symbol in FIG. At this time, the building shaking estimation unit 23 also stores the detected values of the vibrations of all the other vibration sensors 21 at the same time. The detected value stored here is, for example, a relative value obtained by subtracting the detected value by the reference vibration sensor 21. The relative value is indicated by a square symbol in FIG. In this example, since there are three vibration sensors 21 arranged in the abdomen, each vibration sensor at three times t 1 , t 2 , and t 3 where the relative value of the detected value of each vibration sensor 21 becomes maximum. The detected value of 21 is stored.
 建物2の揺れは振動モードの重ね合わせで表現されるため、時刻tにおける各々の振動センサ21の検出値の相対値は、次の式(5)によって表される。ここで、a11は、時刻tにおいて検出された第1振動センサ21aの検出値についての基準の振動センサ21に対する相対値を表す。a21は、時刻tにおいて検出された第2振動センサ21bの検出値についての基準の振動センサ21に対する相対値を表す。a31は、時刻tにおいて検出された第3振動センサ21cの検出値についての基準の振動センサ21に対する相対値を表す。また、q(t)は、時刻tにおける1次の振動モードのモード振幅を表す。q(t)は、時刻tにおける2次の振動モードのモード振幅を表す。q(t)は、時刻tにおける3次の振動モードのモード振幅を表す。ここで、モード振幅は、各々の振動モードの成分の例である。 Since vibration of the building 2 is represented by superposition of vibrational modes, the relative value of the detection value of each of the vibration sensors 21 at time t 1 is represented by the following equation (5). Here, a 11 represents a relative value to a reference of the vibration sensor 21 for the detection value of the first vibration sensor 21a which is detected at time t 1. a 21 represents a relative value to a reference of the vibration sensor 21 for the detection value of the second vibration sensor 21b detected at time t 1. a 31 represents the reference value relative to the vibration sensor 21 for the detection value of the third vibration sensor 21c that is detected at time t 1. Further, q 1 (t) represents the mode amplitude of the first-order vibration mode at time t. q 2 (t) represents the mode amplitude of the second-order vibration mode at time t. q 3 (t) represents the mode amplitude of the third-order vibration mode at time t. Here, the mode amplitude is an example of the components of each vibration mode.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 既知の各々の振動モードの波形φ、φ、およびφを用いて、建物揺れ推定部23は、式(5)に基づいて時刻tにおけるモード振幅q(t)、q(t)、およびq(t)を算出する。建物揺れ推定部23は、算出したモード振幅に基づいて、振動センサ21が設けられていない位置を含む建物2の任意の位置xについての時刻tにおける建物2の揺れ量を算出できる。この例において、建物揺れ推定部23は、各々の階床に対応する位置について揺れ量を算出する。同様にして、建物揺れ推定部23は、各々の階床に対応する位置について、時刻tおよびtにおける建物2の揺れ量を算出する。 Using the waveforms φ 1 , φ 2 , and φ 3 of each known vibration mode, the building shake estimation unit 23 uses the mode amplitude q 1 (t 1 ), q 2 at time t 1 based on equation (5). (t 1), and q 3 (t 1) is calculated. Building shake estimation unit 23 based on the calculated mode amplitude can be calculated shake amount of the building 2 at time t 1 for any position x of the building 2, including the position at which vibration sensor 21 is not provided. In this example, the building shaking estimation unit 23 calculates the amount of shaking for the position corresponding to each floor. Similarly, building shake estimation unit 23, the position corresponding to each floor, and calculates the shake amount of the building 2 at time t 2 and t 3.
 続いて、図5および図6を用いて、揺れ推定システム1における建物2の揺れの推定結果の例を説明する。
 図5は、実施の形態1に係る揺れ推定システム1において検出された振動の例を示す図である。
 図6は、実施の形態1に係る揺れ推定システム1において推定された各階の揺れ量の例を示す図である。
Subsequently, an example of the estimation result of the shaking of the building 2 in the shaking estimation system 1 will be described with reference to FIGS. 5 and 6.
FIG. 5 is a diagram showing an example of vibration detected in the vibration estimation system 1 according to the first embodiment.
FIG. 6 is a diagram showing an example of the amount of shaking of each floor estimated by the shaking estimation system 1 according to the first embodiment.
 図5において、横軸は時間を表す。図5において、縦軸は建物2において振動センサ21が設けられる位置の振動の加速度を表す。図5の実線のグラフは、第1腹部における振動を表す。図5の破線のグラフは、第2腹部における振動を表す。図5の一点鎖線のグラフは、第3腹部における振動を表す。この例において、建物2は20階建てである。また、第1腹部、第2腹部、および第3腹部は、建物2の20階、7階、および12階である。第1振動センサ21aは、第1腹部である20階に配置される。第2振動センサ21bは、第2腹部である7階に配置される。第3振動センサ21cは、第3腹部である12階に配置される。第1振動センサ21aの検出値は、12.5秒付近の時刻において最大となる。 In FIG. 5, the horizontal axis represents time. In FIG. 5, the vertical axis represents the acceleration of vibration at the position where the vibration sensor 21 is provided in the building 2. The solid line graph in FIG. 5 represents the vibration in the first abdomen. The dashed graph in FIG. 5 represents the vibration in the second abdomen. The dashed line graph in FIG. 5 represents vibration in the third abdomen. In this example, the building 2 has 20 floors. The first abdomen, the second abdomen, and the third abdomen are the 20th, 7th, and 12th floors of the building 2. The first vibration sensor 21a is arranged on the 20th floor, which is the first abdomen. The second vibration sensor 21b is arranged on the seventh floor, which is the second abdomen. The third vibration sensor 21c is arranged on the 12th floor, which is the third abdomen. The detected value of the first vibration sensor 21a becomes maximum at a time around 12.5 seconds.
 図6において、図5に示される振動の検出結果に基づいて、第1振動センサ21aの検出値が最大となる時刻について建物揺れ推定部23に推定された建物2の揺れが示される。図6において、横軸は建物2の階床を表す。図6において、縦軸は、建物2の揺れ量としての加速度を示す。図6において、実線のグラフは揺れ推定部による推定値を示す。図6において、四角記号は第1振動センサ21aの検出値が最大となる時刻における建物2の各階の揺れ量を示す。 In FIG. 6, based on the vibration detection result shown in FIG. 5, the vibration of the building 2 estimated by the building vibration estimation unit 23 at the time when the detection value of the first vibration sensor 21a becomes maximum is shown. In FIG. 6, the horizontal axis represents the floor of the building 2. In FIG. 6, the vertical axis shows the acceleration as the amount of shaking of the building 2. In FIG. 6, the solid line graph shows the estimated value by the shaking estimation unit. In FIG. 6, the square symbol indicates the amount of shaking of each floor of the building 2 at the time when the detected value of the first vibration sensor 21a is maximum.
 図6に示されるように、揺れ推定部による推定値は建物2の各階の揺れ量にほぼ対応している。このように、少ない数の振動センサ21によって建物2全体の揺れ量が高い精度で推定される。このため、建物2に設けられた機器についての揺れの影響は、建物2の揺れ量に基づいて診断できる。 As shown in FIG. 6, the estimated value by the shaking estimation unit almost corresponds to the shaking amount of each floor of the building 2. In this way, the amount of shaking of the entire building 2 is estimated with high accuracy by a small number of vibration sensors 21. Therefore, the influence of shaking on the equipment provided in the building 2 can be diagnosed based on the shaking amount of the building 2.
 続いて、図7を用いて、揺れ推定システム1におけるエレベーター3の機器の揺れの推定の例を説明する。
 図7は、実施の形態1に係る揺れ推定システム1の動作の例を示すフロー図である。
Subsequently, an example of estimating the shaking of the equipment of the elevator 3 in the shaking estimation system 1 will be described with reference to FIG. 7.
FIG. 7 is a flow chart showing an example of the operation of the shaking estimation system 1 according to the first embodiment.
 地震が発生するときに、制御装置11は、エレベーター3の運行を通常運転から地震管制運転に移行する。エレベーター3において、予め設定された揺れより大きな揺れが例えばS波感知器20などにおいて感知された場合に、診断運転の可否が判定される。診断運転は、エレベーター3において異常の有無を点検することで揺れの影響を診断する運転である。 When an earthquake occurs, the control device 11 shifts the operation of the elevator 3 from the normal operation to the earthquake control operation. In the elevator 3, when a vibration larger than the preset vibration is detected by, for example, the S wave detector 20, it is determined whether or not the diagnostic operation is possible. The diagnostic operation is an operation in which the influence of shaking is diagnosed by checking the presence or absence of an abnormality in the elevator 3.
 診断運転の可否は、例えば各々の振動センサ21の検出結果に基づいて揺れ推定システム1が推定した建物2の揺れに基づいて判定される。建物揺れ推定部23は、建物2の揺れの推定結果をエレベーター揺れ推定部24に出力する。 Whether or not the diagnostic operation is possible is determined based on, for example, the shaking of the building 2 estimated by the shaking estimation system 1 based on the detection results of each vibration sensor 21. The building shake estimation unit 23 outputs the shake estimation result of the building 2 to the elevator shake estimation unit 24.
 エレベーター揺れ推定部24は、建物2の揺れの推定結果を建物揺れ推定部23から取得する。エレベーター揺れ推定部24は、エレベーター3の機器の位置を例えば制御装置11などから取得する。エレベーター3の機器の位置は、例えばかご9または釣合い錘10などの位置である。エレベーター揺れ推定部24は、建物2の揺れの推定結果およびエレベーター3の機器の位置に基づいて、エレベーター3の機器の揺れを推定する。エレベーター揺れ推定部24は、例えば、取得した機器の位置における建物2の揺れを当該機器の揺れとして推定する。 The elevator sway estimation unit 24 acquires the sway estimation result of the building 2 from the building sway estimation unit 23. The elevator shake estimation unit 24 acquires the position of the device of the elevator 3 from, for example, the control device 11. The position of the equipment of the elevator 3 is, for example, the position of the car 9 or the counterweight 10. The elevator shake estimation unit 24 estimates the shake of the equipment of the elevator 3 based on the estimation result of the shake of the building 2 and the position of the equipment of the elevator 3. The elevator shake estimation unit 24 estimates, for example, the shake of the building 2 at the position of the acquired device as the shake of the device.
 その後、エレベーター揺れ推定部24は、推定したエレベーター3の機器の揺れ量を予め設定された閾値と比較する。ここで、当該閾値は、エレベーター3の診断運転の可否を判定する基準として例えばエレベーター揺れ推定部24などが予め記憶している値である。エレベーター揺れ推定部24は、推定した揺れ量が閾値を下回るときに、診断運転が可能であると判定する。一方、エレベーター揺れ推定部24は、推定した揺れ量が閾値以上であるときに、診断運転が不可であると判定する。エレベーター揺れ推定部24は、診断運転の可否の判定結果を制御装置11に出力する。 After that, the elevator shaking estimation unit 24 compares the estimated shaking amount of the equipment of the elevator 3 with a preset threshold value. Here, the threshold value is a value stored in advance by, for example, the elevator shake estimation unit 24 or the like as a criterion for determining whether or not the elevator 3 can be diagnostically operated. The elevator sway estimation unit 24 determines that diagnostic operation is possible when the estimated sway amount is below the threshold value. On the other hand, the elevator sway estimation unit 24 determines that the diagnostic operation is impossible when the estimated sway amount is equal to or greater than the threshold value. The elevator shake estimation unit 24 outputs the determination result of whether or not the diagnostic operation is possible to the control device 11.
 診断運転を可とする判定結果をエレベーター揺れ推定部24から受け付けた場合に、制御装置11は、エレベーター3の診断運転を開始する。診断運転において異常が検知されない場合に、制御装置11は、エレベーター3の運行を通常運転に復帰する。 When the determination result that enables the diagnostic operation is received from the elevator shake estimation unit 24, the control device 11 starts the diagnostic operation of the elevator 3. When no abnormality is detected in the diagnostic operation, the control device 11 returns the operation of the elevator 3 to the normal operation.
 一方、診断運転を不可とする判定結果をエレベーター揺れ推定部24から受け付けた場合に、制御装置11は、エレベーター3の運行を休止させて保守員による点検まで待機させる。 On the other hand, when the determination result that the diagnostic operation is disabled is received from the elevator shake estimation unit 24, the control device 11 suspends the operation of the elevator 3 and makes it wait until the inspection by the maintenance staff.
 なお、揺れ推定システム1は、振動モードの腹部に設けられる振動センサ21を4つ以上備えていてもよい。また、揺れ推定システム1は、振動モードの腹部に設けられる振動センサ21を2つのみ備えていてもよい。このとき、建物揺れ推定部23は、例えば1次の振動モードおよび2次の振動モードに基づいて建物2の揺れを推定する。 The vibration estimation system 1 may include four or more vibration sensors 21 provided in the abdomen of the vibration mode. Further, the vibration estimation system 1 may include only two vibration sensors 21 provided in the abdomen of the vibration mode. At this time, the building shaking estimation unit 23 estimates the shaking of the building 2 based on, for example, a primary vibration mode and a secondary vibration mode.
 また、P波感知器19またはS波感知器20が振動の波形を出力する機能を有する場合などに、揺れ推定システム1において、P波感知器19またはS波感知器20は振動センサ21の機能を兼ねていてもよい。例えば昇降路4の底部に配置されるP波感知器19は、建物2の最下階に配置される基準の振動センサ21として機能してもよい。また、機械室5に配置されるS波感知器20は、基本振動モードの腹部に配置される振動センサ21として機能してもよい。 Further, in the vibration estimation system 1, when the P wave detector 19 or the S wave detector 20 has a function of outputting a vibration waveform, the P wave detector 19 or the S wave detector 20 functions as a vibration sensor 21. May also serve as. For example, the P wave detector 19 arranged at the bottom of the hoistway 4 may function as a reference vibration sensor 21 arranged at the bottom floor of the building 2. Further, the S wave detector 20 arranged in the machine room 5 may function as a vibration sensor 21 arranged in the abdomen of the basic vibration mode.
 また、建物2において、昇降路4の上部などに機械室5が設けられていなくてもよい。このとき、建物2に設けられるエレベーター3は、機械室レスエレベーターであってもよい。建物2に設けられるエレベーター3は、ここで例示した種類に限定されない。建物2に設けられるエレベーター3は、巻上機を有する2:1ローピングのエレベーター、または巻上機を有しない自走式のエレベーターなどの種類のエレベーターであってもよい。また、建物2において、複数のエレベーター3が設けられていてもよい。このとき、各々のエレベーター3の運行は、例えば群管理装置などによって管理されていてもよい。 Further, in the building 2, the machine room 5 may not be provided at the upper part of the hoistway 4. At this time, the elevator 3 provided in the building 2 may be a machine roomless elevator. The elevator 3 provided in the building 2 is not limited to the types exemplified here. The elevator 3 provided in the building 2 may be a type of elevator such as a 2: 1 roping elevator with a hoist or a self-propelled elevator without a hoist. Further, a plurality of elevators 3 may be provided in the building 2. At this time, the operation of each elevator 3 may be managed by, for example, a group management device.
 また、揺れ推定システム1は、エレベーター揺れ推定部24を有していなくてもよい。揺れ推定システム1は、推定した建物2の揺れの情報を、例えばエレベーター3の揺れの影響を診断する外部のシステムなどに出力してもよい。 Further, the shaking estimation system 1 does not have to have the elevator shaking estimation unit 24. The shaking estimation system 1 may output the estimated shaking information of the building 2 to, for example, an external system for diagnosing the influence of the shaking of the elevator 3.
 以上に説明したように、実施の形態1に係る揺れ推定システム1は、複数の振動センサ21と、建物揺れ推定部23と、を備える。各々の振動センサ21は、建物2に設けられる。各々の振動センサ21は、振動を検出する。建物揺れ推定部23は、各々の振動センサ21の検出結果に基づいて建物2の揺れを推定する。複数の振動センサ21は、第1振動センサ21aと、第2振動センサ21bと、を含む。第1振動センサ21aは、第1腹部に設けられる。第1腹部は、建物2の基本振動モードの腹部である。第2振動センサ21bは、第2腹部に設けられる。第2腹部は、建物2の高次振動モードの複数の腹部のうち第1腹部から最も遠い腹部である。高次振動モードは、基本振動モードより高次の振動モードである。 As described above, the vibration estimation system 1 according to the first embodiment includes a plurality of vibration sensors 21 and a building vibration estimation unit 23. Each vibration sensor 21 is provided in the building 2. Each vibration sensor 21 detects vibration. The building shaking estimation unit 23 estimates the shaking of the building 2 based on the detection results of the respective vibration sensors 21. The plurality of vibration sensors 21 include a first vibration sensor 21a and a second vibration sensor 21b. The first vibration sensor 21a is provided on the first abdomen. The first abdomen is the abdomen of the building 2 in the basic vibration mode. The second vibration sensor 21b is provided on the second abdomen. The second abdomen is the abdomen farthest from the first abdomen among the plurality of abdomens in the higher vibration mode of the building 2. The higher-order vibration mode is a higher-order vibration mode than the basic vibration mode.
 当該構成において、複数の振動センサ21は、第1腹部および第2腹部を含む建物2の位置に配置される。第1腹部の振動は、基本振動モードによる振動をよく表す。第2腹部の振動は、高次振動モードによる振動をよく表す。建物2の揺れは基本振動モードおよび高次振動モードなどの振動モードの重ね合わせによって表されるため、少ない数の振動センサ21によって建物2の揺れを特徴づける情報が検出される。これにより、建物揺れ推定部23は、振動センサ21の数を抑えつつ建物2の揺れを精度よく推定できる。また、建物2の揺れが精度よく推定されるので、揺れの影響を診断する機器が建物2に多数設けられていても、当該機器の各々に振動を検出するセンサを設ける必要がない。このため、揺れの影響の診断に用いられる振動センサ21などのセンサの数の増大が抑えられる。 In the configuration, the plurality of vibration sensors 21 are arranged at the positions of the building 2 including the first abdomen and the second abdomen. The vibration of the first abdomen well represents the vibration by the basic vibration mode. The vibration of the second abdomen well represents the vibration due to the higher vibration mode. Since the vibration of the building 2 is represented by the superposition of vibration modes such as the basic vibration mode and the higher-order vibration mode, the information characterizing the vibration of the building 2 is detected by a small number of vibration sensors 21. As a result, the building shake estimation unit 23 can accurately estimate the shake of the building 2 while suppressing the number of vibration sensors 21. Further, since the vibration of the building 2 is estimated accurately, even if a large number of devices for diagnosing the influence of the shaking are provided in the building 2, it is not necessary to provide a sensor for detecting the vibration in each of the devices. Therefore, an increase in the number of sensors such as the vibration sensor 21 used for diagnosing the influence of shaking can be suppressed.
 また、建物揺れ推定部23は、各々の振動センサ21の検出結果に基づいて建物2の各々の振動モードの成分を推定する。建物揺れ推定部23は、推定した振動モードの成分を用いて建物2の揺れを推定する。 Further, the building shaking estimation unit 23 estimates the components of each vibration mode of the building 2 based on the detection results of the respective vibration sensors 21. The building shaking estimation unit 23 estimates the shaking of the building 2 using the estimated vibration mode component.
 当該構成により、建物揺れ推定部23は、振動モードの波形に基づいて、振動センサ21が設けられていない位置においても揺れ量を精度よく推定できる。 With this configuration, the building shaking estimation unit 23 can accurately estimate the amount of shaking based on the waveform of the vibration mode even at a position where the vibration sensor 21 is not provided.
 また、建物揺れ推定部23は、少なくともいずれかの振動センサ21によって振動の最大値が検出された時刻における複数の振動センサ21の各々による振動の検出値に基づいて建物2の揺れを推定する。 Further, the building shaking estimation unit 23 estimates the shaking of the building 2 based on the vibration detection values of each of the plurality of vibration sensors 21 at the time when the maximum value of the vibration is detected by at least one of the vibration sensors 21.
 当該構成において、同時刻における各々の腹部の振動の検出値が取得される。このため、建物揺れ推定部23は、振動モードの成分を一意に精度よく推定できる。また、推定される揺れは、振動が最大となった腹部に対応する振動モードをよく反映した揺れとなる。このため、揺れ推定システム1によって、各々の振動モードによる揺れの影響が精度よく診断できる。 In the configuration, the detected value of each abdominal vibration at the same time is acquired. Therefore, the building shaking estimation unit 23 can uniquely and accurately estimate the components of the vibration mode. In addition, the estimated vibration is a vibration that well reflects the vibration mode corresponding to the abdomen where the vibration is maximized. Therefore, the shaking estimation system 1 can accurately diagnose the influence of shaking due to each vibration mode.
 また、複数の振動センサ21は、第3振動センサ21cを含む。第3振動センサ21cは、第3腹部に設けられる。第3腹部は、第2腹部に対応する高次振動モードよりさらに高次の振動モードの複数の腹部のうち、第1腹部および第2腹部の近い方からの遠さが最も大きい腹部である。 Further, the plurality of vibration sensors 21 include the third vibration sensor 21c. The third vibration sensor 21c is provided on the third abdomen. The third abdomen is the abdomen having the greatest distance from the closer side of the first abdomen and the second abdomen among the plurality of abdomens having a higher vibration mode than the higher vibration mode corresponding to the second abdomen.
 当該構成により、建物揺れ推定部23は、建物2の揺れをより高い精度で推定できる。また、各々の振動センサ21が建物2の全体にわたって互いに離れて配置される。このため、建物揺れ推定部23は、建物2全体の揺れをより高い精度で推定できる。 With this configuration, the building shake estimation unit 23 can estimate the shake of the building 2 with higher accuracy. Further, the vibration sensors 21 are arranged apart from each other over the entire building 2. Therefore, the building shake estimation unit 23 can estimate the shake of the entire building 2 with higher accuracy.
 また、揺れ推定システム1は、エレベーター揺れ推定部24を備える。エレベーター揺れ推定部24は、建物揺れ推定部23が推定した建物2の揺れに基づいて、建物2に設けられるエレベーター3の機器の揺れを推定する。 Further, the shaking estimation system 1 includes an elevator shaking estimation unit 24. The elevator shake estimation unit 24 estimates the shake of the equipment of the elevator 3 provided in the building 2 based on the shake of the building 2 estimated by the building shake estimation unit 23.
 当該構成により、エレベーター3の機器における揺れの影響の診断が精度よく行われるようになる。また、釣合い錘10などの建物2において移動するエレベーター3の機器に振動センサ21を設ける必要がない。このため、釣合い錘10などに電力供給または信号通信などの配線を行う必要がない。したがって、釣合い錘10などにおいて当該配線の引っ掛かりなどへの対策を行う必要がない。また、建物2に複数のエレベーター3が設けられている場合においても、エレベーター3ごとに振動センサ21を設ける必要がない。このため、揺れの影響の診断に用いられる振動センサ21などのセンサの数の増大が抑えられる。また、エレベーター揺れ推定部24によって、エレベーター3の診断運転の可否が精度よく判定される。診断運転が可能な場合に診断運転がより確実に行われるようになるので、地震発生時において通常運転に復旧するエレベーター3を増やすことができる。また、診断運転が不可な場合に診断運転が行われることが抑えられるので、診断運転におけるエレベーター3の機器の破損などの二次被害の発生が抑えられる。 With this configuration, the effect of shaking on the equipment of the elevator 3 can be accurately diagnosed. Further, it is not necessary to provide the vibration sensor 21 in the equipment of the elevator 3 that moves in the building 2 such as the counterweight 10. Therefore, it is not necessary to perform wiring such as power supply or signal communication to the balance weight 10 or the like. Therefore, it is not necessary to take measures against the wiring being caught in the counterweight 10 or the like. Further, even when a plurality of elevators 3 are provided in the building 2, it is not necessary to provide a vibration sensor 21 for each elevator 3. Therefore, an increase in the number of sensors such as the vibration sensor 21 used for diagnosing the influence of shaking can be suppressed. Further, the elevator shake estimation unit 24 accurately determines whether or not the elevator 3 can be diagnostically operated. When the diagnostic operation is possible, the diagnostic operation can be performed more reliably, so that the number of elevators 3 that can be restored to the normal operation in the event of an earthquake can be increased. Further, since the diagnostic operation is suppressed when the diagnostic operation is impossible, the occurrence of secondary damage such as damage to the equipment of the elevator 3 in the diagnostic operation can be suppressed.
 続いて、図8を用いて、揺れ推定システム1のハードウェア構成の例について説明する。
 図8は、実施の形態1に係る揺れ推定システム1の主要部のハードウェア構成図である。
Subsequently, an example of the hardware configuration of the shaking estimation system 1 will be described with reference to FIG.
FIG. 8 is a hardware configuration diagram of a main part of the shaking estimation system 1 according to the first embodiment.
 揺れ推定システム1の各機能は、処理回路により実現し得る。処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。処理回路は、プロセッサ100aおよびメモリ100bと共に、あるいはそれらの代用として、少なくとも1つの専用ハードウェア200を備えてもよい。 Each function of the shaking estimation system 1 can be realized by a processing circuit. The processing circuit includes at least one processor 100a and at least one memory 100b. The processing circuit may include at least one dedicated hardware 200 with or as a substitute for the processor 100a and the memory 100b.
 処理回路がプロセッサ100aとメモリ100bとを備える場合、揺れ推定システム1の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。そのプログラムはメモリ100bに格納される。プロセッサ100aは、メモリ100bに記憶されたプログラムを読み出して実行することにより、揺れ推定システム1の各機能を実現する。 When the processing circuit includes the processor 100a and the memory 100b, each function of the shaking estimation system 1 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 100b. The processor 100a realizes each function of the shaking estimation system 1 by reading and executing the program stored in the memory 100b.
 プロセッサ100aは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。メモリ100bは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROMなどの、不揮発性または揮発性の半導体メモリなどにより構成される。 The processor 100a is also referred to as a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, and a DSP. The memory 100b is composed of, for example, a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
 処理回路が専用ハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。 When the processing circuit includes the dedicated hardware 200, the processing circuit is realized by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
 揺れ推定システム1の各機能は、それぞれ処理回路で実現することができる。あるいは、揺れ推定システム1の各機能は、まとめて処理回路で実現することもできる。揺れ推定システム1の各機能について、一部を専用ハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、専用ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせで揺れ推定システム1の各機能を実現する。 Each function of the shaking estimation system 1 can be realized by a processing circuit. Alternatively, each function of the shaking estimation system 1 can be collectively realized by a processing circuit. For each function of the shaking estimation system 1, a part may be realized by the dedicated hardware 200, and the other part may be realized by software or firmware. As described above, the processing circuit realizes each function of the shaking estimation system 1 by the dedicated hardware 200, software, firmware, or a combination thereof.
 実施の形態2.
 実施の形態2において、実施の形態1で開示される例と相違する点について特に詳しく説明する。実施の形態2で説明しない特徴については、実施の形態1で開示される例のいずれの特徴が採用されてもよい。
Embodiment 2.
The differences between the second embodiment and the examples disclosed in the first embodiment will be described in particular detail. As for the features not described in the second embodiment, any of the features disclosed in the first embodiment may be adopted.
 図9は、実施の形態2に係る揺れ推定システム1において検出された振動の例を示す図である。 FIG. 9 is a diagram showing an example of vibration detected in the vibration estimation system 1 according to the second embodiment.
 図9において、横軸は時間を表す。図9において、縦軸は建物2において振動センサ21が設けられる位置の振動を表す。図9のグラフは、第1腹部における振動を表す。 In FIG. 9, the horizontal axis represents time. In FIG. 9, the vertical axis represents the vibration at the position where the vibration sensor 21 is provided in the building 2. The graph of FIG. 9 represents the vibration in the first abdomen.
 建物揺れ推定部23は、建物2の揺れが発生している期間を複数の時間幅に分割する。建物2の揺れが発生している期間は、例えば建物2を強制加振する地震が発生してから終了するまでの期間である。各々の時間幅の長さは、例えば一定の時間Tである。建物揺れ推定部23は、各々の時間幅に対して建物2の揺れを推定する。図9において、各々の時間幅が点線の枠で示される。 The building shaking estimation unit 23 divides the period during which the building 2 is shaking into a plurality of time widths. The period during which the building 2 is shaken is, for example, the period from the occurrence of an earthquake that forcibly vibrates the building 2 to the end of the earthquake. The length of each time width is, for example, a constant time T. The building shaking estimation unit 23 estimates the shaking of the building 2 for each time width. In FIG. 9, each time width is shown by a dotted frame.
 建物揺れ推定部23は、各々の時間幅について建物2の揺れを推定する。建物揺れ推定部23は、各々の時間幅において、振動モードの腹部に配置された振動センサ21の各々の最大値を記憶する。建物揺れ推定部23は、いずれかの振動センサ21において最大値が検出された時刻における他の全ての振動センサ21の検出値を記憶する。建物揺れ推定部23は、検出値を記憶した時刻の各々について、例えば各々の振動モードのモード振幅の算出などによって揺れ量を推定する。揺れ推定システム1が腹部に配置される振動センサ21を3つ備える場合に、建物揺れ推定部23は、各々の時間幅について3つの時刻におけるモード振幅を算出する。 The building shaking estimation unit 23 estimates the shaking of the building 2 for each time width. The building shaking estimation unit 23 stores the maximum value of each of the vibration sensors 21 arranged in the abdomen of the vibration mode in each time width. The building shaking estimation unit 23 stores the detected values of all the other vibration sensors 21 at the time when the maximum value is detected by any of the vibration sensors 21. The building shaking estimation unit 23 estimates the amount of shaking for each of the times when the detected values are stored, for example, by calculating the mode amplitude of each vibration mode. When the shaking estimation system 1 includes three vibration sensors 21 arranged in the abdomen, the building shaking estimation unit 23 calculates the mode amplitude at three times for each time width.
 以上に説明したように、実施の形態2に係る揺れ推定システム1の建物揺れ推定部23は、建物2の揺れが発生している期間を分割した複数の時間幅の各々に対して建物2の揺れを推定する。 As described above, the building shaking estimation unit 23 of the shaking estimation system 1 according to the second embodiment of the building 2 has a plurality of time widths obtained by dividing the period in which the shaking of the building 2 is occurring. Estimate the shaking.
 当該構成において、より多くの時刻における建物2の揺れが推定される。このため、建物2の振動センサ21が設けられていない位置において揺れ量が大きくなる場合の見落としが抑制される。 In this configuration, the shaking of the building 2 is estimated at more times. Therefore, oversight when the amount of shaking is large at a position where the vibration sensor 21 of the building 2 is not provided is suppressed.
 なお、地震の持続時間が長い場合などに、振動センサ21の検出値のデータ容量を抑制しうるように、建物揺れ推定部23は、検出値が既に記憶されている時間幅のデータを最大値が小さい時間幅のデータから順に上書きして記憶してもよい。 The building shaking estimation unit 23 sets the maximum value of the time width data in which the detected value is already stored so that the data capacity of the detected value of the vibration sensor 21 can be suppressed when the duration of the earthquake is long. The data may be overwritten and stored in order from the data having the smallest time width.
 実施の形態3.
 実施の形態3において、実施の形態1または実施の形態2で開示される例と相違する点について特に詳しく説明する。実施の形態3で説明しない特徴については、実施の形態1または実施の形態2で開示される例のいずれの特徴が採用されてもよい。
Embodiment 3.
The differences between the third embodiment and the examples disclosed in the first embodiment or the second embodiment will be described in particular detail. As for the features not described in the third embodiment, any of the features disclosed in the first embodiment or the second embodiment may be adopted.
 図10は、実施の形態3に係る揺れ推定システム1の構成図である。 FIG. 10 is a configuration diagram of the shaking estimation system 1 according to the third embodiment.
 揺れ推定装置22は、重み係数記憶部25を備える。重み係数記憶部25は、予め算出された重み係数を記憶する部分である。重み係数は、エレベーター3の機器の揺れの推定に用いられる係数である。重み係数は、建物2の各々の振動モードに対応して予め設定される。重み係数は、例えばエレベーター3の機器の固有振動数と建物2の各々の振動モードの固有振動数との関係を通じて建物2の振動モードに対応する。例えばエレベーター3の機器がかご9である場合に、かご9の固有振動数は、かご9およびかごガイドレール15の間の機械的な連動をバネなどによる結合としてモデル化することなどによって算出される。同様に、エレベーター3の機器が釣合い錘10である場合に、釣合い錘10の固有振動数は、釣合い錘10および釣合い錘ガイドレール16の間の機械的な連動をモデル化することなどによって算出される。 The shaking estimation device 22 includes a weighting coefficient storage unit 25. The weighting coefficient storage unit 25 is a portion that stores a weighting coefficient calculated in advance. The weighting coefficient is a coefficient used for estimating the shaking of the equipment of the elevator 3. The weighting factor is preset according to each vibration mode of the building 2. The weighting factor corresponds to the vibration mode of the building 2 through the relationship between the natural frequency of the equipment of the elevator 3 and the natural frequency of each vibration mode of the building 2. For example, when the equipment of the elevator 3 is a car 9, the natural frequency of the car 9 is calculated by modeling the mechanical interlocking between the car 9 and the car guide rail 15 as a coupling by a spring or the like. .. Similarly, when the equipment of the elevator 3 is the counterweight 10, the natural frequency of the counterweight 10 is calculated by modeling the mechanical interlocking between the counterweight 10 and the counterweight guide rail 16. Ru.
 図11は、実施の形態3に係る重み係数の例を示す図である。 FIG. 11 is a diagram showing an example of a weighting coefficient according to the third embodiment.
 図11において、横軸は振動数を表す。図11において、縦軸は重み係数を表す。図11のグラフは、重み係数と建物2の振動モードの固有振動数との関係を表す。 In FIG. 11, the horizontal axis represents the frequency. In FIG. 11, the vertical axis represents the weighting factor. The graph of FIG. 11 shows the relationship between the weighting factor and the natural frequency of the vibration mode of the building 2.
 この例において、建物2の1次、2次、および3次の振動モードの固有振動数は、ω、ω、およびωであるとする。また、エレベーター3の機器の固有振動数はωであるとする。重み係数は、例えば建物2の振動モードの固有振動数がωに近いほど大きい値になる関数によって設定される。 In this example, it is assumed that the natural frequencies of the primary, secondary, and tertiary vibration modes of the building 2 are ω 1 , ω 2 , and ω 3. Further, it is assumed that the natural frequency of the equipment of the elevator 3 is ω 0. The weighting coefficient is set by, for example, a function in which the natural frequency of the vibration mode of the building 2 becomes larger as it approaches ω 0.
 例えばエレベーター3の機器の固有振動数ωから十分離れた固有振動数ωを持つ1次の振動モードについて、重み係数記憶部25は、重み係数α=1を記憶する。また、エレベーター3の機器の固有振動数ωに近い固有振動数ωを持つ2次の振動モードについて、重み係数記憶部25は、重み係数α=2を記憶する。また、エレベーター3の機器の固有振動数ωに中程度に近い固有振動数ωを持つ3次の振動モードについて、重み係数記憶部25は、重み係数αを記憶する。この例において、1<α<2である。 For example, the weighting coefficient storage unit 25 stores the weighting coefficient α 1 = 1 for the first-order vibration mode having the natural frequency ω 1 sufficiently separated from the natural frequency ω 0 of the equipment of the elevator 3. Further, the weighting coefficient storage unit 25 stores the weighting coefficient α 2 = 2 for the secondary vibration mode having the natural frequency ω 2 close to the natural frequency ω 0 of the equipment of the elevator 3. Further, the weighting coefficient storage unit 25 stores the weighting coefficient α 3 for the third-order vibration mode having the natural frequency ω 3 which is close to the natural frequency ω 0 of the equipment of the elevator 3. In this example, 1 <α 3 <2.
 エレベーター揺れ推定部24は、建物揺れ推定部23が推定した建物2の各々の振動モードのモード振幅に重み係数を乗じた値を算出する。エレベーター揺れ推定部24は、算出した値を用いて、時刻tにおいて位置xにあるエレベーター3の機器の揺れy(t,x)を次の式(6)によって推定する。 The elevator sway estimation unit 24 calculates a value obtained by multiplying the mode amplitude of each vibration mode of the building 2 estimated by the building sway estimation unit 23 by a weighting coefficient. The elevator shake estimation unit 24 estimates the shake y (t 1 , x) of the equipment of the elevator 3 at the position x at the time t 1 by the following equation (6) using the calculated value.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 以上に説明したように、実施の形態3に係る揺れ推定システム1は、重み係数記憶部25と、エレベーター揺れ推定部24と、を備える。重み係数記憶部25は、建物2の各々の振動モードに対して予め設定された重み係数を記憶する。エレベーター揺れ推定部24は、建物揺れ推定部23が推定した建物2の各々の振動モードの成分に重み係数記憶部25が記憶している重み係数を乗じた結果を用いて、建物2に設けられるエレベーター3の機器の揺れを推定する。 As described above, the shaking estimation system 1 according to the third embodiment includes a weighting coefficient storage unit 25 and an elevator shaking estimation unit 24. The weighting coefficient storage unit 25 stores the weighting coefficient preset for each vibration mode of the building 2. The elevator sway estimation unit 24 is provided in the building 2 using the result of multiplying the component of each vibration mode of the building 2 estimated by the building sway estimation unit 23 by the weight coefficient stored in the weight coefficient storage unit 25. Estimate the shaking of the equipment of the elevator 3.
 当該構成により、エレベーター3の機器の揺れがより高い精度で推定される。これにより、診断運転によるエレベーター3の復旧がより確実に行われる。また、診断運転による二次被害の発生がより確実に抑えられる。 With this configuration, the shaking of the equipment of the elevator 3 is estimated with higher accuracy. As a result, the elevator 3 can be more reliably restored by the diagnostic operation. In addition, the occurrence of secondary damage due to diagnostic operation can be suppressed more reliably.
 実施の形態4.
 実施の形態4において、実施の形態1から実施の形態3で開示される例と相違する点について特に詳しく説明する。実施の形態4で説明しない特徴については、実施の形態1から実施の形態3で開示される例のいずれの特徴が採用されてもよい。
Embodiment 4.
In the fourth embodiment, the differences from the examples disclosed in the first to third embodiments will be described in particular detail. As for the features not described in the fourth embodiment, any of the features disclosed in the first to third embodiments may be adopted.
 図12は、実施の形態4に係る揺れ推定システム1の構成図である。 FIG. 12 is a configuration diagram of the shaking estimation system 1 according to the fourth embodiment.
 揺れ推定装置22は、フロアレスポンス記憶部26を備える。フロアレスポンス記憶部26は、予め算出された建物2のフロアレスポンスを記憶する部分である。ここで、建物2のフロアレスポンスは、建物2の振動モデルに対して最大値で正規化した複数の地震波を与えることで、各階の揺れ量に対する最大値を保存したデータである。この例において、建物2のフロアレスポンスは、振動センサ21が配置される振動モードの腹部を含む建物2の位置に対応して記憶されている。 The shaking estimation device 22 includes a floor response storage unit 26. The floor response storage unit 26 is a portion that stores the floor response of the building 2 calculated in advance. Here, the floor response of the building 2 is data in which the maximum value for the amount of shaking of each floor is stored by giving a plurality of seismic waves normalized by the maximum value to the vibration model of the building 2. In this example, the floor response of the building 2 is stored corresponding to the position of the building 2 including the abdomen of the vibration mode in which the vibration sensor 21 is arranged.
 図13は、実施の形態4に係る建物揺れ推定部23による建物2の揺れの推定の例を示す図である。 FIG. 13 is a diagram showing an example of estimation of the shaking of the building 2 by the building shaking estimation unit 23 according to the fourth embodiment.
 図13において、縦軸は建物2の高さxを表す。図13において、横軸は建物2の揺れ量を表す。図13において、実線のグラフはフロアレスポンス記憶部26が記憶している建物2のフロアレスポンスを表す。図13において、四角記号は、各々の振動センサ21による振動の検出値を表す。ここで、振動の検出値は、例えば地表の最下階に設けられた基準の振動センサ21の振動の検出値を差し引いた相対値である。あるいは、振動の検出値は、各々の振動センサ21による検出値自体であってもよい。図13において、破線のグラフは、建物揺れ推定部23が推定した建物2の揺れを表す。 In FIG. 13, the vertical axis represents the height x of the building 2. In FIG. 13, the horizontal axis represents the amount of shaking of the building 2. In FIG. 13, the solid line graph represents the floor response of the building 2 stored in the floor response storage unit 26. In FIG. 13, the square symbol represents the detected value of vibration by each vibration sensor 21. Here, the vibration detection value is, for example, a relative value obtained by subtracting the vibration detection value of the reference vibration sensor 21 provided on the lowest floor of the ground surface. Alternatively, the vibration detection value may be the detection value itself by each vibration sensor 21. In FIG. 13, the broken line graph represents the shaking of the building 2 estimated by the building shaking estimation unit 23.
 建物揺れ推定部23は、各々の振動センサ21について、地震が発生している時間にわたる検出値の最大値を取得する。図13において、第1振動センサ21a、第2振動センサ21b、および第3振動センサ21cについて取得された最大値が四角記号によって示されている。建物揺れ推定部23は、取得した最大値と当該最大値に対応する振動センサ21の位置についてフロアレスポンス記憶部26が記憶している建物2のフロアレスポンスとの間の差異を算出する。ここで算出される差異は、例えば差分または比率などであってもよい。 The building shaking estimation unit 23 acquires the maximum value of the detected value for each vibration sensor 21 over the time when the earthquake is occurring. In FIG. 13, the maximum values acquired for the first vibration sensor 21a, the second vibration sensor 21b, and the third vibration sensor 21c are indicated by square symbols. The building shaking estimation unit 23 calculates the difference between the acquired maximum value and the floor response of the building 2 stored by the floor response storage unit 26 regarding the position of the vibration sensor 21 corresponding to the maximum value. The difference calculated here may be, for example, a difference or a ratio.
 建物揺れ推定部23は、算出した差異に基づいて、建物2のフロアレスポンスに対する補正係数を算出する。振動センサ21が配置される腹部における補正係数は、例えば建物2のフロアレスポンスに対する当該振動センサ21について取得された最大値の比率である。ここで、補正係数βは、位置xにおける補正係数である。補正係数βは、位置xにおける補正係数である。補正係数βは、位置xにおける補正係数である。建物揺れ推定部23は、振動センサ21が配置される腹部における補正係数を補間することによって、建物2の高さ全体についての補正係数を算出する。建物揺れ推定部23は、補正係数の算出に例えば線形補間を用いる。例えば高さxの区間(0,x)について、建物揺れ推定部23は、区間の両端の補正係数の値1およびβを用いて線形補間を行う。また、高さxの区間(x,x)について、建物揺れ推定部23は、区間の両端の補正係数の値βおよびβを用いて線形補間を行う。また、高さxの区間(x,x)について、建物揺れ推定部23は、区間の両端の補正係数の値βおよびβを用いて線形補間を行う。 The building shake estimation unit 23 calculates a correction coefficient for the floor response of the building 2 based on the calculated difference. The correction coefficient in the abdomen where the vibration sensor 21 is arranged is, for example, the ratio of the maximum value acquired for the vibration sensor 21 to the floor response of the building 2. Here, the correction coefficient β 1 is a correction coefficient at the position x 1. The correction coefficient β 2 is a correction coefficient at the position x 2. The correction coefficient β 3 is a correction coefficient at the position x 3. The building shaking estimation unit 23 calculates the correction coefficient for the entire height of the building 2 by interpolating the correction coefficient in the abdomen where the vibration sensor 21 is arranged. The building shake estimation unit 23 uses, for example, linear interpolation to calculate the correction coefficient. For example, for a section of height x (0, x 2 ), the building shake estimation unit 23 performs linear interpolation using the correction coefficient values 1 and β 2 at both ends of the section. Further, for the section of height x (x 2 , x 3 ), the building shake estimation unit 23 performs linear interpolation using the correction coefficient values β 2 and β 3 at both ends of the section. Further, for the section of height x (x 3 , x 1 ), the building shake estimation unit 23 performs linear interpolation using the correction coefficient values β 3 and β 1 at both ends of the section.
 建物揺れ推定部23は、建物2の高さ全体にわたって算出した補正係数をフロアレスポンス記憶部26が記憶している建物2のフロアレスポンスに重畳して乗じた値を算出する。図13において、算出された値が破線で示される。建物揺れ推定部23は、算出した値に基づいて建物2の揺れを推定する。 The building shake estimation unit 23 calculates a value obtained by superimposing the correction coefficient calculated over the entire height of the building 2 on the floor response of the building 2 stored in the floor response storage unit 26 and multiplying it. In FIG. 13, the calculated value is shown by a broken line. The building shake estimation unit 23 estimates the shake of the building 2 based on the calculated value.
 以上に説明したように、実施の形態4に係る揺れ推定システム1は、フロアレスポンス記憶部26を備える。フロアレスポンス記憶部26は、予め設定された建物2のフロアレスポンスを記憶する。建物揺れ推定部23は、フロアレスポンス記憶部26が記憶している建物2のフロアレスポンス、ならびに第1振動センサ21aおよび第2振動センサ21bの検出値のうちの各々の最大値に基づいて建物2の揺れを推定する。 As described above, the shaking estimation system 1 according to the fourth embodiment includes a floor response storage unit 26. The floor response storage unit 26 stores a preset floor response of the building 2. The building shaking estimation unit 23 is based on the floor response of the building 2 stored in the floor response storage unit 26 and the maximum value of each of the detection values of the first vibration sensor 21a and the second vibration sensor 21b. Estimate the shaking of.
 当該構成において、各々の振動センサ21の検出値の最大値の情報を用いて建物2の揺れが推定される。このため、各々の振動センサ21において時刻が同期されていない場合においても建物2の揺れを精度よく推定できる。また、同時刻における各々の振動センサ21の検出値が必要とされないので、振動センサ21の検出結果のデータ容量を節約できる。このため、揺れ推定システム1の記憶容量に制限がある場合においても、建物2の揺れを精度よく推定できる。 In the configuration, the shaking of the building 2 is estimated using the information of the maximum value of the detected values of each vibration sensor 21. Therefore, even when the time is not synchronized in each vibration sensor 21, the shaking of the building 2 can be estimated accurately. Further, since the detection value of each vibration sensor 21 at the same time is not required, the data capacity of the detection result of the vibration sensor 21 can be saved. Therefore, even when the storage capacity of the shaking estimation system 1 is limited, the shaking of the building 2 can be estimated accurately.
 また、建物揺れ推定部23は、各々の振動センサ21が設けられる位置についてフロアレスポンス記憶部26が記憶している建物2のフロアレスポンス、および当該位置に設けられる振動センサ21の検出値のうちの最大値の差異を算出する。建物揺れ推定部23は、各々の振動センサ21が設けられる位置について算出した差異を建物2の位置について補間した補正係数を算出する。建物揺れ推定部23は、算出した補正係数をフロアレスポンス記憶部26が記憶している建物2のフロアレスポンスに乗じた結果を用いて建物2の揺れを推定する。 Further, the building shaking estimation unit 23 is among the floor response of the building 2 stored by the floor response storage unit 26 for the position where each vibration sensor 21 is provided and the detection value of the vibration sensor 21 provided at the position. Calculate the difference in maximum value. The building shaking estimation unit 23 calculates a correction coefficient obtained by interpolating the difference calculated for the position where each vibration sensor 21 is provided for the position of the building 2. The building shaking estimation unit 23 estimates the shaking of the building 2 using the result of multiplying the calculated correction coefficient by the floor response of the building 2 stored in the floor response storage unit 26.
 当該構成において、建物揺れ推定部23は、補間した補正係数によって振動センサ21が設けられていない位置における揺れ量についても、既知のフロアレスポンスに基づいて推定できる。また、建物揺れ推定部23は、線形補間などの簡易でロバストな方法を用いて建物2の揺れを推定できる。 In the configuration, the building shake estimation unit 23 can estimate the amount of shake at the position where the vibration sensor 21 is not provided by the interpolated correction coefficient based on the known floor response. Further, the building shake estimation unit 23 can estimate the shake of the building 2 by using a simple and robust method such as linear interpolation.
 本開示に係る揺れ推定システムは、複数の階床を有する建物に適用できる。 The shaking estimation system according to the present disclosure can be applied to a building having multiple floors.
 1 揺れ推定システム、 2 建物、 3 エレベーター、 4 昇降路、 5 機械室、 6 巻上機、 7 懸架体、 8 そらせ車、 9 かご、 10 釣合い錘、 11 制御装置、 12 駆動シーブ、 13 巻上機モータ、 14 巻上機ブレーキ、 15 かごガイドレール、 16 釣合い錘ガイドレール、 17 かご緩衝器、 18 釣合い錘緩衝器、 19 P波感知器、 20 S波感知器、 21 振動センサ、 21a 第1振動センサ、 21b 第2振動センサ、 21c 第3振動センサ、 22 揺れ推定装置、 23 建物揺れ推定部、 24 エレベーター揺れ推定部、 25 重み係数記憶部、 26 フロアレスポンス記憶部、 100a プロセッサ、 100b メモリ、 200 専用ハードウェア 1 shaking estimation system, 2 building, 3 elevator, 4 hoistway, 5 machine room, 6 hoisting machine, 7 suspension body, 8 distorting car, 9 basket, 10 balancing weight, 11 control device, 12 drive sheave, 13 hoisting Machine motor, 14 hoist brake, 15 car guide rail, 16 balanced weight guide rail, 17 basket shock absorber, 18 balanced weight shock absorber, 19 P wave detector, 20 S wave detector, 21 vibration sensor, 21a 1st Vibration sensor, 21b 2nd vibration sensor, 21c 3rd vibration sensor, 22 vibration estimation device, 23 building vibration estimation unit, 24 elevator vibration estimation unit, 25 weight coefficient storage unit, 26 floor response storage unit, 100a processor, 100b memory, 200 dedicated hardware

Claims (9)

  1.  建物に設けられ、各々が振動を検出する複数の振動センサと、
     前記複数の振動センサの各々の検出結果に基づいて前記建物の揺れを推定する建物揺れ推定部と、
     を備え、
     前記複数の振動センサは、
     前記建物の基本振動モードの腹部である第1腹部に設けられる第1振動センサと、
     前記基本振動モードより高次の振動モードである前記建物の高次振動モードの複数の腹部のうち前記第1腹部から最も遠い腹部である第2腹部に設けられる第2振動センサと、
     を含む
     揺れ推定システム。
    Multiple vibration sensors installed in the building, each of which detects vibration,
    A building shaking estimation unit that estimates the shaking of the building based on the detection results of each of the plurality of vibration sensors, and a building shaking estimation unit.
    Equipped with
    The plurality of vibration sensors are
    The first vibration sensor provided in the first abdomen, which is the abdomen of the basic vibration mode of the building, and
    A second vibration sensor provided in the second abdomen, which is the abdomen farthest from the first abdomen, among a plurality of abdomens in the higher vibration mode of the building, which is a vibration mode higher than the basic vibration mode.
    Shake estimation system including.
  2.  前記建物揺れ推定部は、前記複数の振動センサの各々の検出結果に基づいて前記建物の複数の振動モードの各々の成分を推定し、推定した成分を用いて前記建物の揺れを推定する
     請求項1に記載の揺れ推定システム。
    The building shaking estimation unit estimates each component of the plurality of vibration modes of the building based on the detection result of each of the plurality of vibration sensors, and estimates the shaking of the building using the estimated component. The vibration estimation system according to 1.
  3.  前記建物揺れ推定部は、前記複数の振動センサの少なくともいずれかによって振動の最大値が検出された時刻における前記複数の振動センサの各々による振動の検出値に基づいて前記建物の揺れを推定する
     請求項2に記載の揺れ推定システム。
    The building vibration estimation unit estimates the vibration of the building based on the detection value of vibration by each of the plurality of vibration sensors at the time when the maximum value of vibration is detected by at least one of the plurality of vibration sensors. The vibration estimation system according to item 2.
  4.  前記建物揺れ推定部は、前記建物の揺れが発生している期間を分割した複数の時間幅の各々に対して前記建物の揺れを推定する
     請求項2または請求項3に記載の揺れ推定システム。
    The shaking estimation system according to claim 2 or 3, wherein the building shaking estimation unit estimates the shaking of the building for each of a plurality of time widths in which the period in which the building shaking is occurring is divided.
  5.  予め算出された前記建物のフロアレスポンスを記憶するフロアレスポンス記憶部
     を備え、
     前記建物揺れ推定部は、前記フロアレスポンス記憶部が記憶している前記建物のフロアレスポンス、ならびに前記第1振動センサおよび前記第2振動センサの検出値のうちの各々の最大値に基づいて前記建物の揺れを推定する
     請求項1に記載の揺れ推定システム。
    It is equipped with a floor response storage unit that stores the floor response of the building calculated in advance.
    The building shaking estimation unit is based on the floor response of the building stored in the floor response storage unit and the maximum value of each of the detection values of the first vibration sensor and the second vibration sensor. The shaking estimation system according to claim 1.
  6.  前記建物揺れ推定部は、前記複数の振動センサの各々が設けられる位置について前記フロアレスポンス記憶部が記憶している前記建物のフロアレスポンスおよび前記複数の振動センサのうち当該位置に設けられる振動センサの検出値のうちの最大値の差異を算出し、前記複数の振動センサの各々が設けられる位置について算出した差異を前記建物の位置について補間した補正係数を算出し、算出した補正係数を前記フロアレスポンス記憶部が記憶している前記建物のフロアレスポンスに乗じた結果を用いて前記建物の揺れを推定する
     請求項5に記載の揺れ推定システム。
    The building shaking estimation unit is a vibration sensor provided at the position among the floor response of the building and the plurality of vibration sensors stored in the floor response storage unit for the position where each of the plurality of vibration sensors is provided. The difference in the maximum value among the detected values is calculated, the difference calculated for the position where each of the plurality of vibration sensors is provided is interpolated for the position of the building, and the calculated correction coefficient is used as the floor response. The vibration estimation system according to claim 5, wherein the vibration of the building is estimated using the result of multiplying the floor response of the building stored by the storage unit.
  7.  前記建物揺れ推定部が推定した前記建物の揺れに基づいて、前記建物に設けられるエレベーターの機器の揺れを推定するエレベーター揺れ推定部
     を備える請求項1から請求項6のいずれか一項に記載の揺れ推定システム。
    The invention according to any one of claims 1 to 6, further comprising an elevator shake estimation unit that estimates the shake of the elevator equipment provided in the building based on the shake of the building estimated by the building shake estimation unit. Shake estimation system.
  8.  前記建物の複数の振動モードの各々に対応して予め設定された重み係数を記憶する重み係数記憶部と、
     前記建物揺れ推定部が推定した前記建物の複数の振動モードの各々の成分に前記重み係数記憶部が記憶している重み係数を乗じた結果を用いて前記建物に設けられるエレベーターの機器の揺れを推定するエレベーター揺れ推定部と、
     を備える請求項2から請求項4のいずれか一項に記載の揺れ推定システム。
    A weight coefficient storage unit that stores preset weight coefficients corresponding to each of the plurality of vibration modes of the building, and a weight coefficient storage unit.
    The shaking of the elevator equipment provided in the building is calculated using the result of multiplying each component of the plurality of vibration modes of the building estimated by the building shaking estimation unit by the weighting coefficient stored in the weighting coefficient storage unit. Elevator shake estimation unit to estimate and
    The shake estimation system according to any one of claims 2 to 4.
  9.  前記複数の振動センサは、
     前記高次振動モードよりさらに高次の振動モードの複数の腹部のうち前記第1腹部および前記第2腹部の近い方からの遠さが最も大きい腹部である第3腹部に設けられる第3振動センサ
     を含む
     請求項1から請求項8のいずれか一項に記載の揺れ推定システム。
    The plurality of vibration sensors are
    A third vibration sensor provided in the third abdomen, which is the abdomen having the largest distance from the closer side of the first abdomen and the second abdomen among a plurality of abdomens in a higher vibration mode than the higher vibration mode. The vibration estimation system according to any one of claims 1 to 8, comprising the above.
PCT/JP2020/024233 2020-06-19 2020-06-19 Sway estimation system WO2021255935A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/024233 WO2021255935A1 (en) 2020-06-19 2020-06-19 Sway estimation system
JP2022531235A JP7276611B2 (en) 2020-06-19 2020-06-19 shaking estimation system
CN202080101571.8A CN115867773A (en) 2020-06-19 2020-06-19 Sloshing estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024233 WO2021255935A1 (en) 2020-06-19 2020-06-19 Sway estimation system

Publications (1)

Publication Number Publication Date
WO2021255935A1 true WO2021255935A1 (en) 2021-12-23

Family

ID=79267749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024233 WO2021255935A1 (en) 2020-06-19 2020-06-19 Sway estimation system

Country Status (3)

Country Link
JP (1) JP7276611B2 (en)
CN (1) CN115867773A (en)
WO (1) WO2021255935A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281435A (en) * 2007-05-10 2008-11-20 Toshiba Corp Earthquake damage measuring system and earthquake damage measuring method
JP2014134413A (en) * 2013-01-09 2014-07-24 Hakusan Kogyo Kk Damage state reporting system and earthquake disaster prevention system
JP2015161657A (en) * 2014-02-28 2015-09-07 パナホーム株式会社 Damage evaluation system and damage evaluation method for building
JP2016095242A (en) * 2014-11-14 2016-05-26 株式会社熊谷組 Method of estimating interlayer displacement of building
JP2016197074A (en) * 2015-04-06 2016-11-24 株式会社Nttファシリティーズ Interlayer displacement measurement system, interlayer displacement measurement method, and program
JP2017198610A (en) * 2016-04-28 2017-11-02 前田建設工業株式会社 Safety diagnostic device, safety diagnostic method, and safety diagnostic program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281435A (en) * 2007-05-10 2008-11-20 Toshiba Corp Earthquake damage measuring system and earthquake damage measuring method
JP2014134413A (en) * 2013-01-09 2014-07-24 Hakusan Kogyo Kk Damage state reporting system and earthquake disaster prevention system
JP2015161657A (en) * 2014-02-28 2015-09-07 パナホーム株式会社 Damage evaluation system and damage evaluation method for building
JP2016095242A (en) * 2014-11-14 2016-05-26 株式会社熊谷組 Method of estimating interlayer displacement of building
JP2016197074A (en) * 2015-04-06 2016-11-24 株式会社Nttファシリティーズ Interlayer displacement measurement system, interlayer displacement measurement method, and program
JP2017198610A (en) * 2016-04-28 2017-11-02 前田建設工業株式会社 Safety diagnostic device, safety diagnostic method, and safety diagnostic program

Also Published As

Publication number Publication date
JPWO2021255935A1 (en) 2021-12-23
JP7276611B2 (en) 2023-05-18
CN115867773A (en) 2023-03-28

Similar Documents

Publication Publication Date Title
JP5897165B2 (en) Elevator abnormality diagnosis device
JP5009304B2 (en) Elevator equipment
US9242838B2 (en) Elevator rope sway and disturbance estimation
JP4849397B2 (en) Elevator abnormality detection device
JP5224933B2 (en) Elevator restoration operation method and apparatus
JP6614165B2 (en) Threshold decision method, threshold decision device, and elevator control system
JP6860030B2 (en) Rope runout detector
TWI377168B (en) Automatic inspecting device for an elevator and automatic inspecting method for an elevator
JP2013095554A (en) Cage vibration monitoring device for elevator
JP5418307B2 (en) Elevator rope tension measuring device
JP2010052924A (en) Control device of elevator
JP2014009098A (en) Device and method for controlled operation of elevator
JP7008839B2 (en) Governor system characteristic control device and elevator device
JP5070558B2 (en) Elevator safety equipment
WO2021255935A1 (en) Sway estimation system
JP4859387B2 (en) Elevator earthquake operation device
JP4828215B2 (en) Elevator control device
JP5023511B2 (en) Elevator equipment
JP2011051739A (en) Control device of elevator
JP5973929B2 (en) Elevator control operation apparatus and method
JP4844165B2 (en) Elevator abnormality detection device
JP5535441B2 (en) Elevator control operation device
WO2021144932A1 (en) Elevator determination device
JP7080326B2 (en) Elevator equipment
JP2010215391A (en) Elevator device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941132

Country of ref document: EP

Kind code of ref document: A1