WO2021254531A1 - 一种用于改善闭式叶轮回流的泵前腔自动补偿装置 - Google Patents

一种用于改善闭式叶轮回流的泵前腔自动补偿装置 Download PDF

Info

Publication number
WO2021254531A1
WO2021254531A1 PCT/CN2021/107858 CN2021107858W WO2021254531A1 WO 2021254531 A1 WO2021254531 A1 WO 2021254531A1 CN 2021107858 W CN2021107858 W CN 2021107858W WO 2021254531 A1 WO2021254531 A1 WO 2021254531A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
automatic compensation
partition
front cavity
improving
Prior art date
Application number
PCT/CN2021/107858
Other languages
English (en)
French (fr)
Inventor
李伟
王磊
周岭
朱勇
常浩
陈琪
吴普
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US17/623,271 priority Critical patent/US11754095B2/en
Publication of WO2021254531A1 publication Critical patent/WO2021254531A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps

Definitions

  • the invention belongs to the technical field of fluid machinery, and in particular relates to an automatic compensation device for a pump front cavity for improving the return flow of a closed impeller.
  • Centrifugal pumps are widely used in military industry, nuclear power, water conservancy, and agricultural irrigation. Because there is a gap between the pump body and the impeller cover of the centrifugal pump, not only the volume loss is generated, but also the flow structure inside the pump is changed. The main reason is that the flow in the front cavity is affected by the rotating parts, and the flow characteristics are quite complicated. The vortex and backflow generated by the front cavity cause the pump efficiency to drop. At the same time, the water body in the front cavity rotates at a high speed, causing resistance to the rotating parts of the impeller. Unstable pump operation.
  • the structure design can also prevent the fluid from the impeller outlet from returning to the front cavity as little as possible.
  • the patent (CN205639079U) is mainly to improve the flow of the front pump cavity and reduce the loss by setting complementary rectangular partitions.
  • the complementary rectangular partitions are divided into rotating parts and stationary parts, when the gap between the two is small, it is easy to produce Big movement interferes.
  • the medium containing solid particles is transported, the particles are easy to produce dry friction in the gap of the partition.
  • the corrosive effect of the medium makes the partition abrasion more serious. Therefore, it is urgent to invent an automatic compensation device for the pump front cavity for improving the impeller backflow, which can effectively improve the energy loss of the pump front cavity by automatically compensating the wear baffle, so as to ensure that the device can efficiently and smoothly transport the medium.
  • the present invention proposes an automatic compensation device for the pump front cavity for improving the backflow of the closed impeller.
  • the automatic compensation device is arranged on the wall of the pump body to prevent the fluid flowing out of the impeller outlet from entering the front cavity of the centrifugal pump, thereby Inhibit the occurrence of backflow, reduce the energy loss of the front chamber of the centrifugal pump, and improve the operating efficiency and stability of the centrifugal pump.
  • An automatic compensation device for the pump front cavity for improving the return flow of the closed impeller.
  • the automatic compensation device is fixedly installed on the inner wall of the pump body front cavity and extends from the pump body front cavity inner wall to the front cover plate of the impeller to prevent the flow direction of the impeller outlet.
  • the fluid in the front cavity of the pump; the automatic compensation device includes a partition and a compensation feedback device; one end of the partition extends into the front cavity of the pump, and the other end is connected with an automatic compensation component.
  • the extension length of the partition is measured by the automatic compensation component.
  • Automatic compensation the compensation feedback device controls the automatic compensation component.
  • the baffle is a circular ring with the pump shaft as the center of rotation, and includes a rectangular section of the baffle and an arc-shaped tip section of the baffle.
  • the connection is disassembled to facilitate the replacement of the arc-shaped tip section of the partition.
  • the outer surface of the separator is plated with a nickel-chromium alloy
  • the automatic compensation assembly includes an inner shaft, one end of the inner shaft is sequentially connected to the push rod, the threaded shaft, and the motor shaft, and the other end of the inner shaft is fixedly connected to the rectangular section of the partition; the automatic compensation assembly is arranged in the hydraulic chamber in vivo;
  • a shaft sleeve is coaxially arranged on the outside of the inner shaft, and a telescopic locator is provided on the inner shaft.
  • the telescopic locator expands and contracts in the radial direction between the inner shaft and the sleeve.
  • the compensation feedback device includes a compensation detection component and a compensation control component;
  • the compensation detection component includes a distance signal transmitter, a light sensing distance sensor, a halogen lamp, and a reflective ribbon, the reflective ribbon is arranged on the partition circle At the arc-shaped tip section, the distance signal transmitter, the light-sensing distance sensor and the halogen lamp are fixedly installed on the outer wall of the hydraulic chamber at the protruding part of the partition;
  • the compensation control component includes a state machine, the state machine is respectively connected to the distance signal transmitter and the micro motor, the control logic of the state machine is: if the distance M value fed back by the light-sensing distance sensor is less than K, the state The machine issues work instructions to the micro motor, and compensates by rotating the thread to push the push rod.
  • partitions are arranged in multiple layers in parallel.
  • An automatic compensation device for the pump front cavity designed by the present invention for improving the backflow of the closed impeller.
  • the device is set between the front cavity wall between the impeller pump body and the front cover plate.
  • the device can effectively prevent the impeller outlet
  • the outflowing fluid enters the front chamber of the centrifugal pump, thereby inhibiting the occurrence of backflow, reducing the energy loss of the front chamber of the centrifugal pump, and improving the operating efficiency and stability of the centrifugal pump.
  • the device designed in the present invention can also realize automatic compensation of the extension length.
  • By automatically adjusting the extension length of the partition whether it is the wear of the tip of the partition caused by hydraulic power or the corrosive wear caused by the two-phase flow pump medium, Both can automatically compensate for the length of the baffle plate wear, and give full play to the baffle plate's inhibitory effect on the backflow at the impeller outlet.
  • Figure 1 is a schematic diagram of the pump structure equipped with an automatic compensation device for the pump front cavity of the present invention
  • Figure 2 is a schematic diagram of the structure of the automatic compensation device for the front cavity of the pump of the present invention
  • Figure 3 is a schematic view of the structure of the arc-shaped tip section and the rectangular section of the partition of the first layer of partition;
  • Figure 4 is a partial enlarged schematic diagram of the structure of the automatic compensation device for the front cavity of the pump and the exit of the partition plate;
  • Figure 5 is a partial enlarged schematic diagram of the structure of the automatic compensation device for the front cavity of the pump and the motor;
  • Figure 6 is an axial schematic diagram of the diaphragm of the automatic compensation device for the front cavity of the pump
  • an automatic compensation device for pump front cavity designed by the present invention for improving the return flow of closed impellers is fixedly installed on the inner wall of the front cavity of the pump body, and The inner wall surface of the cavity extends to the front cover plate of the impeller to prevent the fluid from the outlet of the impeller from flowing to the front cavity of the pump;
  • the automatic compensation device specifically includes a partition and a compensation feedback device; one end of the partition extends into the front cavity of the pump, and the other end is connected to the automatic
  • the compensation component 27 automatically compensates the extended length of the partition through the automatic compensation component 27; the compensation feedback device controls the automatic compensation component.
  • the partition is a circular ring with the pump shaft as the center of rotation.
  • the partition has a rectangular section thickness of 5mm.
  • the right end (top) of the partition extends to the front cover of the impeller.
  • a waterproof ring 11 and a guide ring 12 are set at the contact between the partition and the hydraulic chamber 13, from right to left are the partition arc-shaped tip section 23, the partition rectangular section 24 and Automatic compensation assembly 27; the clapboard arc-shaped tip section 23 and clapboard rectangular section 24 are made of material HT200, and a layer of nickel-chromium alloy is plated on the outer surface of the clapboard; as shown in Figure 3, the clapboard arc-shaped tip section 23
  • the detachable connection between the two and the rectangular section of the partition 24 is realized by the plug 22.
  • the diameter of the plug 22 is 2mm.
  • the hole of the plug 22 is located on the side of the partition far away from the impeller outlet.
  • the top of the arc-shaped tip is 8mm-15mm. Since the arc-shaped tip section 23 is impacted and worn by the impeller outlet medium, it is designed to be detachably installed to facilitate the replacement of the worn arc-shaped tip section 23.
  • the automatic compensation assembly 27 includes an inner shaft 28.
  • One end of the inner shaft 28 is fixedly connected to the left end of the rectangular partition 24, and the other end is fixedly connected to the right end of the push rod 15.
  • the left end of the push rod 15 is threadedly connected to the right end of the threaded shaft 25,
  • the left end of the threaded shaft 25 is fixedly connected to the output end of the motor shaft 26.
  • the motor shaft 26 rotates, the push rod 15 is linearly moved by the threaded shaft 25.
  • the total length of the threaded shaft 25 is 1/3 to 1 of the length of the push rod 15 /2.
  • the motor shaft 26 is the power output shaft of the micromotor 8.
  • the micromotor 8 is fixed on the outer wall of the pump body.
  • a dustproof ring is set at the connection between the micromotor 8 and the hydraulic chamber 13, as shown in Fig. 5.
  • a shaft sleeve 29 is arranged in parallel outside the inner shaft 28.
  • the outer diameter of the shaft sleeve 29 is the same as that of the rectangular partition 24, and a telescopic positioner is provided on the inner shaft 28.
  • the telescopic positioner is between the inner shaft 28 and the shaft sleeve 29.
  • the telescopic positioner is specifically configured to have a plurality of rows of triangular blocks 9 uniformly distributed along the axial direction outside the inner shaft 28, the triangular blocks 9 are right-angled triangular blocks, and the bottom of the triangular block 9
  • the right-angled side of the inner shaft 28 is fixed on the surface of the inner shaft 28 by the spring 10.
  • the hypotenuse of the triangular block 9 is designed to face the front cavity of the pump.
  • the shaft sleeve 29 is exposed. When receiving an inward external force, the triangular block 9 is squeezed into the shaft sleeve 29.
  • the triangular block 9 is used to ensure that the partition can only be fed in the direction of the impeller 3, which is similar to the function of an ordinary one-way valve. ; Because the pressure in the gap 2 of the front cavity of the pump is large, the jammed baffle can be fixed so as not to retreat toward the wall of the pump body 1. In this embodiment, the distance between adjacent compressible triangular blocks 9 is maintained at 3 to 5 mm.
  • the above-mentioned automatic compensation assembly 27 is placed in the hydraulic cavity 13, and the hydraulic cavity 13 is embedded on the inner wall of the front cavity of the pump body.
  • a multi-layer partition can be installed.
  • the third layer of separator 6, the second layer of separator 5 and the first layer of separator 4 because the first layer of separator 4 is closest to the impeller outlet, the first The greater the impact of the medium on one layer of the separator 4, the arc radius at the top of the arc-shaped tip section 23 of the first layer of separator 4 is 1/2 of the rectangular width of the separator section; The tip end is less impacted due to the decrease in the return flow rate, so the tip radius increases as much as possible to prevent the fluid from impacting to the next level of the separator.
  • the top arc radius of the second layer of the separator 5 and the third layer of the separator 6 is the separator
  • the cross-section rectangle width is 2/3
  • the top arc radius of the third layer of the partition is 3/4 of the partition cross section width
  • the center of the top arc of the second two layers of partitions is located on the long side away from the impeller outlet.
  • the compensation feedback device includes a compensation detection component and a compensation control component.
  • the compensation detection component includes a distance signal transmitter 16, a light sensing distance sensor 17, a halogen lamp 18, and a reflective ribbon 19, the reflective ribbon 19 being arranged on the partition At the arc-shaped tip section 23, the color ribbon is white with the strongest reflective ability; the width of the reflective ribbon 19 is Adjacent reflective ribbons 19 are arranged at equal intervals and the interval is The distance signal transmitter 16, the light sensing distance sensor 17 and the halogen lamp 18 are integrated together, and are fixedly installed on the outer wall of the hydraulic cavity 13 protruding from the partition plate.
  • the halogen lamp 18 is used to emit light to make the ribbon Produce reflection; the light-sensing distance sensor 17 detects the reflection of the outermost ribbon to obtain the vertical distance between the outermost end of the partition and the pump wall (that is, the length of the partition at this time); the light sensor The distance measurement sensor 17 and the distance signal transmitter 16 are connected by a signal.
  • the distance signal transmitter 16 receives the distance information detected by the optical distance measurement sensor 17 and transmits it to the compensation control component;
  • the compensation control component includes a state machine 14 and
  • the distance signal receiver 20 is fixedly installed in the hydraulic cavity 13 close to the motor shaft 26, the state machine 14 is arranged in the hydraulic cavity 13, and the state machine 14 is connected to the distance signal receiver 20.
  • the signal transmitters 16 are connected to each other through signal lines to realize signal transmission; the distance signal receiver 20 is connected to the micro motor 8, the control value output by the state machine 14 is input to the micro motor 8 and the operation of the micro motor 8 is controlled.
  • the working principle of the compensation feedback device is: because the top of the partition is subject to the hydraulic impact at the outlet of the impeller and the medium is corroded, the top of the partition will be worn, and the gap between the front cover of the impeller and the partition will become larger.
  • Perform automatic compensation at this time, the halogen lamp 18 is working to illuminate the reflective ribbon 19, and the optical ranging sensor 17 scans the ribbon with the farthest distance and records the distance, which is converted into the vertical distance of the ribbon from the wall of the pump based on the internal function of the optical ranging sensor 17 Distance M, the internal conversion function is mainly calculated based on the angle and the distance of the farthest color band obtained by scanning.
  • the distance information calculated by the optical ranging sensor 17 is sent to the state machine 14 through the distance signal transmitter 16.
  • the logic of the state machine 14 is as follows: the feedback distance M of the optical distance measuring sensor 17 is compared with the initial distance K of the partition wall that is set. If it is equal, the distance information is not transmitted to the distance signal receiver 20; If there is a difference, the difference value N is transmitted to the micromotor 8 for executing, so that the partition plate is pushed through the push rod 15 to feed the received distance value N.
  • the micromotor 8 is fixed on the wall surface of the pump body to ensure that the position of the threaded shaft 25 connected to the motor shaft 26 remains unchanged.
  • the motor shaft drives the threaded shaft to rotate and is pushed by the thread at the end of the push rod 15.
  • Real-time monitoring and judging by the compensation feedback device always maintain the initial design distance K of the partition, so as to ensure the maximum efficiency operation all the time.

Abstract

一种用于改善闭式叶轮回流的泵前腔自动补偿装置,该自动补偿装置固定安装在泵体(1)的前腔内壁面上,由泵体(1)的前腔内壁面延伸至叶轮前盖板,从而阻止叶轮出口的流体向泵体(1)的前腔回流,该自动补偿装置包括隔板(4,5,6)和补偿回馈装置,隔板一端延伸至泵体(1)的前腔内,另一端连接自动补偿组件(27),通过自动补偿组件(27)对隔板(4,5,6)伸出的长度进行自动补偿,补偿回馈装置用于控制自动补偿组件。该泵前腔自动补偿装置能够阻止叶轮出口的流体向泵前腔回流,从而降低了离心泵的能量损失,提高了离心泵的运行效率和运行稳定性。

Description

一种用于改善闭式叶轮回流的泵前腔自动补偿装置 技术领域
本发明属于流体机械技术领域,尤其涉及一种用于改善闭式叶轮回流的泵前腔自动补偿装置。
背景技术
离心泵广泛应用于军工、核电、水利以及农业灌溉等领域。由于离心泵泵体与叶轮盖板间存在一个间隙,不仅产生了容积损失,还改变了泵内部的流动结构。主要是因为前腔流动受到旋转部件的影响,流动特性相当复杂,前腔产生的涡旋、回流等复杂流动造成了泵效率的下降,同时前腔水体高速旋转,对叶轮旋转部件产生阻力,造成泵运行不稳定。现有的研究发现通过改变泵体壁面与叶轮间的距离来调整间隙结构对泵前腔内流体的压力与速度分布均有较大影响,且间隙减小,容积损失减小,泵运行效率提高。
为了提高离心泵运行效率和稳定性,除了尽量减小泵体和前盖板之间的间隙,还可以通过结构设计阻拦叶轮出口的流体尽可能少的回流到前腔。经检索,专利(CN205639079U)主要是通过设置互补矩形隔板来改善前泵腔流动、减少损失,但由于互补矩形隔板分为旋转部件和静止部件,当两者之间间隙较小时易产生较大的动静干涉。尤其是输送含有固体颗粒介质时颗粒易在隔板间隙中产生干摩擦,加之介质的腐蚀作用,隔板磨损较为严重。因此,亟待发明一种用于改善叶轮回流的泵前腔自动补偿装置,通过对磨损隔板进行自动补偿有效改善泵前腔能量损耗,从而确保装置能够高效、平稳地输送介质。
发明内容
本发明根据现有技术的不足,提出了一种用于改善闭式叶轮回流的泵前腔自动补偿装置,通过在泵体壁面设置自动补偿装置阻止叶轮出口流出的流体进入离心泵前腔,从而抑制回流发生,降低离心泵前腔能量损失,提高离心泵的运行效率和稳定性。
本发明采取的技术方案如下:
一种用于改善闭式叶轮回流的泵前腔自动补偿装置,该自动补偿装置固定安装在泵体前腔内壁面上,由泵体前腔内壁面延伸至叶轮前盖板,阻止叶轮出口流向泵前腔的流体;所述自动补偿装置包括隔板和补偿回馈装置;所述隔板一端延伸至泵前腔内,另一端连接自动补偿组件,通过自动补偿组件对隔板伸出的长度进行自动补偿;所述补偿回馈装置对自动补偿组件进行控制。
进一步,所述隔板是以泵轴为旋转中心的圆环体,包括隔板矩形段和隔板圆弧形尖端段,所述隔板矩形段和隔板圆弧形尖端段之间采用可拆卸连接,便于对隔板圆弧形尖端段进行更换。
进一步,所述隔板的外表面镀有镍-铬合金;
进一步,自动补偿组件包括内轴,所述内轴的一端依次连接推杆、螺纹轴和电机轴,所述内轴的另一端与隔板矩形段固定连接;所述自动补偿组件设置于液压腔体内;
进一步,所述内轴的外部同轴设置轴套,所述内轴上设置有伸缩定位器,所述伸缩定位器在内轴与轴套之间沿径向伸缩,当内轴伸出液压腔体实现自动补偿时,通过伸缩定位器实现伸出长度的定位;
进一步,所述补偿回馈装置包括补偿检测组件和补偿控制组件;所述补偿检测组件包括距离信号发射器、光感测距传感器、卤素灯和反光色带,所述反光色带设置在隔板圆弧形尖端段处,所述距离信号发射器、光感测距传感器和卤素灯固定安装在隔板伸出部位的液压腔体外壁面上;
进一步,所述补偿控制组件包括状态机,所述状态机分别连接距离信号发射器和微型电机,所述状态机的控制逻辑为:若光感测距传感器回馈的距离M值小于K,则状态机给微型电机发布工作指令,通过旋转螺纹推动推杆进行补偿,补偿长度(推动)距离为N=K-M,其中,K为隔板伸出泵壁面的初始距离,M为光感测距传感器所检测的隔板伸出泵壁面的实际距离;
进一步,所述隔板平行设置多层。
本发明的有益效果:
1、本发明所设计的一种用于改善闭式叶轮回流的泵前腔自动补偿装置,该装置设置在叶轮泵体间的前腔壁面与前盖板之间,该装置可以有效阻止叶轮出口流出的流体进入离心泵前腔,从而抑制回流发生,降低离心泵前腔能量损失,提高离心泵的运行效率和稳定性。
2、本发明所设计的装置还可以实现伸出长度的自动补偿,通过自动调节伸出长度的隔板,无论是由水力造成的隔板尖端磨损还是由两相流泵介质造成的腐蚀磨损,均可以自动补偿隔板磨损的长度,充分发挥隔板对叶轮出口处回流的抑制作用。
附图说明
图1为装有本发明泵前腔自动补偿装置的泵结构示意图;
图2为本发明泵前腔自动补偿装置结构示意图;
图3为第一层隔板的圆弧形尖端段和隔板矩形段的结构示意图;
图4为泵前腔自动补偿装置结构及隔板出口处的局部放大示意图;
图5为泵前腔自动补偿装置结构及电机处的局部放大示意图;
图6为泵前腔自动补偿装置的隔板轴向示意图;
图中,1、泵体,2、泵前腔间隙,3、叶轮,4、第一层隔板,5、第二层隔板,6、第三层隔板,7、防尘环,8、微型电机,9、三角块,10、弹簧,11、防水环,12、导向环,13、液压腔体,14、状态机,15、推杆,16、距离信号发射器,17、光感测距传感器,18、卤素灯,19、反光色带,20、距离信号接收器,21、泵轴,22、插销,23、隔板圆弧形尖端段,24、隔板矩形段,25、螺纹轴,26、电机轴,27、自动补偿组件,28、内轴,29、轴套。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
如图1所示,本发明所设计的一种用于改善闭式叶轮回流的泵前腔自动补偿装置,本设计的自动补偿装置固定安装在泵体前腔内壁面上,且由泵体前腔内壁面延伸至叶轮前盖板,阻止叶轮出口流向泵前腔的流体;所述自动补偿装置具体包括隔板和补偿回馈装置;所述隔板一端延伸至泵前腔内,另一端连接自动补偿组件27,通过自动补偿组件27对隔板伸出的长度进行自动补偿;所述补偿回馈装置对自动补偿组件进行控制。
具体的,如图2和6隔板是以泵轴为旋转中心的圆环体,隔板剖面矩形厚度为5mm,结合图1,隔板的右端(顶端)延伸至叶轮前盖板处,为了防止泵内的介质流入,如图4在隔板与液压腔体13接触处设置防水环11和导向环12,自右向左依次是隔板圆弧形尖端段23、隔板矩形段24和自动补偿组件27;隔板圆弧形尖端段23和隔板矩形段24都采用材质HT200,在隔板的外表面镀上一层镍-铬合金;如图3隔板圆弧形尖端段23和隔板矩形段24之间通过插销22实现两者之间可拆卸连接,插销22共有三根,插销22的直径为2mm,插销22孔位于隔板远离叶轮出口的一侧,插销孔距离隔板圆弧形尖端顶部为8mm-15mm,由于圆弧形尖端段23受到叶轮出口介质的冲击与磨损,所以将其设计为可拆卸式安装,方便对磨损的圆弧形尖端段23进行更换。
自动补偿组件27包括内轴28,内轴28的一端与隔板矩形段24的左端固定连接,另一端与推杆15的右端固定连接,推杆15的左端与螺纹轴25的右端螺纹连接,螺纹轴25的左端与电机轴26输出端为固定连接,当电机轴26转动时通过螺纹轴25使推杆15发生 线性移动,螺纹轴25的总长度为推杆15长度的1/3到1/2。电机轴26是微型电机8的动力输出轴,微型电机8固定于泵体外壁面,微型电机8与液压腔体13连接处设置防尘环如7如图5。内轴28外平行设置轴套29,轴套29的外径与隔板矩形段24一样,且内轴28上设置有伸缩定位器,所述伸缩定位器在内轴28与轴套29之间沿径向伸缩;在本实施例中,伸缩定位器的具体设置为在内轴28的外部沿轴向均布有多列三角块9,所述三角块9为直角三角块,三角块9底部的直角边通过弹簧10固定在内轴28表面,三角块9的斜边朝向泵前腔设计,所述轴套29上设有与三角块9相配合的孔,正常情况下,三角块9从轴套29中露出,当受到向内的外力时,三角块9被挤压入轴套29内,利用三角块9保证隔板只能往叶轮3方向进给,类似于普通单向阀的作用;由于泵前腔间隙2内的压力大,可以固定卡死隔板不朝泵体1壁面方向后退。在本实施例中,相邻可压缩三角块9的间距保持在3~5mm。
上述自动补偿组件27置于液压腔体13内,液压腔体13嵌装在泵体前腔内壁面上。
由于泵体前腔与叶轮前盖板都是流线型设计,所以为了更好地阻止从叶轮出口流出的部分高速流体沿着前腔壁面方向回流进入泵前腔,所以可以设置多层隔板,在本实施例中设置了3层,沿流体流动方向,分别是第三层隔板6、第二层隔板5和第一层隔板4;由于第一层隔板4最靠近叶轮出口所以第一层隔板4受到的介质冲击越大,因此第一层隔板4的隔板圆弧形尖端段23顶端的圆弧半径为隔板剖面矩形宽度的1/2;后一级隔板的尖端由于回流流速下降导致受冲击变小,故尖端半径增大尽可能阻止流体往下一级隔板冲击,因此第二层隔板5和第三层隔板6的顶端圆弧半径为隔板剖面矩形宽度的2/3,第三层隔板顶端圆弧半径为隔板剖面矩形宽度的3/4,后两层隔板顶端圆弧的圆心均位于远离叶轮出口的长边上。
Z i(i=1、2、3)为前腔隔板处泵体壁面法向至叶轮前盖板的距离,叶轮半径为R,叶轮前盖板出口处作水平线(平行于泵轴),以此水平线作为基准,竖直向下到隔板截面中心素线与泵腔体壁面接触点的长度,第一层隔板的伸出点到水平线的距离为
Figure PCTCN2021107858-appb-000001
第二层隔板的伸出点到水平线的距离为
Figure PCTCN2021107858-appb-000002
第三层隔板的伸出点到水平线的距离为
Figure PCTCN2021107858-appb-000003
第一层隔板伸出泵体内壁面的长度为
Figure PCTCN2021107858-appb-000004
第二层隔板伸出泵体内壁面的长度为
Figure PCTCN2021107858-appb-000005
第三层隔板伸出泵体内壁面的长度为
Figure PCTCN2021107858-appb-000006
未伸出泵体内壁面的隔板置于液压腔体内,用于隔板伸出部分磨损后补偿。
补偿回馈装置包括补偿检测组件和补偿控制组件,所述补偿检测组件包括距离信号发射器16、光感测距传感器17、卤素灯18和反光色带19,所述反光色带19设置在隔板圆弧形尖端段23处,色带选用反光能力最强的白色;反光色带19的宽度为
Figure PCTCN2021107858-appb-000007
相邻反光色带19之间等间距设置且间隔为
Figure PCTCN2021107858-appb-000008
所述距离信号发射器16、光感测距传感器17和卤素灯18集成在一起,并固定安装在隔板伸出的液压腔体13外壁面上,卤素灯18用于发射光线,使得色带产生反光;光感测距传感器17对最外圈色带反光进行检测得到此时隔板最外端与泵壁之间的垂直距离(即隔板此时伸出的长度);所述光感测距传感器17与距离信号发射器16之间通过信号连接,距离信号发射器16接收光感测距传感器17所检测的距离信息并传输给补偿控制组件;所述补偿控制组件包括状态机14和距离信号接收器20,所述距离信号接收器20固定安装在液压腔体13内靠近电机轴26处,状态机14设置在液压腔体13内,且状态机14与距离信号接收器20、距离信号发射器16之间分别通过信号线连接实现信号的传递;所述距离信号接收器20连接微型电机8,将状态机14输出的控制量输入微型电机8并对微型电机8的工作进行控制。
补偿回馈装置的工作原理是:由于隔板顶部受到叶轮出口处的水力冲击及介质腐蚀,所以隔板顶部会产生磨损,使其与叶轮前盖板之间的间隙变大,因此需要对隔板进行自动补偿;此时卤素灯18工作照射反光色带19,光学测距传感器17扫描距离最远的色带并记录距离,从而基于光学测距传感器17内部函数折算成色带距离泵体壁面的垂直距离M,内部折算函数主要基于角度和扫描得到最远色带的距离来计算。光学测距传感器17所计算出的距离信息通过距离信号发射器16发送给状态机14,状态机14通过内部逻辑语句对距离信号识别判断,折算出隔板需要进给的距离N=K-M,K为隔板伸出泵壁面的初始距离,M为光感测距传感器17所检测的隔板伸出泵壁面的实际距离。状态机14的逻辑如下:光学测距传感器17的反馈距离M通过与设置的隔板初始伸出壁面距离值K比较,如果相等则不传递距离信息给距离信号接收器20;如果小于则执行求差,将差值N传递给用以执行微型电机8,从而通过推杆15推动隔板进给接收到的距离值N。微型电机8通过固定于泵体外壁面保证与电机轴26相连的螺纹轴25的位置不变,电机轴带动螺纹轴旋转利用推杆15末端的螺纹来进行推动。通过补偿回馈装置实时监测判断始终保持隔板的最初设计距离K,从而保证一直最大效率地运行。
以上实施例仅用于说明本发明的设计思想和特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,本发明的保护范围不限于上述实施例。所以,凡依据 本发明所揭示的原理、设计思路所作的等同变化或修饰,均在本发明的保护范围之内。

Claims (8)

  1. 一种用于改善闭式叶轮回流的泵前腔自动补偿装置,其特征在于,该自动补偿装置固定安装在泵体前腔内壁面上,由泵体前腔内壁面延伸至叶轮前盖板,阻止叶轮出口流向泵前腔的流体;所述自动补偿装置包括隔板和补偿回馈装置;所述隔板一端延伸至泵前腔内,另一端连接自动补偿组件(27),通过自动补偿组件(27)对隔板伸出的长度进行自动补偿;所述补偿回馈装置对自动补偿组件进行控制。
  2. 根据权利要求1所述的一种用于改善闭式叶轮回流的泵前腔自动补偿装置,其特征在于,所述隔板是以泵轴为旋转中心的圆环体,包括隔板矩形段(24)和隔板圆弧形尖端段(23),所述隔板矩形段(24)和隔板圆弧形尖端段(23)之间采用可拆卸连接,便于对隔板圆弧形尖端段(23)进行更换。
  3. 根据权利要求2所述的一种用于改善闭式叶轮回流的泵前腔自动补偿装置,其特征在于,所述隔板的外表面镀有镍-铬合金。
  4. 根据权利要求1所述的一种用于改善闭式叶轮回流的泵前腔自动补偿装置,其特征在于,自动补偿组件(27)包括内轴(28),所述内轴(28)的一端依次连接推杆(15)、螺纹轴(25)和电机轴,所述内轴(28)的另一端与隔板矩形段(24)固定连接;所述自动补偿组件(27)设置于液压腔体(13)内。
  5. 根据权利要求4所述的一种用于改善闭式叶轮回流的泵前腔自动补偿装置,其特征在于,所述内轴(28)的外部同轴设置轴套(29),所述内轴(28)上设置有伸缩定位器,所述伸缩定位器在内轴(28)与轴套(29)之间沿径向伸缩,当内轴(28)伸出液压腔体(13)实现自动补偿时,通过伸缩定位器实现伸出长度的定位。
  6. 根据权利要求1所述的一种用于改善闭式叶轮回流的泵前腔自动补偿装置,其特征在于,所述补偿回馈装置包括补偿检测组件和补偿控制组件;所述补偿检测组件包括距离信号发射器(16)、光感测距传感器(17)、卤素灯(18)和反光色带(19),所述反光色带(19)设置在隔板圆弧形尖端段(23)处,所述距离信号发射器(16)、光感测距传感器(17)和卤素灯(18)固定安装在隔板伸出部位的液压腔体(13)外壁面上。
  7. 根据权利要求6所述的一种用于改善闭式叶轮回流的泵前腔自动补偿装置,其特征在于,所述补偿控制组件包括状态机(14),所述状态机(14)分别连接距离信号发射器(16)和微型电机(8),所述状态机(14)的控制逻辑为:若光感测距传感器(17)回馈的距离M值小于K,则状态机(14)给微型电机(8)发布工作指令,通过旋转螺纹推动推杆(15)进行补偿,补偿长度(推动)距离为N=K-M,其中,K为隔板伸出泵壁面的初始距离,M为光感测距传感器(17)所检测的隔板伸出泵壁面的实际距离。
  8. 根据权利要求1-7中任意一项权利要求所述的一种用于改善闭式叶轮回流的泵前腔自动补偿装置,其特征在于,所述隔板平行设置一层或者多层。
PCT/CN2021/107858 2020-06-16 2021-07-22 一种用于改善闭式叶轮回流的泵前腔自动补偿装置 WO2021254531A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/623,271 US11754095B2 (en) 2020-06-16 2021-07-22 Pump front chamber automatic compensation device for improving closed impeller backflow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010546250.0 2020-06-16
CN202010546250.0A CN111852955B (zh) 2020-06-16 2020-06-16 一种用于改善闭式叶轮回流的泵前腔自动补偿装置

Publications (1)

Publication Number Publication Date
WO2021254531A1 true WO2021254531A1 (zh) 2021-12-23

Family

ID=72987255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107858 WO2021254531A1 (zh) 2020-06-16 2021-07-22 一种用于改善闭式叶轮回流的泵前腔自动补偿装置

Country Status (3)

Country Link
US (1) US11754095B2 (zh)
CN (1) CN111852955B (zh)
WO (1) WO2021254531A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852955B (zh) 2020-06-16 2021-10-12 江苏大学 一种用于改善闭式叶轮回流的泵前腔自动补偿装置
CN115711236B (zh) * 2022-11-17 2023-10-20 江苏盐邦泵业制造有限公司 一种节能型混流泵

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471468B1 (en) * 1998-10-30 2002-10-29 Ksb Aktiengesellschaft Compensator
CN1871437A (zh) * 2003-10-20 2006-11-29 Itt制造企业公司 离心泵
CN201412395Y (zh) * 2009-03-09 2010-02-24 国投新疆罗布泊钾盐有限责任公司 离心泵割舌补偿装置
CN102536835A (zh) * 2012-03-21 2012-07-04 江苏大学 固液两相流螺旋离心泵
CN105201903A (zh) * 2015-10-16 2015-12-30 江苏大学 一种离心泵
CN106015016A (zh) * 2016-08-01 2016-10-12 南京腾图节能科技有限公司 一种高效脱硫吸收塔循环泵
CN111852955A (zh) * 2020-06-16 2020-10-30 江苏大学 一种用于改善闭式叶轮回流的泵前腔自动补偿装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266998A (ja) * 1997-03-25 1998-10-06 Corona Corp 循環ポンプの取り付け構造
US7883312B2 (en) * 2005-03-31 2011-02-08 Mitsubishi Heavy Industries, Ltd. Centrifugal blower
CN201222656Y (zh) * 2008-07-04 2009-04-15 河南省济源市矿用电器有限责任公司 矿用隔爆型高压无功功率补偿装置
CN201424940Y (zh) * 2009-06-05 2010-03-17 广东华隧建设股份有限公司 一种泥水盾构机防泥饼装置
CN104156009A (zh) * 2014-08-26 2014-11-19 江苏大学 一种液体小流量精密测控方法
JP2016148308A (ja) * 2015-02-13 2016-08-18 三菱重工業株式会社 遠心圧縮機、及びギアード遠心圧縮機
KR101647422B1 (ko) * 2016-03-30 2016-08-10 동원펌프주식회사 받침대 기능을 갖는 수중펌프용 스트레이너
CN205639079U (zh) * 2016-04-26 2016-10-12 浙江理工大学 一种前泵腔具有平行四边形齿状结构的离心泵
CN208057427U (zh) * 2017-12-29 2018-11-06 浙江工业大学 一种高扬程长叶片型线后腔结构离心泵

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471468B1 (en) * 1998-10-30 2002-10-29 Ksb Aktiengesellschaft Compensator
CN1871437A (zh) * 2003-10-20 2006-11-29 Itt制造企业公司 离心泵
CN201412395Y (zh) * 2009-03-09 2010-02-24 国投新疆罗布泊钾盐有限责任公司 离心泵割舌补偿装置
CN102536835A (zh) * 2012-03-21 2012-07-04 江苏大学 固液两相流螺旋离心泵
CN105201903A (zh) * 2015-10-16 2015-12-30 江苏大学 一种离心泵
CN106015016A (zh) * 2016-08-01 2016-10-12 南京腾图节能科技有限公司 一种高效脱硫吸收塔循环泵
CN111852955A (zh) * 2020-06-16 2020-10-30 江苏大学 一种用于改善闭式叶轮回流的泵前腔自动补偿装置

Also Published As

Publication number Publication date
US20220356888A1 (en) 2022-11-10
US11754095B2 (en) 2023-09-12
CN111852955B (zh) 2021-10-12
CN111852955A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2021254531A1 (zh) 一种用于改善闭式叶轮回流的泵前腔自动补偿装置
CN201269765Y (zh) 超声流量计
CN201581800U (zh) 可调式水刹车
CN110567541B (zh) 一种电磁流量计
CN116538103A (zh) 一种流量压力自补偿的智能高压水泵及其实现方法
CN201259433Y (zh) 水平螺翼可拆式水表
CN109268543A (zh) 一种卧式止回阀
CN207991610U (zh) 一种新型稠油输送管道引流装置
CN202274897U (zh) 新型机械式抗堵型流量计
CN218270910U (zh) 一种气体流量计前导流结构
CN110056535B (zh) 一种水泵耐磨耐腐蚀口环装置
CN219221389U (zh) 一种管道水压平衡器
CN107299910B (zh) 一种化工离心泵叶轮装置
CN105841755A (zh) 一种改进型光纤涡轮流量计
CN220806549U (zh) 一种稳定性强的高精度数控车床
CN220853701U (zh) 一种叶轮水力动平衡状态可调的水平螺翼式水表机芯
CN219694249U (zh) 一种信号反射装置
CN213236117U (zh) 有限空间低能耗涡轮式单芯可调缩孔
CN220354061U (zh) 一种深井泵用的抑制固态介质的输送组件及深井泵
CN215726131U (zh) 偏心计量同心磁传式水表
CN210290162U (zh) 一种bf60作业专用泵
CN116201938A (zh) 用于管道的温度调节组件
CN218988125U (zh) 一种耐磨性高的上引式仓泵出料管
CN215831230U (zh) 一种防回流的连接阀
CN220337140U (zh) 可以减少空泡发生并提高液力效率的离心式水泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826896

Country of ref document: EP

Kind code of ref document: A1