WO2021254352A1 - 一种恒压变流式气腹机 - Google Patents

一种恒压变流式气腹机 Download PDF

Info

Publication number
WO2021254352A1
WO2021254352A1 PCT/CN2021/100203 CN2021100203W WO2021254352A1 WO 2021254352 A1 WO2021254352 A1 WO 2021254352A1 CN 2021100203 W CN2021100203 W CN 2021100203W WO 2021254352 A1 WO2021254352 A1 WO 2021254352A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
valve
control module
sensor
temperature
Prior art date
Application number
PCT/CN2021/100203
Other languages
English (en)
French (fr)
Inventor
黄新俊
赵伟伟
徐江林
Original Assignee
南京图格医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京图格医疗科技有限公司 filed Critical 南京图格医疗科技有限公司
Priority to EP21825811.9A priority Critical patent/EP4166096A4/en
Publication of WO2021254352A1 publication Critical patent/WO2021254352A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M13/00Insufflators for therapeutic or disinfectant purposes, i.e. devices for blowing a gas, powder or vapour into the body
    • A61M13/003Blowing gases other than for carrying powders, e.g. for inflating, dilating or rinsing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3344Measuring or controlling pressure at the body treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3606General characteristics of the apparatus related to heating or cooling cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • A61M2205/7545General characteristics of the apparatus with filters for solid matter, e.g. microaggregates

Definitions

  • the invention relates to the technical field of insufflator equipment, in particular to a constant pressure variable flow type insufflator.
  • Pneumoperitoneum is a standard configuration of laparoscopic surgery, in such as hepatobiliary surgery, gastrointestinal surgery, etc., it has played a role in inflating the abdominal cavity in order to obtain a good operating space.
  • Pneumoperitoneum is an important equipment for endoscopic surgery. It makes the surgical site or cavity inflated and uplifted, which is convenient for doctors to observe and diagnose. Because the device is a micro-pressure and micro-flow precision control device (the working pressure is generally 0-30mmHg, and the maximum gas delivery volume is generally less than 40LPM), there are problems such as difficult preparation of the equipment and high risk of equipment use, because the pressure loss will inevitably cause surgery Bring serious impacts, and may endanger the lives of patients.
  • the existing abdominal machine adopts the periodic control technology of air supply and pressure measurement.
  • the error range of the pressure adjustment interval is large, the air supply flow varies non-linearly, and pressure pulses are generated under the action of the on-off valve.
  • the pressure pulse peak value often exceeds the pressure setting value, and in the dynamic situation of large changes in the amount of deflation, the output air pressure of the insufflator can even reach 40mmHg, which far exceeds the clinical safety critical value.
  • the pulse-like supply Insufflation can easily cause the patient's abdominal cavity to receive pressure shocks, and because of the uncertainty of the operation time, the equipment control cycle is unstable and the pressure control accuracy is poor. Therefore, it is necessary to develop a simpler pneumoperitoneum that realizes the constant pressure and variable flow process. machine.
  • the present invention provides the following solutions:
  • a constant-pressure variable flow type insufflator includes a casing, and the outer side of the casing is respectively provided with an air inlet for an insufflator, an air outlet for an insufflator, an air inlet for smoke removal, and an air outlet for smoke removal;
  • the air inlet of the insufflator is connected to an external air source through a pressure reducing valve A, the air outlet of the insufflator is connected to the patient's abdominal cavity through a filter A, and the smoke removal air inlet is connected to the patient's abdominal cavity through a filter B ,
  • the smoke removal air outlet is in communication with the negative pressure aspirator;
  • the casing is provided with a control module, a pneumatic module, a temperature detection module, a safety module, a temperature control module, and a smoke removal module;
  • the control modules are respectively connected to the pneumatic
  • the signal connection of module, temperature detection module, safety module, temperature control module and smoke removal module is used for system drive and digital signal processing of the collected data
  • the above-mentioned pneumatic module includes filter C, pressure sensor A, heating and pressure reducing valve, safety valve, pressure sensor B, proportional valve module, flow sensor and switch valve module; one end of the filter C is connected to the insufflator through a pipeline.
  • the gas port is connected, and the other end is connected to one end of the heating pressure reducing valve through a pipeline; the other end of the thermal pressure reducing valve is connected to one end of the safety valve through a pipeline; the other end of the safety valve is connected to the proportional valve module through a pipeline
  • One end of the proportional valve module is connected to one end of the flow sensor through a pipe; the other end of the flow sensor is connected to one end of the switch valve module through a pipe, and the other end of the switch valve module is connected to the air outlet of the insufflator,
  • the flow sensor is signally connected to the control module; a pressure sensor A is provided on the pipeline between the filter C and the heating and pressure reducing valve, and the pressure sensor A is signally connected to the control module; the safety valve and the proportional valve A pressure sensor B is provided on the pipeline between the modules, and the pressure sensor B is signally connected to the control module.
  • the above-mentioned proportional valve module includes a first air circuit and a second air circuit connected in parallel, and the first air circuit and the second air circuit are not opened at the same time; wherein, the first air circuit
  • the sensor C is composed of a proportional valve C
  • the second gas path is composed of a pressure reducing valve D, a pressure sensor D, and a proportional valve D
  • one end of the pressure reducing valve C is connected to the pressure sensor B through a pipe
  • the pressure reducing valve C The other end of the proportional valve C is connected to the proportional valve C through a pipeline, the other end of the proportional valve C is connected to the flow sensor through the pipeline, the pipeline between the pressure reducing valve C and the proportional valve C is provided with a pressure sensor C, the pressure sensor C and the control Module signal connection;
  • one end of the pressure reducing valve D is connected to the pressure sensor B through a pipe, the other end of the pressure reducing valve D is connected to the proportional valve D through a pipe, and the other end of the
  • the above-mentioned on-off valve module includes on-off valve A, on-off valve B, pressure sensor E, and pressure sensor F.
  • the on-off valve A and on-off valve B are not opened or closed at the same time; one end of the on-off valve A is connected to the flow sensor The other end of the switch valve A is connected to the air outlet of the insufflator.
  • the pipeline between the switch valve A and the air outlet of the insufflator is provided with a pressure sensor E and a pressure sensor F.
  • the pressure sensor E and the pressure The sensors F are connected in series; one end of the pressure sensor E is connected to the switch valve B through a pipeline.
  • the above-mentioned temperature detection module includes a temperature sensor A and a temperature sensor B.
  • the temperature sensor A is arranged on the pipeline between the filter C and the pressure sensor A, and the temperature sensor A is signally connected to the control module;
  • the temperature sensor B It is arranged on the pipeline between the pressure sensor F and the air outlet of the insufflator, and the temperature sensor B is signally connected to the control module.
  • the above-mentioned safety module includes a temperature sensor C and a temperature sensor D.
  • the temperature sensor C is arranged outside the heating and pressure reducing valve, and the temperature sensor C is signally connected to the control module for detecting the temperature of the heating and pressure reducing valve;
  • the sensor D is installed on the control module and directly connects the signal with the control module signal to detect the temperature of the control module.
  • the above-mentioned temperature control module includes a fan and a temperature sensor E, the fan is installed at the bottom of the control module, and the control module and the fan are connected by a circuit; the temperature sensor E is installed on the control module and directly connects with the control module in signal Signal, the control module receives the temperature input by the temperature sensor E, and controls the fan to turn on to cool the inside of the housing.
  • the above-mentioned smoke removal module includes an on-off valve C, a filter D, a particle detector A, a particle detector B, and a speed-regulating air pump; One end is connected to the filter D, the other end of the filter D is connected to one end of the speed-regulating air pump through a pipe, and the pipe between the filter D and the speed-adjusting air pump is connected with a particle detector A and a particle detector B in sequence.
  • the particle detector A and the particle detector B are both signal-connected to the control module; the switch valve C is signal-connected to the control module; the other end of the speed-regulating air pump is connected to the smoke removal air outlet through a pipe.
  • the aforementioned particle detector A is a PM10 detector; the aforementioned particle detector B is a PM2.5 detector.
  • the above-mentioned casing is also provided with a touch screen, and the touch screen is signally connected to the control module for displaying the data output by each module in the insufflator.
  • the present invention has the following beneficial effects:
  • the constant pressure variable flow type insufflator of the present invention achieves constant gas flow by improving the traditional air intake mode, combining heating and pressure reducing valves, safety valves, proportional valve modules, flow sensors, and on-off valve modules, etc.
  • the pressure variable flow control makes the pressure adjustment interval small error range, and the air supply flow rate changes stably and evenly. For the medical staff, due to the stable air flow output, the inconvenience caused by the continuous adjustment of the equipment during the operation is also avoided.
  • the present invention controls High pressure precision and convenient operation.
  • the present invention is also equipped with a smoke removal module, which can eliminate the smoke caused by intra-abdominal electrosurgery products in the operation process in time through linkage with the pneumatic module.
  • the present invention has simple structure, clear operation principle, convenient function realization, and meets clinical needs New demand for insufflators.
  • Fig. 1 is a connection block diagram of the control principle of the insufflator according to the present invention
  • FIG. 2 is a schematic diagram of the specific connections between the modules of the insufflator according to the present invention.
  • Figure 3 is a schematic diagram of the composition of the proportional valve module of the present invention.
  • Fig. 4 is a schematic diagram of the composition of the on-off valve module according to the present invention.
  • a constant pressure variable flow type insufflator includes a housing 1, and the outer side of the housing 1 is respectively provided with an insufflator inlet 11, an insufflator outlet 12, and a smoke removal inlet 13 and the smoke removal air outlet 14;
  • the air inlet 11 of the insufflator is connected to an external air source 102 through a pressure reducing valve A101, the external air source is preferably carbon dioxide, and the air outlet 12 of the insufflator is filtered
  • the device A103 is connected to the abdominal cavity of the patient, the smoke removal air inlet 13 is connected to the patient’s abdominal cavity through the filter B104, and the smoke removal air outlet 14 is connected to the negative pressure suction device 105.
  • the insufflator The air inlet 11 and the smoke removal air outlet 14 are located on the same side of the casing, and the air outlet 12 and the smoke removal air inlet 13 of the insufflator are located on the same side of the casing, which helps to ensure the overall operation of the insufflator Continuity;
  • the housing 1 is provided with a control module 2, a pneumatic module 3, a temperature detection module 4, a safety module 5, a temperature control module 6 and a smoke removal module 7;
  • the control module 2 and the pneumatic module 3 The temperature detection module 4, the safety module 5, the temperature control module 6 and the smoke removal module 7 are connected with signals for system drive and digital signal processing of the collected data;
  • the pneumatic module 3 is used to control the gas delivered by an external gas source Pressure, temperature and flow;
  • the temperature detection module 4 is used to detect the temperature of the gas delivered by the external gas source;
  • the safety module 5 is used to detect the temperature of the control module and the pneumatic module;
  • the temperature control module 6 is used for The temperature inside
  • the pneumatic module 3 includes a filter C31, a pressure sensor A32, a heating and pressure reducing valve 33, a safety valve 34, a pressure sensor B35, a proportional valve module 36, a flow sensor 37, and an on-off valve module.
  • One end of the filter C31 is connected to the air inlet 11 of the insufflator through a pipe, and the other end is connected to one end of the heating and pressure reducing valve 33 through a pipe; the other end of the heating and pressure reducing valve 33 is connected to a safety valve through a pipe
  • One end of the safety valve 34 is connected; the other end of the safety valve 34 is connected to the proportional valve module 36 through a pipe; one end of the proportional valve module 36 is connected to one end of the flow sensor 37 through a pipe; the other end of the flow sensor 37 is connected through a pipe Connected to one end of the switch valve module 38, the other end of the switch valve module 38 is connected to the air outlet 12 of the insufflator, the flow sensor 37 is signally connected to the control module 2; the filter C31 is connected to the heating and pressure reducing valve A pressure sensor A32 is provided on the pipeline between 33 and the pressure sensor A32 is signal-connected to the control module 2; a pressure sensor B35 is provided on the pipeline between the safety valve 34
  • the heating pressure reducing valve 33 is used to heat the gas and the initial pressure reduction
  • the safety valve can be used to ensure that the gas is in a safe state during the initial pressure reduction
  • the proportional valve module 36 can automatically adjust the output gas volume according to the built-in algorithm.
  • the flow sensor 37 is used to control the flow of gas output to the patient's abdominal cavity while ensuring a constant pressure.
  • the proportional valve module 36 includes a first air circuit and a second air circuit connected in parallel, and the first air circuit and the second air circuit are not opened at the same time; wherein, the The first air path is composed of pressure reducing valve C361, pressure sensor C362 and proportional valve C363, and the second air path is composed of pressure reducing valve D364, pressure sensor D365 and proportional valve D366; one end of said pressure reducing valve C361 passes The pipeline is connected to the pressure sensor B35, the other end of the pressure reducing valve C361 is connected to the proportional valve C363 through the pipeline, the other end of the proportional valve C363 is connected to the flow sensor 37 through the pipeline, and the pipeline between the pressure reducing valve C361 and the proportional valve C363 is provided There is a pressure sensor C362, the pressure sensor C362 is signally connected to the control module 2; one end of the pressure reducing valve D364 is connected to the pressure sensor B35 through a pipe, and the other end of the pressure reducing valve D
  • valve D366 The other end of the valve D366 is connected to the flow sensor 37 through a pipeline.
  • a pressure sensor D365 is provided on the pipeline between the pressure reducing valve D364 and the proportional valve D366, and the pressure sensor D365 is signally connected to the control module 2.
  • a pressure sensor needs to be installed in any gas path in the proportional valve module, for example, when the first In the gas path, the pressure reducing valve C361 decompresses the gas for a second time, and it is detected by the pressure sensor C362.
  • the gas passes through The rear proportional valve C363 outputs directly.
  • the gas is adjusted by the proportional valve C363 to achieve its stable output; in this embodiment, the first gas path can obtain a relatively accurate high Flow output, the second gas circuit can get a precise low flow output.
  • the two gas circuits can correspond to different control ranges and can be automatically switched between each other to meet the requirements of various practical applications.
  • the switch valve module 381 includes a switch valve A381, a switch valve B382, a pressure sensor E383, and a pressure sensor F384.
  • the switch valve A381 and the switch valve B382 are not opened or closed at the same time.
  • One end of the switch valve A381 is connected to the flow sensor 37, the other end of the switch valve A381 is connected to the outlet 12 of the insufflator, and a pressure sensor is provided on the pipeline between the switch valve A381 and the outlet 12 of the insufflator E383 and the pressure sensor F384 are connected in series between the pressure sensor E383 and the pressure sensor F384; one end of the pressure sensor E384 is connected to the switch valve B382 through a pipeline.
  • the on-off valve A381 opens and the on-off valve B382 closes, and the gas passes through the on-off valve A381 and finally enters the patient's abdominal cavity; when the exhaust process is performed, the on-off valve B382 is opened, and the on-off valve A381 is closed, and the gas passes through the on-off valve B382 Exhaust into the atmosphere, where the pressure sensor C383 and pressure sensor D384 ensure the second measurement of the same channel air pressure. If the deviation is greater than the setting, the system will automatically alarm. If the deviation is within the range, the average value will be used to bring it into the algorithm calculation to ensure Improve the security of the system.
  • the temperature detection module 4 includes a temperature sensor A41 and a temperature sensor B42.
  • the temperature sensor A41 is arranged on the pipeline between the filter C31 and the pressure sensor A32.
  • the temperature sensor A41 and the control module 2 signal Connection;
  • the temperature sensor B42 is set on the pipeline between the pressure sensor F384 and the gas outlet 12 of the insufflator, and the temperature sensor B42 is signally connected to the control module 2.
  • the temperature sensor A41 can detect the temperature of the gas that has just entered the pneumatic module, so as to avoid damage to various valves in the subsequent pneumatic module during the gas transportation;
  • the temperature sensor B42 can detect the temperature of the gas before entering the patient’s abdominal cavity, avoiding gas Damage to the patient's body caused by excessive temperature.
  • the safety module 5 includes a temperature sensor C51 and a temperature sensor D52.
  • the temperature sensor C51 is arranged outside the heating pressure reducing valve 33, and the temperature sensor C51 is signally connected to the control module 2 for detecting heating reduction.
  • the temperature of the pressure valve 33 because the thermal pressure reducing valve 33 is the core component of the pneumatic module, whether it can operate stably will directly affect the overall ventilation effect, so the present invention can directly monitor the temperature of the heating pressure reducing valve 33 during operation
  • the temperature sensor D52 is installed on the control module 2, and directly connects signals with the control module 2 to detect the temperature of the control module 2, so that it can directly detect the real-time temperature when the main control module is running.
  • the temperature control module 6 includes a fan 61 and a temperature sensor E62, the fan 61 is installed at the bottom of the control module 2, and the control module 2 and the fan 61 are connected through a circuit; the temperature sensor E62 It is installed in the housing 1 and is connected to the control module 2 with signals for detecting the ambient temperature; the control module 2 receives the temperature input by the temperature sensor E62 and controls the fan 61 to turn on to cool the interior of the housing 1.
  • insufflators there are fans for physically cooling them, but the insufflators are affected by external environmental factors during operation, and the fans of traditional insufflators are always rotating, so it will bring more High noise.
  • the present invention can monitor the temperature of the external environment through the temperature sensor E62.
  • the control module can receive the current temperature and control the fan not to work, which is a good idea for indoor surgery. In a quiet environment, when the outside temperature is too high, the control module will control the fan rotation according to the temperature to cool the insufflator.
  • the temperature sensor E62 and the temperature sensor D52 can also compare data to determine whether the control module is operating normally, which also provides a double guarantee for the normal operation of the insufflator.
  • the smoke removal module 7 includes a switch valve C71, a filter D72, a particle detector A73, a particle detector B74, and a speed-regulating air pump 75; one end of the switch valve C71 is connected to the smoke removal air inlet through a pipe
  • the port 13 is connected, the other end of the switch valve C71 is connected to the filter D72, the other end of the filter D72 is connected to one end of the speed-regulating air pump 75 through a pipe, and the pipe between the filter D72 and the speed-regulating air pump 75 is sequentially connected with particles
  • the detector A73 and the particle detector B74, the particle detector A73 and the particle detector B74 are both signally connected to the control module 2; the switch valve C71 is connected to the control module signal 2; One end is connected to the smoke removal air outlet 14 through a pipe.
  • the particle detector A73 is a PM10 detector; the particle detector B74 is a PM2.5 detector.
  • the control module 2 controls the on-off valve C71 to open, and then the speed-regulating air pump 75 is turned on, and air flows through the smoke removal module.
  • the gas first passes through the filter A103 to filter the oil, water vapor and large particles above PM10, and then the gas passes through the filter. D72, this is to prevent double filtering due to the damage of the filter A103.
  • the gas passes through the particle detector A73 or PM10 detector.
  • the PM10 detector transmits the detected value to the control module.
  • the system alarms and enters the standby state. If there is no alarm, it means the system is in normal state; then, the gas enters the particle detector B74, that is, PM2.5 detector, particle detection
  • the device B74 transmits the detected values to the control module. Since the materials used for the resection are all human tissues and the composition is relatively stable, it can be considered that the relative proportions of PM2.5 and PM10 in the original gas composition in the abdominal cavity are fixed, so it can be calculated here.
  • the original gas composition in the abdominal cavity controls the speed adjustment process of the speed control air pump 75 according to the detection value of the PM2.5 detector.
  • the detection value and the speed comparison table are stored in the control module as a preset, and the speed of the air pump is determined according to the preset table. Repeat Perform the above steps to realize automatic control. If you need to stop the automatic control under special circumstances, just touch the button to turn off.
  • the casing 1 is also provided with a touch screen 8, and the touch screen 8 is signally connected to the control module 2 for displaying data output by each module in the insufflator.
  • control module used can be a conventional single-chip microcomputer or other control system, various filters, various pressure sensors, various temperature sensors, various on-off valves, flow sensors, safety valves, various types of decompression Parts such as valves are general standard parts or parts known to those skilled in the art, and their structures and principles can be known through technical manuals or conventional test methods.
  • the pneumatic module When the insufflator is turned on, the pneumatic module starts to operate, and the external air source is subjected to impurity removal treatment under the action of the filter C31. After the treatment, the air source directly passes through the heating and pressure reducing valve 33, the safety valve 34, and the proportional valve module 36, and the flow rate is
  • the sensor 37, the switch valve module 38, the gas outlet 12 of the insufflator, and the filter 103 enter the abdominal cavity of the patient; when smoke removal is required, part of the gas can pass through the filter 104 and enter the smoke removal port 13 of the insufflator from the patient’s abdominal cavity.
  • the filter 72 And through the switch valve 71, the filter 72, the particle detector 73, the particle detector 74, the speed-regulating air pump 75, the smoke removal air outlet 14, and finally enter the negative pressure suction device. Due to the high degree of automation of this equipment, for ordinary medical staff users, after connecting the gas circuit, just adjust the preset pressure and preset flow rate on the touch screen interface, and press the air button to use. If you need to heat the gas/turn off the heating, only You need to click the heating button on the touch interface. If you need to remove the smoke in the abdominal cavity/turn off the smoke exhaust, you only need to click the smoke button on the touch interface.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Endoscopes (AREA)
  • Surgical Instruments (AREA)

Abstract

一种恒压变流式气腹机,包括壳体(1),壳体(1)的外侧分别设有气腹机进气口(11)、气腹机出气口(12)、除烟进气口(13)以及除烟出气口(14);气腹机进气口(11)与外接气源(102)连接,气腹机出气口(12)通过与患者腹腔连接,除烟进气口(13)与患者腹腔连接,除烟出气口(14)与负压吸引器(105)连通;壳体(1)内设有控制模块(2)、气动模块(3)、温度检测模块(4)、安全模块(5)、温控模块(6)以及除烟模块(7);控制模块(2)分别与气动模块(3)、温度检测模块(4)、安全模块(5)、温控模块(6)和除烟模块(7)信号连接。通过改进传统的进气模式,实现了气体的恒压变流控制,使得压力调节区间误差范围小,供气流量变化稳定均匀,通过除烟模块(7)与气动模块(3)的联动可以及时消除手术过程中腹腔内电外科产品工作造成的烟雾,满足临床对于气腹机的新需求。

Description

一种恒压变流式气腹机
本申请要求于2020年06月15日提交中国专利局、申请号为202010540723.6、发明名称为“一种恒压变流式气腹机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及气腹机设备技术领域,特别是涉及一种恒压变流式气腹机。
背景技术
气腹机作为腹腔镜手术的标准配置,在诸如肝胆外科、胃肠外科等都起到了向腹腔内充气,以便获得良好手术操作空间的作用。气腹机是腔镜手术的重要设备,它使手术的部位或腔体充气隆起,便于医生观察诊断。由于该设备属于微压微流精密控制设备(工作压力一般在0-30mmHg,最大输气量一般小于40LPM),因此存在设备制备难,设备使用分险大等问题,因为气压失控必将给手术带来严重影响,还可能危及病人的生命安全。
现有的腹机采用的是供气与测压分时进行的周期性控制技术,压力调节区间误差范围大,供气流量变化非线性,在开关阀的作用下,会产生压力脉冲。该压力脉冲峰值常常超出压力设定值,而在泄气量变化较大的动态情况下,气腹机的输出气压最高甚至可以达到40mmHg,远远超出了临床安全临界值,同时,脉冲状的供气容易导致患者腹腔收到压力冲击,且由于手术时间的不确定性也导致了设备调控周期不稳定,控压精度差等,因此需要研制一款更加简单的实现恒压变流过程的气腹机。
发明内容
基于此,有必要提供一种一种恒压变流式气腹机。
为实现上述目的,本发明提供了如下方案:
一种恒压变流式气腹机,包括壳体,所述壳体的外侧分别设有气腹机进气口、气腹机出气口、除烟进气口以及除烟出气口;所述气腹机进气口通过减压阀A与外接气源连接,所述的气腹机出气口通过过滤器A与患者腹腔连接,所述的除烟进气口通过过滤器B与患者腹腔连接,所述的除烟出气口与负压吸引器连通;所述壳体内设有控制模块、气动模块、温 度检测模块、安全模块、温控模块以及除烟模块;所述的控制模块分别与气动模块、温度检测模块、安全模块、温控模块和除烟模块信号连接,用于系统驱动以及对采集的数据进行数字信号处理;所述的气动模块用于控制外接气源输送的气体压力、温度和流量;所述的温度检测模块用于检测外接气源输送气体的温度;所述的安全模块用于检测控制模块和气动模块的温度;所述的温控模块用于对机箱内降温的同时降低噪声;所述的除烟模块用于将患者腹腔产生的烟气排出。
为优化上述技术方案,采取的具体措施还包括:
上述的气动模块包括过滤器C、压力传感器A、加热减压阀、安全阀、压力传感器B、比例阀模块、流量传感器和开关阀模块;所述过滤器C的一端通过管道与气腹机进气口连接,另一端通过管道与加热减压阀的一端连接;所述热减压阀连接的另一端通过管道与安全阀的一端连接;所述安全阀的另一端通过管道与比例阀模块连接;所述比例阀模块的一端通过管道与流量传感器的一端连接;所述流量传感器的另一端通过管道与开关阀模块的一端连接,所述开关阀模块的另一端与气腹机出气口连接,所述的流量传感器与控制模块信号连接;所述过滤器C与加热减压阀之间的管道上设有压力传感器A,所述压力传感器A与控制模块信号连接;所述安全阀与比例阀模块之间的管道上设有压力传感器B,所述压力传感器B与控制模块信号连接。
上述的比例阀模块包括并联连接的第一气路和第二气路,所述的第一气路和第二气路不同时打开;其中,所述的第一气路由减压阀C、压力传感器C和比例阀C组成,所述的第二气路由减压阀D、压力传感器D和比例阀D组成;所述的减压阀C的一端通过管道与压力传感器B连接,减压阀C的另一端通过管道与比例阀C连接,比例阀C的另一端通过管道与流量传感器连接,减压阀C与比例阀C之间的管道上设有压力传感器C,所述压力传感器C与控制模块信号连接;所述的减压阀D的一端通过管道与压力传感器B连接,减压阀D的另一端通过管道与比例阀D连接,比例阀D的另一端通过管道与流量传感器连接,减压阀D与比例阀D之间的管道上设有压力传感器D,所述压力传感器D与控制模块信 号连接。
上述的开关阀模块包括开关阀A、开关阀B、压力传感器E和压力传感器F,所述的开关阀A和开关阀B之间不同时开启或关闭;所述开关阀A的一端与流量传感器连接,所述开关阀A的另一端与气腹机出气口连接,开关阀A与气腹机出气口之间的管道上设有压力传感器E和压力传感器F,所述的压力传感器E和压力传感器F之间串联连接;所述压力传感器E的一端通过管道与开关阀B连接。
上述的温度检测模块包括温度传感器A和温度传感器B,所述的温度传感器A设于过滤器C与压力传感器A之间的管道上,温度传感器A与控制模块信号连接;所述的温度传感器B设于压力传感器F与气腹机出气口之间的管道上,温度传感器B与控制模块信号连接。
上述的安全模块包括温度传感器C和温度传感器D,所述的温度传感器C设置在加热减压阀外侧,温度传感器C与控制模块信号连接,用于检测加热减压阀的温度;所述的温度传感器D安装在控制模块上,直接与控制模块信号连接信号,用于检测控制模块的温度。
上述的温控模块包括风扇和温度传感器E,所述的风扇安装在控制模块的底部,控制模块与风扇之间通过电路连接;所述温度传感器E安装在控制模块上,直接与控制模块信号连接信号,所述控制模块接收温度传感器E输入的温度,并控制风扇开启对壳体内部进行降温。
上述的除烟模块包括开关阀C、过滤器D、颗粒探测器A、颗粒探测器B和调速气泵;所述开关阀C的一端通过管道与除烟进气口连接,开关阀C的另一端与过滤器D连接,过滤器D的另一端通过管道与调速气泵的一端连接,过滤器D与调速气泵之间的管道上依次连接有颗粒探测器A和颗粒探测器B,所述的颗粒探测器A和颗粒探测器B均与控制模块信号连接;所述的开关阀C与控制模块信号连接;所述调速气泵的另一端通过管道与除烟出气口连接。
上述的颗粒探测器A为PM10探测器;所述的颗粒探测器B为PM2.5探测器。
上述的壳体内还设有触摸屏,所述的触摸屏与控制模块信号连接,用 于对气腹机内各模块输出的数据进行显示。
本发明与现有技术相比,其有益效果在于:
1.本发明的一种恒压变流式气腹机,通过改进传统的进气模式,结合加热减压阀、安全阀、比例阀模块,流量传感器以及开关阀模块等,实现了气体的恒压变流控制,使得压力调节区间误差范围小,供气流量变化稳定均匀,对于医护人员而言,由于稳定的气流输出也避免了手术过程中因不断调节设备而带来的不便,本发明控压精度高,操作便利。
2.本发明还设置了除烟模块,通过与气动模块的联动可以及时消除手术过程中腹腔内电外科产品工作造成的烟雾,本发明的结构简单、运作原理清晰、功能实现方便,满足临床对于气腹机的新需求。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所述的气腹机控制原理连接框图;
图2为本发明所述的气腹机各模块之间具体连接示意图;
图3为本发明所述的比例阀模块的组成示意图;
图4为本发明所述的开关阀模块的组成示意图。
符合说明
1-壳体、2-控制模块、3-气动模块、4-温度检测模块、5-安全模块、6-温控模块、7-除烟模块、8-触摸屏、11-气腹机进气口、12-气腹机出气口、13-除烟进气口、14-除烟出气口、101-减压阀A、102-外接气源、103-过滤器A、104-过滤器B、105-负压吸引器、31-过滤器C、32-压力传感器A、33-加热减压阀、34-安全阀、35-压力传感器B、36-比例阀模块、37-流量传感器、38-开关阀模块、41-温度传感器A、42-温度传感器B、51-温度传感器C、52-温度传感器D、61-风扇、62-温度传感器E、71-开关阀C、72-过滤器D、73-颗粒探测器A、74-颗粒探测器B、75-调速气泵、361-减压阀C、362-压力传感器C、363-比例阀C、364-减压阀D、 365-压力传感器D、366-比例阀D、381-开关阀A、382-开关阀B、383-压力传感器E、384-压力传感器F。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参见图1,一种恒压变流式气腹机,包括壳体1,所述壳体1的外侧分别设有气腹机进气口11、气腹机出气口12、除烟进气口13以及除烟出气口14;所述气腹机进气口11通过减压阀A101与外接气源102连接,所述的外接气源优选为二氧化碳,所述的气腹机出气口12通过过滤器A103与患者腹腔连接,所述的除烟进气口13通过过滤器B104与患者腹腔连接,所述的除烟出气口14与负压吸引器105连通,优选的,所述的气腹机进气口11与除烟出气口14位于壳体的同一侧,所述的气腹机出气口12与除烟进气口13位于壳体的同一侧,这样有利于保证气腹机整体运行的连贯性;所述壳体1内设有控制模块2、气动模块3、温度检测模块4、安全模块5、温控模块6以及除烟模块7;所述的控制模块2分别与气动模块3、温度检测模块4、安全模块5、温控模块6和除烟模块7信号连接,用于系统驱动以及对采集的数据进行数字信号处理;所述的气动模块3用于控制外接气源输送的气体压力、温度和流量;所述的温度检测模块4用于检测外接气源输送的气体温度;所述的安全模块5用于检测控制模块和气动模块的温度;所述的温控模块6用于对机箱内降温的同时降低噪声;所述的除烟模块7用于将患者腹腔产生的烟气排出。
参见图2,本实施例中,所述的气动模块3包括过滤器C31、压力传感器A32、加热减压阀33、安全阀34、压力传感器B35、比例阀模块36、流量传感器37和开关阀模块38;所述过滤器C31的一端通过管道与气腹机进气口11连接,另一端通过管道与加热减压阀33的一端连接;所述加 热减压阀33的另一端通过管道与安全阀34的一端连接;所述安全阀34的另一端通过管道与比例阀模块36连接;所述比例阀模块36的一端通过管道与流量传感器37的一端连接;所述流量传感器37的另一端通过管道与开关阀模块38的一端连接,所述开关阀模块38的另一端与气腹机出气口12连接,所述的流量传感器37与控制模块2信号连接;所述过滤器C31与加热减压阀33之间的管道上设有压力传感器A32,所述压力传感器A32与控制模块2信号连接;所述安全阀34与比例阀模块36之间的管道上设有压力传感器B35,所述压力传感器B35与控制模块2信号连接。其中,加热减压阀33用于对气体的加热以及初次减压,安全阀可以用于保证气体在初次减压时处于安全的状态,比例阀模块36可以自动调整输出气体量,并根据内置算法,实现气体的稳定输出,流量传感器37用于在保证恒压的状态下控制输出至患者腹腔的气体流量。
参见图3,本实施例中,所述的比例阀模块36包括并联连接的第一气路和第二气路,所述的第一气路和第二气路不同时打开;其中,所述的第一气路由减压阀C361、压力传感器C362和比例阀C363组成,所述的第二气路由减压阀D364、压力传感器D365和比例阀D366组成;所述的减压阀C361的一端通过管道与压力传感器B35连接,减压阀C361的另一端通过管道与比例阀C363连接,比例阀C363的另一端通过管道与流量传感器37连接,减压阀C361与比例阀C363之间的管道上设有压力传感器C362,所述压力传感器C362与控制模块2信号连接;所述的减压阀D364的一端通过管道与压力传感器B35连接,减压阀D364的另一端通过管道与比例阀D366连接,比例阀D366的另一端通过管道与流量传感器37连接,减压阀D364与比例阀D366之间的管道上设有压力传感器D365,所述压力传感器D365与控制模块2信号连接。在实际操作过程中,由于对进入患者腹腔的气体压力是有要求的,一般为10~15mmHg,因此所述比例阀模块中任意的气路中都需要设置一个的压力传感器,例如当开启第一气路时,减压阀C361对气体进行二次减压,通过压力传感器C362对其进行检测,当压力传感器C362检测的测量值与预设的时候进入患者腹腔的压力值吻合时,气体则通过后置的比例阀C363直接输出,当检测的测量值过高或过低时,气体则通过比例阀C363进行调节,实现其稳定 输出;本实施例中,第一气路可以得到相对精确的高流量输出,第二气路可以得到精确的低流量输出,两个气路可以对应不同的控制范围,彼此之间可以自动切换,以满足各种实际应用中的要求。
参见图4,本实施例中,所述的开关阀模块381包括开关阀A381、开关阀B382、压力传感器E383和压力传感器F384,所述的开关阀A381和开关阀B382之间不同时开启或关闭;所述开关阀A381的一端与流量传感器37连接,所述开关阀A381的另一端与气腹机出气口12连接,开关阀A381与气腹机出气口12之间的管道上设有压力传感器E383和压力传感器F384,所述的压力传感器E383和压力传感器F384之间串联连接;所述压力传感器E384的一端通过管道与开关阀B382连接。当执行送气过程时,开关阀A381打开,开关阀B382关闭,气体通过开关阀A381,最终进入患者腹腔;当执行排气过程时,开关阀B382打开,而开关阀A381关闭,气体通过开关阀B382排入大气,其中压力传感器C383和压力传感器D384保证了同一通路气压的二次测量,如果偏差大于设定,则系统会自动报警,如偏差在范围内,则使用平均值带入算法运算,保证了系统的安全性。
本实施例中,所述的温度检测模块4包括温度传感器A41和温度传感器B42,所述的温度传感器A41设于过滤器C31与压力传感器A32之间的管道上,温度传感器A41与控制模块2信号连接;所述的温度传感器B42设于压力传感器F384与气腹机出气口12之间的管道上,温度传感器B42与控制模块2信号连接。温度传感器A41可以检测刚进入气动模块的气体的温度,这样可以避免气体运输过程中对后续气动模块中的各类阀门造成损伤;温度传感器B42可以检测进入患者腹腔前的气体的温度,避免由于气体温度过高而对患者身体造成的损伤。
本实施例中,所述的安全模块5包括温度传感器C51和温度传感器D52,所述的温度传感器C51设置在加热减压阀33外侧,温度传感器C51与控制模块2信号连接,用于检测加热减压阀33的温度,由于热减压阀33是气动模块的核心部件,其是否能稳定的运作将直接影响整体的通气效果,因此本发明可以直接对加热减压阀33运作时的温度进行监测;所述的温度传感器D52安装在控制模块2上,直接与控制模块2信号连接 信号,用于检测控制模块2的温度,这样可以直接检测主控模块运行时的实时温度。
本实施例中,所述的温控模块6包括风扇61和温度传感器E62,所述的风扇61安装在控制模块2的底部,控制模块2与风扇61之间通过电路连接;所述温度传感器E62安装在壳体1内,与控制模块2信号连接信号,用于检测环境温度;所述控制模块2接收温度传感器E62输入的温度,并控制风扇61开启对壳体1内部进行降温。一般的气腹机中均存在风扇用于对其进行物理降温,但气腹机在运行过程中会受到外界环境因素的影响,而传统气腹机的风扇是一直旋转的,因此会带来较高的噪音。本发明通过温度传感器E62可以对外接环境的温度进行监测,当外接环境温度较低时(低于20℃),控制模块可以接收到当下的温度并控制风扇不工作,这就为室内的手术创造了安静的环境,当外界温度过高时,控制模块则会根据温度控制风扇转动对气腹机进行降温。此外,温度传感器E62和温度传感器D52之间还可以通过数据的比较来判断控制模块是否运行正常,这也为气腹机的正常运作提供双重的保障。
本实施例中,所述的除烟模块7包括开关阀C71、过滤器D72、颗粒探测器A73、颗粒探测器B74和调速气泵75;所述开关阀C71的一端通过管道与除烟进气口13连接,开关阀C71的另一端与过滤器D72连接,过滤器D72的另一端通过管道与调速气泵75的一端连接,过滤器D72与调速气泵75之间的管道上依次连接有颗粒探测器A73和颗粒探测器B74,所述的颗粒探测器A73和颗粒探测器B74均与控制模块2信号连接;所述的开关阀C71与控制模块信号2连接;所述调速气泵75的另一端通过管道与除烟出气口14连接。作为更优选的方案,所述的颗粒探测器A73为PM10探测器;所述的颗粒探测器B74为PM2.5探测器。当腹腔镜手术开始,电刀开始工作,腹腔内烟雾开始产生。先是控制模块2控制开关阀C71开启,然后调速气泵75开启,除烟模块中开始有气流通过,气体先通过过滤器A103将其中的油污、水汽和PM10以上的大颗粒过滤,然后气体通过过滤器D72,这是防止由于过滤器A103损坏而进行的双重过滤,处理后气体先经过颗粒探测器A73即PM10探测器,PM10探测器将检测到的数值传递给控制模块,当该数值大于阙值,则表示前端 过滤器失效,系统继续运行则可能损坏探测器,系统报警并进入待机状态,如果没有报警,表示系统状态正常;随后,气体进入颗粒探测器B74即PM2.5探测器,颗粒探测器B74将检测的数值传递给控制模块,由于电切的材料都属于人体组织,成分相对稳定,可以认为腹腔内的原始气体成分中PM2.5和PM10的相对比例固定,故在此可以推算出腹腔内原始气体成分,根据PM2.5探测器的探测值,控制调速气泵75的调速过程,探测值和转速对比表作为预设存入控制模块,根据预设表确定气泵的转速,重复执行以上步骤,即可实现自动控制,如有特殊情况需要停止自动只要触摸按键关闭即可。
本实施例中,所述的壳体1内还设有触摸屏8,所述的触摸屏8与控制模块2信号连接,用于对气腹机内各模块输出的数据进行显示。
本实施例中,所采用的控制模块可以是常规的单片机或其他控制系统,各类过滤器,各类压力传感器、各类温度传感器、各类开关阀、流量传感器,安全阀、各类减压阀等部件均为通用标准件或本领域技术人员知晓的部件,其结构和原理均可通过技术手册得知或常规试验方法获知。
本发明的使用过程:
当气腹机开启时,气动模块开始运作,外接的气源在过滤器C31的作用下进行除杂处理,处理后气源直接通过加热减压阀33,安全阀34,比例阀模块36,流量传感器37,开关阀模块38,气腹机出气口12,过滤器103进入患者腹腔;当需要进行除烟功时,部分气体可以通过过滤器104,从患者腹腔进入气腹机除烟口13,并通过开关阀71,过滤器72,颗粒探测器73,颗粒探测器74,调速气泵75,除烟出气口14,最终进入负压吸引器。由于本设备自动化程度高,对于普通医护人员使用者,在连接气路后,只要在触摸屏界面调节预设压力和预设流量,按送气键即可使用,如需要对气体加热/关闭加热,只需在触摸界面单击加热键,如需排除腹腔内烟雾/关闭排烟,只需要在触摸界面单击除烟键。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种恒压变流式气腹机,包括壳体(1),其特征在于:所述壳体(1)的外侧分别设有气腹机进气口(11)、气腹机出气口(12)、除烟进气口(13)以及除烟出气口(14);所述气腹机进气口(11)通过减压阀A(101)与外接气源(102)连接,所述的气腹机出气口(12)通过过滤器A(103)与患者腹腔连接,所述的除烟进气口(13)通过过滤器B(104)与患者腹腔连接,所述的除烟出气口(14)与负压吸引器(105)连通;所述壳体(1)内设有控制模块(2)、气动模块(3)、温度检测模块(4)、安全模块(5)、温控模块(6)以及除烟模块(7);所述的控制模块(2)分别与气动模块(3)、温度检测模块(4)、安全模块(5)、温控模块(6)和除烟模块(7)信号连接,用于系统驱动以及对采集的数据进行数字信号处理;所述的气动模块(3)用于制外接气源输送的气体压力、温度和流量;所述的温度检测模块(4)用于检测外接气源输送的气体温度;所述的安全模块(5)用于检测控制模块和气动模块的温度;所述的温控模块(6)用于对机箱内降温的同时降低噪声;所述的除烟模块(7)用于将患者腹腔产生的烟气排出。
  2. 根据权利要求1所述的一种恒压变流式气腹机,其特征在于:所述的气动模块(3)包括过滤器C(31)、压力传感器A(32)、加热减压阀(33)、安全阀(34)、压力传感器B(35)、比例阀模块(36)、流量传感器(37)和开关阀模块(38);所述过滤器C(31)的一端通过管道与气腹机进气口(11)连接,另一端通过管道与加热减压阀(33)的一端连接;所述加热减压阀(33)的另一端通过管道与安全阀(34)的一端连接;所述安全阀(34)的另一端通过管道与比例阀模块(36)连接;所述比例阀模块(36)的一端通过管道与流量传感器(37)的一端连接;所述流量传感器(37)的另一端通过管道与开关阀模块(38)的一端连接,所述开关阀模块(38)的另一端与气腹机出气口(12)连接,所述的流量传感器(37)与控制模块(2)信号连接;所述过滤器C(31)与加热减压阀(33)之间的管道上设有压力传感器A(32),所述压力传感器A(32)与控制模块(2)信号连接;所述安全阀(34)与比例阀模块(36)之间的管道上设有压力传感器B(35),所述压力传感器B(35)与控制模块(2)信号连接。
  3. 根据权利要求2所述的一种恒压变流式气腹机,其特征在于:所 述的比例阀模块(36)包括并联连接的第一气路和第二气路,所述的第一气路和第二气路不同时打开;其中,所述的第一气路由减压阀C(361)、压力传感器C(362)和比例阀C(363)组成,所述的第二气路由减压阀D(364)、压力传感器D(365)和比例阀D(366)组成;所述的减压阀C(361)的一端通过管道与压力传感器B(35)连接,减压阀C(361)的另一端通过管道与比例阀C(363)连接,比例阀C(363)的另一端通过管道与流量传感器(37)连接,减压阀C(361)与比例阀C(363)之间的管道上设有压力传感器C(362),所述压力传感器C(362)与控制模块(2)信号连接;所述的减压阀D(364)的一端通过管道与压力传感器B(35)连接,减压阀D(364)的另一端通过管道与比例阀D(366)连接,比例阀D(366)的另一端通过管道与流量传感器(37)连接,减压阀D(364)与比例阀D(366)之间的管道上设有压力传感器D(365),所述压力传感器D(365)与控制模块(2)信号连接。
  4. 根据权利要求3所述的一种恒压变流式气腹机,其特征在于:所述的开关阀模块(381)包括开关阀A(381)、开关阀B(382)、压力传感器E(383)和压力传感器F(384),所述的开关阀A(381)和开关阀B(382)之间不同时开启或关闭;所述开关阀A(381)的一端与流量传感器(37)连接,所述开关阀A(381)的另一端与气腹机出气口(12)连接,开关阀A(381)与气腹机出气口(12)之间的管道上设有压力传感器E(383)和压力传感器F(384),所述的压力传感器E(383)和压力传感器F(384)之间串联连接;所述压力传感器E(384)的一端通过管道与开关阀B(382)连接。
  5. 根据权利要求4所述的一种恒压变流式气腹机,其特征在于:所述的温度检测模块(4)包括温度传感器A(41)和温度传感器B(42),所述的温度传感器A(41)设于过滤器C(31)与压力传感器A(32)之间的管道上,温度传感器A(41)与控制模块(2)信号连接;所述的温度传感器B(42)设于压力传感器F(384)与气腹机出气口(12)之间的管道上,温度传感器B(42)与控制模块(2)信号连接。
  6. 根据权利要求2所述的一种恒压变流式气腹机,其特征在于:所述的安全模块(5)包括温度传感器C(51)和温度传感器D(52),所述的温度传感器C(51)设置在加热减压阀(33)外侧,温度传感器C(51)与控制模块(2) 信号连接,用于检测加热减压阀(33)的温度;所述的温度传感器D(52)安装在控制模块(2)上,直接与控制模块(2)信号连接信号,用于检测控制模块(2)的温度。
  7. 根据权利要求6所述的一种恒压变流式气腹机,其特征在于:所述的温控模块(6)包括风扇(61)和温度传感器E(62),所述的风扇(61)安装在控制模块(2)的底部,控制模块(2)与风扇(61)之间通过电路连接;所述温度传感器E(62)安装在壳体(1)内,与控制模块(2)信号连接信号,用于检测环境温度;所述控制模块(2)接收温度传感器E(62)输入的温度,并控制风扇(61)开启对壳体(1)内部进行降温。
  8. 根据权利要求1所述的一种恒压变流式气腹机,其特征在于:所述的除烟模块(7)包括开关阀C(71)、过滤器D(72)、颗粒探测器A(73)、颗粒探测器B(74)和调速气泵(75);所述开关阀C(71)的一端通过管道与除烟进气口(13)连接,开关阀C(71)的另一端与过滤器D(72)连接,过滤器D(72)的另一端通过管道与调速气泵(75)的一端连接,过滤器D(72)与调速气泵(75)之间的管道上依次连接有颗粒探测器A(73)和颗粒探测器B(74),所述的颗粒探测器A(73)和颗粒探测器B(74)均与控制模块(2)信号连接;所述的开关阀C(71)与控制模块信号(2)连接;所述调速气泵(75)的另一端通过管道与除烟出气口(14)连接。
  9. 根据权利要求8所述的一种恒压变流式气腹机,其特征在于:所述的颗粒探测器A(73)为PM10探测器;所述的颗粒探测器B(74)为PM2.5探测器。
  10. 根据权利要求1所述的一种恒压变流式气腹机,其特征在于:所述的壳体(1)内还设有触摸屏(8),所述的触摸屏(8)与控制模块(2)信号连接,用于对气腹机内各模块输出的数据进行显示。
PCT/CN2021/100203 2020-06-15 2021-06-15 一种恒压变流式气腹机 WO2021254352A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21825811.9A EP4166096A4 (en) 2020-06-15 2021-06-15 CONSTANT PRESSURE AND VARIABLE FLOW INSUFFLATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010540723.6A CN111685831A (zh) 2020-06-15 2020-06-15 一种恒压变流式气腹机
CN202010540723.6 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021254352A1 true WO2021254352A1 (zh) 2021-12-23

Family

ID=72481018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100203 WO2021254352A1 (zh) 2020-06-15 2021-06-15 一种恒压变流式气腹机

Country Status (3)

Country Link
EP (1) EP4166096A4 (zh)
CN (1) CN111685831A (zh)
WO (1) WO2021254352A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114176665A (zh) * 2021-12-28 2022-03-15 上海交通大学 一种腹腔镜手术的控温加湿气腹装置
CN114367320A (zh) * 2021-12-31 2022-04-19 广东永诺医疗科技有限公司 一种微液滴制备装置及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111685831A (zh) * 2020-06-15 2020-09-22 南京图格医疗科技有限公司 一种恒压变流式气腹机
CN112155689B (zh) * 2020-10-12 2021-07-13 中南大学湘雅医院 一种强应急性的防干扰气腹机
CN112773425A (zh) * 2020-12-30 2021-05-11 成都市妇女儿童中心医院 一种带有恒定稳压机构的气腹机校准装置及方法
CN114176666B (zh) * 2021-12-28 2023-11-14 上海交通大学 一种具有恒压、恒温、加湿功能的二氧化碳气腹管路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2927982Y (zh) * 2006-06-30 2007-08-01 钟李宽 全自动气腹机
JP2012205748A (ja) * 2011-03-29 2012-10-25 Olympus Medical Systems Corp 気腹装置
CN105012011A (zh) * 2015-07-03 2015-11-04 上海交通大学 烟雾过滤系统
CN105011973A (zh) * 2015-05-11 2015-11-04 桐庐精锐医疗器械有限公司 一种恒温变流气腹机
CN108634999A (zh) * 2018-07-16 2018-10-12 鹰利视医疗科技有限公司 一种带除烟雾功能的气腹机
WO2019130119A1 (en) * 2017-12-28 2019-07-04 Ethicon Llc Surgical evacuation flow paths
CN111685831A (zh) * 2020-06-15 2020-09-22 南京图格医疗科技有限公司 一种恒压变流式气腹机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573556B2 (ja) * 2004-03-31 2010-11-04 オリンパス株式会社 送気装置
US8172787B2 (en) * 2006-04-13 2012-05-08 Stryker Corporation Method and apparatus to detect biocontamination in an insufflator for use in endoscopy
US8926587B2 (en) * 2013-02-18 2015-01-06 King Abdullah International Medical Research Center Pneumatic device for treating intussusception
CN105431093B (zh) * 2013-08-06 2019-03-29 奥林巴斯株式会社 气腹装置
CN104848506A (zh) * 2015-04-27 2015-08-19 成都腾悦科技有限公司 一种室内空气监控系统
DE102016014980A1 (de) * 2016-12-16 2018-06-21 W.O.M. World Of Medicine Gmbh Medizintechnische Pumpe mit verbesserter Entlüftung
CN107260270A (zh) * 2017-08-17 2017-10-20 拓普能量(天津)科技有限公司 一种吸烟型医用穿刺器系统
CN108170080A (zh) * 2018-03-05 2018-06-15 四川忠辉电子科技有限公司 一种数据中心机房环境监控系统
CN208838037U (zh) * 2018-03-21 2019-05-10 深圳市世格赛思医疗科技有限公司 一种气腹机
CN108488912A (zh) * 2018-03-28 2018-09-04 广州凌飞电子科技有限公司 汽车家居两用空气净化器
JP7150875B2 (ja) * 2018-12-05 2022-10-11 オリンパス株式会社 気腹システム、及び、気腹システムの作動方法
CN111000535B (zh) * 2019-12-26 2021-03-16 南通大学附属医院 一种下肢血液供应情况监控装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2927982Y (zh) * 2006-06-30 2007-08-01 钟李宽 全自动气腹机
JP2012205748A (ja) * 2011-03-29 2012-10-25 Olympus Medical Systems Corp 気腹装置
CN105011973A (zh) * 2015-05-11 2015-11-04 桐庐精锐医疗器械有限公司 一种恒温变流气腹机
CN105012011A (zh) * 2015-07-03 2015-11-04 上海交通大学 烟雾过滤系统
WO2019130119A1 (en) * 2017-12-28 2019-07-04 Ethicon Llc Surgical evacuation flow paths
CN108634999A (zh) * 2018-07-16 2018-10-12 鹰利视医疗科技有限公司 一种带除烟雾功能的气腹机
CN111685831A (zh) * 2020-06-15 2020-09-22 南京图格医疗科技有限公司 一种恒压变流式气腹机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166096A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114176665A (zh) * 2021-12-28 2022-03-15 上海交通大学 一种腹腔镜手术的控温加湿气腹装置
CN114176665B (zh) * 2021-12-28 2024-01-23 上海交通大学 一种腹腔镜手术的控温加湿气腹装置
CN114367320A (zh) * 2021-12-31 2022-04-19 广东永诺医疗科技有限公司 一种微液滴制备装置及其制备方法

Also Published As

Publication number Publication date
EP4166096A1 (en) 2023-04-19
EP4166096A4 (en) 2023-12-06
CN111685831A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2021254352A1 (zh) 一种恒压变流式气腹机
US11147935B2 (en) Smoke evacuation system for continuously removing gas from a body cavity
JP6788740B2 (ja) 体腔への連続的なガス流の継続的圧力監視を有するマルチモード外科用ガス送達システム
US10639434B2 (en) Filter interface for multimodal surgical gas delivery system
EP3801711B1 (en) System for controlling gas composition in a surgical cavity during endoscopic surgical procedures
JP7322092B2 (ja) 体腔内で吸引が用いられる時に安定した体腔圧を維持するように構成されたマルチモード外科用ガス送達システム
WO2018039239A1 (en) Continuous gas supply insufflator having exhaust line peritoneal pressure control methods
JP2000000299A (ja) 制御機能を備えた体外循環装置
JP2020501643A (ja) 脱気が改善された医療用ポンプ
WO2023124426A1 (zh) 具有温度限制功能的冷冻消融系统及方法
EP1131116A1 (en) Atraumatic blood suction system
JP3236067B2 (ja) 気腹装置
JP7361729B2 (ja) 内視鏡外科手術処置中の外科手術空洞内のガス組成物を制御するためのシステムおよび方法
CN216675813U (zh) 一种带负压装置的气腹机
US20230329778A1 (en) Electrosurgical smoke evacuation for surgical procedures
CN219895894U (zh) 一种恒温恒压带排烟功能的气腹机
CN118148896A (zh) 一种乳房活检与旋切设备真空泵温升控制方法
CN116115332A (zh) 一种恒温恒压带排烟功能的气腹机
CN114848967A (zh) 一种肝胆外科用快速输液装置
CN116077153A (zh) 一种50l气腹机的气腹系统及其工作方法
CN114733017A (zh) 气腹机及气腹机压力控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021825811

Country of ref document: EP

Effective date: 20230113