WO2023124426A1 - 具有温度限制功能的冷冻消融系统及方法 - Google Patents

具有温度限制功能的冷冻消融系统及方法 Download PDF

Info

Publication number
WO2023124426A1
WO2023124426A1 PCT/CN2022/125981 CN2022125981W WO2023124426A1 WO 2023124426 A1 WO2023124426 A1 WO 2023124426A1 CN 2022125981 W CN2022125981 W CN 2022125981W WO 2023124426 A1 WO2023124426 A1 WO 2023124426A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cryoballoon
flow
balloon
value
Prior art date
Application number
PCT/CN2022/125981
Other languages
English (en)
French (fr)
Inventor
冯骥
龚杰
彭博
韩博阳
刘翠鹄
王小龙
Original Assignee
心诺普医疗技术(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 心诺普医疗技术(北京)有限公司 filed Critical 心诺普医疗技术(北京)有限公司
Publication of WO2023124426A1 publication Critical patent/WO2023124426A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00863Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter

Definitions

  • the invention relates to the technical field of cryotherapy, in particular to a cryoablation system and method with a temperature limiting function.
  • Atrial fibrillation is one of the most common clinical tachyarrhythmias.
  • the total prevalence of atrial fibrillation in my country is about 0.7%.
  • PVI pulmonary vein isolation
  • Cryoballoon ablation is a new ablation method that has emerged in recent years and has become one of the standard methods for achieving PVI.
  • the mechanism of cryoablation is to cause necrosis of target cardiomyocytes through the low temperature caused by freezing energy, and then achieve the therapeutic effect.
  • the damage effect of freezing can be divided into transient or permanent; the transient effect refers to the cell stress state caused by the temperature dropping to a low temperature not lower than -20°C and the change of cell osmotic pressure. Functional decline, transient effects are recoverable.
  • the permanent effects of cryoablation include direct and indirect cell damage caused by low temperature.
  • the direct cell damage is mainly caused by the formation and rupture of intracellular and intracellular ice crystals at low temperature; Gradually tends to be completely frozen, and its osmotic pressure suddenly rises, resulting in severe dehydration in the cell, and damage to the cell membrane and organelles; when the temperature drops below -40°C, the liquid in the cell begins to freeze, causing damage to the cell structure, rupture of the cell membrane and The inactivation of intracellular proteins leads to irreversible cell damage; the indirect cell damage of cryoablation is mainly mediated by blood vessels.
  • cryoablation a parameter determining the effect of cryoablation
  • the main factors determining the effect of cryoablation include 1 minimum temperature; 2 cooling speed; 3 rewarming speed; 4 freezing time; local blood flow. Among them, the lowest temperature is the main factor determining intracellular freezing, and the freezing depth can be increased by 0.38mm for every 10°C decrease in temperature. Evaluation of temperature on the safety of cryoablation: If the freezing temperature is too low, it may cause unnecessary damage to tissues outside the pulmonary veins and increase the incidence of complications. The main complications of CBA treatment of atrial fibrillation, such as phrenic nerve injury and esophageal injury, are all caused by excessive cryoablation. It is generally believed that it is reasonable to strictly control the minimum temperature of freezing within -55°C.
  • cryoablation system for atrial fibrillation currently on the market in China uses a fixed flow rate for cryoablation; that is, doctors need to pay attention to the temperature displayed by the system at all times during the operation.
  • the selection of the lowest temperature value will be slightly different), it is necessary to manually operate the device to stop the ablation, which is very inconvenient to operate; at the same time, there is a risk of not dealing with it in time due to distraction, so when the freezing temperature is lower than -55°C, it will not only cause Adjacent tissue damage, the incidence of complications is relatively high.
  • the present invention provides a cryoablation system and method with temperature limiting function to solve one or more problems in the prior art.
  • the present invention discloses a cryoablation system with a temperature limiting function, the system comprising:
  • the cryoablation system with temperature limiting function is characterized in that the cryoablation system includes a catheter, a fluid delivery unit and a control unit, the end of the catheter is provided with a cryoballoon, and the fluid delivery unit is used to supply the frozen
  • the frozen liquid is delivered in the balloon
  • the control unit includes a temperature limiting circuit
  • the temperature limiting circuit is used to control the delivery of the fluid delivery unit to the cryosphere based on the preset temperature limit value and the temperature of the cryoballoon balloon fluid such that the temperature of the cryoballoon does not fall below the preset temperature limit.
  • the temperature limiting circuit includes: a temperature acquisition device, a temperature comparison module and an adjustment calculation module, the temperature acquisition device is used to collect the temperature of the frozen balloon, and the temperature comparison module It is used to compare the difference between the temperature of the frozen balloon and the preset temperature limit value with a preset temperature difference threshold, and the adjustment amount calculation module is used to collect the temperature based on the temperature collection device.
  • the temperature of the cryoballoon and the preset temperature limit value are used to calculate the flow adjustment value.
  • control unit includes:
  • the temperature limiting circuit for controlling the fluid delivered by the fluid delivery unit to the cryoballoon via the pressure control circuit
  • a flow control circuit when the difference between the temperature of the frozen balloon and the preset temperature limit value is greater than the preset temperature difference threshold, the flow control circuit controls the fluid delivery through the pressure control circuit Unit delivers fluid to the cryoballoon.
  • the flow control loop includes: a flow collection device and a flow comparison module, the flow collection device is used to collect the flow of the frozen liquid flowing through the cryoballoon, and the flow comparison module is used to compare the collected flow Compare with the target flow value;
  • the pressure control loop includes a pressure detection device, a driver and a proportional valve, the pressure detection device is used to collect the pressure of the frozen liquid flowing through the cryoballoon, and the driver is based on the pressure collected by the pressure detection device Pressure controls the proportional valve.
  • the calculation formula of the flow adjustment value is:
  • ⁇ Q a*(TT k )+b*(T k -T k-1 );
  • ⁇ Q 1 is the flow adjustment value; a and b are coefficients; T is the preset temperature limit value; T k is the temperature of the cryoballoon at the current moment; T k-1 is the temperature of the cryoballoon before the time ⁇ t Temperature, the value range of ⁇ t is 0.5s ⁇ 3s.
  • the value range of a is 10 ⁇ 50, and the value range of b is -500 ⁇ -1000;
  • the value range of a is 10 ⁇ 50, and the value range of b is -10 ⁇ -50.
  • the preset temperature limit value is a parameter pre-stored in the control unit, and can be set through the human-computer interaction module of the control unit.
  • a method for limiting the minimum temperature of the cryoballoon includes: controlling the fluid delivery unit to deliver to the cryoballoon based on the preset temperature limit value and the collected temperature of the cryoballoon fluid in the cryo-balloon such that the temperature of the cryo-balloon does not fall below a preset temperature limit.
  • controlling the fluid delivered to the cryo-balloon by the fluid delivery unit based on the preset temperature limit value and the collected temperature of the cryo-balloon includes:
  • the difference between the temperature of the cryoballoon and the preset temperature limit value is not greater than the preset temperature difference threshold, calculating the flow adjustment value based on the preset temperature limit value and the collected temperature of the cryoballoon, and controlling the fluid delivered by the fluid delivery unit to the cryoballoon based on the flow adjustment value.
  • the calculation formula of the flow adjustment value is:
  • ⁇ Q a*(TT k )+b*(T k -T k-1 );
  • ⁇ Q is the flow adjustment value
  • a and b are coefficients
  • T is the preset temperature limit value
  • T k is the temperature of the cryoballoon at the current moment
  • T k-1 is the temperature of the cryoballoon before the time ⁇ t
  • the value range of ⁇ t is 0.5s ⁇ 3s.
  • the cryoablation system and method with temperature limiting function disclosed in the present invention restrict the temperature of the cryoballoon to not be lower than the preset temperature limit value through the temperature limit circuit, so as to keep the minimum temperature of the cryoballoon within an ideal temperature range, Therefore, the doctor does not need to pay attention to the temperature displayed by the system all the time during the operation, which can ensure the doctor's concentration; in addition, the system also prevents excessive ablation due to low freezing temperature, avoids damage to adjacent tissues, and improves It not only improves the safety of the system, but also reduces the incidence of complications such as phrenic nerve injury, esophageal injury, pulmonary vein stenosis, and vagal reflex with severe bradycardia.
  • FIG. 1 is a schematic structural diagram of a cryoablation system with a temperature limiting function according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a cryoablation apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the interface of the human-computer interaction module of the control unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a control flow of a flow control loop according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a control flow of a temperature limiting loop according to an embodiment of the present invention.
  • Fig. 6 is a graph comparing temperature curves with and without restrictions on the lowest temperature of cryoablation.
  • Fig. 7 is a comparison chart of flow curves with and without restriction on the lowest temperature of cryoablation.
  • FIG. 8 is a schematic diagram of a control flow of a temperature limiting loop according to another embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a cryoablation system with a temperature limiting function according to an embodiment of the present invention. It can be seen from Fig. 1 that the cryoablation system at least includes a catheter, a fluid delivery unit and a control unit. There is a cryoballoon 100, the fluid delivery unit is used to deliver frozen liquid into the cryoballoon 100, the control unit includes a temperature limit circuit, and the temperature limit circuit is used to The temperature of the cryoballoon 100 controls the fluid delivered by the fluid delivery unit to the cryoballoon 100 so that the temperature of the cryoballoon 100 is not lower than the preset temperature limit value.
  • the cryoablation instrument host 500 mainly includes a control unit.
  • the cryoablation instrument host 500 When performing cryoablation, first prepare the equipment according to the operating instructions of the cryoablation instrument, connect the main body of the cryoablation instrument 500 with the cryoablation balloon catheter through the coaxial fluid connection tube and cable connection; insert the balloon catheter into the human body according to the surgical procedure
  • the left atrium is positioned, inflated, and blocked; furthermore, the temperature of the balloon surface can be collected in real time by the temperature collection device 210 .
  • the preset temperature limit value is a parameter pre-stored in the control unit, and can be set through the human-computer interaction module of the control unit.
  • the human-computer interaction module of the control unit can also realize the opening and closing of the temperature limit circuit.
  • the human-computer interaction module of the control unit may include an industrial computer, a touch screen display and related software. Its display interface is as shown in Figure 3.
  • the temperature limit value can be increased or decreased, and the temperature limit circuit can be in the "ON" state or "OFF” state by clicking the "Temp Control" button in the interface. When the temperature limiting circuit is in the "ON” state, the system can limit the temperature of the cryoballoon 100 above a preset temperature value.
  • the preset temperature limit value can be set according to the specific conditions of the operator.
  • the general setting range is -40°C to -60°C, with an interval of 1°C; in some cases, the default temperature limit of the temperature limit circuit can also be set.
  • the value is set to -55°C, that is, the safe temperature of the cryoablation system is -55°C by default.
  • the display interface of the human-computer interaction module can also display various system parameters during the operation in real time, such as the temperature inside the balloon, the intake pressure, the ablation flow rate, the weight of the host gas cylinder, and the ablation time.
  • the temperature limiting loop includes: a temperature acquisition device 210, a temperature comparison module 220, and an adjustment amount calculation module 230
  • the temperature acquisition device 210 is used to acquire the temperature of the cryoballoon 100
  • the temperature comparison module 220 is used to compare the difference between the collected temperature of the cryoballoon 100 and the preset temperature limit value with a preset temperature difference threshold
  • the adjustment amount calculation module 230 is used to collect The temperature of the cryoballoon 100 collected by the device 210 and the preset temperature limit value are used to calculate a flow adjustment value.
  • the temperature acquisition device 210 may specifically be a balloon temperature sensor, and the balloon temperature sensor is used to monitor the temperature parameters of the balloon during the ablation process.
  • Preset temperature difference threshold is a parameter pre-stored in the system, which is used to judge whether the temperature of the balloon collected by the balloon temperature sensor needs to be limited; for example, the current temperature of the balloon is recorded as T k , and the preset The set temperature limit value is recorded as T, and the preset temperature difference threshold is recorded as T 0 , then at this time, the difference obtained after subtracting the limit setting temperature T from the current temperature T k is defined as ⁇ T, and the calculated ⁇ T Compare with T 0 ; when ⁇ T is less than T 0 or equal to T 0 , it is necessary to limit the temperature of the cryoballoon 100 through a temperature limiting circuit.
  • the value range of T 0 may be 2°C ⁇ 10°C, and different types of balloons may be different.
  • the preset temperature limit value is -55°C
  • T 0 is 5°C
  • the initial temperature of the balloon is about 37°C (body temperature)
  • the difference between the temperature of the cryoballoon 100 and the preset temperature limit value is greater than T 0
  • the control unit of the system does not limit the temperature of the cryoballoon 100;
  • the system will switch to temperature limiting closed-loop control, that is, the system will limit the temperature of the frozen balloon 100 to the preset temperature through the temperature limiting loop. above the set temperature limit.
  • the control unit further includes: a pressure control circuit, and the temperature limiting circuit is used to control the fluid delivered to the cryoballoon 100 by the fluid delivery unit through the pressure control circuit.
  • the pressure control circuit may include a pressure detection device 410, a driver and a proportional valve 420.
  • the pressure detection device 410 may be an inlet pressure sensor for collecting the pressure or pressure of the frozen liquid flowing through the frozen balloon 100.
  • the inlet pressure of the cryoballoon, the driver controls the proportional valve 420 based on the pressure collected by the pressure detection device 410, and further controls the flow rate of the frozen liquid flowing through the cryoballoon 100, so as to achieve The purpose of limiting the cryoballoon 100 minimum temperature.
  • control unit may also include a flow control loop, and when the difference between the temperature of the cryoballoon 100 and the preset temperature limit value is greater than the preset temperature difference threshold, the flow control loop passes the A pressure control circuit controls the fluid delivered to the cryoballoon 100 by the fluid delivery unit.
  • the flow control loop specifically includes a flow collection device and a flow comparison module 320, the flow collection device 310 is used to collect the flow of the frozen liquid flowing through the cryoballoon 100, and the flow comparison module 320 is used to collect the collected The flow rate is compared with the target flow value.
  • the flow collecting device may be a refrigerant mass flow meter.
  • control unit of the cryoablation system can be realized by a PLC (Programmable Logic Controller, Programmable Logic Controller) for collecting signals from various sensors and performing conversion processing and logic control.
  • PLC has the advantages of high reliability, easy programming, flexible configuration, convenient installation, fast running speed, etc.
  • control function can also be realized by designing PCBA, which has great scalability , and the cost is relatively low.
  • the temperature limit function when the difference between the temperature of the cryoballoon 100 and the preset temperature limit value is greater than the preset temperature difference threshold, the temperature limit function does not need to be activated, that is, the temperature limit circuit does not need to be used to The minimum temperature of the cryoballoon 100 is limited, and the cryoablation system is in a flow closed-loop control state at this time.
  • the cryoablation system since the structure of the working medium circulation pipeline has been fixed, the delivery pressure of the frozen liquid directly determines the flow of the pipeline, so at this time, the indirect control of the flow can be realized by directly controlling the inlet pressure. Referring to FIG.
  • the flow control circuit is connected in series with the pressure control circuit, that is, during the working process, the flow collection device 310 collects the flow of the frozen liquid flowing through the cryoballoon 100 in real time, and further compares the collected flow value with the The preset target flow value is compared, and the comparison result is fed back to the pressure control loop.
  • a pressure sensor is installed behind the proportional valve 420 of the pressure control circuit for fast feedback. The comparison result of the flow control circuit can further adjust the intake pressure through closed-loop control conversion, and the proportional valve driver quickly adjusts the intake pressure to the specified pressure. That is, the purpose of stabilizing the flow is achieved.
  • the intake pressure is linearly accelerated at the beginning to set the target pressure of the proportional valve 420 controller, that is, the maximum flow control, so that the balloon flow rate increases rapidly and the temperature decreases rapidly; linear increase After the pressure is over, the flow control is performed, and the sampling and flow adjustment cycle is set to 0.5s, and the given value of the intake pressure is adjusted every 0.5s to adjust the flow of the refrigerated liquid.
  • the system when the system works in a flow closed loop, the system performs ablation with a stable flow rate, at this time the monitored balloon temperature is only displayed on the interactive interface, and the system is at the maximum value during the entire ablation process. Ablation is performed with flow control until the end of the ablation.
  • the state of "Temp Control" on the corresponding display interface is "OFF", which means that the temperature limiting circuit does not work at this time.
  • the target flow rate corresponding to different sizes of balloon catheters will be different, for example, a balloon catheter with a diameter of 28 mm corresponds to a flow rate of 7200 sccm, while a balloon catheter with a diameter of 23 mm corresponds to a flow rate of 6200 sccm.
  • the value range of a is 10 ⁇ 50, and the value range of b is -500 ⁇ -1000; when the flow rate is adjusted after the first time, the value range of a is 10 ⁇ 50, and b The value range is -10 to -50.
  • the selection of ⁇ t determines the dynamic performance of the control system, and at the same time is subject to the inherent response characteristics between the inlet pressure-flow-balloon temperature of the cryoablation system, and is also related to the monitoring (sampling) of the system
  • the frequency is related to data conversion and the response time of the proportional valve 420 .
  • the present invention also discloses a method for limiting the minimum temperature of the cryoballoon.
  • the method includes controlling the fluid delivered to the cryoballoon by the fluid delivery unit based on the preset temperature limit value and the temperature of the cryoballoon, so as to Keeping the temperature of the cryoballoon not lower than a preset temperature limit value.
  • the temperature of the balloon is collected in real time by the temperature acquisition device, and the difference between the temperature of the cryoballoon and the preset temperature limit value is calculated; and the calculated actual temperature of the cryoballoon is The difference between the preset temperature limit value and the preset temperature difference threshold is compared, that is, it is judged whether the difference between the temperature of the cryoballoon and the preset temperature limit value is greater than the preset temperature difference threshold.
  • the system works in a flow closed loop.
  • the cryoablation system and method through the dual control of flow closed-loop and temperature-limited closed-loop, can also meet the cold capacity requirements of cryoablation for atrial fibrillation under the premise of avoiding cryo-injury caused by excessive ablation due to too low temperature, and improve the system. security.
  • cryoballoon ablation The main types are the following: phrenic nerve injury, esophageal injury, pulmonary vein stenosis, cardiac tamponade, femoral artery injury, thrombus/air embolism, vagal reflex with severe bradycardia, and phrenic nerve injury, esophageal injury, pulmonary vein stenosis and vagal reflex.
  • cryoablation system or method disclosed in the present invention can ensure that the pulmonary vein isolation and ablation process can
  • the temperature of the capsule should not be lower than the safe temperature to avoid damage to adjacent tissues, thereby reducing the incidence of complications.
  • cryoablation system and method of the present invention a specific example will be used below to compare the two situations of limiting the minimum temperature of the balloon and not restricting the minimum temperature of the balloon.
  • the two situations are the same thermal load conditions, And the temperature limit value is set to -40°C, and the ablation time is 180s.
  • Figure 6 is a comparison of temperature curves with and without limits on the minimum temperature of cryoablation. It can be seen from the graph that when the minimum temperature of the balloon is not limited, the temperature of the balloon drops rapidly, and after 30 seconds the system runs stably at a temperature lower than In the -40°C balloon temperature range, the lowest temperature is about -48°C; after the minimum temperature limit of the balloon, the system responds quickly when the balloon temperature is close to -40°C, and stabilizes quickly, and the whole process is not lower than - 40°C until the end of ablation.
  • Fig. 7 is a comparison chart of flow curves with and without restriction on the minimum temperature of cryoablation.
  • the minimum temperature of the balloon when the minimum temperature of the balloon is not limited, the flow rate of the balloon increases rapidly to the target flow rate after the start of ablation (illustrated implementation For example, for a 28mm balloon, the corresponding target flow rate is 7200 sccm), and the flow rate remains stable throughout the ablation process; when the minimum temperature limit is applied to the balloon, the balloon flow rate also rapidly increases to the target flow rate after the ablation starts, and the temperature drops rapidly at the same time. When the temperature is close to -40°C, the flow rate drops below 7200 sccm.
  • the balloon temperature no longer drops, and the flow rate is gradually stabilized between 5500 and 6500. Ensure that the balloon temperature is not lower than the setting Under the premise of a safe limit temperature, avoid freezing injury caused by too low temperature, and maintain a certain amount of freezing flow to ensure the effect of pulmonary vein electrical isolation until the end of ablation.
  • Fig. 8 is a relatively simple temperature limit process method in another embodiment of the present invention.
  • the limit temperature can be set.
  • the system automatically stops the ablation, cuts off the input of the frozen liquid, and the balloon enters rewarming.
  • Machine-readable medium may include any medium that can store or transmit information. Examples of machine-readable media include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like. Code segments may be downloaded via a computer network such as the Internet, an Intranet, or the like.
  • the exemplary embodiments mentioned in the present invention describe some methods or systems based on a series of steps or devices.
  • the present invention is not limited to the order of the above steps, that is, the steps may be performed in the order mentioned in the embodiment, or may be different from the order in the embodiment, or several steps may be performed simultaneously.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Surgical Instruments (AREA)
  • External Artificial Organs (AREA)

Abstract

一种具有温度限制功能的冷冻消融系统及方法,冷冻消融系统包括导管、流体输送单元以及控制单元,导管的末端设有冷冻球囊(100),流体输送单元用于向冷冻球囊(100)内输送冷冻液体,控制单元包括温度限制回路,温度限制回路用于基于预设的温度限制值及冷冻球囊(100)的温度控制流体输送单元输送至冷冻球囊(100)的流体,以使冷冻球囊(100)的温度不低于预设的温度限制值。冷冻消融系统在肺静脉隔离消融过程中避免了由于冷冻温度过低而引起的邻近组织损伤现象的发生,降低了并发症的发生率。

Description

具有温度限制功能的冷冻消融系统及方法 技术领域
本发明涉及冷冻低温治疗技术领域,尤其涉及一种具有温度限制功能的冷冻消融系统及方法。
背景技术
目前,心率失常等疾病的微创介入技术日趋成为其治疗的主要手段,心房颤动(房颤)是临床最常见的快速性心律失常之一,我国房颤的总患病率在0.7%左右,且随着人口的老龄化,发病率逐年增加。房颤治疗方面,经导管消融治疗房颤的疗效已为大家所公认,而肺静脉隔离(PVI)则是房颤导管消融治疗的基石。经冷冻球囊消融(cryoballoon ablation,CBA)为近年出现的新的消融方法,已成为实现PVI的标准方法之一。多个研究均已证明经CBA治疗房颤具有很好的安全性及有效性,且学习曲线短、严重并发症少及再住院率低等优势。
冷冻消融的机制是通过冷冻能量所造成的低温引起靶点心肌细胞坏死,进而达到治疗效果。冷冻的损伤效应可分为一过性或永久性;一过性效应是指当温度下降至不低于-20℃的低温时所致的细胞应激状态以及细胞渗透压改变等所导致的细胞功能减退,一过性效应具有可恢复性。冷冻消融的永久性效应包括低温引起的直接和间接细胞损伤,其中直接细胞损伤主要是通过低温下细胞内外冰晶的形成与破裂所引起;温度降至-20℃~-15℃时,细胞外液逐渐趋于完全冻结,其渗透压骤然升高,导致细胞内严重脱水,进而细胞膜、细胞器损伤;当温度降低至-40℃以下时,细胞内液体开始冻结,引起细胞结构的破坏、细胞膜破裂及胞内蛋白质的失活,进而导致不可逆性细胞损伤;冷冻消融的间接细胞损伤主要通过血管介导。
《经冷冻球囊导管消融心房颤动中国专家共识2020》提到:决定冷冻消融效果的主要因素包括①最低温度;②降温速度;③复温速度;④冷冻时间;⑤冷冻次数;⑥接触程度及局部血流。其中最低温度是决定细胞内结冰的主要因素,温度每降低10℃,冷冻深度可增加0.38mm。温度对冷冻消融安全性的评估:冷冻温度如果过低,将可能对肺静脉外组织造成不必要的损伤,增加并发症的发生率。CBA治疗房颤的主要并发症如膈神经损 伤、食管损伤均为过度冷冻消融引起。一般认为,冷冻的最低温度严格控制在-55℃以内是合理的。
但目前唯一在国内上市的房颤冷冻消融系统,采用固定的流量进行冷冻消融;即手术过程中医生需要时刻关注系统显示的温度,当温度低于-55℃(注:不同术者对于具体的最低温度值选择会略微有所差异)时需要手动操作设备以停止消融,操作十分不便;同时存在因注意力分散而未及时处理的风险,从而当冷冻温度低于-55℃时还不仅会引起邻近组织损伤,并发症的发生率也比较高。
发明内容
有鉴于此,本发明提供了一种具有温度限制功能的冷冻消融系统及方法,以解决现有技术中存在的一个或多个问题。
根据本发明的一个方面,本发明公开了一种具有温度限制功能的冷冻消融系统,所述系统包括:
具有温度限制功能的冷冻消融系统,其特征在于,所述冷冻消融系统包括导管、流体输送单元以及控制单元,所述导管的末端设有冷冻球囊,所述流体输送单元用于向所述冷冻球囊内输送冷冻液体,所述控制单元包括温度限制回路,所述温度限制回路用于基于预设的温度限制值及所述冷冻球囊的温度控制所述流体输送单元输送至所述冷冻球囊的流体,以使所述冷冻球囊的温度不低于所述预设的温度限制值。
在本发明的一些实施例中,所述温度限制回路包括:温度采集装置、温度比较模块以及调节量计算模块,所述温度采集装置用于采集所述冷冻球囊的温度,所述温度比较模块用于将所述冷冻球囊的温度和所述预设的温度限制值的差值与预设温度差阈值进行比较,所述调节量计算模块用于基于所述温度采集装置采集到的所述冷冻球囊的温度和所述预设的温度限制值计算流量调节值。
在本发明的一些实施例中,所述控制单元包括:
压力控制回路,所述温度限制回路用于通过所述压力控制回路控制所述流体输送单元输送至所述冷冻球囊的流体;和/或
流量控制回路,在所述冷冻球囊的温度和所述预设的温度限制值的差值大于所述预设温度差阈值时,所述流量控制回路通过所述压力控制回路控制所述流体输送单元输送至所述冷冻球囊的流体。
在本发明的一些实施例中,
所述流量控制回路包括:流量采集装置及流量比较模块,所述流量采集装置用于采集流经所述冷冻球囊的冷冻液体的流量,所述流量比较模块用于将采集到的所述流量与目标流量值进行比较;
所述压力控制回路包括压力检测装置、驱动器及比例阀,所述压力检测装置用于采集流经所述冷冻球囊的冷冻液体的压力,所述驱动器基于所述压力检测装置采集到的所述压力控制所述比例阀。
在本发明的一些实施例中,所述流量调节值的计算公式为:
ΔQ=a*(T-T k)+b*(T k-T k-1);
其中,ΔQ 1为流量调节值;a b均为系数;T为预设的温度限制值;T k为当前时刻的冷冻球囊的温度;T k-1为Δt时刻前的冷冻球囊的温度,Δt的取值范围为0.5s~3s。
在本发明的一些实施例中,
在初次进行流量调节时,a的取值范围为10~50,b的取值范围为-500~-1000;
在初次之后进行流量调节时,a的取值范围为10~50,b的取值范围为-10~-50。
在本发明的一些实施例中,所述预设的温度限制值为预先存储在所述控制单元内的参数,并能够通过所述控制单元的人机交互模块进行设定。
根据本发明的另一方面,还公开了一种限制冷冻球囊最低温度的方法,所述方法包括:基于预设的温度限制值及采集到的冷冻球囊的温度控制流体输送单元输送至所述冷冻球囊的流体,以使所述冷冻球囊的温度不低于预设的温度限制值。
在本发明的一些实施例中,基于预设的温度限制值及采集到的冷冻球囊的温度控制流体输送单元输送至所述冷冻球囊的流体,包括:
实时采集所述冷冻球囊的温度,并计算所述冷冻球囊的温度与预设的温度限制值的差值;
判断冷冻球囊的温度与预设的温度限制值的差值是否大于预设温度差阈值;
在冷冻球囊的温度与预设的温度限制值的差值不大于所述预设温度差阈值的情况下,基于预设的温度限制值及采集到的冷冻球囊的温度计算流量调节值,并基于所述流量调节值控制流体输送单元输送至所述冷冻球囊的流体。
在本发明的一些实施例中,所述流量调节值的计算公式为:
ΔQ=a*(T-T k)+b*(T k-T k-1);
其中,ΔQ为流量调节值;a b均为系数;T为预设的温度限制值;T k为当前时刻的冷冻球囊的温度;T k-1为Δt时刻前的冷冻球囊的温度,Δt的取值范围为0.5s~3s。
本发明所公开的具有温度限制功能的冷冻消融系统及方法,通过温度限制回路限制冷冻球囊的温度不低于预设的温度限制值,从而使冷冻球囊的最低温度保持在理想温度范围,从而在手术过程中不需要医生时刻关注系统显示的温度,可确保医生的注意力集中;另外,该系统还防止了由于冷冻温度过低而过度消融现象的发生,避免了邻近组织的损伤,提高了系统的安全性,还降低了如膈神经损伤、食道损伤、肺静脉狭窄及迷走神经反射伴严重心动过缓等并发症的发生率。
本发明的附加优点、目的,以及特征将在下面的描述中将部分地加以阐述,且将对于本领域普通技术人员在研究下文后部分地变得明显,或者可以根据本发明的实践而获知。本发明的目的和其它优点可以通过在书面说明及其权利要求书以及附图中具体指出的结构实现到并获得。
本领域技术人员将会理解的是,能够用本发明实现的目的和优点不限于以上具体所述,并且根据以下详细说明将更清楚地理解本发明能够实现的上述和其他目的。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。附图中的部件不是成比例绘制的,而只是为了示出本发明的原理。为了便于示出和描述本发明的一些部分,附图中对应部分可能被放大,即,相对于依据本发明实际制造的示例性装置中的其它部件可能变得更大。在附图中:
图1为本发明一实施例的具有温度限制功能的冷冻消融系统的结构示意图。
图2为本发明一实施例的冷冻消融仪的结构示意图。
图3为本发明一实施例的控制单元的人机交互模块的界面示意图。
图4为本发明一实施例的流量控制回路的控制流程示意图。
图5为本发明一实施例的温度限制回路的控制流程示意图。
图6为对冷冻消融最低温进行限制和不限制的温度曲线对比图。
图7为对冷冻消融最低温进行限制和不限制的流量曲线对比图。
图8为本发明另一实施例的温度限制回路的控制流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不 作为对本发明的限定。
在此,需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
应该强调,术语“包括/包含/具有”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。
图1为本发明一实施例的具有温度限制功能的冷冻消融系统的结构示意图,从图1中可以看出,该冷冻消融系统至少包括导管、流体输送单元以及控制单元,所述导管的末端设有冷冻球囊100,所述流体输送单元用于向所述冷冻球囊100内输送冷冻液体,所述控制单元包括温度限制回路,所述温度限制回路用于基于预设的温度限制值及所述冷冻球囊100的温度控制所述流体输送单元输送至所述冷冻球囊100的流体,以使所述冷冻球囊100的温度不低于所述预设的温度限制值。
在冷冻消融过程中,具体的需要采用图2所示的冷冻消融仪完成,该冷冻消融仪主要包括主机500和无菌附件,而无菌附件主要包括同轴流体连接管、电缆连线、手动回缩器套包等;而冷冻消融仪主机500主要包括控制单元。进行冷冻消融时,首先按照冷冻消融仪的操作说明书准备设备,通过同轴流体连接管及电缆连线将冷冻消融仪主机500与冷冻消融球囊导管连接;按照手术流程将球囊导管置入人体左心房,进行定位、充气、封堵;进而可通过温度采集装置210实时采集球囊表面的温度。
具体的,预设的温度限制值为预先存储在所述控制单元内的参数,并能够通过所述控制单元的人机交互模块进行设定。控制单元的人机交互模块除了设置温度限制值之外,还可实现温度限制回路的开启与关闭。控制单元的人机交互模块可包括工控机、触屏显示器及相关软件,其显示界面如图3所示,从图3中可以看出,通过操作触摸显示器510上的“+”“-”按键可提高或减小温度限制值,并通过点击界面中“Temp Control”按钮可使温度限制回路处于“ON”状态或“OFF”状态。当温度限制回路处于“ON”状态时,该系统则可将冷冻球囊100的温度限制在预设温度值之上。对于预设的温度限制值可根据手术者的具体情况进行设定,一般设置范围为-40℃~-60℃,间隔1℃;在一些情况下,也可将该温度限制回路的默认温度限制值设为-55℃,即该冷冻消融系统的安全温度默认为-55℃。
进一步的,该人机交互模块的显示界面上还可实时显示手术过程中的各项系统参数,比如球囊内温度、进气压力、消融流量、主机气瓶的重量、消融时间等。
应当理解的是,上述实施例中的通过所述控制单元的人机交互模块设定温度限制值或启闭温度限制回路仅是一种较优方式,在其他示例性中,也可通过机械旋钮开关对温度限制值进行调节,或通过机械按钮实现温度限制回路的开启或关闭。
示例性的,所述温度限制回路包括:温度采集装置210、温度比较模块220以及调节量计算模块230,所述温度采集装置210用于采集所述冷冻球囊100的温度,所述温度比较模块220用于将采集到的所述冷冻球囊100的温度和所述预设的温度限制值的差值与预设温度差阈值进行比较,所述调节量计算模块230用于基于所述温度采集装置210采集到的所述冷冻球囊100的温度和所述预设的温度限制值计算流量调节值。
其中,温度采集装置210具体的可为球囊温度传感器,球囊温度传感器用于监测消融过程中球囊的温度参数。“预设温度差阈值”为预先存储在系统内的参数,该参数用于判断球囊温度传感器采集到的球囊温度是否需要进行温度限制;例如,球囊的当前温度记为T k,预设的温度限制值记为T,而预设的温度差阈值记为T 0,则此时将当前温度T k减去限制设置温度T之后得到的差值定义为ΔT,并将计算得到的ΔT与T 0进行比较;当ΔT小于T 0或等于T 0时,则需要通过温度限制回路对冷冻球囊100进行温度限制。
示例性的,T 0的值范围可以为2℃~10℃,而不同型号的球囊可能会有所差异。假设预设的温度限制值为-55℃,而T 0为5℃,开始消融时,球囊初始温度约为37℃(即体温),ΔT=37℃-(-55℃)=92℃,此时冷冻球囊100的温度和所述预设的温度限制值的差值大于T 0,则该系统的控制单元不对冷冻球囊100进行温度限制;而随着消融的进行,球囊温度越来越低,当球囊温度降至-50℃时,此时ΔT=T 0,则该系统将切换至温度限制闭环控制,即该系统通过温度限制回路将冷冻球囊100的温度限制在预设的温度限制值之上。
在本发明一实施例中,控制单元还包括:压力控制回路,所述温度限制回路用于通过所述压力控制回路控制所述流体输送单元输送至所述冷冻球囊100的流体。参考图1,压力控制回路可包括压力检测装置410、驱动器及比例阀420,所述压力检测装置410可为进气压力传感器,用于采集流经所述冷冻球囊100的冷冻液体的压力或所述冷冻球囊的进气压力,所述驱动器基于所述压力检测装置410采集到的所述压力控制所述比例阀420,进一步的控制流经冷冻球囊100的冷冻液体的流量,以达到限制冷冻球囊100最低温度的目的。
另外,控制单元也可包括流量控制回路,在所述冷冻球囊100的温度和所述预设的温 度限制值的差值大于所述预设温度差阈值时,所述流量控制回路通过所述压力控制回路控制所述流体输送单元输送至所述冷冻球囊100的流体。该流量控制回路具体的包括流量采集装置及流量比较模块320,所述流量采集装置310用于采集流经所述冷冻球囊100的冷冻液体的流量,所述流量比较模块320用于将采集到的所述流量与目标流量值进行比较。流量采集装置具体的可为制冷工质质量流量计。
进一步的,该冷冻消融系统的控制单元可通过用于采集各传感器信号并进行转换处理及逻辑控制的PLC(Programmable Logic Controller,可编程逻辑控制器)实现。PLC具有可靠性高、编程容易、组态灵活、安装方便、运行速度快等优点,而除了通过PLC进行控制外,也可通过设计PCBA的方式来是实现控制功能,PCBA方式具有较大扩展性、且成本也相对较低。
在上述实施例中,当冷冻球囊100的温度和所述预设的温度限制值的差值大于所述预设温度差阈值时,不需要启动温度限制功能,即不需要采用温度限制回路对冷冻球囊100进行最低温度限制,此时该冷冻消融系统处于流量闭环控制状态。在冷冻消融系统中,由于工质流通管道结构已经固定,冷冻液体的输送压力直接决定了管路的流量,因而此时可通过对进气压力的直接控制以实现流量的间接控制。参考图1,流量控制回路与压力控制回路串联连接,即在工作过程中,流量采集装置310实时采集流经所述冷冻球囊100的冷冻液体的流量,且进一步的将采集到的流量值与预设的目标流量值进行比较,并将比较结果反馈至压力控制回路。压力控制回路的比例阀420后还设置有压力传感器,以便快速反馈,流量控制回路的比较结果进一步的可通过闭环控制换算调节进气压力,而比例阀驱动器把进气压力快速调节到指定压力,即实现了稳定流量的目的。
需要说明的是,在流量控制消融过程中,开始阶段进气压力使用线性加速的方式给定比例阀420控制器目标压力,即最大流量控制,使球囊流量迅速增加、温度迅速降低;线性增压结束之后进行流量控制,设置0.5s采样与流量调整周期,每0.5s调节进气压力给定值来调节冷冻液体的流量。参考图4,当该系统以流量闭环进行工作时,该系统以稳定的流量进行消融,此时监测到的球囊温度仅仅显示在交互界面上,且系统在整个消融过程中均以使能最大流量控制进行消融,直至消融结束。此时对应的显示界面上的“Temp Control”的状态则为“OFF”,代表此时温度限制回路不进行工作。应当注意的是,不同尺寸的球囊导管对应的目标流量会有所差异,例如,直径为28mm的球囊导管对应的流量为7200sccm,而直径为23mm的球囊导管对应流量为6200sccm。
进一步的,所述流量调节值的计算公式为:ΔQ=a*(T-T k)+b*(T k-T k-1);其中,ΔQ为 流量调节值;a b均为系数;T为预设的温度限制值;T k为当前时刻的冷冻球囊100的温度;T k-1为Δt时刻前的冷冻球囊100的温度,Δt的取值范围为0.5s~3s。其中,在初次进行流量调节时,a的取值范围为10~50,b的取值范围为-500~-1000;在初次之后进行流量调节时,a的取值范围为10~50,b的取值范围为-10~-50。
为了进一步的提高对冷冻球囊100温度限制的速率,则可采用分段差值的计算方式,第一次介入温度限制闭环控制的流量计算:ΔQ 1=a 1*(T-T k)+b 1*(T k-T k-1),此时a 1的取值范围为10~50,b 1的取值范围为-500~-1000;而在初次流量调节之后,流量的差值计算方式变为:ΔQ=a*(T-T k)+b*(T k-T k-1),且此时a的取值范围为10~50,b的取值范围为-10~-50。在该实施例中,Δt的选择决定了控制系统的动态性能,同时又受制于冷冻消融系统进气压力-流量-球囊温度之间的固有的响应特性,同时也和系统的监测(采样)频率及数据转换、比例阀420的响应时间有关。而经过研究发现,为了能够达到良好的控制效果(能够快速介入温度限制闭环,温度波动小、快速稳定且不低于所设置的限制温度;以及流量波动小并在平稳的过程中进行降低),Δt的取值范围在0.5s~3s之间较为合适。而不难理解的,不同直径的球囊导管其Δt、a 1、b 1、a、b的具体大小也有所差异。
相应的,本发明还公开了一种限制冷冻球囊最低温度的方法,该方法包括基于预设的温度限制值及冷冻球囊的温度控制流体输送单元输送至所述冷冻球囊的流体,以使所述冷冻球囊的温度不低于预设的温度限制值。
参考图5,开始消融之后,通过温度采集装置实时采集球囊的温度,并计算所述冷冻球囊的温度与预设的温度限制值的差值;并将计算得到的冷冻球囊的实际温度与预设的温度限制值的差值与预设的温度差阈值进行比较,即判断冷冻球囊的温度与预设的温度限制值的差值是否大于预设温度差阈值。在冷冻球囊的温度与预设的温度限制值的差值等于或小于预设温度差阈值的情况下,此时球囊温度接近预设温度限制值,则切换为温度闭环控制,即具体的基于预设的温度限制值及冷冻球囊的温度计算流量调节值,并基于所述流量调节值控制流体输送单元输送至所述冷冻球囊的流体。换句话说,当系统处于温度闭环控制状态时,则通过减少制冷剂输送量的方式确保球囊温度不低于设置的安全限制温度,因此以避免因温度过低而引起的冷冻损伤,直至消融结束。
另外,在球囊实际温度未接近到预设的温度限制值之前(实际温度与限制温度差值大于温度差阈值),则系统以流量闭环进行工作。
示例性的,所述流量调节值的计算公式为:ΔQ=a*(T-T k)+b*(T k-T k-1);其中,ΔQ 1为流量调节值;a b均为系数;T为预设的温度限制值;T k为当前时刻的冷冻球囊100的温 度;T k-1为Δt时刻前的冷冻球囊100的温度,Δt的取值范围为0.5s~3s。
该冷冻消融系统及方法,通过流量闭环及温度限制闭环双重控制,在确保避免因温度过低而过度消融引起冷冻损伤的前提下,也满足冷冻消融治疗房颤对冷量的要求,提高了系统的安全性。另外,由于中华医学会心电生理和起搏分会与中国医师协会心律学专业委员会共同倡导并组织撰写的《经冷冻球囊导管消融心房颤动中国专家共识2020》中有关冷冻球囊消融的并发症主要有以下几种:膈神经损伤、食道损伤、肺静脉狭窄、心脏压塞、股动脉损伤、血栓/空气栓塞、迷走神经反射伴严重心动过缓,而膈神经损伤、食道损伤、肺静脉狭窄及迷走神经反射伴严重心动过缓这四个并发症均与温度过低、过度消融密切相关,若在手术过程中采用本发明所公开的冷冻消融系统或方法进行冷冻消融,则能够确保肺静脉隔离消融过程中球囊温度不低于安全温度,避免邻近组织的损伤,从而降低并发症的发生率。
为了进一步说明本发明的冷冻消融系统及方法的优点,以下将通过一个具体示例对限制球囊最低温度和不限制球囊最低温度的两种情况进行对比,该两种情况为同一热负载条件,且温度限制值设为-40℃,消融时间为180s。
图6为对冷冻消融最低温进行限制和不限制的温度曲线对比图,由该曲线图可见,对球囊不进行最低温度限制时,球囊温度迅速降低,30秒之后系统稳定运行在低于-40℃的球囊温度区间,最低温度约为-48℃;对球囊进行最低温度限制后,系统在球囊温度接近-40℃时快速响应,很快稳定,整个过程中不低于-40℃直至消融结束。
而图7为对冷冻消融最低温进行限制和不限制的流量曲线对比图,参考图7,对球囊不进行最低温度限制时,球囊流量在开始消融之后迅速增加到目标流量(图示实施例为28mm球囊,对应目标流量为7200sccm),流量在整个消融过程中保持稳定;对球囊进行最低温度限制时,球囊流量在开始消融之后也迅速增加到目标流量,同时温度迅速降低,当温度快接近-40℃时,流量降到7200sccm以下,随着消融的进行,球囊温度不再降低,同时流量也在逐步稳定在5500~6500之间,在确保球囊温度不低于设置的安全限制温度的前提下,避免因温度过低而引起的冷冻损伤,又保持一定的冷冻流量以确保肺静脉电隔离的效果,直至消融结束。
另外,图8为本发明另一实施例中较简单的一种的温度限制流程方法,在该方法中,可设定限制温度,当在消融过程中,检测到球囊实际温度低于温度限制值时,系统自动中止消融,切断冷冻液体的输入,球囊进入复温。
本领域普通技术人员应该可以明白,结合本文中所公开的实施方式描述的各示例性的 组成部分、系统及方法,能够以硬件、软件或者二者的结合来实现。具体究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本发明的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本发明中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本发明不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
本发明中,针对一个实施方式描述和/或例示的特征,可以在一个或更多个其它实施方式中以相同方式或以类似方式使用,和/或与其他实施方式的特征相结合或代替其他实施方式的特征。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明实施例可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种具有温度限制功能的冷冻消融系统,其特征在于,所述冷冻消融系统包括导管、流体输送单元以及控制单元,所述导管的末端设有冷冻球囊,所述流体输送单元用于向所述冷冻球囊内输送冷冻液体,所述控制单元包括温度限制回路,所述温度限制回路用于基于预设的温度限制值及所述冷冻球囊的温度控制所述流体输送单元输送至所述冷冻球囊的流体,以使所述冷冻球囊的温度不低于所述预设的温度限制值;
    其中,所述温度限制回路包括:温度采集装置、温度比较模块以及调节量计算模块,所述温度采集装置用于采集所述冷冻球囊的温度,所述温度比较模块用于将所述冷冻球囊的温度和所述预设的温度限制值的差值与预设温度差阈值进行比较,所述调节量计算模块用于基于所述温度采集装置采集到的所述冷冻球囊的温度和所述预设的温度限制值计算流量调节值;
    所述流量调节值的计算公式为:
    ΔQ=a*(T-T k)+b*(T k-T k-1);
    其中,ΔQ 1为流量调节值;a、b均为系数;T为预设的温度限制值;T k为当前时刻的冷冻球囊的温度;T k-1为Δt时刻前的冷冻球囊的温度,Δt的取值范围为0.5s~3s。。
  2. 根据权利要求1所述的具有温度限制功能的冷冻消融系统,其特征在于,所述控制单元包括:
    压力控制回路,所述温度限制回路用于通过所述压力控制回路控制所述流体输送单元输送至所述冷冻球囊的流体;和/或
    流量控制回路,在所述冷冻球囊的温度和所述预设的温度限制值的差值大于所述预设温度差阈值时,所述流量控制回路通过所述压力控制回路控制所述流体输送单元输送至所述冷冻球囊的流体。
  3. 根据权利要求2所述的具有温度限制功能的冷冻消融系统,其特征在于,
    所述流量控制回路包括:流量采集装置及流量比较模块,所述流量采集装置用于采集流经所述冷冻球囊的冷冻液体的流量,所述流量比较模块用于将采集到的所述流量与目标流量值进行比较;
    所述压力控制回路包括压力检测装置、驱动器及比例阀,所述压力检测装置用于 采集流经所述冷冻球囊的冷冻液体的压力,所述驱动器基于所述压力检测装置采集到的压力控制所述比例阀。
  4. 根据权利要求1所述的具有温度限制功能的冷冻消融系统,其特征在于,
    在初次进行流量调节时,a的取值范围为10~50,b的取值范围为-500~-1000;
    在初次之后进行流量调节时,a的取值范围为10~50,b的取值范围为-10~-50。
  5. 根据权利要求1至4中任意一项所述的具有温度限制功能的冷冻消融系统,其特征在于,所述预设的温度限制值为预先存储在所述控制单元内的参数,并能够通过所述控制单元的人机交互模块进行设定。
PCT/CN2022/125981 2021-12-30 2022-10-18 具有温度限制功能的冷冻消融系统及方法 WO2023124426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111664041.7 2021-12-30
CN202111664041.7A CN114469311B (zh) 2021-12-30 2021-12-30 具有温度限制功能的冷冻消融系统

Publications (1)

Publication Number Publication Date
WO2023124426A1 true WO2023124426A1 (zh) 2023-07-06

Family

ID=81497400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125981 WO2023124426A1 (zh) 2021-12-30 2022-10-18 具有温度限制功能的冷冻消融系统及方法

Country Status (2)

Country Link
CN (1) CN114469311B (zh)
WO (1) WO2023124426A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114469311B (zh) * 2021-12-30 2022-10-28 心诺普医疗技术(北京)有限公司 具有温度限制功能的冷冻消融系统
CN116458983B (zh) * 2023-04-07 2024-02-13 心诺普医疗技术(北京)有限公司 降温速率可控的冷冻消融系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140276698A1 (en) * 2013-03-14 2014-09-18 Medtronic Cryocath Lp Method and apparatus for cryoadhesion
CN209332253U (zh) * 2018-08-24 2019-09-03 康沣生物科技(上海)有限公司 一种利用流量控制冷冻温度的冷冻消融系统
CN110464444A (zh) * 2019-08-14 2019-11-19 心诺普医疗技术(北京)有限公司 一种温度可控的冷冻消融系统
CN111329575A (zh) * 2020-03-04 2020-06-26 上海微创电生理医疗科技股份有限公司 冷冻球囊导管系统
CN111529047A (zh) * 2020-06-23 2020-08-14 上海微创电生理医疗科技股份有限公司 冷冻消融温度控制方法、系统及介质
CN113729917A (zh) * 2021-11-08 2021-12-03 海杰亚(北京)医疗器械有限公司 一种冷冻消融温度控制方法、装置及冷冻手术系统
CN114469311A (zh) * 2021-12-30 2022-05-13 心诺普医疗技术(北京)有限公司 具有温度限制功能的冷冻消融系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676837B (zh) * 2015-02-11 2017-08-25 广州市科维机电设备安装有限公司 应用于中央空调冷冻水系统全程温差控制的变频节能方法
CN107307901B (zh) * 2017-06-22 2021-05-11 心诺普医疗技术(北京)有限公司 一种冷冻消融系统
CN210811484U (zh) * 2018-09-14 2020-06-23 杭州堃博生物科技有限公司 利于换热介质分配的射频消融导管
CN111214288A (zh) * 2019-12-24 2020-06-02 杭州诺诚医疗器械有限公司 射频消融功率的输出控制方法和装置、以及射频消融系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140276698A1 (en) * 2013-03-14 2014-09-18 Medtronic Cryocath Lp Method and apparatus for cryoadhesion
CN209332253U (zh) * 2018-08-24 2019-09-03 康沣生物科技(上海)有限公司 一种利用流量控制冷冻温度的冷冻消融系统
CN110464444A (zh) * 2019-08-14 2019-11-19 心诺普医疗技术(北京)有限公司 一种温度可控的冷冻消融系统
CN111329575A (zh) * 2020-03-04 2020-06-26 上海微创电生理医疗科技股份有限公司 冷冻球囊导管系统
CN111529047A (zh) * 2020-06-23 2020-08-14 上海微创电生理医疗科技股份有限公司 冷冻消融温度控制方法、系统及介质
CN113729917A (zh) * 2021-11-08 2021-12-03 海杰亚(北京)医疗器械有限公司 一种冷冻消融温度控制方法、装置及冷冻手术系统
CN114469311A (zh) * 2021-12-30 2022-05-13 心诺普医疗技术(北京)有限公司 具有温度限制功能的冷冻消融系统及方法

Also Published As

Publication number Publication date
CN114469311B (zh) 2022-10-28
CN114469311A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023124426A1 (zh) 具有温度限制功能的冷冻消融系统及方法
US9750555B2 (en) Method and apparatus for cryoadhesion
US11406437B2 (en) Monitoring and controlling internally administered cryotherapy
US11653968B2 (en) Cryoablation method and system
EP1398002B1 (en) Refrigeration source for a cryoablation catheter
US8672930B2 (en) Endoluminal ablation cryoballoon and method
EP1881795B1 (en) Contact assessment of balloon catheters
CN103025258B (zh) 双注射管低温导管及其使用方法
CN209332253U (zh) 一种利用流量控制冷冻温度的冷冻消融系统
CA2651832A1 (en) Precooled cryogenic medical system
WO2005095843A1 (en) Pressure-temperature control for a cryoablation catheter system
Rawandale-Patil et al. Development of an innovative intrarenal pressure regulation system for mini-PCNL: a preliminary study
US10058312B2 (en) Systems and methods for cryoadhesive transseptal punctures
CN113952021B (zh) 一种冷冻高频能量系统及其控制方法
CN116458983B (zh) 降温速率可控的冷冻消融系统及方法
CN115886973A (zh) 冷冻球囊控制装置
US20230329778A1 (en) Electrosurgical smoke evacuation for surgical procedures
CN209316044U (zh) 一种冷冻消融导管
CN113100911A (zh) 一种冷冻消融系统及气源更换方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913690

Country of ref document: EP

Kind code of ref document: A1