WO2021254256A1 - 一种回收碳纤维的再处理方法 - Google Patents

一种回收碳纤维的再处理方法 Download PDF

Info

Publication number
WO2021254256A1
WO2021254256A1 PCT/CN2021/099540 CN2021099540W WO2021254256A1 WO 2021254256 A1 WO2021254256 A1 WO 2021254256A1 CN 2021099540 W CN2021099540 W CN 2021099540W WO 2021254256 A1 WO2021254256 A1 WO 2021254256A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
recycled carbon
reprocessing
recycled
carbon fibers
Prior art date
Application number
PCT/CN2021/099540
Other languages
English (en)
French (fr)
Inventor
李华
陈浩昌
蔡云丽
张舜喆
陈玉洁
刘河洲
丁文江
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2021254256A1 publication Critical patent/WO2021254256A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G11/00Disintegrating fibre-containing articles to obtain fibres for re-use
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/66Disintegrating fibre-containing textile articles to obtain fibres for re-use

Definitions

  • the present invention relates to a recycling of carbon fibers, in particular to a reprocessing method of recycled carbon fibers.
  • Resin-based carbon fiber composite material (“composite material” for short) is based on thermosetting resin or thermoplastic resin, connected to carbon fiber and its fabric (unidirectional cloth, two-dimensional woven cloth, three-dimensional woven preform, etc.) or chopped dispersed fiber It is a reinforced composite material. It has high specific strength, high specific stiffness, high corrosion resistance, excellent performance and structural design and flexible formability. It has been widely used in defense, aerospace, aviation, automotive, energy, construction and other fields, and has become the above-mentioned important One of the pillar materials in the field. With the expansion of the application field of composite material components, the recycling of composite material components and waste materials has become an important economic and environmental issue.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art and provide a reprocessing method for recycled carbon fiber, which can effectively improve the performance of carbon fiber tow, improve the performance stability of carbon fiber felt, and improve the overall performance of composite materials. .
  • a reprocessing method for recycled carbon fiber characterized in that it comprises the following steps:
  • the recycled carbon fiber described in step (1) is a mixture of one or more of chopped fiber, continuous carbon fiber, two-dimensional carbon fiber fabric or three-dimensional carbon fiber fabric recovered by pyrolysis, solution dissolution or supercritical dissolution.
  • Step (1) The method of recycling carbon fiber to make recycled carbon fiber felt is to slit the recycled carbon fiber (if the size and shape are suitable, it does not need to be slit), and non-woven molding (using needle punching and other molding methods) to make recycled carbon fiber felt body.
  • Step (2) Cut the recycled carbon fiber felt body into rectangular felt pieces before cleaning.
  • the cleaning agent used in the cleaning process of step (2) and step (3) is one or more of ethanol, acetone, dichloromethane, trichloroethylene, tetrachloroethylene, chloroform or carbon tetrachloride, which is used to remove the Treatment of grease and impurities on the surface of recycled carbon fiber and removal of residual adhesives and impurities on the surface of recycled carbon fiber after treatment.
  • the lugs are copper foil, thin copper electrodes, thin graphite electrodes or a combination thereof.
  • step (3) the lugs are bonded to the two ends of the recycled carbon fiber felt body by an adhesive, and the adhesive is one or more of conductive silver paste, conductive adhesive IAC, and conductive adhesive ACA.
  • Step (3) The high-voltage electrical treatment is performed in a protective atmosphere, wherein the protective atmosphere is an argon atmosphere, a nitrogen atmosphere, or a combination thereof.
  • Step (3) During the high-voltage electrical treatment process, the applied voltage density is 1V/cm 2 ⁇ 5V/cm 2 , and the treatment time is 10s ⁇ 300s. More preferably, the voltage density is 3V/cm 2 to 4V/cm 2 , and the treatment time is 60s to 120s.
  • the carbon fiber felt is at a high temperature (>2000K) during the high-voltage electrical treatment process, which is close to the graphitization temperature of the carbon material, so the graphitization degree of the carbon fiber tow is improved, and the cracks and defects on the carbon fiber can be effectively treated. Repair, realize the improvement of carbon fiber mechanical properties, electrical and thermal conductivity.
  • the remaining resin and surfactant on the surface of the recycled carbon fiber can be further removed at high temperatures, which can further improve the interface performance between the fiber and the resin matrix and improve the overall performance of the composite material.
  • the application mode of the energized and reprocessed recycled carbon fiber obtained in the present invention includes further sizing treatment, application as a thermoplastic or thermosetting resin-based composite material; application as a functional composite material such as electrical conductivity and heat conduction; application as a functional material such as an electric heating element; Applied as functional materials such as electrocatalysis and energy storage.
  • the present invention has the following beneficial effects:
  • the present invention aims at the problems of messy morphology, performance dispersion, and performance loss of recycled carbon fiber. By remaking a felt body, and then applying high voltage at both ends of it, it can treat carbon fiber filaments with different shapes and unstable performance.
  • the rapid processing of the tow can effectively improve the performance of the carbon fiber tow, improve the performance stability of the carbon fiber felt body, improve the comprehensive performance of the composite material, and expand the recycling field of recycled carbon fiber.
  • the present invention is applicable to recycled carbon fibers with different surface residual resins and different processing methods, has high versatility, and can significantly reduce the processing time.
  • the defects in the recycled carbon fiber tow through reprocessing can be effectively repaired, which is manifested by the improvement of mechanical properties, electrical and thermal conductivity, and the lap joints in the fabric are effectively "welded".
  • the performance of the carbon fiber fabric is stable and uniform, and it is suitable as a Reinforcement is used in the preparation of high-performance composite materials, which can effectively promote the reuse of recycled carbon fiber and expand its application fields.
  • the present invention requires short processing time, can realize the improvement of the mechanical, electrical and thermal conductivity properties of the recycled carbon fiber under low energy consumption, and can effectively improve the interface performance between the carbon fiber and the resin matrix.
  • the recycled carbon fiber after energization and reprocessing is suitable for use as a reinforcement or functional body, and re-prepared into a composite material for reuse. It has huge application prospects as a mechanical component or electric heating function, and will strongly promote the high value-added reuse of recycled carbon fiber Technology development.
  • the carbon fiber fabric reprocessed by the present invention is suitable for use as a mechanical reinforcement or an electric heating function, and is prepared into a composite material integrating structure and function, which can effectively promote the development of high value-added reuse technology of recycled carbon fiber.
  • Figure 1 is a reprocessing device for recycling carbon fiber of the present invention
  • Fig. 2 is a schematic diagram of the reprocessing method of recycled carbon fiber according to the present invention.
  • the present invention first arranges the recycled messy carbon fiber to make a felt body, then cuts it into a regular rectangular recycled carbon fiber felt body 1, and connects lugs 2 to both ends of the felt body and places it in a sealed
  • the two ends of the lugs 2 are connected to the stabilized DC power supply 4 through wires, and a high voltage is applied to the two ends of the recycled carbon fiber felt body 1, using the principle of Joule heat to make the recycled carbon fiber felt body 1
  • a very high temperature >1600K
  • the high temperature can further remove the residual resin, surfactant and other impurities on the surface of the recycled carbon fiber, and can improve the interface performance between the carbon fiber and the resin matrix.
  • this extremely high temperature is conducive to the graphitization of carbon, so this electrification treatment can repair defects in the carbon fiber tow and realize the connection of the carbon fiber tow overlap.
  • the schematic diagram is shown in Figure 2. From a macro point of view, it can significantly improve the mechanical properties of carbon fiber felt; at the same time, the increase in the degree of graphitization can also effectively improve the electrical and thermal conductivity of carbon fiber felt. In addition, since the lap joint of the carbon fiber tow is realized during the energization process, the performance of the felt body becomes more uniform, which effectively improves the performance stability of the felt body.
  • the bidirectional carbon fiber cloth recovered by pyrolysis was ultrasonically cleaned with ethanol, and the cleaning time was 1 h. Then, the cleaned carbon fiber cloth was placed in a vacuum oven at 60° C. and dried for 12 hours. Subsequently, the recycled carbon fiber cloth is non-woven and cut into rectangular pieces of 10 cm x 5 cm for use. Using conductive silver paste, two pieces of copper sheet electrodes with a size of 4cm ⁇ 5cm were adhered on both sides of the cut recycled carbon fiber cloth sheet, placed in a vacuum oven at 70°C, and dried for 3 hours. The dried sample is transferred to a closed box with an argon protective atmosphere, and the positive and negative electrodes of the regulated DC power supply are connected with the copper electrode.
  • the carbon fiber cloth was energized with a voltage of 150V, the voltage density was 3V/cm2, and the energization time was 1min. After electrifying, take out the sample, remove the copper electrode lead ears at both ends, clean the energized carbon fiber with acetone to remove residual adhesive and impurities, and dry it in a vacuum oven at 60°C for 12 hours to obtain a solid sample.
  • thermosetting resin-based composite material using bisphenol A epoxy resin (E-51) as the resin matrix, methyl Nadic anhydride as the curing agent, and tertiary amine salt as the The accelerator is mixed uniformly at room temperature, and the mass ratio of resin, curing agent and accelerator is 100:98.5:4.
  • the vacuum-assisted molding process is used for molding, and the curing system is 100°C for 1h+130°C for 4h to obtain a carbon fiber reinforced composite material.
  • the composite material with carbon fiber before treatment as the reinforcement has a tensile strength of 377.4MPa and a flexural strength of 449.3MPa; and the composite material made of carbon fiber after energization treatment has a tensile strength of 430.6MPa and a flexural strength of 430.6MPa. 503.9MPa, which shows that the energization treatment effectively repairs the defects in the carbon fiber tow, and at the same time realizes "welding" the overlap of the carbon fiber cloth, which significantly improves the mechanical properties of the carbon fiber fabric.
  • the carbon fiber precursor obtained by the supercritical dissolution thermosetting composite material method was ultrasonically cleaned, and the cleaning time was 1 h. Then, the cleaned carbon fiber cloth was placed in a vacuum oven at 60° C. and dried for 12 hours. Subsequently, the recycled carbon fiber cloth is non-woven and cut into 8cm ⁇ 6cm rectangular pieces for later use.
  • Use conductive adhesive IAC to bond two pieces of copper foil with a size of 6cm ⁇ 5cm on both sides of the cut recycled carbon fiber cloth pieces, place them in a vacuum oven at 70°C, and dry for 3 hours.
  • the dried sample is transferred to a closed box with an argon protective atmosphere, and the positive and negative electrodes of the regulated DC power supply are connected with the copper foil.
  • the carbon fiber cloth was energized with a voltage of 120V, the voltage density was 2.5V/cm 2 , and the energization time was 3 minutes. After electrifying, take out the sample, remove the copper foil lugs at both ends, clean the energized carbon fiber with acetone to remove residual adhesive and impurities, and dry it in a vacuum oven at 60°C for 12 hours to obtain a solid sample.
  • the carbon fiber cloth before and after the electrification treatment is used as a reinforcement to prepare a thermosetting resin-based composite material, using bisphenol A epoxy resin (E-48) as the resin matrix, triethylenetetramine as the curing agent, and tertiary amine salt as the accelerator , Mix uniformly at room temperature, and the mass ratio of resin, curing agent and accelerator is 100:15:2.
  • a vacuum-assisted molding process is used for molding, and the curing system is curing at room temperature for 24 hours to obtain a carbon fiber reinforced composite material.
  • the composite material with carbon fiber before treatment as the reinforcement has a tensile strength of 280.3MPa and a bending strength of 322.7MPa; and the composite material made of carbon fiber after energization treatment has a tensile strength of 348.6MPa and a bending strength of 348.6MPa. 385.5MPa, which shows that energization treatment can significantly improve the mechanical properties of composite materials and increase the high value-added reuse value of recycled carbon fiber.
  • the applied voltage density is 1V/cm 2 , and the treatment time is 300 s.
  • the rest is the same as in Example 1.
  • thermosetting resin-based composite material using bisphenol A epoxy resin (E-51) as the resin matrix, methyl Nadic anhydride as the curing agent, and tertiary amine salt as the The accelerator is mixed uniformly at room temperature, and the mass ratio of resin, curing agent and accelerator is 100:98.5:4.
  • the vacuum-assisted molding process is used for molding, and the curing system is 100°C for 1h+130°C for 4h to obtain a carbon fiber reinforced composite material.
  • the composite material with carbon fiber before treatment as the reinforcement has a tensile strength of 377.4MPa and a flexural strength of 449.3MPa; while the composite material made of carbon fiber after energization treatment has a tensile strength of 440.3MPa and a flexural strength of 440.3MPa 510.5MPa, which shows that the energization treatment effectively repairs the defects in the carbon fiber tow, and at the same time realizes "welding" the overlap of the carbon fiber cloth, which significantly improves the mechanical properties of the carbon fiber fabric.
  • the applied voltage density is 5V/cm 2 , and the treatment time is 10s.
  • the rest is the same as in Example 1.
  • thermosetting resin-based composite material using bisphenol A epoxy resin (E-51) as the resin matrix, methyl Nadic anhydride as the curing agent, and tertiary amine salt as the The accelerator is mixed uniformly at room temperature, and the mass ratio of resin, curing agent and accelerator is 100:98.5:4.
  • the vacuum-assisted molding process is used for molding, and the curing system is 100°C for 1h+130°C for 4h to obtain a carbon fiber reinforced composite material.
  • the composite material with carbon fiber before treatment as the reinforcement has a tensile strength of 377.4MPa and a bending strength of 449.3MPa; and the composite material made of carbon fiber after energization treatment has a tensile strength of 436.7MPa and a bending strength of 436.7MPa. 495.4MPa, which shows that the energization treatment effectively repairs the defects in the carbon fiber tow, and at the same time realizes the "welding" of the lap joint of the carbon fiber cloth, which significantly improves the mechanical properties of the carbon fiber fabric.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

一种回收碳纤维的再处理方法,包括以下步骤:将回收碳纤维制成回收碳纤维毡体(1);将回收碳纤维毡体清洗,干燥,除去表面杂质;在回收碳纤维毡体的两端接上引耳(2),通过引耳与电源连接,进行高压电处理,处理后取下引耳,进行清洗,干燥,即完成。与现有技术相比,该方法适用范围广,可适用于具有不同树脂残留、利用不同方法回收的碳纤维制品。同时,处理时间短,可保证在较低能耗下实现碳纤维性能的提高。

Description

一种回收碳纤维的再处理方法 技术领域
本发明涉及一种碳纤维的回收,尤其是涉及一种回收碳纤维的再处理方法。
背景技术
树脂基碳纤维复合材料(简称“复合材料”)是以热固型树脂或者热塑性树脂为基体,联系碳纤维及其织物(单向布、二维编织布、三维编织预制体等)或者短切分散纤维为增强体的复合材料。其具有高比强度、高比刚度、高耐蚀性、优良的性能与结构设计性和灵活的成形性,在国防、航天、航空、汽车、能源、建筑等领域已大量应用,已成为上述重要领域的支柱性材料之一。随着复合材料构件应用领域的拓展,复合材料构件及废料的回收已成为重要的经济与环境议题。
鉴于复合材料的易成型性,以及在应用领域和功能上的差异,复合材料构件的形状一般比较复杂,材料体系也不尽相同,这使得复合材料的回收难以通过单一的手段来实现,其中,碳纤维复合材料制品性能优异、造价昂贵,对其高成本的碳纤维甚至高性能树脂基体进行回收再利用,具有重要的战略价值。目前主流的复合材料回收技术主要有高温裂解法,溶液溶解法,超临界溶解法,它们的基本思路均是除去树脂基体,获得碳纤维。在回收的过程中,往往涉及到高温处理或强氧化剂腐蚀的工艺,这会破坏碳纤维丝束的形态,甚至对碳纤维丝束本身造成损伤。因此在碳纤维再利用时,会对回收碳纤维进行裁剪,筛选。由于纤维的形态杂乱、性能分散,裁剪之后难以保证质量的稳定,这限制了以此作为增强体的复合材料的综合性能。此外,纤维的裁剪引入了额外的操作步骤,实施麻烦,同时裁剪后的碳纤维不适用于编织体成型的加工方法,极大地限制了其应用领域,因此,有大量研发人员在研究如何处理回收碳纤维,如中国专利CN108586797A公开了一种废旧的碳纤维PA6复合材料的回收制备方法,这种部分回收方法虽然能够一定程度上保持碳纤维丝束的完整性,但回收过程涉及诸多步骤,不利于进行大规模的回收操作。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种回收碳纤维的再处理方法,可有效地提高碳纤维丝束的性能,提高碳纤维毡体的性能稳定性,改善复合材料的综合性能。
本发明的目的可以通过以下技术方案来实现:一种回收碳纤维的再处理方法,其特征在于,包括以下步骤:
(1)将回收碳纤维制成回收碳纤维毡体;
(2)将回收碳纤维毡体清洗,干燥,除去表面杂质;
(3)在回收碳纤维毡体的两端接上引耳,通过引耳与稳压直流电源的正负极连接,进行高压电处理,处理后取下引耳,进行清洗,干燥,即完成。
步骤(1)所述的回收碳纤维为高温裂解、溶液溶解或超临界溶解回收的短切纤维、连续碳纤维、二维碳纤维织物或三维碳纤维织物中的一种或多种的混合。
步骤(1)回收碳纤维制成回收碳纤维毡体的方法为将回收碳纤维进行分切(若尺寸、形态合适可不用进行分切),无纺成型(使用针刺等成型方法)制成回收碳纤维毡体。
步骤(2)清洗前将回收碳纤维毡体裁剪成矩形毡片。
步骤(2)和步骤(3)清洗过程所用的清洗剂为乙醇、丙酮、二氯甲烷、三氯乙烯、四氯乙烯、氯仿或四氯化碳中的一种或多种,用于除去待处理回收碳纤维表面的油脂与杂质以及除去处理后回收碳纤维表面残余的粘接剂、杂质等。
步骤(3)所述引耳为铜箔、薄片紫铜电极、薄片石墨电极或其组合。
步骤(3)所述引耳通过粘结剂粘结在回收碳纤维毡体的两端,粘接剂为导电银浆、导电胶IAC、导电胶ACA中的一种或多种。
步骤(3)高压电处理在保护气氛中进行,其中保护气氛为氩气气氛、氮气气氛或其组合。
步骤(3)高压电处理过程中,所施加的电压密度为1V/cm 2~5V/cm 2,处理时间为10s~300s。进一步优选,所述的电压密度为3V/cm 2~4V/cm 2,处理时间为60s~120s。
由于碳纤维是良好的电发热体,在给予足够大的电流时,碳纤维本体会迅速升高至极高的温度。在碳纤维毡体中,碳纤维丝束搭接的地方由于缺乏键接,电阻较大,在通电发热的过程中,这些搭接处会成为“热点”,比碳纤维丝束本体发出更高的热量,使碳纤维丝束之间发生共晶格,从而实现纤维之间的“焊接”,提高毡体的均匀性与稳定性。同时,高压电处理过程中碳纤维毡处于高温的状态下(>2000K),接近碳材料的石墨化温度,故提高了碳纤维丝束的石墨化程度,能够有效地对碳纤维上的裂纹、缺陷进行修复,实现碳纤维力学性能,导电、导热性能的提高。此外,在高温下能够进一步除去回收碳纤维表面残余的树脂,表面活性剂等杂质,能够进一步提高纤维与树脂基体之间的界面性能,提高复合材料的综合性能。
本发明所得到的通电再处理回收碳纤维的应用方式包括进行进一步的上浆处理,应用为热塑性或热固性树脂基复合材料;应用为导电、导热等功能复合材料;应用为电加热发热体等功能材料;应用为电催化、储能等功能材料。
与现有技术相比,本发明具有以下有益效果:
1.本发明针对回收碳纤维形态杂乱、性能分散、性能损失较为严重的问题,通过再制成毡体,随后在其两端通以高电压的方法,对形态各异、性能不稳定的碳纤维丝束进行快速的处理,可有效地提高碳纤维丝束的性能,提高碳纤维毡体的性能稳定性,改善复合材料的综合性能,扩大回收碳纤维的再利用领域。本发明与传统的回收碳纤维再加工方法相比,可适用于不同表面残余树脂及不同处理方法的回收碳纤维,具有高的广泛性,并能显著减少处理时间。通过再处理的回收碳纤维丝束中的缺陷能够有效修复,表现为力学性能,导电、导热性的提高,织物中的搭接处得到有效地“焊接”,表现为碳纤维织物性能稳定均匀,适合作为增强体用于高性能复合材料的制备中,这能有力地促进回收碳纤维的再利用以及扩大其应用领域。
2.本发明所需处理时间短,能够在较低能耗下实现回收碳纤维的力学、导电、导热等性能的提高,并能够有效改善碳纤维与树脂基体间的界面性能。通过通电再处理后的回收碳纤维适合作为增强体或功能体,重新制备成复合材料实现再利用,作为力学部件或电热发热功能件具有巨大的应用前景,将有力促进回收碳纤维的高附加值再利用技术的发展。
3.采用本发明再处理后的碳纤维织物适合作为力学增强体或电热功能体使用,制备成集结构、功能一体化的复合材料,可有力地促进回收碳纤维的高附加值再利用技术的发展。
附图说明
图1为本发明回收碳纤维的再处理装置;
图2为本发明回收碳纤维的再处理方法原理图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
以下各实施例中,如无特别说明的原料或处理技术,则表明均为本领域的常规市售原料或常规处理技术。
如图1所示,本发明首先对回收的杂乱碳纤维进行整理,制成毡体,随后将其裁剪成规整的矩形回收碳纤维毡体1,在毡体的两端接上引耳2置于密闭箱体内,在保护气体3的氛围下,引耳2两端通过导线连接稳压直流电源4,对回收碳纤维毡体1的两端施加高电压,利用焦耳热的原理,使得回收碳纤维毡体1在短时间内达到极高的温度(>1600K),高温能够进一步除去回收碳纤维表面残余的树脂、表面活性剂等杂质,能够改善碳纤维与树脂基体间的界面性能。同时,这种极高的温度有利于碳的石墨化,故这种通电处理能够修复碳纤维丝束中的缺陷以及实现碳纤维丝束搭接处的连接,原理图如图2所示。从宏观上来看,能够显著提高碳纤维毡的力学性能;同时,石墨化程度的提高也能有效地提高碳纤维毡的导电、导热性能。此外,由于在通电处理中实现了碳纤维丝束搭接处的“焊接”,这使得毡体的性能变得更为均匀,有效地提高了毡体的性能稳定性。
实施例1:
利用乙醇对热解回收后的双向碳纤维布进行超声清洗,清洗时间为1h。随后将清洗干净后的碳纤维布放置于60℃的真空烘箱中,干燥12h。随后对回收 碳纤维布进行无纺成型,裁剪成10cm×5cm的矩形片备用。利用导电银浆,将两片尺寸为4cm×5cm的紫铜片电极粘接在裁剪后的回收碳纤维布片的两边,放置于70℃的真空烘箱中,干燥3h。将干燥后的样品转移至具有氩气保护气氛的密闭箱体中,将稳压直流电源的正负极与紫铜片电极进行连接。使用150V的电压对碳纤维布进行通电处理,电压密度为3V/cm2,通电时间为1min。通电后取出样品,除去两端的紫铜片电极引耳,使用丙酮对通电处理后的碳纤维进行清洗,除去残余的粘接剂与杂质,在真空烘箱中60℃干燥12h,获得固体样品。
将经通电处理前后的碳纤维布作为增强体,分别制备成热固性树脂基复合材料,使用双酚A环氧树脂(E-51)作为树脂基体,甲基纳迪克酸酐作为固化剂,叔胺盐作为促进剂,在常温下混合均匀,其中树脂、固化剂与促进剂的质量比为100:98.5:4。利用真空辅助模塑成型的工艺进行成型,固化制度为100℃1h+130℃4h,得到碳纤维增强复合材料。经过力学测试,由处理前的碳纤维作为增强体的复合材料,拉伸强度为377.4MPa,弯曲强度为449.3MPa;而由通电处理后碳纤维制得的复合材料拉伸强度达到430.6MPa,弯曲强度为503.9MPa,这表明通电处理有效地修复了碳纤维丝束中的缺陷,同时对碳纤维布的搭接处实现了“焊接”,显著地提高了碳纤维织物的力学性能。
实施例2:
对超临界溶解热固性复合材料方法获得的碳纤维原丝进行超声清洗,清洗时间为1h。随后将清洗干净后的碳纤维布放置于60℃的真空烘箱中,干燥12h。随后对回收碳纤维布进行无纺成型,裁剪成8cm×6cm的矩形片备用。利用导电胶IAC将两片尺寸为6cm×5cm的铜箔粘接在裁剪后的回收碳纤维布片的两边,放置于70℃的真空烘箱中,干燥3h。将干燥后的样品转移至具有氩气保护气氛的密闭箱体中,将稳压直流电源的正负极与铜箔进行连接。使用120V的电压对碳纤维布进行通电处理,电压密度为2.5V/cm 2,通电时间为3min。通电后取出样品,除去两端的铜箔引耳,使用丙酮对通电处理后的碳纤维进行清洗,除去残余的粘接剂与杂质,在真空烘箱中60℃干燥12h,获得固体样品。
利用通电处理前后的碳纤维布作为增强体,分别制备成热固性树脂基复合材料,使用双酚A环氧树脂(E-48)作为树脂基体,三乙烯四胺作为固化剂, 叔胺盐作为促进剂,在常温下混合均匀,其中树脂、固化剂与促进剂的质量比为100:15:2。利用真空辅助模塑成型的工艺进行成型,固化制度为室温下固化24h,得到碳纤维增强复合材料。经过力学测试,由处理前的碳纤维作为增强体的复合材料,拉伸强度为280.3MPa,弯曲强度为322.7MPa;而由通电处理后碳纤维制得的复合材料拉伸强度达到348.6MPa,弯曲强度为385.5MPa,这表明通电处理能显著提高复合材料的力学性能,提高回收碳纤维的高附加值再利用价值。
实施例3
高压电处理过程中,所施加的电压密度为1V/cm 2,处理时间为300s。其余同实施例1。
将经通电处理前后的碳纤维布作为增强体,分别制备成热固性树脂基复合材料,使用双酚A环氧树脂(E-51)作为树脂基体,甲基纳迪克酸酐作为固化剂,叔胺盐作为促进剂,在常温下混合均匀,其中树脂、固化剂与促进剂的质量比为100:98.5:4。利用真空辅助模塑成型的工艺进行成型,固化制度为100℃1h+130℃4h,得到碳纤维增强复合材料。经过力学测试,由处理前的碳纤维作为增强体的复合材料,拉伸强度为377.4MPa,弯曲强度为449.3MPa;而由通电处理后碳纤维制得的复合材料拉伸强度达到440.3MPa,弯曲强度为510.5MPa,这表明通电处理有效地修复了碳纤维丝束中的缺陷,同时对碳纤维布的搭接处实现了“焊接”,显著地提高了碳纤维织物的力学性能。
实施例4
高压电处理过程中,所施加的电压密度为5V/cm 2,处理时间为10s。其余同实施例1。
将经通电处理前后的碳纤维布作为增强体,分别制备成热固性树脂基复合材料,使用双酚A环氧树脂(E-51)作为树脂基体,甲基纳迪克酸酐作为固化剂,叔胺盐作为促进剂,在常温下混合均匀,其中树脂、固化剂与促进剂的质量比为100:98.5:4。利用真空辅助模塑成型的工艺进行成型,固化制度为100℃1h+130℃4h,得到碳纤维增强复合材料。经过力学测试,由处理前的碳纤维作为增强体的复合材料,拉伸强度为377.4MPa,弯曲强度为449.3MPa;而由通电处理后碳纤维制得的复合材料拉伸强度达到436.7MPa,弯曲强度为 495.4MPa,这表明通电处理有效地修复了碳纤维丝束中的缺陷,同时对碳纤维布的搭接处实现了“焊接”,显著地提高了碳纤维织物的力学性能。

Claims (10)

  1. 一种回收碳纤维的再处理方法,其特征在于,包括以下步骤:
    (1)将回收碳纤维制成回收碳纤维毡体;
    (2)将回收碳纤维毡体清洗,干燥,除去表面杂质;
    (3)在回收碳纤维毡体的两端接上引耳,通过引耳与电源连接,进行高压电处理,处理后取下引耳,进行清洗,干燥,即完成。
  2. 根据权利要求1所述的一种回收碳纤维的再处理方法,其特征在于,步骤(1)所述的回收碳纤维为高温裂解、溶液溶解或超临界溶解回收的短切纤维、连续碳纤维、二维碳纤维织物或三维碳纤维织物中的一种或多种的混合。
  3. 根据权利要求1所述的一种回收碳纤维的再处理方法,其特征在于,步骤(1)回收碳纤维制成回收碳纤维毡体的方法为将回收碳纤维进行分切,无纺成型制成回收碳纤维毡体。
  4. 根据权利要求1所述的一种回收碳纤维的再处理方法,其特征在于,步骤(2)清洗前将回收碳纤维毡体裁剪成矩形毡片。
  5. 根据权利要求1所述的一种回收碳纤维的再处理方法,其特征在于,步骤(2)和步骤(3)清洗过程所用的清洗剂为乙醇、丙酮、二氯甲烷、三氯乙烯、四氯乙烯、氯仿或四氯化碳中的一种或多种。
  6. 根据权利要求1所述的一种回收碳纤维的再处理方法,其特征在于,步骤(3)所述引耳为铜箔、薄片紫铜电极、薄片石墨电极或其组合。
  7. 根据权利要求1所述的一种回收碳纤维的再处理方法,其特征在于,步骤(3)所述引耳通过粘结剂粘结在回收碳纤维毡体的两端,粘接剂为导电银浆、导电胶IAC、导电胶ACA中的一种或多种。
  8. 根据权利要求1所述的一种回收碳纤维的再处理方法,其特征在于,步骤(3)高压电处理在保护气氛中进行,其中保护气氛为氩气气氛、氮气气氛或其组合。
  9. 根据权利要求1所述的一种回收碳纤维的再处理方法,其特征在于,步骤(3)高压电处理过程中,所施加的电压密度为1V/cm 2~5V/cm 2,处理时间为10s~300s。
  10. 根据权利要求9所述的一种回收碳纤维的再处理方法,其特征在于,所述的电压密度为3V/cm 2~4V/cm 2,处理时间为60s~120s。
PCT/CN2021/099540 2020-06-15 2021-06-11 一种回收碳纤维的再处理方法 WO2021254256A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010542418.0A CN111748905B (zh) 2020-06-15 2020-06-15 一种回收碳纤维的再处理方法
CN202010542418.0 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021254256A1 true WO2021254256A1 (zh) 2021-12-23

Family

ID=72675173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099540 WO2021254256A1 (zh) 2020-06-15 2021-06-11 一种回收碳纤维的再处理方法

Country Status (2)

Country Link
CN (1) CN111748905B (zh)
WO (1) WO2021254256A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615837A (en) * 2022-03-15 2023-08-23 Mdf Recovery Ltd Method and apparatus for recovering fibres

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111748905B (zh) * 2020-06-15 2023-06-06 上海交通大学 一种回收碳纤维的再处理方法
CN114567941B (zh) * 2022-03-11 2024-03-15 郑州大学 利用碳纤维编织物边角料制备电致热加热片的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120132731A1 (en) * 2009-02-13 2012-05-31 Abdelaziz Bentaj Method and system for reusing materials and/or products by pulsed power
CN102762318A (zh) * 2010-02-10 2012-10-31 Sgl碳股份公司 使用再利用的碳纤维从碳材料制备模制件的方法
CN103938429A (zh) * 2014-04-28 2014-07-23 华南理工大学 一种基于电晕放电的碳纤维表面处理装置及方法
CN109637842A (zh) * 2018-11-22 2019-04-16 武汉纺织大学 一种碳纤维毡电极材料的制备方法
CN109866441A (zh) * 2017-12-05 2019-06-11 广州金发碳纤维新材料发展有限公司 一种回收碳纤维增强热塑性复合材料板材的制造方法
CN111748905A (zh) * 2020-06-15 2020-10-09 上海交通大学 一种回收碳纤维的再处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726450A (ja) * 1993-07-06 1995-01-27 Mitsubishi Paper Mills Ltd 活性炭素繊維シ−トおよびその製造方法
CN200950668Y (zh) * 2006-09-08 2007-09-19 许安民 柔软、透气的面状发热复合电热布
CN104772116B (zh) * 2015-04-02 2017-11-10 江苏科净炭纤维有限公司 一种废弃活性炭纤维布/毡回收再造方法
CN205556988U (zh) * 2016-04-28 2016-09-07 常州市新创复合材料有限公司 一种通过碳纤维废料制造碳纤维毡片的生产装备
CN105854512A (zh) * 2016-06-13 2016-08-17 何莉 一种活性炭纤维吸附装置
CN107083020A (zh) * 2017-05-19 2017-08-22 常熟市奥欣复合材料有限公司 碳纤维及其制品的回收再利用方法
CN108176388A (zh) * 2017-12-06 2018-06-19 张家港绿色三星净化科技股份有限公司 活性碳纤维脱附方法
CN111235864A (zh) * 2020-03-19 2020-06-05 上海交通大学 一种回收碳纤维的表面处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120132731A1 (en) * 2009-02-13 2012-05-31 Abdelaziz Bentaj Method and system for reusing materials and/or products by pulsed power
CN102762318A (zh) * 2010-02-10 2012-10-31 Sgl碳股份公司 使用再利用的碳纤维从碳材料制备模制件的方法
CN103938429A (zh) * 2014-04-28 2014-07-23 华南理工大学 一种基于电晕放电的碳纤维表面处理装置及方法
CN109866441A (zh) * 2017-12-05 2019-06-11 广州金发碳纤维新材料发展有限公司 一种回收碳纤维增强热塑性复合材料板材的制造方法
CN109637842A (zh) * 2018-11-22 2019-04-16 武汉纺织大学 一种碳纤维毡电极材料的制备方法
CN111748905A (zh) * 2020-06-15 2020-10-09 上海交通大学 一种回收碳纤维的再处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615837A (en) * 2022-03-15 2023-08-23 Mdf Recovery Ltd Method and apparatus for recovering fibres

Also Published As

Publication number Publication date
CN111748905B (zh) 2023-06-06
CN111748905A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
WO2021254256A1 (zh) 一种回收碳纤维的再处理方法
CN1285460C (zh) 热塑性树脂基复合材料超声波振动辅助电阻植入焊接方法
Wang et al. Fabrication of an enriched graphene surface protection of carbon fiber/epoxy composites for lightning strike via a percolating-assisted resin film infusion method
CN104893601B (zh) 一种具有两种导电结构的导电胶膜及其制备方法
KR101801788B1 (ko) 열경화성 수지 복합 재료로부터 섬유 집합체를 회수하는 방법 및 장치, 이로부터 회수된 섬유 집합체
CN110157159B (zh) 一种金属铜/纳米碳多尺度增强体修饰的碳纤维复合材料及其制备方法
CN105713234A (zh) 一种碳纤维增强高分子基复合材料的制备方法及应用
CN111235864A (zh) 一种回收碳纤维的表面处理方法
CN107856325A (zh) 一种用于连续纤维增强热塑性基体复合材料及制备方法
CN110423367A (zh) 一种碳纤维增强热塑性复合材料的制备方法
CN105690802A (zh) 一种碳纤维增强高分子基复合材料的制备方法及应用
CN106810711A (zh) 一种从废旧碳纤维增强复合材料中回收碳纤维的方法
CN105599321A (zh) 一种碳纤维增强高分子基复合材料的制备方法及应用
CN105600770A (zh) 一种碳纤维增强高分子基复合材料的制备方法及应用
US9387655B2 (en) Nano-engineered structural joints: materials, procedures and applications thereof
US11945931B1 (en) Recyclable nano composite as well as preparation method and application thereof
CN103963391A (zh) 一种预浸带废料制备的夹心型复合材料及其制备方法
CN116685009A (zh) 一种热塑性复合材料电阻焊加热元件、制备方法及其应用
CN112810262A (zh) 一种热塑性塑料及其复合材料电阻焊接元件的制备方法
CN105734826A (zh) 一种通过碳纤维废料制造碳纤维毡片的生产工艺
CN116330711A (zh) 一种免脱模布的叶片大梁拉挤板的制备方法及其产品
JP6508510B2 (ja) 炭素繊維強化複合材料成形体およびその製造方法、並びに炭素繊維強化複合材料成形体の修復方法
CN111215739A (zh) 一种用等离子体处理的碳纤维制备电阻焊发热元件的方法
Xiong et al. Design of reinforced interfacial structure in hybrid resistance-welded joints of GF/PEI composite and Ti6Al4V alloy by pre-etching surface treatment combined with in-situ growth of CNTs
CN109777011B (zh) 一种聚偏氟乙烯基超疏水纤维增强复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825941

Country of ref document: EP

Kind code of ref document: A1