WO2021251453A1 - 核酸脂質粒子ワクチン - Google Patents

核酸脂質粒子ワクチン Download PDF

Info

Publication number
WO2021251453A1
WO2021251453A1 PCT/JP2021/022057 JP2021022057W WO2021251453A1 WO 2021251453 A1 WO2021251453 A1 WO 2021251453A1 JP 2021022057 W JP2021022057 W JP 2021022057W WO 2021251453 A1 WO2021251453 A1 WO 2021251453A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
cov
sars
protein
rbd
Prior art date
Application number
PCT/JP2021/022057
Other languages
English (en)
French (fr)
Inventor
義裕 河岡
正樹 今井
誠也 山吉
健 石井
康司 小檜山
栄子 難波
竜也 岡
幸 戸塚
直 城内
宜郷 小野寺
文彦 武下
貴 鈴木
貴子 丹羽
誠 小泉
健介 中村
Original Assignee
第一三共株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社, 国立大学法人東京大学 filed Critical 第一三共株式会社
Priority to CN202180035477.1A priority Critical patent/CN115605221A/zh
Priority to US18/009,111 priority patent/US20230248819A1/en
Priority to EP21821552.3A priority patent/EP4166158A1/en
Priority to KR1020227040351A priority patent/KR20230024261A/ko
Priority to JP2022530615A priority patent/JPWO2021251453A1/ja
Publication of WO2021251453A1 publication Critical patent/WO2021251453A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to a nucleic acid lipid particle vaccine encapsulated with SARS-CoV-2 mRNA.
  • the new coronavirus infection (coronavirus disease 2019: COVID-19) is an infectious disease caused by the new coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2), and is a pathological condition mainly due to acute respiratory inflammation.
  • the pathological condition mainly consisting of inflammation in the lower airway such as invasive pneumonia and acute respiratory distress syndrome in high-risk persons is a burden of the disease (Non-Patent Document 1).
  • More than 6 types of coronavirus (CoV) that infect humans and mainly present respiratory symptoms are known.
  • SARS-CoV-2 is classified in the genus betacoronavirus and is virologically similar to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) that caused outbreaks in the past.
  • Spike protein (S) expressed on the surface of SARS-CoV-2 virus particles plays an important role in the initial infection mechanism.
  • S forms a trimer with a type I membrane protein composed of two subunits S1 and S2 (about 500 kDa, about 20 nm).
  • the receptor-binding domain (RBD) present in S1 interacts with angiotensin-converting enzyme 2 (ACE2) expressed on the host cell surface.
  • ACE2 angiotensin-converting enzyme 2
  • SARS-CoV-2 S has a 10-20-fold higher affinity for ACE2 and higher thermodynamic stability, suggesting that SARS-CoV-2. It has been suggested that it is involved in the high transmissibility of the disease (Non-Patent Documents 2 and 3).
  • Non-Patent Documents 4 and 5 it has been reported that the isolated anti-SARS-CoV-2 RBD monoclonal antibody has neutralizing activity against SARS-CoV-2 (Non-Patent Documents 6 and 7).
  • Non-Patent Document 8 Specifically, as a result of analyzing 10-20 COVID-19 patient blood samples, blood anti-SARS-CoV-2 RBD antibody response and SARS-CoV-2 specific CD4 + T cell response were observed in all cases. It was confirmed, and SARS-CoV-2 specific CD8 + T cell response was confirmed in about 70% of cases.
  • Non-Patent Document 10 cellular immunopathology and antibody-dependent enhancement (ADE) may be involved as the mechanism of "immune enhancement" in which COVID-19 symptoms become more severe.
  • SARS SARS
  • Th T-helper
  • Non-Patent Document 11 T-helper
  • a Th2-dominant immune response to S induces pulmonary immunopathology with an eosinophil-based inflammatory response.
  • Non-Patent Document 13 For SARS-CoV-2, there is no direct clinical evidence that antibodies to S are involved in ADE, but risk aversion may require the induction of an appropriate cell-mediated immune response. It has been pointed out (Non-Patent Document 14).
  • An object of the present invention is to provide a vaccine for preventing and / or treating infection with a new type of coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2).
  • the gist of the present invention is as follows. (1) Lipid particles encapsulating a nucleic acid capable of expressing the S protein and / or a fragment thereof of the new type coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2), wherein the lipid has a general formula (Ia). ), The particles containing the cationic lipid represented by), or a pharmaceutically acceptable salt thereof.
  • R 1 and R 2 independently represents a C 1 -C 3 alkyl group
  • L 1 indicates a C 17- C 19 alkenyl group which may have one or more C 2- C 4 alkanoyloxy groups
  • L 2 may have one or more C 2- C 4 alkanoyloxy groups, one or more C 10- C 19 alkyl groups, or one or more C 2- C 4 alkanoyloxy groups. Shows good C 10- C 19 alkenyl groups;
  • p is 3 or 4.
  • L 1 in the general formula (Ia) is a C 17- C 19 alkenyl group which may have one or more acetoxy groups.
  • L 2 in the general formula (Ia) may have one or more acetoxy groups C 10- C 12 alkyl groups, or may have one or more acetoxy groups C.
  • L 2 in the general formula (Ia) may have one or more acetoxy groups C 10- C 12 alkyl groups, or may have one or more acetoxy groups C. 17- C 19
  • L 1 in the general formula (Ia) is (R) -11-acetyloxy-cis-8-heptadecenyl group, cis-8-heptadecenyl group, or (8Z, 11Z) -heptadecadienyl group.
  • L 2 in the general formula (Ia) is a decyl group, a cis-7-decenyl group, a dodecyl group, or (R) -11-acetyloxy-cis-8-heptadecenyl group, (1) to The particle according to any one of (7).
  • the cationic lipid has the following structural formula: The particle according to (1) represented by.
  • the cationic lipid has the following structural formula: The particle according to (1) represented by. (11)
  • the cationic lipid has the following structural formula: The particle according to (1) represented by. (12)
  • the particle according to (12), wherein the amphipathic lipid is at least one selected from the group consisting of distearoylphosphatidylcholine, distearoylphosphatidylcholine and dioleoylphosphatidylethanolamine.
  • the particles according to (12) or (13), wherein the sterols are cholesterol.
  • the PEG lipid is 1,2-dimiristoyl-sn-glycerol methoxypolyethylene glycol and / or N- [methoxypoly (ethylene glycol) 2000] carbamoyl] -1,2-dimyristyloxypropyl-3-amine.
  • the lipid composition of amphoteric lipids, sterols, cationic lipids, and PEG lipids is 15% or less for amphoteric lipids, 20-55% for sterols, and 40 for cationic lipids in terms of molar amount. 5.
  • the lipid composition of the amphoteric lipid, sterols, cationic lipid, and PEG lipid is 5 to 15% for the amphoteric lipid, 35 to 50% for the sterols, and the cationic lipid in molar amount.
  • the lipid composition of amphoteric lipids, sterols, cationic lipids, and PEG lipids is 10 to 15% for amphoteric lipids, 35 to 45% for sterols, and cationic lipids in molar amount.
  • the lipid composition of amphoteric lipids, sterols, cationic lipids, and PEG lipids is 10 to 15% for amphoteric lipids, 35 to 45% for sterols, and cationic lipids in molar amount.
  • SARS-CoV-2 SARS-CoV-2
  • the receptor-binding domain in the S protein fragment of the new type coronavirus is one of the amino acids of SEQ ID NO: 25, 29, 33, 37, 94-107.
  • a fragment of the S protein of the new type coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2) consists of an amino acid sequence having at least 95% identity with the amino acid sequence of SEQ ID NO: 10 (20). Described particles.
  • a fragment of the S protein of the new type coronavirus is at least 95% of the amino acid sequence of any of SEQ ID NOs: 24, 28, 32, 36, 80-93.
  • the S protein of the new type coronavirus consists of an amino acid sequence having at least 95% identity with the amino acid sequence of SEQ ID NO: 6 (1) to (19). Described particles.
  • the receptor-binding domain in the S protein of the new type coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2) consists of an amino acid sequence having at least 95% identity with the amino acid sequence of SEQ ID NO: 11 ( 25) The particles described.
  • Nucleic acids capable of expressing the S protein of the new coronavirus are the cap structure (Cap), 5'untranslated region (5'-UTR), and the like.
  • the nucleic acid capable of expressing the S protein fragment of the new coronavirus is the cap structure (Cap), 5'untranslated region (5'-UTR). ), Leader sequence, translated region of receptor binding domain in S protein, 3'untranslated region (3'-UTR) and polyA tail (polyA).
  • the particles described in any of. (9) The particle according to (27), wherein the sequence of the translation region of the S protein consists of a nucleotide sequence having at least 90% identity with the sequence of the translation region of the S protein in the sequence of SEQ ID NO: 5.
  • the nucleic acid capable of expressing the S protein of the new type coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2) consists of the nucleotide sequence of SEQ ID NO: 5.
  • nucleic acid capable of expressing the S protein of the new type coronavirus consists of the nucleotide sequence of SEQ ID NO: 16.
  • sequence of the translation region of the receptor-binding domain in the S protein consists of a nucleotide sequence having at least 90% identity with the sequence of the translation region of the receptor-binding domain in the S protein in the sequence of SEQ ID NO: 9.
  • the sequence of the translation region of the receptor-binding domain in the S protein consists of a nucleotide sequence having at least 90% identity with the sequence of the translation region of the receptor-binding domain in the S protein in the sequence of SEQ ID NO: 19.
  • the particles according to the above. The sequence of the translation region of the receptor-binding domain in the S protein is the translation region of the receptor-binding domain in the S protein in any of the sequences of SEQ ID NOs: 21, 23, 27, 31, 35, 66 to 79.
  • the particle according to (27) which comprises a nucleotide sequence having at least 90% identity with the sequence of.
  • nucleic acid capable of expressing a fragment of the S protein of the new type coronavirus comprises the nucleotide sequence of SEQ ID NO: 9.
  • nucleic acid capable of expressing a fragment of the S protein of the new type coronavirus comprises the nucleotide sequence of SEQ ID NO: 19.
  • the particle according to (38), wherein the modified nucleotide comprises at least one of a pyrimidine nucleotide substituted at the 5-position and / or a pseudouridine optionally substituted at the 1-position.
  • the modified nucleotide comprises at least one selected from the group consisting of 5-methylcytidine, 5-methoxyuridine, 5-methyluridine, pseudouridine, and 1-alkylpseudouridine.
  • composition according to (45) for inducing an immune response against a new type coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2).
  • composition according to (45) or (46) for preventing and / or treating a new type coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2) infection.
  • S protein and / or fragments thereof of a new type coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2) comprising introducing the composition according to (43) or (44) into cells. Method of expression in vitro.
  • S protein of a new type of coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2) and /, which comprises administering the composition according to any one of (43) to (47) to a mammal. Or a method for expressing the fragment in vivo.
  • a method for inducing an immune response against a new type of coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2), which comprises administering the composition according to (45) or (46) to a mammal.
  • Prevention and / of Severe acute respiratory syndrome coronavirus 2: SARS-CoV-2 infection comprising administering to a mammal the composition according to any of (45)-(47). Or how to treat.
  • Vertical bars indicate the geometric mean and symbols 1-5 indicate individual antibody levels.
  • the horizontal bar indicates the geometric mean value, and the circle symbol indicates the individual inhibitory activity level.
  • Buffer 10 mM Histidine buffer (pH 6.5) containing 300 mM Sucrose.
  • the vertical bar indicates the average value, and the error bar indicates the standard error.
  • the DMSO concentration was adjusted to 0.1% (v / v) in all treatment groups. No peptides: Peptide-free group.
  • Blood anti-RBD antibody response induced by administration of particles of Example 4, Example 7 or Example 8.
  • Buffer 10 mM Histidine buffer (pH 7.0) containing 300 mM Sucrose. Vertical bars indicate the geometric mean and error bars indicate the standard deviation.
  • the DMSO concentration was adjusted to 0.1% (v / v) in all treatment groups. No peptides: Peptide-free group. Strain-specific immunogenicity of the mRNA vaccine against SARS-CoV-2 RBD.
  • the 16 overlapping peptides were divided into 8 pool peptides as 1 pool peptide.
  • Spleen cells were prepared from mouse spleen and reprocessed with pool peptide for 24 hours. IFN- ⁇ levels in the culture supernatant were measured by ELISA.
  • Gh The percentage of cytokine-producing CD8 + and CD4 + T cells after treatment of pools 2, 3 and 4 with a protein transport inhibitor for 6 hours is shown in a pie chart.
  • PBMC peripheral blood mononuclear cells
  • LNP-mRNA-Full 0.4, 2, and 10 ⁇ g / mL in terms of mRNA
  • LNP-mRNA Treat with -RBD 0.4, 2, and 10 ⁇ g / mL in terms of mRNA
  • HPLC mRNA-RBD
  • LNP-mRNA-Full 0.4, 2, and 10 ⁇ g / mL in terms of mRNA
  • LNP-mRNA-RBD (b) from bone marrow-derived dendritic cells (BM-DC) of C57BL / 6 mice and BALB / c mice.
  • BM-DC bone marrow-derived dendritic cells
  • HPLC 0.4, 2, and 10 ⁇ g / mL in terms of mRNA
  • mice C57BL / 6 mice were intramuscularly administered with mock, LNP-mRNA-RBD (3 ⁇ g mRNA) or mRNA-RBD (HPLC) (3 ⁇ g mRNA) on days 0 and 14.
  • C Two weeks after the second administration, the blood anti-RBD antibody titer was measured by ELISA.
  • D and e Popliteal lymph nodes were collected from mice.
  • D GC B cells were gated as GL7 + CD38 - CD19 + cells.
  • T FH cells were gated as CD185 + PD-1 + CD3 ⁇ + CD4 + T cells.
  • Spleen cells were prepared from mouse spleen and treated with pool peptide for 24 hours.
  • IFN- ⁇ levels in the culture supernatant were measured by ELISA.
  • the percentage of cytokine-producing CD8 + and CD4 + T cells after treatment of peptide pools 3 and 4 with a protein transport inhibitor for 6 hours is shown in a pie chart.
  • H, i Representative data of FIGS. 12f, g, 21 and 22 are shown.
  • SARS-CoV-2 (2 ⁇ 10 7 PFU) was administered to the conjunctiva, nasal cavity, oral cavity and trachea of cynomolgus monkeys.
  • A Viral RNA in swab samples and (b) Viral titers were measured by RT-PCR and cell culture.
  • Cd Viral RNA in lung tissue was measured by RT-PCR.
  • RU upper right lobe
  • RM right middle lobe
  • RL lower right lobe
  • LU upper left lobe
  • LM left middle lobe
  • LL lower left lobe.
  • ECD Blood anti-spiked protein external domain
  • Spleen cells were prepared from mouse spleen and treated with a protein transport inhibitor and pool peptide for 6 hours.
  • the proportions of cytokine-producing CD8 + and CD4 + T cells were analyzed by flow cytometry.
  • N 4.
  • the vertical bar indicates the average value, and the error bar indicates the standard error. * P ⁇ 0.05, ANOVA and Dunn's multiple comparison test was used.
  • Spleen cells were prepared from mouse spleen and treated with a protein transport inhibitor and pool peptide for 6 hours.
  • the vertical bar indicates the average value and the error bar indicates the standard error. * P ⁇ 0.05, ANOVA and Dunn's multiple comparison test was used. Changes in body temperature before and after SARS-CoV-2 infection.
  • SARS-CoV-2 (2.2 ⁇ 10 6 PFU) was administered to the oral cavity, nasal cavity, and trachea of cynomolgus monkeys. Body temperature was recorded using a telemetry transmitter and computer from 2 days before SARS-CoV-2 administration. Chest radiograph after SARS-CoV-2 infection in cynomolgus monkeys treated with mRNA-RBD (HPLC). Blood anti-RBD antibody response induced by Examples 10, 12, 14, 16, 18, and 20.
  • N 4. Pre indicates before the administration of Example 10, and Post indicates after the administration of Example 10.
  • the vertical bar indicates the geometric mean value, and the circle symbol indicates the individual neutralization activity.
  • the present invention is a lipid particle encapsulating a nucleic acid capable of expressing the S protein and / or a fragment thereof of the new type coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2), wherein the lipid has a general formula (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2).
  • the particles containing the cationic lipid represented by Ia) or a pharmaceutically acceptable salt thereof are provided.
  • R 1 and R 2 independently represents a C 1 -C 3 alkyl group
  • L 1 indicates a C 17- C 19 alkenyl group which may have one or more C 2- C 4 alkanoyloxy groups
  • L 2 may have one or more C 2- C 4 alkanoyloxy groups, one or more C 10- C 19 alkyl groups, or one or more C 2- C 4 alkanoyloxy groups. Shows good C 10- C 19 alkenyl groups; p is 3 or 4.
  • R 1 and R 2 in the general formula (Ia) are independently exhibit C 1 -C 3 alkyl group, preferably both a methyl group.
  • P in the general formula (Ia) is 3, or 4, but is preferably 3.
  • L 1 in the general formula (Ia) represents a C 17- C 19 alkenyl group which may have one or more C 2- C 4 alkanoyloxy groups, preferably one or more acetoxy groups. It is a C 17- C 19 alkenyl group which may have one.
  • Specific examples of L 1 include (R) -11-acetyloxy-cis-8-heptadecenyl group, cis-8-heptadecenyl group, (8Z, 11Z) -heptadecadienyl group and the like. can.
  • L 2 in the general formula (Ia) is, C 2 -C 4 alkanoyloxy group one or plurality which may have C 10 -C 19 alkyl group, or a C 2 -C 4 alkanoyloxy group one or It shows a C 10- C 19 alkenyl group which may have a plurality of C 10-C 19 alkenyl groups, preferably one or a plurality of C 10- C 12 alkyl groups which may have one or a plurality of acetoxy groups, or one or a plurality of acetoxy groups. It is a C 10- C 19 alkenyl group which may have one.
  • L 2 in the general formula (Ia) may have one or more acetoxy groups C 10- C 12 alkyl groups, or may have one or more acetoxy groups C. It is also preferable that it is a 17- C 19 alkenyl group. Specific examples of L 2 include a decyl group, a cis-7-decenyl group, a dodecyl group, and (R) -11-acetyloxy-cis-8-heptadecenyl group.
  • cationic lipid which is a component constituting the particles of the present invention
  • the following structural formula An example of what is represented by.
  • a pharmaceutically acceptable salt means a salt that can be used as a medicine.
  • the cationic lipid which is a component constituting the particles of the present invention may be a pharmaceutically acceptable salt, and such a salt is preferably an alkali metal salt such as a sodium salt, a potassium salt or a lithium salt.
  • Alkaline earth metal salts such as calcium salt, magnesium salt, metal salts such as aluminum salt, iron salt, zinc salt, copper salt, nickel salt, cobalt salt; inorganic salt such as ammonium salt, t-octylamine salt , Dibenzylamine salt, morpholine salt, glucosamine salt, phenylglycine alkyl ester salt, ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt , Chloroprocine salt, prokine salt, diethanolamine salt, N-benzyl-phenethylamine salt, piperazine salt, tetramethylammonium salt, amine salts such as organic salts such as tris (hydroxymethyl) aminomethane salt; Inorganic acid salts such as hydrochlorides, hydrobromates, halogen atomized amine
  • Late alcan sulfonates such as acid salts, ethane sulfonates, benzene sulfonates, allyl sulfonates such as p-toluene sulfonates, acetates, apple salts, fumarates, succinates.
  • Organic acid salts such as acid salts, citrates, tartrates, oxalates, maleates; and amino acid salts such as glycine salts, lysine salts, arginine salts, ornithine salts, glutamates, asparaginates. Can be done.
  • the cationic lipid represented by the general formula (Ia) may be one kind of compound or a combination of two or more kinds of compounds.
  • the lipid of the present invention may further contain amphipathic lipids, sterols and PEG lipids.
  • the amphipathic lipid is a lipid having an affinity for both polar and non-polar solvents, and specifically, distearoylphosphatidylcholine, distearoylphosphatidylcholine, dioleoylphosphatidylethanolamine, and combinations thereof are used. It can be exemplified.
  • the sterols are sterols having a hydroxy group, and specific examples thereof include cholesterol and the like.
  • the PEG lipid is a PEG-modified lipid, specifically 1,2-dimlystoyl-sn-glycerol methoxypolyethylene glycol and / or N- [methoxypoly (ethylene glycol) 2000] carbamoyl] -1,2. -Dimyristyloxypropyl-3-amine, combinations thereof, etc. can be exemplified.
  • the lipid composition of the amphoteric lipid, sterols, cationic lipid, and PEG lipid is not particularly limited, but the molar amount of the amphoteric lipid is 15% or less and the sterols are 20 to 55%.
  • Cationic lipids are 40-65%
  • PEG lipids are 1-5%
  • the ratio of total lipid weight to nucleic acid weight is preferably 15-30
  • the lipid composition of PEG lipids is 5 to 15% for amphoteric lipids, 35 to 50% for sterols, 40 to 55% for cationic lipids, and 1 to 3% for PEG lipids in terms of molar amount.
  • the ratio of the total lipid weight to the nucleic acid weight is more preferably 15 to 25, and the lipid composition of the amphoteric lipids, sterols, cationic lipids, and PEG lipids is a molar amount of the amphoteric lipids. 10 to 15%, sterols 35 to 45%, cationic lipids 40 to 50%, PEG lipids 1 to 2%, and the ratio of total lipid weight to nucleic acid weight is 17.5 to 22.5. More preferably, the lipid composition of the amphoteric lipid, sterols, cationic lipid, and PEG lipid is 10 to 15% for the amphoteric lipid and 35 to 45% for the sterols in molar amount. It is even more preferred that the cationic lipid is 45-50%, the PEG lipid is 1.5-2%, and the ratio of total lipid weight to nucleic acid weight is 17.5-22.5.
  • the nucleic acid encapsulated in the lipid particles can express the S protein and / or a fragment thereof of the new type coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2).
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • NCBIID NC_045512 https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.
  • the fragment of the S protein of SARS-CoV-2 may contain a receptor-binding domain (RBD) present in the S protein.
  • RBD receptor-binding domain
  • a secretory peptide (peptide encoded by the leader sequence) may be added to the receptor binding domain.
  • the leader sequence an S protein signal sequence can be exemplified.
  • the amino acid sequence of the S protein of SARS-CoV-2 is shown in SEQ ID NO: 6.
  • the nucleic acid encapsulated in the lipid particles expresses the SARS-CoV-2 S protein consisting of an amino acid sequence having at least 95%, preferably 96%, more preferably 97% identity with the amino acid sequence of SEQ ID NO: 6. It should be possible.
  • the amino acid sequence of the receptor-binding domain present in the S protein of SARS-CoV-2 is shown in SEQ ID NO: 11.
  • a secretory peptide eg, S protein signal sequence
  • the amino acid sequence of the receptor-binding domain present in the S protein of SARS-CoV-2 with the S protein signal sequence added is shown in SEQ ID NO: 10.
  • the nucleic acid encapsulated in the lipid particles is a SARS-CoV-2 S protein consisting of an amino acid sequence having at least 95%, preferably 96%, more preferably 97% identity with the amino acid sequence of SEQ ID NO: 11 or 10. It should be able to express the receptor-binding domain in it.
  • identity refers to the relationship between sequences of two or more nucleotide or amino acid sequences, as is known in the art, determined by comparison of sequences.
  • identity is also, as the case may be, a sequence between nucleic acid molecules or a polypeptide as determined by matching between two or more nucleotide sequences in a row or between two or more amino acid sequences. It means the degree of relevance.
  • Identity is the percentage of the same match between the smaller of two or more arrays and the gap alignment (if any) addressed by a particular mathematical model or computer program (ie, an "algorithm”). Can be evaluated by calculating. Specifically, it can be evaluated by using software such as Clustal W2 provided by European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), but it is limited to those used by those skilled in the art. Not done.
  • sequence identity in the present invention is calculated using GENETYX-SV / RC (manufactured by Genetics Co., Ltd.), which is sequence analysis software, and this algorithm is usually used in the art.
  • the amino acid encoded by the nucleic acid encapsulated in the lipid particles of the present invention is an amino acid mutation (as long as it retains a certain degree of identity with the amino acid sequence and / or fragment thereof of the target SARS-CoV-2 S protein. Substitution), deletion, insertion and / or addition may occur.
  • the amino acid encoded by the nucleic acid encapsulated in the lipid particles of the present invention retains the above-mentioned sequence identity and is a number in the amino acid sequence of the target SARS-CoV-2 S protein and / or the amino acid sequence of a fragment thereof.
  • One) amino acid may be substituted, deleted, inserted and / or added.
  • the amino acid sequence of the receptor-binding domain present in the S protein of SARS-Cov-2 may be deleted, substituted, or added at position 538 (the number is counted from the N-terminal of the S protein).
  • Amino acid-deficient sequence for the N-terminal and C-terminal of the full-length sequence of RBD (R319-F541), a sequence in which cysteine is replaced with serine (SEQ ID NO: 25) hereeinafter, also referred to as “C538S type”
  • C538S type a sequence in which cysteine is replaced with serine
  • SEQ ID NO: 29 a sequence in which amino acids are added to the N-terminal and C-terminal of the full-length sequence of RBD (R319-F541) (SEQ ID NO: 33), and a sequence in which a mutation substituted with a plurality of amino acid residues is introduced (SEQ ID NO: 37).
  • a secretory peptide for example, the S protein signal sequence
  • the amino acid sequences of SEQ ID NOs: 25, 29, 33 and 37 with the S protein signal sequence added are the amino acid sequences of SEQ ID NOs: 24 and 28, respectively. , 32 and 36.
  • the receptor binding domain present in the S protein of SARS-CoV-2 may be derived from a mutant strain, and may be derived from a mutant strain, South African type, British type, Brazilian type, California type, Indian type, South African C538S type, British C538S type, Brazilian C538S. Type, California C538S type, Indian C538S type, combination mutant (1) (see Example 33 below), combination variant (2) (see Example 33 below), combination variant (3) (implemented below).
  • the amino acid sequences of the receptor-binding domains of the combination mutant (4) are shown in SEQ ID NOs: 94-107.
  • the sequences obtained by adding the S protein signal sequence to the amino acid sequences of SEQ ID NOs: 94 to 107 are shown in SEQ ID NOs: 80 to 93.
  • the nucleic acid encapsulated in the lipid particles is at least 95%, preferably 96%, more preferably 97% with the amino acid sequence of SEQ ID NO: 25, 29, 33, 37, 94-107 (not including the S protein signal sequence). It is preferable that the receptor-binding domain in the S protein of SARS-CoV-2, which consists of an amino acid sequence having the same identity as the above, can be expressed.
  • the nucleic acid encapsulated in the lipid particles is at least 95%, preferably 96%, more preferably 97% with the amino acid sequence of SEQ ID NO: 24, 28, 32, 36, 80-93 (including the S protein signal sequence). It may be capable of expressing a receptor-binding domain in the S protein of SARS-CoV-2, which consists of an amino acid sequence having the same identity.
  • the nucleic acids capable of expressing the S protein of SARS-CoV-2 are the cap structure (Cap), the 5'untranslated region (5'-UTR), the translated region of the S protein, and the 3'untranslated region (3'-. It is preferable that the mRNA contains UTR) and polyA tail (polyA).
  • the cap structure (Cap) is a site that is present at the 5'end of many eukaryotic mRNAs and has a 7-methylguanosine structure. Examples of the cap structure include cap0, cap1, cap2, ARCA, and CleanCap (registered trademark), but cap1 or CleanCap is preferable, and CleanCap is more preferable.
  • the sequence of the 5'untranslated region is, for example, the sequence of base numbers 19 to 88 in the sequence of SEQ ID NO: 4.
  • the sequence of the translation region of the S protein is a sequence capable of expressing all or part of the amino acid sequence of the S protein and may include a start codon and / or a stop codon, for example, in the sequence of SEQ ID NO: 4. It is a sequence of base numbers 89 to 3910. Further, the sequence of the translation region of the S protein may be a nucleotide sequence having at least 90% identity with the sequence of the translation region of the S protein in the sequence of SEQ ID NO: 5.
  • the sequence of the 3'untranslated region (3'-UTR) is, for example, the sequence of base numbers 3911 to 4042 in the sequence of SEQ ID NO: 4.
  • the sequence of the polyA tail (polyA) is, for example, the sequence of base numbers 4043 to 4142 in the sequence of SEQ ID NO: 4.
  • the sequences of the cap structure (Cap), 5'untranslated region (5'-UTR), S protein translation region, 3'untranslated region (3'-UTR) and polyA tail (polyA) have been modified.
  • the sequence of nucleic acid capable of expressing the S protein of SARS-CoV-2 may be a nucleotide having at least 90%, preferably 95%, more preferably 97% identity with the sequence of SEQ ID NO: 5.
  • nucleic acid codons should be optimized. By optimizing the codons, the efficacy as a vaccine can be improved and side effects can be reduced. It can be optimized according to the codon usage frequency of the target organism.
  • the codon optimization may be performed, for example, on the coding sequence, and in the sequence of SEQ ID NO: 16, the codon of the sequence of the translation region of the S protein is optimized.
  • the sequence of nucleic acid capable of expressing the S protein of SARS-CoV-2 may consist of a nucleotide sequence having at least 90%, preferably 95%, more preferably 97% identity with the sequence of SEQ ID NO: 16.
  • the nucleic acids capable of expressing the S protein fragment of SARS-CoV-2 are cap structure (Cap), 5'untranslated region (5'-UTR), leader sequence (leader sequence), and acceptor in S protein. It is preferable that the mRNA contains the translated region of the binding domain, the 3'untranslated region (3'-UTR), and the polyA tail (polyA).
  • the cap structure (Cap) is a site that is present at the 5'end of many eukaryotic mRNAs and has a 7-methylguanosine structure. Examples of the cap structure include cap0, cap1, cap2, ARCA, and CleanCap (registered trademark), but cap1 or CleanCap is preferable, and CleanCap is more preferable.
  • the sequence of the 5'untranslated region is, for example, the sequence of base numbers 19 to 88 in the sequence of SEQ ID NO: 8.
  • the sequence of the leader sequence is, for example, the sequence of base numbers 89 to 127 in the sequence of SEQ ID NO: 8.
  • the sequence of the translation region of the receptor-binding domain in the S protein is a sequence capable of expressing all or part of the amino acid sequence of the receptor-binding domain in the S protein, and contains a start codon and / or an end codon. Also good, for example, is the sequence of base numbers 128 to 799 in the sequence of SEQ ID NO: 8.
  • sequence of the translation region of the receptor-binding domain in the S protein is a nucleotide sequence having at least 90% identity with the sequence of the translation region of the receptor-binding domain in the S protein in the sequence of SEQ ID NO: 9. May be good.
  • the sequence of the 3'untranslated region (3'-UTR) is, for example, the sequence of base numbers 800 to 931 in the sequence of SEQ ID NO: 8.
  • the sequence of the polyA tail (polyA) is, for example, the sequence of base numbers 932 to 1031 in the sequence of SEQ ID NO: 8.
  • Cap structure Cap
  • 5'untranslated region 5'-UTR
  • leader sequence leader sequence
  • translation region of receptor binding domain in S protein 3'untranslated region (3'-UTR) and poly
  • sequence of the A tail may be modified, and the sequence of the nucleic acid capable of expressing the receptor-binding domain in the S protein of SARS-CoV-2 is at least the sequence of SEQ ID NO: 9. It is preferably composed of a nucleotide sequence having 90%, preferably 95%, more preferably 97% identity, most preferably the nucleotide sequence of SEQ ID NO: 9. Nucleic acid codons should be optimized. By optimizing the codons, the efficacy as a vaccine can be improved and side effects can be reduced.
  • the codon optimization may be performed, for example, on the coding sequence, and in the sequence of SEQ ID NO: 19, the codon of the sequence of the translation region of the receptor binding domain in the S protein is optimized.
  • the sequence of nucleic acid capable of expressing the receptor-binding domain in the SARS-CoV-2 S protein has at least 90%, preferably 95%, more preferably 97% identity with the sequence of SEQ ID NO: 19. It should consist of a nucleotide sequence.
  • the sequence of the translation region of the receptor-binding domain in the S protein is the translation region of the receptor-binding domain in the S protein in any of the sequences of SEQ ID NOs: 21, 23, 27, 31, 35, 66 to 79. It may be a nucleotide sequence having at least 90%, preferably 95%, more preferably 97% identity with the sequence.
  • SEQ ID NO: 21 is the nucleotide sequence of the mRNA of Example 11, and the mRNA of Example 11 is an mRNA having the same sequence other than poly A in the sequence of Example 6.
  • poly A has 110 adenine nucleotides, whereas in the mRNA of Example 11, there are 50 adenine nucleotides.
  • the nucleic acid contained in the lipid particles of the present invention may be mRNA having a relatively short poly A moiety, preferably 30 or more, 40 or more, and more preferably 50 or more.
  • the upper limit of poly A is not particularly limited, but is preferably 500 or less, 400 or less, 300 or less, 200 or less, and 110 or less.
  • SEQ ID NO: 23 is the nucleotide sequence of the mRNA of Example 13, and the mRNA of Example 13 is an mRNA capable of expressing a sequence in which the cysteine at position 538 (the number is the number counted from the N-terminal of the S protein) is replaced with serine. Is.
  • SEQ ID NO: 27 is the nucleotide sequence of the mRNA of Example 15, and the mRNA of Example 15 is an mRNA capable of expressing an amino acid-deficient sequence for the N-terminal and C-terminal of the full-length sequence of RBD (R319-F541). be.
  • SEQ ID NO: 31 is the nucleotide sequence of the mRNA of Example 17, and the mRNA of Example 17 is an mRNA capable of expressing a sequence in which amino acids are added to the N-terminal and C-terminal of the full-length sequence of RBD (R319-F541). ..
  • SEQ ID NO: 35 is the nucleotide sequence of the mRNA of Example 19, and the mRNA of Example 19 is an mRNA capable of expressing a sequence in which the substitution of an amino acid residue occurs at a plurality of positions in the sequence of Example 6.
  • SEQ ID NOs: 66 to 79 are South African type, British type, Brazilian type, California type, Indian type, South African C538S type, British C538S type, Brazilian C538S type, California C538S type, Indian C538S type, combination mutant type (1) (described later). 33), combination variant (2) (see Example 33 below), combination variant (3) (see Example 33 below), combination variant (4) (see Example 33 below). ) Is a nucleotide sequence of an mRNA capable of expressing the amino acid sequence of the receptor binding domain.
  • the nucleic acid encapsulated in the lipid particles may be in any form as long as it is a nucleic acid capable of expressing the SA protein of SARS-CoV-2 and / or a fragment thereof.
  • single-stranded DNA single-stranded RNA (eg, mRNA), single-stranded polynucleotide in which DNA and RNA are mixed, double-stranded DNA, double-stranded RNA, hybrid polynucleotide of DNA-RNA, DNA and RNA.
  • mRNA single-stranded polynucleotide in which DNA and RNA are mixed
  • double-stranded DNA double-stranded RNA
  • hybrid polynucleotide of DNA-RNA DNA and RNA.
  • Examples thereof include double-stranded polynucleotides composed of two types of polynucleotides in which the above is mixed, and mRNA is preferable.
  • the nucleotides constituting the nucleic acid encapsulated in the lipid particles may be natural or modified nucleotides, but may contain at least one modified nucleotide.
  • the modified nucleotide may be one in which any part of the base, sugar and phosphodiester bond is modified.
  • the modification site may be one site or two or more sites.
  • base modifications include cytosine 5-methylation, 5-fluoromation, N4-methylation, uracil 5-methylation (thymine), 5-fluorolation, adenine N6-methylation, and guanine N2. -Methylation can be mentioned.
  • sugar modification is 2'-O-methylation of D-ribofuranose.
  • An example of modification of a phosphate diester bond is a phosphorothioate bond.
  • the modified nucleotide is preferably one in which the base portion is modified, and is preferably, for example, a pyrimidine nucleotide substituted at the 5-position and a pseudouridine optionally substituted at the 1-position, specifically, 5-methylcytidine. Examples thereof include 5-methoxyuridine, 5-methyluridine, pseudouridine, and 1-alkyl pseudouridine.
  • the 1-alkyl pseudouridine may be 1- (C1-C6 alkyl) pseudouridine, preferably 1-methylseudouridine or 1-ethylsudouridine.
  • Modified nucleotides with modified base moieties may be used alone or in combination in place of native nucleotides.
  • Combinations of modified nucleotides with modified bases include, for example, a combination of 5-methylcytidine and 5-methyluridine, a combination of 5-methylcytidine and pseudouridine, or a combination of 5-methylcytidine and 1-methylpseudouridine. It may be, preferably a combination of 5-methylcytidine and 5-methyluridine.
  • the nucleic acid capable of expressing the S protein of SARS-CoV-2 of the present invention and / or a fragment thereof can be produced by an in vitro transcription reaction from DNA having a desired base sequence.
  • Enzymes required for in-vitro transcription, buffer, and nucleoside-5'-triphosphate mixture (adenosine-5'-triphosphate (ATP), guanosine-5'-triphosphate (GTP), cytidine-5'-triphosphate) Acids (CTP) and uridine-5'-triphosphate (UTP) are commercially available (eg, AmpliScribeT7 High YieldTranscription Kit (Epicentre), mMESSAGE mMACHINE T7 Ultra Kit (Life thechnologies), etc.).
  • the DNA used to produce the single-stranded RNA is cloned DNA, such as plasmid DNA or DNA fragment.
  • the plasmid DNA or DNA fragment may be commercially available or can be produced by a method generally known in the art (eg, Sambrook, J. et al., Molecular Cloning a Laboratory). Manual second edition (1989), Rashtchian, A., Current Opinion in Biotechnology, 1995, 6 (1), 30-36, Gibson D. G. et al., Science, 2008, 319 (5867), 1215-1220 Method of description etc.).
  • a cap structure (Cap0 structure described above) can be introduced into the 5'end of mRNA by a method using a capping enzyme after an in vitro transcription reaction. Further, Cap0 can be converted to Cap1 by a method of allowing 2'-O-methyltransferase to act on mRNA having Cap0.
  • Commercially available products can be used for the capping enzyme and 2'-O-methyltransferase (for example, Vaccinia Capping System, M2080; mRNA Cap 2'-O-Methyltransferase, M0366, both manufactured by New England Biolab).
  • mRNA having a cap structure can be produced according to the protocol attached to the product.
  • the cap structure at the 5'end of mRNA can also be introduced by a method other than that using an enzyme.
  • ARCA or CleanCap registered trademark
  • the structure of the cap analog possessed by ARCA or the Cap1 structure derived from CleanCap registered trademark
  • Commercially available products can be used for ARCA and CleanCap (registered trademark) (ARCA, N-7003; CleanCap Reagent AG, N-7113, both manufactured by TriLink BioTechnologies).
  • ARCA and CleanCap registered trademark
  • mRNA having a cap structure can be produced according to the protocol attached to the product.
  • the nucleic acid encapsulated in the lipid particles may be purified by a method such as desalting, reverse phase column, gel filtration, HPLC, or PAGE.
  • a method such as desalting, reverse phase column, gel filtration, HPLC, or PAGE.
  • dsRNA double-stranded RNA
  • the amount of dsRNA contained in the nucleic acid encapsulated in the lipid particles is preferably 10% or less, more preferably 7.5% or less, still more preferably 5% or less, and particularly preferably 3% or less in terms of mass percentage.
  • the nucleic acid-encapsulated lipid particles of the present invention are produced by a thin film method, a reverse phase evaporation method, an ethanol injection method, an ether injection method, a dehydration-rehydration method, a surfactant dialysis method, a hydration method, a freeze-thaw method, or the like. can do.
  • nucleic acid-encapsulated lipid particles can be produced by the method described in International Publication No. 2015/005253 pamphlet.
  • the particles of the present invention preferably have an average particle diameter of 30 nm to 300 nm, preferably 30 to 200 nm, more preferably 30 to 150 nm, and even more preferably 30 to 100 nm.
  • the average particle size can be obtained by measuring the volume average particle size based on the principle of dynamic light scattering using a device such as Zeta Potential / Particle Sizer NICOMP (registered trademark) 380ZLS (PARTICLE SIZING SYSTEMS). can.
  • the particles of the present invention can be used to produce a composition for preventing and / or treating infection with a new type of coronavirus (severe acute respiratory syndrome coronavirus 2: SARS-CoV-2).
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • the strain of SARS-CoV-2 is not particularly limited, but the Wuhan strain is preferable.
  • the present invention provides a method for expressing SARS-CoV-2 S protein and / or a fragment thereof in vitro, which comprises introducing a composition containing the above particles into cells.
  • the present invention also provides a method for expressing SARS-CoV-2 S protein and / or a fragment thereof in vivo, which comprises administering a composition containing the above particles to a mammal.
  • the present invention provides a method for inducing an immune response against SARS-CoV-2, which comprises administering a composition containing the above particles to a mammal.
  • the present invention also provides a method for preventing and / or treating SARS-CoV-2 infection, which comprises administering a composition containing the above particles to a mammal.
  • the particles of the present invention can be used as pharmaceuticals and as experimental reagents.
  • the particles of the present invention are usually added to a carrier such as water, buffer, saline, etc., and the formulation (composition) can be introduced into cells (in vivo) or administered to mammals (in vitro). vivo).
  • the carrier When administered to a mammal, the carrier may be a pharmaceutically acceptable carrier (eg, saline).
  • the particles of the present invention are creams and pastes based on fat, fatty oil, lanolin, petrolatum, paraffin, wax, resin, plastic, glycols, higher alcohols, glycerin, water, emulsifiers, suspending agents and the like. , Ointment, gel, lotion, etc. may be formulated.
  • the particles of the present invention are orally or intramuscularly or intravenously administered to mammals such as humans, mice, rats, hamsters, guinea pigs, rabbits, pigs, monkeys, cats, dogs, horses, goats, sheep and cows.
  • Parenteral administration can be performed by methods such as administration, rectal administration, transdermal administration, transmucosal administration, subcutaneous administration, and intradermal administration.
  • the amount of mRNA per adult is about 0.001 to 1 mg, preferably 0.01 to 0.2 mg, once or several times, intramuscular injection, subcutaneously. Injection, intradermal injection, intravenous drip injection, or intravenous injection may be performed, but the dose and frequency of administration may be appropriately changed depending on the type of disease, symptoms, age, administration method, and the like.
  • cells in which the particles of the present invention are to express the S protein of SARS-CoV-2 and / or a fragment thereof for example, HEK293 cells and their derivative cells (HEK293T cells, FreeStyle293 cells and Expi293 cells)).
  • CHO cells, C2C12 mouse myoblasts, immortalized mouse dendritic cells (MutuDC1940)), and SARS-CoV-2 S protein and / or fragments thereof can be expressed in vitro.
  • Expression of SARS-CoV-2 S protein and / or fragment thereof can be detected by Western blotting for SARS-CoV-2 S protein and / or fragment thereof, or SARS-CoV-2 S protein.
  • / or a peptide fragment specific to the fragment can be detected by mass spectrometry.
  • treatment is an infection caused by a virus or a bacterium, or a disease caused by the infection (for example, pneumonia), in which the clinical symptoms of these diseases are recovered, ameliorated, alleviated and / or treated. It means a delay in deterioration.
  • prevention means reducing the incidence of diseases due to infectious diseases such as viruses or bacteria. Prevention includes reducing the risk of disease progression due to infections such as viruses or bacteria, or reducing the aggravation of those diseases. Since the particles of the present invention induce a protective immune response, they are effective in the prevention and / or treatment of the above-mentioned diseases.
  • Example 1 Preparation of SARS-CoV-2 S full mRNA-001 (1) Preparation of template DNA for SARS-CoV-2 S full in vitro translation (IVT) Amplification of SARS-CoV-2 S full DNA by PCR to prepare template DNA for use in In vitro translation (IVT). It was post-purified.
  • a DNA fragment containing a sequence in which the T7 promoter sequence, the 5'-UTR sequence of human ⁇ -globin, the KOZAK sequence, the SARS-CoV-2 S full, and the 3'-UTR sequence of human ⁇ -globin are linked in order (SEQ ID NO: 1).
  • Nuclease-free water (849.6 ⁇ L) in which 6 ng of the plasmid was lysed. 2 (120 ⁇ L, Toyobo Co., Ltd. catalog # KOD-211), 2 mM dNTP mix (120 ⁇ L, Toyobo Co., Ltd.
  • RQ1 RNase-Free DNase 25 ⁇ L, Promega catalog # M6101
  • An 8M LiCl solution 500 ⁇ L, Sigma-Aldrich catalog # L7026
  • the obtained residue was dissolved in Nuclease-free water and then purified using RNeasy Maxi kit (Qiagen catalog # 75162) according to the attached manual.
  • the obtained eluate (5.8 mL, 4906 ⁇ g in UV conversion), Nuclease-free water (419 ⁇ L), rApid Alkaline Phosphatase (Roche catalyst # 04 898 141001) buffer solution (800 ⁇ L) and enzyme (800 ⁇ L). , 37 ° C. for 30 minutes and then 75 ° C. for 3 minutes.
  • An 8M LiCl solution (8000 ⁇ L) was mixed and allowed to stand at ⁇ 20 ° C. overnight.
  • the obtained residue was dissolved in Nuclease-free water and then purified using RNeasy Maxi kit according to the attached manual to obtain the desired mRNA.
  • the obtained mRNA has the sequence of SEQ ID NO: 5. It was analyzed by LabChip GX Touch Standard RNA Reagent Kit (PerkinElmer catalog # CLS960010), and it was confirmed that the length was the desired length.
  • Example 2 Preparation of SARS-CoV-2 RBD mRNA-002
  • ITT in vitro translation
  • the SARS-CoV-2 RBD DNA is amplified and purified by PCR to prepare a template DNA for use in In vitro translation (IVT). did.
  • the T7 promoter sequence, the 5'-UTR sequence of human ⁇ -globin, the KOZAK sequence, the signal sequence of the SARS-CoV-2 S protein, the SARS-CoV-2 RBD, and the 3'-UTR sequence of human ⁇ -globin were linked in this order.
  • a DNA fragment containing the sequence (SEQ ID NO: 7) was introduced into the plasmid (pUC57mini-RBD). 10 ⁇ Buffer for KOD-Plus-Ver. In Nuclease-free water (849.6 ⁇ L) in which 6 ng of the plasmid was lysed. 2 (120 ⁇ L, Toyobo Co., Ltd. catalog # KOD-211), 2 mM dNTP mix (120 ⁇ L, Toyobo Co., Ltd. catalog # KOD-211), 25 mM ⁇ 4 (72 ⁇ L, Toyobo Co., Ltd.
  • Example 2- (1) Preparation of SARS-CoV-2 RBD mRNA-002 by in vitro translation Using the template DNA obtained in Example 2- (1) instead of the template DNA obtained in Example 1- (1). MRNA was obtained in the same manner as in Example 1- (2). The obtained mRNA has the sequence of SEQ ID NO: 9. Analysis was performed by the LabChip GX Touch Standard RNA Reagent Kit, and it was confirmed that the length was the desired length.
  • Example 3 Preparation of mRNA-encapsulated nucleic acid lipid particles using the SARS-CoV-2 S full mRNA described in Example 1.
  • DSPC Distearoylphosphatidylcholine (1,2-Distearoyl-sn-glycero-3-phosphatidylne: hereinafter referred to as DSPC, NOF CORPORATION), cholesterol (Colesterol: hereinafter referred to as Chol, Sigma-Aldrich, Inc.), diacetic acid (7R, 9Z, 26Z, 29R) -18-( ⁇ [3- (dimethylamino) propoxy] carbonyl ⁇ oxy) pentatria contour-9,26-diene-7,29-diyl (WO2015) / 005253 compound according to Example 23) (hereinafter referred to as LP), and 1,2-distearoyl-sn-glycerol methoxypolyethylene
  • lipid solution and mRNA solution were mixed in a microchannel using NanoAssemblr BenchTop (Precision Nanosystems Inc.) so that the volume ratio was 1: 3, and a crude dispersion of nucleic acid lipid particles was obtained.
  • LP was synthesized according to the method described in Example 23 of WO2015 / 005253.
  • the amount of each lipid in the dispersion of nucleic acid lipid particles was measured by reverse phase chromatography (System: DIONEX UltiMate 3000, Volume: XSelect CSH C18 (150 mm ⁇ 3 mm, 3.5 ⁇ m, 130 ⁇ ) (Waters catalog # 186005263).
  • Buffet A 0.2% formic acid
  • Buffet B 0.2% formic acid
  • methanol (B%): 75-100% (0-6 min), 100% (6-15 min)
  • Flow Rate 0.45 mL / min
  • Temperature 50 ° C.
  • Detection Corona CAD (Charged Aerosol Detector)
  • the ratio of total lipid amount to mRNA was calculated by the following formula. [Total lipid concentration] / [mRNA concentration] (wt / wt)
  • Example 4 Preparation of mRNA-encapsulated nucleic acid lipid particles using the SARS-CoV-2 RBD mRNA described in Example 2 mRNA-encapsulated nucleic acid lipid using the mRNA described in Example 2 in the same manner as in Example 3. Particles were prepared and their characteristics were evaluated. The results are shown in Table 1. (Table 1) From the above results, it was clarified that 90% or more of the mRNA of these nucleic acid lipid particles is encapsulated in the lipid particles and has an average particle diameter of about 100 nm to about 130 nm.
  • SARS-CoV-2 S full optimized mRNA-003 (1) Preparation of template DNA for SARS-CoV-2 S full optimized (IVT) T7 promoter sequence, human ⁇ -glob A DNA fragment (SEQ ID NO: 12) containing a sequence in which the 5'-UTR sequence, the KOZAK sequence, the SARS-CoV-2 S full optimized, and the 3'-UTR sequence of human ⁇ -globin were sequentially linked was artificially synthesized into a plasmid. Introduced (S_opt2 EcoRI).
  • SARS-CoV-2 S full-optimized SEQ ID NO: 15
  • the template DNA was cleaved with restriction enzymes NheI and HindIII, and then introduced into a plasmid cleaved with the restriction enzymes to prepare a template plasmid (pUCKIVT1 S full optimized). After cleaving the plasmid with the restriction enzyme BspQI, DNA was purified by isopropanol precipitation to prepare linear plasmid DNA.
  • SARS-CoV-2 RBD optimized mRNA-004 (1) Preparation of template DNA for SARS-CoV-2 RBD optimized in vitro translation (IVT) T7 promoter sequence, human ⁇ -globin 5 A DNA fragment (SEQ ID NO: 17) containing a sequence in which the'-UTR sequence, KOZAK sequence, SARS-CoV-2 RBD optimized, and human ⁇ -globin 3'-UTR sequence were sequentially linked was artificially synthesized and introduced into a plasmid (SEQ ID NO: 17). S_RBD_opt2 EcoRI).
  • Nuclease-free water (69 ⁇ L) in which 1 ng of the plasmid was lysed, 5 ⁇ SuperFi Green Buffer (20 ⁇ L, ThermoFisher Scientific catalyst # 12357-010), 2 mM dNTP mix (8 ⁇ L), 2 mM dNTP mix (8 ⁇ L), and 2 mM dNTP mix (8 ⁇ L).
  • SARS-CoV-2 RBD-optimized DNA SEQ ID NO: 18
  • the template DNA was cleaved with restriction enzymes NheI and HindIII, and then introduced into a plasmid cleaved with the restriction enzymes to prepare a template plasmid (pUCKIVT1-RBD optimized). After cleaving the plasmid with the restriction enzyme BspQI, DNA was purified by isopropanol precipitation to prepare linear plasmid DNA.
  • Example 7 Preparation of mRNA-encapsulated nucleic acid lipid particles using the SARS-CoV-2 S full optimized mRNA described in Example 5 mRNA encapsulation using the mRNA described in Example 5 in the same manner as in Example 3. Nucleic acid lipid particles were prepared and their characteristics were evaluated. However, dialysis was performed using 300 mM sucrose and 10 mM histidine buffer (pH 7.0) instead of 300 mM sucrose and 10 mM histidine buffer (pH 6.5) to obtain a dispersion of mRNA-encapsulated nucleic acid lipid particles. The results are shown in Table 2.
  • Example 8 Preparation of mRNA-encapsulated nucleic acid lipid particles using the SARS-CoV-2 RBD optimized mRNA described in Example 6 mRNA-encapsulated nucleic acid using the mRNA described in Example 6 in the same manner as in Example 3. Lipid particles were prepared and their characteristics were evaluated. However, dialysis was performed using 300 mM sucrose and 10 mM histidine buffer (pH 7.0) instead of 300 mM sucrose and 10 mM histidine buffer (pH 6.5) to obtain a dispersion of mRNA-encapsulated nucleic acid lipid particles. The results are shown in Table 2.
  • Example 9 HPLC purification of SARS-CoV-2 RBD optimized mRNA-004
  • the mRNA obtained by the method described in Example 6- (2) was subjected to reverse phase chromatography (YMC-Triart Bio C4 (YMC catalog # TB30S05)). -1510WT), 5% acetonitrile, 400 mM triethylamine acetate (pH 7.0) / 25% acetonitrile, 400 mM triethylamine acetate (pH 7.0), 75 ° C.).
  • Example 10 Preparation of mRNA-encapsulated nucleic acid lipid particles using the SARS-CoV-2 RBD optimized mRNA described in Example 6 Using the mRNA described in Example 9 in the same manner as in Example 8. The mRNA-encapsulated nucleic acid lipid particles were prepared and their characteristics were evaluated. The results are shown in Table 2. (Table 2) From the above results, it was clarified that 90% or more of the mRNA of these nucleic acid lipid particles is encapsulated in the lipid particles and has an average particle diameter of about 90 nm to about 130 nm.
  • Example 11 Preparation of SARS-CoV-2 RBD S2000 mRNA (1) Preparation of template DNA for in vitro translation (IVT) of SARS-CoV-2 RBD S2000 A plasmid was constructed to prepare a template DNA for use in in vitro translation (IVT).
  • GCTAGC (NheI site), T7 promoter sequence, human ⁇ -globin 5'-UTR sequence, KOZAK sequence, SARS-CoV-2 S protein signal sequence, SARS-CoV-2 RBD translation region, human ⁇ -globin A plasmid (pUC57-S2000) was prepared into which a DNA fragment (SEQ ID NO: 20) containing a sequence in which a 3'-UTR sequence, a poly A tail, and a GAAGAGC (BspQI site) were sequentially linked was introduced.
  • Nuclease-freewater (860 ⁇ L, Thermo Fisher, catalog # AM9937) lysed with plasmid (100 ⁇ g) with 10X NEB Buffer 3.1 (100 ⁇ L, New England Biolabs, Biolabs, biolabs, callo) # R0712) was added, and after incubation at 50 ° C. for 1 hour, isopropanol (1400 ⁇ L) was added, and the mixture was allowed to stand at ⁇ 80 ° C. overnight.
  • Example 12 Preparation of mRNA-encapsulated nucleic acid lipid particles using SARS-CoV-2 RBD S2000 mRNA described in Example 11 Using the mRNA described in Example 11 in the same manner as in Example 8. The mRNA-encapsulated nucleic acid lipid particles were prepared and their characteristics were evaluated. However, the amount of mRNA was measured by the following method. The nucleic acid lipid particle dispersion was diluted and dissolved in 90% methanol, and the amount of mRNA in the nucleic acid lipid particles was measured with an ultraviolet-visible spectrophotometer (LAMBDA TM 465 manufactured by PerkinElmer). The mRNA concentration was calculated by the following formula.
  • LAMBDA TM 465 ultraviolet-visible spectrophotometer
  • GCTAGC (NheI site), T7 promoter sequence, human ⁇ -globin 5'-UTR sequence, KOZAK sequence, SARS-CoV-2 S protein signal sequence, SARS-CoV-2 RBD translation region, human ⁇ -globin A plasmid (pUC57-S2001) was prepared into which a DNA fragment (SEQ ID NO: 22) containing a sequence in which a 3'-UTR sequence, a poly A tail, and a GAAGAGC (BspQI site) were sequentially linked was introduced.
  • Nuclease-freewater (860 ⁇ L, Thermo Fisher, catalog # AM9937) lysed with plasmid (100 ⁇ g) with 10X NEB Buffer 3.1 (100 ⁇ L, New England Biolabs, Biolabs, biolabs, callo) # R0712) was added, and after incubation at 50 ° C. for 1 hour, isopropanol (1400 ⁇ L) was added, and the mixture was allowed to stand at ⁇ 80 ° C. overnight.
  • Example 14 Preparation of mRNA-encapsulated nucleic acid lipid particles using the SARS-CoV-2 RBD S2001 mRNA described in Example 13 mRNA-encapsulated nucleic acid using the mRNA described in Example 13 in the same manner as in Example 12. Lipid particles were prepared and their characteristics were evaluated. The results are shown in Table 3. From the results of the property evaluation, it was clarified that 95% or more of the mRNA of this nucleic acid lipid particle is encapsulated in the lipid particle and has an average particle diameter of about 140 nm.
  • Example 15 Preparation of SARS-CoV-2 RBD S2002 mRNA (1) Preparation of template DNA for in vitro translation (IVT) of SARS-CoV-2 RBD S2002 A plasmid was constructed to prepare a template DNA for use in in vitro translation (IVT).
  • GCTAGC (NheI site), T7 promoter sequence, human ⁇ -globin 5'-UTR sequence, KOZAK sequence, SARS-CoV-2 S protein signal sequence, SARS-CoV-2 RBD translation region, human ⁇ -globin A plasmid (pUC57-S2002) was prepared into which a DNA fragment (SEQ ID NO: 26) containing a sequence in which a 3'-UTR sequence, a poly A tail, and a GAAGAGC (BspQI site) were sequentially linked was introduced.
  • Nuclease-freewater (860 ⁇ L, Thermo Fisher, catalog # AM9937) lysed with plasmid (100 ⁇ g) with 10X NEB Buffer 3.1 (100 ⁇ L, New England Biolabs, Biolabs, biolabs, callo) # R0712) was added, and after incubation at 50 ° C. for 1 hour, isopropanol (1400 ⁇ L) was added, and the mixture was allowed to stand at ⁇ 80 ° C. overnight.
  • Example 16 Preparation of mRNA-encapsulated nucleic acid lipid particles using the SARS-CoV-2 RBD S2002 mRNA described in Example 15 mRNA-encapsulated nucleic acid using the mRNA described in Example 15 in the same manner as in Example 12. Lipid particles were prepared and their characteristics were evaluated. The results are shown in Table 3. From the results of the property evaluation, it was clarified that 95% or more of the mRNA of this nucleic acid lipid particle is encapsulated in the lipid particle and has an average particle diameter of about 140 nm.
  • GCTAGC (NheI site), T7 promoter sequence, human ⁇ -globin 5'-UTR sequence, KOZAK sequence, SARS-CoV-2 S protein signal sequence, SARS-CoV-2 RBD translation region, human ⁇ -globin A plasmid (pCC1-S2003) was prepared into which a DNA fragment (SEQ ID NO: 30) containing a sequence in which a 3'-UTR sequence, a poly A tail, and a GAAGAGC (BspQI site) were sequentially linked was introduced.
  • Nuclease-freewater (860 ⁇ L, Thermo Fisher, catalog # AM9937) lysed with plasmid (100 ⁇ g) with 10X NEB Buffer 3.1 (100 ⁇ L, New England Biolabs, Biolabs, biolabs, callo) # R0712) was added, and after incubation at 50 ° C. for 1 hour, isopropanol (1400 ⁇ L) was added, and the mixture was allowed to stand at ⁇ 80 ° C. overnight.
  • Example 18 Preparation of mRNA-encapsulated nucleic acid lipid particles using SARS-CoV-2 RBD S2003 mRNA described in Example 17 mRNA-encapsulated nucleic acid using mRNA described in Example 17 in the same manner as in Example 12. Lipid particles were prepared and their characteristics were evaluated. The results are shown in Table 3. From the results of the property evaluation, it was clarified that 95% or more of the mRNA of this nucleic acid lipid particle is encapsulated in the lipid particle and has an average particle diameter of about 140 nm.
  • GCTAGC (NheI site), T7 promoter sequence, human ⁇ -globin 5'-UTR sequence, KOZAK sequence, SARS-CoV-2 S protein signal sequence, SARS-CoV-2 RBD translation region, human ⁇ -globin A plasmid (pCC1-S2004) was prepared into which a DNA fragment (SEQ ID NO: 34) containing a sequence in which a 3'-UTR sequence, a poly A tail, and a GAAGAGC (BspQI site) were sequentially linked was introduced.
  • Nuclease-freewater (860 ⁇ L, Thermo Fisher, catalog # AM9937) lysed with plasmid (100 ⁇ g) with 10X NEB Buffer 3.1 (100 ⁇ L, New England Biolabs, Biolabs, biolabs, callo) # R0712) was added, and after incubation at 50 ° C. for 1 hour, isopropanol (1400 ⁇ L) was added, and the mixture was allowed to stand at ⁇ 80 ° C. overnight.
  • Example 20 Preparation of mRNA-encapsulated nucleic acid lipid particles using SARS-CoV-2 RBD S2004 mRNA described in Example 19 mRNA-encapsulated nucleic acid using mRNA described in Example 19 in the same manner as in Example 12. Lipid particles were prepared and their characteristics were evaluated. The results are shown in Table 3. From the results of the property evaluation, it was clarified that 95% or more of the mRNA of this nucleic acid lipid particle is encapsulated in the lipid particle and has an average particle diameter of about 180 nm.
  • Example 21 to 30 Preparation of mRNA-encapsulated nucleic acid lipid particles using the mRNA described in Example 6 (1) Preparation of mRNA-encapsulated nucleic acid lipid particles Distearoylphosphatidylcholine (DSPC), cholesterol, diacetic acid (7R, 9Z, 26Z) , 29R) -18-( ⁇ [3- (dimethylamino) propoxy] carbonyl ⁇ oxy) pentatria contour-9,26-diene-7,29-diyl (LP), and polyethylene glycol molecular weight of about 2000 1, 1, 2-Dimiristyl-sn-glycerol methoxypolyethylene glycol (PEG-DMG) was dissolved in ethanol at the molar ratios shown in Table 4 to a total lipid concentration of 5 mM.
  • DSPC Distearoylphosphatidylcholine
  • LP diacetic acid
  • LP diacetic acid
  • LP diacetic acid
  • LP
  • the mRNA obtained in Example 6 was diluted and prepared with a citrate buffer (pH 4.0).
  • the mixture was mixed in the room to obtain a crude dispersion of nucleic acid lipid particles.
  • Ethanol was removed by dialysis (Float-A-Lyzer G2, MWCO: 1,000 kD, Spectra / Por) of the dispersion of nucleic acid lipid particles with a buffer solution of about 25 to 50 times the amount for 12 to 18 hours.
  • a dispersion of purified mRNA-encapsulated nucleic acid lipid particles was obtained.
  • Characteristic evaluation of mRNA-encapsulated nucleic acid lipid particles The characteristics of the dispersion containing the nucleic acid lipid particles prepared in (1) were evaluated. Each characteristic evaluation method will be described.
  • (2-1) Encapsulation rate of mRNA The encapsulation rate of mRNA was measured using a Quant-iT RiboGreen RNA Assay kit (Invitrogen) according to the package insert. That is, mRNA in the dispersion liquid of nucleic acid lipid particles was quantified in the presence and absence of 0.015% Triton X-100 surfactant, and the encapsulation rate was calculated by the following formula.
  • the ratio of total lipid amount to mRNA was calculated by the following formula. [Total lipid concentration] / [mRNA concentration] (wt / wt) (2-3) Average particle size The particle size of the nucleic acid lipid particles was measured by Zeta Potential / Solid Sizer NICOMPTM 380ZLS (PARTICLE SIZING SYSTEMS).
  • the average particle size in the table represents the volume average particle size, and ⁇ or less represents the deviation.
  • the results of the characteristic evaluation are shown in Table 5. It was revealed that 95% or more of these nucleic acid lipid particles are encapsulated in the lipid particles and have an average particle diameter of about 90 nm to about 140 nm.
  • Example 31 Preparation of mutant SARS-CoV-2 RBD mRNA
  • SARS-CoV-2 RBD mRNA was prepared.
  • the symbols after the example numbers in Table 7 correspond to the respective variants as shown in Table 6.
  • Example 32-a represents a nucleic acid lipid particle encapsulated in an mRNA having a South African type mutation obtained in Example 32.
  • IVT in vitro translation
  • IVT template DNA for in vitro translation
  • T7 promoter sequence human ⁇ -globin 5'-UTR sequence, KOZAK sequence, SARS-CoV-2 S protein signal sequence, mutant SARS-CoV-2 RBD, human ⁇ -globin 3'-UTR sequence in order.
  • a DNA fragment containing the ligated sequence (SEQ ID NO: 38) was introduced into the plasmid (pUC57mini-mutant RBD).
  • the template DNA (SEQ ID NO: 52) was purified by Wizard SV Gel and PCR Clean-Up System (Promega catalog # A9281).
  • the template DNAs of SEQ ID NOs: 53 to 55, 57, 62 to 65 are obtained by the same method using the DNA fragments of SEQ ID NOs: 39 to 41, 43 and 48 to 51 instead of the DNA fragment (SEQ ID NO: 38), respectively. rice field.
  • (2) Preparation of mutant SARS-CoV-2 RBD mRNA by in vitro translation The template DNA obtained in Example 31- (1) instead of the template DNA obtained in Example 1- (1) (SEQ ID NO:). 52) was used to obtain mRNA in the same manner as in Example 1- (2).
  • the resulting mRNA has the sequence of SEQ ID NO: 66.
  • the mRNAs of SEQ ID NOs: 67 to 69, 71, 76 to 79 were obtained by the same method using the template DNAs of SEQ ID NOs: 53 to 55, 57 and 62 to 65 instead of the template DNA (SEQ ID NO: 52), respectively. ..
  • Example 32 Preparation of mRNA-encapsulated nucleic acid lipid particles using the SARS-CoV-2 RBD mRNA described in Example 31 mRNA-encapsulated nucleic acid lipid using the mRNA described in Example 31 in the same manner as in Example 8. Particles were prepared and their characteristics were evaluated. The results are shown in Table 7. From the results of the property evaluation, it was clarified that 95% or more of these nucleic acid lipid particles are encapsulated in the lipid particles and have an average particle diameter of about 110 nm to about 130 nm.
  • Example 33 Preparation of mRNA-encapsulated nucleic acid lipid particles using the SARS-CoV-2 RBD mRNA described in Example 6 mRNA-encapsulated nucleic acid lipid using the mRNA described in Example 6 in the same manner as in Example 8. Particles were prepared and their characteristics were evaluated. The results are shown in Table 7. From the results of the property evaluation, it was clarified that 95% or more of the mRNA of this nucleic acid lipid particle is encapsulated in the lipid particle and has an average particle diameter of about 110 nm.
  • Fig. 2-Fig. 4 The test substance was administered to the hind limb abdomen of mice under 1 to 4% (v / v) vaporized isoflurane anesthesia. The 3-dose study was additionally administered 7 days and 21 days after the first dose (1st dose: right hind limb, 2nd dose: left hind limb, 3rd dose: right hind limb), and the 2-dose study was the first dose. Additional administration was performed 13 days after the operation (first administration: right hind limb, second administration: left hind limb). The test substance was administered with 3 ⁇ g mRNA / 20 ⁇ L / body or 1 ⁇ g mRNA / 20 ⁇ L / body at a time (in FIG. 2-FIG.
  • Example 3_3 in FIG. 2-Fig. 4 means that the particles of Example 3 were administered with 3 ⁇ g mRNA / 20 ⁇ L / body).
  • the buffer for preparing the administration solution 10 mM Histidine buffer containing 300 mM Sucrose and pH 6.5 were used.
  • the S1 protein (Sino Biological, Cat # 40591-V08H) supplemented with a commercially available saponin adjuvant (Quil-A Adjuvant, Invivogen, Cat # vac-quil) was set as a positive control group for the anti-RBD antibody response (S1 / Quil-). Group A).
  • S1 protein and Quil-A 1 ⁇ g S1 and 10 ⁇ g Quil-A / 20 ⁇ L / body were administered at a time.
  • spleen was collected from mice hemolyzed under isoflurane anesthesia, a cell suspension was prepared using a cell strainer (CORNING, Cat # 352350), and then an ACK solution (Lysing Buffer, BD, Cat # 555899) was applied. Hemolysis treatment was performed using the spleen cells.
  • Example 3 or 4 Particles of Example 3 or 4 were added to Expi293F cells (Thermo Fisher Scientific, Cat # A14527) so that the mRNA concentration in the protein expression analysis medium was 10 ⁇ g / mL. Further, as a negative control, an amount of Buffer equal to the amount of the particles added in Example 4 was added. Culture supernatants and cell pellets were collected 3 days after addition. Cell pellets were lysed with M-PER (Thermo Fisher Scientific, Cat # 78501) supplemented with a 1 x Protease / Phosphatase inhibitor (Thermo Fisher Scientific, Cat # 78443) and centrifuged (9100 x g, 4 ° C., The cytolytic solution was collected in 10 minutes).
  • M-PER Thermo Fisher Scientific, Cat # 78501
  • a 1 x Protease / Phosphatase inhibitor Thermo Fisher Scientific, Cat # 78443
  • the culture supernatant diluted 810 times and 2430 times with D-PBS and the cytolytic solution diluted 10 times and 30 times were immobilized on a 96 half well plate (Coaster, Cat # 3690), and an anti-RBD antibody (Sino Biological) was immobilized. , Cat # 40592-T62) was used to detect the protein expressed by the particles of Example 3 or 4 by the Enzyme-Linked Immunosorbent Assay (ELISA) method.
  • ELISA Enzyme-Linked Immunosorbent Assay
  • Blood anti-RBD antibody titer (Fig. 2-Fig. 4) Recombinant RBD protein (Sino Biological, Cat # 40592-V08H) was added to a Ni plate (QIAGEN, Cat # 35061) in a blocking solution (1% BSA, PBS containing 0.05% Tween 20) at 0.25 ⁇ g / mL (50 ⁇ L /). Well), allowed to stand at room temperature for 2 hours, and then washed 3 times with 300 ⁇ L / well of washing solution (PBS containing 0.05% Tween 20). Sample dilution series were prepared in 8 steps with 4-fold dilution from the highest concentration of 100-fold diluted serum using blocking solution.
  • Standard serum dilution series were prepared in 8 steps with 3-fold dilution from the highest concentration of 2 DS UNIT / mL using blocking solution.
  • a sample diluted solution and a standard serum diluted solution were added (50 ⁇ L / well), allowed to stand at room temperature for 1 hour, and then washed 3 times with a washing solution.
  • HRP-labeled anti-mouse IgG antibody (Southern Biotech, Cat # 1030-05) was diluted 4000-fold with a blocking solution, added to a plate (50 ⁇ L / well), and then allowed to stand at room temperature for 1 hour.
  • TMB Microwell Peroxidase Substrate System (SERACARE Life Sciences, Cat # 5120-0047) was added (50 ⁇ L / well), and the mixture was allowed to stand for 10 minutes.
  • TMB Stop Solution (SERACARE Life Sciences, Cat # 5150-0021, 50 ⁇ L / well) was used as the reaction stop solution.
  • the absorbance at a wavelength of 450 nm was measured using a plate reader, and the corrected absorbance (Delta) obtained by subtracting the absorbance measured at 540 nm from the absorbance measured at 450 nm was used for the analysis.
  • a calibration curve was prepared using Nonlinear Regression: 4 Parameter from the anti-RBD antibody concentration and Delta of standard serum.
  • the anti-RBD antibody concentration of the sample was calculated from the calibration curve, the dilution ratio of the measurement sample, and Delta.
  • the average value of the antibody concentration of the well with Delta of 0.5 to 1.5 was calculated as the anti-RBD antibody concentration of the measurement sample.
  • 20 DS UNIT / mL was substituted and used as data.
  • RBD-hACE2 binding inhibitory activity 96 half well plate (Coaster, Cat # 3690) was added with 10 ⁇ g / mL Streptavidin (Thermo Fisher Scientific, Cat # 21125, dissolved in PBS) and allowed to stand overnight at 4 ° C. It was washed 3 times with a washing solution (PBS containing 0.05% Tween 20). A blocking solution (1% BSA, PBS containing 0.05% Tween 20) was added, the mixture was allowed to stand at room temperature for 1 hour, and then washed 3 times with a washing solution.
  • a 0.2 ⁇ g / mL recombinant RBD protein (Acro Biosystems, Cat # SPD-C82E9) solution prepared as a blocking solution was added to the plate, allowed to stand at room temperature for 1 hour, and then washed 3 times with a washing solution.
  • Mouse serum diluted 20-fold with a blocking solution was added to the plate, allowed to stand at room temperature for 1 hour, and then washed 3 times with a washing solution.
  • a 1 ⁇ g / mL recombinant hACE2 protein (Acro Biosystems, Cat # AC2-H5257) solution prepared with a blocking solution was added to the plate, allowed to stand at room temperature for 1 hour, and then washed 3 times with a washing solution.
  • HRP-labeled anti-human IgG1 antibody (CYGNUS TECHNOLOGIES, Cat # IM50) was diluted 500-fold with a blocking solution, added to a plate, and then allowed to stand at room temperature for 1 hour. After washing 3 times with a washing solution, TMB Microwell Peroxidase Substrate System (SERACARE Life Sciences, Cat # 5120-0047) was added and allowed to stand for 10 minutes. TMB Stop Solution (SERACARE Life Sciences, Cat # 5150-0021) was used as the reaction stop solution. The absorbance at a wavelength of 450 nm was measured and analyzed using a plate reader.
  • DMSO dimethyl sulfoxide
  • the commercially available epitope peptide pool covering the entire S length of SARS-CoV-2 (JPT, Cat # PM-WCPV-S-1, 2 vials, and the peptide pool covering the N-terminal region covers the JPT-N and C-terminal regions.
  • the peptide pool covered was JPT-C) dissolved in 40 ⁇ L DMSO per vial.
  • RBD-specific cell-mediated immune response Contains RPMI Complete medium (10% FBS [Sigma-Aldrich, Cat # 172012-500ML], 1% PS [Penicilin-Streptomycin Mixed Solution, Nacalai Tesque, Cat # 26253-84], 1mM Sodium Pyruvate [Thermo Fisher Scientific, Cat # 11360-070], 10 mM HEPES [Thermo Fisher Scientific, Cat # 15630080], 1 ⁇ StemSure [Fuji Film Wako Junyaku, Cat # 195-15791], 1 ⁇ MEM Non- It was prepared at 1 ⁇ 107 cells / mL with Essential Amino Acids Solution [Thermo Fisher Scientific, Cat # 11140-050] and seeded on a U-bottom 96 well plate.
  • Epitope peptide pool Euro1-3 solution prepared to a final concentration of 0.1% (v / v) in RPMI Complete medium and commercially available epitope peptide pool JPT-N prepared to a final concentration of 0.025% (v / v).
  • JPT-C was added to spleen cells and cultured at 37 ° C. under 5% CO 2 conditions for 48 hours.
  • the amount of IFN- ⁇ and IL-13 cytokines in the cell culture supernatant was measured using Mouse IFN- ⁇ DuoSet ELISA (R & D Systems, Cat # DY485) and Mouse IL-13 Duoset ELISA (R & D systems, Cat # DY413). ..
  • the absorbance at a wavelength of 450 nm was measured using a plate reader, and the corrected absorbance (Delta), which was obtained by subtracting the absorbance measured at 540 nm from the absorbance at 450 nm, was used for the analysis.
  • a calibration curve was prepared from the cytokine concentration and Delta value of the standard solution using Nonlinear Regression: 4 Parameter, and the cytokine concentration of the measurement sample was calculated from the calibration curve. When the IL-13 concentration was less than 0.000 ( ⁇ 0.000), the cutoff value 0.005 was substituted for the data.
  • mice Fig. 5-Fig. 9, Fig. 25-Fig. 28
  • mice Under 1-4% (v / v) vaporized isoflurane anesthesia, twice at 2-week intervals (Fig. 5) or twice at 3-week intervals (Fig. 6-9, Fig. 25, Fig. 26, and Fig. 28)
  • the test substance was administered to the hind limb abdomen of BALB / c mice (FIG. 5-FIG. 8, FIG. 25, FIG. 26, and FIG. 28) or C57BL / 6 mice (FIG. 9).
  • FIG. 27 the test substance was administered only once to the hind limb abdomen of BALB / c mice.
  • the test substance was administered 0.03, 0.3, or 3 ⁇ g mRNA / 20 ⁇ L / body at a time (for example, the description of Example 8_0.03 in FIG. 5 is 0.03 ⁇ g mRNA / 20 ⁇ L / of the particles of Example 8). It means that it is a body-administered group).
  • 2 ⁇ g mRNA / 20 ⁇ L / body was administered at a time
  • 3 ⁇ g mRNA / 20 ⁇ L / body was administered at a time.
  • As the buffer for preparing the administration solution 10 mM Histidine buffer containing 300 mM Sucrose and pH 7.0 were used.
  • Example 10 was administered to the deltoid muscle of the brachial arm of cynomolgus monkey three times at two-week intervals. In Example 10, 50 ⁇ g mRNA / 200 ⁇ L / body was administered at one time.
  • As the buffer for preparing the administration solution 10 mM Histidine buffer containing 300 mM Sucrose and pH 7.0 were used.
  • Blood anti-RBD antibody titer (FIGS. 5, 6, 9, and 25-27) A solid phase solution of Streptavidin (Thermo Fisher Scientific Inc.) was added to an ELISA plate at 25 ⁇ L / well, and the mixture was allowed to stand overnight in a refrigerator set at 4 ° C. Wash 3 times (180 ⁇ L / well) with Wash Buffer using a plate washer (AMW-96SX, Biotech Co., Ltd.), add 1% BSA / PBST (150 ⁇ L / well), and leave at room temperature for 1 hour or more. Blocking was performed by placing it.
  • Streptavidin Thermo Fisher Scientific Inc.
  • TMB Stop Solution (SERACARE Life Sciences, Cat # 5150-0021, 30 ⁇ L / well) was used as the reaction stop solution.
  • the absorbance at a wavelength of 450 nm (control wavelength 540 nm) was measured using a plate reader, and the corrected absorbance (Delta) obtained by subtracting the absorbance measured at 540 nm from the absorbance measured at 450 nm was used for the analysis.
  • a calibration curve was prepared using Nonlinear Regression: 4 Parameter from the anti-RBD antibody concentration and Delta of standard serum. The anti-RBD antibody concentration of the sample was calculated from the calibration curve, the dilution ratio of the measurement sample, and Delta.
  • VeroE6 cells Blood anti-SARS-CoV-2 neutralizing activity (Figs. 7 and 8) VeroE6 cells were seeded on plates and cultured overnight in an incubator with a CO 2 concentration setting of 37 ⁇ 2 ° C and 5 ⁇ 1%.
  • a diluted series of mouse serum and SARS-CoV-2 WA1 / 2020 strain were mixed and allowed to stand in an incubator with a CO 2 concentration setting of 37 ⁇ 2 ° C. and 5 ⁇ 1% for 2 to 2.5 hours.
  • a mixed solution of mouse serum and SARS-CoV-2 WA1 / 2020 strain was added to VeroE6 cells and cultured in an incubator at 37 ⁇ 2 ° C. and a CO 2 concentration setting of 5 ⁇ 1% for 72 ⁇ 8 hours.
  • the amount of viable cells was measured using CellTiter-Glo (Promega), and the anti-SARS-CoV-2 neutralization activity titer of mouse serum was calculated.
  • RBD-specific cell-mediated immune response (Fig. 10) Spleen cells were prepared in RPMI Complete medium at 1 ⁇ 10 7 cells / mL and seeded on a U-bottom 96 well plate. MHC class II of RBD prepared to a final concentration of 0.1% (v / v) in RPMI Complete medium Epitope peptide pools were added to spleen cells and cultured at 37 ° C. under 5% CO 2 conditions for 48 hours. The amount of IFN- ⁇ and IL-13 cytokines in the cell culture supernatant was measured using Mouse IFN- ⁇ DuoSet ELISA and Mouse IL-13 Duoset ELISA.
  • the absorbance at a wavelength of 450 nm was measured using a plate reader, and the value obtained by subtracting the absorbance measured at 540 nm from the absorbance at 450 nm was used for the analysis.
  • a calibration curve was prepared using Nonlinear Regression: 4 Parameter from the cytokine concentration and measured value of the standard solution, and the cytokine concentration of the measured sample was calculated from the calibration curve.
  • the Steel test was performed using the Buffer group as a comparative control.
  • the Wilcoxon test was performed for the comparison between the two groups in Fig. 8.
  • the Steel test was performed using the Buffer group as a comparative control.
  • the Steel-Dwass test was performed on the RBD-specific cell-mediated immunity shown in FIG. SAS ver. 9.2 was used for all analyzes.
  • RBD-hACE2 binding inhibitory activity (Fig. 28) An anti-His tag antibody (Wako Pure Chemical Industries, Cat # 017-23211) was added to a 96 half well plate, and the mixture was allowed to stand overnight at 4 ° C. and then washed 3 times with a washing solution (PBS containing 0.05% Tween 20). .. A blocking solution (1% BSA, PBS containing 0.05% Tween 20) was added, the mixture was allowed to stand at room temperature for 1 hour, and then washed 3 times with a washing solution.
  • the mouse serum dilution series diluted with the blocking solution was added to the plate, allowed to stand at room temperature for 1 hour, and then washed 3 times with a washing solution.
  • a 1 ⁇ g / mL recombinant hACE2 protein (Acro Biosystems, Cat # AC2-H5257) solution prepared with a blocking solution was added to the plate, allowed to stand at room temperature for 1 hour, and then washed 3 times with a washing solution.
  • HRP-labeled anti-human IgG1 antibody (CYGNUS TECHNOLOGIES, Cat # IM50) was diluted 500-fold with a blocking solution, added to a plate, and then allowed to stand at room temperature for 1 hour.
  • TMB Microwell Peroxidase Substrate System (SERACARE Life Sciences, Cat # 5120-0047) was added and allowed to stand for 10 minutes.
  • TMB Stop Solution (SERACARE Life Sciences, Cat # 5150-0021) was used as the reaction stop solution.
  • the absorbance at a wavelength of 450 nm was measured using a plate reader, and the corrected absorbance (Delta) obtained by subtracting the absorbance measured at 540 nm from the absorbance measured at 450 nm was used for the analysis.
  • the data show mouse dilutions showing 50% inhibition (IC 50 ).
  • Vero-TMPRSS2 cells Blood anti-SARS-CoV-2 neutralizing activity (Fig. 29) Vero-TMPRSS2 cells were seeded on a plate. Diluted series of monkey plasma and SARS-CoV-2 strain of 100 TCID 50 (D614G: HP095, B.1.1.7 strain: QHN001, P.1 strain: TY7-501, B.1.351 strain: TY8-612) was mixed and allowed to stand in a CO 2 incubator. Then, a mixed solution of monkey plasma and SARS-CoV-2 was added to Vero-TMPRSS2 cells, and the cells were cultured in a CO 2 incubator for 3 days. After that, the maximum dilution ratio at which the cytopathic effect (CPE) was not observed was calculated as the neutralizing antibody titer.
  • CPE cytopathic effect
  • the mechanism of action of the nucleic acid-lipid particle vaccine of the present invention is that an antigen protein is produced from an mRNA encoding an antigen gene after administration in vivo to induce a specific immune response against the antigen. It is suggested that. It is assumed that the medicinal efficacy of the nucleic acid lipid particle vaccine of the present invention is important for the delivery of mRNA, which is an active ingredient, into tissues and cells and the translation from mRNA. For the purpose of comprehensively evaluating this series of factors, the titer was evaluated using the ability to induce the expression of the antigen protein using cultured cells as an index.
  • Example 3 The particles of Example 3, the particles of Example 4, or Buffer were added to Expi293F cells, and the RBD protein expressed in the culture supernatant and in the cells after 3 days was quantified by the ELISA method. The results are shown in FIG. The RBD protein expressed by the particles of Example 4 was observed in the culture supernatant and in the cells. The S full-length protein expressed by the particles of Example 3 was observed only intracellularly.
  • Blood anti-RBD antibody response The blood anti-RBD antibody response induced by administration of the particles of Example 3 or Example 4 was evaluated. The results are shown in FIG.
  • RBD-specific cell-mediated immune response Spleen cells were prepared and evaluated for RBD-specific cell-mediated immune response from cultured spleen cells. The results are shown in FIG. Compared to the S1 / Quil-A group, Example 4 had higher levels of IFN- ⁇ production for treatment with Euro2 and JPT-N epitope peptide pools covering RBD (P ⁇ 0.001). On the other hand, the IL-13 production level for Euro2 and JPT-N epitope peptide pool treatment was lower in the Example 4 group than in the S1 / Quil-A group (P ⁇ 0.005). From this result, it was found that the nucleic acid lipid particle vaccine of the present invention induces an immune response in which Th1 type is dominant.
  • Blood anti-RBD antibody response in C57BL / 6 mice The blood anti-RBD antibody response induced by administration of the particles of Example 8 or Example 10 was evaluated. The results are shown in FIG. At each dose of 3 ⁇ g mRNA / body and 10 ⁇ g mRNA / body, blood anti-RBD antibody titers were higher in Example 8 and Example 10 compared to the Buffer group (both doses of Example 10 were P ⁇ 0.05). ..
  • RBD-specific cell-mediated immune response Spleen cells were prepared and evaluated for RBD-specific cell-mediated immune response from cultured spleen cells. The results are shown in Figure 10A.
  • the group receiving Example 10 of 3 ⁇ g / body showed higher IFN- ⁇ induction compared to the group receiving 100 ⁇ g / body of Alum adjuvant to 0.1 ⁇ g / body of RBD protein (P ⁇ 0.05). ..
  • the group receiving Example 10 of 0.03 ⁇ g / body and 3 ⁇ g / body produced higher IFN- ⁇ induction compared to the group in which 100 ⁇ g / body of Alam adjuvant was added to 1.0 ⁇ g / body of RBD protein. Shown (both P ⁇ 0.05).
  • Example 10 To evaluate the Th cell profile of Example 10, the IFN- ⁇ level / IL-5 level ratio and the IFN- ⁇ level / IL-13 level ratio were analyzed. The results are shown in Figure 10B.
  • Example 10 showed a higher IFN- ⁇ level / IL-13 level ratio compared to the Alum-adjuvant-added RBD protein group (all three groups of Example 10 against the two groups of Alum-adjuvant-added RBD protein). P ⁇ 0.05). From this result, it was found that the nucleic acid lipid particle vaccine of the present invention induces an immune response in which Th1 type is dominant.
  • Blood anti-RBD antibody response in BALB / c mice (FIGS. 25-27) The blood anti-RBD antibody response induced by administration of the particles of Example 10, 12, 14, 16, 18, or Example 20 was evaluated. The results are shown in FIG. Both showed higher blood anti-RBD antibody levels compared to the Buffer group. The blood anti-RBD antibody response induced by administration of the particles of Example 10 or Example 21-30 was evaluated. The results are shown in FIG. Higher blood anti-RBD antibody titers were observed in all the particles as compared with the Buffer group. The blood anti-RBD antibody response induced by administration of the particles of Example 10, 32a, 32b, 32c, 32d, 32f, or Example 33 was evaluated. The results are shown in FIG. Examples 10, 32b, 32c, 32d, 32f, and Example 33 showed higher blood anti-RBD antibody levels as compared to Example 32a.
  • RBD-hACE2 binding inhibitory activity (Fig. 28) The RBD-hACE2 binding inhibitory activity induced by the particles of Example 10 was evaluated. The results are shown in FIG. Binding of hACE2 to the RBD, K417N, E484K, N501Y, or K417N / E484K / N501Y RBD mutants of Original compared to Control RBD was to the same extent inhibited by the serum of Example 10.
  • FIG. 29 Blood anti-SARS-CoV-2 neutralizing activity
  • the anti-SARS-CoV-2 neutralizing activity in blood induced by the particles of Example 10 was evaluated. The results are shown in FIG. Infection of Vero-TMPRSS2 cells of the D614G strain, the B.1.1.7 strain, the P.1 strain, and the B.1.351 strain was neutralized to the same extent by the sera of the 10th group of Examples.
  • LNP-mRNA-RBD mRNA vaccine candidate
  • RBD receptor-binding domain
  • mice 6 to 8 week old C57BL / 6 mice or BALB / c mice were intramuscularly administered with 3 ⁇ g of LNP-mRNA-RBD in terms of mRNA twice at 2-week intervals to obtain a blood anti-RBD antibody reaction. evaluated.
  • BALB / c mice showed higher blood anti-RBD antibody response compared to C57BL / 6 mice (Fig. 11a, Fig. 15).
  • the T FH and GC B cells in LNP-mRNA-RBD administered mice popliteal lymph nodes (PLN) by flow cytometry It was analyzed (Fig. 16).
  • T FH CD4 + CD185 + PD-1 + cells
  • GC B cells CD38 - GL7 + CD19 + cells
  • a peptide library of spike proteins was designed to analyze antigen-specific CD8 + and CD4 + T cells induced by LNP-mRNA-RBD.
  • This peptide library consists of 128 20-amino acid peptides designed to overlap 10 amino acids.
  • This peptide library was divided into a total of 8 pool peptides, with 16 peptides as one pool peptide (Fig. 11f).
  • spleen cells prepared from LNP-mRNA-RBD-administered mice were treated with pool peptides 3 and 4, C57BL / 6 mouse spleen cells induced IFN- ⁇ production, and BALB / c mouse spleen cells were treated with peptide pool 3.
  • the production of IFN- ⁇ was confirmed in (Figs.
  • FIGS. 17a and b show that IL-13 did not induce spleen cells in either C57BL / 6 or BALB / c mice (FIGS. 17c and d).
  • spleen cells were treated with pool peptides 2, 3, or 4 and three cytokines (IL-2, IFN- ⁇ , and TNF-). T cells that produced ⁇ ) were analyzed by flow cytokinemetry.
  • IL-2, IFN- ⁇ , and TNF- T cells that produced ⁇
  • T cells that produced ⁇ were analyzed by flow cytokinemetry.
  • spike antigen-specific multifunctional CD8 + and CD4 + T cells were found in BALB / c mouse spleen cells treated with pool peptides 3 and 4 (FIGS. 11h, 18b and 19b).
  • C57BL / 6 mouse spleen cells showed multifunctional CD8 + T cell and weak CD4 + T cell responses (FIGS. 11g, 18a and 19a). These data suggest that BALB / c mice treated with LNP-mRNA-RBD may induce higher B-cell and T-cell responses compared to C57BL / 6 mice.
  • Nucleic acid vaccines have been reported to act as an endogenous adjuvant of DNA or RNA (14-16).
  • mRNA has been reported to be recognized by toll-like receptors (TLRs) 3, TLR7, TLR8, RIG-I, or MDA5 and act as an endogenous adjuvant (17).
  • TLRs toll-like receptors
  • Kariko et al. Use methylated bases and other modified bases (eg, pseudouridine) to control innate immune activation and improve the expression efficiency of antigenic proteins (18,19).
  • Other studies have shown that LNP-mRNA-induced type I IFNs affect CD8 + T cell response and antigenic protein expression efficiency (20,21,22).
  • LNP-mRNA-Full was the first because the LNP-mRNA-RBD group had a higher frequency of side reactions than the LNP-mRNA-Full group, which encodes the full length of the spike. It was evaluated and launched in a phase III clinical trial (13). The reason for the difference in the frequency of side reactions is unknown, but we believe that the innate immune activation effect of LNP-mRNA may be involved (13).
  • LNP-mRNA-RBD In order to analyze the innate immune activation effect of LNP-mRNA, the level of type I IFN production from human PBMC treated with LNP-mRNA-RBD was measured by ELISA. As a result, LNP-mRNA-RBD showed higher IFN- ⁇ -inducing ability in PBMC of 3 healthy subjects as compared with LNP-mRNA-Full (Fig. 12a). Next, similar experiments were performed using bone marrow-derived dendritic cells (BM-DCs) of C57BL / 6 mice or BALB / c mice.
  • BM-DCs bone marrow-derived dendritic cells
  • BM-DCs in C57BL / 6 mice treated with LNP-mRNA-full or LNP-mRNA-RBD showed higher IFN- ⁇ production compared to BM-DCs in BALB / c mice (Fig. 12b).
  • the process of producing mRNA encapsulated in LNP-mRNA contains RNA as a contaminant, such as double-stranded RNA as a TLR3 ligand, which has been shown to activate innate immunity (22). Therefore, in order to remove impurities caused by RNA production, mRNA was purified by HPLC, and LNP-mRNA (mRNA-RBD (HPLC)) in which the mRNA purified by HPLC was encapsulated was prepared.
  • type I IFN production from human PBMC and mouse BM-DC treated with mRNA-RBD (HPLC) was significantly reduced compared to LNP-mRNA-RBD (FIGS. 12a and b).
  • MRNA-RBD (HPLC) was administered to C57BL / 6 or BALB / c mice to evaluate their immunogenicity.
  • the mRNA-RBD (HPLC) group enhanced blood anti-RBD IgG1 titer, IgG2 titer, and total IgG titer in both BALB / c mice and C57BL / 6 mice (FIGS. 12c and 20a).
  • pLN in C57BL / 6 mice treated with mRNA-RBD (HPLC) induced more GC B cells (Figs. 12d and e).
  • the mRNA-RND (HPLC) group has more multifunctional CD8 + and CD4 + T cells that produce RBD-specific IFN- ⁇ and other type I cytokines. It was induced (Fig. 12f-i and Fig. 20b-e, 21, 22).
  • a non-human primate (NHP) cynomolgus monkey model the protective effect of the mRNA-RBD (HPLC) vaccine against SARS-CoV-2 was evaluated.
  • mRNA-RBD (HPLC) was intramuscularly administered to 4 monkeys with 2 monkeys as a negative control group.
  • the mRNA-RBD (HPLC) group showed a higher anti-RBD antibody response compared to the negative control group (Fig. 13b).
  • the mRNA-RBD (HPLC) group also showed anti-SARS-CoV-2 neutralizing activity in blood (Fig. 13c).
  • the mRNA-RBD (HPLC) group showed higher anti-RBD IgG responses in the conjunctival, nasal, oral, tracheal, and rectal mucosal tissues compared to the negative control group (Fig. 13d).
  • the mRNA-RBD (HPLC) group dramatically reduced SARS-CoV-2 (Fig. 14a) and viral RNA (Fig. 14b) in swabs on day 1 after SARS-Co-2 infection.
  • the mRNA-RBD (HPLC) group also reduced viral RNA in the trachea, bronchi, and lungs (Fig. 14c, Fig. 25).
  • the negative control group showed fever and pneumonia after SARS-CoV-2 infection (Figs. 23, 24). Histological analysis of lungs after SARS-CoV-2 infection revealed infiltration of lymphocytes and neutrophils in the negative control group, thickening of the alveolar wall and viral antigens, and mRNA-RBD (HPLC).
  • mice 6-8 week old C57BL / 6 and BALB / c mice were purchased from CLEA in Japan. Mice were bred under conditions free of specific pathogens. All mouse tests were approved by the Animal Care and Use Committee of the Institute of Medical Science, University of Tokyo.
  • Cynomolgus monkey Born at Shiga University of Medical Science we used female cynomolgus monkeys aged 7 to 10 years, native to the Philippines, Vietnam and China. All procedures were performed under ketamine and xylazine anesthesia and efforts were made to minimize pain. After recovery from anesthesia, CMK-2 (CLEA Japan Co., Ltd., Tokyo, Japan) food pellets were given once a day, and drinking water was taken freely. Animals were single-headed in cages under light-controlled conditions (12-hour light / 12-hour dark cycle, lit at 8 am).
  • SARS-CoV-2 (2 x 10 7 PFU / 7 mL) with pipette and catheter into conjunctiva (0.05 mL x 2), nostrils (0.5 mL x 2), oral cavity (0.9 mL) and trachea (5 mL) under ketamine / xylazine anesthesia HBSS) was inoculated into monkeys. Under ketamine / xylazine anesthesia, two cotton swabs (Eiken Kagaku Co., Ltd., Tokyo, Japan) were used to collect body fluid samples from the condyle, nasal cavity, oral cavity and trachea, followed by 0.1% bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • DMEM Dulbecco's modified Eagle's medium
  • the mRNA-encapsulated nucleic acid lipid particles of Example 10 of the LNP-mRNA vaccine were used.
  • Reagent Spike Protein Overlap 20-aa peptide was synthesized and purchased from Eurofins Genomics (Ebersberg, Germany). SARS-CoV-2 spike protein (ECD) and RBD were purchased from GenScript (Piscataway, NJ, USA).
  • Opti-MEM I Invitrogen, Carlsbad, CA, USA
  • BSA bovine serum albumin
  • TPCK L-1-tosylamide-2-phenylethylchloromethylketone
  • ECD and RBD-specific antibody titers were measured by ELISA. Briefly, half-area 96-well plates were coated with ECD (1 ⁇ g / mL) or RBD (1 ⁇ g / mL) in bicarbonate buffer at 4 ° C. The plate was blocked with PBS containing 1% BSA at room temperature for 60 minutes. The plates were washed 3 times with PBST and diluted plasma or swab samples were incubated for 120 minutes at room temperature. The plates were washed 3 times with PBST and incubated with HRP-labeled goat anti-mouse IgG, IgG1, IgG2a, IgG2c, or mouse anti-monkey IgG for 120 minutes at room temperature.
  • OD values at 450 nm and 540 or 560 nm were measured using a spectrophotometer. The inverse value of plasma dilution with OD 450 -OD 540 or OD 450 -OD 560 of 0.2 was taken as the antibody titer.
  • a single cell suspension of immunized mouse spleen cells was stimulated with peptide pools 1-8, ECD, and RBD protein for 24 hours. IFN- ⁇ and IL-13 levels in the supernatant were measured by ELISA (R & D).
  • anti-CD8a 53-6.7
  • anti-CD4 RM4-5: Invitrogen
  • anti-TCR ⁇ H57-597
  • anti-F4 / 80 RM8
  • anti-TER-119 TER-119
  • anti-CD11b Cells were stained with M1 / 70
  • anti-CD19 6D5
  • anti-CD11c N418)
  • anti-NK-1.1 PK136
  • anti-CD45R / B220 RA3-6B220
  • PBMC peripheral blood mononuclear cells
  • LNP-mRNA-Full 0.4, 2, 10 ⁇ g / mL
  • LNP-mRNA-RBD 0.4, 2, 10 ⁇ g / mL
  • LNP-mRNA-RBD 0.4, 2, 10 ⁇ g / mL Stimulation was performed with HPLC) (0.4, 2, 10 ⁇ g / mL) for 24 hours, and IFN- ⁇ levels in the culture supernatant were measured using ELISA (Mabtech, Sweden).
  • Bone marrow-derived dendritic cells and stimulated bone marrow-derived dendritic cells were cultured and differentiated in mouse GM-CSF for 7 days.
  • Cells LNP-mRNA-Full (0.4, 2, 10 ⁇ g / mL), LNP-mRNA-RBD (0.4, 2, 10 ⁇ g / mL), or LNP-mRNA-RBD (HPLC) (0.4, 2, 10 ⁇ g) After stimulation with / mL) for 24 hours, IFN- ⁇ in the culture supernatant was measured using ELISA (Invitrogen).
  • Neutralizing antibody titer 35 microliters of virus (140 tissue culture infection dose 50) were incubated with 35 ⁇ L of 2-fold serially diluted serum for 1 hour at room temperature, and 50 ⁇ L of the mixture was added to confluent Vero E6 / TMPRS2 cells in 96-well plates. The cells were incubated at 37 ° C. for 1 hour. After adding 50 ⁇ L of DMEM containing 5% FCS, the cells were further incubated at 37 ° C for 3 days. Viral cell pathological effects (CPE) were observed under an inverted microscope and the virus neutralizing titer was determined as the reciprocal of the highest serum dilution that completely prevented CPE (24).
  • CPE Viral cell pathological effects
  • VeroE6 / TMPRSS2 for SARS-CoV-2
  • VeroE6 cell line expressing TMPRSS2 JCRB Cell Bank, Japan
  • DMEM containing 0.1% BSA for 3 days (25).
  • Virus titers were monitored under a microscope and calculated using the Reed-Muench method.
  • Viral RNA from swab samples and tissues (20 mg) was collected using the QIAmp virus RNA Mini kit and R Easy Mini kit, respectively.
  • Viral RNA is real-time RT-PCR (2019-nCoV_N1-F, 2019-nCoV_N1-R, 2019-nCoV_N1-P, TaqMan Fast Virus 1-step) using CFX-96 (Bio-Rad, Hercules, CA, USA). It was measured by Master Mix).
  • X-ray X-rays of the lungs were taken with the I-PACS system (Comica Minolta) and PX-20BT (Kenko Tokina).
  • the present invention can be used for the prevention and / or treatment of infection caused by SARS-CoV-2.
  • ⁇ SEQ ID NO: 1> (DNA fragment containing SARS-CoV-2 S full) GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTTGTTTCTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCCTGCATACACTAATTCTTTCACACGTGGTGTTTATTACCCTGACAAAGTTTTCAGATCCTCAGTTTTACATTCAACTCAGGACTTGTTCTTACCTTTCTTCCAATGTTACTTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTCCTACCATTTAATGATGGTGTTTATTTTGCTTCCACTGAGAAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGATTCGAAGACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAGTCTGTGAATTTCAATTTTGTAAA
  • T7 promoter base numbers 1-18 A : Transcription start point: Base number 19 5'-UTR (including transcription initiation site and KOZAK sequence with base numbers 89-94): base numbers 19-88 Spike protein full-length sequence: base numbers 89 to 3910 3'-UTR: Base numbers 3911-4042 polyA sequence (A100): Base numbers 4043-4142 ⁇ SEQ ID NO: 5> (SARS-CoV-2 S-full mRNA-001) GUAAUACGACUCACUAUAAGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUUGUUUUCUUGUUUAUUGCCACUAGUCUCUAGUCAGUGUGUGUGUUAAUCUUACAACCAGAACUCAAUUACCCCCUGCAUACACUAAUUCUUUCACACGUGGUGUUUAUUACCCUGACAAAGUUUUCAGAUCCUCAGUUUUACAUUCAACUCAGGACUUGU
  • ⁇ SEQ ID NO: 6> (amino acid sequence of SARS-CoV-2 S-full) MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFT

Abstract

新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)による感染を予防及び/又は治療するためのワクチンを提供する。 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質及び/又はその断片を発現させることができる核酸を封入した脂質粒子であって、脂質が一般式(Ia)で表されるカチオン性脂質、又はその薬学的に許容される塩を含む前記粒子。 式中、 R1及びR2は、独立して、C1-C3アルキル基を示し; L1は、C2-C4アルカノイルオキシ基を1若しくは複数個有していてもよいC17-C19アルケニル基を示し; L2は、C2-C4アルカノイルオキシ基を1若しくは複数個有していてもよいC10-C19アルキル基、又はC2-C4アルカノイルオキシ基を1若しくは複数個有していてもよいC10-C19アルケニル基を示し; pは、3、又は4である。

Description

核酸脂質粒子ワクチン
 本発明は、SARS-CoV-2 mRNAを封入した核酸脂質粒子ワクチンに関する。
 新型コロナウイルス感染症(coronavirus disease 2019:COVID-19)は新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)に起因した感染症で、呼吸器での急性炎症を主体とした病態を呈し、特にハイリスク者における侵襲性肺炎及び急性呼吸窮迫症候群などの下気道での炎症を主体とする病態が疾病負担となっている(非特許文献1)。ヒトに感染して主に呼吸器症状を呈するcoronavirus(CoV)は6種類以上知られている。SARS-CoV-2はbetacoronavirus属に分類され、過去にアウトブレイクを引き起こしたSARS-CoVやMiddle East respiratory syndrome coronavirus(MERS-CoV)とウイルス学的に類似している。
 SARS-CoV-2のウイルス粒子表面に発現するspike protein(S)は、初期感染機序に重要な役割を果たしている。Sは、2つのサブユニットS1とS2から構成されるI型膜蛋白質で3量体を形成する(約500 kDa、約20 nm)。S1に存在するreceptor-binding domain(RBD)が宿主細胞表面に発現するangiotensin-converting enzyme 2(ACE2)と相互作用する。SARS-CoVのSと比較して、SARS-CoV-2のSは、ACE2に対する親和性が10-20倍高いこと及び熱力学的安定性が高いことが示唆されており、SARS-CoV-2の高い伝播性に関与していることが示唆されている(非特許文献2、3)。
 SARS患者の回復期血清中には、少なくとも3年以上RBDに対するIgGが存続し、血清をRBD蛋白質で処理して抗RBD抗体を吸着させた後には、中和活性が50%以下に減弱することから、抗RBD抗体が主要中和活性を担っていることが示唆されている(非特許文献4、5)。実際に、分離された抗SARS-CoV-2 RBDモノクローナル抗体は、SARS-CoV-2に対する中和活性を有することが報告されている(非特許文献6、7)。
 無症状となった後3週間程度経過したCOVID-19患者回復期末梢血を用いた解析から、SARS-CoV-2の感染防御には、特異的CD4+及びCD8+ T細胞の誘導が重要だと考えられている(非特許文献8)。具体的には、10-20例のCOVID-19患者血液検体を解析した結果、すべての症例で、血中抗SARS-CoV-2 RBD抗体応答及びSARS-CoV-2特異的CD4+ T細胞応答が確認され、約70%の症例で、SARS-CoV-2特異的CD8+ T細胞応答が確認されている。また、血中抗SARS-CoV-2 RBD IgG価とS特異的CD4+ T細胞頻度が相関する(R = 0.8109)ことから、SにT細胞エピトープが存在し、抗体応答の誘導にS特異的CD4+ T細胞が重要な役割を果たしている可能性が示唆された(非特許文献8)。更に、血中抗SARS-CoV-2 中和活性と血中抗SARS-CoV-2 S IgG価が相関する(R = 0.9279)ことが示されている(非特許文献9)。
 COVID-19症状が重症化する「immune enhancement」の機序として、cellular immunopathologyとantibody-dependent enhancement(ADE)が関与している可能性が想定されている(非特許文献10)。SARSの場合には、軽症で回復した患者と比較して、致死患者は、血中サイトカインプロファイルがTヘルパー(Th)2型優位になっていることが示唆されている(非特許文献11)。マウスSARS-CoV感染モデルにおいて、Sに対するTh2優位の免疫応答は、好酸球を主体とした炎症応答を伴う肺のimmunopathologyを誘発することが示唆されている(非特許文献12)。一方、ADEに関しては、デング熱ウイルス、呼吸器合胞体ウイルスなど他のウイルスに関して報告されているが、SARS患者において、SARS-CoVに対する特異的抗体がADEを誘発する報告はない。SARS-CoVに対するワクチン抗原候補について、S全長ではなくRBDのみの抗原でも、肺障害リスクを回避できる可能性を示唆するデータが報告されている(非特許文献13)。SARS-CoV-2に関しても、Sに対する抗体がADEに関与している直接的な臨床エビデンスはないが、リスク回避のためには、適切な細胞性免疫応答を誘導することが必要であることが指摘されている(非特許文献14)。
Viruses 12:372 2020 Science 367:1260 2020 Viruses 12:428 2020 Virol J 7:299 2010 Virology 334:74 2005 Nat Commun 11:2251 2020 Nature 583:290 2020 Cell 181:1 2020 Nat Med 26:1033 2020 Nat Rev Immunol 20:347 2020 J Immunol 181:5490 2008 PLoS One 7:e35421 2012 Vaccine 25:2832 2007 PNAS 117:8218 2020
 本発明は、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)による感染を予防及び/又は治療するためのワクチンを提供することを目的とする。
 本発明者らは、マウスにSARS-CoV-2のRBDをコードするmRNAを封入した脂質粒子を投与したところ、血中SARS-CoV-2 S蛋白質IgGの誘導が観察され、またその免疫応答がTh1型優位になることを見出し、本発明を完成させるに至った。
 本発明の要旨は以下の通りである。
(1)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質及び/又はその断片を発現させることができる核酸を封入した脂質粒子であって、脂質が一般式(Ia)で表されるカチオン性脂質、又はその薬学的に許容される塩を含む前記粒子。
Figure JPOXMLDOC01-appb-C000005
式中、
及びRは、独立して、C-Cアルキル基を示し;
は、C-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC17-C19アルケニル基を示し;
は、C-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC10-C19アルキル基、又はC-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC10-C19アルケニル基を示し;
pは、3、又は4である。
(2)一般式(Ia)中のR及びRが、共にメチル基である、(1)に記載の粒子。
(3)一般式(Ia)中のpが、3である(1)又は(2)に記載の粒子。
(4)一般式(Ia)中のLが、アセトキシ基を1若しくは複数個有していてもよいC17-C19アルケニル基である、(1)~(3)のいずれかに記載の粒子。
(5)一般式(Ia)中のLが、アセトキシ基を1若しくは複数個有していてもよいC10-C12アルキル基、又はアセトキシ基を1若しくは複数個有していてもよいC10-C19アルケニル基である、(1)~(4)のいずれかに記載の粒子。
(6)一般式(Ia)中のLが、アセトキシ基を1若しくは複数個有していてもよいC10-C12アルキル基、又はアセトキシ基を1若しくは複数個有していてもよいC17-C19アルケニル基である、(1)~(4)のいずれかに記載の粒子。
(7)一般式(Ia)中のLが、(R)-11-アセチルオキシ-cis-8-ヘプタデセニル基、cis-8-ヘプタデセニル基、又は(8Z,11Z)-ヘプタデカジエニル基である(1)~(6)のいずれか1項に記載の粒子。
(8)一般式(Ia)中のLが、デシル基、cis-7-デセニル基、ドデシル基、又は(R)-11-アセチルオキシ-cis-8-ヘプタデセニル基である、(1)~(7)のいずれかに記載の粒子。
(9)カチオン性脂質が下記の構造式:
Figure JPOXMLDOC01-appb-C000006
で表される(1)に記載の粒子。
(10)カチオン性脂質が下記の構造式:
Figure JPOXMLDOC01-appb-C000007

で表される(1)に記載の粒子。
(11)カチオン性脂質が下記の構造式:
Figure JPOXMLDOC01-appb-C000008
で表される(1)に記載の粒子。
(12)脂質が、さらに、両親媒性脂質、ステロール類及びPEG脂質を含む(1)~(11)のいずれかに記載の粒子。
(13)両親媒性脂質が、ジステアロイルホスファチジルコリン、ジオレオイルホスファチジルコリン及びジオレオイルホスファチジルエタノールアミンからなる群より選択される少なくとも1つである(12)記載の粒子。
(14)ステロール類がコレステロールである(12)又は(13)に記載の粒子。
(15)PEG脂質が、1、2-ジミリストイル-sn-グリセロール メトキシポリエチレン グリコール及び/又はN-[メトキシ ポリ(エチレングリコール)2000]カルバモイル]-1,2-ジミリスチルオキシプロピル-3-アミンである(12)~(14)のいずれかに記載の粒子。
(16)両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成が、モル量にて、両親媒性脂質が15%以下、ステロール類が20~55%、カチオン性脂質が40~65%、PEG脂質が1~5%であり、核酸重量に対する総脂質重量の比率が、15~30である(12)~(15)のいずれかに記載の粒子。
(17)両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成が、モル量にて、両親媒性脂質が5~15%、ステロール類が35~50%、カチオン性脂質が40~55%、PEG脂質が1~3%であり、核酸重量に対する総脂質重量の比率が、15~25である(16)記載の粒子。
(18)両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成が、モル量にて、両親媒性脂質が10~15%、ステロール類が35~45%、カチオン性脂質が40~50%、PEG脂質が1~2%であり、核酸重量に対する総脂質重量の比率が、17.5~22.5である(17)記載の粒子。
(19)両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成が、モル量にて、両親媒性脂質が10~15%、ステロール類が35~45%、カチオン性脂質が45~50%、PEG脂質が1.5~2%であり、核酸重量に対する総脂質重量の比率が、17.5~22.5である(18)記載の粒子。
(20)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片が、受容体結合ドメインを含む(1)~(19)のいずれかに記載の粒子。
(21)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片中の受容体結合ドメインが配列番号11のアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる(20)に記載の粒子。
(22)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片中の受容体結合ドメインが配列番号25、29、33、37、94~107のいずれかのアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる(20)に記載の粒子。
(23)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片が、配列番号10のアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる(20)に記載の粒子。
(24)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片が、配列番号24、28、32、36、80~93のいずれかのアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる(20)に記載の粒子。
(25)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質が配列番号6のアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる(1)~(19)記載の粒子。
(26)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質中の受容体結合ドメインが配列番号11のアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる(25)記載の粒子。
(27)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質を発現させることができる核酸が、キャップ構造(Cap)、5’非翻訳領域(5’-UTR)、S蛋白質の翻訳領域、3’非翻訳領域(3’-UTR)及びポリA尾部(polyA)を含むmRNAである(25)又は(26)に記載の粒子。
(28)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片を発現させることができる核酸が、キャップ構造(Cap)、5’非翻訳領域(5’-UTR)、リーダー配列(leader sequence)、S蛋白質中の受容体結合ドメインの翻訳領域、3’非翻訳領域(3’-UTR)及びポリA尾部(polyA)を含むmRNAである(20)~(24)のいずれかに記載の粒子。
(29)S蛋白質の翻訳領域の配列が、配列番号5の配列におけるS蛋白質の翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列からなる(27)記載の粒子。
(30)S蛋白質の翻訳領域の配列が、配列番号16の配列におけるS蛋白質の翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列からなる(27)記載の粒子。
(31)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質を発現させることができる核酸が、配列番号5のヌクレオチド配列からなる(27)記載の粒子。
(32)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質を発現させることができる核酸が、配列番号16のヌクレオチド配列からなる(27)記載の粒子。
(33)S蛋白質中の受容体結合ドメインの翻訳領域の配列が、配列番号9の配列におけるS蛋白質中の受容体結合ドメインの翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列からなる(27)記載の粒子。
(34)S蛋白質中の受容体結合ドメインの翻訳領域の配列が、配列番号19の配列におけるS蛋白質中の受容体結合ドメインの翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列からなる(27)記載の粒子。
(35)S蛋白質中の受容体結合ドメインの翻訳領域の配列が、配列番号21、23、27、31、35、66~79のいずれかの配列におけるS蛋白質中の受容体結合ドメインの翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列からなる(27)記載の粒子。
(36)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片を発現させることができる核酸が、配列番号9のヌクレオチド配列からなる(28)記載の粒子。
(37)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片を発現させることができる核酸が、配列番号19のヌクレオチド配列からなる(28)記載の粒子。
(38)核酸が少なくとも1個の修飾ヌクレオチドを含む(1)~(37)のいずれかに記載の粒子。
(39)修飾ヌクレオチドが、5位が置換したピリミジンヌクレオチド及び/又は1位が置換していてもよいシュードウリジンの少なくとも1個を含む(38)記載の粒子。
(40)修飾ヌクレオチドが、5-メチルシチジン、5-メトキシウリジン、5-メチルウリジン、シュードウリジン、及び1-アルキルシュードウリジンからなる群から選ばれる少なくとも1個を含む(38)記載の粒子。
(41)粒子の平均粒子径が30nm~300nmである(1)~(40)のいずれかに記載の粒子。
(42)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)による感染を予防及び/又は治療するための組成物を製造するための(1)~(41)のいずれかに記載の粒子の使用。
(43)(1)~(41)のいずれかに記載の粒子を含有する、組成物。
(44)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質及び/又はその断片をin vivo又はin vitroで発現させるための(43)記載の組成物。
(45)医薬として用いられる(43)又は(44)記載の組成物。
(46)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)に対する免疫反応を誘導するための(45)記載の組成物。
(47)新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)感染を予防及び/又は治療するための(45)又は(46)記載の組成物。
(48)(43)又は(44)に記載の組成物を細胞に導入することを含む、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質及び/又はその断片をin vitroで発現させる方法。
(49)(43)~(47)のいずれかに記載の組成物を哺乳動物に投与することを含む、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質及び/又はその断片をin vivoで発現させる方法。
(50)(45)又は(46)に記載の組成物を哺乳動物に投与することを含む、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)に対する免疫反応を誘導する方法。
(51)(45)~(47)のいずれかに記載の組成物を哺乳動物に投与することを含む、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)感染を予防及び/又は治療する方法。
(52)哺乳動物がヒトである(49)~(51)のいずれかに記載の方法。
 本発明により、SARS-CoV-2による感染を予防及び/又は治療することが可能となる。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2020-101420及び特願2021-33278の明細書および/または図面に記載される内容を包含する。
実施例3及び実施例4の粒子によるRBD蛋白質発現レベル。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH6.5)。 実施例3及び実施例4の粒子によって誘導された抗RBD抗体応答。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH6.5)。縦棒は幾何平均値を示し、1~5のシンボルは個々の抗体レベルを示す。 実施例3及び実施例4群の血清が有するRBD-hACE2結合阻害活性。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH6.5)。横棒は幾何平均値を示し、丸シンボルは個々の阻害活性レベルを示す。 実施例3及び実施例4群によって誘導されたRBD特異的細胞性免疫。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH6.5)。縦棒は平均値を示し、エラーバーは標準誤差を示す。全処理群において、DMSO濃度は0.1% (v/v)に調整した。No peptides:無ペプチド群。 実施例4、実施例7または実施例8の粒子の投与によって誘導された血中抗RBD抗体応答。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH7.0)。縦棒は幾何平均値を示し、1~4のシンボルは個々の抗体レベルを示す。 実施例8または実施例10の粒子の投与によって誘導された血中抗RBD抗体応答。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH7.0)。縦棒は幾何平均値を示し、1~5のシンボルは個々の抗体レベルを示す。 実施例10の粒子の投与によって誘導された血中抗SARS-CoV-2中和活性。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH7.0)。縦棒は幾何平均値を示し、1~5のシンボルは個々の中和活性を示す。 実施例8及び実施例10の粒子の投与によって誘導された血中抗SARS-CoV-2中和活性。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH7.0)。縦棒は幾何平均値を示し、1~5のシンボルは個々の中和活性を示す。 実施例8または実施例10の粒子の投与によって誘導された血中抗RBD抗体応答。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH7.0)。縦棒は幾何平均値を示し、エラーバーは標準偏差を示す。 実施例10によって誘導されたRBD特異的細胞性免疫。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH7.0)。縦棒は平均値を示し、1~7のシンボルは個々のサイトカイン誘導レベルを示す。全処理群において、DMSO濃度は0.1% (v/v)に調整した。No peptides:無ペプチド群。 SARS-CoV-2 RBDに対するmRNAワクチンの系統特異的免疫原性。(a-e、g、及びh)6週齢のC57BL/6マウス及びBALB/cマウスに、2週間隔で計2回、mockまたはLNP-mRNA-RBD(3μg mRNA)を筋肉内投与した。(a)2回目の投与から2週間後、ELISAで血中抗RBD抗体価を測定した。(b-e)マウス膝窩リンパ節からをリンパ球を調製し、flow cytometry解析を行った。(b-d)germinal center(GC)B細胞をGL7+CD38- CD19+細胞としてゲーティングした。(e) TFH細胞はCD185+ PD-1+CD3ε+ CD4+T細胞としてゲーティングした。(f)SARS-CoV-2スパイク蛋白質のオーバーラッピングペプチド。16個の重複ペプチドを1プールペプチドとして、8プールペプチドに分けた。(g及びh)マウス脾臓から脾臓細胞を調製し、プールペプチドで24時間再処理した。培養上清中のIFN-γレベルをELISAで測定した。(g-h)プール2、3及び4を蛋白質輸送阻害剤とともに6時間処理した後のサイトカイン産生CD8+及びCD4+T細胞の割合を円グラフで示す。3+:IFN-γ+IL-2+TNF-α+、2+:IFN-γ+IL-2+、IFN-γ+TNF-α+、IL-2+TNF-α+、1+:IFN-γ+、IL-2+、TNF-α+。N = 4~5。縦棒は平均値、エラーバーは標準誤差を示す。*P < 0.05、Mann-Whitney検定を用いた。 HPLC精製したmRNAを封入したLNP-mRNA-RBD(mRNA-RBD(HPLC))の免疫原性。(a) SARS-CoV-2非感染者のヒト末梢血単核細胞(peripheral blood mononuclear cell、PBMC)を、LNP-mRNA-Full(mRNA換算で0.4、2、及び10μg/mL)、LNP-mRNA-RBD(mRNA換算で0.4、2、及び10μg/mL)、またはmRNA-RBD(HPLC)(mRNA換算で0.4、2、及び10μg/mL)で24時間処理し、培養上清中のIFN-αレベルをELISAで測定した。(b) C57BL/6マウス及びBALB/cマウスの骨髄由来樹状細胞(BM-DC)をLNP-mRNA-Full(mRNA換算で0.4、2、及び10 μg/mL)、LNP-mRNA-RBD(mRNA換算で0.4、2、及び10 μg/mL)またはmRNA-RBD(HPLC)(mRNA換算で0.4、2、及び10 μg/mL)で24時間処理し、培養上清中のIFN-αレベルをELISAで測定した。(c-i)C57BL/6マウスを、0日目及び14日目に、mock、LNP-mRNA-RBD(3μg mRNA)またはmRNA-RBD (HPLC)(3μg mRNA)で筋肉内投与した。(c)2回目投与から2週間後に、ELISAで血中抗RBD抗体価を測定した。(d及びe)マウスから膝窩リンパ節を採取した。(d)GC B細胞をGL7+CD38- CD19+細胞としてゲーティングした。(e)TFH細胞をCD185+ PD-1+CD3ε+CD4+T細胞としてゲーティングした。(f及びg)マウス脾臓から脾臓細胞を調製し、プールペプチドで24時間処理した。培養上清中のIFN-γレベルはELISAで測定した。ペプチドプール3及び4を蛋白質輸送阻害剤とともに6時間処理した後のサイトカイン産生CD8+及びCD4+T細胞の割合を円グラフに示す。3+:IFN-γ+IL-2+TNF-α+、2+:IFN-γ+IL-2+、IFN-γ+TNF-α+、及びIL-2+TNF-α+、1+:IFN-γ+、IL-2+、及びTNF-α+。(h、i)図12f、g、図21、22の代表的なデータを示す。IFN-γIL-2TNF-α及びIFN-γTNF-αCD8+T細胞を散布点プロットで示す。N=4~5。縦棒は平均値、エラーバーは標準誤差を示す。*P<0.05、ANOVAに続くDunnの多重比較検定を用いた。 HPLC精製mRNAを封入したLNP-mRNA-RBDを投与したカニクイザルにおける血中抗RBD抗体応答(a)LNP-mRNA-RBD投与、感染、及びサンプル採取のスケジュール。(b-c) カニクイザルを、0日目及び21日目にmockまたはLNP-mRNA-RBD(HPLC)(100μg)で筋肉内免疫した。(b)0日目、7日目、14日目、21日目、28日目及び感染後7日目における血中抗RBD抗体価をELISAで測定した。(c)中和抗体を中和アッセイにより測定した。(d)スワブサンプル(結膜、口腔、鼻腔、気管、及び直腸)中の血中抗RBD IgG価をELISAで測定した。黒矢印はワクチン投与日、赤矢印はSARS-CoV-2感染日を示す。 mRNA-RBD (HPLC)を投与したカニクイザルの抗SARS-CoV-2感染防御応答。2回目の投与から1週間後に、SARS-CoV-2(2×107 PFU)をカニクイザルの結膜、鼻腔、口腔及び気管に投与した。(a)スワブサンプル中のウイルスRNA及び(b)ウイルス力価をRT-PCR及び細胞培養法により測定した。(c-d)肺組織中のウイルスRNAをRT-PCR法により測定した。RU:右上葉、RM:右中葉、RL:右下葉、LU:左上葉、LM:左中葉、LL:左下葉。 LNP-mRNA-RBD投与マウスにおける血中抗スパイク蛋白質外部ドメイン(ECD)抗体応答。0日目及び14日目にmockまたはLNP-mRNA-RBD(3 μg mRNA)をC57BL/6マウス及びBALB/cマウスに筋肉内投与した。2回目の投与から2週間後に、ELISAで血中抗ECD抗体価を測定した。N = 4~5。横棒は平均値、シンボルは各個体のデータを示す。*P < 0.05、Mann-Whitney検定を用いた。 GC B及びTFH細胞のためのゲーティング。マウス膝窩リンパ節からリンパ球を調製し、GC B及びTFH細胞を免疫染色後にflow cytometry解析を行った。細胞は、リンパ球サイズ、シングレット、ライブ、TまたはB細胞、及びTFHまたはGC B細胞についてゲーティングした。 RBD特異的なT細胞応答。マウス脾臓から脾臓細胞を調製し、スパイク蛋白質ペプチドプール、ECD蛋白質、またはRBD蛋白質で24時間処理した。培養上清中のIFN-γ及びIL-13レベルをELISAで測定した。N = 4~5匹。縦棒は平均値、エラーバーは標準誤差を示す。* P < 0.05、ANOVA及びSidakの多重比較検定を用いた。 RBD特異的なCD8 T細胞応答。マウス脾臓から脾臓細胞を調製し、蛋白質輸送阻害剤とプールペプチドで6時間処理した。サイトカイン産生CD8+ T細胞の割合をflow cytometryで解析した。N = 4~5。縦棒は平均値、エラーバーは標準誤差を示す。*P < 0.05、Mann-Whitney検定を用いた。 RBD特異的なCD4 T細胞応答。マウス脾臓から脾臓細胞を調製し、蛋白質輸送阻害剤とプールペプチドで6時間処理した。サイトカイン産生CD4+ T細胞の割合をflow cytometryで解析した。N = 4~5。縦棒は平均値、エラーバーは標準誤差を示す。*P < 0.05、Mann-Whitney検定を用いた。 mRNA-RBD(HPLC)を投与したマウスにおけるスパイク蛋白質特異的な免疫応答。(a)0日目及び14日目に、C57BL/6マウス及びBALB/cマウスにmock、mRNA-RBD、またはmRNA-RBD(HPLC)(3μg mRNA)を筋肉内投与した。2回目の投与から2週間後、血中抗ECD抗体価をELISAで測定した。(b-e)マウス脾臓から脾臓細胞を調製し、スパイク蛋白質、ECD、またはRBDプールペプチドで24時間処理した。N = 4。縦棒は平均値、エラーバーは標準誤差を示す。* P < 0.05、ANOVA及びDunnまたはSidakの多重比較検定を用いた。 mRNA-RBD (HPLC)を投与したC57BL/6マウスにおけるRBD特異的なT細胞応答。マウス脾臓から脾臓細胞を調製し、蛋白質輸送阻害剤とプールペプチドで6時間処理した。サイトカイン産生CD8+及びCD4+ T細胞の割合をflow cytometryで解析した。N = 4。縦棒は平均値、エラーバーは標準誤差を示す。*P < 0.05、ANOVA及びDunnの多重比較検定を用いた。 mRNA-RBD (HPLC)を投与したBALB/cマウスにおけるRBD特異的なT細胞応答。マウス脾臓から脾臓細胞を調製し、蛋白質輸送阻害剤とプールペプチドで6時間処理した。サイトカイン産生CD8+及びCD4+ T細胞の割合をflow cytometryで解析した。N = 4。縦棒は平均値、エラーバーは標準誤差を示す、*P < 0.05、ANOVA及びDunnの多重比較検定を用いた。 SARS-CoV-2感染前後の体温の変化。2回目のmRNA-RBD (HPLC)投与から1週間後に、カニクイザルの口腔、鼻腔、及び気管内にSARS-CoV-2(2.2×106 PFU)を投与した。体温は、SARS-CoV-2投与の2日前からテレメトリ送信機とコンピュータを用いて記録した。 mRNA-RBD (HPLC)を投与したカニクイザルのSARS-CoV-2感染後の胸部X線写真像。 実施例10、12、14、16、18、及び20によって誘導された血中抗RBD抗体応答。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH7.0)。N=4。縦棒は幾何平均値を示し、1~4のシンボルは個々の抗RBD抗体レベルを示す。 実施例10及び21~30によって誘導された血中抗RBD抗体応答。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH7.0)。N=4。縦棒は幾何平均値を示し、1~4のシンボルは個々の抗RBD抗体レベルを示す。 実施例8、32a、32b、32c、32d、32f、及び33によって誘導された血中抗RBD抗体応答。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH7.0)。N=4~5。縦棒は幾何平均値を示し、1~5のシンボルは個々の抗RBD抗体レベルを示す。ELISAの固相化に用いたRBD抗原は、武漢株(Original)及びB.1.351株(351)に由来する。 実施例10を投与したBALB/cマウス血清のRBD-hACE2結合阻害活性。Buffer;300 mM Sucrose含有10 mM Histidine緩衝液(pH7.0)。RBD抗原として、SARS-CoV-1由来(Control)、武漢株由来(Original)、及びOriginalの点変異体(K417N、E484K、N501Y、K417N/E484K/N501Y)を用いた。N=4。横棒は幾何平均値を示し、1~4のシンボルは個々の阻害活性レベルを示す。 実施例10を投与したカニクイザル血漿の抗SARS-CoV-2中和活性。N=4。Preは実施例10投与前、Postは実施例10投与後を示す。縦棒は幾何平均値を示し、丸シンボルは個々の中和活性を示す。
 以下、本発明の実施の形態についてより詳細に説明する。
 本発明は、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質及び/又はその断片を発現させることができる核酸を封入した脂質粒子であって、脂質が一般式(Ia)で表されるカチオン性脂質、又はその薬学的に許容される塩を含む前記粒子を提供する。
Figure JPOXMLDOC01-appb-C000009
式中、
及びRは、独立して、C-Cアルキル基を示し;
は、C-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC17-C19アルケニル基を示し;
は、C-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC10-C19アルキル基、又はC-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC10-C19アルケニル基を示し;
pは、3、又は4である。
 一般式(Ia)中のR及びRは、独立して、C-Cアルキル基を示すが、好ましくは、共にメチル基である。
 一般式(Ia)中のpは、3、又は4であるが、好ましくは、3である。
 一般式(Ia)中のLは、C-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC17-C19アルケニル基を示すが、好ましくは、アセトキシ基を1若しくは複数個有していてもよいC17-C19アルケニル基である。Lとして、具体的には、(R)-11-アセチルオキシ-cis-8-ヘプタデセニル基、cis-8-ヘプタデセニル基、又は(8Z,11Z)-ヘプタデカジエニル基などを例示することができる。
 一般式(Ia)中のLは、C-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC10-C19アルキル基、又はC-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC10-C19アルケニル基を示すが、好ましくは、アセトキシ基を1若しくは複数個有していてもよいC10-C12アルキル基、又はアセトキシ基を1若しくは複数個有していてもよいC10-C19アルケニル基である。あるいはまた、一般式(Ia)中のLが、アセトキシ基を1若しくは複数個有していてもよいC10-C12アルキル基、又はアセトキシ基を1若しくは複数個有していてもよいC17-C19アルケニル基であることも好ましい。Lとして、具体的には、デシル基、cis-7-デセニル基、ドデシル基、又は(R)-11-アセチルオキシ-cis-8-ヘプタデセニル基などを例示することができる。
 本発明の粒子を構成する成分であるカチオン性脂質として、具体的には、下記の構造式:
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
で表されるものを例示することができる。
 薬学的に許容される塩とは、医薬として使用することができる塩を示す。本発明の粒子を構成する成分であるカチオン性脂質は、薬学上許容される塩であってよく、そのような塩としては、好適にはナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩等の金属塩;アンモニウム塩のような無機塩、t-オクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩等のアミン塩;弗化水素酸塩、塩酸塩、臭化水素酸塩、沃化水素酸塩のようなハロゲン原子化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、燐酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリ-ルスルホン酸塩、酢酸塩、りんご酸塩、フマ-ル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、蓚酸塩、マレイン酸塩等の有機酸塩;及び、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩を挙げることができる。
 一般式(Ia)で表されるカチオン性脂質は、1種類の化合物でも、2種類以上の化合物の組み合わせでもよい。
 一般式(Ia)で表されるカチオン性脂質を製造する方法は、国際公開第2015/005253号パンフレットに記載されている。
 本発明の脂質は、さらに、両親媒性脂質、ステロール類及びPEG脂質を含んでもよい。
 両親媒性脂質は、極性、非極性の溶媒に対してともに親和性を持つ脂質であり、具体的には、ジステアロイルホスファチジルコリン、ジオレオイルホスファチジルコリン、ジオレオイルホスファチジルエタノールアミン、それらの組み合わせなどを例示することができる。
 ステロール類は、ヒドロキシ基を持つステロールであり、具体的には、コレステロールなどを例示することができる。
 PEG脂質は、PEG修飾された脂質であり、具体的には、1、2-ジミリストイル-sn-グリセロール メトキシポリエチレン グリコール及び/又はN-[メトキシ ポリ(エチレングリコール)2000]カルバモイル]-1,2-ジミリスチルオキシプロピル-3-アミン、それらの組み合わせなどを例示することができる。
 両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成は、特に限定されるわけではないが、モル量にて、両親媒性脂質が15%以下、ステロール類が20~55%、カチオン性脂質が40~65%、PEG脂質が1~5%であり、核酸重量に対する総脂質重量の比率が、15~30であることが好ましく、両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成が、モル量にて、両親媒性脂質が5~15%、ステロール類が35~50%、カチオン性脂質が40~55%、PEG脂質が1~3%であり、核酸重量に対する総脂質重量の比率が、15~25であることがより好ましく、両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成が、モル量にて、両親媒性脂質が10~15%、ステロール類が35~45%、カチオン性脂質が40~50%、PEG脂質が1~2%であり、核酸重量に対する総脂質重量の比率が、17.5~22.5であることがさらに好ましく、両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成が、モル量にて、両親媒性脂質が10~15%、ステロール類が35~45%、カチオン性脂質が45~50%、PEG脂質が1.5~2%であり、核酸重量に対する総脂質重量の比率が、17.5~22.5であることがさらにより好ましい。
 本発明において、脂質粒子に封入される核酸は、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質及び/又はその断片を発現させることができるものである。SARS-CoV-2のWuhan株の配列は公開されている(NCBI ID NC_045512)(https://www.ncbi.nlm.nih.gov/nuccore/NC_045512)。
 SARS-CoV-2のS蛋白質の断片は、S蛋白質に存在する受容体結合ドメイン(receptor-binding domain; RBD)を含むとよい。
 受容体結合ドメインには、分泌ペプチド(リーダー配列がコードするペプチド)が付加されていてもよい。リーダー配列としては、S蛋白質シグナル配列を例示することができる。
 SARS-CoV-2のS蛋白質のアミノ酸配列を配列番号6に示す。脂質粒子に封入される核酸は、配列番号6のアミノ酸配列と少なくとも95%、好ましくは96%、より好ましくは97%の同一性を有するアミノ酸配列からなる、SARS-CoV-2のS蛋白質を発現できるものであるとよい。
 SARS-CoV-2のS蛋白質に存在する受容体結合ドメインのアミノ酸配列を配列番号11に示す。SARS-CoV-2のS蛋白質に存在する受容体結合ドメインには、分泌ペプチド(例えば、S蛋白質シグナル配列)が付加されてもよい。SARS-CoV-2のS蛋白質に存在する受容体結合ドメインにS蛋白質シグナル配列が付加したもののアミノ酸配列を配列番号10に示す。脂質粒子に封入される核酸は、配列番号11又は10のアミノ酸配列と少なくとも95%、好ましくは96%、より好ましくは97%の同一性を有するアミノ酸配列からなる、SARS-CoV-2のS蛋白質中の受容体結合ドメインを発現できるものであるとよい。
 本明細書中において、同一性とは、当該分野で公知のように、配列の比較によって決定される、2つ以上のヌクレオチド配列又はアミノ酸配列の、配列間の関係をいう。当該分野において、「同一性」はまた、場合に応じて、一列の2つ以上のヌクレオチド配列間または2つ以上のアミノ酸配列間の一致によって決定したときの、核酸分子間またはポリペプチド間の配列関連性の程度を意味する。同一性は、2つ以上の配列のうち小さなものと、特定の数理的モデルまたはコンピュータプログラム(すなわち、「アルゴリズム」)によってアドレス指定されるギャップアラインメント(存在する場合)との間の同一一致のパーセントを算出することにより評価することができる。具体的には、European  Molecular  Biology  Laboratory-European  Bioinformatics  Institute (EMBL-EBI) が提供するClustalW2等のソフトを使用することにより評価することができるが、当業者において使用されるものであればこれに限定されない。
 本発明における配列の同一性は配列解析ソフトウェアであるGENETYX-SV/RC(株式会社ゼネティックス製)を用いて算出されるものであり、このアルゴリズムは、当該技術分野で通常使用されるものである。本発明の脂質粒子に封入される核酸がコードするアミノ酸は、標的とするSARS-CoV-2のS蛋白質のアミノ酸配列及び/又はその断片と一定以上の同一性を保持する限り、アミノ酸の変異(置換)、欠失、挿入及び/又は付加が起こっていても良い。
 本発明の脂質粒子に封入される核酸がコードするアミノ酸は、上述の配列同一性を保持し、標的とするSARS-CoV-2のS蛋白質のアミノ酸配列及び/又はその断片のアミノ酸配列中、数箇所(好ましくは5箇所以下、より好ましくは3、2又は1箇所)において、1箇所当たり数個(好ましくは10個以下、より好ましくは7個以下、更に好ましくは5、4、3、2又は1個)のアミノ酸が置換、欠失、挿入及び/又は付加していても良い。
 SARS-Cov-2のS蛋白質に存在する受容体結合ドメインのアミノ酸配列には、欠失、置換、付加がなされていてもよく、538番目(番号はSタンパク質のN末端から数えた番号)のシステインをセリンに置換した配列(配列番号25)(以下、「C538S型」と記すこともある。)、RBDの全長配列(R319-F541)のN末端及びC末端についてアミノ酸が欠失した配列(配列番号29)、RBDの全長配列(R319-F541)のN末端及びC末端についてアミノ酸が付加した配列(配列番号33)、複数のアミノ酸残基が置換した変異を導入した配列(配列番号37)を例示することができる。これらの配列には、分泌ペプチド(例えば、S蛋白質シグナル配列)が付加されてもよく、配列番号25、29、33及び37にS蛋白質シグナル配列が付加したもののアミノ酸配列をそれぞれ配列番号24、28、32及び36に示す。
 SARS-CoV-2のS蛋白質に存在する受容体結合ドメインは変異株由来であってもよく、南アフリカ型、イギリス型、ブラジル型、カリフォルニア型、インド型、南アフリカC538S型、イギリスC538S型、ブラジルC538S型、カリフォルニアC538S型、インドC538S型、組合せ変異型(1)(後述の実施例33参照)、組合せ変異型(2)(後述の実施例33参照)、組合せ変異型(3)(後述の実施例33参照)、組合せ変異型(4)(後述の実施例33参照)の受容体結合ドメインのアミノ酸配列を配列番号94~107に示す。配列番号94~107のアミノ酸配列にS蛋白質シグナル配列を付加した配列を配列番号80~93に示す。
 脂質粒子に封入される核酸は、配列番号25、29、33、37、94~107のアミノ酸配列(S蛋白質シグナル配列を含まない。)と少なくとも95%、好ましくは96%、より好ましくは97%の同一性を有するアミノ酸配列からなる、SARS-CoV-2のS蛋白質中の受容体結合ドメインを発現できるものであるとよい。脂質粒子に封入される核酸は、配列番号24、28、32、36、80~93のアミノ酸配列(S蛋白質シグナル配列を含む。)と少なくとも95%、好ましくは96%、より好ましくは97%の同一性を有するアミノ酸配列からなる、SARS-CoV-2のS蛋白質中の受容体結合ドメインを発現できるものであってもよい。
 SARS-CoV-2のS蛋白質を発現させることができる核酸は、キャップ構造(Cap)、5’非翻訳領域(5’-UTR)、S蛋白質の翻訳領域、3’非翻訳領域(3’-UTR)及びポリA尾部(polyA)を含むmRNAであるとよい。キャップ構造(Cap)は、多くの真核生物のmRNAの5’末端に存在し、7-メチルグアノシン構造を有する部位である。キャップ構造としては、例えば、cap0、cap1、cap2、ARCA、又はCleanCap(登録商標)などを挙げることができるが、好ましくはcap1、又はCleanCapであり、より好ましくはCleanCapである。5’非翻訳領域(5’-UTR)の配列は、例えば、配列番号4の配列中の塩基番号19~88の配列である。S蛋白質の翻訳領域の配列は、S蛋白質のアミノ酸配列の全て又は一部を発現できる配列であって、開始コドン及び/又は終止コドンを含んでいても良く、例えば、配列番号4の配列中の塩基番号89~3910の配列である。また、S蛋白質の翻訳領域の配列は、配列番号5の配列におけるS蛋白質の翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列であってもよい。3’非翻訳領域(3’-UTR)の配列は、例えば、配列番号4の配列中の塩基番号3911~4042の配列である。ポリA尾部(polyA)の配列は、例えば、配列番号4の配列中の塩基番号4043~4142の配列である。キャップ構造(Cap)、5’非翻訳領域(5’-UTR)、S蛋白質の翻訳領域、3’非翻訳領域(3’-UTR)及びポリA尾部(polyA)の配列には、改変がなされていてもよく、SARS-CoV-2のS蛋白質を発現させることができる核酸の配列は、配列番号5の配列と少なくとも90%、好ましくは95%、より好ましくは97%の同一性を有するヌクレオチド配列、最も好ましくは配列番号5のヌクレオチド配列からなるとよい。核酸のコドンは最適化するとよい。コドンを最適化することにより、ワクチンとしての効果を向上させ、副作用を低減しうる。対象生物のコドン使用頻度に合わせて最適化することができる。コドンの最適化は、例えば、コーディング配列について行うとよく、配列番号16の配列においては、S蛋白質の翻訳領域の配列のコドンが最適化されている。SARS-CoV-2のS蛋白質を発現させることができる核酸の配列は、配列番号16の配列と少なくとも90%、好ましくは95%、より好ましくは97%の同一性を有するヌクレオチド配列からなるとよい。
 SARS-CoV-2のS蛋白質の断片を発現させることができる核酸は、キャップ構造(Cap)、5’非翻訳領域(5’-UTR)、リーダー配列(leader sequence)、S蛋白質中の受容体結合ドメインの翻訳領域、3’非翻訳領域(3’-UTR)及びポリA尾部(polyA)を含むmRNAであるとよい。キャップ構造(Cap)は、多くの真核生物のmRNAの5’末端に存在し、7-メチルグアノシン構造を有する部位である。キャップ構造としては、例えば、cap0、cap1、cap2、ARCA、又はCleanCap(登録商標)などを挙げることができるが、好ましくはcap1、又はCleanCapであり、より好ましくはCleanCapである。5’非翻訳領域(5’-UTR)の配列は、例えば、配列番号8の配列中の塩基番号19~88の配列である。リーダー配列(leader sequence)の配列は、例えば、配列番号8の配列中の塩基番号89~127の配列である。S蛋白質中の受容体結合ドメインの翻訳領域の配列は、S蛋白質中の受容体結合ドメインのアミノ酸配列の全て又は一部を発現できる配列であって、開始コドン及び/又は終止コドンを含んでいても良く、例えば、配列番号8の配列中の塩基番号128~799の配列である。また、S蛋白質中の受容体結合ドメインの翻訳領域の配列は、配列番号9の配列におけるS蛋白質中の受容体結合ドメインの翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列であってもよい。3’非翻訳領域(3’-UTR)の配列は、例えば、配列番号8の配列中の塩基番号800~931の配列である。ポリA尾部(polyA)の配列は、例えば、配列番号8の配列中の塩基番号932~1031の配列である。キャップ構造(Cap)、5’非翻訳領域(5’-UTR)、リーダー配列(leader sequence)、S蛋白質中の受容体結合ドメインの翻訳領域、3’非翻訳領域(3’-UTR)及びポリA尾部(polyA)の配列には、改変がなされていてもよく、SARS-CoV-2のS蛋白質中の受容体結合ドメインを発現させることができる核酸の配列は、配列番号9の配列と少なくとも90%、好ましくは95%、より好ましくは97%の同一性を有するヌクレオチド配列、最も好ましくは配列番号9のヌクレオチド配列からなるとよい。核酸のコドンは最適化するとよい。コドンを最適化することにより、ワクチンとしての効果を向上させ、副作用を低減しうる。対象生物のコドン使用頻度に合わせて最適化することができる。コドンの最適化は、例えば、コーディング配列について行うとよく、配列番号19の配列においては、S蛋白質中の受容体結合ドメインの翻訳領域の配列のコドンが最適化されている。SARS-CoV-2のS蛋白質中の受容体結合ドメインを発現させることができる核酸の配列は、配列番号19の配列と少なくとも90%、好ましくは95%、より好ましくは97%の同一性を有するヌクレオチド配列からなるとよい。また、S蛋白質中の受容体結合ドメインの翻訳領域の配列は、配列番号21、23、27、31、35、66~79のいずれかの配列におけるS蛋白質中の受容体結合ドメインの翻訳領域の配列と少なくとも90%、好ましくは95%、より好ましくは97%の同一性を有するヌクレオチド配列であってもよい。
 配列番号21は、実施例11のmRNAのヌクレオチド配列であり、実施例11のmRNAは、実施例6の配列のポリA以外の配列が同一のmRNAである。実施例6の配列ではポリAが110個のアデニンヌクレオチドを有しているが、実施例11のmRNAではアデニンヌクレオチドが50個である。本発明の脂質粒子に含まれる核酸はポリA部分が比較的短いmRNAであってもよく、好ましくは30以上、40以上、より好ましくは50以上である。ポリAの上限は特に限定されないが、500以下、400以下、300以下、200以下、110以下が好ましい。
 配列番号23は、実施例13のmRNAのヌクレオチド配列であり、実施例13のmRNAは、538番目(番号はSタンパク質のN末端から数えた番号)のシステインをセリンに置換した配列を発現できるmRNAである。
 配列番号27は、実施例15のmRNAのヌクレオチド配列であり、実施例15のmRNAは、RBDの全長配列(R319-F541)のN末端及びC末端についてアミノ酸が欠失した配列を発現できるmRNAである。
 配列番号31は、実施例17のmRNAのヌクレオチド配列であり、実施例17のmRNAは、RBDの全長配列(R319-F541)のN末端及びC末端についてアミノ酸が付加した配列を発現できるmRNAである。
 配列番号35は、実施例19のmRNAのヌクレオチド配列であり、実施例19のmRNAは、実施例6の配列においてアミノ酸残基の置換が複数の位置で起こった配列を発現できるmRNAである。
 配列番号66~79は、南アフリカ型、イギリス型、ブラジル型、カリフォルニア型、インド型、南アフリカC538S型、イギリスC538S型、ブラジルC538S型、カリフォルニアC538S型、インドC538S型、組合せ変異型(1)(後述の実施例33参照)、組合せ変異型(2)(後述の実施例33参照)、組合せ変異型(3)(後述の実施例33参照)、組合せ変異型(4)(後述の実施例33参照)の受容体結合ドメインのアミノ酸配列を発現できるmRNAのヌクレオチド配列である。
 脂質粒子に封入される核酸は、SARS-CoV-2のS蛋白質及び/又はその断片を発現させることができる核酸であれば、いかなる形態であってもよい。例えば、1本鎖DNA、1本鎖RNA(例えば、mRNA)、DNAとRNAが混合した1本鎖ポリヌクレオチド、2本鎖DNA、2本鎖RNA、DNA-RNAのハイブリッドポリヌクレオチド、DNAとRNAが混合した2種のポリヌクレオチドからなる2本鎖ポリヌクレオチドなどが挙げられるが、好ましくはmRNAである。
 脂質粒子に封入される核酸を構成するヌクレオチドは、天然型のものであっても、修飾ヌクレオチドであってもよいが、少なくとも1個の修飾ヌクレオチドを含むとよい。
 修飾ヌクレオチドは、塩基、糖及びリン酸ジエステル結合のいずれの部分が修飾されたものであってもよい。修飾部位は1箇所でも、2箇所以上であってもよい。
 塩基の修飾の例としては、シトシンの5-メチル化、5-フルオロ化、N4-メチル化、ウラシルの5-メチル化(チミン)、5-フルオロ化、アデニンのN6-メチル化、グアニンのN2-メチル化などを挙げることができる。
 糖の修飾の例としては、D-リボフラノースの2'-O-メチル化を挙げることができる。
 リン酸ジエステル結合の修飾の例としては、ホスホロチオエート結合を挙げることができる。
 修飾ヌクレオチドは、塩基部分が修飾されたものが好ましく、例えば、5位が置換したピリミジンヌクレオチド、1位が置換していてもよいシュードウリジンであるとよく、具体的には、5-メチルシチジン、5-メトキシウリジン、5-メチルウリジン、シュードウリジン、1-アルキルシュードウリジンを例示することができる。また、1-アルキルシュードウリジンとしては、1-(C1-C6アルキル)シュードウリジンであってよく、好ましくは1-メチルシュードウリジン又は1-エチルシュードウリジンである。塩基部分が修飾された修飾ヌクレオチドは、それ自体を単独で、又は複数を組み合わせて天然型のヌクレオチドの代わりに使用してもよい。塩基部分が修飾された修飾ヌクレオチドの組み合わせとしては、例えば、5-メチルシチジンと5-メチルウリジンの組み合わせ、5-メチルシチジンとシュードウリジンの組み合わせ、又は5-メチルシチジンと1-メチルシュードウリジンの組み合わせであってよく、好ましくは、5-メチルシチジンと5-メチルウリジンの組み合わせである。
 本発明のSARS-CoV-2のS蛋白質及び/又はその断片を発現させることができる核酸は、所望の塩基配列を有するDNAからin vitro転写反応により製造することができる。in vitro転写に必要な酵素、緩衝液、及び、ヌクレオシド-5’-トリリン酸混合物(アデノシン-5’-トリリン酸(ATP)、グアノシン-5’-トリリン酸(GTP)、シチジン-5’-トリリン酸(CTP)及びウリジン-5’-トリリン酸(UTP))は、市販されている(例えば、AmpliScribeT7 High Yield Transcription Kit(Epicentre)、mMESSAGE mMACHINE T7 Ultra Kit(Life thechnologies)等)。1本鎖RNAを製造するために使用されるDNAは、クローン化されたDNA、例えば、プラスミドDNAまたはDNA断片が用いられる。プラスミドDNAまたはDNA断片は、市販されているものを用いても良く、また当該分野で一般的に知らせている方法によって製造することができる(例えば、Sambrook, J. et al., Molecular Cloning a Laboratory Manual second edition (1989)、Rashtchian, A., Current Opinion in Biotechnology, 1995, 6(1), 30-36、Gibson D. G. et al., Science, 2008, 319(5867), 1215-1220に記載の方法など)。
 安定性及び/又は安全性を向上させたmRNAを得るために、in vitro転写反応において、一部又は全部の天然型ヌクレオシド-5’-トリリン酸を修飾ヌクレオシド-5’-トリリン酸に置換することによって、mRNAの中の一部又は全部の天然型ヌクレオチドを修飾ヌクレオチドに置換することもできる(Kormann, M., Nature Biotechnology, 2011, 29, 154-157.)。
 安定性及び/又は安全性を向上させたmRNAを得るために、in vitro転写反応後にキャップ化酵素を用いる方法によってmRNAの5’末端にキャップ構造(上記のCap0構造)を導入することができる。また、さらにCap0を有するmRNAに2’-O-メチルトランスフェラーゼを作用させる方法により、Cap0をCap1に変換することができる。キャップ化酵素及び2’-O-メチルトランスフェラーゼは市販の製品を用いることができる(例えば、Vaccinia Capping System,M2080;mRNA Cap 2’-O-Methyltransferase,M0366,共にNew England Biolab製)。市販の製品を使用する場合は、製品に付属するプロトコールに従ってキャップ構造を有するmRNAを製造することができる。
 mRNAの5’末端のキャップ構造は酵素を使用するものとは別の方法によっても導入することができる。例えば、ARCA又はCleanCap(登録商標)をin vitro転写反応に加えることによってARCAが有するキャップ類縁体の構造、又はCleanCap(登録商標)に由来するCap1構造をmRNAに導入することができる。ARCA及びCleanCap(登録商標)は、市販の製品を用いることができる(ARCA,N-7003;CleanCap Reagent AG,N-7113,共にTriLink BioTechnologies製)。市販の製品を使用する場合は、製品に付属するプロトコールに従ってキャップ構造を有するmRNAを製造することができる。
 本発明において、脂質粒子に封入される核酸は、脱塩、逆相カラム、ゲルろ過、HPLC、PAGEなどの方法で精製してもよい。精製処理により、不純物を除去することで、核酸を投与した生体における、炎症性サイトカインの産生が減少しうる。
 上記不純物としては、例えば二本鎖RNA(dsRNA)が例示できる。脂質粒子に封入される核酸が含むdsRNA量としては、質量百分率で好ましくは10%以下、より好ましくは7.5%以下、さらにより好ましくは5%以下、特に好ましくは3%以下である。
 本発明の核酸封入脂質粒子は、薄膜法、逆相蒸発法、エタノール注入法、エーテル注入法、脱水―再水和法、界面活性剤透析法、水和法、凍結融解法等の方法によって製造することができる。例えば、国際公開第2015/005253号パンフレットに記載の方法により核酸封入脂質粒子を製造することができる。
 本発明の粒子は、平均粒子径が30nm~300nmであるとよく、好ましくは30~200nmであり、より好ましくは30 ~150nmであり、さらにより好ましくは30~100nmである。平均粒子径は、Zeta Potential/Particle Sizer NICOMP(登録商標) 380ZLS(PARTICLE SIZING SYSTEMS)等の機器を用い、動的光散乱法等の原理に基づいて体積平均粒子径を測定することにより得ることができる。
 本発明の粒子は、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)による感染を予防及び/又は治療するための組成物を製造するために用いることができる。SARS-CoV-2の株は、特に限定されないが、Wuhan株が好ましい。
 本発明の粒子を用いて、SARS-CoV-2のS蛋白質及び/又はその断片をin vivo又はin vitroで発現させることができる。よって、本発明は、上記粒子を含有する組成物を細胞に導入することを含む、SARS-CoV-2のS蛋白質及び/又はその断片をin vitroで発現させる方法を提供する。また、本発明は、上記粒子を含有する組成物を哺乳動物に投与することを含む、SARS-CoV-2のS蛋白質及び/又はその断片をin vivoで発現させる方法も提供する。SARS-CoV-2のS蛋白質及び/又はその断片をin vivoで発現させることにより、SARS-CoV-2に対する免疫反応を誘導することができる。その結果として、SARS-CoV-2感染を予防及び/又は治療することができる。よって、本発明は、上記粒子を含有する組成物を哺乳動物に投与することを含む、SARS-CoV-2に対する免疫反応を誘導する方法を提供する。また、本発明は、上記粒子を含有する組成物を哺乳動物に投与することを含む、SARS-CoV-2感染を予防及び/又は治療する方法を提供する。
 本発明の粒子は、医薬として、また、実験用試薬として利用できる。本発明の粒子は、通常、水、緩衝液、生理食塩水などの担体に添加され、この配合物(組成物)を、細胞に導入したり(in vitro)、哺乳動物に投与しうる(in vivo)。哺乳動物に投与される場合には、担体は薬学的に許容される担体(例えば、生理食塩水)であるとよい。また、本発明の粒子は、脂肪、脂肪油、ラノリン、ワセリン、パラフィン、ロウ、樹脂、プラスチック、グリコール類、高級アルコール、グリセリン、水、乳化剤、懸濁剤などを基剤原料とするクリーム、ペースト、軟膏、ゲル、ローションなどの剤型に製剤化してもよい。
 本発明の粒子は、ヒト、マウス、ラット、ハムスター、モルモット、ウサギ、ブタ、サル、ネコ、イヌ、ウマ、ヤギ、ヒツジ、ウシなどの哺乳動物に、経口投与、あるいは、筋肉内投与、静脈内投与、直腸内投与、経皮投与、経粘膜投与、皮下投与、皮内投与などの方法により非経口投与することができる。
 本発明の粒子をヒトに投与する場合には、例えば、成人1回あたりmRNAの量として約0.001~1mg、好ましくは0.01~0.2mgの投与量で、1回または数回、筋肉内注射、皮下注射、皮内注射、点滴静脈注射、または、静脈注射するとよいが、その投与量や投与回数は、疾患の種類、症状、年齢、投与方法などにより適宜変更しうる。
 実験試薬として用いる場合、本発明の粒子を、SARS-CoV-2のS蛋白質及び/又はその断片を発現させたい細胞(例えば、HEK293細胞及びその派生細胞(HEK293T細胞、FreeStyle 293細胞やExpi293細胞)、CHO細胞、C2C12マウス筋芽細胞、不死化マウス樹状細胞(MutuDC1940))に導入し、SARS-CoV-2のS蛋白質及び/又はその断片をin vitroで発現させることができる。SARS-CoV-2のS蛋白質及び/又はその断片の発現は、サンプル中のSARS-CoV-2のS蛋白質及び/又はその断片をウェスタンブロット法で検出したり、SARS-CoV-2のS蛋白質及び/又はその断片に特異的なペプチド断片を質量分析法で検出したりすることにより解析することができる。
本明細書において治療とは、ウイルス又は細菌などによる感染症、又は当該感染を原因とする疾患(例えば、肺炎など)を発症した患者において、これら疾患の臨床症状の回復、寛解、緩和及び/又は悪化の遅延を意味する。
本明細書において、予防とは、ウイルス又は細菌などによる感染症による疾患の発症率を低減することを意味する。予防は、ウイルス又は細菌などによる感染症による疾患の進行のリスクの低下、あるいはそれら疾患の重症化の低減を含む。本発明の粒子は、防御免疫反応を誘導することから上記疾患の予防及び/又は治療に効果を示す。
 以下、本発明を実施例によって具体的に説明する。なお、これらの実施例は、本発明を説明するためのものであって、本発明の範囲を限定するものではない。
[実施例1] SARS-CoV-2 S full mRNA-001の調製
(1)SARS-CoV-2 S fullのin vitro transcription(IVT)用の鋳型DNAの作製
 In vitro transcription(IVT)に用いる鋳型DNAを作製するためにSARS-CoV-2 S full DNAをPCRにより増幅後精製した。T7プロモーター配列、human β-globinの5’-UTR配列、KOZAK配列、SARS-CoV-2 S full、human β-globinの3’-UTR配列が順に連結した配列を含むDNA断片(配列番号1)をプラスミドに導入した(pUC57mini-S full)。当該プラスミド6ngを溶解したNuclease-free water(849.6μL)に10×Buffer for KOD-Plus- Ver.2(120μL、東洋紡(株)catalog # KOD-211)、2mM dNTP mix(120μL 、東洋紡(株) catalog # KOD-211)、25mM MgSO4(72μL、東洋紡(株) catalog # KOD-211)、50μM センスプライマー(7.2μL、配列番号2)、50μM アンチセンスプライマー(7.2 μL、配列番号3)、KOD Plus polymerase(24μL、東洋紡(株) catalog # KOD-211)を加え、98℃で1分インキュベーション後、98℃、5秒、55℃、15秒、68℃、4分を20サイクル実施し、更に68℃で1分インキュベートし、S full DNAを増幅した。反応後Wizard SV Gel and PCR Clean-Up System(Promega catalog # A9281)にて鋳型DNA(配列番号4)を精製した。
(2)in vitro transcriptionによるSARS-CoV-2 S-full mRNA-001の調製
 実施例1-(1)で得られた360.5μg/mL 鋳型DNA(70μL)、100mM CleanCap AG(50μL,TriLink catalog # T-7113)、100mM ATP(50μL,Hongene catalog # R1331)、100mM GTP(50μL, Hongene catalog # R2331)、100mM 5-Me-CTP(50μL,Hongene catalog # R3-029)、100mM 5-methyluridine triphosphate(50μL)、Nuclease-free water(380μL,Thermo Fisher catalog # AM9937)、T7 Transcription 5× buffer(200μL,Promega catalog # P140X)、Enzyme mix,T7 RNA Polymerase(100μL,Promega catalog # P137X)を混合し、37℃で4時間インキュベーションした。RQ1 RNase-Free DNase(25μL, Promega catalog # M6101)を混合し、37℃で15分インキュベーションした。8M LiCl溶液(500μL,Sigma-Aldrich catalog # L7026)を混合し、-20℃で終夜静置した。遠心分離(4℃、4000×g、30分)後、上澄みを廃棄、70%エタノールを加え、遠心分離(4℃、4000×g、10分)後、上澄みを廃棄し風乾した。得られた残渣をNuclease-free waterに溶解後、RNeasy Maxi kit(Qiagen catalog # 75162)を用いて付属のマニュアル通りに精製した。得られた溶出液(5.8mL、UV換算で4906μg)とNuclease-free water(419μL)、rApid Alkaline Phosphatase(Roche catalog # 04 898 141 001)の緩衝液(800μL)と酵素(981μL)を混合し、37℃で30分インキュベーション後、75℃で3分インキュベーションした。8M LiCl溶液(8000μL)を混合し、-20℃で終夜静置した。遠心分離(4℃、4000×g、30分)後、上澄みを廃棄、70%エタノールを加え、遠心分離(4℃、4000×g、10分)後、上澄みを廃棄し風乾した。得られた残渣をNuclease-free waterに溶解後、RNeasy Maxi kitを用いて付属のマニュアル通りに精製することで目的とするmRNAを得た。
得られたmRNAは、配列番号5の配列を有する。LabChip GX Touch Standard RNA Reagent Kit(PerkinElmer catalog #CLS960010)により分析し、目的の長さであることを確認した。
[実施例2] SARS-CoV-2 RBD mRNA-002の調製
(1)SARS-CoV-2 RBDのin vitro transcription(IVT)用の鋳型DNAの作製
 In vitro transcription(IVT)に用いる鋳型DNAを作製するためにSARS-CoV-2 RBD DNAをPCRにより増幅後精製した。T7プロモーター配列、human β-globinの5’-UTR配列、KOZAK配列、SARS-CoV-2 S蛋白質のシグナル配列、SARS-CoV-2 RBD、human β-globinの3’-UTR配列が順に連結した配列を含むDNA断片(配列番号7)をプラスミドに導入した(pUC57mini-RBD)。当該プラスミド6ngを溶解したNuclease-free water(849.6μL)に10×Buffer for KOD-Plus- Ver.2(120μL、東洋紡(株) catalog # KOD-211)、2mM dNTP mix(120μL 、東洋紡(株) catalog # KOD-211)、25mM MgSO(72μL、東洋紡(株) catalog # KOD-211)、50μM センスプライマー(7.2μL、配列番号2)、50μM アンチセンスプライマー(7.2μL、配列番号3)、KOD Plus polymerase (24μL、東洋紡(株) catalog # KOD-211)を加え、98℃で1分インキュベーション後、98℃、5秒、55℃、15秒、68℃、1分を20サイクル実施し、更に68℃で1分インキュベートし、RBD DNAを増幅した。反応後Wizard SV Gel and PCR Clean-Up System(Promega catalog # A9281)にて鋳型DNA(配列番号8)を精製した。
(2) in vitro transcriptionによるSARS-CoV-2 RBD mRNA-002の調製
 実施例1-(1)で得られた鋳型DNAの代わりに実施例2-(1)で得られた鋳型DNAを用い、実施例1-(2)と同様の方法でmRNAを得た。
 得られたmRNAは、配列番号9の配列を有する。LabChip GX Touch Standard RNA Reagent Kitにより分析し、目的の長さであることを確認した。
[実施例3] 実施例1記載のSARS-CoV-2 S full mRNAを用いたmRNA封入核酸脂質粒子の調製
(1)mRNA封入核酸脂質粒子の調製
 ジステアロイルホスファチジルコリン(1,2-Distearoyl-sn-glycero-3-phosphocholine:以下DSPCと表記,NOF CORPORATION)、コレステロール(Cholesterol:以下Cholと表記,Sigma-Aldrich,Inc.)、二酢酸(7R,9Z,26Z,29R)-18-({[3-(ジメチルアミノ)プロポキシ]カルボニル}オキシ)ペンタトリアコンタ-9,26-ジエン-7,29-ジイル(WO2015/005253の実施例23に記載の化合物)(以下LPと表記)、及びポリエチレングリコール分子量が約2000の1、2-ジミリストイル-sn-グリセロール メトキシポリエチレン グリコール(1,2-Dimyristoyl-sn-Glycero-3-Methoxypolyethylene Glycol、以下PEG-DMGと表記,NOF CORPORATION)を、DSPC:Chol:LP:PEG-DMG=12.5:41:45:1.5のモル比にて、総脂質濃度5mMになるようにエタノールに溶解した。
 一方、実施例1で得たSARS-CoV-2 S-full mRNA-001を、クエン酸緩衝液(20mM Citrate Buffer,pH4.0)にて、52.7μg/mLに調製した。
 上記の脂質溶液とmRNA溶液を、その体積比が1:3となるようにNanoAssemblr BenchTop(Precision Nanosystems Inc.)を用いてマイクロ流路内で混合し、核酸脂質粒子の粗分散液を得た。核酸脂質粒子の分散液を約25~50倍量の300mM スクロース,10mM ヒスチジン緩衝液(pH6.5)にて12-18時間透析(Float-A-Lyzer G2,MWCO:1,000kD,Spectra/Por)することにより、エタノール除去を行い、精製されたmRNA封入核酸脂質粒子の分散液を得た。
 尚、LPはWO2015/005253の実施例23に記載の方法に従い合成した。
(2)mRNA封入核酸脂質粒子の特性評価
 (1)で調製した核酸脂質粒子を含む分散液の特性評価を行った。それぞれの特性評価の方法について説明する。
(2-1)mRNAの封入率
 mRNAの封入率は、Quant-iT RiboGreen RNA Assay kit(Invitrogen)を用い、添付文書に準じて測定した。
すなわち、0.015% Triton X-100界面活性剤存在下及び非存在下において、核酸脂質粒子の分散液中のmRNAを定量し、次式により封入率を算出した。
{([界面活性剤存在下におけるmRNA量]-[界面活性剤非存在下におけるmRNA量])/[界面活性剤存在下におけるmRNA量]}x 100(%)
(2-2)mRNAと脂質の比率
 核酸脂質粒子の分散液中のmRNA量を逆相クロマトグラフィーにて測定した(System:Agilent 1100series,Column:Bioshell A400 Protein C4(10cm×4.6mm,3.4μm)(SUPELCO),Buffer A:0.1M 酢酸トリエチルアミン(pH7.0),Buffer B:アセトニトリル,(B%):5-50%(0-15min),Flow Rate:1mL/min,Temperature:70℃,Detection:260nm)。
 核酸脂質粒子の分散液中の各脂質量を逆相クロマトグラフィーにて測定した(System:DIONEX UltiMate 3000,Column:XSelect CSH C18 (150mm×3mm,3.5μm,130Å)(Waters catalog # 186005263),Buffer A:0.2%ギ酸,Buffer B:0.2%ギ酸,メタノール,(B%):75-100%(0-6min),100%(6-15min),Flow Rate:0.45mL/min,Temperature:50℃,Detection:Corona CAD(Charged Aerosol Detector))。
mRNAに対する総脂質量の比率を次式により算出した。
 [総脂質濃度]/[mRNA濃度] (wt/wt)
(2-3)平均粒子径
 核酸脂質粒子の粒子径は、Zeta Potential/Particle Sizer NICOMPTM 380ZLS (PARTICLE SIZING SYSTEMS)にて測定した。表中の平均粒子径は体積平均粒子径を表し、±以下は、偏差を表す。
 結果を表1に示した。
[実施例4] 実施例2記載のSARS-CoV-2 RBD mRNAを用いたmRNA封入核酸脂質粒子の調製
 実施例3と同様の方法にて、実施例2記載のmRNAを用いたmRNA封入核酸脂質粒子の調製、特性評価を実施した。結果を表1に示した。

(表1)
Figure JPOXMLDOC01-appb-I000013
 以上の結果より、これらの核酸脂質粒子は、mRNAの90%以上が脂質粒子内に封入されており、約100nmから約130nmの平均粒子径を有していることが明らかとなった。
[実施例5] SARS-CoV-2 S full optimized mRNA-003の調製
(1)SARS-CoV-2 S full optimizedのin vitro transcription(IVT)用の鋳型DNAの作製
T7プロモーター配列、human β-globinの5’-UTR配列、KOZAK配列、SARS-CoV-2 S full optimized、human β-globinの3’-UTR配列が順に連結した配列を含むDNA断片(配列番号12)を人工合成し、プラスミドに導入した(S_opt2 EcoRI)。当該プラスミド1ngを溶解したNuclease-free water(69μL)に5×SuperFi Green Buffer(20μL、ThermoFisher Scientific catalog # 12357-010)、2.5mM dNTP mix(8μL 、タカラバイオ(株) catalog # 4030)、50μM センスプライマー2(1μL、配列番号13)、50μM アンチセンスプライマー2(1 μL、配列番号14)、Platinum SuperFi DNA Polymerase(1μL、ThermoFisher Scientific catalog # 12357-010)を加え、98℃で30秒インキュベーション後、98℃、5秒、60℃、10秒、72℃、2分を20サイクル実施し、更に72℃で1分インキュベートし、SARS-CoV-2 S full optimizedの鋳型DNAを増幅した(配列番号15)。当該鋳型DNAを制限酵素NheI及びHindIIIにて切断後、同制限酵素で切断したプラスミドに導入し、鋳型プラスミドを作製した(pUCKIVT1 S full optimized)。当該プラスミドを制限酵素BspQIにて切断後、イソプロパノール沈殿にてDNAを精製し、直鎖プラスミドDNAを調製した。
(2) in vitro transcriptionによるSARS-CoV-2 S full optimized mRNA-003の調製
 実施例1-(1)で得られた鋳型DNAの代わりに実施例5-(1)で得られた直鎖プラスミドDNAを用い、実施例1-(2)と同様の方法でmRNAを得た。
 得られたmRNAは、配列番号16の配列を有する。LabChip GX Touch Standard RNA Reagent Kitにより分析し、目的の長さであることを確認した。
[実施例6] SARS-CoV-2 RBD optimized mRNA-004の調製
(1)SARS-CoV-2 RBD optimizedのin vitro transcription(IVT)用の鋳型DNAの作製
T7プロモーター配列、human β-globinの5’-UTR配列、KOZAK配列、SARS-CoV-2 RBD optimized、human β-globinの3’-UTR配列が順に連結した配列を含むDNA断片(配列番号17)を人工合成し、プラスミドに導入した(S_RBD_opt2 EcoRI)。当該プラスミド1ngを溶解したNuclease-free water(69μL)に5×SuperFi Green Buffer(20μL、ThermoFisher Scientific catalog # 12357-010)、2mM dNTP mix(8μL 、タカラバイオ(株) catalog # 4030)、50μM センスプライマー2(1μL、配列番号13)、50μM アンチセンスプライマー2(1μL、配列番号14)、Platinum SuperFi DNA Polymerase(1μL、ThermoFisher Scientific catalog # 12357-010)を加え、98℃で30秒インキュベーション後、98℃、5秒、60℃、10秒、72℃、1分を20サイクル実施し、更に72℃で1分インキュベートし、SARS-CoV-2 RBD optimized DNAを増幅した(配列番号18)。当該鋳型DNAを制限酵素NheI及びHindIIIにて切断後、同制限酵素で切断したプラスミドに導入し、鋳型プラスミドを作製した(pUCKIVT1-RBD optimized)。当該プラスミドを制限酵素BspQIにて切断後、イソプロパノール沈殿にてDNAを精製し、直鎖プラスミドDNAを調製した。
(2) in vitro transcriptionによるSARS-CoV-2 RBD optimized mRNA-004の調製
 実施例1-(1)で得られた鋳型DNAの代わりに実施例6-(1)で得られた直鎖プラスミドDNAを用い、実施例1-(2)と同様の方法でmRNAを得た。
 得られたmRNAは、配列番号19の配列を有する。LabChip GX Touch Standard RNA Reagent Kitにより分析し、目的の長さであることを確認した。
[実施例7] 実施例5記載のSARS-CoV-2 S full optimized mRNAを用いたmRNA封入核酸脂質粒子の調製
 実施例3と同様の方法にて、実施例5記載のmRNAを用いたmRNA封入核酸脂質粒子の調製、特性評価を実施した。ただし、300mM スクロース,10mM ヒスチジン緩衝液(pH6.5)の代わりに、300mM スクロース,10mM ヒスチジン緩衝液(pH7.0)を用いて透析を行い、mRNA封入核酸脂質粒子の分散液を得た。
結果を表2に示した。
[実施例8] 実施例6記載のSARS-CoV-2 RBD optimized mRNAを用いたmRNA封入核酸脂質粒子の調製
 実施例3と同様の方法にて、実施例6記載のmRNAを用いたmRNA封入核酸脂質粒子の調製、特性評価を実施した。ただし、300mM スクロース,10mM ヒスチジン緩衝液(pH6.5)の代わりに、300mM スクロース,10mM ヒスチジン緩衝液(pH7.0)を用いて透析を行い、mRNA封入核酸脂質粒子の分散液を得た。
結果を表2に示した。
[実施例9] SARS-CoV-2 RBD optimized mRNA-004のHPLC精製
 実施例6-(2)に記載の方法で得られたmRNAを逆相クロマトグラフィー(YMC-Triart Bio C4(YMC catalog # TB30S05-1510WT)、5%アセトニトリル, 400mM酢酸トリエチルアミン(pH7.0)/25%アセトニトリル, 400mM酢酸トリエチルアミン(pH7.0)、75℃)にて分取精製した。
[実施例10] 実施例6記載のSARS-CoV-2 RBD optimized mRNAを用いたmRNA封入核酸脂質粒子の調製
実施例8と同様の方法にて、実施例9記載のmRNAを用いたmRNA封入核酸脂質粒子の調製、特性評価を実施した。結果を表2に示した。

(表2)
Figure JPOXMLDOC01-appb-I000014

 以上の結果より、これらの核酸脂質粒子は、mRNAの90%以上が脂質粒子内に封入されており、約90nmから約130nmの平均粒子径を有していることが明らかとなった。
[実施例11]SARS-CoV-2 RBD S2000 mRNAの調製
(1)SARS-CoV-2 RBD S2000のin vitro transcription(IVT)用の鋳型DNAの作製
in vitro transcription(IVT)に用いる鋳型DNAを作製するためにプラスミドを構築した。GCTAGC(NheIサイト)、T7プロモーター配列、human β-globinの5'-UTR配列、KOZAK配列、SARS-CoV-2 S蛋白質のシグナル配列、SARS-CoV-2 RBDの翻訳領域、human β-globinの3’-UTR配列、ポリA尾部及びGAAGAGC(BspQIサイト)が順に連結した配列を含むDNA断片(配列番号20)を導入したプラスミド(pUC57-S2000)を作製した。プラスミド(100μg)を溶解したNuclease-free water (860μL, Thermo Fisher, catalog # AM9937)に10X NEB Buffer 3.1 (100 μL,New England Biolabs,catalog # R7203S)、BspQI (40μL,New England Biolabs,catalog #R0712)を加え、50℃で1時間インキュベーション後、イソプロパノール(1400μL)を加え、-80℃で一晩静置した。遠心分離(-8℃,15,000rpm,10分)後、上澄みを廃棄、70%エタノールを加え、遠心分離(-8℃,15,000rpm,10分)後、上澄みを廃棄し風乾した。得られた残渣をTE-Buffer(pH8.0)で溶解し、500μg/mLの溶液に調製した。
(2) in vitro transcriptionによるSARS-CoV-2 RBD S2000 mRNAの調製
 実施例1-(1)で得られた鋳型DNAの代わりに実施例11-(1)で得られた鋳型DNAを用い、実施例1-(2)と同様の方法でmRNAを得た。
 得られたmRNAは、配列番号21の配列を有する。LabChip GX Touch Standard RNA Reagent Kitにより分析し、目的の長さであることを確認した。
[実施例12] 実施例11記載のSARS-CoV-2 RBD S2000 mRNAを用いたmRNA封入核酸脂質粒子の調製
実施例8と同様の方法にて、実施例11記載のmRNAを用いたmRNA封入核酸脂質粒子の調製、特性評価を実施した。ただし、mRNA量は以下の方法で測定した。
 核酸脂質粒子分散液を90%メタノールに希釈溶解し、核酸脂質粒子中のmRNA量を紫外可視分光光度計(パーキンエルマー社製、LAMBDATM 465)にて測定した。mRNA濃度を次式により算出した。
{[260nmにおける吸光度]-[350nmにおける吸光度]}x 40 x 希釈倍率(μg/mL)
結果を表3に示した。特性評価の結果より、本核酸脂質粒子は、mRNAの95%以上が脂質粒子内に封入されており、約150nmの平均粒子径を有していることが明らかとなった。
[実施例13]SARS-CoV-2 RBD S2001 mRNAの調製
(1)SARS-CoV-2 RBD S2001のin vitro transcription(IVT)用の鋳型DNAの作製
 in vitro transcription(IVT)に用いる鋳型DNAを作製するためにプラスミドを構築した。GCTAGC(NheIサイト)、T7プロモーター配列、human β-globinの5'-UTR配列、KOZAK配列、SARS-CoV-2 S蛋白質のシグナル配列、SARS-CoV-2 RBDの翻訳領域、human β-globinの3’-UTR配列、ポリA尾部及びGAAGAGC(BspQIサイト)が順に連結した配列を含むDNA断片(配列番号22)を導入したプラスミド(pUC57-S2001)を作製した。プラスミド(100μg)を溶解したNuclease-free water (860μL, Thermo Fisher, catalog # AM9937)に10X NEB Buffer 3.1 (100 μL,New England Biolabs,catalog # R7203S)、BspQI (40μL,New England Biolabs,catalog #R0712)を加え、50℃で1時間インキュベーション後、イソプロパノール(1400μL)を加え、-80℃で一晩静置した。遠心分離(-8℃,15,000rpm,10分)後、上澄みを廃棄、70%エタノールを加え、遠心分離(-8℃,15,000rpm,10分)後、上澄みを廃棄し風乾した。得られた残渣をTE-Buffer(pH8.0)で溶解し、500μg/mLの溶液に調製した。
(2) in vitro transcriptionによるSARS-CoV-2 RBD S2001 mRNAの調製
 実施例1-(1)で得られた鋳型DNAの代わりに実施例13-(1)で得られた鋳型DNAを用い、実施例1-(2)と同様の方法でmRNAを得た。
 得られたmRNAは、配列番号23の配列を有する。LabChip GX Touch Standard RNA Reagent Kitにより分析し、目的の長さであることを確認した。
[実施例14] 実施例13記載のSARS-CoV-2 RBD S2001 mRNAを用いたmRNA封入核酸脂質粒子の調製
 実施例12と同様の方法にて、実施例13記載のmRNAを用いたmRNA封入核酸脂質粒子の調製、特性評価を実施した。結果を表3に示した。特性評価の結果より、本核酸脂質粒子は、mRNAの95%以上が脂質粒子内に封入されており、約140nmの平均粒子径を有していることが明らかとなった。
[実施例15]SARS-CoV-2 RBD S2002 mRNAの調製
(1)SARS-CoV-2 RBD S2002のin vitro transcription(IVT)用の鋳型DNAの作製
 in vitro transcription(IVT)に用いる鋳型DNAを作製するためにプラスミドを構築した。GCTAGC(NheIサイト)、T7プロモーター配列、human β-globinの5'-UTR配列、KOZAK配列、SARS-CoV-2 S蛋白質のシグナル配列、SARS-CoV-2 RBDの翻訳領域、human β-globinの3’-UTR配列、ポリA尾部及びGAAGAGC(BspQIサイト)が順に連結した配列を含むDNA断片(配列番号26)を導入したプラスミド(pUC57-S2002)を作製した。プラスミド(100μg)を溶解したNuclease-free water (860μL, Thermo Fisher, catalog # AM9937)に10X NEB Buffer 3.1 (100 μL,New England Biolabs,catalog # R7203S)、BspQI (40μL,New England Biolabs,catalog #R0712)を加え、50℃で1時間インキュベーション後、イソプロパノール(1400μL)を加え、-80℃で一晩静置した。遠心分離(-8℃,15,000rpm,10分)後、上澄みを廃棄、70%エタノールを加え、遠心分離(-8℃,15,000rpm,10分)後、上澄みを廃棄し風乾した。得られた残渣をTE-Buffer(pH8.0)で溶解し、500μg/mLの溶液に調製した。
(2) in vitro transcriptionによるSARS-CoV-2 RBD S2002 mRNAの調製
 実施例1-(1)で得られた鋳型DNAの代わりに実施例15-(1)で得られた鋳型DNAを用い、実施例1-(2)と同様の方法でmRNAを得た。
 得られたmRNAは、配列番号27の配列を有する。LabChip GX Touch Standard RNA Reagent Kitにより分析し、目的の長さであることを確認した。
[実施例16] 実施例15記載のSARS-CoV-2 RBD S2002 mRNAを用いたmRNA封入核酸脂質粒子の調製
 実施例12と同様の方法にて、実施例15記載のmRNAを用いたmRNA封入核酸脂質粒子の調製、特性評価を実施した。結果を表3に示した。特性評価の結果より、本核酸脂質粒子は、mRNAの95%以上が脂質粒子内に封入されており、約140nmの平均粒子径を有していることが明らかとなった。
[実施例17]SARS-CoV-2 RBD S2003 mRNAの調製
(1)SARS-CoV-2 RBD S2003のin vitro transcription(IVT)用の鋳型DNAの作製
 in vitro transcription(IVT)に用いる鋳型DNAを作製するためにプラスミドを構築した。GCTAGC(NheIサイト)、T7プロモーター配列、human β-globinの5'-UTR配列、KOZAK配列、SARS-CoV-2 S蛋白質のシグナル配列、SARS-CoV-2 RBDの翻訳領域、human β-globinの3’-UTR配列、ポリA尾部及びGAAGAGC(BspQIサイト)が順に連結した配列を含むDNA断片(配列番号30)を導入したプラスミド(pCC1-S2003)を作製した。プラスミド(100μg)を溶解したNuclease-free water (860μL, Thermo Fisher, catalog # AM9937)に10X NEB Buffer 3.1 (100 μL,New England Biolabs,catalog # R7203S)、BspQI (40μL,New England Biolabs,catalog #R0712)を加え、50℃で1時間インキュベーション後、イソプロパノール(1400μL)を加え、-80℃で一晩静置した。遠心分離(-8℃,15,000rpm,10分)後、上澄みを廃棄、70%エタノールを加え、遠心分離(-8℃,15,000rpm,10分)後、上澄みを廃棄し風乾した。得られた残渣をTE-Buffer(pH8.0)で溶解し、500μg/mLの溶液に調製した。
(2) in vitro transcriptionによるSARS-CoV-2 RBD S2003 mRNAの調製
 実施例1-(1)で得られた鋳型DNAの代わりに実施例17-(1)で得られた鋳型DNAを用い、実施例1-(2)と同様の方法でmRNAを得た。
 得られたmRNAは、配列番号31の配列を有する。LabChip GX Touch Standard RNA Reagent Kitにより分析し、目的の長さであることを確認した。
[実施例18] 実施例17記載のSARS-CoV-2 RBD S2003 mRNAを用いたmRNA封入核酸脂質粒子の調製
 実施例12と同様の方法にて、実施例17記載のmRNAを用いたmRNA封入核酸脂質粒子の調製、特性評価を実施した。結果を表3に示した。特性評価の結果より、本核酸脂質粒子は、mRNAの95%以上が脂質粒子内に封入されており、約140nmの平均粒子径を有していることが明らかとなった。
[実施例19]SARS-CoV-2 RBD S2004 mRNAの調製
(1)SARS-CoV-2 RBD S2004のin vitro transcription(IVT)用の鋳型DNAの作製
 in vitro transcription(IVT)に用いる鋳型DNAを作製するためにプラスミドを構築した。GCTAGC(NheIサイト)、T7プロモーター配列、human β-globinの5'-UTR配列、KOZAK配列、SARS-CoV-2 S蛋白質のシグナル配列、SARS-CoV-2 RBDの翻訳領域、human β-globinの3’-UTR配列、ポリA尾部及びGAAGAGC(BspQIサイト)が順に連結した配列を含むDNA断片(配列番号34)を導入したプラスミド(pCC1-S2004)を作製した。プラスミド(100μg)を溶解したNuclease-free water (860μL, Thermo Fisher, catalog # AM9937)に10X NEB Buffer 3.1 (100 μL,New England Biolabs,catalog # R7203S)、BspQI (40μL,New England Biolabs,catalog #R0712)を加え、50℃で1時間インキュベーション後、イソプロパノール(1400μL)を加え、-80℃で一晩静置した。遠心分離(-8℃,15,000rpm,10分)後、上澄みを廃棄、70%エタノールを加え、遠心分離(-8℃,15,000rpm,10分)後、上澄みを廃棄し風乾した。得られた残渣をTE-Buffer(pH8.0)で溶解し、500μg/mLの溶液に調製した。
(2) in vitro transcriptionによるSARS-CoV-2 RBD S2004 mRNAの調製
 実施例1-(1)で得られた鋳型DNAの代わりに実施例19-(1)で得られた鋳型DNAを用い、実施例1-(2)と同様の方法でmRNAを得た。
 得られたmRNAは、配列番号35の配列を有する。LabChip GX Touch Standard RNA Reagent Kitにより分析し、目的の長さであることを確認した。
[実施例20] 実施例19記載のSARS-CoV-2 RBD S2004 mRNAを用いたmRNA封入核酸脂質粒子の調製
 実施例12と同様の方法にて、実施例19記載のmRNAを用いたmRNA封入核酸脂質粒子の調製、特性評価を実施した。結果を表3に示した。特性評価の結果より、本核酸脂質粒子は、mRNAの95%以上が脂質粒子内に封入されており、約180nmの平均粒子径を有していることが明らかとなった。
[実施例21~30]実施例6記載のmRNAを用いたmRNA封入核酸脂質粒子の調製
(1)mRNA封入核酸脂質粒子の調製
 ジステアロイルホスファチジルコリン(DSPC)、コレステロール、二酢酸(7R,9Z,26Z,29R)-18-({[3-(ジメチルアミノ)プロポキシ]カルボニル}オキシ)ペンタトリアコンタ-9,26-ジエン-7,29-ジイル(LP)、及びポリエチレングリコール分子量が約2000の1、2-ジミリストイル-sn-グリセロール メトキシポリエチレン グリコール(PEG-DMG)を、表4に記載のモル比にて、総脂質濃度5mMになるようにエタノールに溶解した。
 一方、実施例6で得たmRNAを、クエン酸緩衝液(20mM Citrate Buffer,pH4.0)にて希釈調製した。
 上記の脂質溶液とmRNA溶液を、mRNAに対する総脂質重量比が表4に記載の値となり、且つその体積比が1:3となるようにNanoAssemblr BenchTop(Precision Nanosystems Inc.)を用いてマイクロ流路内で混合し、核酸脂質粒子の粗分散液を得た。核酸脂質粒子の分散液を約25~50倍量の緩衝液にて12~18時間透析(Float-A-Lyzer G2,MWCO:1,000kD,Spectra/Por)することにより、エタノール除去を行い、精製されたmRNA封入核酸脂質粒子の分散液を得た。

(2)mRNA封入核酸脂質粒子の特性評価
 (1)で調製した核酸脂質粒子を含む分散液の特性評価を行った。それぞれの特性評価の方法について説明する。
(2-1)mRNAの封入率
 mRNAの封入率は、Quant-iT RiboGreen RNA Assay kit(Invitrogen)を用い、添付文書に準じて測定した。
すなわち、0.015% Triton X-100界面活性剤存在下及び非存在下において、核酸脂質粒子の分散液中のmRNAを定量し、次式により封入率を算出した。
{([界面活性剤存在下におけるmRNA量]-[界面活性剤非存在下におけるmRNA量])/[界面活性剤存在下におけるmRNA量]}x 100(%)
(2-2)mRNAと脂質の比率
 核酸脂質粒子の分散液中のmRNA量を紫外可視分光光度計にて測定した。核酸脂質粒子分散液を90%メタノールに希釈溶解し、核酸脂質粒子中のmRNA量を紫外可視分光光度計(パーキンエルマー社製、LAMBDA(商標) 465)にて測定した。mRNA濃度を次式により算出した。
{[260nmにおける吸光度]-[350nmにおける吸光度]}x 40 x 希釈倍率(μg/mL)
 核酸脂質粒子の分散液中の各脂質量を逆相クロマトグラフィーにて測定した(System:DIONEX UltiMate 3000,Column:XSelect CSH C18(130Å,3.5μm,3.0mm×150mm,)(Waters catalog # 186005263),Buffer A:0.2%ギ酸,Buffer B:0.2%ギ酸,メタノール,(B%):75-100%(0-6min),100%(6-15min),Flow Rate:0.45mL/min,Temperature:50℃,Detection:Corona CAD(Charged Aerosol Detector))。
 mRNAに対する総脂質量の比率を次式により算出した。
 [総脂質濃度]/[mRNA濃度] (wt/wt)
(2-3)平均粒子径
 核酸脂質粒子の粒子径は、Zeta Potential/Particle Sizer NICOMPTM 380ZLS (PARTICLE SIZING SYSTEMS)にて測定した。表中の平均粒子径は体積平均粒子径を表し、±以下は、偏差を表す。
 特性評価の結果を表5に示した。これらの核酸脂質粒子は、mRNAの95%以上が脂質粒子内に封入されており、約90nmから約140nmの平均粒子径を有していることが明らかとなった。
[実施例31] 変異型SARS-CoV-2 RBD mRNAの調製
 表6に記載の変異をもつRBDについて、SARS-CoV-2 RBD mRNAを作製した。表7中の実施例番号の後ろの記号は表6に記載のとおり、それぞれの変異型に対応する。例えば、実施例32-aとは、実施例32で得られた、南アフリカ型の変異を有するmRNAを封入した核酸脂質粒子を表す。

(1)変異型SARS-CoV-2 RBD のin vitro transcription(IVT)用の鋳型DNAの作製
 In vitro translation(IVT)に用いる鋳型DNAを作製するために変異型SARS-CoV-2 RBD DNAをPCRにより増幅後精製した。T7プロモーター配列、human β-globinの5’-UTR配列、KOZAK配列、SARS-CoV-2 S蛋白質のシグナル配列、変異型SARS-CoV-2 RBD、human β-globinの3’-UTR配列が順に連結した配列を含むDNA断片(配列番号38)をプラスミドに導入した(pUC57mini-変異型RBD)。当該プラスミド10ngを溶解したNuclease-free water(566.4μL)に10×Buffer for KOD-Plus- Ver.2(80μL、東洋紡(株) catalog # KOD-211)、2mM dNTP mix(80μL 、東洋紡(株) catalog # KOD-211)、25mM MgSO(48μL、東洋紡(株) catalog # KOD-211)、50μM センスプライマー(4.8μL、配列番号2)、50μM アンチセンスプライマー(4.8μL、配列番号3)、KOD Plus polymerase (16μL、東洋紡(株) catalog # KOD-211)を加え、98℃で15秒インキュベーション後、98℃、5秒、55℃、15秒、68℃、1分を20サイクル実施し、更に68℃で1分インキュベートし、RBD DNAを増幅した。反応後Wizard SV Gel and PCR Clean-Up System(Promega catalog # A9281)にて鋳型DNA(配列番号52)を精製した。
DNA断片(配列番号38)の代わりに配列番号39~41、43、48~51のDNA断片をそれぞれ用いて同様の方法により、配列番号53~55、57、62~65の鋳型DNAをそれぞれ得た。

(2) in vitro transcriptionによる変異型SARS-CoV-2 RBD mRNAの調製
 実施例1-(1)で得られた鋳型DNAの代わりに実施例31-(1)で得られた鋳型DNA(配列番号52)を用い、実施例1-(2)と同様の方法でmRNAを得た。
 得られたmRNAは、配列番号66の配列を有する。LabChip GX Touch Standard RNA Reagent Kitにより分析し、目的の長さであることを確認した。
鋳型DNA(配列番号52)の代わりに配列番号53~55、57、62~65の鋳型DNAをそれぞれ用いて同様の方法により、配列番号67~69、71、76~79のmRNAをそれぞれ得た。
[実施例32] 実施例31記載のSARS-CoV-2 RBD mRNAを用いたmRNA封入核酸脂質粒子の調製
 実施例8と同様の方法にて、実施例31記載のmRNAを用いたmRNA封入核酸脂質粒子の調製、特性評価を実施した。結果を表7に示した。
 特性評価の結果より、これらの核酸脂質粒子は、mRNAの95%以上が脂質粒子内に封入されており、約110nmから約130nmの平均粒子径を有していることが明らかとなった。
[実施例33] 実施例6記載のSARS-CoV-2 RBD mRNAを用いたmRNA封入核酸脂質粒子の調製
 実施例8と同様の方法にて、実施例6記載のmRNAを用いたmRNA封入核酸脂質粒子の調製、特性評価を実施した。結果を表7に示した。
 特性評価の結果より、本核酸脂質粒子は、mRNAの95%以上が脂質粒子内に封入されており、約110nmの平均粒子径を有していることが明らかとなった。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
[試験例1]
投与(図2-図4)
 1~4%(v/v)の気化イソフルラン麻酔下で、マウスの後肢腓腹部に被験物質を投与した。3回投与試験は初回投与から7日後及び21日後に追加投与し(1回目投与時: 右後肢、2回目投与時: 左後肢、3回目投与時: 右後肢)、2回投与試験は初回投与から13日後に追加投与した(1回目投与時: 右後肢、2回目投与時: 左後肢)。被験物質は、1回あたり3 μg mRNA/20 μL/body、あるいは1 μg mRNA/20 μL/bodyを投与した(図2-図4において、それぞれ実施例番号_3、実施例番号_1と記載する。例えば、図2-図4の実施例3_3の記載は実施例3の粒子を3 μg mRNA/20 μL/body投与した群であることを意味する)。投与液調製のBufferは、300 mM Sucrose含有10 mM Histidine緩衝液、pH6.5を用いた。市販サポニンアジュバント(Quil-A Adjuvant、Invivogen、Cat#vac-quil)を添加したS1蛋白質(Sino Biological、Cat#40591-V08H)は、抗RBD抗体応答の陽性対照群として設定した(S1/Quil-A群)。S1蛋白質及びQuil-Aは、1回あたり1 μg S1及び10 μg Quil-A /20 μL/bodyを投与した。
血清と脾臓細胞の調製
 被験物質投与時に尾静脈から得た血液は、血清分離剤(BD、Cat#365967)入りのチューブに回収し、遠心分離後(15,000 rpm、4℃、5分間、遠心機:TOMY、MX-205)に血清を回収した。3回投与試験の最終投与から14日後に心臓から得た血液は、チューブに回収して室温に3時間静置し、その後4℃設定の冷蔵庫で22時間静置した後、遠心分離し(1700×g、4℃、5分間)血清を回収した。また、イソフルラン麻酔下で放血死させたマウスから脾臓を採取し、セルストレイナー(CORNING、Cat#352350)を用いて細胞懸濁液を調製後、ACK溶液(Lysing Buffer、BD、Cat#555899)を用いて溶血処理を行い、脾臓細胞を調製した。
蛋白質発現解析
 培地中のmRNA濃度が10 μg/mLとなるように、実施例3または4の粒子をExpi293F細胞(Thermo Fisher Scientific、Cat# A14527)に添加した。また、陰性コントロールとして、実施例4の粒子の添加量と等量のBufferを添加した。添加から3日後に培養上清と細胞ペレットを回収した。細胞ペレットは、1×Protease/Phosphatase阻害剤(Thermo Fisher Scientific、Cat#78443)を添加したM-PER(Thermo Fisher Scientific、Cat#78501)で溶解し、遠心分離後(9100×g、4℃、10分間)に細胞溶解液を回収した。D-PBSで810倍及び2430倍に希釈した培養上清及び10倍及び30倍に希釈した細胞溶解液を96 half wellプレート(Coaster、Cat# 3690)に固相化し、抗RBD抗体(Sino Biological、Cat#40592-T62)を用いたEnzyme-Linked Immunosorbent Assay(ELISA)法によって、実施例3または4の粒子により発現した蛋白質を検出した。
血中抗RBD抗体価(図2-図4)
 Niプレート(QIAGEN、Cat#35061)に組換えRBD蛋白質(Sino Biological、Cat#40592-V08H)をブロッキング溶液(1% BSA、0.05% Tween 20含有PBS)で0.25 μg/mLで添加(50 μL/well)し、室温で2時間静置した後、洗浄液(0.05% Tween 20含有PBS)300 μL/wellにて3回洗浄した。試料希釈系列は、ブロッキング溶液を用いて最高濃度の100倍希釈血清から、4倍希釈で8段階作製した。標準血清希釈系列は、ブロッキング溶液を用いて最高濃度の2 DS UNIT/mLから、3倍希釈で8段階作製した。試料希釈溶液及び標準血清希釈溶液を添加(50 μL/well)し、室温で1時間静置後、洗浄液にて3回洗浄した。検出抗体は、HRP標識抗マウスIgG抗体(Southern Biotech、Cat#1030-05)をブロッキング溶液で4000倍希釈してプレートに添加(50 μL/well)後、室温で1時間静置した。洗浄液にて3回洗浄した後、TMB Microwell Peroxidase Substrate System(SERACARE Life Sciences、Cat#5120-0047)を添加(50 μL/well)し、10分間静置した。反応停止液には、TMB Stop Solution(SERACARE Life Sciences、Cat# 5150-0021、50 μL/well)を用いた。プレートリーダーを用いて波長450 nm(対照波長540 nm)の吸光度を測定し、450 nmで測定した吸光度から540 nmで測定した吸光度を引いた補正吸光度(Delta)を解析に用いた。標準血清の抗RBD抗体濃度及びDeltaから、Nonlinear Regression:4 Parameterを用いて検量線を作成した。検量線、測定試料の希釈倍率、及びDeltaから試料の抗RBD抗体濃度を算出した。Deltaが0.5~1.5となったwellの抗体濃度の平均値を測定試料の抗RBD抗体濃度として算出した。試料最高濃度wellのDeltaが0.5未満となった場合は20 DS UNIT/mLを代入してデータとした。
RBD-hACE2結合阻害活性
 96 half wellプレート(Coaster、Cat# 3690)に10 μg/mL Streptavidin(Thermo Fisher Scientific、Cat#21125、PBSで溶解)を添加し、4 ℃で一晩静置した後、洗浄液(0.05 % Tween 20含有PBS)にて3回洗浄した。ブロッキング溶液(1% BSA、0.05% Tween 20含有PBS)を添加し、室温で1時間静置した後、洗浄液で3回洗浄した。その後、ブロッキング溶液で調製した0.2 μg/mLの組換えRBD蛋白質(Acro Biosystems、Cat#SPD-C82E9)溶液をプレートに添加し、室温で1時間静置した後、洗浄液で3回洗浄した。ブロッキング溶液で20倍希釈したマウス血清をプレートに添加し、室温で1時間静置後、洗浄液にて3回洗浄した。ブロッキング溶液で調製した1 μg/mLの組換えhACE2蛋白質(Acro Biosystems、Cat#AC2-H5257)溶液をプレートに添加し、室温で1時間静置した後、洗浄液で3回洗浄した。検出抗体は、HRP標識抗ヒトIgG1抗体(CYGNUS TECHNOLOGIES、Cat#IM50)をブロッキング溶液で500倍希釈し、プレートに添加後、室温で1時間静置した。洗浄液にて3回洗浄した後、TMB Microwell Peroxidase Substrate System(SERACARE Life Sciences、Cat#5120-0047)を添加し、10分間静置した。反応停止液には、TMB Stop Solution(SERACARE Life Sciences、Cat#5150-0021)を用いた。プレートリーダーを用いて波長450 nmの吸光度を測定し解析した。
SARS-CoV-2エピトープペプチドプール
 SARS-CoV-2のS全長をカバーするように、253個のオーバーラッピングペプチド(#1~#253)を委託合成した(Eurofins)。1つのペプチドあたり、200 μLのdimethyl sulfoxide(DMSO、Nacalai Tesque、Cat#13408-64)で溶解した。RBDとその前後の領域をカバーするように、#1~#62、#63~#107、#108~#253を等量混合し、3つのエピトープペプチドプール(順にそれぞれEuro1、Euro2、Euro3)を調製した。また、SARS-CoV-2のS全長をカバーする市販エピトープペプチドプール(JPT、Cat#PM-WCPV-S-1、2 vials、N末領域をカバーするペプチドプールはJPT-N、C末領域をカバーするペプチドプールはJPT-C)は、1 vial当たり40 μLのDMSOで溶解した。
RBD特異的細胞性免疫応答
 脾臓細胞をRPMI Complete培地(10% FBS [Sigma-Aldrich、Cat#172012-500ML]、1% PS [Penicilin-Streptomycin Mixed Solution、Nacalai Tesque、Cat#26253-84]含有、1mM Sodium Pyruvate [Thermo Fisher Scientific、Cat#11360-070]、10 mM HEPES [Thermo Fisher Scientific、Cat#15630080]、1×StemSure [富士フィルム和光純薬、Cat#195-15791]、1×MEM Non-Essential Amino Acids Solution [Thermo Fisher Scientific、Cat#11140-050])で1×107 cells/mLに調製し、U底96 well plateに播種した。RPMI Complete培地で最終濃度0.1%(v/v)となるように調製したエピトープペプチドプールEuro1~3溶液及び最終濃度0.025%(v/v)となるように調製した市販エピトープペプチドプールJPT-N及びJPT-Cを脾臓細胞に添加し、37℃、5% CO2の条件下で48時間培養した。細胞培養上清中のIFN-γ及びIL-13サイトカイン量をMouse IFN-γ DuoSet ELISA(R&D Systems、Cat#DY485)及びMouse IL-13 Duoset ELISA(R&D systems、Cat#DY413)を用いて測定した。プレートリーダーを用いて波長450 nm(対照波長540 nm)の吸光度を測定し、450 nmの吸光度から540 nmで測定した吸光度を引いた補正吸光度(Delta)を解析に用いた。標準溶液のサイトカイン濃度及びDelta値からNonlinear Regression:4 Parameterを用いて検量線を作成し、検量線から測定試料のサイトカイン濃度を算出した。IL-13濃度が0.000未満(<0.000)となった場合は、カットオフ値0.005を代入してデータとした。
統計解析
 血中抗RBD抗体応答及びRBD-hACE2結合阻害活性の比較について、3回投与試験はt検定を実施し、2回投与試験はBuffer群を対照としてDunnett検定を実施した。RBD特異的細胞性免疫応答の比較は、S1/Quil-A群を対照として、各ペプチド処理についてDunnett検定を実施した。全ての解析にはSAS ver. 9.2を使用した。
マウスへの投与(図5-図9、図25-図28)
 1~4%(v/v)の気化イソフルラン麻酔下で、2週間隔で2回(図5)あるいは3週間隔で2回(図6-9、図25、図26、及び図28)、BALB/cマウス(図5-図8、図25、図26、及び図28)あるいはC57BL/6マウス(図9)の後肢腓腹部に被検物質を投与した。図27は、BALB/cマウスの後肢腓腹部に被検物質を1回のみ投与した。被験物質は、1回あたり0.03、0.3、あるいは3 μg mRNA/20 μL/bodyを投与した(例えば、図5の実施例8_0.03の記載は実施例8の粒子を0.03 μg mRNA/20 μL/body投与した群であることを意味する)。図25及び図27は1回あたり2 μg mRNA/20 μL/bodyを投与し、図26及び図28は1回あたり3 μg mRNA/20 μL/bodyを投与した。投与液調製のBufferは、300 mM Sucrose含有10 mM Histidine緩衝液、pH7.0を用いた。
サルへの投与(図29)
 2週間隔で3回、カニクイザルの上腕三角筋に実施例10を投与した。実施例10は、1回あたり50 μg mRNA/200 μL/bodyを投与した。投与液調製のBufferは、300 mM Sucrose含有10 mM Histidine緩衝液、pH7.0を用いた。
血中抗RBD抗体価(図5、図6、図9、及び図25-図27)
 Streptavidin(Thermo Fisher Scientific Inc.)固相液をELISAプレートに25 μL/well添加し、4°C設定冷蔵庫で一夜静置した。プレートウォッシャー(AMW-96SX、バイオテック株式会社)を用いてWash Bufferで3回洗浄(180 μL/well)し、1%BSA/PBSTを添加(150 μL/well)し、室温で1時間以上静置することでブロッキングを行った。プレートウォッシャーを用いてWash Buffer(180 μL/well)で3回洗浄後、RBD溶液(Original株RBD:Acro Biosystems、Cat#SPD-C82E9、351株RBD:Sino Biological、Cat#40592-V08H85-B)を添加(25 μL/well)し、室温で1時間以上静置した。プレートウォッシャーを用いてWash Buffer(180 μL/well)で3回洗浄後、測定試料段階希釈液及び標準血清段階希釈液(図5、図6、図9、図25、図26)を添加(25 μL/well)し、室温で1時間以上静置した。図27の標準試料として、Original由来RBD及びB.1.351株由来RBDに同等に結合する抗RBD抗体(クローン#3)の段階希釈液を用いた。プレートウォッシャーを用いてWash Bufferで3回洗浄(180 μL/well)後、HRP標識抗マウスIgG抗体(Southern Biotech、Cat#1030-05)検出抗体希釈液を添加(25 μL/well)後、室温で1時間静置した。洗浄液にて3回洗浄した後、TMB Microwell Peroxidase Substrate System(SERACARE Life Sciences、Cat#5120-0047)を添加(30 μL/well)し、10分間静置した。反応停止液には、TMB Stop Solution(SERACARE Life Sciences、Cat# 5150-0021、30 μL/well)を用いた。プレートリーダーを用いて波長450 nm(対照波長540 nm)の吸光度を測定し、450 nmで測定した吸光度から540 nmで測定した吸光度を引いた補正吸光度(Delta)を解析に用いた。標準血清の抗RBD抗体濃度及びDeltaから、Nonlinear Regression:4 Parameterを用いて検量線を作成した。検量線、測定試料の希釈倍率、及びDeltaから試料の抗RBD抗体濃度を算出した。
血中抗SARS-CoV-2中和活性(図7及び図8)
 VeroE6細胞をプレートに播種し、37±2℃、5±1%のCO2濃度設定のインキュベーターで1晩培養した。マウス血清の希釈系列とSARS-CoV-2 WA1/2020株を混合し、37±2℃、5±1%のCO2濃度設定のインキュベーター内に2~2.5時間、静置した。その後、マウス血清とSARS-CoV-2 WA1/2020株の混合液をVeroE6細胞に添加し、37±2℃、5±1%のCO2濃度設定のインキュベーター内で72±8時間、培養した。その後、CellTiter-Glo (Promega)を用いて生細胞量を測定し、マウス血清の抗SARS-CoV-2中和活性力価を算出した。
RBD特異的細胞性免疫応答(図10)
 脾臓細胞をRPMI Complete培地で1×107 cells/mLに調製し、U底96 well plateに播種した。RPMI Complete培地で最終濃度0.1%(v/v)となるように調製したRBDのMHC class II
エピトープペプチドプールを脾臓細胞に添加し、37℃、5% CO2の条件下で48時間培養した。細胞培養上清中のIFN-γ及びIL-13サイトカイン量をMouse IFN-γ DuoSet ELISA及びMouse IL-13 Duoset ELISAを用いて測定した。プレートリーダーを用いて波長450 nm(対照波長540 nm)の吸光度を測定し、450 nmの吸光度から540 nmで測定した吸光度を引いた値を解析に用いた。標準溶液のサイトカイン濃度及び測定値からNonlinear Regression:4 Parameterを用いて検量線を作成し、検量線から測定試料のサイトカイン濃度を算出した。
統計解析
 図5に示す血中抗RBD抗体応答について、0.03μg mRNA/body及び0.3μg mRNA/bodyの各用量における2群間比較は、Wilcoxon検定を実施した。3μg mRNA/body用量における3群間の比較については、実施例8を比較対照としてSteel検定を実施した。
 図6に示す血中抗RBD抗体応答について、0.03μg mRNA/body、0.3μg mRNA/body、及び3μg mRNA/bodyの各用量における2群間比較は、Wilcoxon検定を実施した。
 図7に示す血中抗SARS-CoV-2中和活性については、Buffer群を比較対照としてSteel検定を実施した。図8の2群間比較については、Wilcoxon検定を実施した。
 図9に示す血中抗RBD抗体応答について、Buffer群を比較対照としてSteel検定を実施した。
 図10に示すRBD特異的細胞性免疫について、Steel-Dwass検定を実施した。
全ての解析にはSAS ver. 9.2を使用した。
RBD-hACE2結合阻害活性(図28)
 96 half wellプレートに抗Hisタグ抗体(Wako Pure Chemical Industries、Cat# 017-23211)を添加し、4 ℃で一晩静置した後、洗浄液(0.05 % Tween 20含有PBS)にて3回洗浄した。ブロッキング溶液(1% BSA、0.05% Tween 20含有PBS)を添加し、室温で1時間静置した後、洗浄液で3回洗浄した。その後、ブロッキング溶液で調製した0.2 μg/mLの組換えRBD蛋白質(Control:Acro Biosystems、Cat# SPD-S52H6、Original:Sino Biological、Cat# 40592-V08H、K417N:Sino Biological、Cat# 40592-V08H59、E484K:ACRO Biosystems、Cat# SRD-C52H3、N501Y:Sino Biological、Cat# 40592-V08H82、K417N/E484K/N501Y:ACRO Biosystems、Cat# SPD-C52Hp)溶液をプレートに添加し、室温で1時間静置した後、洗浄液で3回洗浄した。ブロッキング溶液で希釈したマウス血清希釈系列をプレートに添加し、室温で1時間静置後、洗浄液にて3回洗浄した。ブロッキング溶液で調製した1 μg/mLの組換えhACE2蛋白質(Acro Biosystems、Cat#AC2-H5257)溶液をプレートに添加し、室温で1時間静置した後、洗浄液で3回洗浄した。検出抗体は、HRP標識抗ヒトIgG1抗体(CYGNUS TECHNOLOGIES、Cat#IM50)をブロッキング溶液で500倍希釈し、プレートに添加後、室温で1時間静置した。洗浄液にて3回洗浄した後、TMB Microwell Peroxidase Substrate System(SERACARE Life Sciences、Cat#5120-0047)を添加し、10分間静置した。反応停止液には、TMB Stop Solution(SERACARE Life Sciences、Cat#5150-0021)を用いた。プレートリーダーを用いて波長450 nm(対照波長540 nm)の吸光度を測定し、450 nmで測定した吸光度から540 nmで測定した吸光度を引いた補正吸光度(Delta)を解析に用いた。データは、50%阻害を示すマウス希釈倍率を示す(IC50)。
血中抗SARS-CoV-2中和活性(図29)
 Vero-TMPRSS2細胞をプレートに播種した。サル血漿の希釈系列と100TCID50のSARS-CoV-2株(D614G:HP095、B.1.1.7系統株:QHN001、P.1系統株:TY7-501、B.1.351系統株:TY8-612)を混合し、CO2インキュベーター内に静置した。その後、サル血漿とSARS-CoV-2の混合液をVero-TMPRSS2細胞に添加し、CO2インキュベーター内で3日間培養した。その後、細胞変性効果(CPE)が認められなくなる最高希釈倍率を中和抗体価として算出した。
結果
実施例4のRBD蛋白質発現誘導能
 本発明の核酸脂質粒子ワクチンの作用機序は、生体内に投与後、抗原遺伝子をコードするmRNAから抗原蛋白質が産生され、抗原に対する特異的免疫応答を誘導することが示唆されている。本発明の核酸脂質粒子ワクチンの薬効は、有効成分であるmRNAの組織及び細胞内への送達及びmRNAからの翻訳が重要な要素となると想定される。この一連の要素を包括的に評価することを目的として、培養細胞を用いて抗原蛋白質の発現誘導能を指標として力価を評価した。Expi293F細胞に実施例3の粒子、実施例4の粒子、あるいはBufferを添加し、3日後の培養上清中及び細胞内に発現したRBD蛋白質をELISA法によって定量した。結果を図1に示す。実施例4の粒子により発現したRBD蛋白質は培養上清中及び細胞内に認められた。実施例3の粒子により発現したS全長蛋白質は細胞内にのみ認められた。
血中抗RBD抗体応答
 実施例3または実施例4の粒子の投与によって誘導される血中抗RBD抗体応答を評価した。結果を図2に示す。実施例3の2回投与群及び3回投与郡に比べて、実施例4の3回投与群は、血中抗RBD抗体価が高かった(P = 0.0346)。また、Buffer群に比べて、実施例4の2回投与群は、血中抗RBD抗体価が高かった(実施例4_3;P = 0.0019、実施例4_1;P = 0.0313)。
RBD-hACE2結合阻害活性
 実施例3または実施例4の粒子の投与によって誘導されるRBD-hACE2結合阻害活性を評価した。結果を図3に示す。実施例3の2回投与群及び3回投与群に比べて、実施例4の3回投与群の血清は、RBD-hACE2結合阻害活性が高かった(P = 0.0005)。また、Buffer群に比べて、実施例4の2回投与群の血清は、RBD-hACE2結合阻害活性が高かった(実施例4_3;P < 0.0001、実施例4_1;P = 0.0006)。
RBD特異的細胞性免疫応答
 脾臓細胞を調製し、培養脾臓細胞からのRBD特異的な細胞性免疫応答を評価した。結果を図4に示す。S1/Quil-A群に比べて、実施例4群は、RBDをカバーするEuro2及びJPT-Nエピトープペプチドプール処理に対するIFN-γ産生レベルが高かった(P < 0.001)。一方、S1/Quil-A群に比べて、実施例4群は、Euro2及びJPT-Nエピトープペプチドプール処理に対するIL-13産生レベルが低かった(P <0.005)。この結果より、本発明の核酸脂質粒子ワクチンは、Th1型が優位である免疫応答を誘導することが分かった。
BALB/cマウスにおける血中抗RBD抗体応答
 実施例8または実施例4の粒子の投与によって誘導される血中抗RBD抗体応答を評価した。結果を図5に示す。0.03μg mRNA/body及び0.3μg mRNA/bodyの各用量において、実施例4と比較して、実施例8は血中抗RBD抗体価が高かった(いずれもP = 0.0286)。また、3μg mRNA/bodyの用量において、実施例4、実施例7、及び実施例8の血中抗RBD抗体価に有意な差は認められなかった(いずれもP = 0.061)。
 実施例10または実施例8の粒子の投与によって誘導される血中抗RBD抗体応答を評価した。結果を図6に示す。いずれの用量においても、実施例10と実施例8の血中抗RBD抗体価に有意な差は認められなかった(0.03μg mRNA/body: P = 0.8413、0.3μg mRNA/body: P = 0.0952、3μg mRNA/body: P = 0.6905)。
血中抗SARS-CoV-2中和活性
 実施例10の粒子の投与によって誘導される血中抗SARS-CoV-2中和活性を評価した。結果を図7に示す。Buffer群と比較して、実施例10を3μg mRNA/bodyを投与した群は血中抗SARS-CoV-2中和活性が高かった(P = 0.0374)。また、実施例8及び実施例10の粒子の投与によって誘導される血中抗SARS-CoV-2中和活性を比較した結果、有意な差は認められなかった(図8、P = 1)。
C57BL/6マウスにおける血中抗RBD抗体応答
 実施例8または実施例10の粒子の投与によって誘導される血中抗RBD抗体応答を評価した。結果を図9に示す。3μg mRNA/body及び10μg mRNA/bodyの各用量において、Buffer群と比較して、実施例8及び実施例10は血中抗RBD抗体価が高かった(実施例10の2用量ともP < 0.05)。
RBD特異的細胞性免疫応答
 脾臓細胞を調製し、培養脾臓細胞からのRBD特異的な細胞性免疫応答を評価した。結果を図10Aに示す。0.1 μg/body のRBD蛋白質に100 μg/bodyのAlumアジュバントを添加した群と比較して、3 μg/bodyの実施例10を投与した群は高いIFN-γ誘導を示した(P < 0.05)。また、1.0 μg/body のRBD蛋白質に100 μg/bodyのアラムアジュバントを添加した群と比較して、0.03 μg/body及び3 μg/bodyの実施例10を投与した群は高いIFN-γ誘導を示した(いずれもP < 0.05)。
実施例10のTh細胞プロファイルを評価するため、IFN-γレベル/IL-5レベル比及びIFN-γレベル/IL-13レベル比を解析した。結果を図10Bに示す。Alumアジュバント添加RBD蛋白質群と比較して、実施例10は高いIFN-γレベル/IL-13レベル比を示した(Alumアジュバント添加RBD蛋白質の2群に対して、実施例10の3群いずれもP < 0.05)。この結果より、本発明の核酸脂質粒子ワクチンは、Th1型が優位である免疫応答を誘導することが分かった。
BALB/cマウスにおける血中抗RBD抗体応答(図25-図27)
 実施例10、12、14、16、18、又は実施例20の粒子の投与によって誘導される血中抗RBD抗体応答を評価した。結果を図25に示す。いずれもBuffer群と比較して、高い血中抗RBD抗体レベルを示した。
 実施例10または実施例21-30の粒子の投与によって誘導される血中抗RBD抗体応答を評価した。結果を図26に示す。いずれの粒子においても、Buffer群と比較して、高い血中抗RBD抗体価が認められた。
 実施例10、32a、32b、32c、32d、32f、又は実施例33の粒子の投与によって誘導される血中抗RBD抗体応答を評価した。結果を図27に示す。実施例32aと比較して、実施例10、32b、32c、32d、32f、及び実施例33は高い血中抗RBD抗体レベルを示した。
RBD-hACE2結合阻害活性(図28)
 実施例10の粒子によって誘導されるRBD-hACE2結合阻害活性を評価した。結果を図28に示す。Control RBDと比較して、OriginalのRBD、K417N、E484K、N501Y、又はK417N/E484K/N501YのRBD変異体とhACE2の結合は、実施例10群の血清によって同程度に阻害された。
血中抗SARS-CoV-2中和活性(図29)
 実施例10の粒子によって誘導される血中抗SARS-CoV-2中和活性を評価した。結果を図29に示す。D614G株、B.1.1.7系統株、P.1系統株、及びB.1.351系統株のVero-TMPRSS2細胞への感染は、実施例10群の血清によって同程度に中和された。
[試験例2]
SARS-CoV-2 RBDをコードするLNP-mRNAワクチン候補の最適化
 重症急性呼吸器症候群コロナウイルス2(SARS-CoV-2)による新型コロナウイルス感染症(COVID-19)のパンデミックが発生し、SARS-CoV-2スパイク蛋白質の全長をコードする2種類のmRNAワクチンが上市された(1,2)。しかし、発熱など副反応に関して改善すべき点は残されている。
 我々は、SARS-CoV-2スパイク蛋白質に含まれる受容体結合ドメイン (RBD: receptor-binding domain)をコードするmRNAを脂質ナノ粒子(LNP)に封入したmRNAワクチン候補(LNP-mRNA-RBD)について、免疫原性を指標として最適化を行った。
 まず、6~8週齢のC57BL/6マウスまたはBALB/cマウスに、2週間隔で2回、mRNA換算で3μgのLNP-mRNA-RBDを筋肉内に投与し、血中抗RBD抗体反応を評価した。その結果、C57BL/6マウスと比較して、BALB/cマウスは高い血中抗RBD抗体反応を示した(図11a、図15)。LNP-mRNA-RBDによって誘導されるRBD特異的B細胞応答をマウス系統間で比較するため、LNP-mRNA-RBD投与マウスの膝窩リンパ節(pLN)におけるTFH及びGC B細胞をflow cytometryによって解析した(図16)。その結果、血中抗RBD抗体応答と相関して、pLNにおけるTFH(CD4+CD185+PD-1+細胞)及びGC B細胞(CD38-GL7+CD19+細胞)は、C57BL/6マウスと比較して、LNP-mRNA-RBD投与 BALB/cマウスで高かった(図11b-e)。
 LNP-mRNA-RBDによって誘導される抗原特異的CD8+及びCD4+ T細胞を解析するため、スパイク蛋白質のペプチドライブラリーを設計した。このペプチドライブラリーは、10アミノ酸が重複するように設計された20アミノ酸のペプチド、128個からなる。このペプチドライブラリーを、16個のペプチドを1つのプールペプチドとして、計8つのプールペプチドに分割した(図11f)。LNP-mRNA-RBD投与マウスから調製した脾臓細胞をプールペプチド3及び4で処理したところ、C57BL/6マウス脾臓細胞はIFN-γ産生を誘導し、BALB/cマウス脾臓細胞は、ペプチドプール3処理でIFN-γの産生が確認された(図11g及びh、図17a及びb)。IL-13は、C57BL/6マウスまたはBALB/cマウスのいずれの脾臓細胞も誘導されしなかった(図17c及びd)。LNP-mRNA-RBD投与によって誘導される抗原特異的T細胞を解析するため、脾臓細胞をプールペプチド2、3、または4で処理し、3つのサイトカイン(IL-2、IFN-γ、及びTNF-α)を産生したT細胞をflow cytometryで解析した。その結果、スパイク抗原特異的多機能性CD8+及びCD4+T細胞は、プールペプチド3及び4で処理したBALB/cマウス脾臓細胞において認められた(図11h、図18b及び19b)。C57BL/6マウス脾臓細胞では、多機能性CD8+ T細胞及び弱いCD4+ T細胞応答を示した(図11g、図18a及び19a)。これらのデータから、C57BL/6マウスと比較して、LNP-mRNA-RBDを投与したBALB/cマウスは高いB細胞及びT細胞応答を誘導する可能性が示唆された。
 核酸を用いたワクチンは、DNAまたはRNAが内因性のアジュバントとして作用することが報告されている (14-16)。LNP-mRNAワクチンでは、mRNAがトル様受容体(toll-like receptor、TLR)3、TLR7、TLR8、RIG-I、またはMDA5によって認識され、内因性アジュバントとして作用することが報告されている(17)。Karikoらは、メチル化塩基や他の修飾塩基(例えば、シュードウリジンなど)を、自然免疫活性化の制御と抗原蛋白質の発現効率の改善に使用している(18,19)。他の研究では、LNP-mRNAによって誘導されるI型IFNが、CD8+T細胞応答及び抗原蛋白質の発現効率に影響することが明らかとなっている(20,21,22)。SARS-CoV-2ワクチンに関しては、スパイクの全長をコードしているLNP-mRNA-Full群と比較して、LNP-mRNA-RBD群は副反応の頻度が高かったため、LNP-mRNA-Fullが第III相臨床試験で評価され、上市された(13)。副反応の頻度の違いに関する理由は不明であるが、我々は、LNP-mRNAによる自然免疫賦活作用が関与している可能性があると考えている(13)。
 LNP-mRNAによる自然免疫賦活作用を解析するため、LNP-mRNA-RBDを処理したヒトPBMCからのI型IFN産生レベルをELISAで測定した。その結果、3人の健常人のPBMCにおいて、LNP-mRNA-Fullと比較して、LNP-mRNA-RBDは高いIFN-α誘導能を示した(図12a)。次に、C57BL/6マウスまたはBALB/cマウスの骨髄由来樹状細胞(BM-DCs)を用いて、同様の実験を行った。その結果、BALB/cマウスのBM-DCsと比較して、LNP-mRNA-fullまたはLNP-mRNA-RBDで処理したC57BL/6マウスのBM-DCsは高いIFN-α産生を示した(図12b)。LNP-mRNAに封入されるmRNAの製造過程では、夾雑物としてのRNA、例えばTLR3リガンドとしての2本鎖RNAなどを含み、これが自然免疫を活性化する可能性が示されている(22)。そこで、RNA製造に起因する夾雑物を除くため、mRNAをHPLC精製し、HPLC精製したmRNAを封入したLNP-mRNA(mRNA-RBD (HPLC))を作製した。その結果、LNP-mRNA-RBDと比較して、mRNA-RBD (HPLC)で処理したヒトPBMC及びマウスBM-DCからのI型IFN産生は著しく減少した(図12a及びb)。
 C57BL/6またはBALB/cマウスにmRNA-RBD(HPLC)を投与し、免疫原性を評価した。その結果、mRNA-RBD(HPLC)群は、BALB/cマウス及びC57BL/6マウスの両方において、血中抗RBD IgG1価、IgG2価、及び総IgG価を増強した(図12c及び図20a)。また、LNP-mRNA-RBD群と比較して、mRNA-RBD(HPLC)を投与したC57BL/6マウスのpLNは、GC B細胞が多く誘導された(図12d及びe)。更に、LNP-mRNA-RBD群と比較して、mRNA-RND (HPLC)群では、RBD特異的にIFN-γ及び他のI型サイトカインを産生する多機能性CD8+及びCD4+ T細胞が多く誘導された(図12f-i、及び図20b-e、21、22)。
 非ヒト霊長類(NHP)であるカニクイザルモデルにおいて、mRNA-RBD (HPLC)ワクチンのSARS-CoV-2に対する感染防御効果を評価した。本研究では、2頭のサルを陰性対照群として、4頭のサルにmRNA-RBD(HPLC)を筋肉内投与した。その結果、陰性対照群と比較して、mRNA-RBD(HPLC)群は高い抗RBD抗体応答を示した(図13b)。また、mRNA-RBD(HPLC)群は血中抗SARS-CoV-2中和活性も示した(図13c)。さらに、陰性対照群と比較して、mRNA-RBD(HPLC)群は、結膜、鼻腔、口腔、気管、直腸の粘膜組織における高い抗RBDIgG応答を示した(図13d)。
 mRNA-RBD(HPLC)群は、SARS-Co-2感染後1日目、スワブ中のSARS-CoV-2(図14a)とウイルスRNA(図14b)を劇的に低下させた。また、感染後7日目において、mRNA-RBD(HPLC)群は、気管、気管支、肺のウイルスRNAも低下させた(図14c、図25)。更に、陰性対照群は、SARS-CoV-2感染後の発熱と肺炎を示した(図23、24)。
 SARS-CoV-2感染後の肺の組織解析を行なったところ、陰性対照群においてリンパ球や好中球の浸潤が見られ、肺胞壁の肥厚やウイルス抗原も確認され、mRNA-RBD (HPLC)群ではこれらの現象は確認されなかった (図14d、14e)。また、mRNA-RBD (HPLC)群では、気管支随伴リンパ組織(bronchus-associated lymphoid tissue : BALT)が形成されていることを確認した (図14d)。これらの結果は、鼻腔粘膜や気管粘膜などの粘膜にBLATの形成を介して誘導された抗体がSARS-CoV-2に結合することで中和し、その結果として感染後1日目のスワブ中のウイルスRNAと感染性ウイルスが減少した可能性を示唆している。
材料と方法

マウス
6~8週齢のC57BL/6及びBALB/cマウスを日本のCLEA社から購入した。マウスは特定の病原体のない条件下で飼育した。すべてのマウス試験は、東京大学医科学研究所動物実験委員会の承認を得た。
カニクイザル
滋賀医科大学で生まれ、フィリピン、ベトナム及び中国を原産とする7~10歳の雌のカニクイザルを使用した。すべての処置はケタミン麻酔とキシラジン麻酔下で行われ、苦痛を最小限に抑える努力がなされた。CMK-2(CLEAジャパン株式会社、東京、日本)のフードペレットを麻酔からの回復後、1日1回与え、飲料水は自由摂取とした。動物は、光の制御された条件(12時間明/12時間暗サイクル、午前8時に点灯)の下でケージ内に単頭収容した。ケタミン/キシラジン麻酔下で結膜(0.05mL×2)、鼻孔(0.5mL×2)、口腔(0.9mL)及び気管(5mL)にピペットとカテーテルでSARS-CoV-2(2×107PFU/7mL HBSS)をサルに接種した。ケタミン/キシラジン麻酔下で、2本の綿棒(栄研化学株式会社、東京、日本)を使用して、結膜、鼻腔、口腔及び気管からの体液サンプルを採取した後、0.1%ウシ血清アルブミン(BSA)と抗生物質を含むダルベッコ改変イーグル培地(DMEM、ナカライテスク、京都、日本)の1 mLに綿棒を浸漬した。気管支鏡(MEV-2560;町田内視鏡株式会社、東京都)と細胞診用ブラシ(BC-203D-2006;オリンパス株式会社、東京都)を用いて気管支サンプルを採取した。
LNP-mRNAワクチン
実施例10のmRNA封入核酸脂質粒子を使用した。
試薬
スパイク蛋白質のオーバーラップ20-aaペプチドを合成し、Eurofins Genomics (Ebersberg, Germany)から購入した。SARS-CoV-2スパイク蛋白質(ECD)及びRBDは、GenScript(Piscataway, NJ, USA)から購入した。
ウイルス
0.3%ウシ血清アルブミン(BSA)及び1μgのL-1-トシルアミド-2-フェニルエチルクロロメチルケトン(TPCK)処理トリプシン/mLを含むOpti-MEM I(Invitrogen, Carlsbad, CA, USA)中で、37℃でVeroE6細胞中でSARS-CoV-2単離株を増殖させた。
免疫の方法
6~8週齢のC57BL/6及びBALB/cマウスを、0日目及び14日目に、mock、LNP-mRNA-RBD(3μg)またはLNP-mRNA-RBD(HPLC)(3μg)で筋肉内免疫した。2回目の免疫化から2週間後に、膝窩リンパ節、脾臓、及び血液を採取した。カニクイザルを、0日目及び21日目に、mockまたはLNP-mRNA-RBD(HPLC)(100μg)で筋肉内免疫した。採血は0日目、7日目、14日目、21日目、28日目に行った。
ELISA法
ECD及びRBD特異的抗体価はELISAで測定した。簡単に説明すると、ハーフエリア96ウェルプレートにECD(1μg/mL)またはRBD(1μg/mL)を重炭酸緩衝液中で4℃でコーティングした。プレートを1%BSAを含むPBSで室温で60分間ブロッキングした。プレートをPBSTで3回洗浄し、希釈した血漿またはスワブサンプルを120分間室温でインキュベートした。プレートをPBSTで3回洗浄し、HRP標識ヤギ抗マウスIgG、IgG1、IgG2a、IgG2c、またはマウス抗サルIgGと室温で120分間インキュベートした。PBSTで3回洗浄した後、TMB基質バッファーを加え、室温で10分間インキュベートした。その後、1 N H2SO4を添加して反応を停止させた。分光光度計を用いて、450nm及び540または560nmにおけるOD値を測定した。OD450-OD540またはOD450-OD560でが0.2となる血漿希釈の逆数値を抗体価とした。
免疫化したマウスの脾臓細胞の単細胞懸濁液を、ペプチドプール1~8、ECD、及びRBD蛋白質で24時間刺激した。上清中のIFN-γ及びIL-13レベルをELISA(R&D)で測定した。
GC B細胞とTFH染色
膝窩リンパ節の単細胞懸濁液を、LIVE/DEAD Aqua、抗CD279(29F.1A12)、抗CD8a(53-6.7)、抗CD3e(145-2C11)、抗GL7(GL7)、抗CD4(RM4-5)、抗CD185(L138D7)、抗CD38(90)、及び抗CD19(6D5)抗体で染色した。すべての抗体は、BioLegend, San Diego, CA, USAから購入した。GC B細胞及びTFH細胞の割合をフローサイトメトリーで分析した。
サイトカインの細胞内染色アッセイ
脾臓細胞の単細胞懸濁液を、蛋白質輸送阻害剤(eBioscience, San Diego, CA, USA)とともにペプチドプール2, 3, 4で6時間刺激した。刺激後、死細胞をLIVE/DEAD Aquaで染色した。洗浄後、抗CD8a(53-6.7)、抗CD4(RM4-5:Invitrogen)、抗TCRβ(H57-597)、抗F4/80(RM8)、抗TER-119(TER-119)、抗CD11b(M1/70)、抗CD19(6D5)、抗CD11c(N418)、抗NK-1.1(PK136)、抗CD45R/B220(RA3-6B2)抗体で細胞を染色した。すべての抗体は、特に記載のない限り、BioLegendから購入した。固定後、IC Fixation Buffer(eBioscience社)による透過性、細胞内サイトカイン、CD3を、抗IFN-γ(XMG1.2)、抗IL-2(JES6-5H4)、抗TNF-α(MP6-XT22)、抗CD3(17A2)抗体で染色した。全ての抗体はBioLegendから購入した。サイトカイン産生CD8+及びCD4+ T細胞の割合をフローサイトメトリーにより決定した。 
ヒト末梢血単核細胞の調製及び刺激 
末梢血単核細胞(PBMC)は、SARS-CoV-2に未感染の3人の健康な成人ボランティアからインフォームドコンセントを得て入手した。ヒトPBMCを用いたすべての実験は、東京大学医科学研究所の倫理審査委員会の承認を得た。Ficoll Histopaqueを用いてPBMCを調製した後、LNP-mRNA-Full(0.4、2、10 μg/mL)、LNP-mRNA-RBD(0.4、2、10μ g/mL)、またはLNP-mRNA-RBD(HPLC)(0.4、2、10 μg/mL)を用いて24時間刺激し、培養上清中のIFN-αレベルをELISA(Mabtech、ストックホルム、スウェーデン)を用いて測定した。
骨髄由来樹状細胞と刺激
骨髄由来樹状細胞(BM-DC)をマウスGM-CSFで7日間培養して分化させた。細胞をLNP-mRNA-Full(0.4、2、10 μg/mL)、LNP-mRNA-RBD(0.4、2、10 μg/mL)、またはLNP-mRNA-RBD(HPLC)(0.4、2、10 μg/mL)で24時間刺激し、培養上清中のIFN-αをELISA(Invitrogen)を用いて測定した。
中和抗体価
35マイクロリットルのウイルス(140組織培養感染用量50)を35μLの2倍シリアル希釈の血清とともに室温にて1時間インキュベートし、その混合物50μLを96ウェルプレート中のコンフルエントなVeroE6/TMPRS2細胞に添加し、37℃で1時間インキュベートした。5% FCSを含むDMEM 50 μLを添加した後、細胞をさらに37℃で3日間インキュベートした。ウイルス細胞病理効果(CPE)を倒立顕微鏡下で観察し、ウイルス中和力価を、CPEを完全に防止した最高血清希釈の逆数として決定した(24)。
SARS-CoV-2に対するVeroE6/TMPRSS2を用いたウイルス滴定
TMPRSS2を発現するコンフルエントなVero E6細胞株(JCRB Cell Bank、日本)を希釈したスワブサンプルと10% w/v組織ホモジネートサンプルで1時間インキュベートした。細胞をHBSSで洗浄し、0.1%BSAを含むDMEMで3日間インキュベートした(25)。ウイルス力価を顕微鏡でモニターし、Reed-Muench法を用いて計算した。
ウイルスRNAのリアルタイムRT-PCR
スワブサンプル及び組織(20mg)からのウイルスRNAを、それぞれQIAmpウイルスRNA Mini kit及びRNeasy Mini kitを用いて採取した。ウイルスRNAは、CFX-96(Bio-Rad, Hercules, CA, USA)を用いたリアルタイムRT-PCR(2019-nCoV_N1-F, 2019-nCoV_N1-R, 2019-nCoV_N1-P, TaqMan Fast Virus 1-step Master Mix)により測定した。
体温 
ウイルス接種の2週間前に、2台の体温データロガー(iButton、Maxim Integrated、サンノゼ、カリフォルニア州)を、ケタミン/キシラジン麻酔下で各サルの腹膜腔または皮下組織に移植し、その後イソフルランを吸入して体温をモニターした。
X-ray
肺のX線写真をI-PACSシステム (コミカミノルタ)とPX-20BT (ケンコー・トキナー)により撮影した。
References

1      Baden, L. R. et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med, doi:10.1056/NEJMoa2035389 (2020).
2      Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 383, 2603-2615, doi:10.1056/NEJMoa2034577 (2020).
3      Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215-220, doi:10.1038/s41586-020-2180-5 (2020).
4      Rydyznski Moderbacher, C. et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell 183, 996-1012 e1019, doi:10.1016/j.cell.2020.09.038 (2020).
5      McMahan, K. et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, doi:10.1038/s41586-020-03041-6 (2020).
6      Vogel, A. B. et al. BNT162b vaccines are immunogenic and protect non-human primates against SARS-CoV-2. bioRxiv, 2020.2012.2011.421008, doi:10.1101/2020.12.11.421008 (2020).
7      Elia, U. et al. Design of SARS-CoV-2 RBD mRNA Vaccine Using Novel Ionizable Lipids. bioRxiv, 2020.2010.2015.341537, doi:10.1101/2020.10.15.341537 (2020).
8      Tai, W. et al. A novel receptor-binding domain (RBD)-based mRNA vaccine against SARS-CoV-2. Cell Res 30, 932-935, doi:10.1038/s41422-020-0387-5 (2020).
9      Lederer, K. et al. SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. Immunity 53, 1281-1295 e1285, doi:10.1016/j.immuni.2020.11.009 (2020).
10      Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273, doi:10.1038/s41586-020-2012-7 (2020).
11      Jackson, L. A. et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med 383, 1920-1931, doi:10.1056/NEJMoa2022483 (2020).
12      Anderson, E. J. et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N Engl J Med 383, 2427-2438, doi:10.1056/NEJMoa2028436 (2020).
13      Walsh, E. E. et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med 383, 2439-2450, doi:10.1056/NEJMoa2027906 (2020).
14      Desmet, C. J. & Ishii, K. J. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol 12, 479-491, doi:10.1038/nri3247 (2012).
15      Coban, C. et al. Novel strategies to improve DNA vaccine immunogenicity. Curr Gene Ther 11, 479-484, doi:10.2174/156652311798192815 (2011).
16      Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17, 261-279, doi:10.1038/nrd.2017.243 (2018).
17      Iavarone, C., O'Hagan D, T., Yu, D., Delahaye, N. F. & Ulmer, J. B. Mechanism of action of mRNA-based vaccines. Expert Rev Vaccines 16, 871-881, doi:10.1080/14760584.2017.1355245 (2017).
18      Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165-175, doi:10.1016/j.immuni.2005.06.008 (2005).
19      Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16, 1833-1840, doi:10.1038/mt.2008.200 (2008).
20      Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39, e142, doi:10.1093/nar/gkr695 (2011).
21      De Beuckelaer, A. et al. Type I Interferons Interfere with the Capacity of mRNA Lipoplex Vaccines to Elicit Cytolytic T Cell Responses. Mol Ther 24, 2012-2020, doi:10.1038/mt.2016.161 (2016).
22      Linares-Fernandez, S., Lacroix, C., Exposito, J. Y. & Verrier, B. Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune Response. Trends Mol Med 26, 311-323, doi:10.1016/j.molmed.2019.10.002 (2020).
23      Corbett, K. S. et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med 383, 1544-1555, doi:10.1056/NEJMoa2024671 (2020).
24      Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A 117, 16587-16595, doi:10.1073/pnas.2009799117 (2020).
25      Ishigaki, H. et al. Neutralizing antibody-dependent and -independent immune responses against SARS-CoV-2 in cynomolgus macaques. Virology 554, 97-105, doi:10.1016/j.virol.2020.12.013 (2021).
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
 本発明は、SARS-CoV-2による感染の予防及び/又は治療に利用できる。
<配列番号1>(SARS-CoV-2 S fullを含むDNA断片)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCCTGCATACACTAATTCTTTCACACGTGGTGTTTATTACCCTGACAAAGTTTTCAGATCCTCAGTTTTACATTCAACTCAGGACTTGTTCTTACCTTTCTTTTCCAATGTTACTTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTCCTACCATTTAATGATGGTGTTTATTTTGCTTCCACTGAGAAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGATTCGAAGACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAGTCTGTGAATTTCAATTTTGTAATGATCCATTTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTGGATGGAAAGTGAGTTCAGAGTTTATTCTAGTGCGAATAATTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTGAAGGAAAACAGGGTAATTTCAAAAATCTTAGGGAATTTGTGTTTAAGAATATTGATGGTTATTTTAAAATATATTCTAAGCACACGCCTATTAATTTAGTGCGTGATCTCCCTCAGGGTTTTTCGGCTTTAGAACCATTGGTAGATTTGCCAATAGGTATTAACATCACTAGGTTTCAAACTTTACTTGCTTTACATAGAAGTTATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGCAGCTTATTATGTGGGTTATCTTCAACCTAGGACTTTTCTATTAAAATATAATGAAAATGGAACCATTACAGATGCTGTAGACTGTGCACTTGACCCTCTCTCAGAAACAAAGTGTACGTTGAAATCCTTCACTGTAGAAAAAGGAATCTATCAAACTTCTAACTTTAGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGATTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGATGATTTTACAGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGTTTCCAACCCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTACTAATTTGGTTAAAAACAAATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACAGGTGTTCTTACTGAGTCTAACAAAAAGTTTCTGCCTTTCCAACAATTTGGCAGAGACATTGCTGACACTACTGATGCTGTCCGTGATCCACAGACACTTGAGATTCTTGACATTACACCATGTTCTTTTGGTGGTGTCAGTGTTATAACACCAGGAACAAATACTTCTAACCAGGTTGCTGTTCTTTATCAGGATGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTACTCCTACTTGGCGTGTTTATTCTACAGGTTCTAATGTTTTTCAAACACGTGCAGGCTGTTTAATAGGGGCTGAACATGTCAACAACTCATATGAGTGTGACATACCCATTGGTGCAGGTATATGCGCTAGTTATCAGACTCAGACTAATTCTCCTCGGCGGGCACGTAGTGTAGCTAGTCAATCCATCATTGCCTACACTATGTCACTTGGTGCAGAAAATTCAGTTGCTTACTCTAATAACTCTATTGCCATACCCACAAATTTTACTATTAGTGTTACCACAGAAATTCTACCAGTGTCTATGACCAAGACATCAGTAGATTGTACAATGTACATTTGTGGTGATTCAACTGAATGCAGCAATCTTTTGTTGCAATATGGCAGTTTTTGTACACAATTAAACCGTGCTTTAACTGGAATAGCTGTTGAACAAGACAAAAACACCCAAGAAGTTTTTGCACAAGTCAAACAAATTTACAAAACACCACCAATTAAAGATTTTGGTGGTTTTAATTTTTCACAAATATTACCAGATCCATCAAAACCAAGCAAGAGGTCATTTATTGAAGATCTACTTTTCAACAAAGTGACACTTGCAGATGCTGGCTTCATCAAACAATATGGTGATTGCCTTGGTGATATTGCTGCTAGAGACCTCATTTGTGCACAAAAGTTTAACGGCCTTACTGTTTTGCCACCTTTGCTCACAGATGAAATGATTGCTCAATACACTTCTGCACTGTTAGCGGGTACAATCACTTCTGGTTGGACCTTTGGTGCAGGTGCTGCATTACAAATACCATTTGCTATGCAAATGGCTTATAGGTTTAATGGTATTGGAGTTACACAGAATGTTCTCTATGAGAACCAAAAATTGATTGCCAACCAATTTAATAGTGCTATTGGCAAAATTCAAGACTCACTTTCTTCCACAGCAAGTGCACTTGGAAAACTTCAAGATGTGGTCAACCAAAATGCACAAGCTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAAATGATATCCTTTCACGTCTTGACAAAGTTGAGGCTGAAGTGCAAATTGATAGGTTGATCACAGGCAGACTTCAAAGTTTGCAGACATATGTGACTCAACAATTAATTAGAGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTACTAAAATGTCAGAGTGTGTACTTGGACAATCAAAAAGAGTTGATTTTTGTGGAAAGGGCTATCATCTTATGTCCTTCCCTCAGTCAGCACCTCATGGTGTAGTCTTCTTGCATGTGACTTATGTCCCTGCACAAGAAAAGAACTTCACAACTGCTCCTGCCATTTGTCATGATGGAAAAGCACACTTTCCTCGTGAAGGTGTCTTTGTTTCAAATGGCACACACTGGTTTGTAACACAAAGGAATTTTTATGAACCACAAATCATTACTACAGACAACACATTTGTGTCTGGTAACTGTGATGTTGTAATAGGAATTGTCAACAACACAGTTTATGATCCTTTGCAACCTGAATTAGACTCATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCATACATCACCAGATGTTGATTTAGGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATGAATCTCTCATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATATAAAATGGCCATGGTACATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCATAGTAATGGTGACAATTATGCTTTGCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGCTGTTGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGACTCTGAGCCAGTGCTCAAAGGAGTCAAATTACATTACACATGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号2>(センスプライマー)
GTAATACGACTCACTATAA

<配列番号3>(アンチセンスプライマー)
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGCAATGAAAATAAATGTTTTTTATTAGGC

<配列番号4>(SARS-CoV-2 S-fullの鋳型DNA)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCCTGCATACACTAATTCTTTCACACGTGGTGTTTATTACCCTGACAAAGTTTTCAGATCCTCAGTTTTACATTCAACTCAGGACTTGTTCTTACCTTTCTTTTCCAATGTTACTTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTCCTACCATTTAATGATGGTGTTTATTTTGCTTCCACTGAGAAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGATTCGAAGACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAGTCTGTGAATTTCAATTTTGTAATGATCCATTTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTGGATGGAAAGTGAGTTCAGAGTTTATTCTAGTGCGAATAATTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTGAAGGAAAACAGGGTAATTTCAAAAATCTTAGGGAATTTGTGTTTAAGAATATTGATGGTTATTTTAAAATATATTCTAAGCACACGCCTATTAATTTAGTGCGTGATCTCCCTCAGGGTTTTTCGGCTTTAGAACCATTGGTAGATTTGCCAATAGGTATTAACATCACTAGGTTTCAAACTTTACTTGCTTTACATAGAAGTTATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGCAGCTTATTATGTGGGTTATCTTCAACCTAGGACTTTTCTATTAAAATATAATGAAAATGGAACCATTACAGATGCTGTAGACTGTGCACTTGACCCTCTCTCAGAAACAAAGTGTACGTTGAAATCCTTCACTGTAGAAAAAGGAATCTATCAAACTTCTAACTTTAGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGATTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGATGATTTTACAGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGTTTCCAACCCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTACTAATTTGGTTAAAAACAAATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACAGGTGTTCTTACTGAGTCTAACAAAAAGTTTCTGCCTTTCCAACAATTTGGCAGAGACATTGCTGACACTACTGATGCTGTCCGTGATCCACAGACACTTGAGATTCTTGACATTACACCATGTTCTTTTGGTGGTGTCAGTGTTATAACACCAGGAACAAATACTTCTAACCAGGTTGCTGTTCTTTATCAGGATGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTACTCCTACTTGGCGTGTTTATTCTACAGGTTCTAATGTTTTTCAAACACGTGCAGGCTGTTTAATAGGGGCTGAACATGTCAACAACTCATATGAGTGTGACATACCCATTGGTGCAGGTATATGCGCTAGTTATCAGACTCAGACTAATTCTCCTCGGCGGGCACGTAGTGTAGCTAGTCAATCCATCATTGCCTACACTATGTCACTTGGTGCAGAAAATTCAGTTGCTTACTCTAATAACTCTATTGCCATACCCACAAATTTTACTATTAGTGTTACCACAGAAATTCTACCAGTGTCTATGACCAAGACATCAGTAGATTGTACAATGTACATTTGTGGTGATTCAACTGAATGCAGCAATCTTTTGTTGCAATATGGCAGTTTTTGTACACAATTAAACCGTGCTTTAACTGGAATAGCTGTTGAACAAGACAAAAACACCCAAGAAGTTTTTGCACAAGTCAAACAAATTTACAAAACACCACCAATTAAAGATTTTGGTGGTTTTAATTTTTCACAAATATTACCAGATCCATCAAAACCAAGCAAGAGGTCATTTATTGAAGATCTACTTTTCAACAAAGTGACACTTGCAGATGCTGGCTTCATCAAACAATATGGTGATTGCCTTGGTGATATTGCTGCTAGAGACCTCATTTGTGCACAAAAGTTTAACGGCCTTACTGTTTTGCCACCTTTGCTCACAGATGAAATGATTGCTCAATACACTTCTGCACTGTTAGCGGGTACAATCACTTCTGGTTGGACCTTTGGTGCAGGTGCTGCATTACAAATACCATTTGCTATGCAAATGGCTTATAGGTTTAATGGTATTGGAGTTACACAGAATGTTCTCTATGAGAACCAAAAATTGATTGCCAACCAATTTAATAGTGCTATTGGCAAAATTCAAGACTCACTTTCTTCCACAGCAAGTGCACTTGGAAAACTTCAAGATGTGGTCAACCAAAATGCACAAGCTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAAATGATATCCTTTCACGTCTTGACAAAGTTGAGGCTGAAGTGCAAATTGATAGGTTGATCACAGGCAGACTTCAAAGTTTGCAGACATATGTGACTCAACAATTAATTAGAGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTACTAAAATGTCAGAGTGTGTACTTGGACAATCAAAAAGAGTTGATTTTTGTGGAAAGGGCTATCATCTTATGTCCTTCCCTCAGTCAGCACCTCATGGTGTAGTCTTCTTGCATGTGACTTATGTCCCTGCACAAGAAAAGAACTTCACAACTGCTCCTGCCATTTGTCATGATGGAAAAGCACACTTTCCTCGTGAAGGTGTCTTTGTTTCAAATGGCACACACTGGTTTGTAACACAAAGGAATTTTTATGAACCACAAATCATTACTACAGACAACACATTTGTGTCTGGTAACTGTGATGTTGTAATAGGAATTGTCAACAACACAGTTTATGATCCTTTGCAACCTGAATTAGACTCATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCATACATCACCAGATGTTGATTTAGGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATGAATCTCTCATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATATAAAATGGCCATGGTACATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCATAGTAATGGTGACAATTATGCTTTGCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGCTGTTGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGACTCTGAGCCAGTGCTCAAAGGAGTCAAATTACATTACACATGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR(転写開始点および塩基番号89~94のKOZAK配列を含む):塩基番号19~88
Spike蛋白質全長配列:塩基番号89~3910
3’-UTR:塩基番号3911~4042
polyA配列(A100):塩基番号4043~4142


<配列番号5>(SARS-CoV-2 S-full mRNA-001)
GUAAUACGACUCACUAUAAGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUUGUUUUUCUUGUUUUAUUGCCACUAGUCUCUAGUCAGUGUGUUAAUCUUACAACCAGAACUCAAUUACCCCCUGCAUACACUAAUUCUUUCACACGUGGUGUUUAUUACCCUGACAAAGUUUUCAGAUCCUCAGUUUUACAUUCAACUCAGGACUUGUUCUUACCUUUCUUUUCCAAUGUUACUUGGUUCCAUGCUAUACAUGUCUCUGGGACCAAUGGUACUAAGAGGUUUGAUAACCCUGUCCUACCAUUUAAUGAUGGUGUUUAUUUUGCUUCCACUGAGAAGUCUAACAUAAUAAGAGGCUGGAUUUUUGGUACUACUUUAGAUUCGAAGACCCAGUCCCUACUUAUUGUUAAUAACGCUACUAAUGUUGUUAUUAAAGUCUGUGAAUUUCAAUUUUGUAAUGAUCCAUUUUUGGGUGUUUAUUACCACAAAAACAACAAAAGUUGGAUGGAAAGUGAGUUCAGAGUUUAUUCUAGUGCGAAUAAUUGCACUUUUGAAUAUGUCUCUCAGCCUUUUCUUAUGGACCUUGAAGGAAAACAGGGUAAUUUCAAAAAUCUUAGGGAAUUUGUGUUUAAGAAUAUUGAUGGUUAUUUUAAAAUAUAUUCUAAGCACACGCCUAUUAAUUUAGUGCGUGAUCUCCCUCAGGGUUUUUCGGCUUUAGAACCAUUGGUAGAUUUGCCAAUAGGUAUUAACAUCACUAGGUUUCAAACUUUACUUGCUUUACAUAGAAGUUAUUUGACUCCUGGUGAUUCUUCUUCAGGUUGGACAGCUGGUGCUGCAGCUUAUUAUGUGGGUUAUCUUCAACCUAGGACUUUUCUAUUAAAAUAUAAUGAAAAUGGAACCAUUACAGAUGCUGUAGACUGUGCACUUGACCCUCUCUCAGAAACAAAGUGUACGUUGAAAUCCUUCACUGUAGAAAAAGGAAUCUAUCAAACUUCUAACUUUAGAGUCCAACCAACAGAAUCUAUUGUUAGAUUUCCUAAUAUUACAAACUUGUGCCCUUUUGGUGAAGUUUUUAACGCCACCAGAUUUGCAUCUGUUUAUGCUUGGAACAGGAAGAGAAUCAGCAACUGUGUUGCUGAUUAUUCUGUCCUAUAUAAUUCCGCAUCAUUUUCCACUUUUAAGUGUUAUGGAGUGUCUCCUACUAAAUUAAAUGAUCUCUGCUUUACUAAUGUCUAUGCAGAUUCAUUUGUAAUUAGAGGUGAUGAAGUCAGACAAAUCGCUCCAGGGCAAACUGGAAAGAUUGCUGAUUAUAAUUAUAAAUUACCAGAUGAUUUUACAGGCUGCGUUAUAGCUUGGAAUUCUAACAAUCUUGAUUCUAAGGUUGGUGGUAAUUAUAAUUACCUGUAUAGAUUGUUUAGGAAGUCUAAUCUCAAACCUUUUGAGAGAGAUAUUUCAACUGAAAUCUAUCAGGCCGGUAGCACACCUUGUAAUGGUGUUGAAGGUUUUAAUUGUUACUUUCCUUUACAAUCAUAUGGUUUCCAACCCACUAAUGGUGUUGGUUACCAACCAUACAGAGUAGUAGUACUUUCUUUUGAACUUCUACAUGCACCAGCAACUGUUUGUGGACCUAAAAAGUCUACUAAUUUGGUUAAAAACAAAUGUGUCAAUUUCAACUUCAAUGGUUUAACAGGCACAGGUGUUCUUACUGAGUCUAACAAAAAGUUUCUGCCUUUCCAACAAUUUGGCAGAGACAUUGCUGACACUACUGAUGCUGUCCGUGAUCCACAGACACUUGAGAUUCUUGACAUUACACCAUGUUCUUUUGGUGGUGUCAGUGUUAUAACACCAGGAACAAAUACUUCUAACCAGGUUGCUGUUCUUUAUCAGGAUGUUAACUGCACAGAAGUCCCUGUUGCUAUUCAUGCAGAUCAACUUACUCCUACUUGGCGUGUUUAUUCUACAGGUUCUAAUGUUUUUCAAACACGUGCAGGCUGUUUAAUAGGGGCUGAACAUGUCAACAACUCAUAUGAGUGUGACAUACCCAUUGGUGCAGGUAUAUGCGCUAGUUAUCAGACUCAGACUAAUUCUCCUCGGCGGGCACGUAGUGUAGCUAGUCAAUCCAUCAUUGCCUACACUAUGUCACUUGGUGCAGAAAAUUCAGUUGCUUACUCUAAUAACUCUAUUGCCAUACCCACAAAUUUUACUAUUAGUGUUACCACAGAAAUUCUACCAGUGUCUAUGACCAAGACAUCAGUAGAUUGUACAAUGUACAUUUGUGGUGAUUCAACUGAAUGCAGCAAUCUUUUGUUGCAAUAUGGCAGUUUUUGUACACAAUUAAACCGUGCUUUAACUGGAAUAGCUGUUGAACAAGACAAAAACACCCAAGAAGUUUUUGCACAAGUCAAACAAAUUUACAAAACACCACCAAUUAAAGAUUUUGGUGGUUUUAAUUUUUCACAAAUAUUACCAGAUCCAUCAAAACCAAGCAAGAGGUCAUUUAUUGAAGAUCUACUUUUCAACAAAGUGACACUUGCAGAUGCUGGCUUCAUCAAACAAUAUGGUGAUUGCCUUGGUGAUAUUGCUGCUAGAGACCUCAUUUGUGCACAAAAGUUUAACGGCCUUACUGUUUUGCCACCUUUGCUCACAGAUGAAAUGAUUGCUCAAUACACUUCUGCACUGUUAGCGGGUACAAUCACUUCUGGUUGGACCUUUGGUGCAGGUGCUGCAUUACAAAUACCAUUUGCUAUGCAAAUGGCUUAUAGGUUUAAUGGUAUUGGAGUUACACAGAAUGUUCUCUAUGAGAACCAAAAAUUGAUUGCCAACCAAUUUAAUAGUGCUAUUGGCAAAAUUCAAGACUCACUUUCUUCCACAGCAAGUGCACUUGGAAAACUUCAAGAUGUGGUCAACCAAAAUGCACAAGCUUUAAACACGCUUGUUAAACAACUUAGCUCCAAUUUUGGUGCAAUUUCAAGUGUUUUAAAUGAUAUCCUUUCACGUCUUGACAAAGUUGAGGCUGAAGUGCAAAUUGAUAGGUUGAUCACAGGCAGACUUCAAAGUUUGCAGACAUAUGUGACUCAACAAUUAAUUAGAGCUGCAGAAAUCAGAGCUUCUGCUAAUCUUGCUGCUACUAAAAUGUCAGAGUGUGUACUUGGACAAUCAAAAAGAGUUGAUUUUUGUGGAAAGGGCUAUCAUCUUAUGUCCUUCCCUCAGUCAGCACCUCAUGGUGUAGUCUUCUUGCAUGUGACUUAUGUCCCUGCACAAGAAAAGAACUUCACAACUGCUCCUGCCAUUUGUCAUGAUGGAAAAGCACACUUUCCUCGUGAAGGUGUCUUUGUUUCAAAUGGCACACACUGGUUUGUAACACAAAGGAAUUUUUAUGAACCACAAAUCAUUACUACAGACAACACAUUUGUGUCUGGUAACUGUGAUGUUGUAAUAGGAAUUGUCAACAACACAGUUUAUGAUCCUUUGCAACCUGAAUUAGACUCAUUCAAGGAGGAGUUAGAUAAAUAUUUUAAGAAUCAUACAUCACCAGAUGUUGAUUUAGGUGACAUCUCUGGCAUUAAUGCUUCAGUUGUAAACAUUCAAAAAGAAAUUGACCGCCUCAAUGAGGUUGCCAAGAAUUUAAAUGAAUCUCUCAUCGAUCUCCAAGAACUUGGAAAGUAUGAGCAGUAUAUAAAAUGGCCAUGGUACAUUUGGCUAGGUUUUAUAGCUGGCUUGAUUGCCAUAGUAAUGGUGACAAUUAUGCUUUGCUGUAUGACCAGUUGCUGUAGUUGUCUCAAGGGCUGUUGUUCUUGUGGAUCCUGCUGCAAAUUUGAUGAAGACGACUCUGAGCCAGUGCUCAAAGGAGUCAAAUUACAUUACACAUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号6>(SARS-CoV-2 S-fullのアミノ酸配列)
MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT


RBD配列:アミノ酸番号319~541

<配列番号7>(SARS-CoV-2 RBDを含むDNA断片)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTAGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGATTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGATGATTTTACAGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGTTTCCAACCCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTACTAATTTGGTTAAAAACAAATGTGTCAATTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号8>(SARS-CoV-2 RBDの鋳型DNA)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTAGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGATTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGATGATTTTACAGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGTTTCCAACCCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTACTAATTTGGTTAAAAACAAATGTGTCAATTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR(転写開始点および塩基番号89~94のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031



<配列番号9>(SARS-CoV-2 RBD mRNA-002)
AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUUGUUUUUCUUGUUUUAUUGCCACUAGUCUCUAGUAGAGUCCAACCAACAGAAUCUAUUGUUAGAUUUCCUAAUAUUACAAACUUGUGCCCUUUUGGUGAAGUUUUUAACGCCACCAGAUUUGCAUCUGUUUAUGCUUGGAACAGGAAGAGAAUCAGCAACUGUGUUGCUGAUUAUUCUGUCCUAUAUAAUUCCGCAUCAUUUUCCACUUUUAAGUGUUAUGGAGUGUCUCCUACUAAAUUAAAUGAUCUCUGCUUUACUAAUGUCUAUGCAGAUUCAUUUGUAAUUAGAGGUGAUGAAGUCAGACAAAUCGCUCCAGGGCAAACUGGAAAGAUUGCUGAUUAUAAUUAUAAAUUACCAGAUGAUUUUACAGGCUGCGUUAUAGCUUGGAAUUCUAACAAUCUUGAUUCUAAGGUUGGUGGUAAUUAUAAUUACCUGUAUAGAUUGUUUAGGAAGUCUAAUCUCAAACCUUUUGAGAGAGAUAUUUCAACUGAAAUCUAUCAGGCCGGUAGCACACCUUGUAAUGGUGUUGAAGGUUUUAAUUGUUACUUUCCUUUACAAUCAUAUGGUUUCCAACCCACUAAUGGUGUUGGUUACCAACCAUACAGAGUAGUAGUACUUUCUUUUGAACUUCUACAUGCACCAGCAACUGUUUGUGGACCUAAAAAGUCUACUAAUUUGGUUAAAAACAAAUGUGUCAAUUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号10>(SARS-CoV-2 RBDのアミノ酸配列(S蛋白質シグナル配列を含む))
MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号11>(SARS-CoV-2 RBDのアミノ酸配列(S蛋白質シグナル配列を含まない))
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF


<配列番号12>(S_opt2 EcoRI)
GCTAGCGTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCCAGTGCGTGAACCTGACCACCAGAACACAGCTGCCCCCAGCCTACACCAACAGCTTCACCAGAGGCGTGTACTACCCCGACAAGGTGTTCAGAAGCAGCGTGCTGCACAGCACCCAGGACCTGTTCCTGCCCTTCTTCAGCAACGTGACCTGGTTCCACGCCATCCACGTGAGCGGCACCAACGGCACCAAGAGATTCGACAACCCCGTGCTGCCCTTCAACGACGGGGTGTACTTCGCCAGCACCGAGAAGTCCAACATCATCAGAGGCTGGATCTTCGGCACCACACTGGACAGCAAGACCCAGAGCCTGCTGATCGTGAACAACGCCACCAACGTGGTCATCAAAGTGTGCGAGTTCCAGTTCTGCAACGACCCCTTCCTGGGCGTCTACTACCACAAGAACAACAAGAGCTGGATGGAAAGCGAGTTCCGGGTGTACAGCAGCGCCAACAACTGCACCTTCGAGTACGTGAGCCAGCCCTTCCTGATGGACCTGGAAGGCAAGCAGGGCAACTTCAAGAACCTGCGCGAGTTCGTGTTCAAGAACATCGACGGCTACTTCAAGATCTACAGCAAGCACACCCCCATCAACCTCGTGCGGGACCTGCCCCAGGGCTTCAGCGCCCTGGAACCCCTGGTGGACCTGCCCATCGGCATCAACATCACCCGGTTCCAGACACTGCTGGCCCTGCACAGAAGCTACCTGACACCCGGCGACAGCAGCAGCGGATGGACAGCCGGCGCCGCCGCCTACTACGTGGGCTACCTGCAGCCCAGAACCTTCCTGCTGAAGTACAACGAGAACGGCACCATCACCGACGCCGTGGACTGCGCCCTGGACCCCCTGAGCGAGACAAAGTGCACCCTGAAGTCCTTCACCGTGGAAAAGGGCATCTACCAGACCAGCAACTTCCGGGTGCAGCCCACCGAAAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACAAACGTGTACGCCGACAGCTTCGTGATCCGGGGAGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAACTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTCGTGAAGAACAAATGCGTGAACTTCAACTTCAACGGCCTGACCGGCACCGGCGTGCTGACAGAGAGCAACAAGAAGTTCCTGCCATTCCAGCAGTTCGGCCGGGACATCGCCGACACCACAGACGCCGTCAGAGACCCCCAGACACTGGAAATCCTGGACATCACCCCCTGCAGCTTCGGCGGAGTGAGCGTGATCACCCCCGGCACCAACACCAGCAACCAGGTGGCAGTGCTGTACCAGGACGTGAACTGCACCGAAGTGCCCGTGGCCATCCACGCCGACCAGCTGACACCCACATGGCGGGTGTACAGCACCGGCAGCAACGTGTTCCAGACCAGAGCCGGCTGCCTGATCGGAGCCGAGCACGTGAACAACAGCTACGAGTGCGACATCCCCATCGGCGCCGGCATCTGCGCCAGCTACCAGACACAGACAAACAGCCCCAGACGGGCCAGAAGCGTGGCCAGCCAGAGCATCATCGCCTACACAATGAGCCTGGGCGCCGAGAACAGCGTGGCCTACAGCAACAACAGCATCGCCATCCCCACCAACTTCACCATCAGCGTGACCACAGAGATCCTGCCCGTGAGCATGACCAAGACCAGCGTGGACTGCACCATGTACATCTGCGGCGACAGCACCGAGTGCAGCAACCTGCTGCTGCAGTACGGCAGCTTCTGCACCCAGCTGAACAGAGCCCTGACAGGGATCGCCGTGGAACAGGACAAGAACACCCAAGAGGTGTTCGCCCAAGTGAAGCAGATCTACAAGACCCCCCCCATCAAGGACTTCGGCGGCTTCAACTTCAGCCAGATCCTGCCCGACCCCAGCAAGCCCAGCAAGCGGAGCTTCATCGAGGACCTGCTGTTCAACAAAGTGACACTGGCCGACGCCGGCTTCATCAAGCAGTACGGCGACTGCCTGGGCGACATCGCCGCCAGGGACCTGATCTGCGCCCAGAAGTTCAACGGACTGACAGTGCTGCCCCCCCTGCTGACCGACGAGATGATCGCCCAGTACACAAGCGCCCTGCTGGCCGGCACAATCACAAGCGGCTGGACATTCGGAGCCGGCGCCGCCCTGCAGATCCCCTTCGCCATGCAGATGGCCTACCGGTTCAACGGCATCGGAGTGACCCAGAACGTGCTGTACGAGAACCAGAAGCTGATCGCCAACCAGTTCAACAGCGCCATCGGCAAGATCCAGGACAGCCTGAGCAGCACAGCAAGCGCCCTGGGAAAGCTGCAGGACGTGGTCAACCAGAACGCCCAGGCACTGAACACCCTGGTCAAGCAGCTGAGCAGCAACTTCGGCGCCATCAGCAGCGTGCTGAACGACATCCTGAGCAGACTGGACAAGGTGGAAGCCGAGGTGCAGATCGACAGACTGATCACCGGAAGGCTGCAGAGCCTGCAGACCTACGTCACCCAGCAGCTGATCAGAGCCGCCGAGATCAGAGCCAGCGCCAACCTGGCCGCCACCAAGATGAGCGAGTGCGTGCTGGGCCAGAGCAAGAGAGTGGACTTCTGCGGCAAGGGCTACCACCTGATGAGCTTCCCCCAGAGCGCCCCCCACGGCGTGGTGTTCCTGCACGTGACATACGTGCCCGCCCAAGAGAAGAACTTCACCACCGCCCCAGCCATCTGCCACGACGGCAAAGCCCACTTCCCCAGAGAAGGCGTGTTCGTGAGCAACGGCACCCACTGGTTCGTGACCCAGCGGAACTTCTACGAGCCCCAGATCATCACCACCGACAACACCTTCGTGAGCGGCAACTGCGACGTCGTGATCGGCATCGTGAACAACACCGTGTACGACCCCCTGCAGCCCGAGCTGGACAGCTTCAAAGAGGAACTGGACAAGTACTTCAAGAACCACACAAGCCCCGACGTGGACCTGGGCGACATCAGCGGAATCAACGCCAGCGTCGTGAACATCCAGAAAGAGATCGACCGGCTGAACGAGGTGGCCAAGAACCTGAACGAGAGCCTGATCGACCTGCAAGAACTGGGGAAGTACGAGCAGTACATCAAGTGGCCCTGGTACATCTGGCTGGGCTTCATCGCCGGACTGATCGCCATCGTGATGGTCACAATCATGCTGTGCTGCATGACCAGCTGCTGCAGCTGCCTGAAGGGCTGCTGCAGCTGCGGCAGCTGCTGCAAGTTCGACGAGGACGACAGCGAGCCCGTGCTGAAGGGCGTGAAACTGCACTACACATGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCGAATTC

NheI配列:塩基番号1~6
T7プロモーター:塩基番号7~24
A:転写開始点:塩基番号25
5’-UTR(転写開始点および塩基番号89~94のKOZAK配列を含む):塩基番号25~94
Spike蛋白質全長配列:塩基番号95~3916
3’-UTR:塩基番号3917~4048
EcoRI配列:塩基番号4049~4054


<配列番号13>(センスプライマー2)
TGATGCTAGCGTAATACGACTCACTATAAG
NheI配列:塩基番号5~10

<配列番号14>(アンチセンスプライマー2)
GCCAAAGCTTGCTCTTCGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGCAATGAAAATAAATGTTTTTT

HindIII配列:塩基番号5~10
BspQI配列:塩基番号11~17

<配列番号15>(SARS-CoV-2 S full optimizedの鋳型DNA)
TGATGCTAGCGTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCCAGTGCGTGAACCTGACCACCAGAACACAGCTGCCCCCAGCCTACACCAACAGCTTCACCAGAGGCGTGTACTACCCCGACAAGGTGTTCAGAAGCAGCGTGCTGCACAGCACCCAGGACCTGTTCCTGCCCTTCTTCAGCAACGTGACCTGGTTCCACGCCATCCACGTGAGCGGCACCAACGGCACCAAGAGATTCGACAACCCCGTGCTGCCCTTCAACGACGGGGTGTACTTCGCCAGCACCGAGAAGTCCAACATCATCAGAGGCTGGATCTTCGGCACCACACTGGACAGCAAGACCCAGAGCCTGCTGATCGTGAACAACGCCACCAACGTGGTCATCAAAGTGTGCGAGTTCCAGTTCTGCAACGACCCCTTCCTGGGCGTCTACTACCACAAGAACAACAAGAGCTGGATGGAAAGCGAGTTCCGGGTGTACAGCAGCGCCAACAACTGCACCTTCGAGTACGTGAGCCAGCCCTTCCTGATGGACCTGGAAGGCAAGCAGGGCAACTTCAAGAACCTGCGCGAGTTCGTGTTCAAGAACATCGACGGCTACTTCAAGATCTACAGCAAGCACACCCCCATCAACCTCGTGCGGGACCTGCCCCAGGGCTTCAGCGCCCTGGAACCCCTGGTGGACCTGCCCATCGGCATCAACATCACCCGGTTCCAGACACTGCTGGCCCTGCACAGAAGCTACCTGACACCCGGCGACAGCAGCAGCGGATGGACAGCCGGCGCCGCCGCCTACTACGTGGGCTACCTGCAGCCCAGAACCTTCCTGCTGAAGTACAACGAGAACGGCACCATCACCGACGCCGTGGACTGCGCCCTGGACCCCCTGAGCGAGACAAAGTGCACCCTGAAGTCCTTCACCGTGGAAAAGGGCATCTACCAGACCAGCAACTTCCGGGTGCAGCCCACCGAAAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACAAACGTGTACGCCGACAGCTTCGTGATCCGGGGAGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAACTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTCGTGAAGAACAAATGCGTGAACTTCAACTTCAACGGCCTGACCGGCACCGGCGTGCTGACAGAGAGCAACAAGAAGTTCCTGCCATTCCAGCAGTTCGGCCGGGACATCGCCGACACCACAGACGCCGTCAGAGACCCCCAGACACTGGAAATCCTGGACATCACCCCCTGCAGCTTCGGCGGAGTGAGCGTGATCACCCCCGGCACCAACACCAGCAACCAGGTGGCAGTGCTGTACCAGGACGTGAACTGCACCGAAGTGCCCGTGGCCATCCACGCCGACCAGCTGACACCCACATGGCGGGTGTACAGCACCGGCAGCAACGTGTTCCAGACCAGAGCCGGCTGCCTGATCGGAGCCGAGCACGTGAACAACAGCTACGAGTGCGACATCCCCATCGGCGCCGGCATCTGCGCCAGCTACCAGACACAGACAAACAGCCCCAGACGGGCCAGAAGCGTGGCCAGCCAGAGCATCATCGCCTACACAATGAGCCTGGGCGCCGAGAACAGCGTGGCCTACAGCAACAACAGCATCGCCATCCCCACCAACTTCACCATCAGCGTGACCACAGAGATCCTGCCCGTGAGCATGACCAAGACCAGCGTGGACTGCACCATGTACATCTGCGGCGACAGCACCGAGTGCAGCAACCTGCTGCTGCAGTACGGCAGCTTCTGCACCCAGCTGAACAGAGCCCTGACAGGGATCGCCGTGGAACAGGACAAGAACACCCAAGAGGTGTTCGCCCAAGTGAAGCAGATCTACAAGACCCCCCCCATCAAGGACTTCGGCGGCTTCAACTTCAGCCAGATCCTGCCCGACCCCAGCAAGCCCAGCAAGCGGAGCTTCATCGAGGACCTGCTGTTCAACAAAGTGACACTGGCCGACGCCGGCTTCATCAAGCAGTACGGCGACTGCCTGGGCGACATCGCCGCCAGGGACCTGATCTGCGCCCAGAAGTTCAACGGACTGACAGTGCTGCCCCCCCTGCTGACCGACGAGATGATCGCCCAGTACACAAGCGCCCTGCTGGCCGGCACAATCACAAGCGGCTGGACATTCGGAGCCGGCGCCGCCCTGCAGATCCCCTTCGCCATGCAGATGGCCTACCGGTTCAACGGCATCGGAGTGACCCAGAACGTGCTGTACGAGAACCAGAAGCTGATCGCCAACCAGTTCAACAGCGCCATCGGCAAGATCCAGGACAGCCTGAGCAGCACAGCAAGCGCCCTGGGAAAGCTGCAGGACGTGGTCAACCAGAACGCCCAGGCACTGAACACCCTGGTCAAGCAGCTGAGCAGCAACTTCGGCGCCATCAGCAGCGTGCTGAACGACATCCTGAGCAGACTGGACAAGGTGGAAGCCGAGGTGCAGATCGACAGACTGATCACCGGAAGGCTGCAGAGCCTGCAGACCTACGTCACCCAGCAGCTGATCAGAGCCGCCGAGATCAGAGCCAGCGCCAACCTGGCCGCCACCAAGATGAGCGAGTGCGTGCTGGGCCAGAGCAAGAGAGTGGACTTCTGCGGCAAGGGCTACCACCTGATGAGCTTCCCCCAGAGCGCCCCCCACGGCGTGGTGTTCCTGCACGTGACATACGTGCCCGCCCAAGAGAAGAACTTCACCACCGCCCCAGCCATCTGCCACGACGGCAAAGCCCACTTCCCCAGAGAAGGCGTGTTCGTGAGCAACGGCACCCACTGGTTCGTGACCCAGCGGAACTTCTACGAGCCCCAGATCATCACCACCGACAACACCTTCGTGAGCGGCAACTGCGACGTCGTGATCGGCATCGTGAACAACACCGTGTACGACCCCCTGCAGCCCGAGCTGGACAGCTTCAAAGAGGAACTGGACAAGTACTTCAAGAACCACACAAGCCCCGACGTGGACCTGGGCGACATCAGCGGAATCAACGCCAGCGTCGTGAACATCCAGAAAGAGATCGACCGGCTGAACGAGGTGGCCAAGAACCTGAACGAGAGCCTGATCGACCTGCAAGAACTGGGGAAGTACGAGCAGTACATCAAGTGGCCCTGGTACATCTGGCTGGGCTTCATCGCCGGACTGATCGCCATCGTGATGGTCACAATCATGCTGTGCTGCATGACCAGCTGCTGCAGCTGCCTGAAGGGCTGCTGCAGCTGCGGCAGCTGCTGCAAGTTCGACGAGGACGACAGCGAGCCCGTGCTGAAGGGCGTGAAACTGCACTACACATGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGAAGAGCAAGCTTTGGC

NheI配列:塩基番号5~10
T7プロモーター:塩基番号11~28
A:転写開始点:塩基番号29
5’-UTR(転写開始点および塩基番号89~94のKOZAK配列を含む):塩基番号29~98Spike蛋白質全長配列:塩基番号99~3920
3’-UTR:塩基番号3921~4052
polyA配列(A110):塩基番号4053~4162
BspQI配列:塩基番号4164~4170
HindIII配列:塩基番号4171~4176


<配列番号16>(SARS-CoV-2 S full optimized mRNA-003)
AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCCAGUGCGUGAACCUGACCACCAGAACACAGCUGCCCCCAGCCUACACCAACAGCUUCACCAGAGGCGUGUACUACCCCGACAAGGUGUUCAGAAGCAGCGUGCUGCACAGCACCCAGGACCUGUUCCUGCCCUUCUUCAGCAACGUGACCUGGUUCCACGCCAUCCACGUGAGCGGCACCAACGGCACCAAGAGAUUCGACAACCCCGUGCUGCCCUUCAACGACGGGGUGUACUUCGCCAGCACCGAGAAGUCCAACAUCAUCAGAGGCUGGAUCUUCGGCACCACACUGGACAGCAAGACCCAGAGCCUGCUGAUCGUGAACAACGCCACCAACGUGGUCAUCAAAGUGUGCGAGUUCCAGUUCUGCAACGACCCCUUCCUGGGCGUCUACUACCACAAGAACAACAAGAGCUGGAUGGAAAGCGAGUUCCGGGUGUACAGCAGCGCCAACAACUGCACCUUCGAGUACGUGAGCCAGCCCUUCCUGAUGGACCUGGAAGGCAAGCAGGGCAACUUCAAGAACCUGCGCGAGUUCGUGUUCAAGAACAUCGACGGCUACUUCAAGAUCUACAGCAAGCACACCCCCAUCAACCUCGUGCGGGACCUGCCCCAGGGCUUCAGCGCCCUGGAACCCCUGGUGGACCUGCCCAUCGGCAUCAACAUCACCCGGUUCCAGACACUGCUGGCCCUGCACAGAAGCUACCUGACACCCGGCGACAGCAGCAGCGGAUGGACAGCCGGCGCCGCCGCCUACUACGUGGGCUACCUGCAGCCCAGAACCUUCCUGCUGAAGUACAACGAGAACGGCACCAUCACCGACGCCGUGGACUGCGCCCUGGACCCCCUGAGCGAGACAAAGUGCACCCUGAAGUCCUUCACCGUGGAAAAGGGCAUCUACCAGACCAGCAACUUCCGGGUGCAGCCCACCGAAAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACAAACGUGUACGCCGACAGCUUCGUGAUCCGGGGAGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAACUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUCGUGAAGAACAAAUGCGUGAACUUCAACUUCAACGGCCUGACCGGCACCGGCGUGCUGACAGAGAGCAACAAGAAGUUCCUGCCAUUCCAGCAGUUCGGCCGGGACAUCGCCGACACCACAGACGCCGUCAGAGACCCCCAGACACUGGAAAUCCUGGACAUCACCCCCUGCAGCUUCGGCGGAGUGAGCGUGAUCACCCCCGGCACCAACACCAGCAACCAGGUGGCAGUGCUGUACCAGGACGUGAACUGCACCGAAGUGCCCGUGGCCAUCCACGCCGACCAGCUGACACCCACAUGGCGGGUGUACAGCACCGGCAGCAACGUGUUCCAGACCAGAGCCGGCUGCCUGAUCGGAGCCGAGCACGUGAACAACAGCUACGAGUGCGACAUCCCCAUCGGCGCCGGCAUCUGCGCCAGCUACCAGACACAGACAAACAGCCCCAGACGGGCCAGAAGCGUGGCCAGCCAGAGCAUCAUCGCCUACACAAUGAGCCUGGGCGCCGAGAACAGCGUGGCCUACAGCAACAACAGCAUCGCCAUCCCCACCAACUUCACCAUCAGCGUGACCACAGAGAUCCUGCCCGUGAGCAUGACCAAGACCAGCGUGGACUGCACCAUGUACAUCUGCGGCGACAGCACCGAGUGCAGCAACCUGCUGCUGCAGUACGGCAGCUUCUGCACCCAGCUGAACAGAGCCCUGACAGGGAUCGCCGUGGAACAGGACAAGAACACCCAAGAGGUGUUCGCCCAAGUGAAGCAGAUCUACAAGACCCCCCCCAUCAAGGACUUCGGCGGCUUCAACUUCAGCCAGAUCCUGCCCGACCCCAGCAAGCCCAGCAAGCGGAGCUUCAUCGAGGACCUGCUGUUCAACAAAGUGACACUGGCCGACGCCGGCUUCAUCAAGCAGUACGGCGACUGCCUGGGCGACAUCGCCGCCAGGGACCUGAUCUGCGCCCAGAAGUUCAACGGACUGACAGUGCUGCCCCCCCUGCUGACCGACGAGAUGAUCGCCCAGUACACAAGCGCCCUGCUGGCCGGCACAAUCACAAGCGGCUGGACAUUCGGAGCCGGCGCCGCCCUGCAGAUCCCCUUCGCCAUGCAGAUGGCCUACCGGUUCAACGGCAUCGGAGUGACCCAGAACGUGCUGUACGAGAACCAGAAGCUGAUCGCCAACCAGUUCAACAGCGCCAUCGGCAAGAUCCAGGACAGCCUGAGCAGCACAGCAAGCGCCCUGGGAAAGCUGCAGGACGUGGUCAACCAGAACGCCCAGGCACUGAACACCCUGGUCAAGCAGCUGAGCAGCAACUUCGGCGCCAUCAGCAGCGUGCUGAACGACAUCCUGAGCAGACUGGACAAGGUGGAAGCCGAGGUGCAGAUCGACAGACUGAUCACCGGAAGGCUGCAGAGCCUGCAGACCUACGUCACCCAGCAGCUGAUCAGAGCCGCCGAGAUCAGAGCCAGCGCCAACCUGGCCGCCACCAAGAUGAGCGAGUGCGUGCUGGGCCAGAGCAAGAGAGUGGACUUCUGCGGCAAGGGCUACCACCUGAUGAGCUUCCCCCAGAGCGCCCCCCACGGCGUGGUGUUCCUGCACGUGACAUACGUGCCCGCCCAAGAGAAGAACUUCACCACCGCCCCAGCCAUCUGCCACGACGGCAAAGCCCACUUCCCCAGAGAAGGCGUGUUCGUGAGCAACGGCACCCACUGGUUCGUGACCCAGCGGAACUUCUACGAGCCCCAGAUCAUCACCACCGACAACACCUUCGUGAGCGGCAACUGCGACGUCGUGAUCGGCAUCGUGAACAACACCGUGUACGACCCCCUGCAGCCCGAGCUGGACAGCUUCAAAGAGGAACUGGACAAGUACUUCAAGAACCACACAAGCCCCGACGUGGACCUGGGCGACAUCAGCGGAAUCAACGCCAGCGUCGUGAACAUCCAGAAAGAGAUCGACCGGCUGAACGAGGUGGCCAAGAACCUGAACGAGAGCCUGAUCGACCUGCAAGAACUGGGGAAGUACGAGCAGUACAUCAAGUGGCCCUGGUACAUCUGGCUGGGCUUCAUCGCCGGACUGAUCGCCAUCGUGAUGGUCACAAUCAUGCUGUGCUGCAUGACCAGCUGCUGCAGCUGCCUGAAGGGCUGCUGCAGCUGCGGCAGCUGCUGCAAGUUCGACGAGGACGACAGCGAGCCCGUGCUGAAGGGCGUGAAACUGCACUACACAUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号17>(S_RBD_opt2 EcoRI)
GCTAGCGTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCGAATTC

NheI配列:塩基番号1~6
T7プロモーター:塩基番号7~24
A:転写開始点:塩基番号25
5’-UTR(転写開始点および塩基番号89~94のKOZAK配列を含む):塩基番号25~94
RBD配列:塩基番号95~805
3’-UTR:塩基番号806~937
EcoRI配列:塩基番号938~943

<配列番号18>(SARS-CoV-2 RBD optimizedの鋳型DNA)
TGATGCTAGCGTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGAAGAGCAAGCTTTGGC

NheI配列:塩基番号5~10
T7プロモーター:塩基番号11~28
A:転写開始点:塩基番号29
5’-UTR(転写開始点および塩基番号89~94のKOZAK配列を含む):塩基番号29~98
Spike蛋白質シグナル配列:塩基番号99~137
RBD配列:塩基番号138~809
3’-UTR:塩基番号810~941
polyA配列(A110):塩基番号942~1051
BspQI配列:塩基番号1053~1059
HindIII配列:塩基番号1060~1065

<配列番号19>(SARS-CoV-2 RBD optimized mRNA-004)
AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAUGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号20> SARS-CoV-2 RBD S2000の鋳型DNA
GCTAGCGTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAAAGCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGAAGAGC

NheI配列:塩基番号1~6
T7プロモーター:塩基番号7~24
A:転写開始点:塩基番号25
5’-UTR配列(転写開始点および塩基番号89~94のKOZAK配列を含む):塩基番号25~94
Spike蛋白質シグナル配列:塩基番号95~133
RBD配列:塩基番号134~805
3’-UTR:塩基番号806~937
polyA配列(A50):塩基番号938~987
BspQI配列:塩基番号989~995


<配列番号21> SARS-CoV-2 RBD S2000のmRNA配列
AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAAAGCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAUGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


<配列番号22> SARS-CoV-2 RBD S2001の鋳型DNA
GCTAGCGTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAAAGCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAGAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGAAGAGC

NheI配列:塩基番号1~6
T7プロモーター:塩基番号7~24
A:転写開始点:塩基番号25
5’-UTR配列(転写開始点および塩基番号89~94のKOZAK配列を含む):塩基番号25~94
Spike蛋白質シグナル配列:塩基番号95~133
RBD配列:塩基番号134~805
3’-UTR:塩基番号806~937
polyA配列(A50):塩基番号938~987
BspQI配列:塩基番号989~995


<配列番号23> SARS-CoV-2 RBD S2001のmRNA配列
AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAAAGCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAGAGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


<配列番号24> SARS-CoV-2 RBD S2001のアミノ酸配列(S蛋白質シグナル配列を含む。)
MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号25> SARS-CoV-2 RBD S2001のアミノ酸配列(S蛋白質シグナル配列を含まない。)
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF


<配列番号26> SARS-CoV-2 RBD S2002の鋳型DNA
GCTAGCGTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACAAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAAAGCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGACCCAAATGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGAAGAGC

NheI配列:塩基番号1~6
T7プロモーター:塩基番号7~24
A:転写開始点:塩基番号25
5’-UTR配列(転写開始点および塩基番号89~94のKOZAK配列を含む):塩基番号25~94
Spike蛋白質シグナル配列:塩基番号95~133
RBD配列:塩基番号134~736
3’-UTR:塩基番号737~868
polyA配列(A50):塩基番号869~918
BspQI配列:塩基番号920~926


<配列番号27> SARS-CoV-2 RBD S2002のmRNA配列
AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACAAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAAAGCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGACCCAAAUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


<配列番号28> SARS-CoV-2 RBD S2002のアミノ酸配列(S蛋白質シグナル配列を含む。)
MFVFLVLLPLVSSFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~213


<配列番号29> SARS-CoV-2 RBD S2002のアミノ酸配列(S蛋白質シグナル配列を含まない。)
FPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK


<配列番号30> SARS-CoV-2 RBD S2003の鋳型DNA
GCTAGCGTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCGAGAAGGGCATCTACCAGACCAGCAACTTCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAAAGCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAGAGCGTGAACTTCAACTTCAACGGCCTGACCGGCACCGGCGTGTTGACAGAATGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGAAGAGC

NheI配列:塩基番号1~6
T7プロモーター:塩基番号7~24
A:転写開始点:塩基番号25
5’-UTR配列(転写開始点および塩基番号89~94のKOZAK配列を含む):塩基番号25~94
Spike蛋白質シグナル配列:塩基番号95~133
RBD配列:塩基番号134~874
3’-UTR:塩基番号875~1006
polyA配列(A50):塩基番号1007~1056
BspQI配列:塩基番号1058~1064


<配列番号31> SARS-CoV-2 RBD S2003のmRNA配列
AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCGAGAAGGGCAUCUACCAGACCAGCAACUUCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAAAGCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAGAGCGUGAACUUCAACUUCAACGGCCUGACCGGCACCGGCGUGUUGACAGAAUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


<配列番号32> SARS-CoV-2 RBD S2003のアミノ酸配列(S蛋白質シグナル配列を含む。)
MFVFLVLLPLVSSEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNFNFNGLTGTGVLTE

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~259


<配列番号33> SARS-CoV-2 RBD S2003のアミノ酸配列(S蛋白質シグナル配列を含まない。)
EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNFNFNGLTGTGVLTE


<配列番号34> SARS-CoV-2 RBD S2004の鋳型DNA
GCTAGCGTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAACAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCACCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACACCCTGGACAGCAAAGTCGGCGGCAACTACACCTACCTGTACCGGCTGTTCAGAAAGAGCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAGAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGAAGAGC

NheI配列:塩基番号1~6
T7プロモーター:塩基番号7~24
A:転写開始点:塩基番号25
5’-UTR配列(転写開始点および塩基番号89~94のKOZAK配列を含む):塩基番号25~94
Spike蛋白質シグナル配列:塩基番号95~133
RBD配列:塩基番号134~805
3’-UTR:塩基番号806~937
polyA配列(A50):塩基番号938~987
BspQI配列:塩基番号989~995


<配列番号35> SARS-CoV-2 RBD S2004のmRNA配列
AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAACAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCACCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACACCCUGGACAGCAAAGUCGGCGGCAACUACACCUACCUGUACCGGCUGUUCAGAAAGAGCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAGAGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


<配列番号36> SARS-CoV-2 RBD S2004のアミノ酸配列(S蛋白質シグナル配列を含む。)
MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRINNCVADYSVLYNSTSFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNTLDSKVGGNYTYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号37> SARS-CoV-2 RBD S2004のアミノ酸配列(S蛋白質シグナル配列を含まない。)
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRINNCVADYSVLYNSTSFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNTLDSKVGGNYTYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF


<配列番号38> 変異型SARS-CoV-2 RBDを含むDNA断片(南アフリカ型)(変異コドンを下線、変異部位を太字で示す。)

GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAACATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGAAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号39> 変異型SARS-CoV-2 RBDを含むDNA断片(イギリス型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号40> 変異型SARS-CoV-2 RBDを含むDNA断片(ブラジル型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCACGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGAAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号41> 変異型SARS-CoV-2 RBDを含むDNA断片(カリフォルニア型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCGGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号42> 変異型SARS-CoV-2 RBDを含むDNA断片(インド型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCGGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGCAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号43> 変異型SARS-CoV-2 RBDを含むDNA断片(南アフリカC538S型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAACATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGAAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAAAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号44> 変異型SARS-CoV-2 RBDを含むDNA断片(イギリスC538S型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAAAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号45> 変異型SARS-CoV-2 RBDを含むDNA断片(ブラジルC538S型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCACGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGAAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAAAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号46> 変異型SARS-CoV-2 RBDを含むDNA断片(カリフォルニアC538S型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCGGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAAAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号47> 変異型SARS-CoV-2 RBDを含むDNA断片(インドC538S型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCGGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGCAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAAAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号48> 変異型SARS-CoV-2 RBDを含むDNA断片(組合せ変異型(1))(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAAGAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCGGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGTCGGCAGCACCCCCTGCAACGGCGCGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号49> 変異型SARS-CoV-2 RBDを含むDNA断片(組合せ変異型(2))(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGAACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACCTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号50> 変異型SARS-CoV-2 RBDを含むDNA断片(組合せ変異型(3))(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAACATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGAACCCCCTGCAACGGCGTGAAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

<配列番号51> 変異型SARS-CoV-2 RBDを含むDNA断片(組合せ変異型(4))(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCAGCAACTGCTACCTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC


<配列番号52> 変異型SARS-CoV-2 RBDの鋳型DNA(南アフリカ型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAACATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGAAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号53> 変異型SARS-CoV-2 RBDの鋳型DNA(イギリス型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号54> 変異型SARS-CoV-2 RBDの鋳型DNA(ブラジル型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCACGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGAAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号55> 変異型SARS-CoV-2 RBDの鋳型DNA(カリフォルニア型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCGGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号56> 変異型SARS-CoV-2 RBDの鋳型DNA(インド型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCGGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGCAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号57> 変異型SARS-CoV-2 RBDの鋳型DNA(南アフリカC538S型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAACATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGAAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAAAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号58> 変異型SARS-CoV-2 RBDの鋳型DNA(イギリスC538S型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAAAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号59> 変異型SARS-CoV-2 RBDの鋳型DNA(ブラジルC538S型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCACGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGAAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAAAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号60> 変異型SARS-CoV-2 RBDの鋳型DNA(カリフォルニアC538S型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCGGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAAAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号61> 変異型SARS-CoV-2 RBDの鋳型DNA(インドC538S型)(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCGGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGCAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAAAGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号62> 変異型SARS-CoV-2 RBDの鋳型DNA(組合せ変異型(1))(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAAGAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCGGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGTCGGCAGCACCCCCTGCAACGGCGCGGAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号63> 変異型SARS-CoV-2 RBDの鋳型DNA(組合せ変異型(2))(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGAACCCCCTGCAACGGCGTGGAAGGCTTCAACTGCTACCTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号64> 変異型SARS-CoV-2 RBDの鋳型DNA(組合せ変異型(3))(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAACATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGAACCCCCTGCAACGGCGTGAAAGGCTTCAACTGCTACTTCCCACTGCAGAGCTACGGCTTCCAGCCCACATACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号65 変異型SARS-CoV-2 RBDの鋳型DNA(組合せ変異型(4))(変異コドンを下線、変異部位を太字で示す。)
GTAATACGACTCACTATAAGGAGACCCAAGCTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCGCCACCATGTTCGTGTTCCTGGTGCTGCTGCCCCTGGTGAGCAGCAGAGTGCAGCCCACCGAGAGCATCGTGCGGTTCCCCAACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAACCGGAAGCGGATCAGCAACTGCGTGGCCGACTACAGCGTGCTGTACAACAGCGCCAGCTTCAGCACCTTCAAGTGCTACGGCGTGAGCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACAGCTTCGTGATCAGAGGCGACGAAGTGCGGCAGATCGCCCCCGGACAGACAGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACAGCAACAACCTGGACAGCAAAGTCGGCGGCAACTACAACTACCTGTACCGGCTGTTCCGGAAGTCCAACCTGAAGCCCTTCGAGCGGGACATCAGCACCGAGATCTACCAGGCCGGCAGCACCCCCTGCAACGGCGTGGAAGGCAGCAACTGCTACCTCCCACTGCAGAGCTACGGCTTCCAGCCCACAAACGGCGTGGGCTACCAGCCCTACAGAGTGGTGGTGCTGAGCTTCGAGCTGCTGCACGCCCCCGCCACAGTGTGCGGCCCCAAGAAAAGCACCAACCTGGTCAAGAACAAATGCGTGAACTTCTGAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

T7プロモーター:塩基番号1~18
A:転写開始点:塩基番号19
5’-UTR配列(転写開始点および塩基番号83~88のKOZAK配列を含む):塩基番号19~88
Spike蛋白質シグナル配列:塩基番号89~127
RBD配列:塩基番号128~799
3’-UTR:塩基番号800~931
polyA配列(A100):塩基番号932~1031


<配列番号66> 変異型SARS-CoV-2 RBD mRNA(南アフリカ型)(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAACAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGAAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAUACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAUGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号67> 変異型SARS-CoV-2 RBD mRNA(イギリス型)(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAUACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAUGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号68> 変異型SARS-CoV-2 RBD mRNA(ブラジル型)(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCACGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGAAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAUACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAUGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号69> 変異型SARS-CoV-2 RBD mRNA(カリフォルニア型)(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCGGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAUGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号70> 変異型SARS-CoV-2 RBD mRNA(インド型)(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCGGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGCAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAUGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号71> 変異型SARS-CoV-2 RBD mRNA(南アフリカC538S型)(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAACAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGAAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAUACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAAGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号72> 変異型SARS-CoV-2 RBD mRNA(イギリスC538S型)(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAUACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAAGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号73> 変異型SARS-CoV-2 RBD mRNA(ブラジルC538S型)(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCACGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGAAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAUACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAAGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号74> 変異型SARS-CoV-2 RBD mRNA(カリフォルニアC538S型)(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCGGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAAGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号75> 変異型SARS-CoV-2 RBD mRNA(インドC538S型)(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCGGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGCAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAAGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号76> 変異型SARS-CoV-2 RBD mRNA(組合せ変異型(1))(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAAGAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCGGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGUCGGCAGCACCCCCUGCAACGGCGCGGAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAUGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号77> 変異型SARS-CoV-2 RBD mRNA(組合せ変異型(2))(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGAACCCCCUGCAACGGCGUGGAAGGCUUCAACUGCUACCUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAUGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号78> 変異型SARS-CoV-2 RBD mRNA(組合せ変異型(3))(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAACAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGAACCCCCUGCAACGGCGUGAAAGGCUUCAACUGCUACUUCCCACUGCAGAGCUACGGCUUCCAGCCCACAUACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAUGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

<配列番号79> 変異型SARS-CoV-2 RBD mRNA(組合せ変異型(4))(変異コドンを下線、変異部位を太字で示す。)

AGGAGACCCAAGCUACAUUUGCUUCUGACACAACUGUGUUCACUAGCAACCUCAAACAGACACCGCCACCAUGUUCGUGUUCCUGGUGCUGCUGCCCCUGGUGAGCAGCAGAGUGCAGCCCACCGAGAGCAUCGUGCGGUUCCCCAACAUCACCAACCUGUGCCCCUUCGGCGAGGUGUUCAACGCCACCAGAUUCGCCAGCGUGUACGCCUGGAACCGGAAGCGGAUCAGCAACUGCGUGGCCGACUACAGCGUGCUGUACAACAGCGCCAGCUUCAGCACCUUCAAGUGCUACGGCGUGAGCCCCACCAAGCUGAACGACCUGUGCUUCACCAACGUGUACGCCGACAGCUUCGUGAUCAGAGGCGACGAAGUGCGGCAGAUCGCCCCCGGACAGACAGGCAAGAUCGCCGACUACAACUACAAGCUGCCCGACGACUUCACCGGCUGCGUGAUCGCCUGGAACAGCAACAACCUGGACAGCAAAGUCGGCGGCAACUACAACUACCUGUACCGGCUGUUCCGGAAGUCCAACCUGAAGCCCUUCGAGCGGGACAUCAGCACCGAGAUCUACCAGGCCGGCAGCACCCCCUGCAACGGCGUGGAAGGCAGCAACUGCUACCUCCCACUGCAGAGCUACGGCUUCCAGCCCACAAACGGCGUGGGCUACCAGCCCUACAGAGUGGUGGUGCUGAGCUUCGAGCUGCUGCACGCCCCCGCCACAGUGUGCGGCCCCAAGAAAAGCACCAACCUGGUCAAGAACAAAUGCGUGAACUUCUGAGCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


<配列番号80> 変異型SARS-CoV-2 RBDのアミノ酸配列(南アフリカ型)(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)
MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号81> 変異型SARS-CoV-2 RBDのアミノ酸配列(イギリス型)(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号82> 変異型SARS-CoV-2 RBDのアミノ酸配列(ブラジル型)(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGTIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号83> 変異型SARS-CoV-2 RBDのアミノ酸配列(カリフォルニア型)(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号84> 変異型SARS-CoV-2 RBDのアミノ酸配列(インド型)(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSTPCNGVQGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号85> 変異型SARS-CoV-2 RBDのアミノ酸配列(南アフリカC538S型)(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号86> 変異型SARS-CoV-2 RBDのアミノ酸配列(イギリスC538S型)(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号87> 変異型SARS-CoV-2 RBDのアミノ酸配列(ブラジルC538S型)(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGTIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

<配列番号88> 変異型SARS-CoV-2 RBDのアミノ酸配列(カリフォルニアC538S型)(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号89> 変異型SARS-CoV-2 RBDのアミノ酸配列(インドC538S型)(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSTPCNGVQGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号90> 変異型SARS-CoV-2 RBDのアミノ酸配列(組合せ変異型(1))(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSKNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQVGSTPCNGAEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号91> 変異型SARS-CoV-2 RBDのアミノ酸配列(組合せ変異型(2))(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGRTPCNGVEGFNCYLPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号92> 変異型SARS-CoV-2 RBDのアミノ酸配列(組合せ変異型(3))(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGRTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号93> 変異型SARS-CoV-2 RBDのアミノ酸配列(組合せ変異型(4))(S蛋白質シグナル配列を含む、変異アミノ酸を下線で示す。)

MFVFLVLLPLVSSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGSNCYLPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

S蛋白質シグナル配列:アミノ酸番号1~13
RBD配列:アミノ酸番号14~236


<配列番号94> 変異型SARS-CoV-2 RBDのアミノ酸配列(南アフリカ型)(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

<配列番号95> 変異型SARS-CoV-2 RBDのアミノ酸配列(イギリス型)(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

<配列番号96> 変異型SARS-CoV-2 RBDのアミノ酸配列(ブラジル型)(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGTIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

<配列番号97> 変異型SARS-CoV-2 RBDのアミノ酸配列(カリフォルニア型)(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

<配列番号98> 変異型SARS-CoV-2 RBDのアミノ酸配列(インド型)(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSTPCNGVQGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

<配列番号99> 変異型SARS-CoV-2 RBDのアミノ酸配列(南アフリカC538S型)(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

<配列番号100> 変異型SARS-CoV-2 RBDのアミノ酸配列(イギリスC538S型)(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

<配列番号101> 変異型SARS-CoV-2 RBDのアミノ酸配列(ブラジルC538S型)(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGTIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

<配列番号102> 変異型SARS-CoV-2 RBDのアミノ酸配列(カリフォルニアC538S型)(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

<配列番号103> 変異型SARS-CoV-2 RBDのアミノ酸配列(インドC538S型)(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSTPCNGVQGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKSVNF

<配列番号104> 変異型SARS-CoV-2 RBDのアミノ酸配列(組合せ変異型(1))(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSKNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQVGSTPCNGAEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

<配列番号105> 変異型SARS-CoV-2 RBDのアミノ酸配列(組合せ変異型(2))(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGRTPCNGVEGFNCYLPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

<配列番号106> 変異型SARS-CoV-2 RBDのアミノ酸配列(組合せ変異型(3))(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGRTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

<配列番号107> 変異型SARS-CoV-2 RBDのアミノ酸配列(組合せ変異型(4))(S蛋白質シグナル配列を含まない。変異アミノ酸を下線で示す。)

RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGSNCYLPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF

Claims (52)

  1. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質及び/又はその断片を発現させることができる核酸を封入した脂質粒子であって、脂質が一般式(Ia)で表されるカチオン性脂質、又はその薬学的に許容される塩を含む前記粒子。
    Figure JPOXMLDOC01-appb-C000001
    式中、
    及びRは、独立して、C-Cアルキル基を示し;
    は、C-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC17-C19アルケニル基を示し;
    は、C-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC10-C19アルキル基、又はC-Cアルカノイルオキシ基を1若しくは複数個有していてもよいC10-C19アルケニル基を示し;
    pは、3、又は4である。
  2. 一般式(Ia)中のR及びRが、共にメチル基である、請求項1に記載の粒子。
  3. 一般式(Ia)中のpが、3である請求項1又は2に記載の粒子。
  4. 一般式(Ia)中のLが、アセトキシ基を1若しくは複数個有していてもよいC17-C19アルケニル基である、請求項1~3のいずれかに記載の粒子。
  5. 一般式(Ia)中のLが、アセトキシ基を1若しくは複数個有していてもよいC10-C12アルキル基、又はアセトキシ基を1若しくは複数個有していてもよいC10-C19アルケニル基である、請求項1~4のいずれかに記載の粒子。
  6. 一般式(Ia)中のLが、アセトキシ基を1若しくは複数個有していてもよいC10-C12アルキル基、又はアセトキシ基を1若しくは複数個有していてもよいC17-C19アルケニル基である、請求項1~4のいずれかに記載の粒子。
  7. 一般式(Ia)中のLが、(R)-11-アセチルオキシ-cis-8-ヘプタデセニル基、cis-8-ヘプタデセニル基、又は(8Z,11Z)-ヘプタデカジエニル基である請求項1~6のいずれか1項に記載の粒子。
  8. 一般式(Ia)中のLが、デシル基、cis-7-デセニル基、ドデシル基、又は(R)-11-アセチルオキシ-cis-8-ヘプタデセニル基である、請求項1~7のいずれかに記載の粒子。
  9. カチオン性脂質が下記の構造式:
    Figure JPOXMLDOC01-appb-C000002
    で表される請求項1に記載の粒子。
  10. カチオン性脂質が下記の構造式:
    Figure JPOXMLDOC01-appb-C000003

    で表される請求項1に記載の粒子。
  11. カチオン性脂質が下記の構造式:
    Figure JPOXMLDOC01-appb-C000004
    で表される請求項1に記載の粒子。
  12. 脂質が、さらに、両親媒性脂質、ステロール類及びPEG脂質を含む請求項1~11のいずれかに記載の粒子。
  13. 両親媒性脂質が、ジステアロイルホスファチジルコリン、ジオレオイルホスファチジルコリン及びジオレオイルホスファチジルエタノールアミンからなる群より選択される少なくとも1つである請求項12記載の粒子。
  14. ステロール類がコレステロールである請求項12又は13に記載の粒子。
  15. PEG脂質が、1、2-ジミリストイル-sn-グリセロール メトキシポリエチレン グリコール及び/又はN-[メトキシ ポリ(エチレングリコール)2000]カルバモイル]-1,2-ジミリスチルオキシプロピル-3-アミンである請求項12~14のいずれかに記載の粒子。
  16. 両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成が、モル量にて、両親媒性脂質が15%以下、ステロール類が20~55%、カチオン性脂質が40~65%、PEG脂質が1~5%であり、核酸重量に対する総脂質重量の比率が、15~30である請求項12~15のいずれかに記載の粒子。
  17. 両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成が、モル量にて、両親媒性脂質が5~15%、ステロール類が35~50%、カチオン性脂質が40~55%、PEG脂質が1~3%であり、核酸重量に対する総脂質重量の比率が、15~25である請求項16記載の粒子。
  18. 両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成が、モル量にて、両親媒性脂質が10~15%、ステロール類が35~45%、カチオン性脂質が40~50%、PEG脂質が1~2%であり、核酸重量に対する総脂質重量の比率が、17.5~22.5である請求項17記載の粒子。
  19. 両親媒性脂質、ステロール類、カチオン性脂質、及びPEG脂質の脂質組成が、モル量にて、両親媒性脂質が10~15%、ステロール類が35~45%、カチオン性脂質が45~50%、PEG脂質が1.5~2%であり、核酸重量に対する総脂質重量の比率が、17.5~22.5である請求項18記載の粒子。
  20. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片が、受容体結合ドメインを含む請求項1~19のいずれかに記載の粒子。
  21. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片中の受容体結合ドメインが配列番号11のアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる請求項20に記載の粒子。
  22. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片中の受容体結合ドメインが配列番号25、29、33、37、94~107のいずれかのアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる請求項20に記載の粒子。
  23. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片が、配列番号10のアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる請求項20に記載の粒子。
  24. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片が、配列番号24、28、32、36、80~93のいずれかのアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる請求項20に記載の粒子。
  25. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質が配列番号6のアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる請求項1~19記載の粒子。
  26. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質中の受容体結合ドメインが配列番号11のアミノ酸配列と少なくとも95%の同一性を有するアミノ酸配列からなる請求項25記載の粒子。
  27. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質を発現させることができる核酸が、キャップ構造(Cap)、5’非翻訳領域(5’-UTR)、S蛋白質の翻訳領域、3’非翻訳領域(3’-UTR)及びポリA尾部(polyA)を含むmRNAである請求項25又は26に記載の粒子。
  28. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片を発現させることができる核酸が、キャップ構造(Cap)、5’非翻訳領域(5’-UTR)、リーダー配列(leader sequence)、S蛋白質中の受容体結合ドメインの翻訳領域、3’非翻訳領域(3’-UTR)及びポリA尾部(polyA)を含むmRNAである請求項20~24のいずれかに記載の粒子。
  29. S蛋白質の翻訳領域の配列が、配列番号5の配列におけるS蛋白質の翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列からなる請求項27記載の粒子。
  30. S蛋白質の翻訳領域の配列が、配列番号16の配列におけるS蛋白質の翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列からなる請求項27記載の粒子。
  31. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質を発現させることができる核酸が、配列番号5のヌクレオチド配列からなる請求項27記載の粒子。
  32. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質を発現させることができる核酸が、配列番号16のヌクレオチド配列からなる請求項27記載の粒子。
  33. S蛋白質中の受容体結合ドメインの翻訳領域の配列が、配列番号9の配列におけるS蛋白質中の受容体結合ドメインの翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列からなる請求項27記載の粒子。
  34. S蛋白質中の受容体結合ドメインの翻訳領域の配列が、配列番号19の配列におけるS蛋白質中の受容体結合ドメインの翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列からなる請求項27記載の粒子。
  35. S蛋白質中の受容体結合ドメインの翻訳領域の配列が、配列番号21、23、27、31、35、66~79のいずれかの配列におけるS蛋白質中の受容体結合ドメインの翻訳領域の配列と少なくとも90%の同一性を有するヌクレオチド配列からなる請求項27記載の粒子。
  36. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片を発現させることができる核酸が、配列番号9のヌクレオチド配列からなる請求項28記載の粒子。
  37. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質の断片を発現させることができる核酸が、配列番号19のヌクレオチド配列からなる請求項28記載の粒子。
  38. 核酸が少なくとも1個の修飾ヌクレオチドを含む請求項1~37のいずれかに記載の粒子。
  39. 修飾ヌクレオチドが、5位が置換したピリミジンヌクレオチド及び/又は1位が置換していてもよいシュードウリジンの少なくとも1個を含む請求項38記載の粒子。
  40. 修飾ヌクレオチドが、5-メチルシチジン、5-メトキシウリジン、5-メチルウリジン、シュードウリジン、及び1-アルキルシュードウリジンからなる群から選ばれる少なくとも1個を含む請求項38記載の粒子。
  41. 粒子の平均粒子径が30nm~300nmである請求項1~40のいずれかに記載の粒子。
  42. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)による感染を予防及び/又は治療するための組成物を製造するための請求項1~41のいずれかに記載の粒子の使用。
  43. 請求項1~41のいずれかに記載の粒子を含有する、組成物。
  44. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質及び/又はその断片をin vivo又はin vitroで発現させるための請求項43記載の組成物。
  45. 医薬として用いられる請求項43又は44記載の組成物。
  46. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)に対する免疫反応を誘導するための請求項45記載の組成物。
  47. 新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)感染を予防及び/又は治療するための請求項45又は46記載の組成物。
  48. 請求項43又は44に記載の組成物を細胞に導入することを含む、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質及び/又はその断片をin vitroで発現させる方法。
  49. 請求項43~47のいずれかに記載の組成物を哺乳動物に投与することを含む、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)のS蛋白質及び/又はその断片をin vivoで発現させる方法。
  50. 請求項45又は46に記載の組成物を哺乳動物に投与することを含む、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)に対する免疫反応を誘導する方法。
  51. 請求項45~47のいずれかに記載の組成物を哺乳動物に投与することを含む、新型コロナウイルス(severe acute respiratory syndrome coronavirus 2:SARS-CoV-2)感染を予防及び/又は治療する方法。
  52. 哺乳動物がヒトである請求項49~51のいずれかに記載の方法。
PCT/JP2021/022057 2020-06-11 2021-06-10 核酸脂質粒子ワクチン WO2021251453A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180035477.1A CN115605221A (zh) 2020-06-11 2021-06-10 核酸脂质粒子疫苗
US18/009,111 US20230248819A1 (en) 2020-06-11 2021-06-10 Nucleic acid lipid particle vaccine
EP21821552.3A EP4166158A1 (en) 2020-06-11 2021-06-10 Nucleic acid lipid particle vaccine
KR1020227040351A KR20230024261A (ko) 2020-06-11 2021-06-10 핵산 지질 입자 백신
JP2022530615A JPWO2021251453A1 (ja) 2020-06-11 2021-06-10

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-101420 2020-06-11
JP2020101420 2020-06-11
JP2021033278 2021-03-03
JP2021-033278 2021-03-03

Publications (1)

Publication Number Publication Date
WO2021251453A1 true WO2021251453A1 (ja) 2021-12-16

Family

ID=78846062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022057 WO2021251453A1 (ja) 2020-06-11 2021-06-10 核酸脂質粒子ワクチン

Country Status (7)

Country Link
US (1) US20230248819A1 (ja)
EP (1) EP4166158A1 (ja)
JP (1) JPWO2021251453A1 (ja)
KR (1) KR20230024261A (ja)
CN (1) CN115605221A (ja)
TW (1) TW202214296A (ja)
WO (1) WO2021251453A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130089A1 (en) * 2021-12-31 2023-07-06 Boost Biopharma, Inc. Recombinant polypeptides containing at least one immunogenic fragment and antibody fc region and uses thereof
WO2023126343A1 (en) * 2021-12-30 2023-07-06 Fondo Ricerca Medica S.R.L. Mrna vaccine against variants of sars-cov-2

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005253A1 (ja) 2013-07-08 2015-01-15 第一三共株式会社 新規脂質
JP2020101420A (ja) 2018-12-21 2020-07-02 パナソニックIpマネジメント株式会社 透過度検知装置
JP2021033278A (ja) 2019-08-16 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像光学レンズ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005253A1 (ja) 2013-07-08 2015-01-15 第一三共株式会社 新規脂質
JP2020101420A (ja) 2018-12-21 2020-07-02 パナソニックIpマネジメント株式会社 透過度検知装置
JP2021033278A (ja) 2019-08-16 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像光学レンズ

Non-Patent Citations (41)

* Cited by examiner, † Cited by third party
Title
ANDERSON, E. J ET AL.: "Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults", N ENGL J MED, vol. 383, 2020, pages 2427 - 2438
ANONYMOUS: "BNT162 COVID-19 Vaccine", BIONTECH, 23 April 2020 (2020-04-23), pages 1 - 15, XP055885355, Retrieved from the Internet <URL:https://investors.biontech.de/static-files/398d9bd8-e2cb-49ca-9d6d-7dfd01c66b8a> [retrieved on 20220131] *
BADEN, L. R ET AL.: "Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine", N ENGL J MED, 2020
COBAN, C ET AL.: "Novel strategies to improve DNA vaccine immunogenicity", CURR GENE THER, vol. 11, 2011, pages 479 - 484
CORBETT, K. S ET AL.: "Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates", N ENGL J MED, vol. 383, 2020, pages 1544 - 1555, XP055949061, DOI: 10.1056/NEJMoa2024671
DE BEUCKELAER, A ET AL.: "Type I Interferons Interfere with the Capacity of mRNA Lipoplex Vaccines to Elicit Cytolytic T Cell Responses", MOL THER, vol. 24, 2016, pages 2012 - 2020
DESMET, C. JISHII, K. J: "Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination", NAT REV IMMUNOL, vol. 12, 2012, pages 479 - 491, XP037923168, DOI: 10.1038/nri3247
ELIA, U ET AL.: "Design of SARS-CoV-2 RBD mRNA Vaccine Using Novel Ionizable Lipids", BIORXIV, 2020.2010.2015.341537, 2020
FUZHOU WANG, RICHARD M. KREAM, GEORGE B. STEFANO: "An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development", MEDICAL SCIENCE MONITOR, WARSAW, POLAND : MEDICAL SCIENCE INTERNATIONAL, PL, vol. 26, 5 May 2020 (2020-05-05), PL , pages e924700 - e924700-8, XP055735156, ISSN: 1234-1010, DOI: 10.12659/MSM.924700 *
IAVARONE, C.O'HAGAN D, T.YU, D.DELAHAYE, N. FULMER, J. B: "Mechanism of action of mRNA-based vaccines", EXPERT REV VACCINES, vol. 16, 2017, pages 871 - 881
IMAI, M ET AL.: "Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development", PROC NATL ACAD SCI U S A, vol. 117, pages 16587 - 16595
ISHIGAKI, H. ET AL.: "Neutralizing antibody-dependent and -independent immune responses against SARS-CoV-2 in cynomolgus macaques", VIROLOGY, vol. 554, 2021, pages 97 - 105, XP086447536, DOI: 10.1016/j.virol.2020.12.013
J IMMUNOL, vol. 181, 2008, pages 5490
JACKSON, L. A ET AL.: "An mRNA Vaccine against SARS-CoV-2 - Preliminary Report", N ENGL J MED, vol. 383, 2020, pages 1920 - 1931
KARIKO, K. ET AL.: "Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability", MOL THER, vol. 16, 2008, pages 1833 - 1840, XP055920956, DOI: 10.1038/mt.2008.200
KARIKO, K.BUCKSTEIN, M.NI, H.WEISSMAN, D: "Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA", IMMUNITY, vol. 23, 2005, pages 165 - 175
KARIKO, K.MURAMATSU, H.LUDWIG, JWEISSMAN, D: "Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA", NUCLEIC ACIDS RES, vol. 39, 2011, pages 42
KORMANN, M., NATURE BIOTECHNOLOGY, vol. 29, 2011, pages 154 - 157
LAN, J ET AL.: "Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor", NATURE, vol. 581, 2020, pages 215 - 220, XP037182122, DOI: 10.1038/s41586-020-2180-5
LEDERER, K ET AL.: "SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation", IMMUNITY, vol. 53, 2020, pages 1281 - 1295
LINARES-FERNANDEZ, S.LACROIX, C.EXPOSITO, J. YVERRIER, B: "Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune Response", TRENDS MOL MED, vol. 26, 2020, pages 311 - 323, XP086072330, DOI: 10.1016/j.molmed.2019.10.002
MCKAY PAUL F., HU KAI, BLAKNEY ANNA K., SAMNUAN KARNYART, BOUTON CLÉMENT R., ROGERS PAUL, POLRA KRUNAL, LIN PAULO J.C., BARBOSA CH: "Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine induces equivalent preclinical antibody titers and viral neutralization to recovered COVID-19 patients", BIORXIV, 25 April 2020 (2020-04-25), pages 1 - 14, XP055885357, DOI: 10.1101/2020.04.22.055608 *
MCMAHAN, K ET AL.: "Correlates of protection against SARS-CoV-2 in rhesus macaques", NATURE, 2020
NAT COMMUN, vol. 11, 2020, pages 2251
NAT MED, vol. 26, 2020, pages 1033
NAT REV IMMUNOL, vol. 20, 2020, pages 347
PARDI, N.HOGAN, M. J.PORTER, F. WWEISSMAN, D: "mRNA vaccines - a new era in vaccinology", NAT REV DRUG DISCOV, vol. 17, 2018, pages 261 - 279, XP037134891, DOI: 10.1038/nrd.2017.243
PLOS ONE, vol. 7, 2012, pages e35421
PNAS, vol. 117, 2020, pages 8218
POLACK, F. P ET AL.: "Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine", N ENGL J MED, vol. 383, 2020, pages 2603 - 2615, XP055820495, DOI: 10.1056/NEJMoa2034577
RYDYZNSKI MODERBACHER, C ET AL.: "Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity", CELL, vol. 183, 2020, pages 996 - 1012
SCIENCE, vol. 367, 2020, pages 1260
TAI, W ET AL.: "A novel receptor-binding domain (RBD)-based mRNA vaccine against SARS-CoV-2", CELL RES, vol. 30, 2020, pages 932 - 935, XP037260927, DOI: 10.1038/s41422-020-0387-5
VACCINE, vol. 25, 2007, pages 2832
VIROL J, vol. 7, 2010, pages 299
VIROLOGY, vol. 12, 2020, pages 372
VIROLOGY, vol. 334, 2005, pages 74
VIRUSES, vol. 12, 2020, pages 428
VOGEL, A. B ET AL.: "BNT162b vaccines are immunogenic and protect non-human primates against SARS-CoV-2", BIORXIV, 2020.2012.2011.421008, 2020
WALSH, E. E ET AL.: "Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates", N ENGL J MED, vol. 383, 2020, pages 2439 - 2450
ZHOU, P ET AL.: "A pneumonia outbreak associated with a new coronavirus of probable bat origin", NATURE, vol. 579, 2020, pages 270 - 273, XP037296454, DOI: 10.1038/s41586-020-2012-7

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023126343A1 (en) * 2021-12-30 2023-07-06 Fondo Ricerca Medica S.R.L. Mrna vaccine against variants of sars-cov-2
WO2023130089A1 (en) * 2021-12-31 2023-07-06 Boost Biopharma, Inc. Recombinant polypeptides containing at least one immunogenic fragment and antibody fc region and uses thereof

Also Published As

Publication number Publication date
JPWO2021251453A1 (ja) 2021-12-16
CN115605221A (zh) 2023-01-13
TW202214296A (zh) 2022-04-16
EP4166158A1 (en) 2023-04-19
US20230248819A1 (en) 2023-08-10
KR20230024261A (ko) 2023-02-20

Similar Documents

Publication Publication Date Title
Liu et al. A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs
WO2021159130A2 (en) Coronavirus rna vaccines and methods of use
Beljanski et al. Enhanced influenza virus-like particle vaccination with a structurally optimized RIG-I agonist as adjuvant
JP2021191743A (ja) コロナウイルスワクチン
JP2021504445A (ja) エプスタイン−バーウイルスワクチン
JP2023513073A (ja) 呼吸器系ウイルス免疫化組成物
JP2024503698A (ja) 変異型株ベースのコロナウイルスワクチン
JP2023526495A (ja) SARS-CoV-2ワクチン
US9987353B2 (en) Virus like vesicles (VLVS) based vaccines to prevent or treat chronic hepatitis B virus (HBV) infection
US11028397B2 (en) 5′-triphosphate oligoribonucleotides
JP2021138721A (ja) Hiv予備免疫化および免疫療法
WO2021251453A1 (ja) 核酸脂質粒子ワクチン
Jiang et al. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy
WO2023107999A2 (en) Herpes simplex virus mrna vaccines
EP4034548A1 (en) Coronavirus vaccines and uses thereof
TW202333780A (zh) 冠狀病毒疫苗
Verma et al. Norovirus (NoV) specific protective immune responses induced by recombinant P dimer vaccine are enhanced by the mucosal adjuvant FlaB
KR20230087570A (ko) PAN-RAS mRNA 암 백신
Adam et al. A modified porous silicon microparticle potentiates protective systemic and mucosal immunity for SARS-CoV-2 subunit vaccine
WO2021095838A1 (ja) HPV mRNAを封入した核酸脂質粒子ワクチン
Adam et al. A modified porous silicon microparticle promotes mucosal delivery of SARS-CoV-2 antigen and induction of potent and durable systemic and mucosal T helper 1 skewed protective immunity
US20230084012A1 (en) Vaccine for use against coronavirus and variants thereof
KR20240009952A (ko) 인플루엔자 바이러스 핵산 지질 입자 백신
WO2023161649A1 (en) Rhinovirus vaccine
WO2023056045A1 (en) Covid19 mrna vaccine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021821552

Country of ref document: EP

Effective date: 20230111