WO2021251334A1 - 電圧発生装置 - Google Patents
電圧発生装置 Download PDFInfo
- Publication number
- WO2021251334A1 WO2021251334A1 PCT/JP2021/021553 JP2021021553W WO2021251334A1 WO 2021251334 A1 WO2021251334 A1 WO 2021251334A1 JP 2021021553 W JP2021021553 W JP 2021021553W WO 2021251334 A1 WO2021251334 A1 WO 2021251334A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- detection unit
- rectangular region
- voltage detection
- unit
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 165
- 125000006850 spacer group Chemical group 0.000 claims description 78
- 230000001629 suppression Effects 0.000 claims description 34
- 230000005684 electric field Effects 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 17
- 238000009413 insulation Methods 0.000 description 17
- 239000000758 substrate Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 238000005452 bending Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
- H02M7/10—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
- H02M7/103—Containing passive elements (capacitively coupled) which are ordered in cascade on one source
- H02M7/106—With physical arrangement details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase ac
- H01F38/24—Voltage transformers
- H01F38/26—Constructions
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
- H05G1/08—Electrical details
- H05G1/10—Power supply arrangements for feeding the X-ray tube
Definitions
- This disclosure relates to a voltage generator that boosts voltage.
- a voltage generator that generates a high voltage by a booster circuit using a Cockcroft circuit.
- a plurality of insulating substrates in which booster circuits and the like are arranged are stacked, and the voltage is stepped up in each booster circuit to generate a high DC voltage.
- disk-shaped insulating substrates provided with a booster circuit are stacked and housed in a cylindrical sealed case.
- the capacitors and diodes that make up the Cockcroft circuit are arranged symmetrically with the straight line passing through the center of the disk as the target axis, achieving both miniaturization and discharge suppression. ..
- the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a voltage generator capable of achieving miniaturization while ensuring high insulation performance.
- the voltage generator of the present disclosure is housed in a case of a ground potential, a high voltage transformer housed in a case and boosts a voltage, and a high voltage transformer housed in a case. It includes a booster circuit unit that boosts the voltage output by the voltage transformer, and a voltage detection unit that is housed in a case and detects the voltage boosted by the booster circuit unit.
- the first creepage path from the first high voltage section, which is the part where the highest voltage is applied in the voltage detection unit, to the ground point at the same potential as the case includes the first curved path, which is a curved path. I'm out.
- FIG. 6 is a diagram showing a first connection configuration example of a voltage detection unit and a connection fitting included in the voltage generator according to the fourth embodiment.
- FIG. 1 is a diagram showing a configuration of a voltage generator according to the first embodiment.
- FIG. 1 shows a mounting structure of an insulating substrate included in the voltage generator 101, that is, an assembly structure of the voltage generator 101.
- FIG. 1 shows a cross-sectional view of a cylindrical sealed case 1 in which a disk-shaped insulating substrate is arranged, which is cut by a plane including a cylinder shaft.
- the bottom surface side of the sealed case 1 will be referred to as the lower side, and the upper surface side of the sealed case 1 will be described as the upper side.
- FIG. 1 shows a cross-sectional view of the voltage generator 101 cut along the XZ plane.
- the voltage generator 101 includes a closed case 1 which is a case of ground potential, and columns 2A and 2B. Further, the voltage generator 101 includes a high voltage generator including a high voltage transformer 5, booster circuit units 61 to 63, and a voltage detection unit 7. In the first embodiment, the case where the booster circuit unit included in the voltage generator 101 is the booster circuit units 61 to 63 will be described, but the booster circuit unit may be two or four or more. You may.
- the booster circuit units 61 to 63 are circuit units arranged on a disk-shaped insulating substrate and perform boosting. Cockcroft circuits are arranged in the booster circuit units 61 to 63. The booster circuit units 61 to 63 perform feedback control using the signal detected by the voltage detection unit 7 in order to improve the stability of the high voltage.
- the booster circuit units 61 to 63 and the voltage detection unit 7 are arranged so as to be parallel to the XY plane, and the columns 2A and 2B are arranged so as to be parallel to the Z-axis direction.
- the high voltage generating portion is put into the sealed case 1, the high voltage generating portion is attached to the two columns 2A and 2B provided so as to face the inner wall of the sealed case 1.
- Two high voltage transformers 5 are arranged at the bottom of the sealed case 1.
- the booster circuit units 61 to 63 are arranged on the upper side of the high voltage transformer 5.
- the booster circuit units 61 to 63 are stacked at equal intervals in the sealed case 1.
- the booster circuit unit 63 is the first stage unit from the bottom
- the booster circuit unit 62 is the second stage unit from the bottom
- the booster circuit unit 61 is the third stage unit from the bottom.
- the voltage detection unit 7 is arranged on the upper side of the booster circuit unit 61.
- the booster circuit units 61 to 63 and the voltage detection unit 7 are arranged so that their upper surfaces and lower surfaces are parallel to each other.
- the booster circuit units 61 to 63 and the voltage detection unit 7 are arranged apart by a specific distance in order to improve the insulation in the voltage generator 101.
- an insulating material such as gas, oil, or resin, which has higher insulating performance than air, is contained in the sealed case 1. It is filled and stored in.
- the gas such as gas among the insulating materials, dry air, nitrogen, hydrogen, or sulfur hexafluoride can be mentioned.
- the voltage generator 101 in order to suppress the concentration of electric lines of force in the portion where the electric potential becomes high with respect to the closed case 1, as a structural device, measures such as covering with a metal whose electric field is relaxed are taken. There is.
- the ideal structure for suppressing the concentration of electric lines of force is a shape close to a sphere without edges.
- the two high voltage transformers 5 are electrically connected to each other. Further, the high voltage transformer 5 is electrically connected to the booster circuit unit 63.
- the booster circuit unit 63 is electrically connected to the booster circuit unit 62, and the booster circuit unit 62 is electrically connected to the booster circuit unit 61.
- the high voltage transformer 5 is connected to an inverter circuit (not shown), and boosts the output of the inverter circuit from ⁇ several kV to ⁇ several tens kV.
- the booster circuit unit 63 boosts the output voltage of the high voltage transformer 5 to 10 kV to 30 kV, which is 3 to 6 times, and the booster circuit unit 62 boosts the output voltage of the booster circuit unit 63 to 3 to 6 times to boost the voltage.
- the circuit unit 61 boosts the output voltage of the booster circuit unit 62 by 3 to 6 times.
- the DC high voltage boosted by the booster circuit unit 61 is output to the outside.
- the generated voltage per unit of the booster circuit units 61 to 63 is 20 kV
- a high voltage of 80 kV can be created by connecting four booster circuit units in series.
- the voltage generator 101 requires a higher voltage, it can be dealt with by increasing the number of booster circuit units that generate a high voltage in series. By increasing or decreasing the number of booster circuit units in series in this way, the voltage generator 101 can create an arbitrary high voltage.
- the voltage detection unit 7 is a detection unit arranged on a disk-shaped insulating substrate.
- the voltage detection unit 7 detects the high voltage boosted by the booster circuit unit 61 in order to improve the stability of the high voltage generated by the booster circuit unit 61. That is, the voltage detection unit 7 monitors the high voltage output by the booster circuit unit 61.
- the booster circuit units 61 to 63 and the voltage detection unit 7 are fixed to the columns 2A and 2B in consideration of insulation from the two columns 2A and 2B provided inside the sealed case 1. Has been done.
- FIG. 2 is a diagram showing a configuration of a voltage detection unit included in the voltage generator according to the first embodiment.
- FIG. 2 shows a top view of the voltage detection unit 7 as a cross-sectional configuration of the voltage generator 101 when the voltage generator 101 is cut along the line II-II shown in FIG.
- the voltage detection unit 7 of the first embodiment has a first rectangular region 71 and a second rectangular region 72 when viewed from the upper surface.
- the first rectangular region 71 has a side extending in the X-axis direction and a side extending in the Y-axis direction.
- the second rectangular region 72 has a side extending in the X-axis direction and a side extending in the Y-axis direction.
- the width of the second rectangular region 72 in the Y-axis direction is shorter than the width of the first rectangular region 71 in the Y-axis direction.
- the voltage detection unit 7 lowers the voltage by the voltage division ratio of the internal circuit and detects the voltage. In the voltage generator 101, feedback control is executed based on the detected voltage.
- the portion where the highest voltage is applied on the voltage detection unit 7 is shown by the high voltage section 7A
- the portion where the lowest voltage is applied on the voltage detection unit 7 is shown by the low voltage section 7B.
- the high voltage portion 7A on the high potential side of the voltage detection unit 7 is arranged at a position away from the columns 2A and 2B connected to the ground potential of the sealed case 1.
- the low voltage portion 7B on the low potential side of the voltage detection unit 7 is arranged at a position close to the columns 2A and 2B because it has the same potential as the columns 2A and 2B.
- the voltage detection unit 7 is configured so that the high voltage unit 7A and the low voltage unit 7B are generated in the first rectangular region 71. Further, in the voltage detection unit 7, the width of the first rectangular region 71 in the Y-axis direction and the Y-axis of the second rectangular region 72 so that the creepage path from the high voltage portion 7A to the support column 2A does not become a linear path. The width in the direction and the position of the high voltage unit 7A are adjusted. That is, in the voltage detection unit 7, the width of the first rectangular region 71 in the Y-axis direction and the second rectangular region 72 so that the creepage path from the high voltage portion 7A to the support column 2A becomes an L-shaped curved path. The width in the Y-axis direction and the position of the high voltage portion 7A are adjusted. As a result, a space, that is, an insulating layer exists on a straight line from the high voltage portion 7A to the support column 2A.
- the creepage path from the high voltage section 7A to the column 2A is curved at the boundary position between the first rectangular region 71 and the second rectangular region 72, whereby the creepage path from the high voltage section 7A to the column 2A is formed. It is an L-shaped route. Specifically, the creepage path of the first embodiment bends at the boundary position between the first rectangular region 71 and the second rectangular region 72, passes through the second rectangular region 72, and is a support column 2A which is a ground portion. It is a route to reach.
- the bending angle of the creepage path from the high voltage portion 7A to the support column 2A is not limited to 90 degrees, and may be less than 90 degrees.
- the high voltage section 7A is located near the center C1 of the shafts 20A and 20B, and the creepage distance from the high voltage section 7A to the column 2A is the same as the creepage distance from the high voltage section 7A to the column 2B. It is provided on the voltage detection unit 7. That is, the high voltage unit 7A is arranged so that the creepage distance between the high voltage unit 7A and the support column 2A and the creepage distance between the high voltage unit 7A and the support column 2B are substantially equal.
- the creepage path from the high voltage section 7A to the column 2A is an L-shaped path
- the linear distance from the high voltage section 7A to the column 2A is the straight line from the high voltage section 7A to the column 2B. It can be shorter than the distance. As a result, the voltage detection unit 7 can suppress creeping discharge.
- the circuit of the voltage detection unit 7 may be destroyed.
- the creepage path from the high voltage section 7A to the column 2A is an L-shaped path, the creepage path from the high voltage section 7A to the column 2A and the path from the high voltage section 7A to the column 2B
- the creepage route can be lengthened. That is, in the voltage detection unit 7, a sufficient space distance and a sufficient creepage distance can be secured between the high voltage unit 7A and the columns 2A and 2B.
- the width of the first rectangular region in the Y-axis direction and the width of the second rectangular region in the Y-axis direction are the same. That is, the voltage detection unit of the comparative example has one rectangular region in which the first rectangular region and the second rectangular region are combined. Further, in the voltage detection unit of the comparative example, the sealed case is not filled with an insulating layer having higher insulating performance than air.
- the voltage detection unit of the comparative example has the same path of spatial discharge and creeping discharge. Therefore, the voltage detection unit of the comparative example has little effect of suppressing discharge even when the sealed case is filled with an insulating layer such as an insulating gas having higher insulating performance than air. That is, the voltage detection unit of the comparative example had a high possibility of being discharged along the surface.
- the width of the second rectangular region 72 in the Y-axis direction is narrowed narrower than the width of the first rectangular region 71 in the Y-axis direction, so that the high voltage unit 7A
- the creepage route from to the column 2A is an L-shaped route.
- the insulating layer such as gas, oil, and resin
- the linear path from the high voltage portion 7A to the support column 2A can be separated. Insulation performance is higher than that of air.
- the voltage detection unit 7 of the voltage generator 101 is affected by the effect of the insulating layer even if the linear space discharge distance does not change.
- the insulation withstand voltage which is the insulation performance, is improved. That is, in the voltage detection unit 7 of the voltage generator 101, the space discharge path includes the path where the voltage detection unit 7 does not exist, and the insulating layer is filled in the sealed case 1, so that the space discharge does not occur along the surface.
- the discharge suppressing effect is about 3 times as much as when the air is filled in the closed case 1.
- the discharge is performed at 20 kV in the air, whereas the discharge is not performed up to 60 kV in the insulating gas.
- the effect of this insulating layer is limited to space discharge, and creeping discharge is not as effective as space discharge.
- the L-shaped discharge path is a path from the high voltage unit 7A to the support column 2A via the path in the Y-axis direction and the path in the X-axis direction. That is, in the voltage detection unit 7, the electric field decomposed into each component in the X-axis direction and the Y-axis direction is smaller than the electric field in the linear direction connecting the high voltage portion 7A and the support column 2A, so that the discharge is suppressed. Can be done. Further, in the voltage generator 101 of the first embodiment, the linear spatial discharge path and the creeping discharge path, which is a curved path, are distinguished from each other. Therefore, the voltage detection unit 7 of the voltage generator 101 has an improved dielectric strength due to the effect of the insulating layer. As described above, in the voltage generator 101, since the creepage path from the high voltage portion 7A to the support column 2A is an L-shaped path, it is possible to secure high insulation performance with respect to the support column 2A.
- the voltage detection unit 7 can secure high insulation performance with respect to the support column 2A, it is possible to connect the support column 2A and the support column 2B at a short distance.
- the voltage detection unit 7 has a withstand voltage about 1.5 times that of the voltage detection unit of the comparative example. Can be converted.
- the voltage detection unit 7 can shorten the distance between the columns 2A and 2B as compared with the comparative example when the voltage detection unit 7 realizes the same withstand voltage as the voltage detection unit of the comparative example.
- the voltage generator 101 can prevent discharge from the high voltage unit 7A with respect to the potential of the closed case 1.
- the voltage generator 101 can be made smaller and lighter, it is possible to realize a mounting structure having strong vibration resistance. Therefore, even if the number of stepped booster circuit units increases, it is possible to realize a miniaturized voltage generator 101 with strong vibration resistance.
- the booster circuit units 61 to 63 may have the same top surface shape as the voltage detection unit 7. That is, the booster circuit units 61 to 63 may have a rectangular region similar to the first rectangular region 71 and the second rectangular region 72. In this case as well, the creepage path from the high voltage section, which is the portion of the booster circuit units 61 to 63 to which the highest voltage is applied, to the support column 2A includes an L-shaped curved path.
- the high voltage section on the voltage detection unit 7 is the first high voltage section
- the high voltage section on the booster circuit units 61 to 63 is the second high voltage section.
- the space between the booster circuit units 61 to 63 and the columns 2A and 2B may be fixed to all the circuit blocks that the booster circuit units 61 to 63 can have, but one in every two to three blocks. It may be thinned out and fixed.
- the voltage detection unit 7 and the booster circuit units 61 to 63 are not limited to being fixed to the columns 2A and 2B, and may be fixed to the inner wall surface of the sealed case 1.
- the creepage path from the high voltage portion 7A to the support column 2A which is a ground portion having the same potential as the sealed case 1, includes a bending path.
- the creepage path from the high voltage portion 7A to the support column 2A becomes longer than in the case where the creepage path is only a straight line, so that the distance between the support columns 2A and 2B can be shortened. Therefore, the voltage generator 101 can be miniaturized while ensuring high insulation performance.
- the discharge path which is the creepage path from the high voltage section 7A to the support column 2A
- the creepage path is in the electric field distribution between the high voltage section 7A and the support column 2A. It is a path with a small electric field. As a result, the discharge to the columns 2A and 2B can be suppressed, and the insulation performance is improved.
- the creepage route from the high voltage portion to the support column 2B connected to the ground potential is a route that is bent a plurality of times.
- FIG. 3 is a diagram showing a configuration of a voltage detection unit included in the voltage generator according to the second embodiment.
- FIG. 3 shows a top view of the voltage detection unit 7x as a cross-sectional configuration of the voltage generator 101 when the voltage generator 101 is cut along the line II-II shown in FIG.
- the components that achieve the same function as the voltage detection unit 7 of the first embodiment shown in FIG. 2 are designated by the same reference numerals, and duplicate description will be omitted.
- the voltage generator 101 of the second embodiment is provided with the voltage detection unit 7x instead of the voltage detection unit 7 as compared with the voltage generator 101 of the first embodiment, and the other configurations are the same.
- the voltage detection unit 7x of the second embodiment has a first rectangular region 73, a second rectangular region 74, and a rectangular annular region 75 when viewed from the upper surface.
- the first rectangular region 73 is the same region as the first rectangular region 71, and has a side extending in the X-axis direction and a side extending in the Y-axis direction.
- the second rectangular region 74 has a side extending in the X-axis direction and a side extending in the Y-axis direction.
- the width of the second rectangular region 74 in the Y-axis direction is shorter than the width of the first rectangular region 73 in the Y-axis direction.
- the central region 76 is hollowed out in a rectangular shape, thereby forming a square shape.
- the width of the outer peripheral portion of the rectangular annular region 75 in the Y-axis direction is the same as the width of the first rectangular region 73 in the Y-axis direction.
- the portion where the highest voltage is applied on the voltage detection unit 7x is shown by the high voltage section 7Ax
- the portion where the lowest voltage is applied on the voltage detection unit 7x is shown by the low voltage section 7Bx.
- the high voltage portion 7Ax on the high potential side of the voltage detection unit 7x is arranged at a position away from the columns 2A and 2B connected to the ground potential of the sealed case 1.
- the low voltage portion 7B on the low potential side of the voltage detection unit 7x is arranged at a position close to the columns 2A and 2B because it has the same potential as the columns 2A and 2B.
- the voltage detection unit 7x is configured so that the high voltage unit 7Ax and the low voltage unit 7Bx are generated in the first rectangular region 73. Further, in the voltage detection unit 7x, the width of the first rectangular region 73 in the Y-axis direction and the Y-axis of the second rectangular region 74 so that the creepage distance from the high voltage portion 7Ax to the support column 2A does not become a linear distance. The width in the direction, the dimensions of the rectangular annular region 75, and the position of the high voltage section 7Ax are adjusted.
- the Y axis of the first rectangular region 73 so that the creepage path from the high voltage section 7A to the support column 2A includes a curved path that bends in a ⁇ or ⁇ shape in the XY plane.
- the width in the direction, the width in the Y-axis direction of the second rectangular region 74, the dimension of the rectangular annular region 75, and the position of the high voltage portion 7Ax are adjusted.
- the insulating layer exists on the straight line from the high voltage portion 7Ax to the support column 2A.
- the high voltage section 7Ax is located near the center C1 of the shafts 20A and 20B, and the creepage distance from the high voltage section 7Ax to the column 2A is the same as the creepage distance from the high voltage section 7Ax to the column 2B. It is provided on the voltage detection unit 7x. That is, the high voltage section 7Ax is arranged so that the creepage distance between the high voltage section 7Ax and the support column 2A and the creepage distance between the high voltage section 7A and the support column 2B are substantially equal.
- the high voltage part 7Ax may spread over a wide area instead of a partially narrow area.
- the creepage path from the high voltage portion 7Ax to the support column 2A becomes a straight line.
- the high voltage portion 7Ax has a rectangular annular region 75 having a square shape
- the creepage path from the high voltage portion 7Ax to the support column 2A is a rectangular annular region. It is a curved route that passes through the region 75.
- the creepage path of the second embodiment passes from the first rectangular region 73 to the second rectangular region 74, bends at the boundary position between the second rectangular region 74 and the rectangular annular region 75, and is rectangular. This is a route that bends within the annular region 75 to reach the support column 2A, which is the ground location.
- the creepage path from the high voltage portion 7Ax to the support column 2A is a curved path that is bent at a plurality of places such as the boundary position between the second rectangular region 74 and the rectangular annular region 75 and the inside of the rectangular annular region 75. Therefore, the linear distance from the high voltage unit 7Ax to the column 2A can be made shorter than the linear distance from the high voltage unit 7Ax to the column 2B.
- the square-shaped discharge path is a path in the Y-axis direction, a path in the X-axis direction, a path in the Y-axis direction, a path in the X-axis direction, and Y from the high voltage unit 7Ax. It is a path to the support column 2A via the path in the axial direction and the path in the X-axis direction. That is, in the voltage detection unit 7x, the electric field decomposed into each component in the X-axis direction and the Y-axis direction is smaller than the electric field in the linear direction connecting the high voltage portion 7Ax and the support column 2A, so that the discharge is suppressed. Can be done.
- the voltage detection unit 7x of the voltage generator 101 has an improved dielectric strength due to the effect of the insulating layer, as in the case of the first embodiment.
- the electric field in the Y-axis direction perpendicular to the electric field direction between the high voltage portion 7Ax and the support column 2A is particularly small.
- the voltage detection unit 7x is about 1.5 times larger than the voltage detection unit of the comparative example. Withstand voltage is possible.
- the voltage generator 101 of the second embodiment can prevent discharge between the high voltage unit 7Ax and the potential of the closed case 1. Further, since the voltage generator 101 can be made smaller and lighter, it is possible to realize a mounting structure having strong vibration resistance.
- the discharge path which is the creepage path from the high voltage section 7Ax to the support column 2A, is changed from a straight line to a path including a square-shaped path, so that the creepage path has a high voltage. It is a path with a small electric field in the electric field distribution from the part 7Ax to the support column 2A. As a result, the discharge to the columns 2A and 2B can be suppressed, and the insulation performance is improved.
- the booster circuit units 61 to 63 may have the same top surface shape as the voltage detection unit 7x. That is, the booster circuit units 61 to 63 may have a rectangular region similar to the first rectangular region 73 and the second rectangular region 74, and a rectangular annular region similar to the rectangular annular region 75.
- the creepage path from the high voltage portion 7Ax to the support column 2A which is a ground portion having the same potential as the sealed case 1, includes a curved path, so that the voltage is the same as that of the first embodiment.
- the generator 101 can be miniaturized while ensuring high insulation performance.
- Embodiment 3 Next, the third embodiment will be described with reference to FIGS. 4 and 5.
- a spacer and a base plate which is a pedestal are provided at the bottom of the voltage detection unit 7.
- the creepage path from the voltage detection unit 7 to the support column 2A becomes a curved path using the spacer and the base plate.
- FIG. 4 is a diagram showing the configuration of the voltage generator according to the third embodiment.
- FIG. 4 shows a mounting structure of an insulating substrate included in the voltage generator 102.
- FIG. 4 shows a cross-sectional view of a cylindrical sealed case 1 in which a disk-shaped insulating substrate is arranged, which is cut by a plane including a cylinder shaft.
- components that achieve the same function as the voltage generator 101 of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and duplicate description will be omitted.
- the voltage generator 102 includes a base plate 8, 8y and a spacer 4 in addition to the components included in the voltage generator 101. Further, the voltage generator 102 includes a voltage detection unit 7y instead of the voltage detection unit 7 as compared with the voltage generator 101.
- the base plate 8 is a disk-shaped plate on which the booster circuit units 61 to 63 are placed, and the base plate 8y is a disk-shaped plate on which the voltage detection unit 7y is placed.
- the base plates 8, 8y are arranged in a direction parallel to the XY plane. One unit is placed on one base plate. That is, the voltage generator 102 includes three base plates 8 on which the booster circuit units 61 to 63 are placed, and one base plate 8y on which the voltage detection unit 7y is placed.
- the base plates 8 and 8y are made of an insulating material.
- the spacer 4 extends in the Z-axis direction from the upper surface of the base plates 8 and 8y.
- the spacer 4 on the base plate 8y extends from the upper surface of the base plate 8y toward the bottom surface of the voltage detection unit 7y. In this way, the spacer 4 is arranged at a specific position between the base plate 8y and the voltage detection unit 7y so that the voltage detection unit 7y and the base plate 8y are arranged at a specific interval.
- Each base plate 8, 8y is fixed to the columns 2A, 2B with screws or the like.
- the booster circuit units 61 to 63 are mounted in parallel with the base plate 8 via a plurality of insulation type spacers 4 erected on the base plate 8.
- the voltage detection unit 7y is mounted in parallel with the base plate 8y via a plurality of insulation type spacers 4 erected on the base plate 8y.
- the creepage path from the voltage detection unit 7y to the support column 2A passes through the spacer 4 extending in the Z-axis direction and the base plate 8y parallel to the XY plane. Therefore, the creepage path from the voltage detection unit 7y to the support column 2A is an L-shaped path when viewed from the Y-axis direction. Specifically, the creepage path of the third embodiment passes from the high voltage portion 7Ay through the spacer 4, bends at the boundary position between the spacer 4 and the base plate 8y, passes through the base plate 8y, and follows the support column 2A which is a ground portion. This is the route to get there.
- FIG. 5 is a diagram showing a configuration of a voltage detection unit included in the voltage generator according to the third embodiment.
- FIG. 5 shows a top view of the voltage detection unit 7y as a cross-sectional configuration of the voltage generator 102 when the voltage generator 101 is cut along the VV line shown in FIG.
- the components that achieve the same function as the voltage detection unit 7 of the first embodiment shown in FIG. 2 are designated by the same reference numerals, and duplicate description will be omitted.
- the third embodiment similarly to the first embodiment, a case where the line connecting the shaft 20A which is the axis of the support column 2A and the axis 20B which is the axis of the support column 2B is parallel to the X-axis direction will be described.
- the voltage detection unit 7y of the third embodiment has a third rectangular region 77 when viewed from the upper surface.
- the base plate 8y has a first rectangular region 81 and a second rectangular region 82 when viewed from above.
- the first rectangular region 81 has a side extending in the X-axis direction and a side extending in the Y-axis direction.
- the second rectangular region 82 has a side extending in the X-axis direction and a side extending in the Y-axis direction.
- the width of the second rectangular region 82 in the Y-axis direction is narrower than the width of the first rectangular region 81 in the Y-axis direction.
- the portion where the highest voltage is applied on the voltage detection unit 7y is indicated by the high voltage portion 7Ay
- the portion where the lowest voltage is applied on the voltage detection unit 7y is indicated by the low voltage portion 7By.
- the high voltage unit 7Ay in the voltage detection unit 7y is arranged at a position away from the columns 2A and 2B connected to the ground potential of the sealed case 1.
- the low voltage portion 7B on the low potential side of the voltage detection unit 7y is arranged at a position close to the columns 2A and 2B because it has the same potential as the columns 2A and 2B.
- the voltage detection unit 7y is configured so that the high voltage unit 7Ay and the low voltage unit 7By are generated in the third rectangular region 77. Further, in the voltage detection unit 7y, the dimensions of the spacer 4, the arrangement position of the spacer 4, and the dimensions of the base plate 8y are adjusted so that the creepage distance from the high voltage portion 7Ay to the support column 2A does not become a linear distance. That is, in the voltage detection unit 7y, the voltage detection unit 7y is formed so that the creepage path from the high voltage portion 7Ay to the support column 2A passes through the spacer 4, the first rectangular region 81, and the second rectangular region 82. There is. As a result, the insulating layer exists on the straight line from the high voltage portion 7Ay to the support column 2A.
- the spacer 4 As an example of arranging the spacer 4, a case where the spacer 4 is arranged under the high voltage portion 7A described in the first embodiment will be described. In this case, the creepage path in the XY plane from the bottom of the spacer 4 to the support column 2A becomes the L-shaped creepage path described in the first embodiment.
- the spacer 4 may be arranged at any position as long as the creepage path from the bottom surface of the spacer 4 to the support column 2A can be L-shaped.
- the voltage detection unit 7y is connected to the support column 2A via the spacer 4 extending in the Z-axis direction and the base plate 8y parallel to the XY plane, so that the creepage path from the high voltage portion 7Ay to the support column 2A can be obtained.
- the width of the second rectangular region 82 in the Y-axis direction is shorter than the width of the first rectangular region 81 in the Y-axis direction, and the creepage path from the high voltage portion 7Ay to the support column 2A is viewed from the Y-axis direction.
- the linear distance from the high voltage unit 7Ay to the column 2A may be shorter than the linear distance from the high voltage unit 7Ay to the column 2B. Therefore, the linear distance from the high voltage unit 7Ay to the column 2B can be made longer than the linear distance from the high voltage unit 7Ay to the column 2A.
- the L-shaped discharge path is a path from the high voltage portion 7A to the support column 2A via the path in the Y-axis direction and the path in the X-axis direction. That is, in the voltage detection unit 7y, the electric field decomposed into each component in the X-axis direction and the Y-axis direction is smaller than the electric field in the linear direction connecting the high voltage portion 7A and the support column 2A, so that the discharge is suppressed. Can be done. Further, in the voltage generator 102 of the third embodiment, the linear spatial discharge path and the creeping discharge path, which is a curved path, are distinguished from each other. Therefore, the voltage detection unit 7y of the voltage generator 102 has an improved dielectric strength due to the effect of the insulating layer, as in the case of the first embodiment.
- the creepage path from the high voltage portion 7Ay to the support column 2B is also Y. It contains an L-shaped path seen from the axial direction. Therefore, the linear distance from the high voltage unit 7Ay to the column 2B can be shorter than the linear distance from the high voltage unit 7A to the column 2B described in the first embodiment.
- the voltage detection unit 7y is about 1.5 times larger than the voltage detection unit of the comparative example. Withstand voltage is possible.
- the voltage generator 102 of the third embodiment can prevent discharge between the high voltage unit 7Ay and the potential of the closed case 1. Further, since the voltage generator 102 can be made smaller and lighter, it is possible to realize a mounting structure having strong vibration resistance.
- the base plate 8 may have the same upper surface shape as the base plate 8y. That is, the base plate 8 may have two rectangular regions similar to the first rectangular region 81 and the second rectangular region 82. Further, the booster circuit units 61 to 63 may have the same top surface shape as the voltage detection unit 7y. That is, the booster circuit units 61 to 63 may have a rectangular region similar to the third rectangular region 77.
- the width of the first rectangular region 81 in the Y-axis direction and the width of the second rectangular region 82 in the Y-axis direction may be the same.
- the shape of the second rectangular region 82 may include a rectangular annular shape. That is, the third embodiment may be applied to the second embodiment. In this case, for example, the shape of the second rectangular region 82 is a shape including the second rectangular region 74 and the rectangular annular region 75 described in the second embodiment.
- the bending path seen from the Z-axis direction passing through the voltage detection units 7 and 7x is the first bending path
- the bending path seen from the Y-axis direction passing through the base plate 8y is the first curved path
- the curved path seen from the Z-axis direction passing through the base plate 8y is the second curved path
- the bending path seen from the Z-axis direction passing through the booster circuit units 61 to 63 is the third bending path.
- the creepage route including the first curved route or the second curved route is the first creeping route
- the creeping route including the third curved route is the second creeping route.
- the creepage path from the high voltage portion 7Ay to the support column 2A which is a ground portion having the same potential as the sealed case 1, includes a curved path, the voltage is the same as that of the first embodiment.
- the generator 102 can be miniaturized while ensuring high insulation performance.
- Embodiment 4 Next, the fourth embodiment will be described with reference to FIGS. 6 to 14.
- the discharge is suppressed by securing the creepage distance by the structure of the voltage detection units 7, 7x, 7y, but the discharge suppression may be insufficient only by securing the creepage distance by the structure. Therefore, in the fourth embodiment, in addition to the configurations of the first to third embodiments, the electric fields of the high voltage portions 7A, 7Ax, and 7Ay are relaxed.
- the electric field relaxation method of the high voltage unit 7A included in the voltage detection unit 7 will be described.
- the electric field relaxation method of the fourth embodiment can be applied to the voltage detection units 7x and 7y.
- FIG. 6 is a diagram showing a circuit configuration of the voltage generator according to the fourth embodiment.
- the voltage generator 101 includes booster circuit units 61 to 63, a voltage detection unit 7, two high voltage transformers 5, and a power supply device 9.
- the power supply device 9 generates an AC voltage and inputs a voltage to the high voltage transformer 5.
- the power supply device 9 is configured by using an inverter circuit or the like.
- the voltage generator 101 includes an input terminal included in the booster circuit unit 63, a voltage detection unit 7, and a connection point 10 connected to the ground potential.
- the voltage detection unit 7 has a short-circuit current suppression resistor 32, a voltage divider resistor unit 31 in which a plurality of voltage divider resistors 33 are connected in series, a connection point 35, and two connection fittings 41A.
- the short-circuit current suppression resistor 32 is a resistor that suppresses the short-circuit current and prevents the booster circuit units 61 to 63 from failing.
- the load for example, X-ray, electron beam, etc.
- the load for example, X-ray, electron beam, etc.
- the power supply device 9 which is a high-voltage power supply is frequently short-circuited (the outputs of the booster circuit units 61 to 63 are short-circuited to the ground).
- the voltage detection unit 7 suppresses the short-circuit current by the short-circuit current suppression resistor 32.
- the short-circuit current suppression resistor 32 suppresses the short-circuit current to 50 A.
- One end of the voltage dividing resistor unit 31 is connected to the connection point 10. Further, the other end of the voltage dividing resistor unit 31 is connected to the short circuit current suppression resistor 32 via one connecting fitting 41A.
- the voltage dividing resistor 33 arranged at one end is connected to the connection point 10, and the voltage dividing resistance 33 arranged at the other end is connected.
- the resistor 33 is connected to the short-circuit current suppression resistor 32 via one of the connecting fittings 41A.
- the voltage dividing resistor 33 arranged at one end and connected to the connection point 10 is connected to the voltage dividing resistor 33 in the subsequent stage via the connection point 35, and the connection point 35 is on the control side. It is connected.
- connection fitting 41A is connected to the load side. Further, the short-circuit current suppression resistor 32 is connected to the other connection fitting 41A and the output terminal 65 of the booster circuit unit 61.
- the output voltage from the booster circuit unit 61 is sent to one connection fitting 41A via the other connection fitting 41A and the short-circuit current suppression resistor 32 in the voltage detection unit 7. This output voltage is separated into the load side and the voltage dividing resistance unit 31 in the voltage detection unit 7 in one of the connection fittings 41A.
- the voltage dividing resistor unit 31 divides the output voltage at the connection point 35 and takes out a low voltage for control.
- the short-circuit current suppression resistor 32 is a resistor that suppresses the short-circuit current.
- the short-circuit current suppression resistor 32 tends to be large because it needs to have a high voltage and a withstand capacity that does not cause a problem even if a short-circuit current flows.
- the short-circuit current suppression resistor 32 is an elema (silicon carbide) resistor will be described, but the type, shape, and quantity of the resistor are not limited.
- the positions across the short-circuit current suppression resistor 32 connected to the output voltage are the positions where the maximum voltage is reached in the voltage generator 101.
- FIG. 7 is a diagram for explaining a configuration of a voltage detection unit included in the voltage generator according to the fourth embodiment. Note that FIG. 7 omits the illustration of the connection fitting 41A.
- a voltage dividing resistor unit 31 and a short-circuit current suppressing resistor 32 are arranged in the voltage detecting unit 7.
- the voltage dividing resistor unit 31 is connected to a connection point 10 connected to the ground potential. Further, the voltage dividing resistor unit 31 is connected to the short-circuit current suppression resistor 32 via a connection fitting 41A (not shown in FIG. 7).
- the short-circuit current suppression resistor 32 is connected to the output terminal 65 of the booster circuit unit 61 via a connection fitting 41A connected to the load side.
- the short-circuit current suppression resistor 32 is arranged at a position where the discharge generated between the short-circuit current suppression resistor 32 and the closed case 1 which is the ground potential can be suppressed. That is, as described with reference to FIG. 2, the short-circuit current suppression resistor 32 is located at a position where the high-voltage portion 7A is located near the center C1 of the shafts 20A and 20B and can suppress discharge on the support column 2A side of the center C1. Be placed. As a result, the voltage detection unit 7 can suppress the discharge on the support column 2A side rather than the center C1. This is because, as described in the first to third embodiments, the creepage distance from the high voltage portion 7A to the support column 2A is secured.
- connection portion between the short-circuit current suppression resistor 32 and the output terminal 65 of the booster circuit unit 61 tends to have an edge (prone to have an edge shape) and tends to have a high electric field. Further, the connection portion between the short-circuit current suppression resistor 32 and the voltage dividing resistor unit 31 tends to have an edge and a high electric field.
- connection portion with the output terminal 65 and the connection portion with the voltage dividing resistor unit 31 are joined by solder, bolts, etc., so that due to insufficient soldering, the shape of the end face of the bolts, etc. It is easy to make sharp angles. For this reason, it is common to use a rounded connection fitting so that the edge is hidden at the connection portion with the short-circuit current suppression resistor 32. This makes it possible for the voltage detection unit 7 to prevent discharge.
- connection fitting depends on the voltage applied to the high voltage section 7A, the distance from the high voltage section 7A, the shape of the connection fitting, and the size of the connection fitting. Therefore, when the distance cannot be secured due to the miniaturization, the connection fitting has a shape as round as possible, and the larger the size, the more the electric field can be relaxed. For example, when the connection fittings are spheres of different sizes, the larger the size of the sphere (the longer the diameter), the lower the electric field strength.
- FIG. 8 is a diagram showing a connection configuration example of a short-circuit current suppression resistor and a connection fitting included in the voltage generator according to the fourth embodiment.
- FIG. 9 is a diagram showing a first connection configuration example of the voltage detection unit and the connection fitting included in the voltage generator according to the fourth embodiment.
- FIG. 8 shows a perspective view of the short-circuit current suppression resistor 32 and the connection fitting 41A
- FIG. 9 shows a front view of the voltage detection unit 7 and the connection fitting 41A.
- connection fitting 41A The shape of the connection fitting 41A described here is an example.
- the type of the connection fitting 41A and the shape of whether or not the connection fitting 41A is rounded do not matter. As shown in FIG. 8, one connection fitting 41A is connected to one end of the rod-shaped short-circuit current suppression resistor 32, and one connection fitting 41A is connected to the other end.
- connection fitting 41A is, for example, a fitting having an L-shaped cross section formed by bending one end of a conductive thin plate member in the upward direction (Z-axis direction).
- the connection fitting 41A has a plate-shaped bottom surface portion 47 and a plate-shaped back surface portion 46 bent upward.
- the bottom surface portion 47 of the connection fitting 41A is attached to an insulating substrate or the like of the voltage detection unit 7, and the back surface portion 46 extends in a direction perpendicular to the bottom surface portion 47.
- the insulating substrate is a substrate arranged at a position parallel to the XY plane, and the bottom surface portion 47 is attached to the insulating substrate so as to be parallel to the XY plane.
- TJ portion 45 an electrical triple point (Triple Junction, hereinafter referred to as TJ portion 45) is formed at the boundary between the connection fitting 41A, the voltage detection unit 7 which is an insulator, and a gas such as air or an insulating gas. Because it is done. Therefore, an extremely local electric field concentration may be caused in the TJ section 45, and a creeping discharge may occur triggered by a partial discharge in the TJ section 45.
- the contact angle of the TJ portion 45 formed by the connection fitting 41A and the voltage detection unit 7 is important. Specifically, assuming that the contact angle ⁇ formed by the connection fitting 41A and the voltage detection unit 7 is the contact angle ⁇ , it is desirable that the contact angle ⁇ is 90 degrees or more.
- the end portion of the connection fitting 41A is chamfered in order to suppress the electric field strength. For example, the bottom side of the back surface portion 46 of the connection fitting 41A is chamfered.
- the contact angle ⁇ formed by the connection fitting 41A and the voltage detection unit 7 is smaller than 90 degrees. Therefore, in the fourth embodiment, a spacer is provided between the connection fitting 41A and the voltage detection unit 7 so that the contact angle ⁇ of the TJ portion 45 does not become an acute angle.
- FIG. 10 is a diagram showing a second connection configuration example of the voltage detection unit and the connection fitting included in the voltage generator according to the fourth embodiment.
- FIG. 10 shows a front view of the voltage detection unit 7 and the connection fitting 41A.
- a spacer 43 is provided between the connection fitting 41A and the voltage detection unit 7 so that the contact angle ⁇ formed by the connection fitting 41A and the voltage detection unit 7 is not smaller than 90 degrees. Have been placed.
- the spacer 4 described in the third embodiment is the first spacer, and the spacer 43 is the second spacer.
- a gap is provided between the connection fitting 41A and the voltage detection unit 7 by disposing a spacer 43 such as a washer between the connection fitting 41A and the voltage detection unit 7. It becomes.
- the position of the TJ portion 45 is not the boundary point formed by the connection fitting 41A and the voltage detection unit 7, but the boundary point formed by the connection fitting 41A and the spacer 43, and the voltage detection unit 7 and the spacer 43. It becomes a boundary point formed by. As a result, the electric field concentration in the TJ unit 45 is relaxed, and creeping discharge can be suppressed.
- the spacer 43 may be a conductor or a non-conductor.
- the contact angle ⁇ of the TJ portion 45 between the spacer 43 and the voltage detection unit 7 is 90 degrees.
- the contact angle ⁇ of the TJ portion 45 between the spacer 43 and the connection fitting 41A is 90 degrees.
- the spacer 43 is arranged inside the bottom surface portion 47 of the connection fitting 41A with respect to the bottom surface portion 47, the influence of the connection fitting 41A becomes dominant, and the electric field of the TJ portion 45 is further suppressed.
- the spacer 43 is arranged so as to be covered with the bottom surface portion 47 of the connection fitting 41A, that is, the spacer 43 is arranged so as not to protrude from the bottom surface portion 47 when the bottom surface portion 47 is viewed from above, the spacer 43 is used. It is possible to prevent the discharge in the air from 43.
- the spacer 43 is arranged for the purpose of providing a gap between the connection fitting 41A and the voltage detection unit 7, the quantity and shape of the spacer 43 do not matter.
- the spacer 43 is formed of, for example, an annular plate-shaped member.
- FIG. 11 is a perspective view showing a first configuration example of the spacer included in the voltage generator according to the fourth embodiment.
- the spacer 43A which is the first configuration example of the spacer 43, is formed of a polygonal annular plate-shaped member such as a rectangular annular.
- the spacer 43A may be formed of a triangular annular plate-shaped member, or may be formed of a pentagonal or larger polygonal annular plate-shaped member.
- FIG. 12 is a perspective view showing a second configuration example of the spacer included in the voltage generator according to the fourth embodiment.
- the spacer 43B which is a second configuration example of the spacer 43, is formed of an annular plate-shaped member.
- FIG. 13 is a perspective view showing a third configuration example of the spacer included in the voltage generator according to the fourth embodiment.
- the spacer 43C which is a third configuration example of the spacer 43
- the corner portion of the spacer 43B is scraped off.
- the spacer 43C is chamfered with respect to the spacer 43B.
- the spacer 43C has a circular shape that minimizes the electric field strength of the spacer 43 alone, and is chamfered.
- FIG. 14 is a perspective view showing a fourth configuration example of the spacer included in the voltage generator according to the fourth embodiment.
- the spacer 43D which is a fourth configuration example of the spacer 43
- the inside of the upper surface and the inside of the bottom surface of the corner portions of the spacer 43B are scraped off. Further, the spacer 43D is processed so that the outer side surface bulges outward.
- the spacer 43C formed of a circular annular plate-shaped member and chamfered, and the spacer 43D formed of a circular annular plate-shaped member and having chamfering and outward bulging are more than the spacers 43A and 43B. The electric field strength can be suppressed.
- the spacer 43 is arranged between the connection fitting 41A and the voltage detection unit 7, so that the height is higher than that of the first to third embodiments.
- the electric field of the voltage unit 7A can be relaxed. Therefore, in the fourth embodiment, creeping discharge can be suppressed more than in the first to third embodiments.
- the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Dc-Dc Converters (AREA)
Abstract
電圧発生装置は、グランド電位の密閉ケース(1)と、密閉ケース(1)に収められて、電圧を昇圧する高電圧トランスと、密閉ケース(1)に収められて、高電圧トランスが出力する電圧を昇圧する昇圧回路ユニットと、密閉ケース(1)に収められて、昇圧回路ユニットが昇圧した電圧を検出する電圧検出ユニット(7)と、を備え、電圧検出ユニット(7)で最も高い電圧が印加される部分である高電圧部(7A)から、密閉ケース(1)と同電位のグランド箇所までの第1の沿面経路は、曲折した経路である第1の曲折経路を含んでいる。
Description
本開示は、電圧を昇圧する電圧発生装置に関する。
コッククロフト(Cockcroft)回路を用いた昇圧回路によって高電圧を発生させる電圧発生装置がある。この電圧発生装置では、昇圧回路などが配置された複数の絶縁基板が段積みされており、各昇圧回路で段階的に電圧が昇圧されて、直流高電圧を生成している。
例えば、特許文献1に記載の電圧発生装置では、昇圧回路を備えた円板状の絶縁基板が段積みされて円筒状の密閉ケースに収納されている。この電圧発生装置では、円板の円中心を通過する直線を対象軸として、コッククロフト回路を構成するコンデンサとダイオードとを対称に配置することで、小型化と放電抑制との両立を実現している。
しかしながら、上記特許文献1の技術では、電圧発生装置内で最上段などに配置されて高電圧が印加される絶縁基板において、最も高電圧が印加される部分と、最も低電圧が印加される部分との間の直線距離を長くしておかないと十分な絶縁性能を確保することができなかった。このため、電圧発生装置が大型化するという問題があった。
本開示は、上記に鑑みてなされたものであって、高い絶縁性能を確保しつつ小型化を実現することができる電圧発生装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本開示の電圧発生装置は、グランド電位のケースと、ケースに収められて、電圧を昇圧する高電圧トランスと、ケースに収められて、高電圧トランスが出力する電圧を昇圧する昇圧回路ユニットと、ケースに収められて、昇圧回路ユニットが昇圧した電圧を検出する電圧検出ユニットと、を備えている。電圧検出ユニットで最も高い電圧が印加される部分である第1の高電圧部から、ケースと同電位のグランド箇所までの第1の沿面経路は、曲折した経路である第1の曲折経路を含んでいる。
本開示によれば、高い絶縁性能を確保しつつ小型化を実現することができるという効果を奏する。
以下に、本開示にかかる電圧発生装置の実施の形態を図面に基づいて詳細に説明する。
実施の形態1.
図1は、実施の形態1にかかる電圧発生装置の構成を示す図である。図1では、電圧発生装置101が備える絶縁基板の実装構造、すなわち電圧発生装置101の組立構造を示している。図1では、円板状の絶縁基板が配置された円筒形の密閉ケース1を、筒軸を含んだ平面で切断した場合の断面図を示している。なお、以下の説明では、密閉ケース1の底面側を下側とし、密閉ケース1の上面側を上側として説明する。また、以下の説明では、絶縁基板の上面と平行な面内の2つの軸であって互いに直交する2つの軸をX軸およびY軸とする。また、X軸およびY軸に直交する軸をZ軸とする。図1では、電圧発生装置101をXZ平面で切断した場合の断面図を示している。
図1は、実施の形態1にかかる電圧発生装置の構成を示す図である。図1では、電圧発生装置101が備える絶縁基板の実装構造、すなわち電圧発生装置101の組立構造を示している。図1では、円板状の絶縁基板が配置された円筒形の密閉ケース1を、筒軸を含んだ平面で切断した場合の断面図を示している。なお、以下の説明では、密閉ケース1の底面側を下側とし、密閉ケース1の上面側を上側として説明する。また、以下の説明では、絶縁基板の上面と平行な面内の2つの軸であって互いに直交する2つの軸をX軸およびY軸とする。また、X軸およびY軸に直交する軸をZ軸とする。図1では、電圧発生装置101をXZ平面で切断した場合の断面図を示している。
電圧発生装置101は、グランド電位のケースである密閉ケース1と、支柱2A,2Bとを備えている。また、電圧発生装置101は、高電圧トランス5、昇圧回路ユニット61~63、および電圧検出ユニット7からなる高電圧発生部を備えている。実施の形態1では、電圧発生装置101が備える昇圧回路ユニットが、昇圧回路ユニット61~63である場合について説明するが、昇圧回路ユニットは、2つであってもよいし、4つ以上であってもよい。
昇圧回路ユニット61~63は、円板状の絶縁基板上に配置された回路ユニットであり、昇圧を実行する。昇圧回路ユニット61~63には、コッククロフト回路が配置されている。昇圧回路ユニット61~63は、高電圧の安定性向上のために、電圧検出ユニット7で検出された信号を用いてフィードバック制御を行う。
電圧発生装置101では、昇圧回路ユニット61~63および電圧検出ユニット7がXY平面に平行になるよう配置され、支柱2A,2BがZ軸方向に平行になるよう配置されている。高電圧発生部が密閉ケース1に入れられる際には、密閉ケース1の内壁に対向するように設けられた2本の支柱2A,2Bに、高電圧発生部が取り付けられる。
密閉ケース1の底部には、2つの高電圧トランス5が配置されている。密閉ケース1内では、高電圧トランス5よりも上部側に、昇圧回路ユニット61~63が配置されている。昇圧回路ユニット61~63は、密閉ケース1内で、等間隔に段積みされている。
昇圧回路ユニット63が下から1段目のユニットであり、昇圧回路ユニット62が下から2段目のユニットであり、昇圧回路ユニット61が下から3段目のユニットである。また、密閉ケース1内では、昇圧回路ユニット61よりも上部側に電圧検出ユニット7が配置されている。昇圧回路ユニット61~63および電圧検出ユニット7は、それぞれの上面および下面が平行となるよう、配置されている。
また、電圧発生装置101では、電圧発生装置101内での絶縁性を向上させるために、昇圧回路ユニット61~63および電圧検出ユニット7が、特定距離だけ離されて配置されている。また、電圧発生装置101では、電圧発生装置101内での絶縁性を向上させるために、空気より絶縁性能が高い、ガス、油、樹脂などの絶縁材(後述する絶縁層)が密閉ケース1内に充填され収納されている。また、絶縁材のなかでガス等の気体に関しては、他にはドライエアー、窒素、水素、または六フッ化硫黄が挙げられる。
また、電圧発生装置101では、密閉ケース1に対して高電位となる部位の電気力線の集中を抑制するため、構造上の工夫として、電界緩和された金属で覆うなどの処置が取られている。電気力線の集中を抑制するための理想の構造は、エッジが無く球体に近い形状である。
2つの高電圧トランス5は、互いに電気的に接続されている。また、高電圧トランス5は、昇圧回路ユニット63に電気的に接続されている。昇圧回路ユニット63は、昇圧回路ユニット62に電気的に接続され、昇圧回路ユニット62は、昇圧回路ユニット61に電気的に接続されている。
高電圧トランス5は、インバータ回路(図示せず)に接続されており、インバータ回路の出力を-数kVから-数十kVに昇圧する。
昇圧回路ユニット63は、高電圧トランス5の出力電圧を3~6倍である10kV~30kVに昇圧し、昇圧回路ユニット62は、昇圧回路ユニット63の出力電圧を3~6倍に昇圧し、昇圧回路ユニット61は、昇圧回路ユニット62の出力電圧を3~6倍に昇圧する。昇圧回路ユニット61が昇圧した直流高電圧は、外部に出力される。
例えば、昇圧回路ユニット61~63の1ユニット当たりの生成電圧を20kVとした場合、4ユニットの昇圧回路ユニットを直列接続することで、80kVの高電圧を作ることができる。また、電圧発生装置101がさらに高い電圧を必要とする場合は、高電圧を発生させる昇圧回路ユニットの直列数を増やすことで対応が可能である。このように、昇圧回路ユニットの直列数を増減することで、電圧発生装置101は、任意の高電圧を作ることができる。
電圧検出ユニット7は、円板状の絶縁基板上に配置された検出ユニットである。電圧検出ユニット7は、昇圧回路ユニット61で生成した高電圧の安定性向上のため、昇圧回路ユニット61が昇圧した高電圧を検出する。すなわち、電圧検出ユニット7は、昇圧回路ユニット61が出力する高電圧をモニタリングする。上述のように、電圧発生装置101が高電圧を生成する場合には、昇圧回路ユニットのユニット数を増設することになるが、積み重ねる段数が増えると振動に対する強度が著しく低下する。そこで、電圧発生装置101では、密閉ケース1の内部に設けられた2本の支柱2A,2Bとの絶縁を考慮して、昇圧回路ユニット61~63および電圧検出ユニット7が支柱2A,2Bに固定されている。
図2は、実施の形態1にかかる電圧発生装置が備える電圧検出ユニットの構成を示す図である。図2では、図1に示すII-II線に沿って電圧発生装置101を切断した場合の電圧発生装置101の断面構成として、電圧検出ユニット7の上面図を示している。
実施の形態1では、支柱2Aの軸である軸20Aと支柱2Bの軸である軸20Bとを結ぶ線がX軸方向に平行な場合、すなわちXY平面内における軸20A,20Bを結ぶ線がX軸方向に平行な場合について説明する。
実施の形態1の電圧検出ユニット7は、上面から見た場合に第1の矩形領域71と第2の矩形領域72とを有している。第1の矩形領域71は、X軸方向に延びる辺とY軸方向に延びる辺とを有している。第2の矩形領域72は、X軸方向に延びる辺とY軸方向に延びる辺とを有している。第2の矩形領域72のY軸方向の幅は、第1の矩形領域71のY軸方向の幅よりも短い。
実施の形態1では、電圧検出ユニット7に最大80kVの高電圧が印加される場合について説明する。電圧検出ユニット7は、最大80kVの高電圧が印加されると、内部回路の分圧比で低電圧化して電圧を検出する。電圧発生装置101では、この検出された電圧に基づいて、フィードバック制御が実行される。
図2では、電圧検出ユニット7上で最も高電圧が印加される部分を高電圧部7Aで示し、電圧検出ユニット7上で最も低電圧が印加される部分を低電圧部7Bで示している。電圧検出ユニット7における高電位側の高電圧部7Aは、密閉ケース1のグランド電位に接続された支柱2A,2Bから離れた位置に配置される。また、電圧検出ユニット7における低電位側の低電圧部7Bは、支柱2A,2Bと同電位のため支柱2A,2Bに近い位置に配置される。
実施の形態1では、高電圧部7Aおよび低電圧部7Bが第1の矩形領域71に発生するよう、電圧検出ユニット7が構成されている。また、電圧検出ユニット7では、高電圧部7Aから支柱2Aまでの沿面経路が直線状の経路とならないよう、第1の矩形領域71のY軸方向の幅、第2の矩形領域72のY軸方向の幅、および高電圧部7Aの位置が調整されている。すなわち、電圧検出ユニット7において、高電圧部7Aから支柱2Aまでの沿面経路がL字状の曲折した経路となるよう、第1の矩形領域71のY軸方向の幅、第2の矩形領域72のY軸方向の幅、および高電圧部7Aの位置が調整されている。これにより、高電圧部7Aから支柱2Aまでの直線上に空間、すなわち絶縁層が存在することとなる。
高電圧部7Aから支柱2Aまでの沿面経路は、第1の矩形領域71と第2の矩形領域72との境界位置で曲折しており、これにより高電圧部7Aから支柱2Aまでの沿面経路がL字状の経路となっている。具体的には、実施の形態1の沿面経路は、第1の矩形領域71と第2の矩形領域72との境界位置で曲折し、第2の矩形領域72を通ってグランド箇所である支柱2Aに辿り着く経路である。なお、高電圧部7Aから支柱2Aまでの沿面経路の曲折角度は90度に限らず、90度未満であってもよい。
例えば、高電圧部7Aは、軸20A,20Bの中心C1に近い位置で、且つ高電圧部7Aから支柱2Aまでの沿面距離と、高電圧部7Aから支柱2Bまでの沿面距離とが同じになるよう電圧検出ユニット7上に設けられる。すなわち、高電圧部7Aと支柱2Aとの間の沿面距離と、高電圧部7Aと支柱2Bとの間の沿面距離とが略均等になるように高電圧部7Aが配置される。実施の形態1では、高電圧部7Aから支柱2Aまでの沿面経路がL字状の経路であるので、高電圧部7Aから支柱2Aまでの直線距離を、高電圧部7Aから支柱2Bまでの直線距離よりも短くすることができる。これにより、電圧検出ユニット7では、沿面放電を抑制することが可能となる。
高電圧部7Aでは、最も電圧の低い支柱2A,2Bに対して放電が発生すると電圧検出ユニット7が有する回路が破壊に至ることがある。電圧検出ユニット7では、高電圧部7Aから支柱2Aまでの沿面経路がL字状の経路となっているので、高電圧部7Aから支柱2Aまでの沿面経路および高電圧部7Aから支柱2Bまでの沿面経路を長くすることができる。すなわち、電圧検出ユニット7では、高電圧部7Aと、支柱2A,2Bとの間に十分な空間距離および十分な沿面距離を確保することができる。
ここで、比較例の電圧検出ユニットについて考える。比較例の電圧検出ユニットは、第1の矩形領域のY軸方向の幅と第2の矩形領域のY軸方向の幅とが同じである。すなわち、比較例の電圧検出ユニットは、第1の矩形領域と第2の矩形領域とが合わされた1つの矩形領域を有している。また、比較例の電圧検出ユニットは、密閉ケース内に空気より絶縁性能が高い絶縁層が充填されていない。
比較例の電圧検出ユニットのように1つの矩形領域しかない場合、高電圧部から支柱までの沿面経路が直線となり、高電圧部から支柱に向かって直線方向に最も強い電界が発生する。このように、比較例の電圧検出ユニットは、空間放電と沿面放電の経路が同一となる。したがって、比較例の電圧検出ユニットは、密閉ケース内に空気より絶縁性能が高い絶縁ガスといった絶縁層が充填された場合であっても放電抑制の効果が少なかった。すなわち、比較例の電圧検出ユニットは、沿面で放電してしまう可能性が高かった。
一方、実施の形態1の電圧発生装置101は、第1の矩形領域71のY軸方向の幅よりも第2の矩形領域72のY軸方向の幅が細く絞られることで、高電圧部7Aから支柱2Aまでの沿面経路をL字状の経路としている。また、実施の形態1の電圧発生装置101は、ガス、油、樹脂などの絶縁層が密閉ケース1内に充填され収納されているので、高電圧部7Aから支柱2Aまでの直線経路間が、空気より絶縁性能が高くなっている。このような構成により、電圧発生装置101では、直線状の空間放電の経路とL字状の沿面放電の経路とが区別される。このため、電圧発生装置101の電圧検出ユニット7と、比較例の電圧検出ユニットとでは、直線状の空間放電の距離が変わらなくても絶縁層の効果によって、電圧発生装置101の電圧検出ユニット7の方が絶縁性能である絶縁耐圧が向上する。すなわち、電圧発生装置101の電圧検出ユニット7では、空間放電の経路が、電圧検出ユニット7が存在しない経路を含み、絶縁層が密閉ケース1内に充填されているので沿面で放電しない。
絶縁層が密閉ケース1内に充填されている場合、空気が密閉ケース1内に充填されている場合よりも、約3倍の放電抑制効果がある。例えばある2点間の距離が変わらない条件下で、空気中では20kVで放電するのに対し、絶縁ガス中では60kVまで放電しないことになる。なお、この絶縁層による効果は空間放電に限られ、沿面放電においては空間放電ほどの抑制効果はない。
電圧検出ユニット7では、L字状の放電経路は、高電圧部7AからY軸方向の経路とX軸方向の経路とを介した支柱2Aまでの経路である。すなわち、電圧検出ユニット7では、高電圧部7Aと支柱2Aとを結ぶ直線方向の電界と比べ、X軸方向およびY軸方向のそれぞれの成分に分解された電界は小さいため、放電を抑制することができる。また、実施の形態1の電圧発生装置101では、直線状の空間放電の経路と曲折経路である沿面放電の経路とが区別される。このため、電圧発生装置101の電圧検出ユニット7は、絶縁層の効果によって絶縁耐圧が向上する。このように、電圧発生装置101は、高電圧部7Aから支柱2Aまでの沿面経路がL字状の経路となっているので、支柱2Aに対して高い絶縁性能を確保することが可能となる。
電圧検出ユニット7は、支柱2Aに対して高い絶縁性能を確保できるので、支柱2Aと支柱2Bとを短い距離で接続することが可能となる。支柱2A,2B間の距離と、比較例の電圧検出ユニットにおける支柱間の距離とが同じである場合、電圧検出ユニット7は、比較例の電圧検出ユニットに比べて約1.5倍の耐電圧化が可能となる。換言すると、電圧検出ユニット7は、比較例の電圧検出ユニットと同等の耐電圧化を実現する場合、比較例よりも支柱2A,2B間の距離を短くすることができる。このように、電圧発生装置101は、密閉ケース1の電位に対して高電圧部7Aとの間の放電を防止できる。また、電圧発生装置101の小型化および軽量化を実現できるので、耐振動性に強固な取り付け構造を実現できる。したがって、昇圧回路ユニットの段積み数が増加しても、小型化された耐振動性に強固な電圧発生装置101を実現することが可能となる。
なお、昇圧回路ユニット61~63は、電圧検出ユニット7と同様の上面形状を有していてもよい。すなわち、昇圧回路ユニット61~63は、第1の矩形領域71および第2の矩形領域72と同様の矩形領域を有していてもよい。この場合も、昇圧回路ユニット61~63で最も高い電圧が印加される部分である高電圧部から、支柱2Aまでの沿面経路は、L字状の曲折した経路を含んでいる。電圧検出ユニット7上の高電圧部が第1の高電圧部であり、昇圧回路ユニット61~63上の高電圧部が第2の高電圧部である。
また、昇圧回路ユニット61~63と支柱2A,2Bとの間は、昇圧回路ユニット61~63が備え得る全ての回路ブロックに対して固定されてもよいが、2~3ブロックに1つといった具合に間引いて固定されてもよい。また、電圧検出ユニット7および昇圧回路ユニット61~63は、支柱2A,2Bに固定される場合に限らず、密閉ケース1の内壁面に固定されてもよい。
このように実施の形態1では、高電圧部7Aから、密閉ケース1と同電位のグランド箇所である支柱2Aまでの沿面経路が曲折経路を含んでいる。これにより、沿面経路が直線のみの場合に比べて、高電圧部7Aから支柱2Aまでの沿面経路が長くなるので、支柱2A,2B間の距離を短くすることができる。したがって、電圧発生装置101は、高い絶縁性能を確保しつつ小型化を実現することができる。
また、高電圧部7Aから支柱2Aまでの沿面経路である放電経路が直線からL字状の経路に変わっているので、沿面経路が、高電圧部7Aから支柱2Aまでの間の電界分布の中で電界の小さい経路となっている。これにより、支柱2A,2Bに対する放電を抑制でき、絶縁性能が向上する。
実施の形態2.
つぎに、図3を用いて実施の形態2について説明する。実施の形態2では、高電圧部からグランド電位に接続された支柱2Bまでの沿面経路を、複数回に渡って曲折させた経路とする。
つぎに、図3を用いて実施の形態2について説明する。実施の形態2では、高電圧部からグランド電位に接続された支柱2Bまでの沿面経路を、複数回に渡って曲折させた経路とする。
図3は、実施の形態2にかかる電圧発生装置が備える電圧検出ユニットの構成を示す図である。図3では、図1に示すII-II線に沿って電圧発生装置101を切断した場合の電圧発生装置101の断面構成として、電圧検出ユニット7xの上面図を示している。
図3の各構成要素のうち図2に示す実施の形態1の電圧検出ユニット7と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。実施の形態2の電圧発生装置101は、実施の形態1の電圧発生装置101と比較して、電圧検出ユニット7の代わりに電圧検出ユニット7xを備えており、その他の構成は同じである。
実施の形態2でも、実施の形態1と同様に、支柱2Aの軸である軸20Aと支柱2Bの軸である軸20Bとを結ぶ線がX軸方向に平行な場合について説明する。
実施の形態2の電圧検出ユニット7xは、上面から見た場合に第1の矩形領域73と第2の矩形領域74と、矩形環状領域75とを有している。第1の矩形領域73は、第1の矩形領域71と同様の領域であり、X軸方向に延びる辺とY軸方向に延びる辺とを有している。第2の矩形領域74は、X軸方向に延びる辺とY軸方向に延びる辺とを有している。第2の矩形領域74のY軸方向の幅は、第1の矩形領域73のY軸方向の幅よりも短い。
矩形環状領域75は、中央領域76が矩形状に繰り抜かれており、これにより、ロの字状となっている。矩形環状領域75における外周部のY軸方向の幅は、第1の矩形領域73のY軸方向の幅と同じである。
図3では、電圧検出ユニット7x上で最も高電圧が印加される部分を高電圧部7Axで示し、電圧検出ユニット7x上で最も低電圧が印加される部分を低電圧部7Bxで示している。電圧検出ユニット7xにおける高電位側の高電圧部7Axは、密閉ケース1のグランド電位に接続された支柱2A,2Bから離れた位置に配置される。また、電圧検出ユニット7xにおける低電位側の低電圧部7Bは、支柱2A,2Bと同電位のため支柱2A,2Bに近い位置に配置される。
実施の形態2では、高電圧部7Axおよび低電圧部7Bxが第1の矩形領域73に発生するよう、電圧検出ユニット7xが構成されている。また、電圧検出ユニット7xでは、高電圧部7Axから支柱2Aまでの沿面距離が直線状の距離とならないよう、第1の矩形領域73のY軸方向の幅、第2の矩形領域74のY軸方向の幅、矩形環状領域75の寸法、および高電圧部7Axの位置が調整されている。具体的には、電圧検出ユニット7xにおいて、高電圧部7Aから支柱2Aまでの沿面経路が、XY平面内で∩状または∪状に曲がる曲折経路を含むよう、第1の矩形領域73のY軸方向の幅、第2の矩形領域74のY軸方向の幅、矩形環状領域75の寸法、および高電圧部7Axの位置が調整されている。これにより、高電圧部7Axから支柱2Aまでの直線上に絶縁層が存在することとなる。
例えば、高電圧部7Axは、軸20A,20Bの中心C1に近い位置で、且つ高電圧部7Axから支柱2Aまでの沿面距離と、高電圧部7Axから支柱2Bまでの沿面距離とが同じになるよう電圧検出ユニット7x上に設けられる。すなわち、高電圧部7Axと支柱2Aとの間の沿面距離と、高電圧部7Aと支柱2Bとの間の沿面距離とが略均等になるように高電圧部7Axが配置される。
高電圧部7Axは、部分的な狭い領域ではなく、広範囲に広がる場合がある。この場合、実施の形態1のような電圧検出ユニット7の構造では、高電圧部7Axから支柱2Aまでの沿面経路が直線となってしまう。
一方、実施の形態2の電圧発生装置101は、高電圧部7Axがロの字状を有した矩形環状領域75を有しており、高電圧部7Axから支柱2Aまでの沿面経路が、矩形環状領域75を通る曲折経路となる。具体的には、実施の形態2の沿面経路は、第1の矩形領域73から第2の矩形領域74を通り、第2の矩形領域74と矩形環状領域75との境界位置で曲折し、矩形環状領域75内で曲折してグランド箇所である支柱2Aに辿り着く経路である。すなわち、高電圧部7Axから支柱2Aまでの沿面経路が、第2の矩形領域74と矩形環状領域75との境界位置、矩形環状領域75内といった、複数個所で曲折した曲折経路である。したがって、高電圧部7Axから支柱2Aまでの直線距離を、高電圧部7Axから支柱2Bまでの直線距離よりも短くすることができる。
実施の形態2の電圧検出ユニット7xでは、ロの字状の放電経路は、高電圧部7AxからY軸方向の経路、X軸方向の経路、Y軸方向の経路、X軸方向の経路、Y軸方向の経路、およびX軸方向の経路を介した支柱2Aまでの経路である。すなわち、電圧検出ユニット7xでは、高電圧部7Axと支柱2Aとを結ぶ直線方向の電界と比べ、X軸方向およびY軸方向のそれぞれの成分に分解された電界は小さいため、放電を抑制することができる。
このような構成により、実施の形態2の電圧発生装置101では、直線状の空間放電の経路と矩形環状領域75を通る曲折経路とが区別される。このため、電圧発生装置101の電圧検出ユニット7xは、実施の形態1の場合と同様に、絶縁層の効果によって絶縁耐圧が向上する。
矩形環状領域75のようにロの字状の場合、高電圧部7Axから支柱2Aまでの間の電界方向に垂直となるY軸方向の電界が特に小さい。また、支柱2A,2B間の距離と、比較例の電圧検出ユニットにおける支柱間の距離とが同じである場合、電圧検出ユニット7xは、比較例の電圧検出ユニットに比べて約1.5倍の耐電圧化が可能となる。このように、実施の形態2の電圧発生装置101は、密閉ケース1の電位に対して高電圧部7Axとの間の放電を防止できる。また、電圧発生装置101の小型化および軽量化を実現できるので、耐振動性に強固な取り付け構造を実現できる。
また、実施の形態1と同様に、高電圧部7Axから支柱2Aまでの沿面経路である放電経路が直線からロの字状の経路を含んだ経路に変わっているので、沿面経路が、高電圧部7Axから支柱2Aまでの間の電界分布の中で電界の小さい経路となっている。これにより、支柱2A,2Bに対する放電を抑制でき、絶縁性能が向上する。
なお、昇圧回路ユニット61~63は、電圧検出ユニット7xと同様の上面形状を有していてもよい。すなわち、昇圧回路ユニット61~63は、第1の矩形領域73および第2の矩形領域74と同様の矩形領域、および矩形環状領域75と同様の矩形環状領域を有していてもよい。
このように実施の形態2では、高電圧部7Axから、密閉ケース1と同電位のグランド箇所である支柱2Aまでの沿面経路が曲折経路を含んでいるので、実施の形態1と同様に、電圧発生装置101は、高い絶縁性能を確保しつつ小型化を実現することができる。
実施の形態3.
つぎに、図4および図5を用いて実施の形態3について説明する。実施の形態3では、電圧検出ユニット7の底部にスペーサおよび台座であるベースプレートを設ける。これにより、電圧検出ユニット7から支柱2Aまでの沿面経路を、スペーサおよびベースプレートを用いた曲折経路とする。
つぎに、図4および図5を用いて実施の形態3について説明する。実施の形態3では、電圧検出ユニット7の底部にスペーサおよび台座であるベースプレートを設ける。これにより、電圧検出ユニット7から支柱2Aまでの沿面経路を、スペーサおよびベースプレートを用いた曲折経路とする。
図4は、実施の形態3にかかる電圧発生装置の構成を示す図である。図4では、電圧発生装置102が備える絶縁基板の実装構造を示している。図4では、円板状の絶縁基板が配置された円筒形の密閉ケース1を、筒軸を含んだ平面で切断した場合の断面図を示している。図4の各構成要素のうち図1に示す実施の形態1の電圧発生装置101と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
電圧発生装置102は、電圧発生装置101が備える構成要素に加えて、ベースプレート8,8yおよびスペーサ4を備えている。また、電圧発生装置102は、電圧発生装置101と比較して、電圧検出ユニット7の代わりに電圧検出ユニット7yを備えている。
ベースプレート8は、昇圧回路ユニット61~63が載置される円板状のプレートであり、ベースプレート8yは、電圧検出ユニット7yが載置される円板状のプレートである。ベースプレート8,8yは、XY平面に平行な方向に配置される。1つのベースプレートには、1つのユニットが載置される。すなわち、電圧発生装置102は、昇圧回路ユニット61~63を載置する3枚のベースプレート8と、電圧検出ユニット7yを載置する1枚のベースプレート8yとを備えている。ベースプレート8,8yは、絶縁材で構成されている。スペーサ4は、ベースプレート8,8yの上面からZ軸方向に延設されている。例えば、ベースプレート8y上のスペーサ4は、ベースプレート8yの上面から電圧検出ユニット7yの底面に向かって延設されている。このように、電圧検出ユニット7yとベースプレート8yとが特定間隔だけ離されて配置されるよう、ベースプレート8yと電圧検出ユニット7yとの間の特定位置にスペーサ4が配置される。
各ベースプレート8,8yは、支柱2A,2Bにネジ等で固定される。昇圧回路ユニット61~63は、ベースプレート8の上に立てられた複数の絶縁タイプのスペーサ4を介してベースプレート8と平行に取り付けられる。また、電圧検出ユニット7yは、ベースプレート8yの上に立てられた複数の絶縁タイプのスペーサ4を介してベースプレート8yと平行に取り付けられる。
電圧検出ユニット7yから支柱2Aまでの沿面経路は、Z軸方向に延びるスペーサ4と、XY平面に平行なベースプレート8yとを経由している。したがって、電圧検出ユニット7yから支柱2Aまでの沿面経路は、Y軸方向から見てL字状の経路となっている。具体的には、実施の形態3の沿面経路は、高電圧部7Ayからスペーサ4を通り、スペーサ4とベースプレート8yとの境界位置で曲折し、ベースプレート8yを通ってグランド箇所である支柱2Aに辿り着く経路である。
図5は、実施の形態3にかかる電圧発生装置が備える電圧検出ユニットの構成を示す図である。図5では、図4に示すV-V線に沿って電圧発生装置101を切断した場合の電圧発生装置102の断面構成として、電圧検出ユニット7yの上面図を示している。
図5の各構成要素のうち図2に示す実施の形態1の電圧検出ユニット7と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。実施の形態3でも、実施の形態1と同様に、支柱2Aの軸である軸20Aと支柱2Bの軸である軸20Bとを結ぶ線がX軸方向に平行な場合について説明する。
実施の形態3の電圧検出ユニット7yは、上面から見た場合に第3の矩形領域77を有している。ベースプレート8yは、上面から見た場合に第1の矩形領域81と第2の矩形領域82とを有している。第1の矩形領域81は、X軸方向に延びる辺とY軸方向に延びる辺とを有している。第2の矩形領域82は、X軸方向に延びる辺とY軸方向に延びる辺とを有している。第2の矩形領域82のY軸方向の幅は、第1の矩形領域81のY軸方向の幅よりも狭い。
図5では、電圧検出ユニット7y上で最も高電圧が印加される部分を高電圧部7Ayで示し、電圧検出ユニット7y上で最も低電圧が印加される部分を低電圧部7Byで示している。電圧検出ユニット7yにおける高電圧部7Ayは、密閉ケース1のグランド電位に接続された支柱2A,2Bから離れた位置に配置される。また、電圧検出ユニット7yにおける低電位側の低電圧部7Bは、支柱2A,2Bと同電位のため支柱2A,2Bに近い位置に配置される。
実施の形態3では、高電圧部7Ayおよび低電圧部7Byが第3の矩形領域77に発生するよう、電圧検出ユニット7yが構成されている。また、電圧検出ユニット7yでは、高電圧部7Ayから支柱2Aまでの沿面距離が直線状の距離とならないよう、スペーサ4の寸法、スペーサ4の配置位置、およびベースプレート8yの寸法が調整されている。すなわち、電圧検出ユニット7yにおいて、高電圧部7Ayから支柱2Aまでの沿面経路が、スペーサ4、第1の矩形領域81、および第2の矩形領域82を通過するよう電圧検出ユニット7yが形成されている。これにより、高電圧部7Ayから支柱2Aまでの直線上に絶縁層が存在することとなる。
ここで、スペーサ4の配置例として、実施の形態1で説明した高電圧部7Aの下側にスペーサ4が配置される場合について説明する。この場合、スペーサ4の底部から支柱2AまでのXY平面内における沿面経路が、実施の形態1で説明したL字状の沿面経路となる。なお、スペーサ4は、スペーサ4の底面から支柱2Aまでの沿面経路をL字状とすることができれば、何れの位置に配置されてもよい。
このように、電圧検出ユニット7yは、Z軸方向に延びるスペーサ4と、XY平面に平行なベースプレート8yとを介して支柱2Aに接続されるので、高電圧部7Ayから支柱2Aまでの沿面経路が、Z軸方向から見たL字状の曲折した経路を含んでいる。また、第2の矩形領域82のY軸方向の幅が、第1の矩形領域81のY軸方向の幅よりも短く、高電圧部7Ayから支柱2Aまでの沿面経路が、Y軸方向から見たL字状の経路を含んでいる。したがって、高電圧部7Ayから支柱2Aまでの直線距離は、高電圧部7Ayから支柱2Bまでの直線距離よりも短くてもよい。このため、高電圧部7Ayから支柱2Bまでの直線距離を、高電圧部7Ayから支柱2Aまでの直線距離よりも長くすることができる。
このように、電圧検出ユニット7yでは、L字状の放電経路は、高電圧部7AからY軸方向の経路とX軸方向の経路とを介した支柱2Aまでの経路である。すなわち、電圧検出ユニット7yでは、高電圧部7Aと支柱2Aとを結ぶ直線方向の電界と比べ、X軸方向およびY軸方向のそれぞれの成分に分解された電界は小さいため、放電を抑制することができる。また、実施の形態3の電圧発生装置102では、直線状の空間放電の経路と曲折経路である沿面放電の経路とが区別される。このため、電圧発生装置102の電圧検出ユニット7yは、実施の形態1の場合と同様に、絶縁層の効果によって絶縁耐圧が向上する。
また、電圧検出ユニット7yは、Z軸方向に延びるスペーサ4と、XY平面に平行なベースプレート8yとを介して支柱2Bに接続されるので、高電圧部7Ayから支柱2Bまでの沿面経路も、Y軸方向から見たL字状の経路を含んでいる。したがって、高電圧部7Ayから支柱2Bまでの直線距離は、実施の形態1で説明した高電圧部7Aから支柱2Bまでの直線距離よりも短くすることができる。
また、支柱2A,2B間の距離と、比較例の電圧検出ユニットにおける支柱間の距離とが同じである場合、電圧検出ユニット7yは、比較例の電圧検出ユニットに比べて約1.5倍の耐電圧化が可能となる。このように、実施の形態3の電圧発生装置102は、密閉ケース1の電位に対して高電圧部7Ayとの間の放電を防止できる。また、電圧発生装置102の小型化および軽量化を実現できるので、耐振動性に強固な取り付け構造を実現できる。
なお、ベースプレート8は、ベースプレート8yと同様の上面形状を有していてもよい。すなわち、ベースプレート8は、第1の矩形領域81および第2の矩形領域82と同様の2つの矩形領域を有していてもよい。また、昇圧回路ユニット61~63は、電圧検出ユニット7yと同様の上面形状を有していてもよい。すなわち、昇圧回路ユニット61~63は、第3の矩形領域77と同様の矩形領域を有していてもよい。
また、第1の矩形領域81のY軸方向の幅と、第2の矩形領域82のY軸方向の幅とは同じ幅でもよい。また、第2の矩形領域82の形状は、矩形環状を含んでいてもよい。すなわち、実施の形態2に対して、実施の形態3を適用してもよい。この場合、例えば、第2の矩形領域82の形状は、実施の形態2で説明した第2の矩形領域74および矩形環状領域75を含んだ形状となる。
なお、実施の形態1,2では、電圧検出ユニット7,7xを通るZ軸方向から見た曲折経路が第1の曲折経路であり、実施の形態3では、ベースプレート8yを通るY軸方向から見た曲折経路が第1の曲折経路であり、ベースプレート8yを通るZ軸方向から見た曲折経路が第2の曲折経路である。また、昇圧回路ユニット61~63を通るZ軸方向から見た曲折経路が第3の曲折経路である。第1の曲折経路または第2の曲折経路を含んだ沿面経路が第1の沿面経路であり、第3の曲折経路を含んだ沿面経路が第2の沿面経路である。
このように実施の形態3では、高電圧部7Ayから、密閉ケース1と同電位のグランド箇所である支柱2Aまでの沿面経路が曲折経路を含んでいるので、実施の形態1と同様に、電圧発生装置102は、高い絶縁性能を確保しつつ小型化を実現することができる。
実施の形態4.
つぎに、図6から図14を用いて実施の形態4について説明する。実施の形態1から3では、電圧検出ユニット7,7x,7yの構造によって沿面距離を確保することで放電を抑制したが、構造による沿面距離の確保だけでは放電抑制が不十分な場合もある。このため、実施の形態4では、実施の形態1から3の構成に加えて高電圧部7A,7Ax,7Ayの電界を緩和する。
つぎに、図6から図14を用いて実施の形態4について説明する。実施の形態1から3では、電圧検出ユニット7,7x,7yの構造によって沿面距離を確保することで放電を抑制したが、構造による沿面距離の確保だけでは放電抑制が不十分な場合もある。このため、実施の形態4では、実施の形態1から3の構成に加えて高電圧部7A,7Ax,7Ayの電界を緩和する。
以下では、電圧検出ユニット7の具体的な構成について説明するとともに、電圧検出ユニット7に含まれる高電圧部7Aの電界緩和方法について説明する。なお、電圧検出ユニット7x,7yに対しても、電圧検出ユニット7と同様に実施の形態4の電界緩和方法を適用可能である。
図6は、実施の形態4にかかる電圧発生装置の回路構成を示す図である。電圧発生装置101は、昇圧回路ユニット61~63と、電圧検出ユニット7と、2つの高電圧トランス5と、電源装置9とを備えている。電源装置9は、交流電圧を発生させて高電圧トランス5に電圧を入力する。電源装置9は、インバータ回路などを用いて構成されている。また、電圧発生装置101は、昇圧回路ユニット63が有する入力端子と、電圧検出ユニット7と、グランド電位とに接続された接続点10を備えている。
電圧検出ユニット7は、短絡電流抑制抵抗32と、複数の分圧抵抗33が直列に接続された分圧抵抗ユニット31と、接続点35と、2つの接続金具41Aとを有している。短絡電流抑制抵抗32は、短絡電流を抑制し昇圧回路ユニット61~63の故障を防止する抵抗である。高圧電源である電源装置9に接続される負荷(例えば、X線、電子ビーム等)は、頻繁に短絡モード(昇圧回路ユニット61~63の出力がグランドに短絡)となる。仮に負荷側が短絡した場合であっても、電圧検出ユニット7では、短絡電流抑制抵抗32によって短絡電流を抑制する。例えば、出力電圧が-50kV、短絡電流抑制抵抗32が1kΩの場合、短絡電流抑制抵抗32は、短絡電流を50Aに抑制する。分圧抵抗ユニット31の一方の端部は、接続点10に接続されている。また、分圧抵抗ユニット31の他方の端部は、一方の接続金具41Aを介して、短絡電流抑制抵抗32に接続されている。すなわち、分圧抵抗ユニット31が有している分圧抵抗33のうちの、一方の端部に配置された分圧抵抗33が接続点10に接続され、他方の端部に配置された分圧抵抗33が一方の接続金具41Aを介して、短絡電流抑制抵抗32に接続されている。一方の端部に配置されて接続点10に接続されている分圧抵抗33は、後段の分圧抵抗33に対して接続点35を介して接続されており、接続点35は、制御側に接続されている。
一方の接続金具41Aは、負荷側に接続されている。また、短絡電流抑制抵抗32は、他方の接続金具41A、および昇圧回路ユニット61の出力端子65に接続されている。
昇圧回路ユニット61からの出力電圧は、他方の接続金具41A、電圧検出ユニット7内の短絡電流抑制抵抗32を介して、一方の接続金具41Aに送られる。この出力電圧は、一方の接続金具41Aにおいて、負荷側と、電圧検出ユニット7内の分圧抵抗ユニット31とに分離される。分圧抵抗ユニット31は、接続点35で出力電圧を分圧し、制御用に低電圧を取り出す。
短絡電流抑制抵抗32は短絡電流を抑制する抵抗である。短絡電流抑制抵抗32は高電圧、且つ短絡電流が流れても問題のない耐量が必要なため大型になる傾向がある。ここでは一例として、短絡電流抑制抵抗32が、エレマ(炭化ケイ素)抵抗である場合について説明するが、抵抗の種類、形状、および数量は問わない。なお、出力電圧に接続される短絡電流抑制抵抗32の両端位置は、電圧発生装置101内で最大の電圧となる位置である。
図7は、実施の形態4にかかる電圧発生装置が備える電圧検出ユニットの構成を説明するための図である。なお、図7では、接続金具41Aの図示を省略している。電圧検出ユニット7には、分圧抵抗ユニット31と、短絡電流抑制抵抗32とが配置されている。分圧抵抗ユニット31は、グランド電位に接続された接続点10に接続されている。また、分圧抵抗ユニット31は、図7では図示を省略している接続金具41Aを介して、短絡電流抑制抵抗32に接続されている。短絡電流抑制抵抗32は、負荷側に接続された接続金具41Aを介して、昇圧回路ユニット61の出力端子65に接続されている。
電圧検出ユニット7では、分圧抵抗ユニット31の合計抵抗値(例えば60MΩ)>>短絡電流抑制抵抗32(例えば1kΩ)となるので、短絡電流抑制抵抗32の両端部が高電圧部7Aとなる。このため、短絡電流抑制抵抗32は、グランド電位である密閉ケース1との間で発生する放電を抑制することができる位置に配置されている。すなわち、図2などで説明したように、高電圧部7Aが軸20A,20Bの中心C1に近い位置となり、且つ中心C1よりも支柱2A側での放電を抑制できる位置に短絡電流抑制抵抗32が配置される。これにより、電圧検出ユニット7は、中心C1よりも支柱2A側での放電を抑制することが可能となる。これは、実施の形態1から3で説明したように、高電圧部7Aから支柱2Aまでの沿面距離が確保されているからである。
その一方で前述の沿面距離を確保するだけでは放電を抑制することが困難な場合もある。この場合、短絡電流抑制抵抗32の両端の電界を緩和することが望まれる。なお、短絡電流抑制抵抗32と、昇圧回路ユニット61の出力端子65との接続部は、エッジが立ちやすく(エッジ形状となりやすく)高電界となりやすい。また、短絡電流抑制抵抗32と、分圧抵抗ユニット31との接続部は、エッジが立ちやすく高電界となりやすい。短絡電流抑制抵抗32では、出力端子65との接続部および分圧抵抗ユニット31との接続部は、はんだ、ボルトなどで接合されるので、不十分なはんだ処理、ボルトの端面の形状などにより、鋭角ができやすい。このため、短絡電流抑制抵抗32との接続部には、エッジが隠れるように丸みのある接続金具を採用するのが一般的である。これにより、電圧検出ユニット7は、放電を防止することが可能となる。
接続金具での電界強度は、高電圧部7Aにかかる電圧と、高電圧部7Aからの距離と、接続金具の形状と、接続金具のサイズとに依存する。このため、小型化のために距離を確保できない場合、接続金具は、できるだけ丸みのある形状で、且つサイズが大きいほど電界を緩和できる。例えば、接続金具がサイズの異なる球体の場合、球体のサイズが大きい(直径が長い)ほど、電界強度は低くなる。
図8は、実施の形態4にかかる電圧発生装置が備える短絡電流抑制抵抗および接続金具の接続構成例を示す図である。図9は、実施の形態4にかかる電圧発生装置が備える電圧検出ユニットおよび接続金具の第1の接続構成例を示す図である。図8では、短絡電流抑制抵抗32および接続金具41Aの斜視図を示し、図9では、電圧検出ユニット7および接続金具41Aの正面図を示している。
ここで説明する接続金具41Aの形状は一例である。接続金具41Aの種類、接続金具41Aに丸みがあるか否かの形状は問わない。図8に示すように、棒状の短絡電流抑制抵抗32の一方の端部に1つの接続金具41Aが接続され、他方の端部に1つの接続金具41Aが接続される。
接続金具41Aは、例えば、導電性の薄板部材の片端が上方向(Z軸方向)に折り曲げられて形成された、断面がL字型形状の金具である。接続金具41Aは、板状の底面部47と、上方向に折り曲げられた板状の背面部46とを有している。接続金具41Aは、底面部47が、電圧検出ユニット7の絶縁基板などに取り付けられ、背面部46が底面部47から垂直な方向に延びている。絶縁基板は、XY平面に平行な位置に配置された基板であり、底面部47は、XY平面に平行となるように絶縁基板に取り付けられる。
前述したように沿面距離が確保され、さらに接続金具41Aの形状を丸みのある形状とした場合であっても沿面放電を抑制できない場合がある。沿面放電を抑制できない理由は、接続金具41Aと、絶縁物である電圧検出ユニット7と、空気または絶縁ガスといった気体との境界点に電気的三重点(Triple Junction、以下TJ部45という)が形成されるからである。このため、TJ部45に極度の局所的な電界集中が引き起こされ、TJ部45での部分放電を引き金とした沿面放電が発生する場合がある。
TJ部45で局所的な電界集中を引き起こさないためには、電気力線が絶縁物を局所的に出入りしないように部品を配置する必要がある。このためには、接続金具41Aと電圧検出ユニット7とが形成するTJ部45の接触角が重要となる。具体的には、接続金具41Aと電圧検出ユニット7とが形成する角度である接触角を接触角θとすると、接触角θは、90度以上であることが望ましい。ここで接続金具41Aの端部は電界強度を抑制するために面取り加工されている。例えば、接続金具41Aは、背面部46の底側が面取り加工されている。この場合、接続金具41Aと、電圧検出ユニット7とが形成する接触角θは90度よりも小さくなる。このため、実施の形態4では、TJ部45の接触角θが鋭角とならないように、接続金具41Aと電圧検出ユニット7との間にスペーサが設けられる。
図10は、実施の形態4にかかる電圧発生装置が備える電圧検出ユニットおよび接続金具の第2の接続構成例を示す図である。図10では、電圧検出ユニット7および接続金具41Aの正面図を示している。
図10に示す接続構成例では、接続金具41Aと電圧検出ユニット7とが形成する接触角θは、90度よりも小さくならないように、接続金具41Aと電圧検出ユニット7との間にスペーサ43が配置されている。実施の形態3で説明したスペーサ4が第1のスペーサであり、スペーサ43が第2のスペーサである。
図10に示すように、接続金具41Aと電圧検出ユニット7との間に、例えばワッシャー等のスペーサ43が配置されることによって、接続金具41Aと電圧検出ユニット7との間にギャップが設けられることとなる。
これにより、TJ部45の位置は、接続金具41Aと電圧検出ユニット7とで形成される境界点ではなく、接続金具41Aとスペーサ43とで形成される境界点、および電圧検出ユニット7とスペーサ43とで形成される境界点となる。この結果、TJ部45での電界集中が緩和され、沿面放電を抑制することが可能となる。
なお、スペーサ43は、導体であってもよいし、非導体であってもよい。スペーサ43が導体の場合、スペーサ43と電圧検出ユニット7との間のTJ部45の接触角θが90度となる。スペーサ43が非導体の場合、スペーサ43と接続金具41Aとの間のTJ部45の接触角θが90度となる。
また、スペーサ43が接続金具41Aの底面部47に対して底面部47よりも内側に配置されることで接続金具41Aの影響が支配的となり、さらにTJ部45の電界が抑えられる。換言すると、スペーサ43は、接続金具41Aの底面部47に覆われるよう、すなわち、スペーサ43は、底面部47を上側から見た場合に底面部47からはみ出さないように配置されれば、スペーサ43からの気中の放電を防ぐことができる。
なお、スペーサ43は、接続金具41Aと電圧検出ユニット7との間にギャップを設けることを目的として配置されるので、スペーサ43の数量および形状は問わない。スペーサ43は、例えば、環状形状の板状部材で形成される。
図11は、実施の形態4にかかる電圧発生装置が備えるスペーサの第1の構成例を示す斜視図である。スペーサ43の第1の構成例であるスペーサ43Aは、矩形環状などの多角形環状の板状部材で形成されている。なお、スペーサ43Aは、三角形環状の板状部材で形成されてもよいし、五角形以上の多角形環状の板状部材で形成されてもよい。
図12は、実施の形態4にかかる電圧発生装置が備えるスペーサの第2の構成例を示す斜視図である。スペーサ43の第2の構成例であるスペーサ43Bは、円環状の板状部材で形成されている。
図13は、実施の形態4にかかる電圧発生装置が備えるスペーサの第3の構成例を示す斜視図である。スペーサ43の第3の構成例であるスペーサ43Cは、スペーサ43Bの角の部分が削ぎ取られている。換言すると、スペーサ43Cは、スペーサ43Bに対して面取り加工されている。このように、スペーサ43Cは、スペーサ43単体での電界強度が最小となる円形型であり、且つ面取り加工されている。
図14は、実施の形態4にかかる電圧発生装置が備えるスペーサの第4の構成例を示す斜視図である。スペーサ43の第4の構成例であるスペーサ43Dは、スペーサ43Bの角の部分のうち上面の内側および底面の内側が削ぎ取られている。さらに、スペーサ43Dは、外側の側面が外側へ膨らむように加工されている。円形環状の板状部材で形成されるとともに面取り加工されたスペーサ43C、および円形環状の板状部材で形成されるとともに面取り加工と外側への膨らみを有したスペーサ43Dは、スペーサ43A,43Bよりも電界強度を抑制することができる。
このように実施の形態4では、実施の形態1から3の構成に加え、接続金具41Aと電圧検出ユニット7との間にスペーサ43が配置されることで、実施の形態1から3よりも高電圧部7Aの電界を緩和することができる。したがって、実施の形態4では、実施の形態1から3よりも沿面放電を抑制することができる。
以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 密閉ケース、2A,2B 支柱、4,43,43A~43D スペーサ、5 高電圧トランス、7,7x,7y 電圧検出ユニット、7A,7Ax,7Ay 高電圧部、7B,7Bx,7By 低電圧部、8,8y ベースプレート、9 電源装置、10,35 接続点、20A,20B 軸、31 分圧抵抗ユニット、32 短絡電流抑制抵抗、33 分圧抵抗、41A 接続金具、45 TJ部、46 背面部、47 底面部、61~63 昇圧回路ユニット、65 出力端子、71,73,81 第1の矩形領域、72,74,82 第2の矩形領域、75 矩形環状領域、76 中央領域、77 第3の矩形領域、101,102 電圧発生装置、C1 中心。
Claims (11)
- グランド電位のケースと、
前記ケースに収められて、電圧を昇圧する高電圧トランスと、
前記ケースに収められて、前記高電圧トランスが出力する電圧を昇圧する昇圧回路ユニットと、
前記ケースに収められて、前記昇圧回路ユニットが昇圧した電圧を検出する電圧検出ユニットと、
を備え、
前記電圧検出ユニットで最も高い電圧が印加される部分である第1の高電圧部から、前記ケースと同電位のグランド箇所までの第1の沿面経路は、曲折した経路である第1の曲折経路を含んでいる、
ことを特徴とする電圧発生装置。 - 前記電圧検出ユニットは、前記第1の沿面経路の上面側から見た場合に、第1の矩形領域と第2の矩形領域とを有し、
前記第1の高電圧部は、前記第1の矩形領域に配置され、
前記第1の沿面経路は、前記第1の矩形領域と前記第2の矩形領域との境界位置で曲折し、第2の矩形領域を通って前記グランド箇所に辿り着く経路である、
ことを特徴とする請求項1に記載の電圧発生装置。 - 前記電圧検出ユニットは、前記第1の沿面経路の上面側から見た場合に、第1の矩形領域と、第2の矩形領域と、矩形環状領域とを有し、
前記第1の高電圧部は、前記第1の矩形領域に配置され、
前記第1の沿面経路は、前記第1の矩形領域から前記第2の矩形領域を通り、前記第2の矩形領域と前記矩形環状領域との境界位置で曲折し、前記矩形環状領域内で曲折して前記グランド箇所に辿り着く経路である、
ことを特徴とする請求項1に記載の電圧発生装置。 - 前記電圧検出ユニットの底面に平行な上面を有した絶縁性のベースプレートと、
前記電圧検出ユニットと前記ベースプレートとが特定間隔だけ離されて配置されるよう、前記ベースプレートと前記電圧検出ユニットとの間の特定位置に配置される絶縁性の第1のスペーサと、
をさらに備え、
前記第1のスペーサは、前記ベースプレートの上面から前記電圧検出ユニットの底面に向かって延設されており、
前記第1の沿面経路は、前記第1の高電圧部から前記第1のスペーサを通り、前記第1のスペーサと前記ベースプレートとの境界位置で曲折し、前記ベースプレートを通って前記グランド箇所に辿り着く経路である、
ことを特徴とする請求項1に記載の電圧発生装置。 - 前記ベースプレートは、前記第1の沿面経路の上面側から見た場合に、第1の矩形領域と第2の矩形領域とを有し、
前記第1の沿面経路は、前記第1の矩形領域と前記第2の矩形領域との境界位置で曲折し、第2の矩形領域を通って前記グランド箇所に辿り着く第2の曲折経路を含んでいる、
ことを特徴とする請求項4に記載の電圧発生装置。 - 前記昇圧回路ユニットで最も高い電圧が印加される部分である第2の高電圧部から、前記グランド箇所までの第2の沿面経路は、曲折した経路である第3の曲折経路を含んでいる、
ことを特徴とする請求項1から5の何れか1つに記載の電圧発生装置。 - 前記ケース内は、空気より絶縁性能が高い絶縁層が充填されている、
ことを特徴とする請求項1から6の何れか1つに記載の電圧発生装置。 - 前記電圧検出ユニットは、
直列接続された複数の分圧抵抗を有するとともに前記昇圧回路ユニットが昇圧した電圧を分圧して取り出す分圧抵抗ユニットと、
前記昇圧回路ユニットの出力端子と、前記分圧抵抗ユニットと、負荷側とに接続されるとともに短絡電流を抑制する短絡電流抑制抵抗と、
前記短絡電流抑制抵抗および前記昇圧回路ユニットに接続される接続金具と、
を有する、
ことを特徴とする請求項1から7の何れか1つに記載の電圧発生装置。 - 前記電圧検出ユニットは、
前記接続金具と前記昇圧回路ユニットとの間に配置されて前記接続金具と前記昇圧回路ユニットとの間にギャップを形成する第2のスペーサを有する、
ことを特徴とする請求項8に記載の電圧発生装置。 - 前記第2のスペーサは、前記接続金具の上側から見て前記接続金具の底面部からはみ出さない位置に配置されている、
ことを特徴とする請求項9に記載の電圧発生装置。 - 前記第2のスペーサは、円環状の板状部材の角の部分が面取り加工されて形成されている、
ことを特徴とする請求項9または10に記載の電圧発生装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/918,989 US20230238175A1 (en) | 2020-06-10 | 2021-06-07 | Voltage generator |
JP2022530550A JP7488336B2 (ja) | 2020-06-10 | 2021-06-07 | 電圧発生装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020100893 | 2020-06-10 | ||
JP2020-100893 | 2020-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021251334A1 true WO2021251334A1 (ja) | 2021-12-16 |
Family
ID=78846253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021553 WO2021251334A1 (ja) | 2020-06-10 | 2021-06-07 | 電圧発生装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230238175A1 (ja) |
JP (1) | JP7488336B2 (ja) |
WO (1) | WO2021251334A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1041093A (ja) * | 1996-07-18 | 1998-02-13 | Origin Electric Co Ltd | X線用高電圧発生装置 |
JP2001245473A (ja) * | 2000-02-29 | 2001-09-07 | Origin Electric Co Ltd | 電源装置及びそれを備えた光ファイバ融着接続装置 |
JP2008041318A (ja) * | 2006-08-02 | 2008-02-21 | Mitsubishi Electric Corp | 直流高電圧発生装置 |
WO2008050540A1 (fr) * | 2006-10-25 | 2008-05-02 | Hitachi Medical Corporation | Générateur de rayons x |
JP2017120715A (ja) * | 2015-12-28 | 2017-07-06 | キヤノン株式会社 | X線発生装置及びx線撮影システム |
-
2021
- 2021-06-07 JP JP2022530550A patent/JP7488336B2/ja active Active
- 2021-06-07 US US17/918,989 patent/US20230238175A1/en active Pending
- 2021-06-07 WO PCT/JP2021/021553 patent/WO2021251334A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1041093A (ja) * | 1996-07-18 | 1998-02-13 | Origin Electric Co Ltd | X線用高電圧発生装置 |
JP2001245473A (ja) * | 2000-02-29 | 2001-09-07 | Origin Electric Co Ltd | 電源装置及びそれを備えた光ファイバ融着接続装置 |
JP2008041318A (ja) * | 2006-08-02 | 2008-02-21 | Mitsubishi Electric Corp | 直流高電圧発生装置 |
WO2008050540A1 (fr) * | 2006-10-25 | 2008-05-02 | Hitachi Medical Corporation | Générateur de rayons x |
JP2017120715A (ja) * | 2015-12-28 | 2017-07-06 | キヤノン株式会社 | X線発生装置及びx線撮影システム |
Also Published As
Publication number | Publication date |
---|---|
US20230238175A1 (en) | 2023-07-27 |
JPWO2021251334A1 (ja) | 2021-12-16 |
JP7488336B2 (ja) | 2024-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10694619B2 (en) | Filter comprising printed circuit board and busbars | |
US10050550B2 (en) | High-voltage generation device and X-ray generation device | |
US20120229948A1 (en) | Capacitor Used as Insulating Spacer for a High Current Bus Structure | |
US11721477B2 (en) | High voltage high frequency transformer | |
WO2021251334A1 (ja) | 電圧発生装置 | |
US8802993B2 (en) | High voltage bushing | |
JP5511814B2 (ja) | 複数の避雷器柱体を有する放電電流路を備えた避雷器装置 | |
JP2004247727A (ja) | 避雷器の能動部 | |
ES2813556T3 (es) | Disposición de circuito para la reducción de la intensidad máxima de campo eléctrico, unidad de generación de alta tensión con una disposición de circuito de este tipo y generador de rayos X con una unidad de generación de alta tensión de este tipo | |
US20230327559A1 (en) | Boost circuit and voltage generation device | |
US12062993B2 (en) | Booster circuit and voltage generator | |
EP3794913B1 (en) | Shielding of high voltage equipment | |
WO2023248517A1 (ja) | 複合部材 | |
JP2013257983A5 (ja) | ||
JP2005130542A (ja) | インバータ装置 | |
JP2021100055A (ja) | 変圧器及びこれを用いた電力変換装置 | |
WO2024014478A1 (ja) | 電気機器の配線部材と電力変換装置 | |
US11528005B2 (en) | Electrical filter element and electrical power converter | |
US11778718B2 (en) | High voltage generator and X-ray generator | |
WO2021241227A1 (ja) | 高電圧発生装置およびx線発生装置 | |
US20240332937A1 (en) | Busbar connection structure | |
JP2017169431A (ja) | 電源装置 | |
JP2006286302A (ja) | 電圧発生ユニット、電圧発生装置及びこれを備えた荷電粒子加速器 | |
JP2014236628A (ja) | 直流高電圧電源装置 | |
JPH0720093U (ja) | シェンケル型直流高電圧電源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21821622 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022530550 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21821622 Country of ref document: EP Kind code of ref document: A1 |