WO2024014478A1 - 電気機器の配線部材と電力変換装置 - Google Patents

電気機器の配線部材と電力変換装置 Download PDF

Info

Publication number
WO2024014478A1
WO2024014478A1 PCT/JP2023/025733 JP2023025733W WO2024014478A1 WO 2024014478 A1 WO2024014478 A1 WO 2024014478A1 JP 2023025733 W JP2023025733 W JP 2023025733W WO 2024014478 A1 WO2024014478 A1 WO 2024014478A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
wiring member
positive
negative
electromagnetic shield
Prior art date
Application number
PCT/JP2023/025733
Other languages
English (en)
French (fr)
Inventor
大智 村上
明洋 高橋
Original Assignee
株式会社日立インダストリアルプロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立インダストリアルプロダクツ filed Critical 株式会社日立インダストリアルプロダクツ
Publication of WO2024014478A1 publication Critical patent/WO2024014478A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a wiring member and a power converter for an electrical device, and particularly relates to a wiring member through which a high-frequency current flows, and a power converter equipped with this wiring member.
  • Wiring members that conduct high-frequency current may be required to have reduced inductance.
  • power is converted between direct current and alternating current by turning on and off a switching element, but when the switching element turns off, it changes due to changes in current and the inductance of wiring members connected to the switching element. , a surge voltage may be applied to the switching element and the switching element may be destroyed. Therefore, it is necessary to reduce the inductance of the wiring member.
  • wiring members are required to reduce power loss in order to conduct electricity efficiently.
  • Patent Document 1 discloses a laminated bus bar in which a conductor (bus bar) connected to the positive electrode of a DC power source and a conductor connected to the negative electrode are stacked with an insulating material in between, and the conductors are close to each other with the insulating material in between.
  • a power conversion device is described in which the inductance is reduced using a laminated busbar.
  • Patent Document 2 describes a high-frequency current wiring member that is configured by laminating a plurality of thin metal plates and an insulating material that insulates adjacent thin metal plates from each other, and reduces the influence of skin effect and reduces power loss. has been done.
  • Patent Document 1 when the frequency of the current increases, the current flows only on the surface of the conductor due to the effect of the skin effect, and no current flows inside the conductor, making it difficult to reduce inductance and power loss.
  • the technique of Patent Document 2 can reduce the effect of skin effect, but the proximity effect that occurs between multiple thin metal plates, that is, the magnetic flux generated from the current flowing through one thin metal plate. In some cases, it may not be possible to sufficiently reduce inductance and power loss due to phenomena that affect the current flow and make it difficult for current to flow.
  • An object of the present invention is to provide a wiring member for electrical equipment that can reduce inductance and power loss with respect to high-frequency current, and a power conversion device using this wiring member.
  • a wiring member for an electrical device is provided between a plurality of first conductors that are electrically connected to each other and stacked, and a plurality of first conductors that are electrically connected to other conductors. and an insulating material provided between the first conductor and the second conductor, respectively.
  • the power conversion device includes a capacitor, a switching element that switches direct current on and off, and wiring that connects the capacitor and the switching element.
  • the wiring member according to the present invention is a wiring member including two members each including the first conductor, the second conductor, and the insulating material. The two members face each other in the stacking direction of the first conductor, and include an insulating material between the members.
  • a positive electrode of a DC power source is connected to the first conductor of one of the members.
  • a negative electrode of a DC power source is connected to the first conductor of the other member.
  • the present invention it is possible to provide a wiring member for electrical equipment that can reduce inductance and power loss with respect to high-frequency current, and a power conversion device using this wiring member.
  • FIG. 1 is a cross-sectional view of a wiring member showing an example of the configuration of a wiring member according to Example 1 of the present invention.
  • FIG. 7 is a front view of a laminate busbar, showing an example of a laminate busbar which is a wiring member according to Example 2 of the present invention.
  • FIG. 2A is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 7 is a front view of a laminate busbar showing an example of a configuration in which an end of the laminate busbar is connected to an external device in Example 2;
  • FIG. 3A is a cross-sectional view taken along line BB in FIG. 3A.
  • FIG. 7 is a front view of a laminate bus bar showing an example of the structure of an end portion of the laminate bus bar in Example 2.
  • FIG. 4A is a cross-sectional view taken along line CC in FIG. 4A.
  • FIG. 7 is a front view of the laminate bus bar showing another example of the structure of the end portion of the laminate bus bar in Example 2.
  • FIG. 5A is a cross-sectional view taken along line DD in FIG. 5A.
  • FIG. 7 is a front view of a multilayer printed circuit board, showing an example of a multilayer printed circuit board that is a wiring member according to Example 3 of the present invention.
  • FIG. 6A is a cross-sectional view taken along line EE in FIG. 6A.
  • FIG. 7 is a front view of a bus bar, showing an example of a bus bar that is a wiring member according to a fourth embodiment of the present invention.
  • FIG. 7A is a cross-sectional view taken along line FF in FIG. 7A.
  • FIG. 7 is a diagram showing a circuit configuration of a power conversion device according to a fifth embodiment of the present invention.
  • a wiring member for an electrical device includes at least one of a positive conductor and a negative conductor configured by laminating a plurality of conductors, and an electromagnetic shield between the laminated conductors.
  • the wiring member according to the present invention can reduce inductance and power loss with respect to high frequency current due to the effect of the electromagnetic shield that is a conductor.
  • the power conversion device includes the wiring member according to the present invention, and can reduce inductance and power loss with respect to high-frequency current.
  • a wiring member for an electrical device according to Example 1 of the present invention will be described.
  • a basic configuration of a wiring member for reducing inductance and power loss with respect to high frequency current will be described.
  • FIG. 1 is a diagram showing an example of the configuration of the wiring member 50 according to this embodiment, and is a sectional view of the wiring member 50.
  • the wiring member 50 according to this embodiment includes a positive wiring member 5 , a negative wiring member 16 , and an insulating material 1 located between the positive wiring member 5 and the negative wiring member 16 .
  • the positive wiring member 5 includes a positive conductor 2, an electromagnetic shield 8, and an insulating material 1.
  • the negative wiring member 16 includes a negative conductor 13, an electromagnetic shield 8, and an insulating material 1.
  • the positive electrode side conductor 2 is configured by laminating a plurality of flat conductors that are electrically connected to each other.
  • the number of conductors stacked and electrically connected to each other can be determined arbitrarily. In the following, a case where the number of these conductors is two will be described as an example. That is, it is assumed that the positive electrode side conductor 2 is configured by laminating two flat plate-shaped positive electrode side conductors 2a and 2b which are electrically connected to each other.
  • the negative electrode side conductor 13 is also configured by laminating a plurality of flat conductors that are electrically connected to each other.
  • the number of these conductors can be determined arbitrarily. In the following, a case where the number of these conductors is two will be described as an example. That is, it is assumed that the negative conductor 13 is configured by laminating two flat plate-shaped negative conductors 13a and 13b that are electrically connected to each other.
  • the electromagnetic shield 8 is provided between each of the plurality of conductors forming the positive electrode side conductor 2 and between each of the plurality of conductors forming the negative electrode side conductor 13.
  • the electromagnetic shield 8 is provided between the positive conductor 2a and the positive conductor 2b, and between the negative conductor 13a and the negative conductor 13b.
  • the electromagnetic shield 8 is provided between each of the three or more conductors.
  • the electromagnetic shield 8 is composed of a flat conductor, and is not electrically connected to other conductors such as the positive conductors 2a and 2b and the negative conductors 13a and 13b.
  • the positive conductor 2, the negative conductor 13, and the electromagnetic shield 8 can be made of materials such as copper and aluminum, for example.
  • the insulating material 1 is provided between the positive conductor 2a and the electromagnetic shield 8, and between the electromagnetic shield 8 and the positive conductor 2b. Further, the insulating material 1 is provided between the negative conductor 13a and the electromagnetic shield 8, and between the electromagnetic shield 8 and the negative conductor 13b. The electromagnetic shield 8 is insulated from the positive conductor 2 and the negative conductor 13 by these insulating materials 1. Further, as described above, the insulating material 1 is also provided between the positive electrode wiring member 5 and the negative electrode wiring member 16.
  • the insulating material 1 is solid, gas, or liquid, such as glass epoxy resin, air, or insulating oil.
  • the wiring member 50 according to this embodiment may include only one of the positive wiring member 5 and the negative wiring member 16, or may include both the positive wiring member 5 and the negative wiring member 16, as shown in FIG. . That is, the wiring member 50 according to this embodiment can include one or both of the positive electrode side conductor 2 and the negative electrode side conductor 13.
  • the positive wiring member 5 and the negative wiring member 16 are stacked in the direction in which the positive conductors 2a and 2b are stacked and the direction in which the negative conductors 13a and 13b are stacked. are lined up so as to match each other, and are opposed to each other in the stacking direction to form the wiring member 50.
  • the insulating material 1 located between the positive electrode wiring member 5 and the negative electrode wiring member 16 is provided between the positive electrode side conductor 2b and the negative electrode side conductor 13a.
  • An electrode of a DC power supply for example, a positive electrode
  • An electrode of a DC power supply for example, a negative electrode
  • the positive electrode side conductor 2 and the negative electrode side conductor 13 conduct current when the electrodes of the DC power supply are connected.
  • the wiring member 50 can reduce inductance and power loss with respect to high frequency components included in the direct current when a direct current is passed through the wiring member 50.
  • high-frequency current not only high-frequency alternating current but also high-frequency components contained in direct current are referred to as high-frequency current.
  • the direction perpendicular to the lamination direction of the positive conductors 2a and 2b (left-right direction in FIG. 1) with respect to the positive conductor 2 of the positive wiring member 5 (for example, from the front side of the plane in FIG. Suppose that a current flows in the direction (toward the other side).
  • a current 3 is passed through the positive conductor 2a
  • a magnetic flux 4 is generated by the current 3.
  • a current 6 is passed through the positive conductor 2b
  • a magnetic flux 7 is generated by the current 6.
  • an eddy current 9 is generated in the electromagnetic shield 8 in the opposite direction to the currents 3 and 6.
  • This eddy current 9 generates a magnetic flux 10 around the electromagnetic shield 8 .
  • an eddy current 11 is generated in the surface of the positive conductor 2a and the positive conductor 2b facing the electromagnetic shield 8. This eddy current 11 has the same direction as the currents 3 and 6, and does not prevent the currents 3 and 6 from flowing.
  • the positive electrode wiring member 5 of the wiring member 50 according to this embodiment can reduce inductance and power loss with respect to high frequency current.
  • the negative wiring member 16 has the same configuration as the positive wiring member 5. Therefore, high-frequency current can easily flow through the negative electrode side conductor 13a and the negative electrode side conductor 13b on the surfaces facing the electromagnetic shield 8, based on the same principle as the positive electrode wiring member 5. Therefore, the negative electrode wiring member 16 of the wiring member 50 according to this embodiment can reduce inductance and power loss with respect to high frequency current. However, since the direction of the currents 14 and 17 flowing through the negative conductors 13a and 13b is opposite to the direction of the currents 3 and 6 flowing through the positive conductors 2a and 2b, the magnetic fluxes 15 and 18 generated by the currents 14 and 17 are The direction is opposite to that of the magnetic fluxes 4 and 7 generated in the positive electrode wiring member 5.
  • the direction of the eddy current 9 generated in the electromagnetic shield 8 due to the magnetic fluxes 15 and 18 and the direction of the magnetic flux 10 generated around the electromagnetic shield 8 are also opposite to the direction in the positive wiring member 5, and the direction of the eddy current 9 generated in the electromagnetic shield 8 due to the magnetic fluxes 15 and 18 is also opposite to the direction in the positive electrode wiring member 5.
  • the direction of the eddy current 11 generated on the surface facing the electromagnetic shield 8 is also opposite to the direction on the positive wiring member 5.
  • the positive wiring member 5 and the negative wiring member 16 face each other with the insulating material 1 in between. Therefore, due to the magnetic flux generated in the positive conductor 2b and the negative conductor 13a, the surfaces of the positive wiring member 5 and the negative wiring member 16 facing the insulating material 1 (that is, the insulating material of the positive conductor 2b and the negative conductor 13a An eddy current 19 and an eddy current 12 are generated on the surface opposite to the eddy current 19 and the eddy current 12, respectively. The eddy currents 19 and 12 also have the same direction as the currents 6 and 14, respectively, and do not prevent the currents 6 and 14 from flowing.
  • the positive wiring member 5 and the negative wiring member 16 of the wiring member 50 according to this embodiment can reduce inductance and power loss with respect to high frequency current.
  • the wiring member 50 includes an electromagnetic shield 8 that is not electrically connected to other conductors, generates an eddy current 9 in the electromagnetic shield 8, and generates an eddy current 11 in the positive conductor 2 and the negative conductor 13. By generating , it is possible to reduce inductance and power loss with respect to high-frequency current.
  • FIG. 1 the configuration and current direction shown in FIG. 1 are examples of the wiring member 50 according to this embodiment.
  • the directions of the currents 3 and 6 and the currents 14 and 17 in the wiring member 50 are reversed, the same effect as in this embodiment can be obtained.
  • a wiring member 50 for an electrical device according to a second embodiment of the present invention will be described.
  • the wiring member 50 will be described using a laminate bus bar configured by laminating an insulating material and a conductor.
  • FIGS. 2A and 2B are diagrams showing an example of a laminate bus bar that is the wiring member 50 according to this embodiment.
  • FIG. 2A is a front view of the laminate bus bar
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • the laminate bus bar shown in FIGS. 2A and 2B includes a positive wiring member 5, a negative wiring member 16, and an insulating material 1 provided between the positive wiring member 5 and the negative wiring member 16.
  • the positive wiring member 5 includes a positive conductor 2 (2a, 2b), an electromagnetic shield 8, and an insulating material 1 between them.
  • the negative wiring member 16 includes a negative conductor 13 (13a, 13b), an electromagnetic shield 8, and an insulating material 1 between them.
  • the positive conductor 2a and the positive conductor 2b are electrically connected to each other by a spacer 20.
  • the spacer 20 is a conductor, and is, for example, a ring-shaped metal member.
  • the positive conductor 2a, the positive conductor 2b, and the spacer 20 are mechanically connected, for example, by spot welding.
  • the laminate busbar includes a positive electrode 21.
  • the positive electrode 21 is electrically connected to the positive conductor 2a and the positive conductor 2b.
  • the positive electrode 21 can be made of, for example, a metal cylinder, and can be installed on the laminated busbar by press-fitting, for example.
  • An insulating material 1 is disposed between the positive electrode 21 and the negative conductor 13 in order to insulate the positive electrode 21 and the negative conductor 13.
  • the negative electrode side of the laminate busbar has the same configuration as the positive electrode side.
  • the negative conductor 13a and the negative conductor 13b are electrically connected to each other by a spacer 20.
  • the laminate bus bar includes a negative electrode 22 that is electrically connected to the negative conductor 13a and the negative conductor 13b.
  • An insulating material 1 is disposed between the negative electrode 22 and the positive conductor 2 in order to insulate the negative electrode 22 and the positive conductor 2.
  • the positive electrode 21 and the negative electrode 22 are provided with through holes through which screws for fixing external devices such as capacitors and switching elements are passed.
  • an external device is connected to the positive electrode 21 and the negative electrode 22 at the inner peripheral portion of the laminated bus bar.
  • the laminate bus bar can also be configured such that an external device is connected to the positive electrode 21 and the negative electrode 22 at its ends.
  • FIGS. 3A and 3B are diagrams showing an example of a configuration in which an end of the laminate busbar is connected to an external device in a laminate busbar that is the wiring member 50 according to this embodiment.
  • FIG. 3A is a front view of the laminate bus bar
  • FIG. 3B is a cross-sectional view taken along line BB in FIG. 3A.
  • the positive conductor 2a has a stepped bent portion 23 at the end of the laminate bus bar, and is bent at the stepped bent portion 23 to contact the positive conductor 2b.
  • the positive conductor 2a and the positive conductor 2b are mechanically connected, for example, by spot welding.
  • the connection portion between the positive conductor 2a and the positive conductor 2b is configured as the positive electrode 21, and includes a through hole through which a screw for fixing an external device is passed.
  • the negative electrode side conductor 13b has the same configuration as the positive electrode side conductor 2a, and is bent at the stepped bending portion 23 and connected to the negative electrode side conductor 13a.
  • the connection portion between the negative conductor 13a and the negative conductor 13b is configured as the negative electrode 22, and includes a through hole through which a screw for fixing an external device is passed.
  • the positions of the positive electrode 21 and the negative electrode 22 are preferably separated from each other so that external devices can be easily connected.
  • the laminate busbar which is the wiring member 50 according to this embodiment has through holes in the positive electrode 21 and the negative electrode 22, and the through holes are used to connect the capacitor. External devices such as switches and switching elements can be connected using screws.
  • FIGS. 4A and 4B and FIGS. 5A and 5B An example of the structure of the end portion of the laminate busbar, which is the wiring member 50 according to this embodiment, will be explained using FIGS. 4A and 4B and FIGS. 5A and 5B.
  • FIGS. 4A and 4B are diagrams showing an example of the structure of the end portion of a laminate bus bar, which is the wiring member 50 according to this embodiment.
  • FIG. 4A is a front view of the laminate bus bar
  • FIG. 4B is a cross-sectional view taken along line CC in FIG. 4A.
  • an electromagnetic shield insulating plate 25 which is an insulating material 1, is installed between the positive conductor 2a and the electromagnetic shield 8 and between the electromagnetic shield 8 and the positive conductor 2b. ing.
  • the electromagnetic shield insulating plate 25 is bonded to the positive electrode side conductors 2a, 2b and the electromagnetic shield 8.
  • the negative electrode wiring member 16 also has the same configuration as the positive electrode wiring member 5. Between the positive electrode wiring member 5 and the negative electrode wiring member 16, a positive electrode and negative electrode inter-insulating plate 24, which is an insulating material 1, is installed.
  • the length of the electromagnetic shield insulating plate 25 protruding from the positive conductors 2a, 2b and the negative conductors 13a, 13b is d2.
  • the length d2 is less than or equal to the length d1 (d2 ⁇ d1).
  • the length d1 needs to be a certain length such that the creeping distance between the positive conductor 2 and the negative conductor 13 is large.
  • the potential difference between the positive conductors 2a, 2b and the electromagnetic shield 8 and the potential difference between the negative conductors 13a, 13b and the electromagnetic shield 8 are smaller than the potential difference between the positive conductor 2 and the negative conductor 13. Therefore, the length d2 can be made smaller than the length d1 (d2 ⁇ d1).
  • an electromagnetic shield insulating plate 25 that is, a plate-shaped insulating material is used as the insulating material 1 that insulates the electromagnetic shield 8.
  • an electromagnetic shield insulating plate 25 that is, a plate-shaped insulating material is used as the insulating material 1 for insulating the electromagnetic shield 8.
  • a thin insulating material such as a thin sheet or a thin film can be used as the insulating material 1 for insulating the electromagnetic shield 8.
  • FIGS. 5A and 5B are diagrams showing other examples of the structure of the end portions of the laminate busbar, which is the wiring member 50 according to this embodiment.
  • FIG. 5A is a front view of the laminate busbar
  • FIG. 5B is a cross-sectional view taken along line DD in FIG. 5A.
  • an electromagnetic shield insulating sheet 26, which is the insulating material 1, is installed between the positive conductor 2a and the electromagnetic shield 8 and between the electromagnetic shield 8 and the positive conductor 2b. ing.
  • the electromagnetic shield insulating sheet 26 is bonded to the positive conductors 2a, 2b and the electromagnetic shield 8.
  • the negative electrode wiring member 16 also has the same configuration as the positive electrode wiring member 5. Between the positive electrode wiring member 5 and the negative electrode wiring member 16, a positive electrode and negative electrode inter-insulating plate 24, which is an insulating material 1, is installed.
  • a side insulating sheet 27 is attached to the side surfaces of the positive electrode wiring member 5 and the negative electrode wiring member 16 (that is, the side surfaces of the positive electrode side conductor 2a and the negative electrode side conductor 13b).
  • the electromagnetic shield insulating sheet 26 is overlapped with the side insulating sheet 27 and bonded to the positive electrode/negative electrode insulating plate 24.
  • the laminate busbar which is the wiring member 50 according to this embodiment, can reduce inductance and power loss with respect to high-frequency current, similarly to the wiring member 50 according to the first embodiment. Further, the wiring member 50 according to this embodiment has the configuration shown in FIGS. 4A, 4B and 5A, 5B, so that the electromagnetic shield 8 is connected to the positive conductor 2 and the negative conductor at the end of the laminated bus bar. 13.
  • a wiring member 50 for an electrical device according to a third embodiment of the present invention will be described.
  • a multilayer printed circuit board will be described as an example of the wiring member 50.
  • FIGS. 6A and 6B are diagrams showing an example of a multilayer printed circuit board that is the wiring member 50 according to this embodiment.
  • FIG. 6A is a front view of the multilayer printed circuit board
  • FIG. 6B is a cross-sectional view taken along line EE in FIG. 6A.
  • the multilayer printed circuit board shown in FIGS. 6A and 6B includes a positive wiring member 5, a negative wiring member 16, and an insulating material 1 provided between the positive wiring member 5 and the negative wiring member 16.
  • the positive wiring member 5 includes a positive conductor 2 (2a, 2b), an electromagnetic shield 8, and an insulating material 1 between them.
  • the negative wiring member 16 includes a negative conductor 13 (13a, 13b), an electromagnetic shield 8, and an insulating material 1 between them.
  • the positive electrode side conductor 2, the negative electrode side conductor 13, and the electromagnetic shield 8 can be composed of conductors of each layer of the printed circuit board.
  • the insulating material 1 is an insulating member between layers of a printed circuit board, and can be formed from the base material of the printed circuit board.
  • each layer is arranged so that the insulating material 1 is present at the end, and the positive conductor 2, negative conductor 13, and electromagnetic shield 8 are located slightly inside the end. It is preferable to determine the layout of the conductor pattern. With such a layout, the electromagnetic shield 8 can be effectively insulated from the positive conductor 2 and the negative conductor 13 at the end of the multilayer printed circuit board.
  • the printed circuit board includes a positive electrode 21 and a negative electrode 22 as electrodes.
  • the positive electrode 21 is constituted by a through hole 28 that is internally plated with metal, and is located on the surface of the printed circuit board where the negative conductor 13b is present. This through hole 28 is connected to the positive conductor 2a and the positive conductor 2b.
  • the printed circuit board is provided with the via 29 that connects the positive conductor 2a and the positive conductor 2b, it is effective to reduce the conduction loss between the positive conductor 2a and the positive conductor 2b.
  • an insulating material is placed around the positive electrode 21 in order to insulate the positive electrode 21 and the negative conductor 13b. 1 is placed.
  • the negative electrode 22 is constituted by a through hole 28 that connects the negative conductor 13a and the negative conductor 13b, and is located on the surface of the printed circuit board where the negative conductor 13b is present.
  • the negative conductor 13a and the negative conductor 13b are connected to each other by a via 29.
  • an external device such as a capacitor or a switching element is connected to the positive electrode 21 and the negative electrode 22.
  • the device lead can be passed through the through hole 28 and the device fixed to the printed circuit board by soldering. I can do it.
  • the device can be fixed to the printed circuit board by passing the screw through the through hole 28. be able to.
  • the positions of the positive electrode 21 and the negative electrode 22 are not limited to the examples shown in FIGS. 6A and 6B.
  • the positive electrode 21 and the negative electrode 22 may be located on the surface of the printed circuit board where the positive conductor 2a is present.
  • the insulating material 1 is arranged around the negative electrode 22 in order to insulate the negative electrode 22 and the positive conductor 2a. .
  • the multilayer printed circuit board that is the wiring member 50 according to this embodiment can reduce inductance and power loss with respect to high-frequency current, similarly to the wiring member 50 according to the first embodiment. Moreover, the wiring member 50 according to this embodiment can effectively insulate the electromagnetic shield 8 from the positive conductor 2 and the negative conductor 13 at the end of the multilayer printed circuit board.
  • a wiring member 50 for an electrical device according to a fourth embodiment of the present invention will be described.
  • a bus bar will be described as an example of the wiring member 50.
  • Example 2 and Example 3 examples were described in which the insulating material 1 was solid.
  • the insulating material 1 does not have to be solid, and may be a gas such as air or a liquid such as insulating oil.
  • a wiring member 50 (bus bar) in which the insulating material 1 is air will be described.
  • FIGS. 7A and 7B are diagrams showing an example of a bus bar that is the wiring member 50 according to this embodiment.
  • 7A is a front view of the bus bar
  • FIG. 7B is a sectional view taken along line FF in FIG. 7A.
  • the bus bar shown in FIGS. 7A and 7B does not include the negative wiring member 16, but includes the positive wiring member 5, the positive conductor 2 (2a, 2b), the electromagnetic shield 8, and the insulating material 1 between them. . Insulating material 1 is air.
  • the positive electrode side conductor 2a and the positive electrode side conductor 2b are electrically connected to each other by a spacer 20 which is a conductor. Furthermore, the positive conductor 2a and the positive conductor 2b can be fixed to the insulator 31 with bolts 32. The insulator 31 is fixed to a casing 30 to which the bus bar is fixed.
  • the electromagnetic shield 8 is installed between the positive conductor 2a and the positive conductor 2b.
  • the electromagnetic shield 8 can be installed, for example, by the following method.
  • An insulating spacer 35 is installed between the electromagnetic shield 8 and the positive conductor 2a and between the electromagnetic shield 8 and the positive conductor 2b, and the positive conductor 2a, the electromagnetic shield 8, the positive conductor 2b, and the insulating spacer 35 are connected to the bolts 33. By fixing with nuts 34, the electromagnetic shield 8 can be installed.
  • the electromagnetic shield 8 has a hole through which the bolt 33 passes.
  • the insulating spacer 35 is configured to cover the side surface of the hole in the electromagnetic shield 8. With this configuration, the electromagnetic shield 8 is insulated from the bolt 33.
  • the bus bar which is the wiring member 50 according to this embodiment, can reduce inductance and power loss with respect to high-frequency current, similarly to the wiring member 50 according to the first embodiment. Moreover, the wiring member 50 according to this embodiment can insulate the electromagnetic shield 8 from a conductor such as the positive electrode side conductor 2.
  • Example 5 a power conversion device according to an example of the present invention will be described.
  • the power conversion device according to this embodiment can be any power conversion device including the wiring member 50 according to the embodiment of the present invention.
  • a power converter that converts direct current into three-phase alternating current will be described as an example of the power converter.
  • FIG. 8 is a diagram showing the circuit configuration of the power conversion device 40 according to this embodiment.
  • the power conversion device 40 is a device (for example, an inverter) that converts direct current into three-phase alternating current, and can be connected to the direct current power supply 36 and the three-phase alternating current load 42 .
  • the power conversion device 40 includes a capacitor 37 and a switching element 41 as main components.
  • the switching element 41 switches the direct current on and off.
  • a wiring member 50 according to an embodiment of the present invention (for example, the wiring member 50 according to the second embodiment) is provided as a wiring (flow path for the DC power supply 36) connecting the capacitor 37 and the switching element 41.
  • the wiring member 50 is shown by a thick line.
  • a positive parasitic inductance 38 and a negative parasitic inductance 39 exist as inductances in the wiring connecting the capacitor 37 and the switching element 41.
  • the switching element 41 changes from an on state to an off state, the current flowing through this wiring changes rapidly, and the current includes a high frequency component. Therefore, if the positive side parasitic inductance 38 and the negative side parasitic inductance 39 are large, an excessive surge voltage will be applied to the switching element 41, and the switching element 41 may be destroyed.
  • the power conversion device 40 according to this embodiment includes the wiring member 50 according to the embodiment of the present invention as a wiring that connects the capacitor 37 and the switching element 41, there is no inductance and Power loss can be reduced. That is, in the power conversion device 40 according to the present embodiment, the inductance of the wiring connecting the capacitor 37 and the switching element 41 is small, so that the surge voltage can be reduced and the destruction of the switching element 41 can be prevented.
  • the present invention is not limited to the above embodiments, and various modifications are possible.
  • the above-mentioned embodiments have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to embodiments having all the configurations described.
  • SYMBOLS 1 Insulating material, 2, 2a, 2b... Positive electrode side conductor, 3... Current, 4... Magnetic flux, 5... Positive electrode wiring member, 6... Current, 7... Magnetic flux, 8... Electromagnetic shield, 9... Eddy current, 10... Magnetic flux , 11... Eddy current, 12... Eddy current, 13, 13a, 13b... Negative pole side conductor, 14... Current, 15... Magnetic flux, 16... Negative pole wiring member, 17... Current, 18... Magnetic flux, 19... Eddy current, 20...

Abstract

本発明は、高周波電流に対してインダクタンスと電力損失を低減できる、電気機器の配線部材と、この配線部材を用いた電力変換装置を提供する。本発明による、電気機器の配線部材(50)は、互いに電気的に接続され積層された複数の第1の導体(2a、2b)と、複数の第1の導体(2a、2b)の間に設けられ、他の導体に電気的に接続していない第2の導体(8)と、第1の導体(2a、2b)と第2の導体(8)との間のそれぞれに設けられた絶縁材(1)とを備える。

Description

電気機器の配線部材と電力変換装置
 本発明は、電気機器の配線部材と電力変換装置に関し、特に、高周波電流を流す配線部材と、この配線部材を備える電力変換装置に関する。
 高周波電流を通流する配線部材には、インダクタンスの低減が求められる場合がある。例えば、電力変換装置では、スイッチング素子のオンとオフの動作により直流と交流の間で電力を変換するが、スイッチング素子のターンオフ時に、電流の変化とスイッチング素子に接続された配線部材のインダクタンスとによって、スイッチング素子にサージ電圧が印加され、スイッチング素子が破壊される可能性がある。このため、配線部材には、インダクタンスの低減が必要である。また、配線部材には、効率よく通電するために電力損失の低減が求められている。
 配線部材である導体について、インダクタンスを低減させる技術の例は、特許文献1に記載されている。特許文献1には、直流電源の正極に接続された導体(ブスバー)と負極に接続された導体とが絶縁物を挟んで重ねられた積層ブスバーを備え、導体が絶縁材を挟んで近接した構成の積層ブスバーによりインダクタンスを低減する電力変換装置が記載されている。
 また、配線部材について、高周波電流に対して電力損失を低減させる技術の例は、特許文献2に記載されている。特許文献2には、複数の金属薄板と、隣接する金属薄板同士を絶縁する絶縁材とが積層されて構成され、表皮効果の影響を低減して電力損失を小さくする高周波電流用配線部材が記載されている。
特開2008-245451号公報 特開2005-269873号公報
 従来の技術では、配線部材について、ユーザを十分に満足させる程度にインダクタンスと電力損失を低減するのが困難である。
 例えば、特許文献1の技術では、電流の周波数が上がると、表皮効果の影響で導体の表面にのみ電流が流れ、導体の内部に電流が流れないので、インダクタンスと電力損失の低減が難しくなる。また、特許文献2の技術では、表皮効果の影響を低減することができるが、複数の金属薄板の間で起こる近接効果、すなわち1つの金属薄板に流れる電流から発生する磁束が、他の金属薄板に影響を与えて電流を流れにくくする現象により、インダクタンスと電力損失を十分に低減することができない場合がある。
 本発明の目的は、高周波電流に対してインダクタンスと電力損失を低減できる、電気機器の配線部材と、この配線部材を用いた電力変換装置を提供することである。
 本発明による、電気機器の配線部材は、互いに電気的に接続され積層された複数の第1の導体と、複数の前記第1の導体の間に設けられ、他の導体に電気的に接続していない第2の導体と、前記第1の導体と前記第2の導体との間のそれぞれに設けられた絶縁材とを備える。
 本発明による電力変換装置は、コンデンサと、直流電流のオンとオフを切り替えるスイッチング素子と、前記コンデンサと前記スイッチング素子を接続する配線を備える。前記配線は、本発明による配線部材において、前記第1の導体と前記第2の導体と前記絶縁材とを備える部材を2つ備える配線部材である。2つの前記部材は、前記第1の導体の積層方向で互いに対向し、前記部材の間に絶縁材を備える。一方の前記部材の前記第1の導体には、直流電源の正極が接続される。他方の前記部材の前記第1の導体には、直流電源の負極が接続される。
 本発明によると、高周波電流に対してインダクタンスと電力損失を低減できる、電気機器の配線部材と、この配線部材を用いた電力変換装置を提供することができる。
本発明の実施例1による配線部材の構成の一例を示す、配線部材の断面図。 本発明の実施例2による配線部材であるラミネートブスバーの一例を示す、ラミネートブスバーの正面図。 図2Aの線A-Aにおける断面図。 実施例2において、ラミネートブスバーの端部で外部のデバイスと接続する構成の一例を示す、ラミネートブスバーの正面図。 図3Aの線B-Bにおける断面図。 実施例2において、ラミネートブスバーの端部の構造の一例を示す、ラミネートブスバーの正面図。 図4Aの線C-Cにおける断面図。 実施例2において、ラミネートブスバーの端部の構造の他の例を示す、ラミネートブスバーの正面図。 図5Aの線D-Dにおける断面図。 本発明の実施例3による配線部材である多層プリント基板の一例を示す、多層プリント基板の正面図。 図6Aの線E-Eにおける断面図。 本発明の実施例4による配線部材であるブスバーの一例を示す、ブスバーの正面図。 図7Aの線F-Fにおける断面図。 本発明の実施例5による電力変換装置の回路構成を示す図。
 本発明による、電気機器の配線部材は、複数の導体が積層されて構成された正極側導体と負極側導体のうち少なくとも一方を備えるとともに、積層された導体の間に電磁シールドを備える。本発明による配線部材は、導体である電磁シールドの効果により、高周波電流に対するインダクタンスと電力損失を低減することができる。
 本発明による電力変換装置は、本発明による配線部材を備え、高周波電流に対するインダクタンスと電力損失を低減することができる。
 以下、本発明の実施例による、電気機器の配線部材と電力変換装置について、図面を用いて詳細に説明する。以下に記載した実施例は、本発明を説明するための例示であり、本発明をこれらの実施例のみに限定するものではない。したがって、本発明は、その要旨を逸脱しない限り、以下の実施例に限らず、様々な形態で実施することができる。なお、本明細書で用いる図面において、同一のまたは対応する構成要素には同一の符号を付け、これらの構成要素については繰り返しの説明を省略する場合がある。
 本発明の実施例1による、電気機器の配線部材について説明する。本実施例では、高周波電流に対してインダクタンスと電力損失を低減するための、配線部材の基本的な構成について説明する。
 図1は、本実施例による配線部材50の構成の一例を示す図であり、配線部材50の断面図である。本実施例による配線部材50は、正極配線部材5と、負極配線部材16と、正極配線部材5と負極配線部材16の間に位置する絶縁材1を備える。
 正極配線部材5は、正極側導体2と、電磁シールド8と、絶縁材1を備える。負極配線部材16は、負極側導体13と、電磁シールド8と、絶縁材1を備える。
 正極側導体2は、互いに電気的に接続された複数の平板状の導体が積層されて構成されている。積層されて互いに電気的に接続された導体の数は、任意に定めることができる。以下では、これらの導体の数が2個である場合を例に挙げて説明する。すなわち、正極側導体2は、互いに電気的に接続された2つの平板状の正極側導体2aと正極側導体2bが積層されて構成されているとする。
 負極側導体13も、正極側導体2と同様に、互いに電気的に接続された複数の平板状の導体が積層されて構成されている。これらの導体の数は、任意に定めることができる。以下では、これらの導体の数が2個である場合を例に挙げて説明する。すなわち、負極側導体13は、互いに電気的に接続された2つの平板状の負極側導体13aと負極側導体13bが積層されて構成されているとする。
 電磁シールド8は、正極側導体2を構成する複数の導体のそれぞれの間と、負極側導体13を構成する複数の導体のそれぞれの間に設けられている。図1に示す例では、電磁シールド8は、正極側導体2aと正極側導体2bの間と、負極側導体13aと負極側導体13bの間に、それぞれ設けられている。正極側導体2と負極側導体13が、3つ以上の導体が積層されて構成されている場合には、電磁シールド8は、これら3つ以上の導体のそれぞれの間に設けられる。電磁シールド8は、平板状の導体で構成され、正極側導体2a、2bと負極側導体13a、13bなどの他の導体に電気的に接続していない。
 正極側導体2と負極側導体13と電磁シールド8は、例えば、銅やアルミニウムなどの材料で構成することができる。
 絶縁材1は、正極側導体2aと電磁シールド8の間と、電磁シールド8と正極側導体2bの間に、それぞれ設けられている。さらに、絶縁材1は、負極側導体13aと電磁シールド8の間と、電磁シールド8と負極側導体13bの間に、それぞれ設けられている。電磁シールド8は、これらの絶縁材1により、正極側導体2と負極側導体13から絶縁されている。また、上述したように、絶縁材1は、正極配線部材5と負極配線部材16の間にも設けられている。絶縁材1は、固体、気体、または液体であり、例えば、ガラスエポキシ樹脂、空気、または絶縁油である。
 本実施例による配線部材50は、正極配線部材5と負極配線部材16のうち一方だけを備えることも、図1に示すように、正極配線部材5と負極配線部材16の両方を備えることもできる。すなわち、本実施例による配線部材50は、正極側導体2と負極側導体13の一方または両方を備えることができる。
 配線部材50が正極配線部材5と負極配線部材16の両方を備える構成では、正極配線部材5と負極配線部材16は、正極側導体2a、2bの積層方向と負極側導体13a、13bの積層方向が互いに一致するように並び、これらの積層方向で互いに対向して、配線部材50を構成する。正極配線部材5と負極配線部材16の間に位置する絶縁材1は、図1に示す例では、正極側導体2bと負極側導体13aの間に設けられている。
 正極配線部材5の正極側導体2(2a、2b)には、直流電源の電極、例えば正極を接続することができる。負極配線部材16の負極側導体13(13a、13b)には、直流電源の電極、例えば負極を接続することができる。正極側導体2と負極側導体13は、直流電源の電極が接続されると電流を通流する。
 本実施例による配線部材50は、直流電流が通流された場合に、直流電流に含まれる高周波成分に対してインダクタンスと電力損失を低減することができる。本明細書では、高周波の交流電流だけでなく、直流電流に含まれる高周波成分のことも高周波電流と呼ぶ。
 図1に示すように、正極配線部材5の正極側導体2に対し、正極側導体2a、2bの積層方向(図1の左右方向)と直交する方向(例えば、図1の面の手前側から向こう側に向かう方向)に電流を流すとする。正極側導体2aに電流3を流すと、電流3により磁束4が生じる。正極側導体2bに電流6を流すと、電流6により磁束7が生じる。
 磁束4と磁束7が電磁シールド8に鎖交すると、電磁シールド8には、電流3、6と逆向きの渦電流9が生じる。この渦電流9により、電磁シールド8の周囲に磁束10が生じる。この磁束10が正極側導体2aと正極側導体2bに鎖交すると、正極側導体2aと正極側導体2bには、電磁シールド8に対向する面に渦電流11が生じる。この渦電流11は、電流3、6と同じ向きであり、電流3、6の通流を妨げない。
 このため、正極側導体2aと正極側導体2bは、電磁シールド8に対向する面で高周波電流が通流しやすくなる。従って、本実施例による配線部材50の正極配線部材5は、高周波電流に対してインダクタンスと電力損失を低減することができる。
 負極配線部材16は、正極配線部材5と同様の構成を備える。このため、負極側導体13aと負極側導体13bは、正極配線部材5での原理と同様の原理により、電磁シールド8に対向する面で高周波電流が通流しやすくなる。従って、本実施例による配線部材50の負極配線部材16は、高周波電流に対してインダクタンスと電力損失を低減することができる。但し、負極側導体13a、13bに流れる電流14、17の向きが、正極側導体2a、2bに流れる電流3、6の向きと逆であるので、電流14、17により生じた磁束15、18の向きが、正極配線部材5で生じた磁束4、7の向きと逆になる。そして、磁束15、18により電磁シールド8に生じる渦電流9の向きと電磁シールド8の周囲に生じる磁束10の向きも、正極配線部材5での向きと逆になり、負極側導体13a、13bの電磁シールド8に対向する面に生じる渦電流11の向きも、正極配線部材5での向きと逆になる。
 本実施例による配線部材50では、正極配線部材5と負極配線部材16は、絶縁材1を挟んで対向している。このため、正極側導体2bと負極側導体13aに生じた磁束によって、正極配線部材5と負極配線部材16の絶縁材1に対向する面(すなわち、正極側導体2bと負極側導体13aの絶縁材1に対向する面)には、それぞれ渦電流19と渦電流12が生じる。この渦電流19と渦電流12も、それぞれ電流6と電流14と同じ向きであり、電流6、14の通流を妨げない。
 このため、正極側導体2bと負極側導体13aは、正極配線部材5と負極配線部材16との間の絶縁材1に対向する面で高周波電流が通流しやすくなる。従って、本実施例による配線部材50の正極配線部材5と負極配線部材16は、高周波電流に対してインダクタンスと電力損失を低減することができる。
 本実施例による配線部材50は、他の導体に電気的に接続していない電磁シールド8を備え、電磁シールド8に渦電流9を発生させ、正極側導体2と負極側導体13に渦電流11を発生させることで、高周波電流に対してインダクタンスと電力損失を低減することができる。
 なお、図1に示した構成や電流の向きは、本実施例による配線部材50の一例を示している。例えば、配線部材50において電流3、6と電流14、17の向きを逆にしても、本実施例と同様の効果を得ることができる。
 本発明の実施例2による、電気機器の配線部材50について説明する。本実施例では、配線部材50として、絶縁材と導体が積層されて構成されたラミネートブスバーを例示して説明する。
 図2Aと図2Bは、本実施例による配線部材50であるラミネートブスバーの一例を示す図である。図2Aは、ラミネートブスバーの正面図であり、図2Bは、図2Aの線A-Aにおける断面図である。
 図2Aと図2Bに示すラミネートブスバーは、正極配線部材5と、負極配線部材16と、正極配線部材5と負極配線部材16の間に設けられた絶縁材1を備える。正極配線部材5は、正極側導体2(2a、2b)と、電磁シールド8と、これらの間の絶縁材1を備える。負極配線部材16は、負極側導体13(13a、13b)と、電磁シールド8と、これらの間の絶縁材1を備える。
 ラミネートブスバーの電極の構成について説明する。
 ラミネートブスバーの正極側では、正極側導体2aと正極側導体2bは、スペーサー20により、互いに電気的に接続されている。スペーサー20は、導体であり、例えばリング状の金属製部材である。正極側導体2aと正極側導体2bとスペーサー20は、例えばスポット溶接により機械的に接続されている。
 ラミネートブスバーは、正極側電極21を備える。正極側電極21は、正極側導体2aと正極側導体2bに電気的に接続する。正極側電極21は、例えば金属製の円筒で構成することができ、例えば圧入によりラミネートブスバーに設置することができる。正極側電極21と負極側導体13の間には、正極側電極21と負極側導体13とを絶縁するために絶縁材1が配置されている。
 ラミネートブスバーの負極側は、正極側と同様の構成を備える。負極側導体13aと負極側導体13bは、スペーサー20により、互いに電気的に接続されている。ラミネートブスバーは、負極側導体13aと負極側導体13bに電気的に接続する負極側電極22を備える。負極側電極22と正極側導体2の間には、負極側電極22と正極側導体2とを絶縁するために絶縁材1が配置されている。
 正極側電極21と負極側電極22は、コンデンサやスイッチング素子などの外部のデバイスを固定するねじを通す貫通穴を備える。図2Aと図2Bに示すラミネートブスバーでは、外部のデバイスは、ラミネートブスバーの内周部で正極側電極21と負極側電極22に接続する。ラミネートブスバーは、その端部で外部のデバイスが正極側電極21と負極側電極22に接続するような構成を取ることもできる。
 図3Aと図3Bは、本実施例による配線部材50であるラミネートブスバーにおいて、ラミネートブスバーの端部で外部のデバイスと接続する構成の一例を示す図である。図3Aは、ラミネートブスバーの正面図であり、図3Bは、図3Aの線B-Bにおける断面図である。
 図3Bに示すように、正極側導体2aは、ラミネートブスバーの端部に段曲げ部23を有し、段曲げ部23で曲がって正極側導体2bに接する。正極側導体2aと正極側導体2bは、例えばスポット溶接により機械的に接続されている。正極側導体2aと正極側導体2bとの接続部は、正極側電極21として構成され、外部のデバイスを固定するねじを通す貫通穴を備える。
 負極側導体13bは、正極側導体2aと同様の構成を備え、段曲げ部23で曲がって負極側導体13aに接続する。負極側導体13aと負極側導体13bとの接続部は、負極側電極22として構成され、外部のデバイスを固定するねじを通す貫通穴を備える。
 図3Aに示すように、正極側電極21と負極側電極22は、外部のデバイスが容易に接続できるように、位置が互いに分かれているのが好ましい。
 本実施例による配線部材50であるラミネートブスバーは、図2A、2Bと図3A、3Bに示すように正極側電極21と負極側電極22が貫通穴を備え、この貫通穴を利用して、コンデンサやスイッチング素子などの外部のデバイスをねじ止めにより接続することができる。
 本実施例による配線部材50であるラミネートブスバーの端部の構造の例を、図4A、4Bと図5A、5Bを用いて説明する。
 図4Aと図4Bは、本実施例による配線部材50であるラミネートブスバーにおける、端部の構造の一例を示す図である。図4Aは、ラミネートブスバーの正面図であり、図4Bは、図4Aの線C-Cにおける断面図である。
 図4Bに示すように、正極配線部材5では、正極側導体2aと電磁シールド8の間と、電磁シールド8と正極側導体2bの間に、絶縁材1である電磁シールド絶縁板25が設置されている。電磁シールド絶縁板25は、正極側導体2a、2bと電磁シールド8に接着されている。負極配線部材16も、正極配線部材5と同様の構成を備える。正極配線部材5と負極配線部材16の間には、絶縁材1である正極負極間絶縁板24が設置されている。
 電磁シールド絶縁板25の、正極側導体2a、2bと負極側導体13a、13bから突出する長さをd2とする。正極負極間絶縁板24の、正極側導体2a、2bと負極側導体13a、13bから突出する長さをd1とする。
 長さd2は、長さd1以下である(d2≦d1)のが好ましい。ラミネートブスバーでは、正極側導体2と負極側導体13の電位差が大きい。このため、長さd1は、正極側導体2と負極側導体13との沿面距離が大きくなるような一定の長さが必要である。一方で、正極側導体2a、2bと電磁シールド8の電位差と、負極側導体13a、13bと電磁シールド8の電位差は、正極側導体2と負極側導体13の電位差よりも小さい。このため、長さd2は、長さd1より小さくする(d2<d1)ことができる。長さd2は、長さd1と等しくてもよい(d2=d1)が、長さd1より小さいと、使用する絶縁材の量をより少なくできるという利点がある。
 図4Aと図4Bに示す例では、電磁シールド8を絶縁する絶縁材1として、電磁シールド絶縁板25、すなわち板状の絶縁材を用いている。上述したように、電磁シールド8と正極側導体2の電位差と電磁シールド8と負極側導体13の電位差は、小さい。このため、電磁シールド8を絶縁する絶縁材1として、薄膜状の絶縁材、例えば薄いシートまたは薄いフィルムを用いることができる。以下では、電磁シールド8を絶縁する絶縁材1として絶縁シートを用いたラミネートブスバーの端部の構造を説明する。
 図5Aと図5Bは、本実施例による配線部材50であるラミネートブスバーにおける、端部の構造の他の例を示す図である。図5Aは、ラミネートブスバーの正面図であり、図5Bは、図5Aの線D-Dにおける断面図である。
 図5Bに示すように、正極配線部材5では、正極側導体2aと電磁シールド8の間と、電磁シールド8と正極側導体2bの間に、絶縁材1である電磁シールド絶縁シート26が設置されている。電磁シールド絶縁シート26は、正極側導体2a、2bと電磁シールド8に接着されている。負極配線部材16も、正極配線部材5と同様の構成を備える。正極配線部材5と負極配線部材16の間には、絶縁材1である正極負極間絶縁板24が設置されている。
 正極配線部材5と負極配線部材16の側面(すなわち、正極側導体2aと負極側導体13bの側面)には、側面絶縁シート27が貼り付けられて設けられている。
 ラミネートブスバーの端部において、電磁シールド絶縁シート26は、側面絶縁シート27と重ね合わされて、正極負極間絶縁板24に接着されている。
 本実施例による配線部材50であるラミネートブスバーは、実施例1による配線部材50と同様に、高周波電流に対してインダクタンスと電力損失を低減することができる。また、本実施例による配線部材50は、図4A、4Bと図5A、5Bに示したような構成を備えることにより、ラミネートブスバーの端部において、電磁シールド8を正極側導体2と負極側導体13から効果的に絶縁することができる。
 本発明の実施例3による、電気機器の配線部材50について説明する。本実施例では、配線部材50として、多層プリント基板を例示して説明する。
 図6Aと図6Bは、本実施例による配線部材50である多層プリント基板の一例を示す図である。図6Aは、多層プリント基板の正面図であり、図6Bは、図6Aの線E-Eにおける断面図である。
 図6Aと図6Bに示す多層プリント基板は、正極配線部材5と、負極配線部材16と、正極配線部材5と負極配線部材16の間に設けられた絶縁材1を備える。正極配線部材5は、正極側導体2(2a、2b)と、電磁シールド8と、これらの間の絶縁材1を備える。負極配線部材16は、負極側導体13(13a、13b)と、電磁シールド8と、これらの間の絶縁材1を備える。正極側導体2と負極側導体13と電磁シールド8は、プリント基板の各層の導体で構成することができる。絶縁材1は、プリント基板の層間の絶縁部材であり、プリント基板の基材で構成することができる。
 本実施例による配線部材50である多層プリント基板では、端部に絶縁材1が存在し、端部より少し内側に正極側導体2と負極側導体13と電磁シールド8が位置するように、各層の導体パターンのレイアウトを定めるのが好ましい。このようなレイアウトにより、多層プリント基板の端部において、電磁シールド8を正極側導体2と負極側導体13から効果的に絶縁することができる。
 プリント基板の電極の構成について説明する。プリント基板は、電極として、正極側電極21と負極側電極22を備える。
 正極側電極21は、内部に金属めっきが施されたスルーホール28によって構成され、プリント基板の負極側導体13bが存在する面に位置する。このスルーホール28は、正極側導体2aと正極側導体2bに接続されている。プリント基板が、正極側導体2aと正極側導体2bとを接続するビア29を備えると、正極側導体2aと正極側導体2bの間の導通損失を低下させるのに有効である。また、図6Aに示すように、正極側電極21の周囲に負極側導体13bが存在するので、正極側電極21と負極側導体13bとを絶縁するために、正極側電極21の周囲に絶縁材1が配置されている。
 負極側電極22は、負極側導体13aと負極側導体13bを接続するスルーホール28によって構成され、プリント基板の負極側導体13bが存在する面に位置する。負極側導体13aと負極側導体13bは、ビア29によって互いに接続されている。
 スルーホール28を利用することにより、正極側電極21と負極側電極22には、コンデンサやスイッチング素子などの外部のデバイスが接続される。例えば、スルーホール28の径が、正極側電極21と負極側電極22に接続されるデバイスのリード径より少し大きいと、スルーホール28にデバイスのリードを通してデバイスをプリント基板にはんだ付けで固定することができる。また、例えば、デバイスの電極がプリント基板にねじで固定されるデバイスの場合には、スルーホール28の径がこのねじの径より少し大きいと、スルーホール28にねじを通してデバイスをプリント基板に固定することができる。
 なお、正極側電極21と負極側電極22の位置は、図6Aと図6Bに示した例に限られない。例えば、正極側電極21と負極側電極22は、プリント基板の正極側導体2aが存在する面に位置してもよい。この配置では、負極側電極22の周囲に正極側導体2aが存在するので、負極側電極22と正極側導体2aとを絶縁するために、負極側電極22の周囲に絶縁材1が配置される。
 本実施例による配線部材50である多層プリント基板は、実施例1による配線部材50と同様に、高周波電流に対してインダクタンスと電力損失を低減することができる。また、本実施例による配線部材50は、多層プリント基板の端部において、電磁シールド8を正極側導体2と負極側導体13から効果的に絶縁することができる。
 本発明の実施例4による、電気機器の配線部材50について説明する。本実施例では、配線部材50としてブスバーを例示して説明する。実施例2と実施例3では、絶縁材1が固体である例を説明した。絶縁材1は、固体でなくてもよく、空気などの気体や絶縁油などの液体でもよい。本実施例では、絶縁材1が空気である配線部材50(ブスバー)について説明する。
 図7Aと図7Bは、本実施例による配線部材50であるブスバーの一例を示す図である。図7Aは、ブスバーの正面図であり、図7Bは、図7Aの線F-Fにおける断面図である。
 図7Aと図7Bに示すブスバーは、負極配線部材16を備えず、正極配線部材5を備え、正極側導体2(2a、2b)と、電磁シールド8と、これらの間の絶縁材1を備える。絶縁材1は、空気である。
 正極側導体2aと正極側導体2bは、導体であるスペーサー20により、互いに電気的に接続されている。また、正極側導体2aと正極側導体2bは、ボルト32により碍子31に固定可能である。碍子31は、ブスバーが固定される筐体30に固定されている。
 電磁シールド8は、正極側導体2aと正極側導体2bの間に設置される。電磁シールド8は、例えば以下の方法で設置することができる。電磁シールド8と正極側導体2aの間と電磁シールド8と正極側導体2bの間に絶縁スペーサー35を設置し、正極側導体2a、電磁シールド8、正極側導体2b、及び絶縁スペーサー35をボルト33とナット34により固定することで、電磁シールド8を設置することができる。
 電磁シールド8は、ボルト33が貫通する穴を有する。ボルト33が金属などの導電体で構成されている場合には、絶縁スペーサー35は、電磁シールド8の穴の側面を覆う構成を備える。この構成により、電磁シールド8は、ボルト33と絶縁する。
 本実施例による配線部材50であるブスバーは、実施例1による配線部材50と同様に、高周波電流に対してインダクタンスと電力損失を低減することができる。また、本実施例による配線部材50は、電磁シールド8を正極側導体2などの導体から絶縁することができる。
 実施例5では、本発明の実施例による電力変換装置について説明する。本実施例による電力変換装置は、本発明の実施例による配線部材50を備える任意の電力変換装置とすることができる。本実施例では、電力変換装置として、直流電流を三相の交流電流に変換する電力変換装置を例示して説明する。
 図8は、本実施例による電力変換装置40の回路構成を示す図である。電力変換装置40は、直流電流を三相の交流電流に変換する装置(例えばインバーター)であり、直流電源36と三相交流負荷42に接続可能である。
 電力変換装置40は、主な構成要素として、コンデンサ37とスイッチング素子41を備える。スイッチング素子41は、直流電流のオンとオフを切り替える。さらに、コンデンサ37とスイッチング素子41とを接続する配線(直流電源36の通流路)として、本発明の実施例による配線部材50(例えば、実施例2による配線部材50)を備える。図8では、配線部材50を太線で示している。
 一般に、コンデンサ37とスイッチング素子41とを接続する配線には、インダクタンスとして、正極側寄生インダクタンス38と負極側寄生インダクタンス39が存在する。スイッチング素子41がオン状態からオフ状態になるターンオフ時には、この配線を流れる電流が急激に変化し、電流に高周波成分が含まれる。このため、正極側寄生インダクタンス38と負極側寄生インダクタンス39が大きいと、スイッチング素子41に過大なサージ電圧が印加され、スイッチング素子41が破壊される可能性がある。
 本実施例による電力変換装置40は、コンデンサ37とスイッチング素子41とを接続する配線として本発明の実施例による配線部材50を備えるので、高周波電流(高周波成分を含む直流電流)に対してインダクタンスと電力損失を低減することができる。すなわち、本実施例による電力変換装置40は、コンデンサ37とスイッチング素子41とを接続する配線のインダクタンスが小さいので、サージ電圧を小さくできて、スイッチング素子41の破壊を防ぐことができる。
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形が可能である。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、削除したり、他の構成を追加・置換したりすることが可能である。
 1…絶縁材、2、2a、2b…正極側導体、3…電流、4…磁束、5…正極配線部材、6…電流、7…磁束、8…電磁シールド、9…渦電流、10…磁束、11…渦電流、12…渦電流、13、13a、13b…負極側導体、14…電流、15…磁束、16…負極配線部材、17…電流、18…磁束、19…渦電流、20…スペーサー、21…正極側電極、22…負極側電極、23…段曲げ部、24…正極負極間絶縁板、25…電磁シールド絶縁板、26…電磁シールド絶縁シート、27…側面絶縁シート、28…スルーホール、29…ビア、30…筐体、31…碍子、32…ボルト、33…ボルト、34…ナット、35…絶縁スペーサー、36…直流電源、37…コンデンサ、38…正極側寄生インダクタンス、39…負極側寄生インダクタンス、40…電力変換装置、41…スイッチング素子、42…三相交流負荷、50…配線部材。

Claims (4)

  1.  互いに電気的に接続され積層された複数の第1の導体と、
     複数の前記第1の導体の間に設けられ、他の導体に電気的に接続していない第2の導体と、
     前記第1の導体と前記第2の導体との間のそれぞれに設けられた絶縁材と、
    を備えることを特徴とする、電気機器の配線部材。
  2.  前記第1の導体と前記第2の導体と前記絶縁材とを備える部材を2つ備え、
     2つの前記部材は、前記第1の導体の積層方向で互いに対向し、前記部材の間に絶縁材を備える、
    請求項1に記載の、電気機器の配線部材。
  3.  一方の前記部材の前記第1の導体には、直流電源の正極が接続され、
     他方の前記部材の前記第1の導体には、直流電源の負極が接続される、
    請求項2に記載の、電気機器の配線部材。
  4.  コンデンサと、
     直流電流のオンとオフを切り替えるスイッチング素子と、
     前記コンデンサと前記スイッチング素子を接続する配線を備え、
     前記配線は、請求項3に記載の配線部材である、
    ことを特徴とする電力変換装置。
PCT/JP2023/025733 2022-07-12 2023-07-12 電気機器の配線部材と電力変換装置 WO2024014478A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-111741 2022-07-12
JP2022111741A JP2024010414A (ja) 2022-07-12 2022-07-12 電気機器の配線部材と電力変換装置

Publications (1)

Publication Number Publication Date
WO2024014478A1 true WO2024014478A1 (ja) 2024-01-18

Family

ID=89536804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025733 WO2024014478A1 (ja) 2022-07-12 2023-07-12 電気機器の配線部材と電力変換装置

Country Status (2)

Country Link
JP (1) JP2024010414A (ja)
WO (1) WO2024014478A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095963A (ja) * 2013-11-12 2015-05-18 株式会社デンソー バスバー、およびそれを用いた電力変換装置
JP2018182867A (ja) * 2017-04-10 2018-11-15 株式会社Soken バスバセット
JP2020129903A (ja) * 2019-02-08 2020-08-27 株式会社豊田自動織機 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095963A (ja) * 2013-11-12 2015-05-18 株式会社デンソー バスバー、およびそれを用いた電力変換装置
JP2018182867A (ja) * 2017-04-10 2018-11-15 株式会社Soken バスバセット
JP2020129903A (ja) * 2019-02-08 2020-08-27 株式会社豊田自動織機 電力変換装置

Also Published As

Publication number Publication date
JP2024010414A (ja) 2024-01-24

Similar Documents

Publication Publication Date Title
US20110221268A1 (en) Power Converter and In-Car Electrical System
US8237535B2 (en) Integral planar transformer and busbar
JP6326038B2 (ja) 電気回路装置
US10153088B2 (en) Capacitor, in particular intermediate circuit capacitor for a multi-phase system
JPH1198815A (ja) 電力変換装置並びに多層積層導体と電気部品接続体
JP6602260B2 (ja) 電力変換装置
US9078372B2 (en) Power system and power converting device thereof
CN109314470B (zh) 将至少一个电构件与第一和第二汇流排电连接的装置
JPH05292756A (ja) 電力変換装置
WO2024014478A1 (ja) 電気機器の配線部材と電力変換装置
JP6647350B2 (ja) 電力変換装置
WO2018025490A1 (ja) 多層基板
JPS63157677A (ja) ブリツジ形インバ−タ装置
JP2005130542A (ja) インバータ装置
JP5869207B2 (ja) 回路部品実装構造ならびにその実装基板
JP2021100055A (ja) 変圧器及びこれを用いた電力変換装置
EP2476128B1 (en) Safety shielding in planar transformer
US9520793B2 (en) Stacked power converter assembly
JP7294289B2 (ja) 電力変換装置
US11528005B2 (en) Electrical filter element and electrical power converter
JP2015018856A (ja) 半導体パワーモジュール
US20240136936A1 (en) Power Conversion Apparatus
US20240136937A1 (en) Conductor structure
JP2008306868A (ja) 電力変換装置および積層配線導体の接続方法
JP6293913B2 (ja) 電気部品を接触させるための装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839650

Country of ref document: EP

Kind code of ref document: A1