WO2021241227A1 - 高電圧発生装置およびx線発生装置 - Google Patents

高電圧発生装置およびx線発生装置 Download PDF

Info

Publication number
WO2021241227A1
WO2021241227A1 PCT/JP2021/018014 JP2021018014W WO2021241227A1 WO 2021241227 A1 WO2021241227 A1 WO 2021241227A1 JP 2021018014 W JP2021018014 W JP 2021018014W WO 2021241227 A1 WO2021241227 A1 WO 2021241227A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
voltage generator
high voltage
diode
boards
Prior art date
Application number
PCT/JP2021/018014
Other languages
English (en)
French (fr)
Inventor
拓実 林
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to CN202180038034.8A priority Critical patent/CN115669230B/zh
Priority to KR1020227042113A priority patent/KR102542892B1/ko
Priority to JP2021531968A priority patent/JP6966027B1/ja
Priority to US17/927,087 priority patent/US11778718B2/en
Publication of WO2021241227A1 publication Critical patent/WO2021241227A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/20Power supply arrangements for feeding the X-ray tube with high-frequency ac; with pulse trains

Definitions

  • the present invention relates to miniaturization of a high voltage generator.
  • Cockcroft-Walton circuits (hereinafter referred to as CW circuits) are often used in high-voltage generators used in medical X-ray generators.
  • FIG. 11 shows a circuit diagram of the CW circuit.
  • Patent Document 1 describes a method for miniaturizing a CW circuit.
  • the diodes 3a-1, 2, 2 and 3 use a bent lead wire.
  • the capacitors 2a-1, 2, 3 and 4 are molded products having a cylindrical shape.
  • the present invention has been devised in view of the above-mentioned conventional problems, and one aspect thereof is a high voltage generator including a Cockcroft-Walton circuit that receives an AC power supply from an AC power source and applies a potential difference to a load. It is provided with three or more boards arranged at intervals in the thickness direction, a flat plate-shaped capacitor mounted on each board, and a diode connected between the boards. A notch is formed in the substrate other than both ends among the or more substrates, and the diode is arranged at the position of the notch.
  • the lead wire of the diode is formed in a straight line.
  • the lead wire of the diode is bent twice, and the lead wire of the diode and the substrate are connected by the end face of the substrate.
  • the capacitor is mounted on the front surface and the back surface of each of the substrates, and the capacitors mounted on the front surface and the back surface of each of the substrates are connected in parallel.
  • each of the above-mentioned substrates is characterized in that it is divided by a slit.
  • each of the boards is fixed by a jig for positioning between the boards at the time of assembling the boards.
  • the high voltage generator is used as an X-ray generator.
  • the front view which shows the high voltage generator in Embodiment 1. The figure which looked at the high voltage generator in Embodiment 1 from the upper direction of each substrate.
  • the perspective view which shows the high voltage generator in Embodiment 1. The figure which shows the diode positioning part in Embodiment 1.
  • FIG. The front view which shows the high voltage generator in Embodiment 2. The figure which shows the substrate division method in Embodiment 3.
  • the front view which shows the high voltage generator in Embodiment 4. The figure which looked at the high voltage generator in Embodiment 4 from the upper direction of each substrate.
  • the high voltage generator is used, for example, in an X-ray generator.
  • the high voltage generator has a CW circuit.
  • the CW circuit will be described with reference to FIG.
  • the CW circuit receives the supply of AC power from the AC power supply 1 and applies a high potential difference to the load 2.
  • capacitors C 1 , C 3 , and C 5 are connected in series to one end of the AC power supply 1. Further, capacitors C 2 , C 4 , and C 6 are connected in series to the other end of the AC power supply 1. Further, the other end of the AC power supply 1 is grounded.
  • a diode D 1 is connected between the common connection point of the AC power supply 1 and the capacitor C 2 and the common connection point of the capacitors C 1 and C 3.
  • a diode D 2 is connected between the common connection points of the capacitors C 1 and C 3 and the common connection points of the capacitors C 2 and C 4.
  • a diode D 3 is connected between the common connection point of the capacitors C 2 and C 4 and the common connection point of the capacitors C 3 and C 5.
  • a diode D 4 is connected between the common connection point of the capacitors C 3 and C 5 and the common connection point of the capacitors C 4 and C 6.
  • a diode D 5 is connected between the common connection points of the capacitors C 4 and C 6 and the capacitor C 5.
  • a diode D 6 is connected between the common connection point of the capacitor C 5 and the diode D 5 and the capacitor C 6.
  • a load 2 is connected between the common connection point of the capacitor C 6 and the diode D 6 and the other end of the AC power supply 1.
  • FIG. 11 is a CW circuit having a three-stage configuration. In the case of a two-stage configuration, the third-stage circuit in FIG. 11 is omitted. In the case of a configuration having four or more stages, a circuit composed of a capacitor and a diode is additionally connected to the fourth and subsequent stages as in the first to third stages of FIG.
  • FIGS. 1 and 2 show the structure of the high voltage generator according to the first embodiment.
  • FIG. 1 is a front view of the high voltage generator
  • FIG. 2 is a view of each substrate viewed from above.
  • the substrate is divided into four (No. 1 to No. 4), but the number of substrates may be three or more.
  • Substrate No. 1 to No. 4 are arranged at intervals in the thickness direction.
  • Each substrate No. 1 to No. 4 is connected with a diode and a connection terminal.
  • the capacitor a type that has a flat plate shape and can be mounted on the substrate surface is used.
  • the substrate No. Capacitors C 2-2 , C 4-2 , and C 6-2 are mounted on 1.
  • Substrate No. Capacitors C 2-1 , C 4-1 and C 6-1 are mounted on 2.
  • Substrate No. Capacitors C 1-1 , C 3-1 and C 5-1 are mounted on 3.
  • Substrate No. Capacitors C 1-2 , C 3-2 , and C 5-2 are mounted on 4.
  • the capacitors of the same stage are arranged so as to be perpendicular to the axis of increasing the number of stages.
  • One end (anode) of the diode D 1 is the substrate No. It is connected to No. 2 and the other end (cathode) is the substrate No. Connected to 4.
  • One end (anode) of the diode D 2 is the substrate No. It is connected to No. 4, and the other end (cathode) is the substrate No. Connected to 1.
  • the lead wire on one end (anode) side of the diode D 2 is the substrate No. It penetrates through the through hole of No. 3 and is the substrate No. By soldering the through hole of No. 3, the substrate NO. It is also connected to 3.
  • One end (anode) of the diode D 3 is the substrate No. It is connected to No.
  • the lead wire on one end (anode) side of the diode D 3 is the substrate No. It penetrates through the through hole of No. 2 and has the substrate No. By soldering the through hole of No. 2, the substrate NO. It is also connected to 2.
  • One end (anode) of the diode D 4 is the substrate No. It is connected to No. 4, and the other end (cathode) is the substrate No. Connected to 1.
  • the lead wire on one end (anode) side of the diode D 4 is the substrate No. It penetrates through the through hole of No. 3 and is the substrate No. By soldering the through hole of No. 3, the substrate NO. It is also connected to 3.
  • One end (anode) of the diode D 5 is the substrate No. It is connected to No. 1 and the other end (cathode) is the substrate No. Connected to 4.
  • the lead wire on one end (anode) side of the diode D 5 is the substrate No. It penetrates through the through hole of No. 2 and has the substrate No. By soldering the through hole of No. 2, the substrate NO. It is also connected to 2.
  • One end (anode) of the diode D 6 is the substrate No. It is connected to No. 4, and the other end (cathode) is the substrate No. Connected to 1.
  • the lead wire on one end (anode) side of the diode D 6 is the substrate No. It penetrates through the through hole of No. 3 and is the substrate No. By soldering the through hole of No. 3, the substrate NO. It is also connected to 3.
  • the lead wires of the diodes D 1 to D 6 are not bent and are formed in a straight line.
  • the reference numerals D 1 to D 6 of the diode correspond to those in FIGS. 1 and 11. Further, the capacitor C 1-1 and the capacitor C 1-2 in FIG. 1 are connected in series (a part of the connection wiring between them is not shown in FIG. 1), and the capacitor C 1-1 and the capacitor C in FIG. 1 are connected.
  • the 1-2 series circuit corresponds to the capacitor C 1 in FIG. The same applies to the other capacitors C 2 to C 6.
  • the voltage of the AC power supply 1 shown in FIG. 11 is the substrate No. 2-No. It is applied between three.
  • FIG. 3 is a perspective view of the high voltage generator according to the first embodiment. Intermediate board (board other than both ends among multiple boards) No. 2. No. 3 is provided with a notch 3. Diodes D 1 to D 6 are arranged in this notch 3.
  • FIG. 3 also shows a jig 4 for positioning between the boards to facilitate the assembly work between the boards.
  • the jig 4 may be removed from the substrate after the assembly work is completed, or the substrate may be attached to the apparatus with the jig 4 attached.
  • Patent Document 1 a capacitor having a relatively large outer shape is used, and it is difficult to miniaturize the device. Further, since the lead wire of the diode is bent, if the diode is deformed by an external force, the distance from the surrounding parts cannot be kept constant and there is a risk of dielectric breakdown.
  • FIG. 4 shows a diode positioning method.
  • the substrate No. A part of 3 is shown.
  • the diodes D 1 and D 3 can be easily positioned by the notch 3 on the substrate.
  • Diodes D 2 , D 4 , D 5 , and D 6 can also be positioned in the same manner, although not shown. Therefore, the manufacturing man-hours can be reduced and the productivity can be increased. Further, since the cutting 3 can sufficiently secure the distance between the diodes, insulation is secured and the reliability is improved.
  • the substrate No. 1 to No. By using a short flat plate-shaped capacitor C on the surface, the distance between the substrates is not restricted by the capacitor size, and the device can be downsized as compared with the case of using a cylindrical capacitor.
  • a jig 4 for positioning between the boards as shown in FIG. 3 is provided to set the board No. 1 to No.
  • fixing 4 the assembly can be further facilitated and the productivity can be increased.
  • the first embodiment is suitable for a high voltage generator having a small capacity.
  • FIG. 1 to 3 are configuration diagrams when the number of substrates is four. If the number of substrates is three or more, the present invention can be applied because there is an intermediate substrate (a substrate other than both ends) for fixing the diode by a notch.
  • FIG. 5 shows the structure of the high voltage generator according to the second embodiment. In order to increase the capacitance of the capacitor, a capacitor C is added on the back surface of the substrate. Further, the capacitor C on the front surface of the substrate and the capacitor C on the back surface of the substrate are connected in parallel in the substrate.
  • the capacity of the capacitor can be doubled while obtaining the same effect as that of the first embodiment.
  • the output power of the CW circuit can be increased by doubling the capacity of the capacitor.
  • FIG. 6 shows the structure of the high voltage generator according to the third embodiment.
  • the substrate of the first embodiment is divided into slits for each stage.
  • the division method of FIG. 6 is an example, and an effect can be obtained by dividing a portion where there is a risk of creeping discharge.
  • the distance between the boards and the distance between the steps can be kept constant.
  • the jig 4 for positioning between the boards it is possible to easily manufacture a structure in which the divided boards do not come into contact with each other.
  • the reason why machine mounting is difficult due to the structures of the first to third embodiments is that the flow solder nozzles do not enter all the solder points of the TMD (Thorough hole Mount Device) parts when assembling the four boards into a unit.
  • the two substrate Nos. 1, No. With respect to 4 the flow solder nozzle can be approached.
  • the two central substrate Nos. 2, No. Regarding No. 3 the flow solder nozzle cannot approach the mounting location.
  • the substrate No. 1 to No. No. 4 is the substrate No. 1 to No. It is connected at the end face of 4.
  • Substrate No. 1 to No. The connection points of the diodes D 1 to D 6 of 4 with the lead wires are made into end face through holes.
  • Diodes D 1 to D 6 form the anode lead and cathode lead.
  • reference numeral 5 indicates an end face through hole
  • reference numeral 6 indicates a double bending portion.
  • the main bodies of the diodes D 1 to D 6 are arranged in the notch 3 in the same manner as in the first to third embodiments.
  • the substrate No. 2, No. Although it was difficult to mechanically mount the diode to No. 3, by adopting the end face through hole, it becomes possible to cope with the mechanical mounting (spot soldering and the like), and the occurrence of solder defects can be remarkably reduced.
  • the reason why machine mounting is possible when the end face through hole is adopted is that the flow solder nozzle can be approached by moving the mounting portion from the inside of the board to the edge of the board.
  • Embodiment 4 the diodes D 1 ⁇ D 6 substrate No. 1 to No. It can now be placed simply by placing it from the side of 4.
  • all the solder points can be mechanically mounted by bending the anode leads and cathode leads of the diodes D 1 to D 6 twice and adopting end face through holes. Further, since there are no parts through which the through holes are passed in the parts arrangement between the boards, the parts arrangement becomes easy.

Landscapes

  • Rectifiers (AREA)

Abstract

交流電源(1)から交流電力の供給を受けて負荷(2)に電位差を印加するコッククロフト・ウォルトン回路を備えた高電圧発生装置において、厚み方向に間隔を空けて3枚以上の基板を配置する。各基板に平板形状のコンデンサ(C1-1~C6-2)を搭載する。各基板間にダイオード(D1~D6)を接続する。3枚以上の基板のうち両端以外の基板には切り欠き(3)が形成される。ダイオード(D1~D6)は、切り欠き(3)の位置に配置される。これにより、小型で生産性の高い高電圧発生装置を提供する。

Description

高電圧発生装置およびX線発生装置
 本発明は、高電圧発生装置の小型化に関する。
 医療用のX線発生装置に用いられる高電圧発生装置では、コッククロフト・ウォルトン回路(以下、CW回路と称する)が用いられることが多い。図11にCW回路の回路図を示す。
 特許文献1には、CW回路の小型化方法が記載されている。特許文献1の図3において、ダイオード3a-1,2,3は曲げ加工のリード線を使用している。またコンデンサ2a-1,2,3,4は円筒形状のモールド品を使用している。
 しかしながら、CW回路一段当たりに加わる電圧をコンデンサ一つで受けるため、CW回路の分担電圧を担うためには耐圧の高いコンデンサを使う必要があり、大型なコンデンサとなる。耐圧の小さいコンデンサを直列に配置する方法もあるが、段数増加方向(特許文献1の図3でいう横方向)に大きくなり、サイズダウンが見込めない。また、端部電極はある程度大きさが必要なため、過度なサイズダウンができない。
 以上示したようなことから、小型で生産性の高い高電圧発生装置を提供することが課題となる。
特許6097393号
 本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、交流電源から交流電力の供給を受けて負荷に電位差を印加するコッククロフト・ウォルトン回路を備えた高電圧発生装置であって、厚み方向に間隔を空けて配置された3枚以上の基板と、前記各基板に搭載された平板形状のコンデンサと、前記各基板間に接続されたダイオードと、を備え、前記3枚以上の基板のうち両端以外の前記基板には切り欠きが形成され、前記ダイオードは、前記切り欠きの位置に配置されたことを特徴とする。
 また、その一態様として、前記ダイオードのリード線は直線状に形成されたことを特徴とする。
 また、他の態様として、前記ダイオードのリード線は2回曲げ加工され、前記ダイオードのリード線と前記基板を前記基板の端面で接続したことを特徴とする。
 また、その一態様として、前記コンデンサは前記各基板の表面および裏面に搭載され、前記各基板の表面および裏面に搭載された前記コンデンサは並列接続されたことを特徴とする。
 また、その一態様として、前記各基板は、スリットで分割されたことを特徴とする。
 また、その一態様として、基板組み立て時に、基板間位置決め用の治具によって前記各基板を固定することを特徴とする。
 また、その一態様として、前記高電圧発生装置をX線発生装置に用いたことを特徴とする。
 本発明によれば、小型で生産性の高い高電圧発生装置を提供することが可能となる。
実施形態1における高電圧発生装置を示す正面図。 実施形態1における高電圧発生装置を各基板上方向から見た図。 実施形態1における高電圧発生装置を示す斜視図。 実施形態1におけるダイオード位置決め箇所を示す図。 実施形態2における高電圧発生装置を示す正面図。 実施形態3における基板分割方法を示す図。 実施形態1~3のフローノズルアプローチ方向を示す図。 実施形態4における高電圧発生装置を示す斜視図。 実施形態4における高電圧発生装置を示す正面図。 実施形態4における高電圧発生装置を各基板上方向から見た図。 コッククロフト・ウォルトン回路の一例を示す図。
 以下、本願発明における高電圧発生装置の実施形態1~4を図1~図11に基づいて詳述する。
 [実施形態1]
 高電圧発生装置は、例えばX線発生装置に用いられる。高電圧発生装置は、CW回路を有する。まず、図11に基づいて、CW回路について説明する。CW回路は、交流電源1から交流電力の供給を受けて負荷2に高い電位差を印加するものである。
 図11に示すように、交流電源1の一端には、コンデンサC1,C3,C5が直列接続される。また、交流電源1の他端には、コンデンサC2,C4,C6が直列接続される。また、交流電源1の他端は接地される。
 交流電源1とコンデンサC2の共通接続点とコンデンサC1,C3の共通接続点との間にはダイオードD1が接続される。コンデンサC1,C3の共通接続点とコンデンサC2,C4の共通接続点との間にはダイオードD2が接続される。コンデンサC2,C4の共通接続点とコンデンサC3,C5の共通接続点との間にはダイオードD3が接続される。コンデンサC3,C5の共通接続点とコンデンサC4,C6の共通接続点との間にはダイオードD4が接続される。コンデンサC4,C6の共通接続点とコンデンサC5との間にはダイオードD5が接続される。コンデンサC5とダイオードD5の共通接続点とコンデンサC6との間にはダイオードD6が接続される。
 コンデンサC6とダイオードD6の共通接続点と交流電源1の他端との間には負荷2が接続される。
 なお図11は、3段構成のCW回路である。2段構成の場合は、図11の3段目の回路が省略される。4段以上の構成の場合は、図11の1~3段目と同様にコンデンサとダイオードから成る回路が4段目以降に追加接続される。
 図1,図2に本実施形態1における高電圧発生装置の構造を示す。図1は高電圧発生装置の正面図であり、図2は各基板を上方向から見た図である。
 本実施形態1では、基板を4枚(No.1~No.4)に分割しているが、基板は3枚以上であればよい。基板No.1~No.4は厚み方向に間隔を空けて配置される。それぞれの基板No.1~No.4をダイオード及び接続端子で接続する。コンデンサには、平板形状で基板表面へ実装可能な種類を用いる。
 図1に示すように、基板No.1には、コンデンサC2-2,C4-2,C6-2が実装される。基板No.2には、コンデンサC2-1,C4-1,C6-1が実装される。基板No.3には、コンデンサC1-1,C3-1,C5-1が実装される。基板No.4には、コンデンサC1-2,C3-2,C5-2が実装される。また、同段のコンデンサは段数増加の軸と垂直に並ぶよう配置する。
 ダイオードD1の一端(アノード)は基板No.2に接続され、他端(カソード)は基板No.4に接続される。ダイオードD2の一端(アノード)は基板No.4に接続され、他端(カソード)は基板No.1に接続される。また、ダイオードD2の一端(アノード)側のリード線は基板No.3のスルーホールを貫通しており、基板No.3のスルーホールを半田付けすることによって基板NO.3にも接続される。ダイオードD3の一端(アノード)は基板No.1に接続され、他端(カソード)は基板No.4に接続される。また、ダイオードD3の一端(アノード)側のリード線は基板No.2のスルーホールを貫通しており、基板No.2のスルーホールを半田付けすることによって基板NO.2にも接続される。ダイオードD4の一端(アノード)は基板No.4に接続され、他端(カソード)は基板No.1に接続される。また、ダイオードD4の一端(アノード)側のリード線は基板No.3のスルーホールを貫通しており、基板No.3のスルーホールを半田付けすることによって基板NO.3にも接続される。ダイオードD5の一端(アノード)は基板No.1に接続され、他端(カソード)は基板No.4に接続される。また、ダイオードD5の一端(アノード)側のリード線は基板No.2のスルーホールを貫通しており、基板No.2のスルーホールを半田付けすることによって基板NO.2にも接続される。ダイオードD6の一端(アノード)は基板No.4に接続され、他端(カソード)は基板No.1に接続される。また、ダイオードD6の一端(アノード)側のリード線は基板No.3のスルーホールを貫通しており、基板No.3のスルーホールを半田付けすることによって基板NO.3にも接続される。
 また、ダイオードD1~D6のリード線は図1に示すように、曲げ加工されておらず、直線状に形成されている。
 なお、ダイオードの符号D1~D6は、図1と図11で対応している。さらに、図1のコンデンサC1-1とコンデンサC1-2は直列接続されていて(両者の接続配線の一部は図1に示していない)、図1のコンデンサC1-1とコンデンサC1-2の直列回路が図11のコンデンサC1と対応している。他のコンデンサC2~C6についても同様である。
 図11に示す交流電源1の電圧は、基板No.2-No.3間に印加される。
 図3は、本実施形態1における高電圧発生装置の斜視図である。中間部の基板(複数の基板のうち両端以外の基板)No.2、No.3には切り欠き3が設けられている。この切り欠き3にダイオードD1~D6を配置する。
 なお、図3には、基板間の組み立て作業を容易にするための基板間位置決め用の治具4も示している。この治具4は、組み立て作業完了後に基板から取り外してもよいし、治具4をつけたまま基板を装置に装着してもよい。
 特許文献1では、比較的外形が大きいコンデンサを使用しており、装置の小型化が難しかった。また、ダイオードのリード線に曲げ加工があるため、外力によってダイオードの変形があった場合に周辺の部品との距離を一定に保つことができなくなって絶縁破壊する恐れがあった。
 本実施形態1のような構造とすることで、絶縁破壊する可能性を極力抑えて信頼性を向上させ、小型で生産性の良い高電圧発生装置を製作することが可能となる。
 基板間の距離を十分確保することで、基板間、主にコンデンサ間の放電を防止する。製作後の基板間の距離は、ダイオードと接続端子によって一定の間隔を保つことができ、さらにダイオードのリード線には曲げ加工がないため、外力によって絶縁性が低下するおそれは低い。
 図4にダイオードの位置決め方法を示す。図4では、例として基板No.3の一部を示している。ダイオードD1,D3は基板の切りかき3によって位置決めが容易にできる。ダイオードD2,D4,D5,D6も図示は省略するが、同様に位置決めできる。よって、製造工数を低減でき、生産性を高めることができる。また、切りかき3によってダイオード間の距離も十分確保することができるため、絶縁が確保され信頼性も向上する。
 また、基板No.1~No.4表面に、背の低い平板形状のコンデンサCを用いることによって、コンデンサ寸法による基板間の距離の制約はなくなり、円筒形状のコンデンサ使用時と比べて装置を小型化できる。
 また、図3に示すような基板間位置決め用の治具4を設けて基板No.1~No.4を固定することで、組み立てがさらに容易になって生産性を高めることができる。
 また、本実施形態1は小容量の高電圧発生装置に適している。
 なお図1~図3は、基板が4枚の場合の構成図である。基板は3枚以上であれば、ダイオードを切り欠きによって固定する中間部の基板(両端以外の基板)が存在することになるので、本発明を適用できる。
[実施形態2]
 図5に本実施形態2における高電圧発生装置の構造を示す。コンデンサの静電容量を増加させるため、基板裏面にコンデンサCを追加する。さらに、基板表面のコンデンサCと基板裏面のコンデンサCを、基板内で並列接続する。
 本実施形態2のような構造とすることで、実施形態1と同様の効果を得つつ、コンデンサ容量を二倍にすることができる。コンデンサ容量を倍増することでCW回路の出力電力を高めることができる。
 [実施形態3]
 図6に本実施形態3における高電圧発生装置の構造を示す。実施形態1の基板を段ごとにスリットで分割する。図6の分割方法は一例であり、沿面放電の恐れがある部分を分割することで効果が得られる。
 本実施形態3のような構造とすることで、実施形態1,2と同様の効果を得つつ、基板上で電位差がある箇所を分割することができる。高電圧発生回路を基板に実装した際、一番の問題となる基板上での沿面放電を防止することできる。
 また、基板間位置決め用の治具4を用いることで、基板間の距離と段間の距離を一定に保つことができる。基板間位置決め用の治具4を用いることで分割した基板同士を接触させない構造を容易に製作することができる。
 本実施形態3のような構造にすると、基板上での沿面放電を防止することできるため、信頼性をさらに向上させることが可能となる。
 [実施形態4]
 実施形態1~3の構造は小型化できるものの、機械実装が困難で手動で半田付けを行う必要があり、実装時の品質を保つことが難しい。
 実施形態1~3の構造で機械実装が困難な理由は、基板4枚をユニット組立する際、フロー半田のノズルがTMD(Thorough hole Mount Device)部品の全半田箇所に入らないためである。図7に示すように、実施形態1~3ではユニットの外側2枚の基板No.1,No.4に関してはフロー半田のノズルがアプローチ可能である。しかし、中央の2枚の基板No.2,No.3に関しては実装箇所にフロー半田のノズルがアプローチできない。
 よって、実施形態1~3の構造では手動で半田付け、もしくは特殊で高価な装置が必要となる。
 そこで、本実施形態4では、図8~図10に示すように、ダイオードD1~D6のリード線(アノードリード、カソードリード)を2回曲げ加工し、ダイオードD1~D6のリード線と基板No.1~No.4を基板No.1~No.4の端面で接続されるようにする。基板No1~No.4のダイオードD1~D6のリード線との接続箇所は端面スルーホール化する。ダイオードD1~D6はアノードリード、カソードリードをフォーミングする。図8~図10において、符号5は端面スルーホールを示し、符号6は2回曲げ加工部を示す。なお、ダイオードD1~D6の本体は実施形態1~3と同様に切り欠き3に配置される。
 実施形態1~3では、基板No.2,No.3に対するダイオードの機械実装が困難だったが、端面スルーホールを採用することで機械実装(スポット半田等)に対応することができるようになり、半田不良発生を著しく下げることができる。端面スルーホール採用時に機械実装が可能となる理由は、実装部が基板内部から基板端に移動することでフロー半田のノズルがアプローチ可能になるからである。
 また、実施形態1~3では、基板のスルーホールを縫うようにダイオードD1~D6を配置しなければならなかったが、本実施形態4ではダイオードD1~D6を基板No.1~No.4の側面から置くだけで配置できるようになった。
 以上示したように、本実施形態4のような構造とすることで、小型で機械実装できる生産性の良い高電圧発生装置を製作することができ、更に信頼性が高まる。
 また、本実施形態4ではダイオードD1~D6のアノードリード、カソードリードを二回曲げし、端面スルーホールを採用することですべての半田箇所を機械実装できる。さらに、基板間の部品配置でスルーホールを通す部品がなくなったことで、部品配置が容易になる。
 以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。

Claims (7)

  1.  交流電源から交流電力の供給を受けて負荷に電位差を印加するコッククロフト・ウォルトン回路を備えた高電圧発生装置であって、
     厚み方向に間隔を空けて配置された3枚以上の基板と、
     前記各基板に搭載された平板形状のコンデンサと、
     前記各基板間に接続されたダイオードと、を備え、
     前記3枚以上の基板のうち両端以外の前記基板には切り欠きが形成され、
     前記ダイオードは、前記切り欠きの位置に配置された高電圧発生装置。
  2.  前記ダイオードのリード線は直線状に形成された請求項1記載の高電圧発生装置。
  3.  前記ダイオードのリード線は2回曲げ加工され、
     前記ダイオードのリード線と前記基板を前記基板の端面で接続した請求項1記載の高電圧発生装置。
  4.  前記コンデンサは前記各基板の表面および裏面に搭載され、前記各基板の表面および裏面に搭載された前記コンデンサは並列接続された請求項1~3のうち何れかに記載の高電圧発生装置。
  5.  前記各基板は、スリットで分割された請求項1~4のうち何れかに記載の高電圧発生装置。
  6.  基板組み立て時に、基板間位置決め用の治具によって前記各基板を固定する請求項1~5のうち何れかに記載の高電圧発生装置。
  7.  請求項1~6にうち何れかに記載の高電圧発生装置を用いたX線発生装置。
PCT/JP2021/018014 2020-05-27 2021-05-12 高電圧発生装置およびx線発生装置 WO2021241227A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180038034.8A CN115669230B (zh) 2020-05-27 2021-05-12 高电压发生器和x射线发生器
KR1020227042113A KR102542892B1 (ko) 2020-05-27 2021-05-12 고전압 발생장치 및 x선 발생 장치
JP2021531968A JP6966027B1 (ja) 2020-05-27 2021-05-12 高電圧発生装置およびx線発生装置
US17/927,087 US11778718B2 (en) 2020-05-27 2021-05-12 High voltage generator and X-ray generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-091964 2020-05-27
JP2020091964 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021241227A1 true WO2021241227A1 (ja) 2021-12-02

Family

ID=78745299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018014 WO2021241227A1 (ja) 2020-05-27 2021-05-12 高電圧発生装置およびx線発生装置

Country Status (1)

Country Link
WO (1) WO2021241227A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789390U (ja) * 1980-11-19 1982-06-02
JPH0822896A (ja) * 1994-07-08 1996-01-23 Hamamatsu Photonics Kk X線装置
JP2002324697A (ja) * 2001-04-25 2002-11-08 Toshiba Corp X線発生装置の高電圧発生回路
JP2008053076A (ja) * 2006-08-25 2008-03-06 Hitachi Medical Corp 高電圧回路及びx線発生装置
US20090041192A1 (en) * 2007-08-07 2009-02-12 General Electric Company High voltage tank assembly for radiation generator
JP2010244834A (ja) * 2009-04-06 2010-10-28 Rigaku Corp X線発生装置及びx線計測装置
WO2015005380A1 (ja) * 2013-07-11 2015-01-15 株式会社日立メディコ 高電圧発生装置およびx線発生装置
JP2016512915A (ja) * 2013-03-15 2016-05-09 サーモ サイエンティフィック ポータブル アナリティカル インスツルメンツ インコーポレイテッド 高体積効率x線システム
US20160308434A1 (en) * 2013-12-06 2016-10-20 Ut-Battelle, Llc Power supply and method of manufacturing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789390U (ja) * 1980-11-19 1982-06-02
JPH0822896A (ja) * 1994-07-08 1996-01-23 Hamamatsu Photonics Kk X線装置
JP2002324697A (ja) * 2001-04-25 2002-11-08 Toshiba Corp X線発生装置の高電圧発生回路
JP2008053076A (ja) * 2006-08-25 2008-03-06 Hitachi Medical Corp 高電圧回路及びx線発生装置
US20090041192A1 (en) * 2007-08-07 2009-02-12 General Electric Company High voltage tank assembly for radiation generator
JP2010244834A (ja) * 2009-04-06 2010-10-28 Rigaku Corp X線発生装置及びx線計測装置
JP2016512915A (ja) * 2013-03-15 2016-05-09 サーモ サイエンティフィック ポータブル アナリティカル インスツルメンツ インコーポレイテッド 高体積効率x線システム
WO2015005380A1 (ja) * 2013-07-11 2015-01-15 株式会社日立メディコ 高電圧発生装置およびx線発生装置
US20160308434A1 (en) * 2013-12-06 2016-10-20 Ut-Battelle, Llc Power supply and method of manufacturing

Similar Documents

Publication Publication Date Title
JP6634161B2 (ja) 交流モータコントローラ、積層バスバーアセンブリ及びその製造方法
US20180338376A1 (en) Power semiconductor module and power semiconductor device
US10411609B2 (en) Substrate mounted inverter device
JP2001054286A (ja) 電子制御基板
US9179544B1 (en) Method and apparatus for mechanical load reduction on the electrical terminals of a capacitor
WO2021241227A1 (ja) 高電圧発生装置およびx線発生装置
JP6966027B1 (ja) 高電圧発生装置およびx線発生装置
CN100562216C (zh) 用于电气设备的散热装置
JP2014086628A (ja) コンデンサ
CN217545892U (zh) 电力转换装置和马达单元
CN112910287B (zh) 功率用半导体装置
JP6657457B1 (ja) 電力変換装置
US20230327559A1 (en) Boost circuit and voltage generation device
JP6846206B2 (ja) 半導体装置及び半導体装置の製造方法
WO2023084863A1 (ja) バスバー位置決め構造及び電気機器
US12062993B2 (en) Booster circuit and voltage generator
JP7484385B2 (ja) 回路基板
WO2022176566A1 (ja) 電子機器
JP7488336B2 (ja) 電圧発生装置
JP2018195699A (ja) 電子機器
JPH10248266A (ja) 電力変換装置
JP2015159697A (ja) 直流高電圧電源装置
JP2019041478A (ja) パワーコンポーネント装置
JPH0229835Y2 (ja)
JP2002246779A (ja) 回路基板実装ヒートシンク

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021531968

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227042113

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814064

Country of ref document: EP

Kind code of ref document: A1