WO2021249194A1 - 半导体刻蚀设备 - Google Patents

半导体刻蚀设备 Download PDF

Info

Publication number
WO2021249194A1
WO2021249194A1 PCT/CN2021/096194 CN2021096194W WO2021249194A1 WO 2021249194 A1 WO2021249194 A1 WO 2021249194A1 CN 2021096194 W CN2021096194 W CN 2021096194W WO 2021249194 A1 WO2021249194 A1 WO 2021249194A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
gas
flow rate
transmission chamber
pressure
Prior art date
Application number
PCT/CN2021/096194
Other languages
English (en)
French (fr)
Inventor
林锦宽
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/437,312 priority Critical patent/US20230068174A1/en
Publication of WO2021249194A1 publication Critical patent/WO2021249194A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the embodiments of the present application relate to the field of semiconductor manufacturing, and in particular to a semiconductor etching equipment.
  • the embodiment of the present application provides a semiconductor etching equipment, which is beneficial to improve the cleanliness of the atmospheric module and improve the product yield.
  • an embodiment of the present application provides a semiconductor etching equipment, which includes: an atmospheric transfer chamber for accommodating the wafer to be etched; and an air intake module for sending gas into the atmospheric transfer chamber An exhaust module for exhausting the gas in the atmospheric transmission chamber, the exhaust module includes an air lock and a wind speed measurement and control unit, the wind speed measurement and control unit is used to detect the gas flow rate in the atmosphere transmission chamber, and The air lock opening degree of the air lock is adjusted according to the gas flow rate.
  • the air intake module further includes a pressure measurement and control unit and an air flow adjustment unit, the pressure measurement and control unit is used to detect the air pressure in the atmospheric transmission chamber, and control the air flow adjustment unit to adjust the gas delivery rate according to the air pressure .
  • the pressure measurement and control unit is used to control the gas flow adjustment unit to adjust the gas feed rate when the gas pressure exceeds a gas pressure threshold.
  • the air pressure threshold is 0.0in.wc to 0.1in.wc.
  • the atmosphere transmission cavity includes at least two air inlets
  • the air inlet module sends gas into the atmosphere transmission cavity through the air inlets, and each of the air inlets corresponds to a laminar flow area.
  • the air flow adjustment unit includes at least two fans, the fans are placed in one of the air inlets, and each of the air inlets accommodates one fan.
  • the wind speed measurement and control unit includes an anemometer and a controller, the anemometer is used to detect the gas flow rate in the atmosphere transmission cavity, and the controller is used to adjust the flow rate when the gas flow rate exceeds a flow rate threshold. State the airlock opening of the airlock.
  • the anemometer is located at the air inlet of the atmospheric transmission cavity.
  • the flow rate threshold is 85FPM to 90FPM.
  • the semiconductor etching equipment further includes: a display module respectively connected to the wind speed measurement and control unit and the pressure measurement and control unit, the display content of the display module includes the air pressure in the atmospheric transmission chamber, and/ Or the gas flow rate in the atmospheric transmission chamber.
  • the air lock opening range of the air lock is 0%-100%.
  • the advantage of the embodiment of the present application is that the gas flow rate in the atmosphere transmission chamber is detected by setting the wind speed measurement and control unit, and the airlock opening of the airlock is adjusted according to the gas flow rate, so that the gas flow rate in the atmosphere transmission chamber Within the flow rate threshold.
  • Air pollutants make the atmosphere transmission cavity have a higher degree of cleanliness.
  • the pressure measurement and control unit can adjust the gas feed rate according to the air pressure in the atmospheric transmission chamber to adjust the atmospheric pressure parameters in the atmospheric transmission chamber, so that the atmospheric transmission chamber has a positive pressure within the preset air pressure threshold, thereby making the atmospheric transmission chamber
  • the gas flow inside is laminar.
  • the laminar flow can promptly and effectively carry air pollutants away from the atmospheric transmission cavity, thereby making the atmospheric transmission cavity have a higher degree of cleanliness.
  • FIG. 1 is a schematic cross-sectional structure diagram of a semiconductor etching equipment provided by this application;
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a semiconductor etching equipment provided by the first embodiment of the application;
  • FIG. 3 is a schematic cross-sectional structure diagram of a semiconductor etching equipment provided by a second embodiment of the application.
  • the semiconductor etching equipment includes: an atmospheric transfer chamber 11, which is used to accommodate the wafer 12 to be etched; the atmospheric transfer chamber 11 has an air inlet 111 and an air outlet 112; An air filter 14 is provided on one side of the port 111 to filter the air flowing in from the air inlet 111 to a certain extent, so as to improve the cleanliness of the atmosphere transmission chamber 11.
  • the atmospheric transfer chamber 11 since the atmospheric transfer chamber 11 only has an air inlet 111, during wafer cleaning, only the gas in the first area A11 corresponding to the air inlet 111 can flow in an orderly manner at a gas feeding rate, orderly and quickly
  • the flowing gas can effectively send air pollutants (including gas molecular pollutants carried by the fed gas and residual gas on the surface of the wafer 12) out of the atmospheric transfer chamber 11 in a timely and effective manner.
  • the gas flow rate in the second area A12 is lower than the gas flow rate in the first area A11, which prevents the air pollutants in the second area A12 from being sent out of the atmospheric transmission chamber 11 in time.
  • the residence time of air pollutants in the second area A12 in the atmospheric transmission cavity 11 is relatively long. In this way, the gas molecular contaminants may react with the residual gas on the surface of the wafer 12, thereby forming condensation defects on the surface of the wafer 12, reducing the product yield.
  • the air outlet 112 is connected to the inside and outside of the atmosphere transmission chamber 11.
  • the change in the pressure of the external space will affect the gas outflow rate in the atmosphere transmission chamber 11 and the pressure in the atmosphere transmission chamber 11, thereby affecting the atmosphere transmission chamber 11. Cleanliness. Specifically:
  • the gas flow rate in the atmosphere transmission chamber 11 depends on the pressure difference between the inside and outside of the atmosphere transmission chamber 11, and the greater the pressure difference, the greater the gas flow rate. Since the internal pressure of the atmosphere transmission chamber 11 is positive relative to the external pressure, when the external pressure of the atmosphere transmission chamber 11 decreases, the pressure difference between the inside and the outside of the atmosphere transmission chamber 11 increases, and the gas flow rate in the atmosphere transmission chamber 11 increases. big.
  • the gas flow pattern changes from laminar flow to turbulent flow, that is, from order to disorder.
  • the air flow cannot quickly transport the air pollutants away from the atmospheric transfer chamber 11, but may increase the residence time of the air pollutants in the atmospheric transfer chamber 11 due to the turbulence, and cause the gas molecular pollutants to remain on the surface of the wafer 12
  • the full contact of the gas will eventually cause the residual gas on the surface of the wafer 12 to react with the gas molecular contaminants in the atmospheric transmission chamber 11 to cause condensation, thereby affecting the product yield.
  • the air pressure inside the atmosphere transmission chamber 11 may also decrease, and the decrease of the internal air pressure may cause the external air to flow back and reduce the cleanliness of the atmosphere transmission chamber 11.
  • the external air pressure can be regarded as 1 standard atmospheric pressure, and the internal air pressure can be regarded as 1.1 times the standard atmospheric pressure; after the external air pressure drops, the internal air pressure drops accordingly, for example, the external air pressure drops to 0.5 times When the standard atmospheric pressure is higher, the internal pressure may drop to 0.6 times the standard atmospheric pressure. In this case, when the external air pressure suddenly returns to the standard atmospheric pressure, it may be that the external air pressure is greater than the internal air pressure, which may cause the external air to flow back into the atmospheric transmission chamber 11, thereby reducing the cleanliness of the atmospheric transmission chamber 11.
  • the pressure difference between the inside and outside of the atmosphere transmission chamber 11 decreases, and the gas flow rate in the atmosphere transmission chamber 11 decreases.
  • the decrease of the gas flow rate will cause the gas flow to be unable to take away the residual gas and gas molecular contaminants from the surface of the wafer 12 at a faster rate. Residual gases and gas molecular contaminants are more likely to occur in the atmospheric transmission chamber 11 to form condensation defects, resulting in a decrease in product yield.
  • an embodiment of the present application provides a semiconductor etching equipment.
  • the wind speed measurement and control unit can adjust the opening of the air lock when the gas flow rate in the atmospheric transmission cavity exceeds the flow rate threshold, thereby reducing the impact of the gas flow rate change on the atmosphere.
  • the influence of the air flow in the conveying chamber avoids the increase of the residence time of air pollutants due to the slowing of the gas outflow rate or the turbulence, ensuring that the air pollutants in the atmospheric conveying chamber can be discharged in time and effectively, and improving the cleanliness of the atmospheric conveying chamber .
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a semiconductor etching equipment according to an embodiment of the present application.
  • the semiconductor etching equipment includes: an atmosphere transfer chamber 21 for accommodating the wafer 22 to be etched; an air intake module 23 for sending gas into the atmosphere transfer chamber 21; an exhaust module for exhausting For the gas in the atmosphere transmission chamber 21, the exhaust module includes an air lock 27 and a wind speed measurement and control unit 28.
  • the wind speed measurement and control unit 28 is used to detect the gas flow rate in the atmosphere transmission chamber 21 and adjust the air lock of the air lock 27 according to the gas flow rate. Opening.
  • the atmosphere transmission cavity 21 includes at least two air inlets 211, and the air inlet module 23 sends gas into the atmosphere transmission cavity 21 through the air inlets 211, and each air inlet 211 corresponds to a laminar flow area.
  • the air inlet module 23 sends gas into the atmosphere transmission cavity 21 through the air inlets 211, and each air inlet 211 corresponds to a laminar flow area.
  • the airlock opening of the airlock 27 is greater than 0 and less than 100% in the initial state.
  • the wind speed measurement and control unit 28 can reduce or increase the airlock opening of the airlock 27 when the gas flow rate in the atmosphere transmission chamber 21 changes, so as to reduce or increase the gas flow rate in the atmosphere transmission chamber 21, This enables the airflow to send air pollutants away from the atmospheric transmission chamber 21 at a faster rate without forming turbulence, and improves the cleanliness of the atmospheric transmission chamber 21.
  • the air lock 27 is driven by mechanical power. When the power source fails and the opening of the air lock changes, it may cause the atmosphere in the transmission chamber 21 Or, the air lock 27 connects the inside and outside of the atmosphere transmission chamber 21, and when the air pressure outside the atmosphere transmission chamber 21 changes, the gas flow rate changes accordingly.
  • the air pressure inside the atmosphere transmission chamber 21 needs to be greater than the air pressure outside the atmosphere transmission chamber 21 to be transmitted by the atmosphere
  • the external pressure of the chamber 21 is a standard atmospheric pressure
  • the internal pressure of the atmospheric transmission chamber 21 needs to be greater than a standard atmospheric pressure, that is, the pressure inside the atmospheric transmission chamber 21 is a positive pressure; at the same time, in order to ensure the gas flow rate in the atmospheric transmission chamber 21 To be able to stay within the preset flow rate threshold, and to avoid the problem of air backflow when the external air pressure suddenly rises after a pressure drop. 21.
  • the gas flow rate that changes due to the pressure difference between the inner and outer sides is within a preset flow rate threshold.
  • the difference between the air pressure inside the atmospheric transmission chamber 21 and the outside air pressure can be set to 0.0in.wc ⁇ 0.1in.wc, for example, 0.03in.wc, 0.06in.wc, 0.09in.wc; the flow rate threshold can be set to 85FPM ⁇ 90FPM, such as 86FPM, 87FPM, 88FPM.
  • the air intake module 23 includes a pressure measurement and control unit 25 and an air flow adjustment unit 24.
  • the pressure measurement and control unit 25 is used to detect the air pressure in the atmospheric transmission chamber 21 and control the air flow adjustment unit 24 to adjust the gas delivery rate according to the air pressure.
  • the pressure measurement and control unit 25 is used to control the air flow adjustment unit 24 to adjust the gas delivery rate when the air pressure exceeds the air pressure threshold.
  • the air flow adjustment unit 24 includes at least two fans, the fans are placed in the air inlets 211, and each air inlet 211 contains a fan.
  • the air flow adjustment unit 24 includes at least two fans, the fans are placed in the air inlets 211, and each air inlet 211 contains a fan.
  • the wind speed measurement and control device 28 reduces the airlock opening of the airlock 27
  • the gas flow rate of the atmosphere transmission chamber 21 is the same as the gas flow rate before the pressure drop of the external pressure, so as to keep the internal pressure stable; at the same time, since the gas flow rate remains the same, the gas flow rate in the atmosphere transmission chamber 21 Back to the level before acceleration, even if the air flow in the atmospheric transmission chamber 21 is still laminar.
  • the air lock 27 includes a plurality of valves arranged uniformly and in parallel along the gas outflow direction. Since the change in the air pressure flow rate at different positions in the atmosphere transmission chamber 21 is related to the distance of the valve, where the air pressure in the external space decreases, the gas flow rate near the valve increases more than the gas flow rate far away from the valve. By evenly arranging a plurality of valves in parallel, the gas flow rate changes at different positions in the atmosphere transmission chamber 21 can be made smaller, that is, the gas flow rate in the atmosphere transmission chamber 21 has better uniformity. In this way, it is beneficial to avoid turbulence caused by uneven gas flow rate, to ensure that the flowing air can effectively send air pollutants away from the atmosphere transmission cavity 21 in time, and to ensure the cleanliness of the atmosphere transmission cavity 21.
  • the air intake module 23 since the air intake module 23 always feeds air, as the external air pressure increases, the air pressure in the atmospheric transmission chamber 21 will also increase as the air outlet rate decreases or even returns to zero. .
  • the rising rate of the external air pressure of the atmosphere transmission chamber 21 is less than or equal to the gas feeding rate of the air intake module 23, the air pressure in the atmosphere transmission chamber 21 is higher than the external pressure of the atmosphere transmission chamber 21.
  • the “increase of external air pressure” in this embodiment means that the external air pressure of the atmospheric transmission chamber 21 increases, the internal air pressure of the atmospheric transmission chamber 21 does not change, and the increased external air pressure is still lower than the internal pressure of the atmospheric transmission chamber 21.
  • the air inlet 211 and the air lock 27 are respectively located on opposite sides of the atmosphere transmission chamber 21.
  • the flow path of the gas from the inflow to the outflow is almost straight, which is beneficial to avoid the turbulence of the airflow due to the need to flow in a curve, thereby ensuring that the air pollutants are carried out by the airflow, and improving the cleanliness of the atmosphere transmission chamber 21.
  • the wind speed measurement and control unit 28 includes an anemometer 281 and a controller 282.
  • the sensor unit 281a of the anemometer 281 is used to detect the gas flow rate in the atmospheric transmission chamber 21, and the sensor unit 281a is located in the atmospheric transmission chamber 21 away from the air outlet.
  • the controller 282 is used to control the airlock opening of the airlock 27 according to the detection result of the anemometer 281.
  • the air outlet area When a pressure drop occurs in the external air pressure, the gas in the area near the air lock 27 in the atmospheric transmission chamber 21 (hereinafter referred to as the air outlet area) first increases in flow rate due to the increase in the pressure difference, and when the gas outflow rate in the air outlet area increases, because The flow velocity in the area far away from the air lock 27 (hereinafter referred to as the intake area) has not changed, which makes the air pressure drop in the outlet area because the gas is too late to replenish; and when the pressure drop occurs in the outlet area, the gas in the inlet area It will increase the flow rate due to the increase in the air pressure difference between the inlet area and the outlet area.
  • the wind speed measurement and control unit 28 can adjust the opening of the air lock 27 when the gas flow rate in the atmosphere transmission chamber 21 exceeds the flow rate threshold, thereby reducing the influence of the external pressure drop on the gas flow rate in the atmosphere transmission chamber 21
  • the influence is beneficial to avoid turbulence in the atmospheric transmission chamber 21, so that air pollutants can be effectively discharged, and the cleanliness of the atmospheric transmission chamber 21 is improved.
  • FIG. 3 is a schematic cross-sectional structure diagram of the semiconductor etching equipment provided by the second embodiment of the application.
  • FIG. 3 is a schematic cross-sectional structure diagram of the semiconductor etching equipment provided by the second embodiment of the application.
  • the semiconductor etching equipment further includes: a display module 39, which is respectively connected to the wind speed measurement and control unit 38 and the pressure measurement and control unit 35, and the content displayed by the display module 39 includes the air pressure in the atmosphere transmission chamber 31 or the atmosphere transmission chamber 31 The gas flow rate inside.
  • the staff can timely adjust the airlock opening, the gas feeding rate, and the specific settings of other equipment related to the semiconductor etching equipment according to the display content of the display device 39 to ensure the cleanliness of the atmosphere transmission chamber 31.
  • the air intake module further includes a gas filtering device 36, which is a high-efficiency air particle filter or an ultra-high-efficiency air particle filter.
  • the filter element of the gas filter device 36 can be made of glass fiber, foam plastic and other materials. When glass fiber is used as the filter element material, the filtration efficiency of the gas filter device 36 is related to the thickness of the glass fiber. The finer the glass fiber, the higher the degree of filtration. .
  • the setting of the display module 39 helps the staff to recognize the working state of the semiconductor etching equipment, and adjust the setting and external conditions of the semiconductor etching equipment according to the working state to ensure the cleanliness of the atmospheric transmission chamber 31 Spend.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本申请实施例提供一种半导体刻蚀设备,包括:大气传送腔(21),用于容纳待刻蚀的晶圆(22);进气模块(23),用于将气体送入大气传送腔(21)内;排气模块,用于排出大气传送腔(21)内的气体,排气模块包括气闸(27)和风速测控单元(28),风速测控单元(28)用于检测大气传送腔(21)内的气体流动速率,并根据气体流动速率调整气闸(27)的气闸开度。

Description

半导体刻蚀设备
交叉引用
本申请要求于2020年6月8日递交的名称为“半导体刻蚀设备”、申请号为2020105147351的中国专利申请的优先权,其通过引用被全部并入本申请。
技术领域
本申请实施例涉及半导体制造领域,特别涉及一种半导体刻蚀设备。
背景技术
当前微电子制造技术迅速发展,硅片的生产线进入技术成熟期,芯片线宽已经达到纳米级,因此相应的产品对生产环境的要求也越来越高。对微电子制造业来说,空气中的分子级空气污染物(或气载分子污染物,简称AMC)和颗粒物一样会危害产品并直接导致成品率降低。
在现今半导体工艺过程中,在刻蚀腔中对硅片进行刻蚀后,在硅片的表面容易产生残存气体,而硅片由半导体刻蚀设备的刻蚀腔传送至半导体刻蚀设备的大气模块时,硅片表面残留的气体容易与大气模块中的含有分子级空气污染物的气体结合产生反应,在反应过程中生成凝结现象,此现象将直接性的对硅片的良率产生影响。
发明内容
本申请实施例提供了一种半导体刻蚀设备,有利于提高大气模块的清洁度,提高产品良率。
为解决上述问题,本申请实施例提供了一种半导体刻蚀设备,包括:大气传送腔,用于容纳待刻蚀的晶圆;进气模块,用于将气体送入所述大气传送腔内;排气模块,用于排出所述大气传送腔内的气体,所述排气模块包括气闸和风速测控单元,所述风速测控单元用于检测所述大气传送腔内的气体流动速率,并根据所述气体流动速率调整所述气闸的气闸开度。
另外,所述进气模块还包括压力测控单元和气流调节单元,所述压力测控单元用于检测所述大气传送腔内的气压,并根据所述气压控制所述气流调节单元调整气体送入速率。
另外,所述压力测控单元用于在所述气压超出气压阈值时控制所述气流调节单元调整所述气体送入速率。
另外,所述气压阈值为0.0in.wc~0.1in.wc。
另外,所述大气传送腔包括至少两个进风口,所述进气模块通过所述进风口将气体送入所述大气传送腔内,每一所述进风口对应一层流区域。
另外,所述气流调节单元包括至少两个风扇,所述风扇置于一所述进气口内,且每一所述进气口内容纳一所述风扇。
另外,所述风速测控单元包括风速计和控制器,所述风速计用于检测所述大气传送腔内的气体流动速率,所述控制器用于在所述气体流动速率超出流速阈值时,调整所述气闸的气闸开度。
另外,所述风速计位于所述大气传送腔的进风口处。
另外,所述流速阈值为85FPM~90FPM。
另外,半导体刻蚀设备还包括:显示模块,所述显示模块分别与所述风速测控单元和所述压力测控单元连接,所述显示模块的显示内容包括所述大气传送腔内的气压,和/或所述大气传送腔内的气体流动速率。
另外,所述气闸的气闸开度范围为0%-100%。
本申请实施例的优点在于,通过设置风速测控单元检测所述大气传送腔内的气体流动速率,并根据气体流动速率调整所述气闸的气闸开度,使得大气传送腔内的气体流动速率处于流速阈值内。如此,有利于避免气体流动速率过慢导致气体分子污染物在大气传送腔内停留较长时间、避免气体流动速率过快而导致的紊流,从而保证流动的气体能够以较快地速率带走空气污染物,使得大气传送腔内具有较高的清洁度。
另外,压力测控单元能够根据大气传送腔内的气压调节气体送入速率,以调整大气传送腔内的气压参数,使得大气传送腔内具有处于预设气压阈值内的正压,进而使得大气传送腔内的气体流动为层流。层流能够及时有效地将空气污染物带离大气传送腔,进而使得大气传送腔内具有较高的清洁度。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些 示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请提供的一种半导体刻蚀设备的剖面结构示意图;
图2为本申请第一实施例提供的一种半导体刻蚀设备的剖面结构示意图;
图3为本申请第二实施例提供的一种半导体刻蚀设备的剖面结构示意图。
具体实施方式
由背景技术可知,在进行硅片刻蚀后,硅片表面的残存气体容易和含有分子级空气污染物的气体结合产生反应,反应过程中的凝结现象将会对硅片的良率产生影响。
参考图1,半导体刻蚀设备,包括:大气传送腔11,大气传送腔11用于容纳待刻蚀的晶圆12;大气传送腔11具有一进气口111和一出气口112;在进气口111一侧设置有空气过滤器14,用于对从进气口111流入的空气进行一定的过滤,从而提高大气传送腔11内的洁净度。
由于大气传送腔11仅具有一进气口111,在进行晶圆清洁时,仅有与进气口111对应的第一区域A11内的气体能够以气体送入速率有序流动,有序的快速流动的气体能够将空气污染物(包括送入气体携带的气体分子污染物和晶圆12的表面残余气体)及时有效地送出大气传送腔11。
同时,由于流体运动具有粘滞性,第二区域A12内的气体流动速率小于第一区域A11内的气体流动速度,这使得第二区域A12内的空气污染物不能够被及时送出大气传送腔11,第二区域A12内的空气污染物在大气传送腔11内的停留时间较长。如此,可能导致气体分子污染物与晶圆12表面的残余气体发生反应,进而在晶圆12表面形成凝结性缺陷,降低产品良率。
此外,现有技术中出气口112连通大气传送腔11内侧和外部,外部空间气压的改变会影响大气传送腔11内的气体流出速率和大气传送腔11内的气压,进而影响大气传送腔11内的清洁度。具体来说:
大气传送腔11内的气体流动速率取决于大气传送腔11内外侧的气压差, 气压差越大气体流动速率越大。由于大气传送腔11内部气压相对于外部气压而言为正压,当大气传送腔11的外部气压降低时,大气传送腔11的内外侧气压差增大,大气传送腔11内的气体流动速率增大。
当大气传送腔11内的气体流动速率超出流速阈值时,气流形态由层流转变为紊流,即由有序转变为无序。如此,气流无法将空气污染物迅速送离大气传送腔11,反而可能因为紊流,使得空气污染物在大气传送腔11内的停留时间增长,以及使得气体分子污染物与晶圆12表面的残余气体充分接触,最终导致晶圆12表面的残留气体与大气传送腔11内的气体分子污染物反应而产生凝结现象,从而对产品良率造成影响。
此外,随着外部气压降低,大气传送腔11内部的气压可能也会随之降低,而内部气压降低可能导致外部气体倒灌而降低大气传送腔11内的清洁度。
举例来说,在外部气压降低之前,外部气压可视为1个标准大气压,内部气压可视为1.1倍的标准大气压;在外部气压降低之后,内部气压随之下降,例如外部气压降低至0.5倍的标准大气压时,内部气压可能下降至0.6倍的标准大气压。在这一情况下,当外部气压突然恢复至标准大气压时,可能因外部气压大于内部气压而出现外部空气倒灌进大气传送腔11的现象,进而使得大气传送腔11内的清洁度降低。
相应地,当外部空间气压升高时,大气传送腔11内侧和外侧的压差降低,大气传送腔11内的气体流动速率降低。气体流动速率降低会导致气流无法以较快的速率带离晶圆12的表面残余气体以及气体分子污染物,这使得表面残余气体和气体分子污染物在大气传送腔11内的停留时间增长,表面残余气体与气体分子污染物更有可能在大气传送腔11内发生而形成凝结性缺陷,造成产品良率下降。
为解决上述技术问题,本申请实施例提供一种半导体刻蚀设备,风速测控单元能够在大气传送腔内的气体流动速率超出流速阈值时,调整气闸开度,从而降低气体流动速率变化对大气传送腔内的气流的影响,避免因气体流出速率减慢或紊流而导致空气污染物停留时间增长,保证大气传送腔内的空气污染物能够被及时有效排出,提高大气传送腔内的清洁度。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图 对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
图2是本申请一实施例的一种半导体刻蚀设备的剖面结构示意图。
参考图2,半导体刻蚀设备包括:大气传送腔21,用于容纳待刻蚀的晶圆22;进气模块23,用于将气体送入大气传送腔21内;排气模块,用于排出大气传送腔21内的气体,排气模块包括气闸27和风速测控单元28,风速测控单元28用于检测大气传送腔21内的气体流动速率,并根据气体流动速率调整气闸27的气闸开度。
本实施例中,大气传送腔21包括至少两个进气口211,进气模块23通过进气口211将气体送入大气传送腔21内,每一进气口211对应一层流区域。如此,有利于扩大大气传送腔21内层流区域的范围,使得更大范围内的空气污染物能够被气流及时有效地带出大气传送腔21,保证大气传送腔21内的洁净度,提高产品的良率。
本实施例中,气闸27的气闸开度在初始状态下大于0且小于100%。如此,风速测控单元28能够在大气传送腔21内的气体流动速率发生变化时,减小或者增加气闸27的气闸开度,以减小或者增大大气传送腔21内的气体流动速率,使得气流能够在不形成紊流的条件下以较快的速率将空气污染物送离大气传送腔21,提高大气传送腔21的清洁度。
需要说明的是,气体流动速率的影响因素有很多,其中包括但不限于:气闸27采用机械动力驱动,当动力源发生故障而导致气闸开度发生变化时,可能导致大气传送腔21内的气体流动速率发生变化;或者,气闸27连通大气传送腔21内侧和外部,当大气传送腔21外部的气压发生改变时,气体流动速率随之发生改变。
由于气闸27连通大气传送腔21内侧和外部,为保证大气传送腔21内的气体能够顺利通过气闸27流出,大气传送腔21内侧的气压需要大于大气传送腔21外部的气压,以大气传送腔21的外部气压为一个标准大气压为例,大气传送腔21的内部气压需要大于一个标准大气压,即大气传送腔21内部的气压 为正压;同时,为了保证大气传送腔21内的气体流动速率能够处于预设流速阈值内,以及避免外部气压在压降后又突然升压时发生空气倒灌问题,大气传送腔21内的气压应当大于一个标准大气压以及小于一个气压值,以使根据大气传送腔21内外侧的压力差而变化的气体流动速率处于预设流速阈值内。
其中,大气传送腔21内侧气压和外部气压的差值可设为0.0in.wc~0.1in.wc,例如为0.03in.wc、0.06in.wc、0.09in.wc;流速阈值可设置为85FPM~90FPM,例如为86FPM、87FPM、88FPM。
本实施例中,进气模块23包括压力测控单元25和气流调节单元24,压力测控单元25用于检测大气传送腔21内的气压,并根据气压控制气流调节单元24调整气体送入速率。其中,压力测控单元25用于在气压超出气压阈值时控制气流调节单元24调整气体送入速率。
本实施例中,气流调节单元24包括至少两个风扇,风扇置于进气口211内,且每一进气口211内容纳一风扇。通过设置多个风扇分别进行送气,有利于提高大气传送腔21内不同区域的气体流动速率均匀性,避免因流动速率不均匀而导致的紊流发生,使得流动的空气能够及时有效地将空气污染物送离。
以下将根据本实施例中的半导体刻蚀设备,对风速测控单元28的基本工作原理进行详细介绍。具体如下:
当大气传送腔21外部的气压降低时,大气传送腔21内外侧的压差增大,大气传送腔21内的气体流动速度加快,此时,风速测控装置28减小气闸27的气闸开度,使得大气传送腔21的气体流出流量与外部气压压降前的气体流出流量相同,从而保持内部气压保持稳定;同时,由于气体流出流量保持不变,因此大气传送腔21内的气体流动速率回到加速前的水平,即使得大气传送腔21内的气流依然为层流。
如此,有利于避免气体流动速率增加导致的紊流,从而使得气流能够及时有效地将空气污染物从大气传送腔21内排出,提高大气传送腔21内的清洁度,避免晶圆22表面的残留气体与大气传送腔21内的气体分子污染物在大气传送腔21内发生反应,从而避免凝结现象对晶圆22表面造成损伤,提高产品良率。
本实施例中,气闸27包括沿气体流出方向均匀地、并行设置的多个阀门。 由于大气传送腔21内的不同位置的气压流动速率变化大小与阀门的距离有关,其中,在外部空间气压下降的情况下,靠近阀门的位置的气体流动速率增加幅度大于远离阀门的气体流动速率,通过均匀地并行设置多个阀门,能够使得大气传送腔21内不同位置的气体流动速率变化相差较小,即使得大气传送腔21内的气体流动速率具有更好的均匀性。如此,有利于避免气体流动速率不均导致的紊流,保证流动地空气能够及时有效地将空气污染物送离大气传送腔21,保证大气传送腔21的清洁度。
当大气传送腔21外部气压升高时,大气传送腔21内外侧的压差减小,大气传送腔21内的气体流动速率减缓,此时风速测控装置28增加气闸27的气闸开度,使得大气传送腔21的气体流出流量保持不变。如此,有利于避免气体流出流量减小而导致空气污染物在大气传送腔21内停留较长的时间,保证空气污染物能够被及时有效地排出,保证大气传送腔21具有较高的清洁度。
需要说明的是,本实施例中,由于进气模块23总是送入气体,因此随着外部气压的升高,大气传送腔21内的气压也会随着出气速率的降低甚至归零不断增加。在大气传送腔21的外部气压上升速率小于或等于进气模块23的气体送入速率的情况下,大气传送腔21内的气压高于大气传送腔21外部气压。本实施例中的“外部气压升高”指的是:大气传送腔21外部气压升高,大气传送腔21内部气压不变,升高后的外部气压依旧小于大气传送腔21的内部气压。本实施例中,进气口211与气闸27分别位于大气传送腔21的相对两侧。如此,气体从流入到流出的流动路径近乎为直线,有利于避免气流因需要进行曲线流动而发生紊流,进而保证空气污染物被气流带出,提高大气传送腔21内的洁净度。
本实施例中,风速测控单元28包括风速计281和控制器282,风速计281的感应单元281a用于检测大气传送腔21内的气体流动速率,感应单元281a位于大气传送腔21内远离出气口的一侧,控制器282用于根据风速计281的检测结果控制气闸27的气闸开度。
当外部气压发生压降时,大气传送腔21内靠近气闸27的区域(以下简称出气区域)的气体最先因为气压差增大而流速加快,而当出气区域的气体流出速率加快时,由于远离气闸27的区域(以下简称进气区域)的流速还没发生改变,这就使得出气区域因为气体来不及补充而出现气压下降现象;而当出气 区域发生压降时,进气区域内的气体才会因为进气区域和出气区域之间的气压差增大而加快流动速率。
当外部气压仅存在瞬时变化时,出气区域因为气体流动速率加快而减小的气压可以忽略不计,这就使得进气区域内的气体因为气压差而发生的流动速率变化可以忽略不计或者可以被认为是正常的气体流动速率波动,即风速计281所在位置的气体流动速率不会发生较大改变,因此无需因为外部气压频繁发生瞬时变化而频繁调整气闸27的闸门开度;换句话说,当风速计281检测到所在位置的气体流动速率发生变化时,说明外部气压的变化导致出气区域的气压发生的明显改变,即外部气压的变化并非瞬时的,此时控制器282调整气闸27的气闸开度。如此,有利于降低气闸27的调整频次,提高运行寿命。
本实施例中,风速测控单元28能够在大气传送腔21内的气体流动速率超出流速阈值时,调整气闸27的开度,从而降低外部气压压降对大气传送腔21内的气体流动速率的影响,有利于避免大气传送腔21内出现紊流,使得空气污染物能够被有效排出,提高大气传送腔21内的洁净度。
本申请又一实施例还提供一种半导体刻蚀设备,与前一实施例不同的是,本实施例中,还包括显示模块和气体过滤装置。以下将结合图3进行详细说明,图3为本申请第二实施例提供的半导体刻蚀设备的剖面结构示意图。与上一实施例相同或者相应的部分,可参考上一实施例的相应说明,以下不做赘述。
实施例中,半导体刻蚀设备还包括:显示模块39,显示模块39分别与风速测控单元38和压力测控单元35连接,显示模块39显示的内容包括大气传送腔31内的气压或者大气传送腔31内的气体流动速率。如此,工作人员能够根据显示装置39的显示内容及时调整气闸开度、气体送入速率以及与半导体刻蚀设备相关的其他的设备的具体设置,保证大气传送腔31内的洁净度。
本实施例中,进气模块还包括气体过滤装置36,气体过滤装置为高效空气粒子过滤器或者超高效空气粒子过滤器。气体过滤装置36的滤芯可采用玻璃纤维、泡沫塑料等材料,当采用玻璃纤维作为滤芯材料是,气体过滤装置36的过滤效率与玻璃纤维的粗细程度有关,玻璃纤维越细,过滤程度就越高。
本实施例中,显示模块39的设置有利于帮助工作人员识别半导体刻蚀设备的工作状态,并根据工作状态对半导体刻蚀设备自身的设置和外部条件进行 调整,以保证大气传送腔31的清洁度。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各自更动与修改,因此本申请的保护范围应当以权利要求限定的范围为准。

Claims (11)

  1. 一种半导体刻蚀设备,包括:
    大气传送腔,用于容纳待刻蚀的晶圆;
    进气模块,用于将气体送入所述大气传送腔内;
    排气模块,用于排出所述大气传送腔内的气体,所述排气模块包括气闸和风速测控单元,所述风速测控单元用于检测所述大气传送腔内的气体流动速率,并根据所述气体流动速率调整所述气闸的气闸开度。
  2. 根据权利要求1所述的半导体刻蚀设备,其中,所述进气模块还包括压力测控单元和气流调节单元,所述压力测控单元用于检测所述大气传送腔内的气压,并根据所述气压控制所述气流调节单元调整气体送入速率。
  3. 根据权利要求2所述的半导体刻蚀设备,其中,所述压力测控单元用于在所述气压超出气压阈值时控制所述气流调节单元调整所述气体送入速率。
  4. 根据权利要求3所述的半导体刻蚀设备,其中,所述气压阈值为0.0in.wc~0.1in.wc。
  5. 根据权利要求2所述的半导体刻蚀设备,其中,所述大气传送腔包括至少两个进风口,所述进气模块通过所述进风口将气体送入所述大气传送腔内,每一所述进风口对应一层流区域。
  6. 根据权利要求5所述的半导体刻蚀设备,其中,所述气流调节单元包括至少两个风扇,所述风扇置于一所述进气口内,且每一所述进气口内容纳一所述风扇。
  7. 根据权利要求2所述的半导体刻蚀设备,其中,所述风速测控单元包括风速计和控制器,所述风速计用于检测所述大气传送腔内的气体流动速率,所述控制器用于在所述气体流动速率超出流速阈值时,调整所述气闸的气闸开度。
  8. 根据权利要求7所述的半导体刻蚀设备,其中,所述风速计位于所述大气传送腔的进风口处。
  9. 根据权利要求7所述的半导体刻蚀设备,其中,所述流速阈值为85FPM~90FPM。
  10. 根据权利要求2所述的半导体刻蚀设备,其中,还包括:显示模块,所述显示模块分别与所述风速测控单元和所述压力测控单元连接,所述显示模块的显示内容包括所述大气传送腔内的气压,和/或所述大气传送腔内的气体流动速率。
  11. 根据权利要求1所述的半导体刻蚀设备,其中,所述气闸的气闸开度范围为0%-100%。
PCT/CN2021/096194 2020-06-08 2021-05-26 半导体刻蚀设备 WO2021249194A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/437,312 US20230068174A1 (en) 2020-06-08 2021-05-26 Semiconductor etching device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010514735.1A CN113838731B (zh) 2020-06-08 2020-06-08 半导体刻蚀设备
CN202010514735.1 2020-06-08

Publications (1)

Publication Number Publication Date
WO2021249194A1 true WO2021249194A1 (zh) 2021-12-16

Family

ID=78845220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096194 WO2021249194A1 (zh) 2020-06-08 2021-05-26 半导体刻蚀设备

Country Status (3)

Country Link
US (1) US20230068174A1 (zh)
CN (1) CN113838731B (zh)
WO (1) WO2021249194A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1835193A (zh) * 2005-03-17 2006-09-20 东京毅力科创株式会社 大气输送室、被处理体的处理后输送法、程序和存储介质
CN102446796A (zh) * 2010-10-01 2012-05-09 株式会社日立国际电气 衬底处理设备和制造半导体器件的方法
US20180211850A1 (en) * 2015-07-23 2018-07-26 Tokyo Electron Limited Substrate transfer chamber, substrate processing system, and method for replacing gas in substrate transfer chamber
CN209785874U (zh) * 2019-06-10 2019-12-13 长鑫存储技术有限公司 刻蚀设备
CN110783243A (zh) * 2018-07-27 2020-02-11 株式会社国际电气 基板处理装置、半导体器件的制造方法及记录介质
CN210272276U (zh) * 2019-08-30 2020-04-07 长鑫存储技术有限公司 半导体刻蚀设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096972A2 (en) * 2000-06-14 2001-12-20 Applied Materials, Inc. Methods and apparatus for maintaining a pressure within an environmentally controlled chamber
KR100583730B1 (ko) * 2004-06-29 2006-05-26 삼성전자주식회사 기판 이송 시스템 및 상기 시스템의 프레임 내 압력을조절하는 방법
US20060090703A1 (en) * 2004-11-01 2006-05-04 Tokyo Electron Limited Substrate processing method, system and program
US20060222478A1 (en) * 2005-03-31 2006-10-05 Tokyo Electron Limited Processing apparatus, and system and program for monitoring and controlling fan filter unit
JP6500797B2 (ja) * 2016-02-09 2019-04-17 信越半導体株式会社 枚葉式ウェーハ洗浄処理装置及びウェーハ洗浄処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1835193A (zh) * 2005-03-17 2006-09-20 东京毅力科创株式会社 大气输送室、被处理体的处理后输送法、程序和存储介质
CN102446796A (zh) * 2010-10-01 2012-05-09 株式会社日立国际电气 衬底处理设备和制造半导体器件的方法
US20180211850A1 (en) * 2015-07-23 2018-07-26 Tokyo Electron Limited Substrate transfer chamber, substrate processing system, and method for replacing gas in substrate transfer chamber
CN110783243A (zh) * 2018-07-27 2020-02-11 株式会社国际电气 基板处理装置、半导体器件的制造方法及记录介质
CN209785874U (zh) * 2019-06-10 2019-12-13 长鑫存储技术有限公司 刻蚀设备
CN210272276U (zh) * 2019-08-30 2020-04-07 长鑫存储技术有限公司 半导体刻蚀设备

Also Published As

Publication number Publication date
US20230068174A1 (en) 2023-03-02
CN113838731B (zh) 2023-02-28
CN113838731A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
KR100974051B1 (ko) 반도체제조장치에서의 피처리체의 반송방법
CN110854047B (zh) 工艺腔室以及半导体加工设备
EP1737030A1 (en) Purge system for a product container and table for use in the purge system
US9698037B2 (en) Substrate processing apparatus
CN111524841B (zh) 可实时检测机械微颗粒的半导体工艺设备及方法
WO2021249194A1 (zh) 半导体刻蚀设备
TW200523991A (en) A semiconductor manufacturing device
CN106191990A (zh) 一种炉管的进气装置
TWI534875B (zh) 負載鎖定室、基材處理系統、以及用於排氣之方法
JP6553388B2 (ja) 基板搬送装置、基板処理装置および基板搬送方法
CN110797278B (zh) 微环境的压力控制系统及其控制方法、半导体处理设备
TWI446480B (zh) 基板冷卻裝置
JP4207030B2 (ja) ウェハ温度調整装置
JP7206669B2 (ja) 循環式efem
JP4918121B2 (ja) 排気圧力制御システム及び排気圧力制御方法
US20180231895A1 (en) Substrate treating method
CN215342538U (zh) 一种设备前端装置
TW201805076A (zh) 防止液體殘留於基板的風刀吹乾方法
TW202308761A (zh) 吹淨控制系統
US20150179486A1 (en) Load lock chamber, substrate processing system and method for venting
JP7462977B2 (ja) パージ制御システム
JPH08139085A (ja) 半導体製造装置
WO2023175743A1 (ja) 真空処理装置
CN115287636A (zh) 一种lpcvd控压系统及控压方法
KR20050117329A (ko) 유량제어기를 갖는 반도체 제조장치의 로드록 챔버

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822015

Country of ref document: EP

Kind code of ref document: A1