WO2021243872A1 - 一种卧式甲醛氧化器 - Google Patents

一种卧式甲醛氧化器 Download PDF

Info

Publication number
WO2021243872A1
WO2021243872A1 PCT/CN2020/113907 CN2020113907W WO2021243872A1 WO 2021243872 A1 WO2021243872 A1 WO 2021243872A1 CN 2020113907 W CN2020113907 W CN 2020113907W WO 2021243872 A1 WO2021243872 A1 WO 2021243872A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cooling
flange
tube
horizontal
Prior art date
Application number
PCT/CN2020/113907
Other languages
English (en)
French (fr)
Inventor
陆惠龙
Original Assignee
江苏永大化工设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏永大化工设备有限公司 filed Critical 江苏永大化工设备有限公司
Publication of WO2021243872A1 publication Critical patent/WO2021243872A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group

Definitions

  • the present invention relates to the field of chemical industry, in particular to a horizontal formaldehyde oxidizer.
  • the formaldehyde oxidizer is one of the main equipment for the production of formaldehyde.
  • the design structure of the oxidizer is closely related to the quality of the finished formaldehyde and the service life of the oxidizer.
  • the change in the oxidation temperature is the oxidation reaction.
  • An extremely critical link, in the oxidation reaction, the reaction temperature is too high will cause the reaction speed to be too fast, resulting in an increase in side reactions and impurities.
  • the cooling rate is slower, and more impurities are generated.
  • the purpose of the present invention is to provide a horizontal formaldehyde oxidizer, which solves the problems raised in the background art.
  • a horizontal formaldehyde oxidizer comprising a first cylinder, a second cylinder and a fourth cylinder, the left side wall of the first cylinder and the second cylinder
  • a third cylinder is installed on the right side wall of the body
  • a fifth cylinder is installed on the sides of the two groups of third cylinders close to each other
  • a fourth cylinder is installed between the two sets of fifth cylinders.
  • the top of the third cylinder is equipped with an oxidation head
  • the top of the fourth cylinder is connected with an exhaust hole
  • the bottom of the fourth cylinder is connected with a formaldehyde outlet
  • the inner cavity of the fourth cylinder is equipped with a partition
  • the inner cavities of the second cylinder, the third cylinder and the fourth cylinder are all provided with a first cooling cavity
  • the inner cavity of the fifth cylinder is provided with a second cooling cavity.
  • the reaction gas reacts in the oxidation head, and enters the first cooling chamber and the second cooling chamber after the reaction, the formaldehyde produced by the reaction is discharged from the formaldehyde outlet, and the reaction gas passes through the first cooling chamber and the second cooling chamber Cooling can accelerate the cooling of the reaction gas, improve the efficiency of the reaction gas cooling, and reduce the content of impurities generated by the reaction.
  • a first tube sheet is provided between the third cylinder and the second cylinder and the first cylinder, and a first tube sheet is provided between the first cooling cavity and the second cooling cavity.
  • a fin tube is provided in the first cooling cavity, and the fin tube penetrates the first cooling cavity, the second tube sheet and the second cooling cavity, and the second cooling cavity is provided with a sleeve Tube, the sleeve is sleeved on the outer side wall of the fin tube, and the partition is sleeved on the outer side wall of the fin tube.
  • the horizontal formaldehyde oxidizer structure separates the oxidation head from the cooling structure, which is convenient for disassembly and maintenance.
  • the reaction gas is pre-cooled by the fin tube under the sieve plate, which is also beneficial to protect the tube sheet and the heat exchange tube.
  • two sets of oxidation heads work together, which can more than double the output, and one set of oxidation heads can also be split into two or more groups, which is more convenient for manufacturing and transportation.
  • the inner cavity of the oxidation head is provided with a catalyst layer, a copper mesh and a sieve plate
  • the inner cavity of the fin tube is provided with cooling water
  • the outer side wall of the sleeve is provided with
  • the steam collected on the top of the cylinder is discharged through an outlet
  • cooling water is arranged under the first cooling cavity and the second cooling cavity
  • water vapor is arranged on the top of the first cooling cavity and the second cooling cavity.
  • the left and right ends of the finned tube are respectively connected with two sets of first tube plates.
  • the reaction gas reacts on the catalyst layer in the inner cavity of the oxidation head, and the gas generated by the reaction escapes from the sieve holes on the sieve plate, enters the first cooling chamber for pre-cooling, and then enters the second cooling chamber , Enter the gap between the fin tube and the sleeve through the second tube plate.
  • the reaction gas passing between the fin tube and the sleeve is cooled internally and externally, the reaction gas passes through the sleeve and the second cooling cavity
  • the cooling water exchanges heat with the cooling water in the fin tube.
  • the inner cavity of the fin tube is filled with cooling water.
  • a second water vapor outlet and a third water vapor outlet are installed on the tops of the two sets of fifth cylinders respectively, and the bottoms of the second water vapor outlets and the third water vapor outlets are respectively connected to the two sets of second water vapor outlets.
  • the cooling cavity is in communication, the top of the second cylinder is connected with a first water vapor outlet, and the top of the first cylinder is connected with a fourth water vapor outlet.
  • the bottom of the first cylinder is connected with inlet and outlet holes
  • the bottom of the second cylinder is connected with drain holes
  • the bottoms of the two sets of fifth cylinders are respectively provided with first inlets.
  • the water inlet and the second water inlet, the first water inlet and the second water inlet are respectively communicated with two sets of second cooling cavities.
  • the first cylinder, the second cylinder, the third cylinder, the fourth cylinder, and the fifth cylinder are rectangular or circular cylinders, and the oxidation head is rectangular.
  • the copper mesh is located below the catalyst layer and below the sieve plate, and the sieve plate is arranged on the top of the fin tube through a fixing member.
  • the detachable function of the oxidation head can be realized by using the fixing member that sets the sieve plate on the top of the fin tube and the flange installed on the top of the oxidation head.
  • the inside of the rectangular oxidation head can be divided into several parts to separate the catalyst layer, which can prevent the deformation and cracking of the catalyst layer and increase the reaction gas flow. Flux, heat is quickly brought into the cooling area to prevent heat accumulation inside the oxidation head due to a large output.
  • a heat insulation plate is installed on the side of the first tube plate close to the fourth cylinder, the heat insulation plate is a perforated plate, and the heat insulation plate is sleeved on the fin tube Outside wall.
  • the heat insulation plate located on the side of the first tube sheet close to the fourth cylinder can isolate the tube sheet from the reaction gas, prevent the reaction gas from directly washing the tube sheet, and improve the service life of the equipment.
  • a first flange is installed on the side of the third cylinder close to the fifth cylinder, and a third method is installed on the side of the fifth cylinder close to the third cylinder.
  • the first flange and the third flange are connected.
  • a second flange is installed on the left side wall of the first cylinder, and a fourth flange is installed on the side of the third cylinder close to the first cylinder.
  • the second flange and the fourth flange are connected.
  • a fifth flange is installed on the side of the fifth cylinder close to the fourth cylinder, and sixth flanges are installed on the left and right sides of the fourth cylinder.
  • the fifth flange and the sixth flange are connected.
  • the horizontal formaldehyde oxidizer of the present invention through the horizontal formaldehyde oxidizer structure, separates the oxidation head from the cooling structure, which is convenient for disassembly and maintenance, and also eliminates the traditional oxidizer due to the same diameter of the oxidation head and the heat exchange section.
  • the cooling rate is limited, which greatly improves the output; the reaction gas is pre-cooled by the fin tube under the sieve plate, which is also beneficial to protect the end of the tube sheet and the heat exchange tube; the two sets of oxidation heads work together to increase the output More than doubled, a group of oxidation heads can also be divided into two or more groups, which is more convenient for manufacturing and transportation.
  • the inner cavity of the fin tube and the outer wall of the sleeve are filled with cooling water and water vapor through the combination of the fin tube and the sleeve in the first cooling cavity and the second cooling cavity ,
  • the reaction gas passing between the fin tube and the sleeve is cooled inside and outside.
  • the hot zone of the tube sheet is contacted and cooled. Water, the temperature of the tube sheet in the high temperature zone will not be too high, and cracks are not easy to occur.
  • the end of the heat exchange tube avoids the high temperature zone to avoid damage to the end of the heat exchange tube caused by the excessive temperature of the heat exchange tube, thereby increasing the service life of the equipment.
  • the horizontal formaldehyde oxidizer of the present invention can realize the detachable function of the oxidation head by setting the sieve plate on the fixing part on the top of the fin tube and the flange installed on the top of the oxidation head, and prevent dust and particles from attaching to the fins.
  • the fin tube is installed, it is easier to clean, keep the fin tube clean, and improve the heat exchange efficiency.
  • the horizontal formaldehyde oxidizer of the present invention can be divided into several parts to separate the catalyst layer through a rectangular oxidation head, which can prevent deformation and cracking of the catalyst layer, and can increase the flow of reactant air flow, and heat can be quickly removed. It is brought into the cooling area to prevent heat accumulation inside the oxidation head due to a large output.
  • Figure 1 is a schematic diagram of the overall structure of the horizontal formaldehyde oxidizer of the present invention
  • Figure 2 is a schematic diagram of the structure of the oxidation head in the horizontal formaldehyde oxidizer of the present invention
  • Figure 3 is a schematic structural diagram of Embodiment 2 of the horizontal formaldehyde oxidizer of the present invention.
  • Figure 4 is a schematic structural diagram of Embodiment 3 of the horizontal formaldehyde oxidizer of the present invention.
  • Figure 5 is a schematic structural diagram of Embodiment 4 of the horizontal formaldehyde oxidizer of the present invention.
  • Figure 6 is a schematic structural diagram of Embodiment 5 of the horizontal formaldehyde oxidizer of the present invention.
  • Fig. 7 is a schematic structural diagram of Embodiment 6 of the horizontal formaldehyde oxidizer of the present invention.
  • a horizontal formaldehyde oxidizer comprising a first cylinder 2, a second cylinder 3, and a fourth cylinder 25.
  • the left side wall of the first cylinder 2 and the right side wall of the second cylinder 3 are both installed
  • the top of the body 18 is equipped with an oxidation head 7, the top of the fourth cylinder 25 is connected with an exhaust hole 14, the bottom of the fourth cylinder 25 is connected with a formaldehyde outlet 23, and the inner cavity of the fourth cylinder 25 A partition 1 is installed, the inner cavities of the second cylinder 3, the third cylinder 18, and the fourth cylinder 25 are all provided with a first cooling cavity 4, and the inner cavity of the fifth cylinder 34 is provided with a first cooling cavity. Two cooling cavity 5.
  • a first tube sheet 6 is provided between the third cylinder 18 and the second cylinder 3 and the first cylinder 2, and a second tube is provided between the first cooling cavity 4 and the second cooling cavity 5 Plate 8, the first cooling cavity 4 is provided with a fin tube 33, the fin tube 33 penetrates the first cooling cavity 4, the second tube plate 8 and the second cooling cavity 5, the second cooling cavity 5
  • a sleeve 13 is arranged inside, the sleeve 13 is sleeved on the outer side wall of the fin tube 33, the partition 1 is sleeved on the outer side wall of the fin tube 33, and the inner cavity of the oxidation head 7 is provided with a catalyst layer 30 , Copper mesh 31 and sieve plate 32, the inner cavity of the fin tube 33 is provided with cooling water, the outer side wall of the sleeve 13 is provided with cooling water or water vapor, the first cooling cavity 4 and the second cooling cavity Cooling water is arranged below 5, water vapor is arranged above the first cooling cavity 4 and the second cooling cavity 5, and the left and right
  • a second water vapor outlet 12 and a third water vapor outlet 15 are respectively installed on the tops of the two groups of fifth cylinders 34, and the bottoms of the second water vapor outlets 12 and the third water vapor outlets 15 are respectively connected to the two groups of second cooling cavities 5,
  • the top of the second cylinder 3 communicates with a first vapor outlet 10
  • the top of the first cylinder 2 communicates with a fourth vapor outlet 17,
  • the bottom of the first cylinder 2 communicates with an inlet and outlet hole 19, so
  • the bottom of the second cylinder 3 is connected with a drain hole 27,
  • the bottoms of the two sets of fifth cylinders 34 are respectively provided with a first water inlet 22 and a second water inlet 24, the first water inlet 22 and the second water inlet 24 respectively communicate with two sets of second cooling chambers 5.
  • the first cylinder 2, the second cylinder 3, the third cylinder 18, the fourth cylinder 25 and the fifth cylinder 34 are rectangular cylinders
  • the oxidation head 7 is a rectangular oxidation head
  • the copper mesh 31 is located below the catalyst layer 30 and below the sieve plate 32.
  • the sieve plate 32 is arranged on the top of the fin tube 33 by a fixing member.
  • a hot plate 28, the heat insulation plate 28 is a perforated plate, and the heat insulation plate 28 is sleeved on the outer side wall of the fin tube 33.
  • a first flange 16 is installed on the side of the third cylinder 18 close to the fifth cylinder 34, and a third flange 21 is installed on the side of the fifth cylinder 34 close to the third cylinder 18.
  • the first flange 16 and the third flange 21 are connected, a second flange 20 is installed on the left side wall of the first cylinder 2, and a side of the third cylinder 18 close to the first cylinder 2 is installed
  • the fourth flange 29, the second flange 20 and the fourth flange 29 are connected, the fifth cylinder 34 is mounted on the side close to the fourth cylinder 25 with a fifth flange 35, the fourth cylinder
  • a sixth flange 36 is installed on the left and right sides of the body 25, and the fifth flange 35 and the sixth flange 36 are connected.
  • a horizontal formaldehyde oxidizer includes a first cylinder 2, a second cylinder 3, and a third cylinder 18.
  • a third cylinder 18 is installed between the first cylinder 2 and the second cylinder 3.
  • the top of the third cylinder 18 is equipped with oxidation heads 7 on the left and right, the top of the third cylinder 18 is connected with an exhaust hole 14, and the bottom of the third cylinder 18 is connected with a formaldehyde outlet 23, so A partition 1 is installed in the inner cavity of the third cylinder 18.
  • a first tube plate 6 is provided between the third cylinder 18, the second cylinder 3, and the first cylinder 2, and the third cylinder 18 is provided with a fin tube 33.
  • the third cylinder The body 18 is provided with a baffle 9 which is sleeved on the outer side wall of the fin tube 33, the partition 1 is sleeved on the outer side wall of the fin tube 33, and the inner cavity of the oxidation head 7 is provided There are a catalyst layer 30, a copper mesh 31, and a sieve plate 32.
  • the inner cavity of the fin tube 33 is provided with cooling water.
  • the left and right ends of the fin tube 33 are respectively connected to two sets of first tube plates 6.
  • the top of the second cylinder 3 communicates with a first vapor outlet 10, the top of the first cylinder 2 communicates with a fourth vapor outlet 17, and the bottom of the first cylinder 2 communicates with an inlet and outlet hole 19, so The bottom of the second cylinder 3 communicates with a drain hole 27.
  • the first cylinder 2, the second cylinder 3, the third cylinder 18, the fourth cylinder 25 and the fifth cylinder 34 are rectangular cylinders
  • the oxidation head 7 is a rectangular oxidation head
  • the copper mesh 31 is located below the catalyst layer 30 and below the sieve plate 32.
  • the sieve plate 32 is arranged on the top of the fin tube 33 by a fixing member.
  • a hot plate 28, the heat insulation plate 28 is a perforated plate, and the heat insulation plate 28 is sleeved on the outer side wall of the fin tube 33.
  • a second flange 20 is installed on the left side wall of the first cylinder 2, and a fourth flange 29 is installed on the side of the third cylinder 18 close to the first cylinder 2.
  • the second flange 20 Connected to the fourth flange 29.
  • a horizontal formaldehyde oxidizer includes a first cylinder 2, a second cylinder 3, and a third cylinder 18.
  • a third cylinder 18 is installed between the first cylinder 2 and the second cylinder 3.
  • the top of the third cylinder 18 is equipped with oxidation heads 7 on the left and right, the top of the third cylinder 18 is connected with an exhaust hole 14, and the bottom of the third cylinder 18 is connected with a formaldehyde outlet 23, so A partition 1 is installed in the inner cavity of the third cylinder 18.
  • a first tube plate 6 is provided between the third cylinder 18, the second cylinder 3, and the first cylinder 2, and the third cylinder 18 is provided with a fin tube 33.
  • the third cylinder The body 18 is provided with a baffle 9 which is sleeved on the outer side wall of the fin tube 33, the partition 1 is sleeved on the outer side wall of the fin tube 33, and the inner cavity of the oxidation head 7 is provided There are a catalyst layer 30, a copper mesh 31 and a sieve plate 32.
  • the inner cavity of the fin tube 33 is provided with cooling water.
  • the left and right ends of the fin tube 33 are respectively connected to the two sets of first tube plates 6.
  • the top of the second cylinder 3 communicates with a first vapor outlet 10
  • the top of the first cylinder 2 communicates with a fourth vapor outlet 17
  • the bottom of the first cylinder 2 communicates with an inlet and outlet hole 19, so
  • the bottom of the second cylinder 3 is connected with a sewage hole 27,
  • the outer side wall of the third cylinder 18 is covered with jackets 26 on the left and right, and the top of the left side of the two sets of jackets 26 is provided with a second water vapor outlet 12.
  • the bottom of the right set of the two sets of jackets 26 is provided with a first water inlet 22.
  • the first cylinder 2, the second cylinder 3, the third cylinder 18, the fourth cylinder 25 and the fifth cylinder 34 are rectangular cylinders
  • the oxidation head 7 is a rectangular oxidation head
  • the copper mesh 31 is located below the catalyst layer 30 and below the sieve plate 32.
  • the sieve plate 32 is arranged on the top of the fin tube 33 by a fixing member.
  • a hot plate 28, the heat insulation plate 28 is a perforated plate, and the heat insulation plate 28 is sleeved on the outer side wall of the fin tube 33.
  • a second flange 20 is installed on the left side wall of the first cylinder 2, and a fourth flange 29 is installed on the side of the third cylinder 18 close to the first cylinder 2.
  • the second flange 20 Connected to the fourth flange 29.
  • a horizontal formaldehyde oxidizer includes a first cylinder 2, a second cylinder 3, and a fourth cylinder 25.
  • a third cylinder 18 is installed on the right side wall of the first cylinder 2.
  • the right side wall of the cylinder body 3 is connected with the left side wall of the fourth cylinder body 25.
  • the tops of the fourth cylinder body 25 and the third cylinder body 18 are both equipped with an oxidation head 7.
  • the inner cavities of the three cylinders 37 are all provided with a first cooling cavity 4, the inner cavity of the fourth cylinder 25 is provided with a second cooling cavity 5, and the top of the fourth cylinder 25 is connected with an exhaust hole 14.
  • the bottom of the fourth cylinder 25 communicates with a formaldehyde outlet 23, and the inner cavity of the third cylinder 18 is provided with a partition 1.
  • the number of the first cooling cavities 4 is three groups
  • the number of the second cooling cavities 5 is two groups and is located between the two groups of the first cooling cavities 4, one group on the left side of the three groups of the first cooling cavities 4
  • a first tube sheet 6 is provided between the first cooling cavity 4 and the second cylinder 3, and between the right one of the three groups of first cooling cavities 4 and the first cylinder 2.
  • the first cooling cavity 4 and the second cooling cavity 4 are
  • a second tube sheet 8 is arranged between the cavities 5, and a fin tube 33 is arranged in the first cooling cavity 4, and the fin tube 33 penetrates the first cooling cavity 4, the second tube sheet 8 and the second cooling cavity 5.
  • the two sets of second cooling chambers 5 are provided with sleeves 13 which are sleeved on the outer side walls of the sets of fin tubes 33, and the third cylinder 18 is provided with baffles 9, the The baffle 9 is sleeved on the outer side wall of the fin tube 33, and the partition 1 is sleeved on the outer side wall of the fin tube 33.
  • the inner cavity of the oxidation head 7 is provided with a catalyst layer 30, a copper mesh 31 and a sieve plate 32, the inner cavity of the fin tube 33 is provided with cooling water, and the outer side wall of the sleeve 13 is provided with cooling water or water vapor.
  • the first cooling cavity 4 and the second cooling cavity 5 are provided with cooling water, the tops of the first cooling cavity 4 and the second cooling cavity 5 are provided with water vapor, and the left and right sides of the fin tube 33 The two ends are respectively connected with two sets of first tube plates 6.
  • a second water vapor outlet 12 and a third water vapor outlet 15 are installed on the left and right of the top of the fourth cylinder body 25, and the bottoms of the second water vapor outlet 12 and the third water vapor outlet 15 are respectively connected to two sets of second cooling chambers 5 ,
  • the top of the first cylinder 2 communicates with a first vapor outlet 9
  • the top of the first cylinder 2 communicates with a fourth vapor outlet 17,
  • the top of the second cylinder 3 communicates with a first vapor outlet 10.
  • the bottom of the first cylinder 1 is connected with a drain hole 27,
  • the bottom of the first cylinder 2 is connected with an inlet and outlet hole 19, and the bottom of the fourth cylinder 25 is provided with a second water inlet 24 on the left and right.
  • the first water inlet 22, the second water inlet 24 and the first water inlet 22 are respectively communicated with two sets of second cooling cavities 5.
  • the first cylinder 2, the second cylinder 3, the third cylinder 18, and the fourth cylinder 25 are rectangular cylinders, the oxidation head 7 is a rectangular oxidation head, and the copper mesh 31 is located on the catalyst layer 30 Below and below the sieve plate 32, the sieve plate 32 is arranged on the top of the fin tube 33 by a fixing member, and a heat insulation plate 28 is installed on the side of the first tube plate 6 close to the fourth cylinder 25.
  • the heat insulation board 28 is a perforated plate, and the heat insulation board 28 is sleeved on the outer side wall of the fin tube 33.
  • a third flange 21 is installed on the right side wall of the fourth cylinder body 25
  • a first flange 16 is installed on the left side wall of the third cylinder body 18, the first flange 16 and the third flange 21 connection
  • a second flange 20 is installed on the left side wall of the first cylinder 2
  • a fourth flange 29 is installed on the side of the third cylinder 18 close to the first cylinder 2
  • the second The flange 20 and the fourth flange 29 are connected.
  • a horizontal formaldehyde oxidizer comprising a first cylinder 2, a second cylinder 3, and a fourth cylinder 25.
  • the left side wall of the first cylinder 2 and the right side wall of the second cylinder 3 are both installed
  • the top of the body 18 is equipped with an oxidation head 7, the top of the fourth cylinder 25 is connected with an exhaust hole 14, the bottom of the fourth cylinder 25 is connected with a formaldehyde outlet 23, and the inner cavity of the fourth cylinder 25 A partition 1 is installed, the inner cavities of the second cylinder 3, the third cylinder 18, and the fourth cylinder 25 are all provided with a first cooling cavity 4, and the inner cavity of the fifth cylinder 34 is provided with a first cooling cavity. Two cooling cavity 5.
  • a first tube sheet 6 is provided between the third cylinder 18 and the second cylinder 3 and the first cylinder 2, and a second tube is provided between the first cooling cavity 4 and the second cooling cavity 5 Plate 8, the first cooling cavity 4 is provided with a fin tube 33, the fin tube 33 penetrates the first cooling cavity 4, the second tube plate 8 and the second cooling cavity 5, the second cooling cavity 5
  • a sleeve 13 is arranged inside, the sleeve 13 is sleeved on the outer side wall of the fin tube 33, the partition 1 is sleeved on the outer side wall of the fin tube 33, and the inner cavity of the oxidation head 7 is provided with a catalyst layer 30 , Copper mesh 31 and sieve plate 32, the inner cavity of the fin tube 33 is provided with cooling water, the outer side wall of the sleeve 13 is provided with cooling water or water vapor, the first cooling cavity 4 and the second cooling cavity Cooling water is arranged below 5, water vapor is arranged on the tops of the first cooling cavity 4 and the second cooling cavity 5, and
  • the top and left sides of the fourth cylinder 25 are equipped with steam drums 11, the tops of the two groups of steam drums 11 are respectively installed with a second water vapor outlet 12 and a third water vapor outlet 15, and the bottoms of the two groups of steam drums 11 are respectively Connected with two sets of second cooling chambers 5, the top of the second cylinder 3 is connected with a first water vapor outlet 10, the top of the first cylinder 2 is connected with a fourth water vapor outlet 17, the first cylinder 2 is connected to the bottom of the inlet and outlet holes 19, the bottom of the second cylinder 3 is connected to the drain hole 27, the bottoms of the two sets of fifth cylinders 34 are respectively provided with a first water inlet 22 and a second water inlet 24, the The first water inlet 22 and the second water inlet 24 are respectively communicated with two sets of second cooling chambers 5.
  • the first cylinder 2, the second cylinder 3, the third cylinder 18, the fourth cylinder 25 and the fifth cylinder 34 are rectangular cylinders
  • the oxidation head 7 is a rectangular oxidation head
  • the copper mesh 31 is located below the catalyst layer 30 and below the sieve plate 32.
  • the sieve plate 32 is arranged on the top of the fin tube 33 by a fixing member.
  • a hot plate 28, the heat insulation plate 28 is a perforated plate, and the heat insulation plate 28 is sleeved on the outer side wall of the fin tube 33.
  • a first flange 16 is installed on the side of the third cylinder 18 close to the fifth cylinder 34, and a third flange 21 is installed on the side of the fifth cylinder 34 close to the third cylinder 18.
  • the first flange 16 and the third flange 21 are connected, a second flange 20 is installed on the left side wall of the first cylinder 2, and a side of the third cylinder 18 close to the first cylinder 2 is installed
  • the fourth flange 29, the second flange 20 and the fourth flange 29 are connected, the fifth cylinder 34 is mounted on the side close to the fourth cylinder 25 with a fifth flange 35, the fourth cylinder
  • a sixth flange 36 is installed on the left and right sides of the body 25, and the fifth flange 35 and the sixth flange 36 are connected.
  • a horizontal formaldehyde oxidizer includes a first cylinder 2, a second cylinder 3, and a third cylinder 18.
  • a third cylinder 18 is installed between the first cylinder 2 and the second cylinder 3.
  • the top of the third cylinder 18 is equipped with an oxidation head 7, the top of the third cylinder 18 is connected with an exhaust hole 14, and the bottom of the third cylinder 18 is connected with a formaldehyde outlet 23.
  • a first tube plate 6 is provided between the third cylinder 18, the second cylinder 3, and the first cylinder 2, and the third cylinder 18 is provided with a fin tube 33.
  • the third cylinder The body 18 is provided with a baffle 9 which is sleeved on the outer side wall of the fin tube 33, the partition 1 is sleeved on the outer side wall of the fin tube 33, and the inner cavity of the oxidation head 7 is provided There are a catalyst layer 30, a copper mesh 31 and a sieve plate 32.
  • the inner cavity of the fin tube 33 is provided with cooling water.
  • the left and right ends of the fin tube 33 are respectively connected to the two sets of first tube plates 6.
  • the top of the second cylinder 3 communicates with a first vapor outlet 10, the top of the first cylinder 2 communicates with a fourth vapor outlet 17, and the bottom of the first cylinder 2 communicates with an inlet and outlet hole 19, so
  • the bottom of the second cylinder 3 communicates with a drain hole 27, the outer side wall of the third cylinder 18 is sleeved with a jacket 26, and the top of the jacket 26 is provided with a second water vapor outlet 12, the jacket 26
  • a first water inlet 22 is provided at the bottom of the device.
  • the first cylinder 2, the second cylinder 3, and the third cylinder 18 are rectangular cylinders, the oxidation head 7 is a rectangular oxidation head, and the copper mesh 31 is located below the catalyst layer 30 and on the sieve plate 32. Below, the sieve plate 32 is arranged on the top of the fin tube 33 by a fixing member.
  • a second flange 20 is installed on the left side wall of the first cylinder 2, and a fourth flange 29 is installed on the side of the third cylinder 18 close to the first cylinder 2.
  • the second flange 20 Connected to the fourth flange 29.
  • the reaction gas reacts on the catalyst layer 30 in the inner cavity of the oxidation head 7, and the gas generated by the reaction escapes from the sieve holes on the sieve plate 32.
  • the horizontal formaldehyde oxidizer The structure separates the oxidation head 7 from the cooling structure, removes the limitation of the heat exchange rate caused by the same diameter of the traditional oxidizer heat exchange zone and the oxidation zone, can greatly increase the production capacity, and is convenient for disassembly and maintenance.
  • the third cylinder 18 The two sets of oxidation heads 7 above work together to more than double the output.
  • One set of oxidation heads 7 can also be divided into two or more groups, which is more convenient for manufacturing and transportation.
  • the interior of the rectangular oxidation head 7 is divided into several groups. Each part separates the catalyst layer 30 to prevent deformation and cracking of the catalyst layer 30. At the same time, it can increase the flow rate and quickly enter the cooling area to prevent heat accumulation in the oxidation head 7 due to a large output.
  • the reaction gas passes through the sieve plate 32.
  • the pre-cooling of the lower fin tube 33 is also beneficial to protect the end of the fin tube 33 as a heat exchange tube.
  • the heat insulation plate 28 on the side of the first tube sheet 6 close to the fourth cylinder 25 can connect the tube sheet and
  • the reaction gas is isolated to prevent the reaction gas from directly scouring the tube sheet, and then the reaction gas enters the second cooling chamber 5, passes through the second tube sheet 8 and enters the gap between the fin tube 33 and the sleeve 13, and then connects the fin tube 33 and
  • the reaction gas exchanges heat between the sleeve 13 and the cooling water in the second cooling cavity 5 and the cooling water in the fin tube 33.
  • the fin tube 33 The inner cavity is filled with cooling water.
  • the upper layer between the outer wall of the sleeve 13 and the cylinder body is water vapor, and the lower layer is cooling water, which is more conducive to heat exchange.
  • the hot zone of the tube sheet is in contact with the cooling water, and the temperature in the high temperature zone of the tube sheet will not be too high and can be maintained.
  • the end of the fin tube 33 should avoid the high temperature zone to avoid the end of the fin tube 33 from being damaged due to the excessive temperature of the fin tube 33, thereby improving the service life of the equipment, and the formaldehyde generated by the reaction is from the formaldehyde.
  • the outlet 23 is discharged, and the reaction gas passes through the first cooling chamber 4 and the second cooling chamber 5 for cooling, which can accelerate the cooling of the reaction gas, improve the cooling efficiency of the reaction gas, and reduce the impurity content generated by the reaction.
  • the fixing piece on the top of the fin tube 33 and the flange installed on the top of the oxidation head 7 can realize the detachable function of the oxidation head 7. When dust and particles adhere to the fin tube 33, it is easier to clean and keep the fin tube 33 is clean, easy to improve heat exchange efficiency.

Abstract

本发明公开了一种卧式甲醛氧化器,包括第一筒体、第二筒体和第四筒体,所述第一筒体的左侧壁和第二筒体的右侧壁均安装有第三筒体,两组第三筒体的相互靠近的一侧均安装有第五筒体,两组第五筒体之间安装有第四筒体,所述第三筒体顶部安装有氧化头。本发明通过卧式的甲醛氧化器结构,使得氧化头与冷却结构分离,解除了传统的氧化器换热区与氧化区同直径造成的冷却速度的限制,能较大的提高产能;并且便于拆卸与维修;反应气经过筛板下方的翅片管预冷却,以及隔热板的运用,也利于保护管板和换热管的端部,两组氧化头共同工作,能够将产量提高一倍以上,也可将一组氧化头拆分为两组或多组,更便于制造和运输,适合广泛推广与使用。

Description

一种卧式甲醛氧化器 技术领域
本发明涉及化工领域,具体为一种卧式甲醛氧化器。
背景技术
甲醛氧化器是生产甲醛的主要设备之一,氧化器的设计结构与甲醛成品的质量和氧化器的使用寿命有着密切的关系,在氧化器中的氧化反应中,氧化温度的变化是氧化反应中极其关键的环节,氧化反应中,反应温度过高会使得反应速度过快,从而导致副反应增多,杂质增多。一些甲醛氧化器在反应过程中,冷却速度较慢,产生的杂质较多,且因冷却速度慢,需增加换热速度,导致氧化器的直径较大,从而导致氧化器的单耗较大,产能较低。因此,我们提出一种卧式甲醛氧化器。
发明内容
本发明的目的在于提供一种卧式甲醛氧化器,解决了背景技术中所提出的问题。
为实现上述目的,本发明提供如下技术方案:一种卧式甲醛氧化器,包括第一筒体、第二筒体和第四筒体,所述第一筒体的左侧壁和第二筒体的右侧壁均安装有第三筒体,两组第三筒体的相互靠近的一侧均安装有第五筒体,两组第五筒体之间安装有第四筒体,所述第三筒体顶部安装有氧化头,所述第四筒体的顶部连通有排气孔,所述第四筒体的底部连通有甲醛出口,所述第四筒体的内腔安装有隔板,所述第二筒体、第三筒体和第四筒体的内腔均设置有第一冷却腔,所述第五筒体的内腔置有第二冷却腔。
在上述技术方案中,反应气在氧化头中进行反应,反应后进入第一冷却腔和第二冷却腔,反应产生的甲醛从甲醛出口出排出,反应气 经过第一冷却腔、第二冷却腔进行冷却,能够加速反应气的冷却,提高反应气冷却的效率,减少反应所生成的杂质含量。
作为本发明的一种优选实施方式,所述第三筒体与第二筒体、第一筒体之间均设置有第一管板,所述第一冷却腔和第二冷却腔之间设置有第二管板,所述第一冷却腔内设置有翅片管,所述翅片管贯穿第一冷却腔、第二管板和第二冷却腔,所述第二冷却腔内设置有套管,所述套管套装于翅片管的外侧壁,所述隔板套装于翅片管的外侧壁。
在上述技术方案中,通过卧式的甲醛氧化器结构,使得氧化头与冷却结构分离,便于拆卸与维修,反应气经过筛板下方的翅片管预冷却,也利于保护管板和换热管的端部,两组氧化头共同工作,能够将产量提高一倍以上,也可将一组氧化头拆分为两组或多组,更便于制造和运输。
作为本发明的一种优选实施方式,所述氧化头的内腔设置有催化剂层、铜网和筛板,所述翅片管的内腔设置有冷却水,所述套管的外侧壁设置有冷却水,筒体顶部收集蒸汽通过出口排出,所述第一冷却腔和第二冷却腔的下方设置有冷却水,所述第一冷却腔和第二冷却腔的顶部设置有水汽,所述所述翅片管的左右两端分别与两组第一管板连接。
在上述技术方案中,反应气在氧化头内腔中的催化剂层上进行反应,反应生成的气体从筛板上的筛孔逸出,进入第一冷却腔进行预冷却,而后进入第二冷却腔,经过第二管板进入翅片管和套管之间的空隙,在对从翅片管和套管之间经过的反应气进行内外冷却时,反应气通过套管与第二冷却腔内的冷却水与翅片管内的冷却水进行换热,此时翅片管的内腔充满冷却水,套管外侧壁与筒体之间顶部为水汽,下层为冷却水,更利于换热,管板热区接触冷却水,管板 高温区温度不会过高,能保持在不锈钢材料性能稳定使用范围内,管板和换热管端部避开高温区,避免温度过高造成换热管端部损坏,从而提高设备使用寿命。
作为本发明的一种优选实施方式,两组第五筒体的顶部分别安装有第二水汽出口和第三水汽出口,所述第二水汽出口和第三水汽出口的底部分别与两组第二冷却腔连通,所述第二筒体的顶部连通有第一水汽出口,所述第一筒体的顶部连通有第四水汽出口。
作为本发明的一种优选实施方式,所述第一筒体的底部连通有进出孔,所述第二筒体的底部连通有排污孔,两组第五筒体的底部分别设置有第一进水口和第二进水口,所述第一进水口和第二进水口分别与两组第二冷却腔连通。
作为本发明的一种优选实施方式,所述第一筒体、第二筒体、第三筒体、第四筒体和第五筒体为矩形或圆形筒体,所述氧化头为矩形氧化头,所述铜网位于催化剂层的下方和筛板的下方,所述筛板通过固定件设置于翅片管的顶部。
在上述技术方案中,利用将筛板设置于翅片管顶部的固定件,及氧化头顶部安装的法兰,可以实现氧化头的可拆卸功能,在灰尘、颗粒附着在翅片管上时,更便于拆卸清洗,保持翅片管的洁净,便于提高换热效率,同时矩形氧化头的内部可以被分成几个部分,将催化剂层隔开,能够预防催化剂层的变形裂开,增大反应气流通量,热量迅速被带入冷却区域,防止氧化头内部因较大产量而产生热量聚集。
作为本发明的一种优选实施方式,所述第一管板靠近第四筒体的一侧安装有隔热板,所述隔热板为孔板,所述隔热板套装于翅片管的外侧壁。
在上述技术方案中,位于第一管板靠近第四筒体的一侧的隔热板,能够将管板与反应气隔离,防止反应气直接冲刷管板,提高设备使用寿命。
作为本发明的一种优选实施方式,所述第三筒体靠近第五筒体的一侧安装有第一法兰,所述第五筒体靠近第三筒体的一侧安装有第三法兰,所述第一法兰和第三法兰连接。
作为本发明的一种优选实施方式,所述第一筒体的左侧壁安装有第二法兰,所述第三筒体靠近第一筒体的一侧安装有第四法兰,所述第二法兰和第四法兰连接。
作为本发明的一种优选实施方式,所述第五筒体靠近第四筒体的一侧安装有第五法兰,所述第四筒体左右两侧均安装有第六法兰,所述第五法兰和第六法兰连接。
与现有技术相比,本发明的有益效果如下:
1.本发明的卧式甲醛氧化器,通过卧式的甲醛氧化器结构,使得氧化头与冷却结构分离,便于拆卸与维修,也解除了传统氧化器由于氧化头与换热段同直径带来的冷却速度的限制,极大的提高了产量;反应气经过筛板下方的翅片管预冷却,也利于保护管板和换热管的端部;两组氧化头共同工作,能够将产量提高一倍以上,也可将一组氧化头拆分为两组或多组,更便于制造和运输。
2.本发明的卧式甲醛氧化器,通过第一冷却腔和第二冷却腔内,翅片管和套管的组合,使得翅片管的内腔和套管的外侧壁充满冷却水和水汽,对从翅片管和套管之间经过的反应气进行内外冷却,此时套管外侧壁与筒体之间顶部为水汽,下层为冷却水,更利于换热,管板热区接触冷却水,管板高温区温度不会过高,不易产生裂纹,换热管端部避开高温区,避免换热管温度过高造 成换热管的端部损坏,从而提高设备使用寿命。
3.本发明的卧式甲醛氧化器,通过将筛板设置于翅片管顶部的固定件,及氧化头顶部安装的法兰,可以实现氧化头的可拆卸功能,在灰尘、颗粒附着在翅片管上时,更便于清洗,保持翅片管的洁净,便于提高换热效率。
4.本发明的卧式甲醛氧化器,通过矩形氧化头,其内部可以被分成几个部分将催化剂层隔开,能够预防催化剂层变形裂开,同时能够增大反应气流通量,热量迅速被带入冷却区域,防止氧化头内部因较大产量而产生热量聚集。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明卧式甲醛氧化器的整体结构示意图;
图2为本发明卧式甲醛氧化器中氧化头的结构示意图;
图3为本发明卧式甲醛氧化器实施例2的结构示意图;
图4为本发明卧式甲醛氧化器实施例3的结构示意图;
图5为本发明卧式甲醛氧化器实施例4的结构示意图;
图6为本发明卧式甲醛氧化器实施例5的结构示意图;
图7为本发明卧式甲醛氧化器实施例6的结构示意图。
图中:1、隔板;2、第一筒体;3、第二筒体;4、第一冷却腔;5、第二冷却腔;6、第一管板;7、氧化头;8、第二管板;9、折流板;10、第一水汽出口;11、汽包;12、第二水汽出口;13、套管;14、排气孔;15、第三水汽出口;16、第一法兰;17、第四水汽出口;18、第三筒体;19、进出孔(进水);20、第二法兰;21、第三法兰;22、第一进水口;23、甲醛出口;24、第二进水口;25、第四筒体;26、夹套;27、排污孔;28、 隔热板;29、第四法兰;30、催化剂层;31、铜网;32、筛板;33、翅片管;34、第五筒体;35、第五法兰;36、第六法兰。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
实施例1
一种卧式甲醛氧化器,包括第一筒体2、第二筒体3和第四筒体25,所述第一筒体2的左侧壁和第二筒体3的右侧壁均安装有第三筒体18,两组第三筒体18的相互靠近的一侧均安装有第五筒体34,两组第五筒体之间安装有第四筒体25,所述第三筒体18顶部安装有氧化头7,所述第四筒体25的顶部连通有排气孔14,所述第四筒体25的底部连通有甲醛出口23,所述第四筒体25的内腔安装有隔板1,所述第二筒体3、第三筒体18和第四筒体25的内腔均设置有第一冷却腔4,所述第五筒体34的内腔置有第二冷却腔5。
所述第三筒体18与第二筒体3、第一筒体2之间均设置有第一管板6,所述第一冷却腔4和第二冷却腔5之间设置有第二管板8,所述第一冷却腔4内设置有翅片管33,所述翅片管33贯穿第一冷却腔4、第二管板8和第二冷却腔5,所述第二冷却腔5内设置有套管13,所述套管13套装于翅片管33的外侧壁,所述隔板1套装于翅片管33的外侧壁,所述氧化头7的内腔设置有催化剂层30、铜网31和筛板32,所述翅片管33的内腔设置有冷却水,所述套管13的外侧壁设置有冷却水或水汽,所述第一冷却腔4和第二冷却腔5的下方设置有冷却水,所述第一冷却腔4和第二冷却腔5的上方设置有水汽,所述所述翅片管33的左右两端分别与两组第一管板6连接。
两组第五筒体34的顶部分别安装有第二水汽出口12和第三水汽出口15,所述第二水汽出口12和第三水汽出口15的底部分别与两组第二冷却腔5连通,所述第二筒体3的顶部连通有第一水汽出口10,所述第一筒体2的顶部连通有第四水汽出口17,所述第一筒体2的底部连通有进出孔19,所述第二筒体3的底部连通有排污孔27,两组第五筒体34的底部分别设置有第一进水口22和第二进水口24,所述第一进水口22和第二进水口24分别与两组第二冷却腔5连通。
所述第一筒体2、第二筒体3、第三筒体18、第四筒体25和第五筒体34为矩形筒体,所述氧化头7为矩形氧化头,所述铜网31位于催化剂层30的下方和筛板32的下方,所述筛板32通过固定件设置于翅片管33的顶部,所述第一管板6靠近第四筒体25的一侧安装有隔热板28,所述隔热板28为孔板,所述隔热板28套装于翅片管33的外侧壁。
所述第三筒体18靠近第五筒体34的一侧安装有第一法兰16,所述第五筒体34靠近第三筒体18的一侧安装有第三法兰21,所述第一法兰16和第三法兰21连接,所述第一筒体2的左侧壁安装有第二法兰20,所述第三筒体18靠近第一筒体2的一侧安装有第四法兰29,所述第二法兰20和第四法兰29连接,所述第五筒体34靠近第四筒体25的一侧安装有第五法兰35,所述第四筒体25左右两侧均安装有第六法兰36,所述第五法兰35和第六法兰36连接。
实施例2
一种卧式甲醛氧化器,包括第一筒体2、第二筒体3和第三筒体18,所述第一筒体2和第二筒体3之间安装有第三筒体18,所述第三筒体18的顶部左右均安装有氧化头7,所述第三筒体18的 顶部连通有排气孔14,所述第三筒体18的的底部连通有甲醛出口23,所述第三筒体18的内腔安装有隔板1。
所述第三筒体18与第二筒体3、第一筒体2之间均设置有第一管板6,所述第三筒体18内设置有翅片管33,所述第三筒体18内设置有折流板9,所述折流板9套装于翅片管33的外侧壁,所述隔板1套装于翅片管33的外侧壁,所述氧化头7的内腔设置有催化剂层30、铜网31和筛板32,所述翅片管33的内腔设置有冷却水,所述所述翅片管33的左右两端分别与两组第一管板6连接。
所述第二筒体3的顶部连通有第一水汽出口10,所述第一筒体2的顶部连通有第四水汽出口17,所述第一筒体2的底部连通有进出孔19,所述第二筒体3的底部连通有排污孔27。
所述第一筒体2、第二筒体3、第三筒体18、第四筒体25和第五筒体34为矩形筒体,所述氧化头7为矩形氧化头,所述铜网31位于催化剂层30的下方和筛板32的下方,所述筛板32通过固定件设置于翅片管33的顶部,所述第一管板6靠近第四筒体25的一侧安装有隔热板28,所述隔热板28为孔板,所述隔热板28套装于翅片管33的外侧壁。
所述第一筒体2的左侧壁安装有第二法兰20,所述第三筒体18靠近第一筒体2的一侧安装有第四法兰29,所述第二法兰20和第四法兰29连接。
实施例3
一种卧式甲醛氧化器,包括第一筒体2、第二筒体3和第三筒体18,所述第一筒体2和第二筒体3之间安装有第三筒体18,所述第三筒体18的顶部左右均安装有氧化头7,所述第三筒体18的顶部连通有排气孔14,所述第三筒体18的的底部连通有甲醛出口 23,所述第三筒体18的内腔安装有隔板1。
所述第三筒体18与第二筒体3、第一筒体2之间均设置有第一管板6,所述第三筒体18内设置有翅片管33,所述第三筒体18内设置有折流板9,所述折流板9套装于翅片管33的外侧壁,所述隔板1套装于翅片管33的外侧壁,所述氧化头7的内腔设置有催化剂层30、铜网31和筛板32,所述翅片管33的内腔设置有冷却水,所述翅片管33的左右两端分别与两组第一管板6连接。
所述第二筒体3的顶部连通有第一水汽出口10,所述第一筒体2的顶部连通有第四水汽出口17,所述第一筒体2的底部连通有进出孔19,所述第二筒体3的底部连通有排污孔27,所述第三筒体18的外侧壁左右均套装有夹套26,两组夹套26中左侧一组的顶部设置有第二水汽出口12,两组夹套26中右侧一组的底部设置有第一进水口22。
所述第一筒体2、第二筒体3、第三筒体18、第四筒体25和第五筒体34为矩形筒体,所述氧化头7为矩形氧化头,所述铜网31位于催化剂层30的下方和筛板32的下方,所述筛板32通过固定件设置于翅片管33的顶部,所述第一管板6靠近第四筒体25的一侧安装有隔热板28,所述隔热板28为孔板,所述隔热板28套装于翅片管33的外侧壁。
所述第一筒体2的左侧壁安装有第二法兰20,所述第三筒体18靠近第一筒体2的一侧安装有第四法兰29,所述第二法兰20和第四法兰29连接。
实施例4
一种卧式甲醛氧化器,包括第一筒体2、第二筒体3和第四筒体25,所述第一筒体2的右侧壁安装有第三筒体18,所述第二筒体3的右侧壁与第四筒体25的左侧壁连接,所述第四筒体25和 第三筒体18的顶部均安装有氧化头7,所述第四筒体25和第三筒体37的内腔均设置有第一冷却腔4,所述第四筒体25的内腔置有第二冷却腔5,所述第四筒体25的顶部连通有排气孔14,所述第四筒体25的底部连通有甲醛出口23,所述第三筒体18的内腔安装有隔板1。
所述第一冷却腔4的数目为三组,所述第二冷却腔5的数目为两组且位于两组第一冷却腔4之间,三组第一冷却腔4中的左侧一组与第二筒体3之间、三组第一冷却腔4中的右侧一组与第一筒体2之间均设置有第一管板6,所述第一冷却腔4和第二冷却腔5之间设置有第二管板8,所述第一冷却腔4内设置有翅片管33,所述翅片管33贯穿第一冷却腔4、第二管板8和第二冷却腔5,两组第二冷却腔5内设置有套管13,所述套管13套装于多组翅片管33的外侧壁,所述第三筒体18内设置有折流板9,所述折流板9套装于翅片管33的外侧壁,所述隔板1套装于翅片管33的外侧壁。
所述氧化头7的内腔设置有催化剂层30、铜网31和筛板32,所述翅片管33的内腔设置有冷却水,所述套管13的外侧壁设置有冷却水或水汽,所述第一冷却腔4和第二冷却腔5的下方设置有冷却水,所述第一冷却腔4和第二冷却腔5的顶部设置有水汽,所述所述翅片管33的左右两端分别与两组第一管板6连接。
所述第四筒体25的顶部左右分别安装有第二水汽出口12和第三水汽出口15,所述第二水汽出口12和第三水汽出口15的底部分别与两组第二冷却腔5连通,所述第一筒体2的顶部连通有第一水汽出口9,所述第一筒体2的顶部连通有第四水汽出口17,所述第二筒体3的顶部连通有第一水汽出口10,所述第一筒 体1的底部连通有排污孔27,所述第一筒体2的底部连通有进出孔19,所述第四筒体25的底部左右分别设置有第二进水口24和第一进水口22,所述第二进水口24和第一进水口22分别与两组第二冷却腔5连通。
所述第一筒体2、第二筒体3、第三筒体18、第四筒体25为矩形筒体,所述氧化头7为矩形氧化头,所述铜网31位于催化剂层30的下方和筛板32的下方,所述筛板32通过固定件设置于翅片管33的顶部,所述第一管板6靠近第四筒体25的一侧安装有隔热板28,所述隔热板28为孔板,所述隔热板28套装于翅片管33的外侧壁。
所述第四筒体25的右侧壁安装有第三法兰21,所述第三筒体18的左侧壁安装有第一法兰16,所述第一法兰16和第三法兰21连接,所述第一筒体2的左侧壁安装有第二法兰20,所述第三筒体18靠近第一筒体2的一侧安装有第四法兰29,所述第二法兰20和第四法兰29连接。
实施例5
一种卧式甲醛氧化器,包括第一筒体2、第二筒体3和第四筒体25,所述第一筒体2的左侧壁和第二筒体3的右侧壁均安装有第三筒体18,两组第三筒体18的相互靠近的一侧均安装有第五筒体34,两组第五筒体之间安装有第四筒体25,所述第三筒体18顶部安装有氧化头7,所述第四筒体25的顶部连通有排气孔14,所述第四筒体25的底部连通有甲醛出口23,所述第四筒体25的内腔安装有隔板1,所述第二筒体3、第三筒体18和第四筒体25的内腔均设置有第一冷却腔4,所述第五筒体34的内腔置有第二冷却腔5。
所述第三筒体18与第二筒体3、第一筒体2之间均设置有第 一管板6,所述第一冷却腔4和第二冷却腔5之间设置有第二管板8,所述第一冷却腔4内设置有翅片管33,所述翅片管33贯穿第一冷却腔4、第二管板8和第二冷却腔5,所述第二冷却腔5内设置有套管13,所述套管13套装于翅片管33的外侧壁,所述隔板1套装于翅片管33的外侧壁,所述氧化头7的内腔设置有催化剂层30、铜网31和筛板32,所述翅片管33的内腔设置有冷却水,所述套管13的外侧壁设置有冷却水或水汽,所述第一冷却腔4和第二冷却腔5的下方设置有冷却水,所述第一冷却腔4和第二冷却腔5的顶部设置有水汽,所述所述翅片管33的左右两端分别与两组第一管板6连接。
所述第四筒体25的顶部左右均安装有汽包11,两组汽包11的顶部分别安装有第二水汽出口12和第三水汽出口15,所述两组汽包11的的底部分别与两组第二冷却腔5连通,所述第二筒体3的顶部连通有第一水汽出口10,所述第一筒体2的顶部连通有第四水汽出口17,所述第一筒体2的底部连通有进出孔19,所述第二筒体3的底部连通有排污孔27,两组第五筒体34的底部分别设置有第一进水口22和第二进水口24,所述第一进水口22和第二进水口24分别与两组第二冷却腔5连通。
所述第一筒体2、第二筒体3、第三筒体18、第四筒体25和第五筒体34为矩形筒体,所述氧化头7为矩形氧化头,所述铜网31位于催化剂层30的下方和筛板32的下方,所述筛板32通过固定件设置于翅片管33的顶部,所述第一管板6靠近第四筒体25的一侧安装有隔热板28,所述隔热板28为孔板,所述隔热板28套装于翅片管33的外侧壁。
所述第三筒体18靠近第五筒体34的一侧安装有第一法兰16,所述第五筒体34靠近第三筒体18的一侧安装有第三法兰 21,所述第一法兰16和第三法兰21连接,所述第一筒体2的左侧壁安装有第二法兰20,所述第三筒体18靠近第一筒体2的一侧安装有第四法兰29,所述第二法兰20和第四法兰29连接,所述第五筒体34靠近第四筒体25的一侧安装有第五法兰35,所述第四筒体25左右两侧均安装有第六法兰36,所述第五法兰35和第六法兰36连接。
实施例6
一种卧式甲醛氧化器,包括第一筒体2、第二筒体3和第三筒体18,所述第一筒体2和第二筒体3之间安装有第三筒体18,所述第三筒体18的顶部安装有氧化头7,所述第三筒体18的顶部连通有排气孔14,所述第三筒体18的的底部连通有甲醛出口23。
所述第三筒体18与第二筒体3、第一筒体2之间均设置有第一管板6,所述第三筒体18内设置有翅片管33,所述第三筒体18内设置有折流板9,所述折流板9套装于翅片管33的外侧壁,所述隔板1套装于翅片管33的外侧壁,所述氧化头7的内腔设置有催化剂层30、铜网31和筛板32,所述翅片管33的内腔设置有冷却水,所述翅片管33的左右两端分别与两组第一管板6连接。
所述第二筒体3的顶部连通有第一水汽出口10,所述第一筒体2的顶部连通有第四水汽出口17,所述第一筒体2的底部连通有进出孔19,所述第二筒体3的底部连通有排污孔27,所述第三筒体18的外侧壁套装有夹套26,所述夹套26的顶部设置有第二水汽出口12,所述夹套26的底部设置有第一进水口22。
所述第一筒体2、第二筒体3和第三筒体18为矩形筒体,所述氧化头7为矩形氧化头,所述铜网31位于催化剂层30的下方和筛板32的下方,所述筛板32通过固定件设置于翅片管33的顶部。
所述第一筒体2的左侧壁安装有第二法兰20,所述第三筒体18靠近第一筒体2的一侧安装有第四法兰29,所述第二法兰20和第四法兰29连接。
在一种卧式甲醛氧化器使用的时候,反应气在氧化头7内腔中的催化剂层30上进行反应,反应生成的气体从筛板32上的筛孔逸出,卧式的甲醛氧化器结构,使得氧化头7与冷却结构分离,解除了传统的氧化器换热区与氧化区同直径造成的换热速度的限制,能较大的提高产能,便于拆卸与维修,第三筒体18上的两组氧化头7共同工作,能够将产量提高一倍以上,也可将一组氧化头7拆分为两组或多组,更便于制造和运输,矩形氧化头7的内部被分成几个部分将催化剂层30隔开,预防催化剂层30变形裂开,同时能够增大流通量,热量迅速进入冷却区域,防止氧化头7内部因较大产量而产生热量聚集,反应气经过筛板32下方的翅片管33预冷却,也利于保护作为换热管的翅片管33端部,位于第一管板6靠近第四筒体25的一侧的隔热板28,能够将管板与反应气隔离,防止反应气直接冲刷管板,而后反应气进入第二冷却腔5,经过第二管板8进入翅片管33和套管13之间的空隙,在对从翅片管33和套管13之间经过的反应气进行内外冷却时,反应气通过套管13与第二冷却腔5内的冷却水与翅片管33内的冷却水进行换热,此时翅片管33的内腔充满冷却水,套管13外侧壁与筒体之间上层为水汽,下层为冷却水,更利于换热,管板热区接触冷却水,管板高温区温度不会过高,能保持在不锈钢材料性能稳定使用范围内,翅片管33端部避开高温区,避免翅片管33温度过高造成翅片管33的端部损坏,从而提高设备使用寿命,反应产生的甲醛从甲醛出口23出排出,反应气经过第一冷却腔4、第二冷却腔5进行冷却,能够加速反应气的冷却,提高反应气冷却的效率,减少反 应所生成的杂质含量,将筛板32设置于翅片管33顶部的固定件,及氧化头7顶部安装的法兰,可以实现氧化头7的可拆卸功能,在灰尘、颗粒附着在翅片管33上时,更便于清洗,保持翅片管33的洁净,便于提高换热效率。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种卧式甲醛氧化器,包括第一筒体(2)、第二筒体(3)和第四筒体(25),其特征在于:所述第一筒体(2)的左侧壁和第二筒体(3)的右侧壁均安装有第三筒体(18),两组第三筒体(18)的相互靠近的一侧均安装有第五筒体(34),两组第五筒体之间安装有第四筒体(25),所述第三筒体(18)顶部安装有氧化头(7),所述第四筒体(25)的顶部连通有排气孔(14),所述第四筒体(25)的底部连通有甲醛出口(23),所述第四筒体(25)的内腔安装有隔板(1),所述第二筒体(3)、第三筒体(18)和第四筒体(25)的内腔均设置有第一冷却腔(4),所述第五筒体(34)的内腔置有第二冷却腔(5)。
  2. 根据权利要求1所述的一种卧式甲醛氧化器,其特征在于:所述第三筒体(18)与第二筒体(3)、第一筒体(2)之间均设置有第一管板(6),所述第一冷却腔(4)和第二冷却腔(5)之间设置有第二管板(8),所述第一冷却腔(4)内设置有翅片管(33),所述翅片管(33)贯穿第一冷却腔(4)、第二管板(8)和第二冷却腔(5),所述第二冷却腔(5)内设置有套管(13),所述套管(13)套装于翅片管(33)的外侧壁,所述隔板(1)套装于翅片管(33)的外侧壁。
  3. 根据权利要求1所述的一种卧式甲醛氧化器,其特征在于:所述氧化头(7)的内腔设置有催化剂层(30)、铜网(31)和筛板(32),所述翅片管(33)的内腔设置有冷却水,所述套管(13)的外侧壁设置有冷却水或水汽,所述第一冷却腔(4)和第二冷却腔(5)的下方设置有冷却水,所述第一冷却腔(4)和第二冷却腔(5)的上方设置有水汽,所述所述翅片管(33)的左右两端分别与两组第一管板(6)连接。
  4. 根据权利要求1所述的一种卧式甲醛氧化器,其特征在 于:两组第五筒体(34)的顶部分别安装有第二水汽出口(12)和第三水汽出口(15),所述第二水汽出口(12)和第三水汽出口(15)的底部分别与两组第二冷却腔(5)连通,所述第二筒体(3)的顶部连通有第一水汽出口(10),所述第一筒体(2)的顶部连通有第四水汽出口(17)。
  5. 根据权利要求1所述的一种卧式甲醛氧化器,其特征在于:所述第一筒体(2)的底部连通有进出孔(19),所述第二筒体(3)的底部连通有排污孔(27),两组第五筒体(34)的底部分别设置有第一进水口(22)和第二进水口(24),所述第一进水口(22)和第二进水口(24)分别与两组第二冷却腔(5)连通。
  6. 根据权利要求1所述的一种卧式甲醛氧化器,其特征在于:所述第一筒体(2)、第二筒体(3)、第三筒体(18)、第四筒体(25)和第五筒体(34)为矩形或圆形筒体,所述氧化头(7)为矩形氧化头,所述铜网(31)位于催化剂层(30)的下方和筛板(32)的下方,所述筛板(32)通过固定件设置于翅片管(33)的顶部。
  7. 根据权利要求2所述的一种卧式甲醛氧化器,其特征在于:所述第一管板(6)靠近第四筒体(25)的一侧安装有隔热板(28),所述隔热板(28)为孔板,所述隔热板(28)套装于翅片管(33)的外侧壁。
  8. 根据权利要求1所述的一种卧式甲醛氧化器,其特征在于:所述第三筒体(18)靠近第五筒体(34)的一侧安装有第一法兰(16),所述第五筒体(34)靠近第三筒体(18)的一侧安装有第三法兰(21),所述第一法兰(16)和第三法兰(21)连接。
  9. 根据权利要求1所述的一种卧式甲醛氧化器,其特征在于:所述第一筒体(2)的左侧壁安装有第二法兰(20),所述第三筒体(18)靠近第一筒体(2)的一侧安装有第四法兰(29),所述第二法兰(20)和第四法兰(29)连接。
  10. 根据权利要求1所述的一种卧式甲醛氧化器,其特征在于:所述第五筒体(34)靠近第四筒体(25)的一侧安装有第五法兰(35),所述第四筒体(25)左右两侧均安装有第六法兰(36),所述第五法兰(35)和第六法兰(36)连接。
PCT/CN2020/113907 2020-06-05 2020-09-08 一种卧式甲醛氧化器 WO2021243872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010506102.6A CN111545133A (zh) 2020-06-05 2020-06-05 一种卧式甲醛氧化器
CN202010506102.6 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021243872A1 true WO2021243872A1 (zh) 2021-12-09

Family

ID=71999140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113907 WO2021243872A1 (zh) 2020-06-05 2020-09-08 一种卧式甲醛氧化器

Country Status (3)

Country Link
CN (1) CN111545133A (zh)
WO (1) WO2021243872A1 (zh)
ZA (1) ZA202102160B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545133A (zh) * 2020-06-05 2020-08-18 江苏永大化工设备有限公司 一种卧式甲醛氧化器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20219277U1 (de) * 2002-12-12 2003-02-20 Deggendorfer Werft Eisenbau Mantelrohrreaktor für katalytische Gasphasenreaktionen
CN1788835A (zh) * 2004-12-14 2006-06-21 杭州林达化工技术工程有限公司 横向管式换热反应设备
CN202501675U (zh) * 2012-02-08 2012-10-24 浙江同星制冷有限公司 一管翅片式的高效防腐蚀换热器
CN204503032U (zh) * 2015-03-19 2015-07-29 江苏鸿基化工有限公司 一种制备甲醛用氧化器
RU2567466C1 (ru) * 2014-12-15 2015-11-10 Владислав Юрьевич Климов Теплообменник
CN105526812A (zh) * 2015-12-23 2016-04-27 山东大学 一种催化氧化换热器及其工作方法
CN205965808U (zh) * 2016-08-26 2017-02-22 余姚市舜吉塑化有限公司 氧化器下段余热回收装置
CN110252209A (zh) * 2019-07-23 2019-09-20 江苏永大化工设备有限公司 一种高效甲醛氧化器
CN111545133A (zh) * 2020-06-05 2020-08-18 江苏永大化工设备有限公司 一种卧式甲醛氧化器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20219277U1 (de) * 2002-12-12 2003-02-20 Deggendorfer Werft Eisenbau Mantelrohrreaktor für katalytische Gasphasenreaktionen
CN1788835A (zh) * 2004-12-14 2006-06-21 杭州林达化工技术工程有限公司 横向管式换热反应设备
CN202501675U (zh) * 2012-02-08 2012-10-24 浙江同星制冷有限公司 一管翅片式的高效防腐蚀换热器
RU2567466C1 (ru) * 2014-12-15 2015-11-10 Владислав Юрьевич Климов Теплообменник
CN204503032U (zh) * 2015-03-19 2015-07-29 江苏鸿基化工有限公司 一种制备甲醛用氧化器
CN105526812A (zh) * 2015-12-23 2016-04-27 山东大学 一种催化氧化换热器及其工作方法
CN205965808U (zh) * 2016-08-26 2017-02-22 余姚市舜吉塑化有限公司 氧化器下段余热回收装置
CN110252209A (zh) * 2019-07-23 2019-09-20 江苏永大化工设备有限公司 一种高效甲醛氧化器
CN111545133A (zh) * 2020-06-05 2020-08-18 江苏永大化工设备有限公司 一种卧式甲醛氧化器

Also Published As

Publication number Publication date
CN111545133A (zh) 2020-08-18
ZA202102160B (en) 2021-04-28

Similar Documents

Publication Publication Date Title
CN105679301B (zh) 一种可拆装分段式温差发电热交换器消声器组合装置
WO2021243872A1 (zh) 一种卧式甲醛氧化器
JP4605903B2 (ja) 接触管巣を有する反応器
JP2002522214A5 (zh)
CN108613573A (zh) 加氢站高压氢气压缩机能够拆洗的高效管壳式冷却器
CN201170697Y (zh) 高效氮气冷却器
CN212651794U (zh) 一种卧式甲醛氧化器
CN209612901U (zh) 一种等温等流速双水冷卧式反应器
CN213120184U (zh) 可拆卸管束式u形管换热器
FI59661B (fi) Avgaspanna
CN212006849U (zh) 一种高效管式换热器
CN200946994Y (zh) 一种冷冻式压缩空气干燥机中的换热器
CN113375371A (zh) 一种用于制冷系统的新式冷凝器
CN109701455A (zh) 一种等温等流速双水冷卧式反应器
JPS5925721B2 (ja) 合成塩酸製造装置
RU2395775C1 (ru) Коллекторный пластинчатый теплообменник
CN201621672U (zh) 一种刺刀式废热回收器
JP2010110746A (ja) 微粒子熱泳動沈降器
CN220339164U (zh) 一种多腔室换热器
CN216308714U (zh) 一种管式油冷却器
CN219454769U (zh) 一种氢氧化铝冷却装置
SU1249296A1 (ru) Кожухотрубный теплообменник
RU2518708C1 (ru) Аппарат воздушного охлаждения газа
CN214183005U (zh) 裂解器
CN217887440U (zh) 一种新型吸附柱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939086

Country of ref document: EP

Kind code of ref document: A1